
User Documentat ion

2

 T a b l e o f C o n t e n t s

 Part I: BEEN Overview..7
 1 Introduction...8

 1.1 License...9
 2 Architecture Overview...10

 2.1 Execution Framework...10
 2.2 Benchmarking Framework...11
 2.3 Technologies Used.. 11

 3 Tasks..13
 3.1 Task Communication and Synchronization... 13
 3.2 Task Descriptor...13
 3.3 Task Status.. 14

 4 Host Runtime...16
 4.1 Host Runtime Lifecycle..16
 4.2 Running Tasks..16
 4.3 Exclusive and Context-Exclusive Tasks.. 17
 4.4 Load Monitor..17
 4.5 Data Directory Structure...18

 5 Task Manager...19
 5.1 Configuration... 20

 6 Software Repository...21
 6.1 Packages...21
 6.2 Operations Supported...23
 6.3 Package Storage... 23
 6.4 Optimizations..23

 7 Managing Computers on the Network...24
 7.1 Host Database.. 24
 7.2 Host Data... 24
 7.3 Database Queries ..25
 7.4 Host Groups ..26
 7.5 Software Aliases...26
 7.6 Host Manager Configuration..27

 8 Monitoring Computer Utilization ...29
 8.1 Monitoring Running Tasks... 29
 8.2 Host Utilization Monitoring.. 29

 9 Benchmark Manager..31
 9.1 Benchmark Entities...31
 9.2 Benchmark Plugins..32

 10 Results Repository...36
 10.1 Results Collection... 36
 10.2 Results Repository Database...36
 10.3 Failed Runs..37
 10.4 Statistics Calculation..37
 10.5 Cooperation with Benchmark Manager... 37
 10.6 Database Contents...38
 10.7 Results Repository Export Format..39

3

 11 Restriction Specification Language (RSL)...40
 11.1 Language Description... 40

 12 Related projects...44

 Part II: Using BEEN...45
 1 Installing BEEN..46

 1.1 Requirements..46
 1.2 Installing BEEN Execution Environment...47
 1.3 Installing Results Repository Prerequisites..47
 1.4 Installing Web User Interface...49

 2 Running BEEN...50
 2.1 Running Task Manager..50
 2.2 Running Host Runtime..51
 2.3 Running and Configuring Web Interface...51
 2.4 Running Services... 52

 3 Using Web User Interface..53
 3.1 Web Interface Structure...53
 3.2 Packages Module... 54
 3.3 Hosts Module... 55
 3.4 Tasks Module...57
 3.5 Benchmarks Module... 60
 3.6 Results Module..64
 3.7 Configuration Module...69
 3.8 Services Module...70

 4 Benchmarking with Xampler..72
 4.1 Introduction to Xampler... 72
 4.2 Comparison Analyses with Xampler..72
 4.3 Regression Analyses with Xampler.. 73
 4.4 Required Packages...73
 4.5 Xampler Role Requirements...74
 4.6 Notes.. 74

 5 Benchmarking with RUBiS ...75
 5.1 Client Emulator.. 75
 5.2 Server.. 75
 5.3 Database... 77
 5.4 Using the RUBiS Plugin in BEEN... 77

 6 Executing a Simple Benchmarking Analysis..82
 6.1 Executing RUBiS Comparison Analysis... 82

 7 Compiling BEEN..85

 Part III: Extending BEEN..87
 1 Introduction...88
 2 Writing Custom Tasks ..89

 2.1 Packaging..89
 2.2 Task Class...90
 2.3 Jobs and Services.. 91
 2.4 Existing Tasks.. 92

 3 Extending Benchmark Manager..107
 3.1 Packaging...108
 3.2 Experiment Metadata.. 109
 3.3 Configurator.. 110

4

 3.4 Task Generator..112
 3.5 Version Provider..114

 4 Extending Results Repository..115
 4.1 Validation and Conversion Tasks...115
 4.2 R Script Packages.. 115
 4.3 Writing R Functions... 116

 5 Debugging BEEN...117
 5.1 Debugging Host Runtime and Task Manager... 117
 5.2 Debugging Tasks... 117
 5.3 Debugging Services... 117
 5.4 Debugging Load Monitor...118

 Part IV: Appendices...119
 Appendix A: Objects and Properties of the Host..120
 Appendix B: Results Repository Metadata..124

 1.1 Analysis Metadata..124
 1.2 Experiment Metadata... 124
 1.3 Binary Metadata.. 125
 1.4 Run Metadata..125

 Appendix C: RSL Grammar...126
 Appendix D: Source Code Layout...128
 Appendix E: Third-party Libraries...129

5

D o c u m e n t a t i o n S t r u c t u r e

The user documentation is divided into four parts.

In Part I, we introduce BEEN, explain the overall architecture of the system and describe its
components.

In Part II we describe hardware and software requirements of the BEEN; installation, running
and compilation instructions. We also describe functionality of the web user interface and
both benchmarks currently supported by the BEEN.

In Part III we describe how to add support for additional benchmarking software and
extension points of various components of the BEEN.

In Part IV, various appendices with supplemental information are listed.

In the documentation, we often quote article Automated Benchmarking and Analysis Tool1,
which we have written for the VALUETOOLS 2006 conference. The quotations are not
specially marked.

For clarity, some technical details are omitted from the user documentation and the reader is
referred to the automatically generated Javadoc documentation, available in electronic form.

1 http://nenya.ms.mff.cuni.cz/publications/Submitted_1404_BEEN.pdf

6

http://nenya.ms.mff.cuni.cz/publications/Submitted_1404_BEEN.pdf

Part I
B E E N O v e r v i e w
 P a r t I : B E E N O v e r v i e w

7

 1 I n t r o d u c t i o n

When developing and evaluating software, it is often useful to automatically measure
performance of the software and compare it with other similar products or with older versions
of the same software. One of the possibilities of performance measurement is to run a model
application (a benchmark) which simulates the behavior of real application and provides
performance data. Usually, such benchmarks are conducted using tools built ad-hoc for each
project, resulting in minimal code reuse and waste of resources. When benchmarking
inherently distributed software, such as client-server applications or middleware, the
construction of a benchmarking framework is a non-trivial task, as the framework has to cope
with tasks such as distributed deployment, synchronization, monitoring and collection of
results. Clearly, there is a place for a general framework for conducting benchmarks in a
distributed environment.

A special application of benchmarking is automatic performance evaluation of software during
development – regression benchmarking. It is useful mainly to detect code changes with
significant positive or negative impact on software performance. Regression benchmarking
requires precise measurement, complicated statistical evaluation and full automation of the
benchmark execution (downloading the software, compilation, etc.).

We have solved the outlined problems in BEEN and created a generic tool for regression
benchmarking in a heterogeneous distributed environment. BEEN presents a common
execution environment suitable for running many kinds of different benchmarks (i.e. its
architecture is not tied to any specific benchmark). The notable features include:

● Support for heterogeneous environment. BEEN can be run on Windows and Linux
platforms and in limited way on any platform capable of running Java.

● Regression benchmarking. It is easy to setup BEEN to scenarios such as download of
the daily snapshot of a product from the source code repository, execution of specified
benchmarks on the snapshot and processing of the results.

● Automation. Everything is fully automatic from downloading and compilation of the
benchmarked software, deploying software to hosts and running the benchmarks; to
collecting and processing results. This allows for unattended execution of regression
benchmarks.

● Complete statistical analysis and visualization of the results. Results of the
benchmarks can be statistically processed and various graphs can be generated from
the results. Standard statistical environment R is used at the core of the results
processing component. The results are always stored as a raw data; no information is
lost by the system.

● User-friendly web interface. The whole framework is controlled through a unified
web interface – there is no need to install any special applications and the framework
can be controlled from any computer with a web browser. Special care was taken to
make the interface as easy to use as possible.

● Logging and debugging facilities. Status of all BEEN components can be easily
monitored. Almost every action in the system is logged and the logs are sent to a
central repository, where they can be inspected via a web interface.

● Extensibility. BEEN can be extended to support additional benchmarks via plugins.
The statistical processing is customizable by writing scripts in the R language. User
may use a rich library of built-in functions while working with the benchmark results.

8

BEEN supports two benchmarks out-of-the-box:

● Xampler2 – a CORBA middleware benchmark

● RUBiS3 – an EJB server benchmark

BEEN was developed in close cooperation with Distributed Systems Research Group4 at the
Faculty of Mathematics and Physics of the Charles University in Prague. The project was also
accepted as an ObjectWeb5 project and is hosted on ObjectWeb Forge6.

The project website is located at http://been.objectweb.org/.

 1.1 License
BEEN source code is distributed under the terms of the GNU Lesser General Public License
(LGPL). Full text of the license can be found in the LICENSE file in BEEN source directory.

BEEN uses several third-party libraries. See Third-party libraries (Part IV, Appendix E) for the
list of the libraries, their files and licenses.

2 http://dsrg.mff.cuni.cz/~ceres/prj/CCPsuite/
3 http://rubis.objectweb.org/
4 http://nenya.ms.mff.cuni.cz/
5 http://www.objectweb.org/
6 http://forge.objectweb.org/

9

http://been.objectweb.org/
http://forge.objectweb.org/
http://www.objectweb.org/
http://nenya.ms.mff.cuni.cz/
http://rubis.objectweb.org/
http://dsrg.mff.cuni.cz/~ceres/prj/CCPsuite/

 2 A r c h i t e c t u r e O v e r v i e w

Main design goal of BEEN is to support automated benchmarking in a distributed
heterogeneous environment. The automated benchmarking involves compilation of software
to be benchmarked, compilation of benchmarks, deployment, execution of the benchmarks
and collection, evaluation and visualization of the results. To achieve those goals, the BEEN
itself had to be built as a distributed system. Most of the goals are common for automated
execution of software in a distributed environment in general. In an attempt to keep BEEN
general enough to support execution of any distributed software we split framework into two
parts – the execution framework and the benchmarking framework.

The execution framework is a general framework designed to execute tasks in a distributed
system abstracting away differences between various platforms. The benchmarking framework
is built on top of the execution framework and covers benchmark-specific functionality. Both
frameworks are described below.

All components of BEEN can be monitored and controlled from the web user interface. The
web interface provides both high-level operations (such as starting a benchmark and viewing
its results) as well as low-level operations (such as execution of a specific task). User can view
detailed information (logs, status, etc.) about all processes being executed by the BEEN from
the user interface. The user interface runs independently and can be shut down while other
BEEN components are running.

 2.1 Execution Framework
The execution framework of BEEN is a general framework designed to execute tasks in a
distributed environment while hiding differences between various operating systems and
platforms.

Task is a basic unit of execution in BEEN. Depending on its mode of execution, each task is
either a job or a service. A job is a batch task created to perform a particular action – it finishes
as soon as the action it was created for was performed. A service is a long-running task that
waits for requests from other tasks and performs actions upon those requests. Most of BEEN
components are implemented as services: Software Repository, Host Manager, Benchmark
Manager and Results Repository.

Each participating host has to run a Host Runtime. The Host Runtime is responsible for
execution and management of all tasks on its host and serves as a proxy for all communication
between BEEN components and tasks running on the host. Integral part of the Host Runtime
is the Load Monitor, which monitors utilization of various resources (memory, disk space,
network bandwidth, etc.) on the host.

The information about hosts in the benchmarking environment is maintained by the Host
Manager. This service maintains a list of hosts, their status, hardware/software configuration
and resource utilization. Other BEEN components can lookup hosts based on various criteria.

The execution of tasks in the distributed environment is coordinated by the Task Manager.
The Task Manager allocates hosts to tasks based on the task requirements, monitors the
running tasks and resolves task failures.

Code and data of the tasks are stored in the Software Repository. It stores software sources,
binaries for different platforms as well as tasks and static data. By using the Software
Repository, the execution framework avoids relying on a distributed file system which might

10

be difficult to set up in a heterogeneous environment. When executing benchmarks, the
presence of a distributed file system could also distort the benchmark results.

 2.2 Benchmarking Framework
The benchmarking framework is designed to support two different kinds of performance
analysis – a traditional one-time evaluation of performance and repetitive evaluation of
performance for regression benchmarking. The main components of the benchmarking
framework are the Benchmark Manager and the Results Repository.

The Benchmark Manager maintains all information needed to run benchmarks – this typically
involves compilation of benchmarked software, compilation of the benchmarks itself,
deployment and execution of the benchmark. It utilizes a system of plugins, which add support
for specific benchmarks.

Experiment results are stored in the Results Repository in a raw format that contains
individual benchmarks measurements. The results can be statistically processed and visualized
in a customizable way.

 2.3 Technologies Used
In the BEEN implementation we used the Java language and runtime environment (version 5.0
is required), because of its multiplatform nature and easy way of code distribution (Java
programs compile into a bytecode which could be easily transferred between the hosts and

11

Diagram 1: BEEN Architecture.

Results
Repository

Software
Repository

Benchmark
Manager

Task
Manager

Task generation

Host 1 Host 2 Host n…
Host

Runtime
Host

Runtime
Host

Runtime

Task execution

Host
Manager

Host management

Upload/download

Results storage

Ex
ec

ut
io

n
Fr

am
ew

or
k

B
en

ch
m

ar
ki

ng
Fr

am
ew

or
k

W
eb

 U
se

rI
nt

er
fa

ce

Results
Repository

Software
Repository

Benchmark
Manager

Task
Manager

Task generation

Host 1 Host 2 Host n…
Host

Runtime
Host

Runtime
Host

Runtime

Task execution

Host
Manager

Host management

Upload/download

Results storage

Ex
ec

ut
io

n
Fr

am
ew

or
k

B
en

ch
m

ar
ki

ng
Fr

am
ew

or
k

W
eb

 U
se

rI
nt

er
fa

ce

executed by the Java Virtual Machine). Also, Java provides built-in mechanism for remote
procedure call: Remote Method Invocation (RMI). We use RMI for all communication between
components in the distributed environment.

We also use Java Native Interface (JNI) technology as a means of communication with native
libraries which provide low-level access to the operating system needed by the Host Manager
and Load Monitor.

The web interface is also written in Java using the Java Servlets technology and the Java Server
Pages (JSP) template language. This allows great interoperability with the rest of BEEN and
easy deployment using Apache Tomcat, an open-source servlet container.

Parts of the Results Repository which deal with statistical processing of the benchmarks results
are written in the R language, which is a standard open-source tool for statistical
computations.

12

 3 T a s k s

The purpose of tasks is similar to ordinary program or process, i.e. they perform the low level
functionality used by benchmarks, e.g. compilation of software source code.

Each task is either a job or a service. A job is a batch task created for a particular action – it
finishes as soon as the action it was created for was performed. A service is a long-running task
which waits for requests from other tasks and performs actions upon those requests. It can be
compared to Unix daemon. Most of BEEN components are implemented as services.

Task's code, data and additional information required by BEEN are stored in the Software
Repository in task packages. The tasks are managed by the Task Manager, which decides when
and where to run a task. When a task is about to be started, its package is transported over the
network to a Host Runtime on the target host. The Host Runtime creates a new Java Virtual
Machine for the task (so that crashing task does not crash the Host Runtime) and manages the
task execution.

Each group of cooperating tasks is enclosed in a single context. Tasks and contexts are
identified by a textual ID – context ID is globally unique, task ID is unique within a context.
Special context – system context – in which all BEEN services are running is created
automatically by the Task Manager. The system context is never deleted.

 3.1 Task Communication and Synchronization
Synchronization and communication between tasks is handled via checkpoints which are
managed centrally by the Task Manager. Each checkpoint has a textual name and optionally a
value which can be any Java object capable of transferring over the network (Serializable
object). A task can set a checkpoint by registering it in the Task Manager. Another task can
then query for checkpoints and their values.

A checkpoint can be used by a task to indicate a state. For example, a task can set a checkpoint
with the name database running to indicate that a database has been successfully started.
The value of the checkpoint can be used to send information to other tasks, for example it
could be a CORBA IOR reference.

To get the value of a checkpoint, a task has to specify a task ID of the task that set the
checkpoint and the name of the checkpoint. A task can also wait for a checkpoint to be set by
a specific task. Each task can only synchronize with the task from the same context or from the
system context.

 3.2 Task Descriptor
To run a task, a task descriptor must be submitted to the Task Manager. The task descriptor is
a data structure containing all information necessary for starting the task. It can be stored in
an XML file or in a Java object. For detailed description of the XML file format of the task
descriptor, see file /resources/dtd/taskmanager/TaskDescriptor.dtd in the BEEN
source code.

Following information is stored in the task descriptor:

• Package – identification of a package in the Software Repository that contains the task
code and data. The package can be identified by it's name, or by an RSL expression

13

which can contain requirements on the package version, supported platforms, etc. For
more information about RSL, see section Restriction Specification Language (RSL) (Part
I, 11).

• Task Properties – the equivalent of command-line arguments for tasks are the task
properties. Each property of a task has a name and a value. Name of the property is
string, value of the property can be any object. Task properties are not transferred via
command-line arguments thus avoiding various problems caused by the limitations of
the command-line on various platforms.

• Host – the task descriptor must specify a host on which the task should be executed.
The host can be specified directly by its hostname or it can be selected by RSL query.
The RSL can contain hardware and software requirements on the host. The query will
be evaluated by the Host Manager, the task will then be executed on one of the
matching hosts.

• Dependencies – to ensure a desired order of task execution, the start of a task can
depend on another task setting a checkpoint. A task is started only when all its
dependencies are satisfied. A dependency on a checkpoint contains this information:

• Task ID – identification of the task that must set the checkpoint.

• Checkpoint name – name of the checkpoint that must be set (e.g. database
started).

• Checkpoint value – the checkpoint must have this value to satisfy the
dependency. If the requested value is null, any value is acceptable.

Several checkpoints are set by the BEEN automatically. When a task is started, the Host
Runtime sets the task started checkpoint to a null value. When a task finishes,
Task Manager sets the task finished checkpoint to the return value of the process
in which the task was running.

• Exclusivity – for certain tasks it may not be possible to run them in parallel on the
same host since they may interfere with each other. To prevent this, tasks can be
exclusive or context-exclusive. If a task is exclusive, no other task can run on the same
host at the same time. If a task is context-exclusive, only tasks from the same context
can run on the same host at the same time. Exclusivity and context-exclusivity are used
by tasks which are important for the results of the benchmarking to prevent other tasks
distorting the results.

• Failure policy – a task can be automatically restarted by the Host Runtime after a
crash. Maximum running time of a task can be defined. If the task does not finish
before the timeout ends, it will be automatically stopped.

• Detailed load collection – a task can request detailed load monitoring during its
execution. Detailed load is typically requested by the benchmarking tasks to provide
more data about the performance of the benchmark. Data collected during detailed
mode are uploaded to the Results Repository alongside regular results produced by the
benchmark.

 3.3 Task Status
Each task goes through several states during its life cycle. Following task states are defined:

● Submitted – the task has been submitted to the Task Manager. It is not running yet.

● Scheduled – the task has been submitted to the Task Manager. Its dependencies are
satisfied and it can be started now.

14

● Running – the task is running on a host.

● Finished – the task has terminated. Both successful and unsuccessful termination are
represented by this state.

● Aborted – the task has been killed either by the user from the web interface or by
some BEEN component.

15

 4 H o s t R u n t i m e

The Host Runtime is a BEEN component which must be run on every host participating in the
system. It is responsible for running and management of all tasks on the host and serves as a
proxy for all communication between BEEN components and the tasks running on the host.
Integral part of the Host Runtime is the Load Monitor, which monitors utilization of various
resources on the host.

For instructions how to run the Host Runtime, see section Running Host Runtime (Part II, 2.2).

 4.1 Host Runtime Lifecycle
The Host Runtime cooperates closely with the Task Manager. After the start, the Host Runtime
registers on the Task Manager that is running the host specified by the command-line
parameter. After the Host Runtime is started, it waits for instructions – which mostly contain
requests for executing a task.

The Host Runtime can be stopped by explicitly killing its process by the user. The shutdown
procedure kills all running tasks executed by the Host Runtime and unregisters the Host
Runtime from the Task Manager.

All important events during the execution of the Host Runtime are written to the standard or
error output. These messages are not stored centrally.

 4.2 Running Tasks
To run a task on the Host Runtime, the Task Manager connects to the remote interface of the
Host Runtime via RMI and sends a request that contains task descriptor of the task to run.
Task descriptor contains all data needed by the Host Runtime to execute a task. For more
details about the data stored in the task descriptor see Task Descriptor (Part I, 3.2).

The Host Runtime then downloads the task package from the Software Repository, extracts the
task’s code, prepares task directories and attempts to start new process for the task. All
potential errors are reported back to the Task Manager.

Packages downloaded from the Software Repository are cached by the Host Runtime. Several
core packages (namely packages of the BEEN services and the detector task) are not
downloaded from the Software Repository, they are stored permanently on the Host Runtime.

Each task runs in its own Java Virtual Machine. This prevents faulty task from crashing the
Host Runtime All task's communication with other BEEN components is routed through a
task's port – RMI interface available to every task.

The task can use the task's port to send log messages to the Host Runtime which will then
forward messages to the Task Manager. The Task Manager stores messages for later review by
the user. The Host Runtime also captures the standard and error output of the task and
forwards them to the Task Manager while saving them into local files to allow manual
inspection by the user.

16

 4.2.1 Timeouts and Restarts

Various limitations can be placed on the task’s execution time and restart policy. User can
limit total running time of the task. When the timeout expires, the task is killed by the Host
Runtime and its execution is considered unsuccessful. The task execution is also considered
unsuccessful if it exists normally, but its process return value is non-zero.

Crashing tasks are automatically restarted by the Host Runtime. Maximum number of restarts
of the task can be set in its task descriptor. If the task is restarted more times than allowed, it is
considered as unsuccessful. Both execution time limit and restart count limit are handled
transparently by the Host Runtime and only the result of the last task execution is reported to
the Task Manager.

Execution time limit and restart count limit allow for greater stability of the BEEN as a whole
since the tasks that are hung do not block execution of the rest of the benchmark and crashing
tasks have higher chance of succeeding.

 4.3 Exclusive and Context-Exclusive Tasks
The tasks can be run in three modes: non-exclusive, exclusive and context-exclusive. These
modes implement simple policies which control parallel execution of tasks on a host.

In non-exclusive mode, the task can be executed in parallel with other tasks on the same Host
Runtime without any regard to possible interference between the tasks. Logging messages,
standard and error output of the task are sent immediately to the Task Manager.

In exclusive mode the task is guaranteed to be the only task running on the specified Host
Runtime. This mode allows the benchmarking tasks to execute without any interference that
could potentially distort the benchmarking results. Logging messages and standard/error
output of the task executed in exclusive mode are buffered by the Host Runtime and sent to
the Task Manager after the task is terminated. This prevents distortion of the results of the
tasks that monitor or are sensitive to the network traffic.

The context-exclusive mode is similar to the exclusive mode, except that it allows parallel
execution of other tasks from the same context as a context-exclusive task on the same Host
Runtime. This may prove useful when designing benchmarks with complex interactions
between different tasks.

 4.4 Load Monitor
To provide user with the details about utilization of hardware resources on the host, Load
Monitor collects data from the underlying operating system. Load Monitor starts automatically
with the Host Runtime and monitors usage of the following resources:

● free memory

● process count

● process queue length

● processor utilization of each processor

● utilization of all disk drives (bytes read and written per second)

● utilization of network interfaces (bytes received and sent per second)

Load Monitor can run in two modes – brief mode and detailed mode. The brief mode is
designed to provide overview of the host activity while the detailed mode provides more

17

precise data that can be stored with the results of the benchmarking tasks. Sampling rate of
the Load Monitor in brief mode can be set for all hosts in the environment in the Host
Manager’s configuration (see Configuration Module (Part II, 3.7)). Detailed mode is enabled
only on request of the task. Each task can set its own sampling interval independently.

 4.5 Data Directory Structure
The Host Runtime stores its data in data/hostruntime directory in the BEEN installation
directory. Several subdirectories are present in this directory:

● tasks – contains directories with task and context data

● cache – cache of task packages downloaded from the Software Repository

● boot – contains core BEEN packages (namely packages of the BEEN services and the
detector task)

● native-lib – contains native libraries used by the Load Monitor for supported
platforms

● load – contains computer utilization data obtained by the Load Monitor in detailed
mode

 4.5.1 Tasks Directory

The tasks directory contains all data required and generated by the tasks that are running on
the Host Runtime. For each task that is to be executed on the Host Runtime, the directory with
name context-id/task-id is created (where context-id and task-id are the context ID and
task ID of the task being executed). This directory is called the task base directory.

In the task base directory, several files and directories are created:

Files created:

● standard-output – text file which stores standard output of the task

● error-output – text file which stores error output of the task

Directories created:

● task – contains the unpacked contents of the files directory from the task’s
package. This directory is deleted after the task is finished

● working – stores data created by the task which must be accessible after the task is
finished; it is deleted when closing parent context of the task

● temporary – stores temporary data created by the task; it is deleted after the task is
finished

● service – used by the Host Runtime when unpacking the task’s package

18

 5 T a s k M a n a g e r

The Task Manager is a BEEN component responsible for scheduling execution of tasks,
communication and synchronization of the tasks via checkpoints, and managing information
about the tasks. The Task Manager itself is not a task, and only one instance has to be run in
the BEEN environment.

For instructions on how to run the Task Manager, see section Running Task Manager (Part II,
2.1).

To run a task, a task descriptor representing the task must be submitted to the Task Manager.
Task will be started when all prerequisites specified in the task descriptor are satisfied.

The Task Manager performs following functions:

● Scheduling of tasks – after submitting a task, the Task Manager checks if the task
dependencies are satisfied (i.e. required checkpoints are set). When the task is
exclusive or context-exclusive, the Task Manager will also ensure the exclusivity
limitations are satisfied. If the task cannot be run immediately, the Task Manager will
store task descriptor and attempts execution of the task when conditions in the
environment change (e.g. new checkpoint is reached or another task finished).

● Host selection – tasks must specify hosts where they will run. Hosts can be specified
in two ways:

○ List of hostnames – list with names of hosts on which task can be run can be
specified in the task descriptor. The Task Manager will select one host. The host
selection algorithm is not specified and may be nondeterministic.

○ RSL – a task can specify a host suitable for it's execution via an RSL condition.
Condition is evaluated by the Host Manager and the Task Manager will select one
of the hosts returned.

For more information about RSL, see section Restriction Specification Language
(RSL) (Part I, 11).

● Log Storage – the Task Manager contains a sub-component which stores logs and
standard and error output generated by tasks. The logs can be inspected from the web
interface and may be uploaded to the Results Repository with the results of a
benchmark.

The logs are stored as text files in the data/taskmanager/logs directory. The
directory contains subdirectories for each context. The directory of a context contains
one subdirectory for each task belonging to the context.

Several files are stored in the task’s directory:

○ task.log – stores log messages from the task. Each message contains information
about the log level and timestamp. New log messages are appended at the end of
the file

○ stdout.txt – stores the task’s standard output

○ stderr.txt – stores the task’s error output

○ hostname.txt – this file contains only one line on which the name of the host on
which task was running is stored

19

Each log message carries information about its importance – the log level. Following
table lists log levels defined in the BEEN (in decreasing order of importance):

○ FATAL – a critical error occurred. Task is unable to run, this message is always
followed by the termination of the task

○ ERROR – a non-critical error occurred. Task was able to recover from the error and
may continue to run

○ WARNING – a warning about a potential problem.

○ INFO – information about normal operation of the task. The message should
provide more information about what the task is currently doing (e.g. “Package was
downloaded.”).

○ DEBUG – debugging information useful during the development of the task, a
benchmark plugin, or other BEEN component. The message is usually not useful
for the normal user since it is intended for the developer of the task

○ TRACE – a very detailed debugging message, used when there is a need to track the
execution of the task's code precisely

● Host Runtime Management – the Task Manager maintains a list of Host Runtimes
running in the BEEN environment. Each Host Runtime registers and unregisters itself
with the Task Manager when it is starting up or shutting down. Other components can
be informed of Host Runtime registration. For example, the Host Manager uses this
feature to automatically scan newly connected host

● Naming Service – maintains list of running services in BEEN environment. The Task
Manager provides means to search for a specific service in this list to other components
of BEEN

● Task Information – the Task Manager stores information about existing contexts and
tasks, their status, checkpoints reached so far, etc.

For more information about the features provided by the Task Manager see the Javadoc
documentation for the TaskManagerInterface interface.

 5.1 Configuration
The Task Manager stores configuration settings for the each Host Runtime participating in the
BEEN environment. Changes in the configuration are automatically distributed to all Host
Runtimes currently registered with the Task Manager. The configuration can be changed via
the web interface – see section Configuration Module (Part II, 3.7).

Available configuration options include:

○ Package cache size limit – the size limit of the Host Runtime's package cache, in
bytes

○ Number of closed contexts kept – number of closed contexts for which the Host
Runtime should keep data on the disk. Host Runtime will automatically delete data
for old contexts

The configuration settings are stored in the data/taskmanager/configuration.xml
file.

20

 6 S o f t w a r e R e p o s i t o r y

The Software Repository is a service for storage and retrieval of all software run by the
execution framework. It stores the software binaries for different platforms, as well as the static
data and the sources. By using the Software Repository, the execution framework avoids
relying on a distributed file system, which might be difficult to set up in a heterogeneous
environment. When executing benchmarks, the presence of a distributed file system could also
distort the benchmark results.

 6.1 Packages
The basic storage unit in the Software Repository is a package. There are four types of
packages:

● Source package – contains software source code, such as source of an application to
be used for benchmarking.

● Binary package – contains compiled software.

● Task package – contains task code and data required by the execution framework
when executing a task

● Data package – contains any static data files, such as an initial database snapshot for a
database benchmark.

 6.1.1 Package Structure

The package is in fact a ZIP archive. It contains the files directory with data files of the
package and metadata.xml file, which contains description of the package contents –
package metadata. Task packages also contain config.xml file with description of the task
for the Host Runtime. The metadata.xml file is described below, the config.xml file is
described in section Packaging (Part III, 2.1).

 6.1.2 Metadata Format Description

Package metadata consists of attributes, which have a name and a value. The list of possible
attributes is fixed and it is specified which attributes are allowed and required for each package
type. Every attribute has a type (Java class) – one of String, Date, Version, PackageType
and List<String>.

In runtime, package metadata is represented by the PackageMetadata class. In the
packages, the metadata is stored in the metadata.xml file. This is an XML file with root
element <package>. Inside this element, there is one subelement for each attribute. The
attribute value is stored as content between element's tags.

The metadata attributes are summarized in the following table. Source/binary/task/data flags
indicate, whether given attribute is used in source, binary, task or data packages. Upper-case
letter means it is required, lower-case letter means it is optional.

21

Name Java class Description Source
Binary
Task
Data

Notes

name String canonical name of the package SBTD 7

version Version package version SBTD

hardwarePlatforms List<String> hardware platforms sbtd 8

softwarePlatforms List<String> software platforms sbtd 9

type PackageType determines whether package is
source or binary

SBTD 10

humanName String human-readable package name SBTD 11

downloadURL String source of this package, if
downloaded from some external site

sbtd 12

downloadDate Date download date and time, if
downloaded from some external site

sbtd 13

sourcePackageFilename String filename of the source package in
the software repository

bt 14

binaryIdentifier String BID of the binary in experiment,
which this package is used in

b

buildConfiguration String name of the build configuration, in
which this package was built

b

 6.1.3 Package Names

The package name will be chosen by the Software Repository after the package is uploaded (if
the package didn't already exist in the Software Repository on startup). This name is
guaranteed to be unique. It has following format:
name.hardwarePlatforms-softwarePlatforms-suffix.hash.bpk
Most parts of the name are created from the package metadata.

● hardwarePlatforms and softwarePlatforms are made up as a concatenation of specified
platforms with plus signs (”+”) between them (example: win32+linux)

● suffix is:

● src if the package is a source package

7 Package name consists of parts separated by hyphens (”-”). Every part can contain only lower-case
letters or digits. Written as Perl-like regular expression, it must match [a-z0-9]+(-[a-z0-9]+)*

8 Contains zero or more hardwarePlatform elements, whose textual content denotes platforms.
Platform should be written in lower-case letters. Some predefined values: i386, sparc.

9 Contains zero or more softwarePlatform elements, whose textual content denotes platforms.
Platform should be written in lower-case letters. Some predefined values: win32, linux

10 Allowed values are: source, binary, task, data.
11 This name is intended to be displayed in UI.
12 If not specified, package can’t be downloaded from external site or this site is unknown.
13 This attribute is in format specified by RFC 1123, section 5.2.14. It looks like this: Sun, 06 Nov 1994

08:49:37 GMT. This representation was chosen because it is current IETF standard, used in protocols
like HTTP, and Java can deal with it easily using its Date class. If not specified, package can’t be
downloaded from external site or this site is unknown or download date and time is unknown.

14 If not specified, package wasn’t compiled from other package stored in software repository or the
source package is unknown.

22

● bin if the package is a binary package

● task if the package is a task package

● data if the package is a data package

● hash is a globally (across all packages ever stored) unique number chosen by the
Software Repository.

Extension .bpk (Been PacKage) was chosen to differentiate packages from other files.

 6.2 Operations Supported
The Software Repository supports following operations with packages:

● upload of a new package

● query packages by their metadata via a callback interface, including querying using the
RSL query language – see section Restriction Specification Language (RSL) (Part I, 11).

● download of specific packages

● deletion of a package

Notably, instead of modifying a package, a new version of the package has to be created. This
restriction helps to maintain coherency of package caches used by the Host Runtimes.

Package queries allow clients to search package metadata using arbitrary criteria. The client
supplies a class with callback method (this class must implement
PacakgeQueryCallackInterface interface), whose code is executed by the Software
Repository to determine list of matching packages. An implementation of the callback
interface with support for RSL queries is provided.

 6.3 Package Storage
Packages are stored in the Software Repository working directory. No additional files are
required by the Software Repository, except counter.dat file, which stores value of the hash
appended to name of the next package uploaded.

On startup, the Software Repository looks into the data/softwarerepository directory i
in the BEEN installation directory and copies any files it finds there to its working directory. It
searches its working directory for .bpk files then and attempts to add them as packages.
Unrecognized .bpk files are ignored.

 6.4 Optimizations
The Software Repository is designed for transfer of large packages and for a fast package
lookup. The transfer optimizations include asynchronous communication and a special
interface provided for monitoring of the transfer progress. To improve the query performance,
package metadata are cached (the cache is created when the Software Repository starts).

23

 7 M a n a g i n g C o m p u t e r s o n t h e
N e t w o r k

The Host Manager is responsible for maintaining an up-to-date list of all hosts in the
benchmarking environment and maintains database which stores data about hardware and
software configuration of each host.

The Host Manager is also responsible for monitoring availability and utilization of hosts in the
environment. It provides tools to generate basic statistics about the utilization of a specific
host over time. For more details about monitoring facilities of the Host Manager see section
Host Utilization Monitoring (Part I, 8.2).

 7.1 Host Database
The Host Manager stores all details about hosts in the host database. Host database contains
list of hosts in the benchmarking environment as well as a hardware and software
configuration of each host.

Host Manager automatically updates hardware and software configuration of the host when
host connects to the benchmarking environment. Each update of the host configuration data
adds new entry to the configuration history of the host. This allows for easy review of the
hardware and software changes and provides means to relate configuration changes to the
potential changes in the benchmark results. Configuration of any host can also be refreshed on
user’s request at any time.

Host Manager uses special tasks, detectors, to collect data about host. Since Java does not
provide direct access to the underlying operating system, which is required by the detector
tasks, native libraries that collect data are provided. These libraries have to be written for each
platform separately. Currently Windows and Linux platforms are fully supported. On
platforms where native library is not available only limited data about system is collected using
facilities provided by Java.

 7.2 Host Data
Data about each host in host database is organized into a tree-like structure. Inner nodes of
the tree are called objects, leaves are called properties. Structure of the tree is based on the way
various hardware and software components relate to each other with each child node adding
more details about the parent. For example, object which represents on hard-drive can have
several child objects representing different partitions present of the drive.

Each node in the tree has its own name which does not need to be unique within the tree.
Name of an object consists of two parts: object’s type name and index. Type name of an object
should provide a hint about the data that the object contain. For example, type name of the
object which stores details about memory is memory. Index of an object is non-negative
integer which identifies objects with the same type name within their parent object. For
example, if the disk drive contains two partitions, first one will have index of zero, second one
will have index of one. Name of an object is then written as typename(index) (e.g.
Partition(2)).

Name of a property contains only type name (indexed properties are not allowed) and has to

24

be unique within its parent object.

All objects and properties in the tree can be uniquely identified by their full name. Full name of
the object consists of names of all objects that are on the path from the root node to the object.
Names of objects on the path are separated by the period character. Full name of a property
consists of full name of its parent object and type name of the property separated by the period
character. For example, full name of the object representing second partition of the first drive
is drive(0).partition(1) and full name of the property which represents size of that
partition is drive(0).partition(1).size.

Most of the properties and objects in the database contain data collected by the detector.
However, several properties that reflect current status of the host and are therefore not
available to the detector (for example group membership property) are added by the Host
Manager. Since various components of the BEEN may require storage of custom data for
specific host, Host manager provides an API which allows storage and manipulation of user-
defined properties and objects in the database.

All data about the host is stored in the properties. Object by themselves provide only the
structure of the tree. Each property has to have a value. Value of the property can be one of the
following types:

● ValueBoolean
○ Represents boolean value (true or false).

● ValueInteger
○ Represents integer equivalent to the long data type in Java.

● ValueDouble
○ Represents floating-point number equivalent to the double data type in Java.

● ValueString
○ Represents string.

● ValueVersion
○ Represents version of an application. Version consists of three version numbers

(major, minor and release) and a build identification string.
● ValueRange<T>
● Represents interval of values of basic type (ValueBoolean, ValueInteger,

ValueDouble, ValueString, ValueVersion).

○ Interval can be closed, open or half-open and can have infinite endpoint on either
side.

○ Both endpoints have to be of the same type.
● ValueList<T>
● Represents ordered list of values of basic type (ValueBoolean, ValueInteger,

ValueDouble, ValueString, ValueVersion).

○ All elements in the list have to be of the same type.

For a complete list of all objects, properties and their types see Objects and Properties of the
Host (Part IV, Appendix A).

 7.3 Database Queries
Host Manager provides two different methods of searching the host database: RSL queries and
custom query interface.

25

RSL queries provide means to specify conditions using logical expressions which may contain
properties, objects and constants. For more elaborate description of the RSL and examples see
section Restriction Specification Language (RSL) (Part I, 11). RSL queries are mostly suitable for
selecting hosts that belong to a specific group (see below) or when selecting hosts for specific
task. RSL queries are directly supported by the Web Interface and therefore do not require user
to write code.

For cases of more complex queries that cannot be expressed in terms of properties or objects
from the database the Host Manager provides means to use custom class implementing query
interface. To use this facility user is required to implement class derived from the
HostQueryCallbackInterface, which contains only one method match. The match
method rejects hosts that do not meet conditions. All data about one host is accessible from
within this method and since it is written in Java, it can use all facilities provided by the
language (for example RMI queries to various components of the BEEN). Host Manager calls
match method on each host in the database and compiles list of all hosts that pass the test.

 7.4 Host Groups
The Host Manager allows user to assign hosts from the environment to one or more host
groups. Host groups are provided to simplify orientation within larger benchmarking
environments.

Host group is a named set of hosts from the benchmarking environment. Host Manager
provides one default group which always contains all hosts in the environment. The default
group is automatically maintained by the Host Manager and always reflects current state of the
database.

Each host will be member of at least one group (the default group).

All groups except the default group are managed by the user. Host Manager does not enforce
relations between hosts in the group in any way and therefore groups are not automatically
updated to reflect changes in hardware and software configuration.

Groups in the database are identified by their name which has to be unique. Each group can
also contain textual description of the group and a metadata. Description is simple string
which should describe purpose and contents of the group. It is not used by the Host Manager
and it is provided only for user’s convenience. Metadata are provided for other components of
the BEEN as a storage for custom data about the group. The metadata cannot be edited by
user.

 7.5 Software Aliases
Software aliases are designed to simplify orientation in the list of software packages installed
on the host. Typically, applications or packages may have slightly different names across
various operating systems and it may be difficult and error-prone to write database queries
that match all supported versions of the application. Each software alias acts as a common
representative for given application across different versions of an application or operating
system. Since software aliases are stored in database and have own set of objects and
properties, database queries that work with aliases can be created.

Each alias has its own name (not necessarily unique) and contains data about application it
represents (name, version and vendor). Aliases are automatically generated by the database
when host is added to the database or when host’s data in the database is updated.

For each software alias there is an alias definition that contains all data needed for the database

26

engine to create representative aliases. Each alias definition contains two restrictions (written
in RSL query language) and four fields that define values of the properties of the resulting alias.

First restriction in the alias definition specifies conditions on the operating system. In this
restriction, all properties and child objects of the os object can be used. Second restriction
specifies conditions on application resulting alias will represent. All properties of the
application object can be used in this restriction.

Properties of the resulting alias can be specified either as constant values or they may contain
references to the properties of the application that matched conditions specified via
restrictions. Property references are specified with syntax similar to the syntax of the property
names in Ant. That is, ${name}, ${vendor} and ${version} variables can be used in any
of the four fields that define properties of the resulting alias. Multiple variables can be used in
one field and database engine will substitute all with the actual values of properties from the
matched application.

For example, following alias definition
Alias name: Visual Studio (${version})
Result name: ${name}
Result vendor: Microsoft
Result version: ${version}
OS restriction: family == "Windows"
Application restriction: name=~/.*Visual Studio.*/i

will result in alias
Alias name: Visual Studio (8.0.50727.42)
Application name: Microsoft Visual Studio 2005 Professional Edition
– ENU
Application vendor: Microsoft
Application version: 8.0.50727.42

when matched with the following application
Name: Microsoft Visual Studio 2005 Professional Edition – ENU
Vendor: Microsoft Corporation
Version: 8.0.50727.42

 7.6 Host Manager Configuration
Several aspects of the Host Manager’s operation can be configured by the user. Most of the
settings are automatically propagated to all hosts in the environment.

Following options can be configured:

● Host detection timeout – specifies total amount of time the Host Manager will wait
for the data from the detector scheduled on the host. If the detector does not upload
data within specified interval, it is assumed that the detection failed. Host Manager will
ignore all data received from the host after the timeout expired. Timeout is measured
in milliseconds (but not necessarily with the millisecond precision), minimum value is
therefore 1 ms, maximum value is not restricted.

● Host detection timeout check interval – specifies precision of the host detection
timeout. Host Manager will check if the data have been received only once in a
specified interval. Interval is measured in milliseconds. Minimum value is 1 ms,
maximum is not restricted. Note that lower value means that the checks are done more
often which can impact performance of the Host Manager.

● Activity monitor refresh interval – specifies interval between consecutive updates of

27

the status data for hosts registered with the Host Manager. Host Manager checks if
some of the hosts on the network did not crash in specified interval. Interval is
measured in milliseconds. Minimum value is 1 ms, maximum is not restricted. Lower
interval means that more up-to-date data about the host status will be available, but
again, too low interval may negatively impact performance of the Host Manager.

● Host crash timeout – specifies total amount of time that the Host Manager will wait
before marking host as crashed. Timeout for given host is reset every time the Host
Manager receives data from the Load Monitor running on the host. Timeout is
measured in milliseconds. Value of the timeout has to be greater than the sampling
interval of the Load Monitor in brief mode (otherwise host will be always marked as
crashed). Maximum value is not restricted.

● Brief mode sampling interval – specifies sampling interval for the Load Monitor in
brief mode. This interval is set globally and if the setting is changed, new value is
automatically propagated to all connected hosts. Interval is specified in milliseconds,
minimum is 1 ms. Note that setting sampling interval to small values can severely
degrade performance of the whole environment, since each host will send data to the
Host Manager at given rate.

● Default detailed mode sampling interval – specifies default sampling interval of the
Load Monitor for tasks that request detailed load and do not specify custom value.
Value is set globally and change of the value is automatically propagated to all
connected hosts. Note that change of this value only affects tasks that start after the
change is made. Value is measured in milliseconds, minimum value is therefore 1 ms.
Maximum is not restricted.

28

 8 M o n i t o r i n g C o m p u t e r U t i l i z a t i o n

Since BEEN runs in distributed environment it is important to provide user with feedback
about progress of various processes running in the environment. BEEN provides two
independent views on the host utilization. First, higher-level view shows details about the
tasks that are currently running in the environment. Second, lower-level view provides user
with the details about utilization of hardware resources on hosts in the environment. Both
views are accessible from the web interface (see sections Tasks Module (Part II, 3.4) and
Working with Hosts (Part II, 3.3.1)).

 8.1 Monitoring Running Tasks
The Task Manager maintains information about all contexts and tasks that have been
submitted by various components of the BEEN.

For context it stores context name, context ID, description and reference to the experiment
associated with the context. For each task in each context the Task Manager stores details
about the task package (e.g. name, description), current state of the task and checkpoints
reached by the task.

The Task Manager keeps data about tasks and contexts in its storage indefinitely and user has
to clear the data manually.

 8.2 Host Utilization Monitoring
The utilization data on each host is collected by the Load Monitor which is a part of the Host
Runtime. The data from all Load Monitors running in the environment is collected and stored
centrally by the Load Server. The Load Server is a part of the Host Manager

The Load Server maintains list of all hosts in the environment and automatically determines
status of the host from the data received from the Load Monitor. Each host can be either
offline, online or crashed. Since the Load Server stores all data received from the Load Monitors
it provides complete record of the utilization of the host when the host was on-line.

To collect utilization data the Load Monitor requires low-level access to the underlying
operating system. Since this is not possible directly from Java, native libraries that collect data
from the operating system have to be written for each supported platform. Currently Load
Monitors fully support Windows and Linux operating systems.

The Load Monitor starts automatically with the Host Runtime and starts collecting data as
soon as the Host Manager updates host’s configuration in the database. Utilization data is
automatically sent to the Load Server which stores all data in the host database. Load Monitors
collect data about processor usage, disk reads and writes, incoming and outgoing network
traffic, process count and thread scheduler queue length. Based on the data collected Load
Server is able to calculate simple statistics about the utilization of the host.

Load Monitors send data to the Load Server in the form of events. The Load Server contains
simple event loop which processes data only when needed. This architecture provides for great
extensibility of the Load Server since it allows registration of custom event listeners which can
process data. Load Monitors generates events of several types – for example events which
notify the Load Server about hardware configuration change, Host Runtime start-up or shut-
down, or change of the monitoring mode.

29

Load Monitors collect data in two modes: brief mode and detailed mode. In brief mode Load
Monitor takes samples with relatively long sampling interval and immediately sends all data to
the Load Server. This mode is enabled by default since it provides enough data for detection of
the crashed hosts and does not stress network by sending large amounts of data to the Load
Server.

Load Monitor is switched to the detailed mode only on when requested by the running task.
All data collected when monitor is in detailed mode is stored locally and can later be requested
by the data collection tasks to provide more details about the host utilization during task’s
runtime. Load Monitor will select load samples in regular intervals and send them to the Load
Server as a notification that the host is still running.

When the task that requested detailed mode ends, the Load Monitor will automatically switch
back to the brief mode.

30

 9 B e n c h m a r k M a n a g e r

The Benchmark Manager together with the Results Repository form the benchmarking
framework which is build over the execution framework.

As its name suggests, the Benchmark Manager manages the execution of benchmarks. It
enables the user to set up a benchmark, configure its parameters and execute it either
manually or schedule its automatic execution in regular intervals. When the benchmark is
running, the Benchmark Manager monitors its execution and reports progress and status
information to user.

The Benchmark Manager is extensible. Is uses a system of plugins which handle all
benchmark-specific tasks. The support for new benchmark can be added by writing a new
plugin. The plugins can be managed by user from the web interface. For detailed information
about plugin structure and responsibilities, see section Extending Benchmark Manager (Part
III, 3).

When executing the benchmarks, the Benchmark Manager cooperates closely with the Results
Repository. In fact, it requires the Results Repository to be running for most of its operations
(e.g. conducting a new benchmark).

 9.1 Benchmark Entities
While the execution framework works with task as a basic operational unit, the benchmarking
framework introduces a hierarchy of abstractions of processes in the environment – analysis,
experiment, binary and run. The abstractions used in the Benchmark Manager reflect common
use-cases of the benchmarking environment and can be conveniently represented with
following hierarchical structure:

 analysis 1

 experiment 1

■ binary 1

 run 1

 run 2

...

 run n

■ binary 2

...

■ binary m

 experiment 2

...

 experiment k

 analysis 2

...

 analysis l

We refer to these abstractions as benchmark entities. Each entity can be in one of the following

31

states: configured, dispatched, submitted, running and finished. Benchmark Manager also
provides aggregated view of the processes that run on different levels of the hierarchy. For
example, Benchmark Manager aggregates logs generated by all tasks that run in an experiment.

 9.1.1 Experiment

An experiment is a basic unit of benchmarking. A typical experiment covers downloading of
software sources, compilation, deployment, execution, measurement, statistical evaluation and
visualization of the results.

 9.1.2 Analysis

An analysis is a container for several benchmarking experiments. The benchmarking
framework distinguishes between two types of analyses:

● A Comparison analysis contains experiments aimed to compare performance of
different versions of the tested software, different software products with similar
functionality (e.g. JBoss vs. Jonas application servers), or the impact of hardware
configuration on performance. The experiments in the comparison analysis are created
explicitly by the user and run immediately. The number of experiments is not limited.

● A Regression analysis serves to find performance regressions during the development of
the tested software. After creating the analysis, user creates and configures a model
experiment and an execution schedule. The Benchmark Manager will then use the
model experiment as a template for creating “real” experiments automatically in
regular intervals defined by the schedule. Generated experiments correspond to
versions of the tested software.

 9.1.3 Binary

Multiple compilations of the same software under the same configuration may produce
binaries with different performance. This is caused by non-deterministic results of
compilation, which may have noticeable impact on performance (e.g. because of different
cache-miss rate). Software susceptible to the random effects caused by the compilation should
therefore be benchmarked so that multiple compiled binaries are tested under the same
circumstances in the context of one benchmarking experiment. The statistical analysis of the
data produced by the experiment should take all of the binaries into account.

 9.1.4 Run

Benchmark experiments are subjects to random effects during execution and measurement,
resulting in slightly different performance results even on same hardware and software
configuration and the same binary. Thus, several executions of the benchmark in succession
are needed in a single benchmarking experiment with the same binary. We call a single
execution and measurement of a benchmark a benchmarking run. The statistical analysis of
the experiment should take all the runs into account.

 9.2 Benchmark Plugins
Benchmark Manager is designed with extensibility in mind and therefore allows for adding

32

support for new benchmarking suites. Each benchmarking suite is defined in its own
benchmark plugin. Benchmark Manager allows deployment of the new plugins at any time via
the web user interface. Each plugin contains several key components – Configurator, Generator
and Version Provider.

For information about creating new benchmark plugins, see section Extending Benchmark
Manager (Part III, 3).

9.2.1 Configurator

The configurator is a component of the plugin which provides user with the interface to the
functionality provided by the plugin. Interface provided by the configurator seamlessly
integrates into the web interface and does not require any additional libraries. User interacts
with the configurator via a series of wizard-like screens which allow user to go back and forth
between various settings before the experiment is created.

9.2.2 Generator

The generator is run by the Benchmark Manager and generates a sequence of tasks that are
required for the experiment created by the user during configuration phase. The generator
must support both types of the analyses supported by the BEEN (that is, it should be able to
generate comparison experiments as well as regression experiments).

9.2.3 Version Provider

The version provider is used only during the regression analyses. It's role is to detect all
versions of the software being benchmarked that had not been tested yet. It should be able to
search repositories located outside of the BEEN environment. The Benchmark Manager runs
the version provider in regular intervals according to the schedule specified during
configuration phase. When new version of the software is detected, the Benchmark Manager
will automatically call generator with new data to create new experiment based on the
template specified by the user.

Since the user of the benchmark may need to test only specific versions of the software, the
version provider allows user to specify which versions should be taken into account. For
example, user may specify interval in history and only versions released during that interval
will be accepted.

9.3 Experiment-level Scheduling and Monitoring

The Benchmark Manager is responsible for experiment-level scheduling and status monitoring.
Scheduling performed by the Benchmark Manager is based on the information about
experiments and analyses.

New experiments may be added by the users of BEEN or automatically by the Benchmark
Manager during regression analyses. Following rules are taken into account by the Benchmark
Manager when scheduling experiments:

1. Comparison experiments created by the user are started immediately.

2. Regression experiments created by version providers are processed from the most
recent version of benchmarked software to the oldest one.

33

3. At any moment, only two regression experiments from a single analysis can be running.

By following aforementioned rules the Benchmark Manager is able to guarantee that:

1. User will get results of interactively created experiment as soon as possible.

2. Experiments created by the Version Provider are processed from the most recent one –
probably being the most important one – to the oldest one.

3. Regression experiments which, by definition, have to run benchmarking software on
the same hosts every time, are not interfering with each other since only two will run
simultaneously. This prevents collisions between various tasks requiring exclusive
access to the specific host. When two benchmarks are run simultaneously we can take
advantage of the fact that one experiment may be doing measurements while the other
one is compiling software on a different host.

9.4 Experiment Lifecycle

Experiment execution involves several steps that are automatically performed by the
Benchmark Manager in conjunction with other components of the BEEN. In following section
we describe steps performed when executing comparison analysis and regression analysis.

Comparison analysis:

1. Creation of a comparison analysis requires the Benchmark Manager to store basic
metadata for the analysis, and report them to the Results Repository. The Results
Repository needs the metadata to be able to receive results of subsequently created
experiments in the analysis.

2. When an experiment is created in the analysis, user selects benchmark plugin from
the list of available plugins. Benchmark Manager activates Configurator of the selected
plugin which guides user through the experiment creation.

3. Configurator collects all data required by the Generator and benchmarking framework.
Configuration depends on the benchmark being run, but always contains host selection
and number of runs and binaries.

Running a distributed benchmark requires multiple machines performing a specific
activity (for example database server, clients). We refer to the action performed by the
hosts as a host role. There are two basic types of roles:

● compilation roles – these roles represent a host not directly involved in the process
of benchmarking, but required for activities related to the benchmarking.

● benchmarking roles – these roles represent a host which will be used directly for a
benchmarking purposes.

Restriction on the hosts which belong to the specific role are described as RSL
expressions. If there are multiple hosts matching expression for the compilation role,
they are all valid candidates and the host that will perform action required by the role
will be chosen automatically by the Task Manager. On the other hand, the
benchmarking role must provide an exact number of hosts that is required for the role.
Experiment will fail if the number of hosts that match restriction specified in the
configuration is smaller than the number required by the role. The experiment enters
configured state when the configuration is finished.

4. After the configuration of the experiment is finished, the Benchmark Manager activates
the generator from the selected plugin. Generator will process all data collected
during the configuration phase and generate list of task to be run. Each task is
assigned to the specific level of an entity hierarchy. This allows for easy monitoring of

34

the progress of the experiments.

5. Once the generator finishes, the created experiment enters dispatched state. Just before
the experiment is started, the Results Repository receives data about the hierarchical
structure of the entities in the experiment. This is data is later used to verify data
generated by the experiment.

6. Dispatched experiments are periodically processed by the Benchmark's Manager
scheduling algorithm and tasks ready to run are submitted to the Task Manager for
execution. All tasks of an experiment run in a single context, i.e. Benchmark Manager's
experiment entity corresponds to the Task Manager's context.

7. After submitting the tasks, the Benchmark Manager monitors status of the
experiment and waits for experiment to finish. During this phase, status of the
experiment is set to running.

8. After all tasks in the experiment terminate, status of the experiment is set to finished.
By this time all data generated by the task running in the experiment are already
uploaded in the Results Repository.

The regression analysis uses a slightly modified process since experiments are created
automatically by the Benchmark Manager in conjunction with the version provider from the
plugin selected by the user. Following steps are executed during the regression analysis:

1. Regression analysis is created in a way similar to the comparison analysis. All data
about the analysis are reported to the Results Repository.

2. When creating regression analysis, user is required to specify model experiment and
execution schedule of the version provider.

3. The model experiment is created in the same way as a regular comparison experiment.
However, instead of starting the generator, Benchmark Manager stores the model
experiment and executes the version provider with settings selected by the user.

4. Execution schedule defined by the user specification when the version provider is run.
Every time the version provider is executed, it may create new experiment. All new
experiments will use the same layout (same hosts and configuration) as the model
experiment defined by the user.

5. Experiments created by the version provider are then processed in the same way as
experiments created in the comparison analyses.

35

 1 0 R e s u l t s R e p o s i t o r y

The Results Repository as a persistent archive of benchmark results and other data obtained
when running the experiments (such as utilization of hosts participating on the experiment
and log of run tasks). It automatically performs statistic calculations on the results and
generates statistic tables and graphs of the results, which can be viewed through the web
interface.

Statistical evaluation is performed using the R language15, a standard tool for statistical
processing.

 10.1 Results Collection
The tasks in the benchmark store their results on hosts where they run in a format specific for
each benchmark. These results need to be checked for correctness, converted into a common
format and uploaded to the Results Repository. This work is done by results collection tasks,
which are scheduled at the end of each run, binary or experiment (as specified by the
generator).

The results collection consists of two phases:

1. The benchmark results are checked for correctness and converted from a format used
by the benchmark into a common text-file format. The task for checking and
converting the results is specific for each benchmark.

2. Converted results, logs and host utilization information from participating hosts are
uploaded to the Results Repository. This operation is generic for all benchmarks.

After the benchmark results are uploaded, the R scripts are executed. They typically invoke
computation of various statistics and graphs of the results. For details, see section Statistics
Calculation (Part I, 10.4). The graphs for the computer utilization are generated on-demand,
because of their large size and low probability that the user will want to see them.

 10.2 Results Repository Database
The Results Repository stores all data in a hierarchical database. Each piece of data is
associated with an analysis, experiment, binary or a run – we will call them entities in the text.
We refer to an entity in a lower level in hierarchy than current entity as a subentity (i.e.
experiment is subentity of analysis).

The entity is complete if all results for all its subentities have been uploaded to the Results
Repository.

The results of the benchmarks are stored in the run level. Typically, the Results Repository
computes a statistics from the data in the run, all runs in the binary etc. up to the analysis
level. The graphs are generated only at the analysis and experiment levels. The database would
grow to unmanageable size if they were generated at the lower levels too (even now, is not
uncommon for the database to grow to the size of tens of GBs).

The load information is stored for all tasks which specified that they want to measure the
detailed load when executed by the Task Manager.

15 http://www.r-project.com/

36

http://www.r-project.com/

The logs of the tasks are stored separately from the entity hierarchy, as they are primarily tied
to tasks, not entities. However, each entity carries information about tasks associated with the
entity.

Each entity contains metadata, which are key-value pairs containing various information about
the entity. Some of the metadata is used by the Results Repository, some are meant only as
information for the user.

 10.3 Failed Runs
The benchmark may fail from various reasons, e.g. when the benchmarked application crashes.
This case is recognized in the results collection phase and runs which failed will be marked as
invalid. The invalidity will propagate to the upper levels of the entity hierarchy (binary is
marked invalid if all contains only invalid runs, and similarly for the upper levels).

The data of the failed runs is not processed by the R scripts (thus no statistics are computed
and no graphs are generated). The user can download run results in raw format, for possible
examination of the run failure.

 10.4 Statistics Calculation
After the run data is uploaded to the Results Repository, R scripts can be called. Those scripts
are called R scripts callbacks. The scripts are responsible for computing statistics and graph
generation.

There are several types of callback scripts:

● Complete run – called after the run upload. It operates on a data of a given run only.

● Incomplete binary – called after the run upload. It operates on a data of the whole
binary, even if it is still incomplete.

● Complete binary – called after uploading of all runs in the binary. It operates on a
data of the whole binary, which is complete at the time of running.

● Incomplete experiment – called after the run upload. It operates on a data of the
whole experiment, even if it is still incomplete.

● Complete experiment – called after uploading of all runs in the experiment. It
operates on a data of the whole experiment, which is complete at the time of running.

Each benchmarking plugin comes with default setting of the called scripts. This setting can be
overridden by the user when creating the experiment.

The entities in the database can be deleted by the user. This operation invalidates the statistics
and graphs of all entities at the upper levels and the Results Repository needs to recalculate
them. This is accomplished using the invalidation scripts mechanism. Anytime some script
generates a statistics table or a graph, it can register the invalidation script on a processed
entity. These scripts are then automatically called each time something is changed in contents
of an entity and they can regenerate statistics tables and graphs. For more details, see section
Writing R Functions (Part III, 4.3).

 10.5 Cooperation with Benchmark Manager
The Results Repository closely cooperates with Benchmark Manager in creating analyses,
experiments and binaries. In experiment generation phase, information about analysis,

37

experiments and binaries created by the Benchmark Manager is stored in the Results
Repository immediately. This implies that the Results Repository must be running at this time.

Information provided by the Benchmark Manager contains number of binaries and runs to be
executed and all metadata needed for results upload. This includes a list of hosts that will be
uploading results and a list of tasks, from which Results Repository must collect logs for each
entity. Each entity that is active in the Benchmark Manger must exist in the Results
Repository.

Entities deleted in the Results Repository are deleted in the Benchmark Manager too. The
entities which are active (i.e. some tasks associated with the entity are running) in the
Benchmark Manager cannot be deleted from the Results Repository. If the Results Repository
cannot contact the Benchmark Manager, deletion of analyses or incomplete entities is not
possible.

 10.6 Database Contents
The Results Repository stores following information:

● Registered R scripts and packages – see section R Script Packages (Part III, 4.2).

● Logs from benchmarking tasks for reference during results browsing.

● Data for the all entities.

The entity data is stored in a hierarchical structure, where data for each entity (except runs) is
stored in a separate directory (named by the entity ID), which contains directories for the
subentities.

The benchmark results are stored in NetCDF16 format – a cross-platform format designed for
storing scientific data.

 10.6.1 Analysis Directory

The analysis directory contains:

● Metadata files describing the analysis (name, plugin, experiment count, generated
graphs information, etc.).

● Text files with statistics tables (if generated).

● PNG files with graphs (if generated).

● Information about registered invalidation scripts (if generated).

 10.6.2 Experiment Directory

The experiment directory contains:

● Metadata files describing the experiment (name, succesfull/complete binary count,
generated graphs information, etc.)

● Table containing information about hosts involved in experiment and benchmarking
roles executed on them.

● List of tasks associated with the experiment and information about log upload status.

● Text files with statistics tables (if generated).

16http://www.unidata.ucar.edu/software/netcdf/

38

http://www.unidata.ucar.edu/software/netcdf/

● PNG files with graphs (if generated).

● Information about registered invalidation scripts (if generated).

 10.6.3 Binary Directory

The binary directory contains:

● Metadata files describing the binary (name, successful run count, valid runs, etc.)

● Validity map, which contains index of all tables from all hosts from each run and
validity information about each run. This index is used by Java, so run list can be
displayed according to standard run identification. Internally only valid runs are
numbered from 0 and invalid runs are stored separately. This is due to R computation
and allows it to perform some needed operations much faster (i.e. random selections)

● List of tasks associated with the binary.

● Table with list of tasks for each run in the binary.

● Text files with statistics tables (if generated).

● PNG files with graphs (if generated).

● Information about registered invalidation scripts (if generated).

● Directory with uploaded load information for a binary.

 10.6.4 Load Directory

The load directory contains one directory for each run, which contains:

● Table with information about load graphs (if generated).

● PNG files with load graphs (if generated).

● Directory for each host, from which load was uploaded for this run. This directory
contains text files with load data from a host for a given run.

 10.7 Results Repository Export Format
The Results Repository allows exporting of entity data in a format called “BEEN archive
database format”. The exported file may contain data one or more analyses, experiments,
binaries or runs.

The exported file is essentially a ZIP file, which contains entity data in the same format as the
database itself, i.e. hierarchical structure of directories.

When exporting entities from the lower levels of the hierarchy, the directories for upper levels
of the hierarchy will not be present in the file (i.e. there will be no directories for analyses and
experiments, when the user will export only selected experiments in one analysis). For details
about the Results Repository database format, see section Database Contents (Part I, 10.6).

The directory structure with entity data is accompanied with export.meta file which
contains information about the type of exported entities and their count.

39

 1 1 R e s t r i c t i o n S p e c i f i c a t i o n
L a n g u a g e (R S L)

Restriction Specification Language (RSL) is a simple, but general language for selecting objects
matching specified conditions from a set. In BEEN, it is used in several places:

● in the task descriptor

○ to select a package for a task from packages stored in the Software Repository

○ to select hosts where the task can run

● in experiment configuration, to specify condition on hosts in various roles

● in Host Manager's software alias definitions, to specify restrictions for the operating
system and for the application

For generality, we will call queried objects items and their associated metadata properties.

 11.1 Language Description
We introduce the RSL syntax and semantics in the informal way. For the formal grammar of
RSL, see RSL Grammar (Part IV, Appendix C).

 11.1.1 Conditions

Basic unit of the RSL is a simple condition. It has a form: propertyPath operator value.

Example:
hostname == "localhost"
processor.speed > 500
java.version >= 1.5.0

Simple condition restricts the query result to those items, whose properties match given
conditions. Available operators and allowed property and value types are described below.

Simple conditions can be combined using operators && and ||, like boolean expressions in
Java. Parenthesis can be used to denote precedence.

Example:
(name == "foo" || name == "bar") && version >= 3.0

In case of hosts, properties have hierarchical structure and more items of same name exist on
one level – the property is in fact array (for example, a host usually has many applications
installed). Sometimes, it is necessary to specify more restrictions on concrete property in this
array. This is done using qualified condition.

Example:
application { name == "ssh" && version >= 2.0 }

The example could be read as “select those items, which has at least one property ‘application’,
which has name equal to ‘ssh’ and version greater or equal to 2.0”.

Note the difference against:
application.name == "ssh" && application.version >= 2.0

40

This example means “select those items, which has at least one property ‘application’, which
has name equal to ‘ssh’, and at least one property ‘application’ with version greater or equal to
2.0”.

 11.1.2 Types

Properties can be of following types:

Long
This type can be written also as a literal on the right-hand side of the operator using usual
syntax – sequence of digits – with optional unit appended. Following units are supported:

Unit Size

b 20

k, kB 210

M, MB 220

G, GB 230

T, TB 240

P, PB 250

All units are case-sensitive and must be appended right after the last digit (no whitespace or
other separator is allowed).

Examples:
1
1kB
100M
55TB

Version
This type can be written also as a literal on the right-hand side of the operator. Versions are
composed from at least two parts, separated by dots (”.”). Those parts can contain letters,
digits, dash (”-”) and underscore (”_”). First part of the version must begin with digit.

Examples:
1.0
100.100.100
1.2beta5
3.0_R3-3

Date
This type can be written also as a literal on the right-hand side of the operator. Used syntax is
taken from ISO 8601. Allowed formats are:

Year and month:

YYYY-MM (e.g. 1997-07)

Complete date:

41

YYYY-MM-DD (e.g. 1997-07-16)

Complete date plus hours and minutes:

YYYY-MM-DDThh:mmTZD (e.g. 1997-07-16T19:20+01:00)

Complete date plus hours, minutes and seconds:

YYYY-MM-DDThh:mm:ssTZD (e.g. 1997-07-16T19:20:30+01:00)

Complete date plus hours, minutes, seconds and a decimal fraction of a second:

YYYY-MM-DDThh:mm:ss.sTZD (e.g. 1997-07-16T19:20:30.45+01:00)

String
This type can be written also as a literal on the right-hand side of the operator using usual
syntax – enclosing in quotes. Quote character in the string can be escaped using \".

PackageType
This type can be written also as a literal on the right-hand side of the operator using reserved
words source, binary, task and data.

Example:
type == source
type != data

List (of strings)
This type can’t be written as a literal on the right-hand side of the operator.

 11.1.3 Operators

Equality Operators (==, !=)

This operator can be applied to properties of types Long, Version, Date, String and
PackageType. Values on the right-hand side of the operator must be of the same type as the
restricted property.

Comparison Operators (>, >=, <, <=)

This operator can be applied to properties of types Long, Version, Date and String. Values
on the right-hand side of the operator must be of the same type as the restricted property.

Containment Operator (contains)

This operator can be applied to properties of type List. Value on the right-hand side of the
operator must be String.

Example:
hardwarePlatforms contains "linux"

Regular Expression Operators (=~, !~)

This operator can be applied to properties of type String. Value on the right side of the

42

operator must be a Java regular expression, enclosed in slashes (”/”). Slash characters in the
regular expression can be escaped using \/. Optional flag “i” can be added at the end of the
regular expression to denote case-insensitivity.

The =~ operator means “matches”, the !~ operator means “does not match”.

Examples:
name =~ /mff\.cuni\.cz/
name =~ /MFF\.CUNI\.CZ/i
name !~ /\.com$/

43

 1 2 R e l a t e d p r o j e c t s

Among the related projects are tools for automated performance monitoring during software
development, generic tools for automated distributed testing and generic tools for automated
distributed benchmarking.

The tools for automated performance monitoring during software development include TAO
Performance Scoreboard17, A Real-Time Java Benchmarking Framework, Lockheed Martin ATL
Benchmarking Tools and Mono Regression Benchmarking Project18. These tools were all
created for use in a particular software project. Porting the tools for use in other software
projects would require a significant additional effort.

The Skoll Project started as a tool for distributed software testing that used computing
resources provided by outside volunteers. One of many challenges of the project is finding a
minimal set of tested software configurations that would still discover potential problems in
any configuration. Currently, the project also covers regression benchmarking, focusing on
finding benchmarks and configurations that are most sensible to performance problems
present in any configuration. Such benchmarks and configurations are first found using the
computing resources provided by outside volunteers, and then precisely evaluated on
dedicated computers. Within this context, BEEN is a tool for the precise performance
evaluation.

The CLIF Tool19 is a load-injection20 framework targeted primarily at Java middleware. It covers
deployment, monitoring and storing of results. The tool is capable of a highly configurable
distributed load injection, emulating for example clients accessing a web site. BEEN does not
aspire to provide the load injection support for general benchmarks, but is able to run
benchmarks that use load injection, adding runtime monitoring, results repository and
automated evaluation of results. The results repository of CLIF is limited in comparison.

The NIST Automated Benchmarking Toolset is a generic tool for automated benchmarking in a
grid environment. The tool uses a common format for storing results in a relational database.
It relies on the Distributed Queuing system as its execution environment and shell scripts as
its task implementation language, therefore, the support for Windows platforms is limited.
The tool is no longer being developed and the source code is not available.

17 http://www.dre.vanderbilt.edu/stats/performance.shtml
18 http://dsrg.mff.cuni.cz/projects/mono/
19 http://clif.objectweb.org/
20 Load injection is artificial generation of load for benchmarking purposes.

44

http://clif.objectweb.org/
http://dsrg.mff.cuni.cz/projects/mono/
http://www.dre.vanderbilt.edu/stats/performance.shtml

Part II
U s i n g B E E N
 P a r t I I : Us i n g B E E N

45

 1 I n s t a l l i n g B E E N

 1.1 Requirements

 1.1.1 Supported Hardware/Software Platforms

Theoretically, BEEN can be run on any hardware/software platform which supports Java 5.0.
However, the hardware detector and the utilization monitor use native libraries, which are
available only on several selected platforms. If you try to run BEEN on a platform for which the
native libraries are not supplied, only basic detection and monitoring facilities will be
available.

Also, we could not test BEEN on every platform available, so it is possible that some
unforeseen issues could arise if you try to run BEEN on a platform which was not tested.

Tested and officially supported hardware/software platforms are:

● Windows XP on x86

● Fedora Core 5 Linux distribution on x86

● Gentoo 2006.1 Linux distribution on x86

Tested, but not officially supported hardware/software platforms are:

● Windows 2000, Windows .NET Server 2003 on x86

Results Repository component works only on Gentoo and Fedora Core, as the SJava library,
which the Results Repository uses, is only available on Linux platform.

 1.1.2 Required Software

For running Host Runtime:

● Java Runtime Environment 5.0

For running Results Repository:

● Java Development Kit 5.0

● R 2.1.x of 2.2.x

For compilation of BEEN:

● Java Development Kit 5.0

● Ant 1.6.x

For generating the Doxygen documentation of the C++ files:

● Doxygen 1.4.7 or higher

For running the web interface:

● Apache Tomcat 5.5.x

For using the web interface:

● Microsoft Internet Explorer 6.0

46

● Mozilla Firefox 2.0.x

● Opera 9.x

For compiling the detectors and Load Monitor on Windows:

● Visual Studio 2005

For compiling the detectors and Load Monitor on Linux:

● gcc 3.4.x

Notes: BEEN was tested only with Java environments from Sun. While it would probably work
correctly with Java environments from other vendors, they are not supported.

Other versions of software than those noted above may work, but are not supported.

Benchmark plugins supplied with BEEN may have additional requirements on the hardware or
the installed software; see sections Benchmarking with Xampler (Part II, 4) and Benchmarking
with RUBiS (Part II, 5).

 1.2 Installing BEEN Execution Environment

 1.2.1 Windows

1. Make sure the computer meets specified requirements.

2. Extract the been.zip package to target directory using Windows Explorer or other
suitable application.

 1.2.2 Linux

1. Make sure the computer meets specified requirements.

2. Extract the been.tar.gz package to target directory using a following command:
tar xzf been.tar.gz

 1.3 Installing Results Repository Prerequisites
Note: On several places, the instructions require you to copy some files from the BEEN DVD.
If you don't have the DVD available, you can also download the files from the BEEN web
(http://been.objectweb.org/).

 1.3.1 Fedora Core 5

1. Install the correct version of the R statistical package by downloading the package R-
2.1.0-1.bio.fc3.i586.rpm from its URL21 and running following command as
root:

yum install R-2.1.0-1.bio.fc3.i586.rpm
2. Install NetCDF support for R using packages netcdf and udunits:

yum install netcdf
21 ftp://ftp.pbone.net/mirror/apt.bea.ki.se/biorpms/fedora/linux/3/i386/RPMS.biorpms/R-2.1.0-

1.bio.fc3.i586.rpm

47

ftp://ftp.pbone.net/mirror/apt.bea.ki.se/biorpms/fedora/linux/3/i386/RPMS.biorpms/R-2.1.0-1.bio.fc3.i586.rpm
ftp://ftp.pbone.net/mirror/apt.bea.ki.se/biorpms/fedora/linux/3/i386/RPMS.biorpms/R-2.1.0-1.bio.fc3.i586.rpm
http://been.objectweb.org/

yum install netcdf-devel
yum install udunits
yum install udunits-devel
ln -s /usr/lib/netcdf-3/libnetcdf.a
 /usr/lib/libnetcdf.a
ln -s /usr/include/netcdf-3/netcdf.h
 /usr/include/netcdf.h

3. Copy the RNetCDF R extension package (file RNetCDF-_1.1-3.tar.gz) from the
Libraries directory on the BEEN DVD and in the directory with the package file run
as root:

R CMD INSTALL RNetCDF_1.1-3.tar.gz
4. Copy the SJava package (file SJava_0.69-0_fixed.tar.gz) from the Libraries

directory on the BEEN DVD and in the directory with the package file run as root:
R CMD INSTALL -c SJava_0.69-0_fixed.tar.gz

5. Create the R_HOME environment variable that points to the R installation directory:
export R_HOME=/usr/lib/R

6. Add SJava libraries to the LD_LIBRARY_PATH environment variable:
export LD_LIBRARY_PATH
 =${LD_LIBRARY_PATH}:${R_HOME}/lib
 :${R_HOME}/library/SJava/libs

7. You may want to add the R_HOME and LD_LIBRARY_PATH variable settings to your
~/.bashrc file.

 1.3.2 Gentoo 2006.1

1. Install the correct version of the R statistical package using following command as root:
emerge =R-2.2.1

2. Install NetCDF support for R using packages netcdf and udunits:
emerge netcdf udunits

3. Copy the RNetCDF R extension package (file RNetCDF-_1.1-3.tar.gz) from the
Libraries directory on the BEEN DVD and in the directory with the package file run
as root:

R CMD INSTALL RNetCDF_1.1-3.tar.gz
4. Copy the SJava package (file SJava_0.69-0_fixed.tar.gz) from the Libraries

directory on the BEEN DVD and in the directory with the package file run as root:
R CMD INSTALL -c SJava_0.69-0_fixed.tar.gz

5. Create the R_HOME environment variable that points to the R installation directory:
export R_HOME=/usr/lib/R

6. Add SJava libraries to the LD_LIBRARY_PATH environment variable:
export LD_LIBRARY_PATH
 =${LD_LIBRARY_PATH}:${R_HOME}/lib
 :${R_HOME}/library/SJava/libs

7. You may want to add the R_HOME and LD_LIBRARY_PATH variable settings to your
~/.bashrc file.

48

 1.4 Installing Web User Interface
1. Make sure the computer meets specified requirements. Note that for correct

functionality, Tomcat should not be installed in a directory which contains spaces in its
path.

2. Make sure Tomcat is not running.

3. Copy all files from the webinterface directory in the BEEN installation directory to
the webapps/been directory in Tomcat installation directory (this directory does not
exist and must be created).

4. Copy following files from the BEEN installation directory to webapps/been/WEB-
INF/lib directory in Tomcat installation directory (this directory does not exist and
must be created):
○ dist/been.jar
○ lib/webinterface/commons-fileupload-1.0.jar
○ lib/log4j/log4j-1.2.12.jar

5. Because the BEEN web user interface is written in UTF-8 encoding, you need to adjust
Tomcat's settings to respect this, if you want to use other than standard ANSI
characters in entered data:

1. Open the conf/server.xml file in Tomcat installation directory in a text editor.

2. Find the <Connector> element with attribute port="8080" and add attribute
URIEncoding="UTF-8" to this element.

3. Save the conf/server.xml file.

49

 2 R u n n i n g B E E N

For successful running of benchmarks, you need to:

● Run Host Runtime on all participating hosts.

● Run Task Manager on one host.

● Run web interface on one host.

● Configure the web interface – set the host of Task Manager.

● Run all BEEN services.

All those components could be run on one host if needed. For running of benchmarks supplied
with BEEN, additional hosts are necessary.

 2.1 Running Task Manager
Task Manager needs to be run before all Host Runtimes – each Host Runtime connects to the
Task manager on startup and would fail, if the Task Manager was not started at that time.

 2.1.1 Windows

1. Open bin directory in the BEEN installation directory with Windows Explorer or other
suitable application.

2. Run taskmanager.bat batch file.

3. Command Shell should appear with following messages:
Log level: DEBUG
Could not load configuration file. New configuration file
will be created (with default values set).
Task Manager started...

 2.1.2 Linux

1. Open a terminal and go to bin directory in the BEEN installation directory.

2. Run taskmanager.sh shell script.

3. Following messages should appear on the terminal:
Log level: DEBUG
Could not load configuration file. New configuration file
will be created (with default values set).
Task Manager started...

50

 2.2 Running Host Runtime

 2.2.1 Windows

1. Open a command shell and go to bin directory in the BEEN installation directory.

2. Run hostruntime.bat batch file with a parameter specifying host, where the Task
Manager is running.

Example:
hostruntime.bat aiya.ms.mff.cuni.cz

3. Following messages should appear in the command shell:
Note: Can't start the RMI registry - another instance is
probably running.
2006/12/04 16:35:06.640 INFO Initializing Load Monitor.
2006/12/04 16:35:06.687 INFO Load Monitor initialized
successfully.
Host Runtime started...

 2.2.2 Linux

1. Open a terminal and go to bin directory in the BEEN installation directory.

2. Run hostruntime.sh shell script with a parameter specifying host, where the Task
Manager is running.

Example:
./hostruntime.sh aiya.ms.mff.cuni.cz

3. Following messages should appear on the terminal:
Note: Can't start the RMI registry - another instance is
probably running.
2006/12/04 16:35:06.640 INFO Initializing Load Monitor.
2006/12/04 16:35:06.687 INFO Load Monitor initialized
successfully.
Host Runtime started...

 2.3 Running and Configuring Web Interface
1. Open a command shell (on Windows) or a terminal (on Linux) and go to the BEEN

installation directory.

2. Make sure Tomcat is running. You can start it by running the start-tomcat target in
the build.xml build file.

ant start-tomcat
3. Run the web browser and go to URL http://localhost:8080/been/. The web interface of

BEEN should appear.

4. Click on the Configuration tab in the web interface, fill in the Task Manager host
name field and click Save button. A green bar with text “Configuration saved
successfully.” should appear. If the Task Manager could not be found on entered host,

51

http://localhost:8080/been/

orange error message bar will appear with an explanation of error.

 2.4 Running Services
1. Click on the Services tab in the web interface. A list of BEEN services will appear.

2. For each service, fill-in a host where the service should be run and click the Start
button. The green bar with text “Service started successfully.” should appear. If the
service could not be run on entered host, orange error message bar will appear with an
explanation of error.

52

 3 U s i n g W e b U s e r I n t e r f a c e

Using the web interface, users can control all BEEN components, view their status, run
benchmarks, inspect benchmark results, etc. The main advantage of the web interface is that
there is no need to install a specialized application just to control BEEN – it can be controlled
from any computer provided with a web browser.

For requirements of the server and client parts of the web interface, see section Required
Software (Part II, 1.1.2). Instructions for running the web interface can be found in section
Running and Configuring Web Interface (Part II, 2.3).

When the web interface is running, its URL is http://hostname:8080/been/ where hostname is
a host running the server part of the web interface.

In this section, we describe a structure and capabilities of the web interface and we present
instructions how to accomplish various tasks.

 3.1 Web Interface Structure
The web interface functionality is divided into modules. Each module is presented to the user
as a tab on the navigation bar. Most modules serve as an interface to specific BEEN services.
The modules are:

● Packages – interface to the Software Repository

● Hosts – interface to the Host Manager

● Tasks – interface to the Task Manager

● Benchmarks – interface to the Benchmark Manager

● Results – interface to the Results Repository

● Configuration – allows user to configure the web interface, the Host Runtimes, and

53

Screenshot 1: BEEN web interface main page.

http://host:8080/been/

the Host Manager

● Services – manages execution of all BEEN services

Detailed description of the web interface modules follows.

 3.2 Packages Module
The Packages module serves as an interface to the Software Repository. It allows listing,
viewing, uploading and downloading of the stored packages.

 3.2.1 Working with Packages

Listing Packages
When you click on the Packages tab, a list of packages stored in the Software Repository will
appear. The packages are divided into source, binary, task and data packages. For each package
its human-readable name, package name and version are displayed.

To filter the list, click the Add condition link in the bar on the top of the page and specify
condition on package metadata attributes using a select box for an attribute name, a condition
operator and an attribute value. By clicking on the Add condition link again, you can add
more conditions to the filter; by clicking on the Delete condition link, you can delete a
specific condition. When you are done, click the Filter button and the list will be filtered only
to packages matching all specified conditions.

Viewing Package Details
You can display package details by clicking on the package name. A page listing all package
metadata attributes will appear.

Downloading Packages
You can download a package by clicking the Download button corresponding to the package
you want to download. The web browser will probably show a dialog, where you can choose
the location of the downloaded package. After confirmation, the download should begin.

The format of the downloaded packages is described in section Packages (Part I, 6.1).

Deleting Packages
You can delete a package by clicking on the Delete button corresponding to the the package
you want to delete. After clicking, a confirmation will appear. If you click the OK button, the
package will be deleted; otherwise it will be kept.

Uploading Packages
You can upload a package to the Software Repository by clicking on the Upload package link
in the navigation bar. A package upload form will appear. Enter the package file into the
Package file box and click the Upload button. If the file entered is a valid Software Repository
package file and is uploaded correctly, the green bar with text “Package uploaded successfully.”
should appear. Otherwise, orange error message bar with an explanation of the error will
appear.

54

 3.3 Hosts Module
The Hosts module serves as an interface to the Host Manager. It allows manipulation with
hosts, groups and software aliases.

 3.3.1 Working with Hosts

Listing Hosts
When you click on the Hosts tab, a list of hosts in the Host Manager's database will appear.
For each host, its hostname and status is displayed. Host status can be one of these values:

● Online – the host was online during the last check

● Offline – the host was shut down normally

● Crashed – the host does not send data to the Load Server, so it is assumed it is not
responsive or was shut down abnormally

● Unknown – the host status is unknown

Displaying Detailed Information about Hosts
You can view detailed information about particular host by clicking on its host name. A page
with several tabs will appear:

● Configuration. Displays a configuration of the host, as reported by the detector. By
clicking on tabs in the Configuration tab, you can view information about the used
detector, operating system, Java runtime, processors, memory, disk drives, network
adapters, applications and user-defined properties.

The user-defined properties can be added, edited and deleted using controls on the
User-defined properties tab.

By default, the most recent configuration detected is displayed in the Configuration
tab. To display older detected configurations, select a date from the select box on the
bar at the top of the Configuration tab and click the Select button.

To run a detector on the host and obtain fresh configuration information, click
Refresh button on the bar at the top of the Configuration tab. The page indicating
that new detection is in progress will appear. If the detection is successful, the fresh
configuration will be displayed after a while; otherwise an error message with
explanation of the error would appear.

● Load. Displays information about host utilization – the most current data obtained
from the Load Monitor and averages computed from data obtained in last 10 and 60
minutes. Reported data include:

○ amount of free memory on the host

○ number of processes

○ process queue length

○ utilization of all host's processors

○ number of bytes read or written per second on all host's drives and network
interfaces

● Tasks. Lists all tasks running on the host as reported by the Task Manager. You can

55

display detailed information about the task (by clicking on its ID) and context the task
is running in (by clicking on the context ID). To kill a task, click the Kill button
corresponding to the task you want to kill.

● Logs. Displays the logs produced by the tasks running on the host, as reported by the
log storage component of the Task Manager. You can sort the logs by all columns by
clicking on the column headers.

 3.3.2 Working with Groups

For more information about host groups, see section Host Groups (Part I, 7.4).

Listing Groups
When you click on the Groups link in the navigation bar, a list of host groups in the Host
Manager's database will appear. For each group, its name is displayed. There is always one
group present – “All hosts”. This group is special – it contains all hosts in the Host Manager's
database and cannot be deleted.

Editing Groups
You can edit a group by clicking on the group name. A form will appear where you can change
the group name, description and list of hosts in the group. The group name must be non-
empty and unique.

The list of hosts can also be selected using a RSL expression. To activate the box for entering
the RSL expression, click the Select hosts using RSL expression link. You can now enter the
RSL expression. After clicking on the Select matching hosts button, the expression is
evaluated in the background (i.e. without reloading the page) and hosts matching the
expression are selected. If there is any syntactical or semantical error in RSL expression, the
error message with an error description will appear. For more information about RSL, see
section Restriction Specification Language (RSL) (Part I, 11).

When you are done with editing of the group, click the Edit button to save your changes, or
the Cancel button to discard your changes.

The “All hosts” group can be edited too, but only allowed operation is changing of the group
description.

Adding Groups
You can add a group by clicking on the Add group link on the navigation bar. A form will
appear with similar options as when editing a group.

When you are done with adding of the group, click the Add button to save your changes, or
the Cancel button to discard your changes.

Deleting Groups
You can delete a group by clicking on the Delete button corresponding to the group you want
to delete. After clicking, a confirmation will appear. If you click the OK button, the group will
be deleted; otherwise it will be kept.

56

 3.3.3 Working with Software Aliases

For more information about software aliases, see section Software Aliases (Part I, 7.5).

Listing Alias Definitions
When you click on the Aliases link in the navigation bar, a list of software alias definitions
defined at the Host Manager will appear. For each alias definition, its name is displayed.

Editing Alias Definitions
You can edit an alias definition by clicking on the alias definition name. A form will appear,
where you can change the alias name, result name, result vendor, result version and
restrictions for the operating system and the application. The alias name, result name and
restriction for the application must be non-empty; the alias name must be unique.

In the Result name, Result vendor and Result version boxes, you can use special variables
${name}, ${vendor} and ${version}. When matching the alias with installed
applications, they will be replaced with real values of the matching application.

The restrictions are specified using RSL query language – see section Restriction Specification
Language (RSL) (Part I, 11).

When you are done with editing of the alias definition, click the Edit button to save your
changes, or the Cancel button to discard your changes.

Adding Alias Definitions
You can add an alias definition by clicking on the Add alias link on the navigation bar. A form
will appear with similar options as when editing an alias definition.

When you are done with adding of the alias definition, click the Add button to save your
changes, or the Cancel button to discard your changes.

Deleting Alias Definitions
You can delete an alias definition by clicking on the Delete button corresponding to the the
alias definition you want to delete. After clicking, a confirmation will appear. If you click the
OK button, the alias definition will be deleted; otherwise it will be kept.

 3.4 Tasks Module
The Tasks module serves as an interface to the Task Manager. It allows listing and viewing of
contexts and tasks present in the system and executing of tasks.

 3.4.1 Displaying Context and Task Information

Listing Contexts
When you click on the Tasks tab, a list of existing contexts will appear. For each context, its ID
and name are displayed.

57

Displaying Context Details
You can display context details and list of tasks in the context by clicking on the context name.
A page will appear where you can view context ID, name, description and link to associated
benchmarking experiment, if the context has one.

A list of tasks in the context is also present on the page. For each task, its ID, name, running
time, status and host where the task is running are displayed. For list of possible task states,
see section Task Status (Part I, 3.3).

Displaying Task Details
You can display task details by clicking on the task name in the context details page. A page
with two tabs will appear:

● Information. Displays detailed information about the task, such as package name,
host where the task is running, task status, restarting and timeout settings, paths to
task directories, reached checkpoints and task properties.

● Logs. Displays the logs produced by the tasks running on the host, as reported by the
log storage component of the Task Manager. You can sort the logs by all columns by
clicking on the column headers.

Killing Single Tasks
Killing a single task can be accomplished in two ways:

1. In the context details page, click the Kill button corresponding to the task you want to
kill.

2. In the task details page, click the Kill button at the bottom of the page.

In both cases, a confirmation will appear. If you click the OK button, the task will be killed;
otherwise it will be left untouched.

58

Screenshot 2: Context details.

Killing All Tasks in a Context
Killing all tasks in selected context can be accomplished in two ways:

1. In the context list page, click the Kill all tasks in context button corresponding to the
context you want to kill all tasks in.

2. In the context details page, click the Kill all tasks in context button at the bottom of
the page.

In both cases, a confirmation will appear. If you click the OK button, all tasks in the context
will be killed; otherwise they will be left untouched.

Deleting Contexts
Deleting a context means killing all tasks in the context and deleting all the context data
stored at the Task Manager. A context can be deleted in two ways:

3. In the context list page, click the Delete context button corresponding to the context
you want to kill all tasks in.

4. In the context details page, click the Delete context button at the bottom of the page.

In both cases, a confirmation will appear. If you click the OK button, all tasks in the context
will be killed; otherwise they will be left untouched.

Note that the system context is special – it cannot be deleted and it lasts forever.

 3.4.2 Running Tasks

You can run a task by clicking on the Run task link on the navigation bar. A page with two
tabs will appear:

● Describe task using form. In this tab, you can run a task by filling a form. You have
to:

○ Select a task name from a list of names of task packages in the Software Repository.

○ Select a host on which the task should run from the list of hosts in the Host
Manager database.

○ Select a context in which the task should run from the list of active contexts in the
Task Manager.

○ Optionally enter task properties. Only string properties can be entered. You must
enter one property on each line of the box in the format name = value. Whitespace
around the name and value is trimmed.

When you are done with filling a form, click the Run button to run the task.

● Describe task using task descriptor XML. In this tab, you can run a task by directly
entering the XML representation of the task descriptor into the Task descriptor form
field. This means of running tasks serves mainly for debugging purposes. For the
description of the task descriptor XML format, see section Task Descriptor (Part I, 3.2).

When you are done with entering a task descriptor, click the Run button to run the
task.

59

 3.4.3 Displaying Logs

Displaying Logs of All Tasks
You can display logs of all tasks in the system by clicking on the Task logs link on the
navigation bar. A page will appear which displays the logs produced by the all tasks in the
system, as reported by the log storage component of the Task Manager. You can sort the logs
by all columns by clicking on the column headers.

Displaying Task Manager Logs
You can display the Task Manager logs by clicking on the Task Manager logs link on the
navigation bar. A page will appear which displays the Task Manager logs, as reported by its log
storage component. You can sort the logs by all columns by clicking on the column headers.

 3.5 Benchmarks Module
The Benchmarks module serves as an interface to the Benchmark Manager. It allows creating
and monitoring of benchmark analyses and experiments, as well as listing and installing of the
benchmarking plugins.

 3.5.1 Working with the Entity Hierarchy

Listing Analyses
When you click on the Analyses link in the navigation bar, a list of analyses in the Benchmark
Manager will appear. The analyses are divided into comparison analyses and regression
analyses. For each analysis, its name is displayed.

Displaying Analysis Details
You can display analysis details and a list of experiments in the analysis by clicking on the
analysis name in the analysis list page. A page with two tabs will appear:

● General. Displays basic analysis information (its name, description and type). In the
bottom part, a list of experiments in the analysis is displayed. In case of regression
analysis with created model experiment, the roles and callback R scripts set up when
creating the experiment are displayed here too.

● Logs. Displays the logs produced by the tasks which were running in the analysis. You
can sort the logs by all columns by clicking on the column headers.

In case of regression analysis with created model experiment, an additional tab will appear:

● Scheduling information. Allows entering of the scheduling information for running
of the experiments. For description of the options, see Entering scheduling information
in section Creating Experiments (Part II, 3.5.2).

Displaying Experiment Details
You can display experiment details by clicking on the experiment name in the analysis details
page. A page with two tabs will appear:

60

● General. Displays basic experiment information (its status, progress, number of
binaries, runs and tasks), roles and callback R scripts set up when creating the
experiment. In the bottom part, tasks of the experiment are displayed, divided
hierarchically into the binaries and runs. For each task, its ID, context ID, name,
running time, status and host where the task is running are displayed

● Logs. Displays a logs produced by the tasks which were running in the experiment.
You can sort the logs by all columns by clicking on the column headers.

 3.5.2 Creating Experiments

After creating the analysis, experiments can be added into it.

In case of comparison analysis, the unlimited amount of experiments can be added into the
analysis; each of them will be run once.

In case of regression analysis, only one experiment can be added into the analysis, along with
scheduling information. Added experiment will serve as a “model experiment” for regular
experiments created automatically by the Benchmark Manager according to the defined
schedule.

Both experiments in comparison analysis and the model experiment in regression analysis are
set up using a wizard. The wizard has following steps:

1. Plugin selection

2. Choosing experiment name and description

3. Entering scheduling information (regression analysis only)

4. Configuration of the experiment

5. Selection of hosts into benchmarking roles

6. Entering R callback scripts for statistical processing

7. Confirmation of entered data

8. Task generation (comparison analysis only)

61

Screenshot 3: Tasks in running experiment.

You can activate the wizard by clicking on the Create experiment button in the analyses list
page, which is corresponding to the analysis where you want to create the experiment.

In the wizard, you can move forward and backward using Previous and Next buttons. At the
end of the wizard, the Finish button will be displayed instead of the Next button. Clicking on
the Finish button will end the wizard and add created experiment to the analysis. The running
of the experiment can be delayed a bit, as the Benchmark Manager processes experiments in
background in regular intervals.

You can cancel the experiment creation at any time by clicking on the Cancel button in the
wizard.

Detailed description of the wizard screens follows.

Plugin Selection
On this screen, you can select which benchmarking plugin will be used for the experiment. A
list of plugins is displayed in the top part of the screen. Description of the selected plugin is
displayed in the yellow box in the bottom part of the screen.

Choosing Experiment Name and Description
On this screen, you can enter experiment name (into the Name box) and description (into the
Description box). The name must be non-empty, but does not have to be unique (it is only
informational – internally, the experiments are uniquely identified within the analysis by
automatically generated ID). The description is optional.

Entering Scheduling Information

On this screen, you can enter scheduling information for running of the experiments. This
screen is displayed only when creating model experiment in the regression analysis.

In the Analysis dates section, you can enter start and end date of the analysis. Format of both
dates is “DD/MM/YYYY HH:MM:SS”. You can enter none, one, or both dates. Empty start date
is substituted by “now”, empty end date means the measurement will continue forever. If you
enter both dates, they must be correctly ordered (start date must not be after the end date). If

62

Screenshot 4: Entering scheduling information.

you enter only end date, it must be set in the future.

In the Days section, you can choose days when the analysis is run. You can select either days
of the week (by clicking on the Run in days of the week radio button and selecting days
using checkboxes), or days of the month (by clicking on the Run in days of the month radio
button and selecting days using the calendar, Select all link or Select none link).

In the Time of the day section, you can choose hours and minutes in the day when the
analysis is run. The hours and minutes are both entered as a comma-separated list of numbers
or number ranges (two numbers separated by dash). This format is similar to the format used
by the cron Unix utility. Empty Hours field means “repeat analysis every hour”, similarly for
minutes.

Configuration of the Experiment
Configuration of the experiment usually isn't single screen, but more screens generated by the
experiment configurator. Those screens are plugin-dependent and contain various controls
used to configure the experiment.

Usually, benchmarking plugin configurator will present a screen, where you can enter
restrictions for used host roles in RSL query language. For more information about RSL, see
section Restriction Specification Language (RSL) (Part I, 11).

For description of options configurable in plugins supplied with BEEN, see sections
Benchmarking with Xampler (Part II, 4) and Benchmarking with RUBiS (Part II, 5). For
description of controls available to the experiment configurator, see section Configurator (Part
III, 3.3).

Selection of Hosts into Benchmarking Roles
On this screen, you can select which host will belong to what roles. The screen may be skipped
if the benchmarking plugin has no roles to set. For each role, a select box is displayed with
hosts that the plugin determined to be suitable for the role (based on the experiment
configuration and other factors, specific for each plugin). Required host count for each role is
displayed too. The web interface will pre-select hosts to the role for you. You can select
different hosts for the role, but you must respect the required host count.

If the required host count for some role can't be achieved, the error message will appear. You
have to add hosts to BEEN (i.e. run the Host Runtime on them, with correct Task Manager
host parameter) and refresh the screen – new hosts will be added dynamically.

Entering R Callback Scripts for Statistical Processing
On this screen, you can specify R callback scripts for the experiment. The scripts are initially
provided by the benchmarking plugin. Following scripts can be edited:

● Complete run script

● Complete binary script

● Complete experiment script

● Incomplete binary script

● Incomplete experiment script

The scripts must be written in R language, using its standard functions or functions defined in
script plugins, installed in the Results Repository. You can display help for the functions
defined in the plugins by clicking on the Help for BEEN R functions.

63

For detailed information about the R scripts, see section Statistics Calculation (Part I, 10.4).

Confirmation of Entered Data
On this screen, you can see a summary of data entered in the wizard so far (except the
experiment configuration, which is not displayed for technical reasons). You can check it and if
you see any error, you can go back and correct entered values.

In case of regression analysis, the wizard ends on this screen. After clicking on the Finish
button, the model experiment is created and you will be returned to the analysis list page.

In case of comparison analysis, you can continue by clicking on the Next button, as on
previous wizard screens.

Task Generation
On this screen, you can see a list of tasks generated for the experiment. For each task, its name
and task ID are displayed. This screen is displayed only when creating experiment in the
comparison analysis.

The wizard ends on this screen. After clicking on the Finish button, the experiment is created
and you will be returned to the analysis list page.

 3.5.3 Managing Plugins

For more information about Benchmark Manager plugins, see Extending Benchmark Manager
(Part III, 3).

Listing Installed Plugins
When you click on the Plugins link in the navigation bar, a list of plugins installed in the
Benchmark Manager will appear. For each plugin, its name and status “OK” or “error”) are
displayed.

Installing Plugins
You can install a plugin to the Benchmark Manager by clicking on the Install plugin link in
the navigation bar. A package upload form will appear. Enter the plugin file into the Plugin
file box and click the Upload button. If the file entered is a valid Benchmark Manager plugin
file and is uploaded correctly, the green bar with text “Package uploaded successfully.” should
appear. Otherwise, orange error message bar with an explanation of the error will appear.

 3.6 Results Module
The Results module serves as an interface to the Results Repository. It allows viewing of the
results' hierarchical structure, displaying computed statistics, graphs, associated metadata and
logs. You can also export or delete the results and upload R script plugins.

If the Results Repository service could not initialize the R environment on the start-up, a
yellow warning box will be displayed on all pages in the module to notify user about this fact.
Results Repository cannot perform any statistical computation when R is disabled.

64

 3.6.1 Browsing the Entity Hierarchy

Listing Analyses
When you click on the Analyses link in the navigation bar, a list of analyses, for which the
Results Repository stores data, will appear. For each analysis, its name is displayed.

Exporting Analyses Data
The tab Export is present on the right side of the analysis list page. It allows export of data for
one or more analysis from the Results Repository. To export the data, select analyses to export
by clicking on checkboxes next to their name and click on the Export selected button. The
web browser will probably show a dialog, where you can choose the location of the
downloaded data. After confirmation, the download should begin.

Currently, the only supported export format is “BEEN archive database format”. Its structure is
documented in section Results Repository Export Format (Part I, 10.7).

Deleting Analyses Data
You can delete analysis data by clicking on the Delete button on the analysis list page,
corresponding to the analysis you want to delete. After clicking, a confirmation will appear. If
you click the OK button, the analysis data will be deleted; otherwise it will be kept.

If the Delete button is disabled, the analysis data is locked (probably because some
computations are performed on it at the time) and can't be deleted. If you need to delete the
analysis data, wait for a while and try reloading the page.

The analysis data can also become locked in the time between displaying the analysis list page
and clicking on the Delete button. If you try to delete the analysis data in this situation, an
error message with explanation will appear.

Displaying Analysis Details
You can display analysis details and a list of experiments in the analysis by clicking on the
analysis name in the analysis list page. A page with five tabs will appear:

● Statistics. Displays statistics computed from the results of experiments in the analyses.
The statistics are generated by the R scripts set up when creating the experiments.

● Graphs. Displays visual representation of the results of experiments in the analyses.
The graphs are generated by the R scripts set up when creating the experiments.

● Metadata. Displays information about the analysis – see Results Repository Metadata
(Part IV, Appendix B) for details.

All the metadata is read-only, except the comment, which can be changed. You can
change the comment by modifying text in the Comment box on the Metadata tab and
clicking on the Change button. There is no limitation on the comment length and it
can be empty.

● Logs. Displays the logs produced by the tasks, which were running in the analysis. You
can sort the logs by all columns by clicking on the column headers.

● Export. Allows exporting of the experiments' results. See section Exporting Experiment
Data.

A list of experiments in the analysis is also present on the page. For each experiment, its name

65

and completeness status are displayed. By default, incomplete experiments are invisible – to
display them, click on the Show incomplete experiments link.

Exporting Experiment Data
The tab Export is present on the right side of the analysis details page. It allows export of data
for one or more experiments in the analysis from the Results Repository. To export the data,
select experiments to export by clicking on checkboxes next to their name and click on the
Export selected button. The web browser will probably show a dialog, where you can choose
the location of the downloaded data. After confirmation, the download should begin.

Currently, the only supported export format is “BEEN archive database format”. Its structure is
documented in section Results Repository Export Format (Part I, 10.7).

Deleting Experiment Data
You can delete experiment data by clicking on the Delete button on the analysis details page,
corresponding to the experiment you want to delete. After clicking, a confirmation will appear.
If you click the OK button, the experiment data will be deleted; otherwise it will be kept.

If the Delete button is disabled, the experiment data is locked (probably because some
computations are performed on it at the time) and can't be deleted. If you need to delete the
experiment data, wait for a while and try reloading the page.

The experiment data can also become locked in the time between displaying the analysis
details page and clicking on the Delete button. If you try to delete the experiment data in this
situation, an error message with explanation will appear.

Displaying Experiment Details
You can display experiment details and a list of binaries in the experiment by clicking on the
experiment name in the analysis details page. A page with five tabs will appear:

● Statistics. Displays statistics computed from the results of binaries in the experiment.
The statistics are generated by the R scripts set up when creating the experiment.

● Graphs. Displays visual representation of the results of binaries in the experiment. The
graphs are generated by the R scripts set up when creating the experiment.

● Metadata. Displays information about the experiment– see Results Repository
Metadata (Part IV, Appendix B) for details.

All the metadata is read-only, except the comment, which can be changed. You can
change the comment by modifying text in the Comment box on the Metadata tab and
clicking on the Change button. There is no limitation on the comment length and it
can be empty.

● Logs. Displays the logs produced by the tasks, which were running in the experiment.
You can sort the logs by all columns by clicking on the column headers.

● Export. Allows exporting of the binaries' results. See section Exporting Binary Data.

A list of binaries in the experiment is also present on the page. For each binary, its name and
completeness status are displayed. By default, incomplete binaries are invisible – to display
them, click on the Show incomplete binaries link.

Exporting Binary Data
The tab Export is present on the right side of the experiment details page. It allows export of

66

data for one or more binaries in the experiment from the Results Repository. To export the
data, select binaries to export by clicking on checkboxes next to their name and click on the
Export selected button. The web browser will probably show a dialog, where you can choose
the location of the downloaded data. After confirmation, the download should begin.

Currently, the only supported export format is “BEEN archive database format”. Its structure is
documented in section Results Repository Export Format (Part I, 10.7).

Deleting Binary Data
You can delete binary data by clicking on the Delete button on the experiment details page,
corresponding to the binary you want to delete. After clicking, a confirmation will appear. If
you click the OK button, the binary data will be deleted; otherwise it will be kept.

If the Delete button is disabled, the binary data is locked (probably because some
computations are performed on it at the time) and can't be deleted. If you need to delete the
binary data, wait for a while and try reloading the page.

The binary data can also become locked in the time between displaying the experiment details
page and clicking on the Delete button. If you try to delete the binary data in this situation, an
error message with explanation will appear.

Displaying Binary Details
You can display binary details and a list of runs in the binary by clicking on the binary name in
the experiment details page. A page with five tabs will appear:

● Statistics. Displays statistics computed from the results of runs in the binary. The
statistics are generated by the R scripts set up when creating the experiment.

● Metadata. Displays information about the binary– see Results Repository Metadata
(Part IV, Appendix B) for details.

All the metadata is read-only, except the comment, which can be changed. You can
change the comment by modifying text in the Comment box on the Metadata tab and
clicking on the Change button. There is no limitation on the comment length and it
can be empty.

● Logs. Displays the logs produced by the tasks, which were running in the binary. You
can sort the logs by all columns by clicking on the column headers.

● Export. Allows exporting of the runs' results. See section Exporting Run Data.

A list of runs in the binary is also present on the page. For each run, its name and validity
status are displayed. By default, invalid runs are invisible – to display them, click on the Show
invalid runs link.

Exporting Run Data
The tab Export is present on the right side of the binary details page. It allows export of data
for one or more runs in the binary from the Results Repository. To export the data, select runs
to export by clicking on checkboxes next to their name and click on the Export selected
button. The web browser will probably show a dialog, where you can choose the location of the
downloaded data. After confirmation, the download should begin.

Currently, the only supported export format is “BEEN archive database format”. Its structure is
documented in section Results Repository Export Format (Part I, 10.7).

67

Deleting Run Data
You can delete run data by clicking on the Delete button on the binary details page,
corresponding to the run you want to delete. After clicking, a confirmation will appear. If you
click the OK button, the run data will be deleted; otherwise it will be kept.

If the Delete button is disabled, the run data is locked (probably because some computations
are performed on it at the time) and can't be deleted. If you need to delete the run data, wait
for a while and try reloading the page.

The run data can also become locked in the time between displaying the binary details page
and clicking on the Delete button. If you try to delete the run data in this situation, an error
message with explanation will appear.

Displaying Run Details
You can display run details by clicking on the run name in the binary details page. A page with
several tabs will appear:

● Statistics. This tab is displayed only for valid runs. It displays statistics computed from
the results of the run. The statistics are generated by the R scripts set up when creating
the experiment.

● Raw data. This tab is displayed only for invalid runs. It displays a text informing that
the run is invalid and allows downloading of the raw run data for possible analysis and
debugging.

To download the raw data, click on the download raw data link on the Raw data tab.
The web browser will probably show a dialog, where you can choose the location of the
downloaded data. After confirmation, the download should begin.

● Load. Displays visual representation of the utilization of the computer where the run
was run.

● Metadata. This tab is displayed only for valid runs. It displays information about the
run – see Results Repository Metadata (Part IV, Appendix B) for details. All the
metadata is read-only.

● Logs. Displays the logs produced by the tasks, which were running in the run. You can
sort the logs by all columns by clicking on the column headers.

 3.6.2 Managing R Script Packages

For more information about R script packages, see section R Script Packages (Part III, 4.2).

Listing Installed R Script Packages
When you click on the R script packages link in the navigation bar, a list of R script packages
installed in the Results Repository will appear. For each package, its name and description are
displayed.

Deleting R Script Packages
You can delete a R script package by clicking on the Delete button corresponding to the the
package you want to delete. After clicking, a confirmation will appear. If you click the OK
button, the package will be deleted; otherwise it will be kept.

68

Uploading R Script Packages
You can upload a R script package to the Results Repository by clicking on the Upload R
script package link in the navigation bar. A package upload form will appear. Enter the
package file into the Package file box and click the Upload button. If the file entered is a
valid Results Repository package file and is uploaded correctly, the green bar with text
“Package uploaded successfully.” should appear. Otherwise, orange error message bar with an
explanation of the error will appear.

 3.7 Configuration Module
The Configuration module allows you to configure the web interface, the Host Runtimes and
the Host Manager.

To display the configuration options, click on the Configuration tab. The options are divided
into three groups:

● General. General options are stored at the web interface and are always displayed.
Following options are listed in the General group:

○ Task manager host name – the host where the Task Manager is running. Correct
setting of this option is necessary for functionality of all web interface modules, as
the Task Manager manages tasks and services the web interface communicates
with. Entered host must exist and the Task Manager must be running on it.

○ Show debug options – if checked, the Services module shows controls allowing to
run all services on the same host as the Task Manager at once, to stop all services at
once, and to run them in remote debugging mode. For detailed description, see
section Starting, restarting and stopping services.

● Host Runtime. Host Runtime options are stored at the Task Manager and distributed
to Host Runtimes after their registration. The options are displayed only when the Task
Manager is running and the web interface is connected to it. Following options are
listed in the Host Runtime group:

○ Package cache size limit – the size limit of the Host Runtime package cache, in
megabytes. The entered number must be positive.

69

Screenshot 5: BEEN configuration.

○ Number of closed contexts kept – number of closed contexts, for which the Host
Runtime should keep data on the disk. The entered number must be non-negative.

● Host Manager. Host Manager options are stored at the Host Manager and displayed
only when the Host Manager is running. Following options are listed in the Host
Manager group.

○ Host detection timeout

○ Host detection timeout check interval

○ Activity Monitor refresh interval

○ Host crash timeout

○ Brief mode sampling interval

○ Default detailed mode sampling interval

All intervals are specified in seconds, except the sampling intervals, which are specified
in milliseconds. All entered numbers must be positive. Additionally, the Host crash
timeout must be greater than brief mode sampling interval.

Fore detailed description of the Host Manager configuration settings, see section Host
Manager Configuration (Part I, 7.6).

 3.8 Services Module
The Services module displays manages execution of all BEEN services.

 3.8.1 Working with Services

Listing Services
You can display a list of BEEN services by clicking on the Services tab. Services are divided
into execution framework and benchmarking framework. For each service, its name and status
are displayed. If the service is running, the host where it is running is displayed too. Service
status can be of the following values:

● Starting

● Running

● Stopping

● Restarting

● N/A

If the Results Repository is started, but could not initialize the R environment on the start, a
yellow warning box will be displayed on all pages in the module to notify user about this fact.
Results Repository cannot perform any statistical computation when R is disabled.

70

Starting, Restarting and Stopping Services
You can start a service by entering a host, where you want to run the service, into a box
corresponding to the services you want to run, and clicking on the Start button. To start the
service successfully, the host must exist and the Host Runtime must be running on it.

You can restart a running service by clicking on the Restart button corresponding to the
service you want to restart.

You can stop a running service by clicking on the Stop button corresponding to the service
you want to stop.

If the debug options are enabled, several new options are available:

● You can start all non-running services by clicking on the Start all services button.

● You can stop all running services by clicking on the Stop all services button.

● You can start a service with parameters for remote debugging by clicking on the Start
(remote debug) button. Following parameters are passed to the Java Virtual Machine
which is running the service:

-Xdebug -Xrunjdwp:transport=dt_socket,address=8000,
suspend=y,server=y

 Displaying Service Logs
You can display service logs by clicking on the Logs button corresponding to the service whose
logs you want to display. A page will appear which displays the service logs, as reported by the
log storage component of the Task Manager. You can sort the logs by all columns by clicking
on the column headers.

71

Screenshot 6: Service list with warning about disabled R
scripting displayed.

 4 B e n c h m a r k i n g w i t h X a m p l e r

Xampler is a benchmarking suite for CORBA brokers. It allows performance measurements of
the most major CORBA brokers including JacORB, Jonathan, omniORB, OpenORB, ORBacus,
OrbRiver, Orbix, TAO and VisiBroker. There are thirteen separate benchmarking suites
covering various scalability aspects and ranging from a simple ping to monitoring a number of
servant instances.

Xampler plugin currently supports benchmarking of omniORB broker on Linux platform.
Xampler – omniORB combination was selected as proof of concept for running platform
dependent benchmarks in BEEN environment; on the contrary to the Rubis benchmark which
is a Java-based multiplatform application.

 4.1 Introduction to Xampler
Xampler's benchmarking suites are formed by the client and server binaries. When the server
starts, it stores its IOR reference in a file on local disk. Clients then read the reference from the
file and use it to locate the server. Afterwards benchmark-specific measurement is initiated
and results are written on standard output of both client and server processes.

To compile benchmark binaries, the broker's binary must be present on the compilation host
running because the IDL compiler is required by the compilation.

By default, results generated by the Xampler are stored in the format which is hard to parse
and process automatically. Hence the benchmarks are run in the raw mode. In the raw mode,
only clients produce output which is stored in the more parser-friendly format.

In a common benchmarking setup the server and client applications are expected to run on
different hosts so the IOR reference stored on server's hosts must be transfered to clients. This
is accomplished by a dedicated task which waits for server's startup, reads the IOR reference
and sets a checkpoint with a value of the reference. Client's execution task waits for the
checkpoint and then stores the reference and executes the client process. Standard output of
client is redirected to a file, so that results can be later collected and processed by the Results
Repository.

 4.2 Comparison Analyses with Xampler
Xampler plugin requires specific information to be able to setup a benchmarking experiment.
The configuration is performed on four screens in following order:

● omniORB CVS Repository screen – configures access to a CVS repository with
omniORB versions. Since omniORB is a SourceForge project, anonymous access to the
CVS is available. OmniORB broker is developed in branches which correspond to its
major versions. The branch option allows user to select a branch to checkout source
from. Since Xampler provides suites for both 4.0.X and 4.1.X versions, the branches of
interest should be omni4_1_develop and omni4_0_develop . The other
development versions are not supported

● Software selection screen – collects version information for the experiment. Xampler
and omniORB version fields correspond to the versions of packages available in the
software repository. Branch option should correspond to the option specified on the
CVS access screen - being 4.0 for omni4_0_develop and 4.1 for omni4_1_develop

72

branch. Number of binaries and runs determines how many binaries will be created for
each source package of omniORB and how many runs of a suite will be benchmarked
for each binary

● Suite selection screen – allows user to select one of available suites
● Suite subselection screen – is optional and appears for the most of marshalling

suites. It allows selection of a data type which will be marshaled and one of
in/out/inout directions. See Xampler documentation for details

● Settings screen – specifies compile-time and run-time options for benchmarking. For
the concurrent client connections suite, the runtime settings specify a number of
clients that the server should wait for before starting measurements. While runtime
options are passed to benchmark executables on command-line, the compile-time
options are hacked into C++/all_defs.h file

● Client hosts specification screen – allows user to select hosts on which clients will
be started

● Server host specification screen – allows user to input RSL restrictions on server
hosts

● Compilation host screen - allows user to specify conditions for a hosts on which
Xampler and omniORB are compiled

 4.3 Regression Analyses with Xampler
The process of configuring the model experiment for a regression analysis is very similar to the
configuration process of a comparison experiment. Version provider for Xampler takes
advantage of omniORB being a SourceForge.net project (http://omniorb.sourceforge.net/)
with public CVS access and generates timestamps used when downloading specific history
revisions. For each newly created source package new omniORB and Xampler binaries are
created to maximize consistency of the results.

 4.4 Required Packages
The plugin requires only Xampler source package to be present in the Software Repository,
omniORB sources will be downloaded from the CVS repository for both types of analyses.
Following tasks are required when working with the Xampler:

● Generic tasks:

● local-download task, version 1.0

● localupload task, version 1.0

● create-package-metadata task, version 1.0

● log-collection task, version 1.0

● omniORB:

● native-cvs-download task, version 1.0

● omniorb-source-package task, version 1.0

● omniorb-compile-linux task, version 1.0

● Xampler:

● xampler-compile-linux task, version 1.0

● xampler-execute task, version 1.0

● check-and-convert-xampler task, version 1.0

73

http://omniorb.sourceforge.net/

● xampler source package, recommended version 1.11

 4.5 Xampler Role Requirements
As stated before, plugin supports only benchmarking on Linux platforms. Following are the
recommended specifications for various roles in the benchmark:

Server/Client:

● 512 MB of RAM

● 200 MB of disk space

● Python 2.4 or newer

Compilation:

● CVS

● Python 2.4 or newer

● gcc 3.3.6 or newer

 4.6 Notes
● xampler-execute tasks are designated as context-exclusive. They will not start on a

machine where one of BEEN components is running because the host can't be “locked”.

● Client and server may run on a single machine, or in a distributed manner.

● The benchmark generates a decent load on machine and it may become unresponsive
resulting in Host Manager warnings about unreachable Host Runtime.

● The CVS uses pserver connection, sending password in plain-text only, so watch your
credentials.

74

 5 B e n c h m a r k i n g w i t h R U B i S

RUBiS is an application server scalability benchmark. It implements a web auction site,
modeled after eBay.com, and its basic functionality: selling, browsing and biding. Three kinds
of user sessions are distinguished: visitor, buyer and seller. For a visitor session, users don't
need to register, but are only allowed to browse the site. Buyer and seller session require
registration. Buyers can additionally bid on items, browse their current bids, and read
comments and ratings of other users. Seller sessions require a fee before the user is allowed to
put an item for sale. The seller can specify a minimum price of his item.

 5.1 Client Emulator
RUBiS measures the application servers' performance by emulating client interaction via a web
browser. One client emulator can concurrently simulate several clients. There are 26 defined
interactions that can be performed from the client's web browser. The most important are:

● browsing items by category or region

● bidding, buying or selling items

● leaving comments on other users and consulting one’s own user page.

Browsing items also includes consulting the bid history and the seller’s information.

Sequence of interactions for the same customer is called a session. For each customer session,
the client emulator opens a persistent HTTP connection to the web server (provided by the
application server) and closes it at the end of the session.

Client's workload is defined by a transition table. The table specifies a matrix of probabilities of
transitions between every interaction. There are two transition tables, one with browsing
transitions that imply read-only interactions, and one with bidding transitions that include
15% of read-write interactions. The bidding transitions are the most representative of a real
auction site workload. The client waits for some time before transitioning to the next
interaction. The waiting time is called the think time. The think time and the total session time
are generated from a negative exponential distribution with a mean of 7 seconds and 15
minutes, respectively.

 5.2 Server
RUBiS provides several implementations of the auction site, which can be considered as
different benchmarks. There are several implementations in EJB (Enterprise Java Beans), a PHP
implementation and a Java servlets implementation. EJB implementations are of the biggest
interest to us, and they are the only ones supported in the RUBiS plugin for BEEN.

The purpose of an EJB server is to abstract the application business logic from the underlying
middleware. There are two types of beans: entity beans that map data stored in the database to
objects (usually one entity bean instance per database table row), and session beans that are
used to perform temporary operations (stateless session beans) or represent temporary objects
(stateful session beans). The EJB server is responsible for providing services such as database
access (JDBC), transactions (JTA), naming (JNDI) or management support (JMX).

The RUBiS auction site has several EJB implementations, which can be used as different
benchmarks of EJB servers:

75

● Session Beans – session beans are used to implement the business logic, leaving only
the presentation logic in the servlets. This implementation uses the fewest services
from the EJB container. The session beans benefit from the connection pooling and the
transaction management provided by the EJB server. It greatly simplifies the servlets-
only code, in which the connection pooling would have to be implemented by hand.

● DAO separation with Entity Beans CMP – in this implementation, the data access
code is extracted from the servlets, and moved into Data Access Objects (DAO) that
are implemented using entity beans. The business logic embedded in the servlets
directly invokes methods on the entity beans that map the data stored in the database.
With container-managed persistence (CMP), the vast majority of the SQL queries is
generated by the EJB container. EJB 1.1 CMP, however, requires stateless session beans
to execute complex queries involving joins on multiple tables. To avoid fine-grained
access of getter/setter methods of the beans, functions are provided that return results
populated with the values of the bean instance attributes. With this implementation,
the impact of fine-grained accesses between the Web and EJB containers is evaluated.

● DAO separation with Entity Beans BMP – this implementation is the same as the
DAO separation with entity beans CMP version, except that bean-managed persistence
(BMP) is used. With BMP, the SQL queries have to be hand-coded in the beans. Exactly
the same queries as the CMP version are implemented, including the use of a stateless
bean to execute complex queries. The goal of this implementation is to evaluate the
cost of the container’s persistence service by comparing it with the Entity Beans CMP
version.

● Session facade – the session facade pattern uses stateless session beans as a facade to
abstract the entity components. This method reduces the number of business objects
that are exposed to the clients over the network, thus providing a uniform coarse-
grained service access layer. Calls between facade and entity beans are local to the EJB
server and can be optimized to reduce the overhead of multiple network calls.
Container-managed persistence is used for the entity beans. This implementation
involves a larger number of beans, and thus stresses the component pooling of the
container. It also exploits the database connection pooling, transaction manager and
persistence services.

● Session facade with local interfaces – although the session facade beans and the
entity beans execute inside the same JVM, with RMI (Remote Method Invocation) the
communication between them has to go through all the communication layers, as if
they were on different machines. The EJB 2.0 specification introduces local interfaces to
optimize intra-JVM calls by bypassing the communication layers. Beans with a local
interface cannot be called remotely, i.e. from another JVM even if the JVM runs on the
same machine. This implementation takes advantage of these local interfaces. This
implementation uses the session facade pattern, and container-managed persistence.
Only session facade beans have a remote interface that is exposed to the servlets. The
entity beans only have a local interface that is used by the session facade beans.
Therefore, interactions between session and entity beans bypass the communication
layers. This implementation requires EJB 2.0 compliant containers.

● MDB – in this implementation, the data access code is extracted from the servlets, and
moved into Message Driven Beans (MDB). The business logic embedded in the servlets
directly invokes methods on the MDB that query the database.

● EJB CMP2.0 – this implementation uses the session facade pattern and local interfaces
as described above in the “Session facade with local interfaces” section. It also takes
advantage of container-managed persistence 2.0 (CMP2.0). EJB-QL is used in most of
the queries, however a stateless session bean is required to execute some complex

76

queries. This implementation requires EJB 2.0 compliant containers.

 5.3 Database
RUBiS uses a MySQL database with 7 tables: users, items, categories, regions, bids,
buy_now and comments. The users table records contain the user’s name, nickname,
password, region, rating and balance. Besides the category and the seller’s nickname, the
items table contains the name that briefly describes the item and a more extensive
description, usually an HTML file. Every bid is stored in the bids table, which includes the
seller, the bid, and a max_bid value used by the proxy bidder (a tool that bids automatically
on behalf of a user). Items that are directly bought without any auction are stored in the
buy_now table. The comments table records user comments. As an optimization, the number
of bids and the amount of the current maximum bid are stored with each item to prevent
many expensive lookups of the bids table. This redundant information is necessary to keep an
acceptable response time for browsing requests. As users only browse and bid on items that are
currently for sale, the items table is split in a new and an old items table. The very vast
majority of the requests access the new items table, thus considerably reducing the working set
used by the database.

The database is sized according to some observations found on the eBay Web site. There are
about 33,000 items for sale, distributed among eBay’s 20 categories and 62 regions. A history of
500,000 auctions is kept in the old-items table. There is an average of 10 bids per item, or
330,000 entries in the bids table. The buy_now table is small, because less than 10 % of the
items are sold without auction. The users table has 1 million entries. It's assumed that users
give feedback (comments) for 95 % of the transactions. The comments table contains about
506,500 comments referring either to items or old items. The total size of the database,
including indices, is 1.4 GB.

 5.4 Using the RUBiS Plugin in BEEN
The RUBiS plugin for BEEN supports benchmarking of the Jonas and JBoss application servers.
When creating an experiment, you will be presented with several configuration screens:

● Software selection – select the EJB server that will be benchmarked, its version and
platform where it will run. If you enter a version which has a binary package in the
Software Repository, then the binary will be used for the benchmarking. Otherwise, a
source package of the same version is required in the Software Repository. Select the
version and platform of the MySQL server similarly.

● Server implementation – select which EJB implementation of the auction site will be
deployed. See their descriptions in section Server (Part II, 5.2).

● Compilation roles – set requirements on the host that will compile the EJB server
using the RSL query language.

● Benchmarking roles – set requirements on the hosts that will figure in the
benchmarking roles using the RSL query language. Different hosts should be used in
different roles. The benchmarking roles are:

● Clients – the client emulators will be run on hosts of the Clients role. Several
client emulators can be run simultaneously, thus several hosts can figure in the
Clients role. Their number is specified in a later configuration screen.

● EJB server – the EJB server (JBoss or Jonas) will run on the host of this role.
One host will be used for this role.

77

● Database – the MySQL database will run on the host of this role. One host will
be used for this role.

● Benchmark and RUBiS properties – on this screen you can configure the experiment
properties and RUBiS runtime properties:

● Run count – number of runs in this experiment.

● Client emulator count – number of hosts in the Clients role. The client
emulator will be run on each of these hosts. Higher number of hosts in the
Clients role implies higher workload on the EJB server. On each client emulator,
a specified number of clients is emulated (their number is set on this screen
too, see below). If the total number of emulated clients is too high, the clients
will encounter errors (timeouts, etc.). This situation should be avoided.

● Emulated clients per host – number of clients emulated by each client
emulator. Be careful not to set the number too high, like in client emulator
count.

● Up ramp time (in minutes) – the duration of the “up ramp” phase, in minutes.
The “up ramp” phase is used to “warm up” the EJB server and the database to
stabilize the results.

● Up ramp slowdown factor – the think time is multiplied by this number
during the up ramp phase.

● Session time (in minutes) – the duration of the main benchmarking phase.

● Down ramp time (in minutes) – the duration of the “down ramp” phase, in
minutes. The down ramp phase is used to “slow down” the EJB server and the
database to stabilize the results.

● Down ramp slowdown factor – the think time is multiplied by this number
during the down ramp phase.

● Maximum transitions per client session – maximum number of transitions
between interactions during one client session. When this number is reached,
the session of one emulated client is finished, and another client will be
emulated (thus there is always the required number of emulated clients per
client emulator).

● Debug level – debug level of the client emulator. The levels are:

● 0 – no debug messages

● 1 – error messages are written to the standard output

● 2 – error messages and their HTML pages are written to the error output

● 3 – all HTML pages received from the server are written to the standard
output; error messages and their HTML pages are written to the error
output

● Database dump type – select the type of the database dump of the RUBiS
database. The contents of the RUBiS database will be initialized from the dump.
There are two dump types:

● Binary – a copy of MySQL's binary files will the database content. This
might not be compatible with a different version of MySQL than the one
which was used to create it. Filling the RUBiS database from this dump
is faster than the text dump.

● Text - a textual form of the RUBiS database. This dump type has better
compatibility with different MySQL versions. Filling the RUBiS database

78

from this dump is slower than from the binary dump.

● Transition table – choose a browsing (read-only) transition table, or a bidding
(read-write) one.

 5.4.1 Required Packages

● MySQL:

● MySQL binary package, version at least 5, for the required platform (Linux,
Win32)

● mysql-initialize task, version 1.0

● mysql-run task, version 1.0

● mysql-runcommand task, version 1.0

● mysql-shutdown task, version 1.0

● RUBiS:

● RUBiS source package, version 1.5.1

● rubis-mysql-dump data package, version 1.0, required if the text database
dump will be used

● rubis-mysql-dump-binary data package, version 1.0, required if the binary
database dump will be used

● rubis-build-prepare task, version 1.0

● rubis-deployer task, version 1.0

● rubis-mysql-backup task, version 1.0

● rubis-mysql-initialize task, version 1.0

● rubis-mysql-restore task, version 1.0

● rubis-run, task, version 1.0

● For benchmarking JBoss:

● JBoss source or binary packages, version at least 4, required for comparison
analyses

● svn-checkout task, version 1.0, required for regression analyses

● jboss-build task, version 1.0, required if JBoss is built from source

● jboss-configure task, version 1.0

● jboss-run task, version 1.0

● jboss-shutdown task, version 1.0

● local-download task, version 1.0

● create-package-metadata task, version 1.0, required if JBoss is built from
source

● For benchmarking Jonas:

● Jonas source or binary packages, version at least 4.8, required for comparison
analyses

● svn-checkout task, version 1.0, required for regression analyses

● create-package-metadata task, version 1.0, required if Jonas is built from

79

source

● jonas-build task, version 1.0, required if Jonas is built from source

● jonas-configure task, version 1.0

● jonas-run task, version 1.0

● jonas-shutdown task, version 1.0

● Results Collection:

● check-and-convert-rubis task, version 1.0

● results-collect task, version 1.0

● log-upload task, version 1.0

 5.4.2 RUBiS Role Requirements

All roles can be run on Windows and Linux platforms. The roles have following requirements
on the hosts where they are run:

Jonas or JBoss compilation:

● Java Development Kit 5.0

● Ant 1.6.x

● 500 MB of free disk space

● at least 512 MB RAM recommended

Clients:

● on Linux, libstdc++.so.5 installed

EJB Server:

● Java Development Kit 5.0

● Ant 1.6.x

● 500 MB of free disk space

● at least 1 GB RAM recommended

● fast CPU (~2 GHz or faster) recommended

Database:

● 4 GB of free disk space

● at least 512 MB RAM recommended

● fast CPU (~2 GHz or faster) recommended

 5.4.3 Notes

● The RUBiS plugin uses context exclusive tasks for running the EJB server, MySQL and
client emulators. Thus you cannot run it on the same host as BEEN's services. This
avoids corruption of results.

● The jboss-run and jonas-run tasks start their respective EJB servers, and wait
until they finish. To see the output of an EJB server, view the output of these tasks.
Similarly, for the output of MySQL consult the output of the mysql-run task.

● Don't run the database role on a host which has MySQL already installed (even if it's
not running). The MySQL server used by RUBiS would use the other server's system

80

wide configuration file. Unfortunately, this behavior cannot be stopped.

● 100 total emulated clients (i.e. number of client emulators multiplied by the number of
clients emulated by every client emulator) create a decent load on the EJB servers.

● Avoid running other web services on the host in the EJB server role. They might occupy
ports required by JBoss or Jonas (e.g. 8080). In particular, avoid running BEEN web
user interface on the host.

81

 6 E x e c u t i n g a S i m p l e
B e n c h m a r k i n g A n a l y s i s

In this section, we present a step-by-step guide how to run a simple RUBiS comparison
analysis.

 6.1 Executing RUBiS Comparison Analysis
For executing the example RUBiS comparison analysis, you will need four computers (hosts).
We will refer to them as A, B, C and D. Substitute the letters with real hostnames when trying
to run the analysis by this guide.

All hosts must satisfy general requirements on running BEEN – see section Required Software
(Part II, 1.1.2). The hosts may run Windows or Linux system (except host A, which must run
Linux). Additionally:

● Host A must satisfy requirements for running the Results Repository and BEEN web
interface. For the description of the requirements, see section Required Software (Part
II, 1.1.2).

● Host B must satisfy requirements for running RUBiS “EJB server” role.

● Host C must satisfy requirements for running RUBiS “Clients” role.

● Host D must satisfy requirements for running RUBiS “Database” role.

For description of the requirements of the RUBiS roles, see section RUBiS Role Requirements
(Part II, 5.4.2).

 6.1.1 Execution Steps

1. Install BEEN on all hosts. For installation instructions, see section Installing BEEN
Execution Environment (Part II, 1.2).

2. Install all prerequisites for running the Results Repository on host A. For installation
instructions, see section Installing Results Repository Prerequisites (Part II, 1.3).

3. Run the Task Manager on host A using taskmanager.bat batch file (on Windows)
or taskmanager.sh script (on Linux) in the bin directory.

4. Run the Host Runtime on all hosts using hostruntime.bat batch file (on Windows)
or hostruntime.sh script (on Linux) in the bin directory.

5. Run the BEEN web interface on host A by executing ant redeploy-with-restart
command in the BEEN installation directory. Verify that the web interface is running
by browsing on the URL http://A:8080/been/. The main screen of the BEEN web
interface should appear. For detailed information about running the BEEN web
interface, see section Running and Configuring Web Interface (Part II, 2.3).

6. In the web interface, click on the Configuration tab, enter “A” into the Task Manager
host name box and click Save.

7. In the web interface, click on the Services tab. A list of BEEN services should appear.
No service should be running (their state should be “N/A”). For each service, enter “A”

82

http://A:8080/been

into the Host box and click the Start button. This will start all services on host A.

After starting the services, make sure there is no yellow bar with information about
unavailable R scripting displayed. If the bar appears, host A probably does not meat the
requirements for running the Results Repository (it cannot initialize the R
environment). In this case, you have two options:

1. Stop the Results Repository service, install and configure R correctly on host A and
start the Results Repository again.

2. Choose another host which meets the requirements as A and try the guide again
from the beginning.

8. In the web interface, click on the Packages tab and then on the Upload packages link
in the navigation bar. You now have to upload several packages required to run RUBiS
comparison analysis from the BEEN DVD to the Software Repository, or download
them from the project web.

The required packages are listed in section Required Packages (Part II, 5.4.1). You need
to upload the packages listed in “MySQL”, “RUBiS” and “For benchmarking JBoss” parts
(i.e. Jonas packages need not to be uploaded).

All the packages are placed in the /Packages directory on the BEEN DVD, or
available from the BEEN web (http://been.objectweb.org).

To upload the package, enter its filename into the Package file box and click the
Upload button. A green bar with text “Package uploaded successfully.” should appear
after the package is uploaded.

9. Click on the Benchmarks tab. The (empty) list of benchmarks analyses should appear.
Click on the Add analysis link in the Comparison analyses section. A form will
appear where you can enter the name and description of the new analysis. Enter “Test
analysis” as an analysis name and leave the description empty. When you are finished,
click on the Add button.

10. In the analysis list, click on the Create experiment button corresponding to the
created analysis. The plugin selection screen will appear.

11. Select “RUBiS” from the list of plugins and click on the Next button. The screen where
you can enter experiment name and description will appear.

12. Enter “Test experiment” as an experiment name and leave the description empty.
When you are finished, click on the Next button. The RUBiS plugin configuration
screen will appear.

13. You must select which software will be benchmarked by RUBiS. Leave the versions at
default values. The Platform selection for the JBoss should match the platform of host
B and the Platform selection for the MySQL should match the platform of host D.
When you are finished, click on the Next button. The RUBiS plugin configuration
screen with choice of the EJB implementation will appear.

14. Select any value from the Implementation list. For more information about the
implementations, see section Server (Part II, 5.2). When you are finished, click on the
Next button. The RUBiS plugin configuration screen for setting the compilation role
conditions will appear.

15. Enter string name = “B” into the JBoss box and click on the Next button. The RUBiS
plugin configuration screen for setting the benchmarking roles conditions will appear.

16. Enter string name = “C” into the Clients box, name = “B” into the EJB Server box
and name = “D” into the Database box. When you are finished, click on the Next
button. The RUBiS plugin configuration screen for setting miscellaneous options will

83

http://been.objectweb.org/

appear.

17. Leave all settings on default values and click on the Next button. The screen for
selection of hosts into benchmarking roles will appear.

18. Host B should be selected in the EJB Server role, host C should be selected in the
Clients role and host D should be selected in the Database role. Just click on the Next
button. The callback R scripts screen will appear.

19. Leave the callback R scripts settings on default values and click on the Next button.
The confirmation screen will appear.

20. Check that all displayed values are correct and match the instructions above. If so, click
on the Next button and the screen with list of tasks will appear. If the values are
incorrect, go back through the wizard and correct them.

21. Check that the list of tasks is not empty and click on the Finish button. The analysis
list page will appear and the experiment will be created and scheduled to run by the
Benchmark Manager. The running of the experiment can be delayed a bit, as the
Benchmark Manager processes experiments in background in regular intervals.

22. In the analysis list, click on the Test analysis link. The analysis details page will
appear.

23. In the analysis details page, click on the Test experiment link. The experiment details
page will appear. At the top of the page, you can watch the experiment progress; in the
bottom part you can see the experiment's tasks. If you want to see updated
information, reload the page.

24. After the experiment finishes (the progress reaches 100 %), you can view its results.
Click on the Results tab. A list of analyses in the Results Repository will appear.

25. In the analysis list page, click on the Test analysis link. The analysis details page will
appear.

26. In the analysis details page, click on the Test experiment link. The experiment details
page will appear. You can view the experiment statistics, graphs, metadata, logs, etc.
You can also descend in the entity hierarchy and view the results of particular binaries
and runs.

84

 7 C o m p i l i n g B E E N

BEEN is compiled using the Ant build tool. Compilation is done by running Ant's targets,
which are defined in the build.xml build file in the root of the BEEN source code directory.

To run an Ant target, use following command:
ant target-name

To view help of all Ant targets, use following command:
ant -p

The most important targets are:

● all – compiles BEEN, creates the distribution files and task packages, populates the
services' directories in the data directory and creates the Javadoc API documentation.

If you want to compile BEEN from scratch, this target is the one you want.

After running this target, the Task Manager, the Host Runtime and services are ready
to run. The web interface must be additionally deployed to Tomcat servlet container
(see target deploy).

● install – compiles BEEN, creates the distribution files and task packages and
populates the services' directories in the data directory.

After running this target, the Task Manager, the Host Runtime and services are ready
to run. The web interface must be additionally deployed to Tomcat servlet container
(see target deploy).

● build – compiles Java sources. The compiled classes are placed into the build
directory.

● dist – creates the distribution files, i.e. the been.jar file with BEEN Java classes and
the task packages. The distribution files are created in the dist directory.

● compile-monitor – compiles the Load Monitor for the current operating system, if
it is supported. See section Required Software (Part II, 1.1.2) for compiler requirements.

Compilation of the Load Monitor is needed very rarely, as the binaries for all supported
operated systems are distributed with BEEN.

● compile-detector – compiles the Detector for the current operating system, if it is
supported. See section Required Software (Part II, 1.1.2) for compiler requirements.

Compilation of the detectors is needed very rarely, as the binaries for all supported
operated systems are distributed with BEEN.

● clean – deletes the compiled sources and data used by BEEN's components.

● dataclean – deletes the data directory used by BEEN components. To populate the
directory again with default data of the components, run the install target.

● distclean – deletes the dist directory containing the distribution files and task
packages. To create the distribution packages files and task packages again, run the
dist target.

● deploy – deploys the BEEN web user interface to the Tomcat servlet container.
Tomcat must be stopped when running this target (see also the redeploy-with-
restart target). For correct functionality, the tomcat.dir property in the
user.properties file must point to the Tomcat installation directory.

85

● redeploy-with-restart – stops the Tomcat servlet container, deploys the BEEN's
web user interface to the Tomcat and starts Tomcat again. For correct functionality, the
tomcat.dir property in the user.properties file must point to the Tomcat
installation directory.

● start-tomcat – starts Tomcat. For correct functionality, the tomcat.dir property
in the user.properties file must point to the Tomcat installation directory.

● stop-tomcat – stops Tomcat. For correct functionality, the tomcat.dir property in
the user.properties file must point to the Tomcat installation directory.

● javadoc - generates Javadoc API documentation from the Java sources of BEEN.

● docs-native – generates Doxygen API documentation from the C++ sources of
detectors and load monitors.

● test – runs JUnit22 tests. For correct functionality, the junit.jar property in the
user.properties file must point to a recent JAR file of the JUnit unit testing tool.

The compilation of BEEN can be controlled by setting properties in the user.properties
file. This file does not exist by default and must be created by the user.

Documentation and default values of supported properties can be found in the
build.properties file. Do not change this file, but use user.properties file to override
the settings.

The build properties are:

● tomcat.dir – path to the Tomcat installation directory.

● junit.jar – path to a JAR file with a recent version of JUnit.

● use.examples – this property is defined (with any value), example data will be
copied to the services' data directories.

● copy.task.packages – if this property is defined (with any value), task packages
created during compilation will be automatically copied to the Software Repository
data directory.

● extra.packages – if you need to automatically copy additional packages to the
Software Repository, set this property to a path to the directory with the packages. This
is useful when developing benchmarks.

22 http://junit.sourceforge.net/

86

http://junit.sourceforge.net/

Part III
E x t e n d i n g B E E N
 P a r t I I I : E x t e n d i n g B E E N

87

 1 I n t r o d u c t i o n

BEEN architecture has been created with extensibility on mind. BEEN provides support for
execution of various tasks in distributed heterogeneous environment and supports two
benchmarks (Xampler and RUBiS) out-of-the box.

Support for both Xampler and RUBiS is written using exactly the same facilities that are
available to the end users of the environment. Users can write support for new types of
benchmarks or add functionality to already existing benchmarking plugins.

Functionality of BEEN can be extended in several ways:

● Writing custom tasks. Custom tasks can add support for compilation and execution
of additional software in context of presently supported benchmarks.

● Adding support for new benchmarks. New benchmarks can be added by writing
custom Benchmark Manager plugins.

● Writing new R scripts for the Results Repository. By providing new scripts, user
can perform better analysis of existing data or add capabilities which allow gathering of
data in new format.

To ease development of the extensions, BEEN provides several facilities to aid developer when
writing custom tasks and plugins (for example running services with Java remote debugging
enabled or extensive logging facilities).

88

 2 W r i t i n g C u s t o m T a s k s

A task is the smallest unit of execution in BEEN. It is similar to an ordinary program or
process.

Task’s code and data are stored in a BEEN package file. Packages are managed by the Software
Repository. When the task is started, its package is downloaded from the Software Repository
to the correct host and unpacked by the Host Runtime. Host Runtime automatically creates
following directories when executing a task:

● Task directory – contains the unpacked contents of the task's package. This directory
is deleted after the task finishes.

● Working directory – task should use this directory to store data that must be
accessible even after it is finished. This directory is deleted only when the context of
the task is deleted.

● Temporary directory – directory which can be used to store temporary data which are
not needed after the task is finished. This directory is deleted after the task finishes.

Task Manager provides checkpoints as a synchronization primitive which can be used by the
tasks. Checkpoint can also store data and therefore can be used as a means of communication
between tasks.

Checkpoints are name-value pairs, where the name is a String and the value is any
Serializable object. Tasks can set checkpoints to indicate their state (e.g. checkpoint with
the name running and value null indicating that a database has started) and to send
information to other tasks (e.g. checkpoint with the name server-ref with a value
containing an IOR CORBA reference of a remote object). On the other hand, tasks can query
values of checkpoints which were set by other tasks. The query can be either non-blocking, or
blocking. The task can wait for a blocking checkpoint for a specified amount of time or block
indefinitely.

Several checkpoints are automatically set by the Task Manager when task enters specific state
(for example when the task starts or terminates).

For more information about tasks and checkpoints see Javadoc documentation for the Task
and CheckPoint classes.

 2.1 Packaging
Data belonging to a task are stored in the BEEN package. The package of a task must contain
the task's code, any 3rd party libraries used by the task and other data required by the task.

The package is a ZIP file which has to contain metadata files and a files directory.

The files directory must contain the task’s code, libraries and data. When the task starts,
contents of this directory is unpacked to the task's task directory.

In the root directory of the package, two metadata files must be present:

● metadata.xml – metadata file describing a BEEN package. The information stored in
this file is used by the Software Repository. The package name is used as the name of
the task (e.g. in a task descriptor). Author of the task should also provide a version and
a human readable name. The type of the package must be set to task.

Example of metadata.xml file:

89

<package>
 <name>example1task</name>
 <version>1.0</version>
 <type>task</type>
 <humanName>Example task</humanName>
</package>

For detailed information about contents of the metadata.xml file, see section
Packages (Part I, 6.1).

● config.xml – information from this file is used by the Host Runtime when
executing the task. It specifies classpath required by the task and the class which
contains run method of the task. The classpath entries are relative to the files
directory of the task package.

Example of config.xml file:
<packageConfiguration>
 <java
 classPath=".:example1task.jar:examples/hello.jar"
 mainClass=
 "cz.cuni.mff.been.task.example.task1.Example1Task"
 />
</packageConfiguration>

In this example, the class representing the task is the Example1Task class (which
must extend the Job or Service class, see Jobs and Services). The
example1task.jar file contains code of the task, and the hello.jar is a 3rd party
library used by the task.

 2.2 Task Class
All tasks are descendants (though not direct – see below) of the Task class. The Task class
provides basic features needed by all tasks:

● Logging – tasks can log messages with various levels of importance. All log messages
are stored in the central storage, and can later be examined by the user from the web
interface. The standard output and error output of the task are automatically captured
and stored in the log storage.

● Task parameters – parameters for the tasks are provided in the form of task
properties. Task properties are name-value pairs, where value can be any
Serializable object (for example String). Since the task’s properties are not
passed as a command-line arguments, they are not restricted by limitations of
command-line on various platforms.

● Support for checkpoints – the Task class provides several methods to query and set
checkpoints and their values.

● Communication with other components of BEEN – task can access the
TasksPortInterface interface via the Task class. This interface provides additional
means of communication with the Host Runtime and other BEEN components.
Queries to the BEEN naming service are also forwarded through this interface (see
Services for more information about the naming service).

Apache Ant23 tool is integrated to BEEN and classes from Ant are on the classpath of each task.
Tasks can therefore use all of the facilities provided by Ant to perform various build-related

23 http://ant.apache.org/

90

http://ant.apache.org/

actions. Special wrappers for some Ant tasks are provided in the
cz.cuni.mff.been.common.anttasks package. For more details about wrappers
provided, see Javadoc documentation of that package.

 2.3 Jobs and Services
Each task in the BEEN is either a job or a service. Job tasks start, usually perform one specific
action and then finish. On the other hand, services run for longer time – after start, they
register remote interfaces in the naming service provided by BEEN. Other tasks and services
than use this remote interface to access information provided by the service and invoke
actions. Services have to be stopped explicitly by the user. Services and jobs must extend the
Service and Job class, respectively.

Tasks and services are loaded automatically by BEEN and do not require main method.

 2.3.1 Jobs

A job is similar to a batch script – that is, it should perform an action and then terminate.
Author of the job task needs to extend the Job class and override run method. Normal return
of the run method indicates successful finish of the job. To indicate an error, task should
throw a TaskException exception from the run method. The exception message will be
automatically logged, its stack trace will be printed and job will be terminated with an exit
value indicating an error.

You also have to override the checkRequiredProperties method which checks whether
all properties required by the task are set.

For an example task, see source code and documentation of the Example1Task class.

 2.3.2 Services

Services are special tasks that serve as a core components of BEEN. They provide remote
interfaces which can be registered in the naming service provided by BEEN. Each service has to
extend the Service class and has to be included on the BEEN's classpath.

The service has to override the getName, start and stop methods of the Service class.
The getName method must return the name of the service, which is used for lookup of the
service in the naming service. The start method is called automatically during the service
startup. It should initialize the service and register all remote interfaces required by the
service. The stop method is called when the service is being shut down. It should perform all
steps necessary for a clean shutdown.

Registration of the remote interfaces of the Service should be done in its constructor. Remote
interfaces can be registered with the addRemoteInterface method. The remote interface
will then be automatically registered with the BEEN naming service and with RMI registry
running on the same host as the service. The registered remote interface will be available in
the RMI registry on the URL rmi://hostname:1099/been/service-name
/interface-name.

Every service automatically creates a control interface. This remote interface can be used to
stop or restart the service.

For more information about the services, see source code and Javadoc documentation of the
ExampleService1 service.

91

 2.4 Existing Tasks
BEEN is distributed with a set of jobs that provide various functionality required for
benchmarking. Some jobs are more general (e.g. downloading a package from the Software
Repository, or downloading source tree of a software from the Subversion repository), some
are more specialized (e.g. support for the Xampler and RUBiS benchmarks).

 2.4.1 ant-build
Runs the Apache Ant build tool. For the task to work, Ant has to be installed on the target
host.

Task Properties

Name Required Description

directory yes working directory in which Ant will be executed

target no name of the target in the build file which will be called;
if omitted, the default target is used

parameters no additional parameters that will be passed to Ant

Checkpoints Set
None.

 2.4.2 check-and-convert-rubis
Validates results generated by the RUBiS benchmark and converts them to a format suitable
for results-collect task.

Task Properties

Name Required Description

suite Yes Benchmarking suite used

results.role Yes String identifying benchmarking role for results upload,
e.g. “client 1”

results.paths Yes Table containing information about the location of
results. For each line, three tab-separated items must be
present: binary ID, run ID and the path to the file with
raw data produced by the binary and run.

Checkpoints Set
None.

 2.4.3 check-and-convert-xampler
Validates results generated by the Xampler benchmark and converts them to a format suitable
for results-collect task.

92

Task Properties

Name Required Description

suite Yes Benchmarking suite used

results.role Yes String identifying benchmarking role for results upload,
e.g. “client 1”

results.paths Yes Table containing information about the location of
results. For each line, three tab-separated items must be
present: binary ID, run ID and the path to the file with
raw data produced by the binary and run.

Checkpoints Set
None.

 2.4.4 cvs-download
Performs checkout from a CVS repository.

Task Properties

Name Required Description

repository yes URL of the CVS repository

module yes name of a CVS module

password no password to use for the checkout

revision no name of a branch to checkout

data no if set, version from this date will be checked out

Checkpoints Set
None.

 2.4.5 regex-substitute
Substitutes all matches of a regular expression in a file with a string.

Task Properties

Name Required Description

file yes file to edit

regex yes regular expression

substitution yes substitution of the regular expression matches

Checkpoints Set
None.

93

 2.4.6 example1task
Example task which shows how to write custom tasks, use Ant to perform various operations
and use 3rd party libraries.

Task Properties

Name Required Description

src.file yes path to the file which will be copied

dest.file yes name of the file's copy

Checkpoints Set
None.

 2.4.7 jboss-build
Compiles JBoss from its source.

Task Properties

Name Required Description

jboss.dir yes path to the JBoss source code

Checkpoints Set
None.

 2.4.8 jboss-configure
Configures various settings of JBoss. It must be run before starting JBoss. It edits configuration
files of the default server. It supports MySQL datasource configuration only, and it copies the
MySQL JDBC connector to the JBoss deployment directory.

Task Properties

Name Required Description

jboss.root yes path to the JBoss installation directory

jboss.jnp.port no port the the JNP service

jboss.webservice.port no port the the web service service

jaws.datasource no datasource name for JAWS

jaws.typemapping no datasource type mapping for JAWS

cmp-jdbc.datasouce no datasource name for CMP JDBC

cmp-jdbc.typemapping no datasource type mapping for CMP JDBC

naming.call-by-value no value of the CallByValue option of the JBoss naming
service

94

Name Required Description

use.jboss.web.loader no value of the UseJBossWebLoader attribute of the JBoss
naming service

Checkpoints Set
None.

 2.4.9 jboss-run
Starts JBoss.

Task Properties

Name Required Description

jboss.dir yes path to the JBoss installation directory

Checkpoints Set

Name Description

running set when JBoss has successfully started

 2.4.10 jboss-shutdown
Stops JBoss.

Task Properties

Name Required Description

jboss.dir yes path to the JBoss installation directory

jboss.jnp.port no port number of the JBoss' JNP service; if omitted, default
JNP port is used

Checkpoints Set
None.

 2.4.11 jonas-build
Compile Jonas from its source. Binary of the Tomcat is required for the compilation.

Task Properties

Name Required Description

jonas.dir yes path to the Jonas source code

tomcat.dir yes path to the Tomcat installation directory

95

Checkpoints Set
None.

 2.4.12 jonas-configure
Configures Jonas. It must be run before Jonas starts. Supports the MySQL datasource only.

Task Properties

Name Required Description

jonas.root yes path to the Jonas installation directory

jrmp.port no port number of the Jonas JRMP service

mysql.datasource.name no datasource name in the MySQL.properties file

mysql.datasource.user no user name in the MySQL.properties file

mysql.datasource.url no URL in the MySQL.properties file

mysql.minconnpool no minimum connection pool size in the
MySQL.properties file

mysql.maxconnpool no maximum connection pool size in the
MySQL.properties file

mysql.maxwaittime no maximum wait time for threads that didn't fit into the
connection pool, set in the MySQL.properties file

http.port no port for the Jonas web server

Checkpoints Set
None.

 2.4.13 jonas-run
Starts Jonas.

Task Properties

Name Required Description

jonas.dir yes path to the Jonas installation directory

tomcat.dir yes path to the Tomcat installation directory

Checkpoints Set

Name Description

running set when Jonas has successfully started

 2.4.14 jonas-shutdown
Stops Jonas.

96

Task Properties

Name Required Description

jonas.dir yes path to the Jonas installation directory

Checkpoints Set
None.

 2.4.15 local-download
Downloads a package from the Software Repository.

Task Properties

Name Required Description

rsl yes RSL expression identifying the package to download

Checkpoints Set
None.

 2.4.16 log-upload

Task Properties
Notifies the Results Repository to retrieve the logs of all remaining tasks of an experiment.

Name Required Description

analysis.id yes ID of the analysis, for which to upload logs

experiment.id yes ID of the experiment, for which to upload logs

Checkpoints Set
None.

 2.4.17 mysql-initialize
Initializes a fresh MySQL installation. This initialization is needed before the first start of
MySQL.

Task Properties

Name Required Description

mysql.root yes path to the MySQL installation directory

Checkpoints Set
None.

97

 2.4.18 mysql-run
Starts the MySQL database server.

Task Properties

Name Required Description

mysql.root yes path to the MySQL installation directory

connections.max no maximum number of concurrent connections to MySQL

Checkpoints Set

Name Description

running set when MySQL has successfully started

 2.4.19 mysql-runcommand
Runs a command on the MySQL server (e.g. an SQL statement).

Task Properties

Name Required Description

mysql.root yes path to the MySQL installation directory

user.name yes user name under which will the command be called

command yes MySQL command that will be executed

database.name no name of the database which is the context of the
command

Checkpoints Set
None.

 2.4.20 mysql-shutdown
Shuts down MySQL.

Task Properties

Name Required Description

mysql.root yes path to the MySQL installation directory

Checkpoints Set
None.

98

 2.4.21 native-cvs-download
Performs checkout from a CVS repository via the CVS command. The CVS client must be
installed in the system.

Task Properties

Name Required Description

repository yes URL of the CVS repository

module yes name of a CVS module

password no password to use for the checkout

revision no name of a branch to checkout

data no if set, version from this date will be checked out

Checkpoints Set
None.

 2.4.22 omniorb-compile-linux
Compiles omniORB on the Linux platform.

Task Properties

Name Required Description

source.dir yes path to the directory which contains a subdirectory with
the omniORB source

omniorb.root yes path to the root directory of omniORB source, relative to
the path set in the source.dir task property

Checkpoints Set
None.

 2.4.23 omniorb-source-package
Creates a source package of omniORB.

Task Properties

Name Required Description

omniorb.source.root yes path to the directory with omniORB source

Checkpoints Set
None.

99

 2.4.24 results-collect
Collects results, logs and load information and sends them to the Results Repository. Must be
called after the check-and-convert task, which is benchmark specific.

Task Properties

Name Required Description

analysis.id yes ID of analysis, which is uploading results

experiment.id yes ID of experiment, which is uploading results

results.paths yes list of directories which contain converted results. Each
directory has to be specified on a new line

Checkpoints Set
None.

 2.4.25 rubis-build-prepare
Prepares the RUBiS source code for compilation. It sets the correct values of properties in the
build.properties file and edits the required source files.

Task Properties

Name Required Description

rubis.root yes path to the RUBiS source code

ejb.server yes type of the EJB server to use by RUBiS. Valid values are
“jboss” and “jonas”

j2ee yes path to a directory that contains J2EE API jar files

Checkpoints Set
None.

 2.4.26 rubis-deployer
Deploys RUBiS to an EJB server, i.e. copies the right files to right places. It does not start the
EJB server.

Task Properties

Name Required Description

rubis.root yes path to the RUBiS source code

ejb.server yes type of the EJB server to use by RUBiS. Valid values are
“jboss” and “jonas”

jboss.root no24 path to the JBoss installation directory

24 Required if the ejb.server task property is set to “jboss”.

100

jonas.root no25 path to the Jonas installation directory

rubis.benchmark yes specifies which one of the several RUBiS benchmark
suites will be used. Valid values are “EJB_CMP2.0”,
“EJB_EntityBean_id”, “EJB_EntityBean_id_BMP”,
“EJB_local_remote”, “MDB”, “EJB_Session_facade” and
“EJB_SessionBean”.

database.hostname no26 name of the host on which database to be used by RUBiS
is running

Checkpoints Set
None.

 2.4.27 rubis-mysql-backup
Creates backup of the RUBiS database in MySQL to it's working directory. The backup can
later be used to quickly restore the default state of the RUBiS database.

Task Properties

Name Required Description

mysql.root yes path to the MySQL installation directory

Checkpoints Set
None.

 2.4.28 rubis-mysql-initialize
Initializes the MySQL database for usage with RUBiS. It creates required databases and tables,
and fills them with data from a MySQL dump.

Task Properties

Name Required Description

mysql.root yes path to the MySQL installation directory

dump.root yes path to the directory with the MySQL database dump of
the RUBiS database

Checkpoints Set
None.

 2.4.29 rubis-mysql-restore
Restores the RUBiS database in MySQL from a backup.

25 Required if the ejb.server task property is set to “jonas”.
26 Required if the ejb.server task property is set to “jboss”, because it has to be set in a datasource

descriptor that is deployed with RUBiS.

101

Task Properties

Name Required Description

mysql.root yes path to the MySQL installation directory

backup.path yes path to the directory with the backup of the RUBiS
MySQL database

Checkpoints Set
None.

 2.4.30 rubis-run
Runs the RUBiS client emulator. This task can work in 2 roles: main and slave. When all slave
clients are ready to start, the main client starts them by setting a checkpoint.

Task Properties

Name Required Description

rubis.root yes path to the RUBiS installation directory

ejb.hostname yes hostname of the EJB server

database.hostname yes hostname of the database server

run.index yes index of the benchmarking run for this execution of the
client emulator

main.client no27 task ID of the main client. If this task property is set, this
client will be in the slave role

clients no28 String array of task IDs of the slave clients. If this task
property is set, this client will be in the main role

transition.table no name of the transition table which will be used

transitions.max no maximum number of transitions during one client
session

upramp.time no length of the up ramp, in milliseconds

upramp.slowdown.factor no slowdown factor used during the up ramp

session.time no length of the benchmarking session, in milliseconds

downramp.time no length of the down ramp, in milliseconds

downramp.slowdown.facto
r

no slowdown factor used during the down ramp

client.count no number of concurrently emulated clients

debug.level no debug level of the client emulator; valid values are 0, 1, 2
or 3

27 Required if the clients task property is not set.
28 Required if the main.client task property is not set.

102

Checkpoints Set

Name Description

ready client in slave role sets this checkpoint to indicate readiness to start
the client emulator. The main client waits for every slave client to set
this checkpoint and then it sets the start checkpoint

start task in master role sets this checkpoint to tell all slave clients to start
the client emulator. Every slave client sets the ready when it's ready
to start the client emulator, and then waits for the main client to set
this checkpoint

 2.4.31 svn-checkout
Performs a checkout from a Subversion repository. If no revision is specified, then it will
checkout the HEAD.

Task Properties

Name Required Description

url yes URL of the SVN repository

revision.number no if this task property is set, then the revision number in
it's value will be checked out from the SVN repository

revision.time no if this task property is set, then the revision from the
time specified in it's value will be downloaded from the
SVN repository. The time must be specified in a correct
format for your locale

Checkpoints Set
None.

 2.4.32 xampler-execute
Runs the Xampler benchmark. It can run the server or the client component of the benchmark.

Task Properties

Name Required Description

omniorb.root yes path to the installation directory of omniORB

omniorb.root yes path to the installation directory of Xampler

xampler.suite.path yes path to a suite of Xampler. The path is relative to the
Xampler installation directory

xampler.role yes if set to “server”, the server component of Xampler will
be run. If set to “client”, the client component of
Xampler will be run

server.tid no29 the task ID of the xampler-execute task that runs the
server component of Xampler

29 Required if the the xampler.role task property is set to “client”.

103

Name Required Description

xampler.server.params no runtime parameters of the server component of Xampler

xampler.client.params no runtime parameters of the client component of Xampler

Checkpoints Set

Name Description

server.started set by the server component of Xampler when the server successfully
starts. The clients wait until this checkpoint is set by the server

 2.4.33 xampler-compile-linux
Compiles Xampler with omniORB on the Linux platform.

Task Properties

Name Required Description

xampler.dir yes path to the directory which contains an archive with the
sources of Xampler

omniorb.root yes path to the installation directory of omniORB

omniorb.version yes version of omniORB which is used for the compilation.

Checkpoints Set
None.

 2.4.34 log-tester
Tests the log storage by generating log messages or standard and error output.

Task Properties

Name Required Description

message.count yes how many messages will be generated

message.delay yes time delay between messages, in milliseconds

action yes if value is “log”, log messages will be generated. If the
value is “output”, standard and error output will be
generated

Checkpoints Set
None.

 2.4.35 testworker
This task can be set to do various example works. It is used for testing purposes. You have to
choose which actions it should perform. It's designed to cooperate with other running
testworker tasks.

104

Task Properties

Name Required Description

do.checkpoint.value no if set to “true” or “yes”, it retrieves a value of a
checkpoint. The value must be of the String[2] type.
The name of the checkpoint must be specified in the
checkpoint.name task property. Task ID of a task
that sets the checkpoint must be specified in the
checkpoint.task task property

do.checkpoint.set no if set to “true” or “yes”, it sets a checkpoint with a value.
The value will be {"BEEN", "DSRG"}. The name of
the checkpoint must be specified in the
checkpoint.name task property

do.checkpoint.block no if set to “true” or “yes”, it retrieves a value of a
checkpoint in a similar way as when the
do.checkpoint.value task property is set to “true”
or “yes”, but the query for the checkpoint value is
blocking. The checkpoint.name and
checkpoint.task task properties must be also set

do.checkpoint.value no if set to “true” or “yes”, it retrieves the value of a task
property. The value must be of the String[2] type.
Name of the task property must be specified in the
property.name task property

do.wait no if set to “true” or “yes”, the task sleeps for the amount of
seconds set in the wait.time task property

wait.time no30 number of seconds to sleep

Checkpoints Set
None.

 2.4.36 create-package-metadata
Creates metadata file for a BEEN package in its working directory.

Task Properties

Name Required Description

package-name no name of the package

package-human-name no human readable, or a more descriptive package name

version no version of the package

hardware-platforms no hardware platforms supported by the package, separated
by spaces

software-platforms no software platforms supported by the package, separated
by spaces

type no type of the package, valid values are “binary”, “source”,
“data” and “task”

30 Required if the do.wait task property is set to "true" or “yes“.

105

Checkpoints Set
None.

 2.4.37 localupload
Creates a BEEN package from a directory, and uploads it to the Software Repository.

Task Properties

Name Required Description

dir yes path to the directory whose contents will be packed in a
BEEN package

metadata.file yes path to the metadata file describing the BEEN package

use.config no if set to “true” or “yes”, a config.xml file describing a
BEEN task will be a part of the BEEN package. The path
to the config.xml file must be set in the
config.file task property

config.file no31 path to the config.xml file for a task package

Checkpoints Set
None.

31 Required if the use.config task property is set to “true“ or “yes“.

106

 3 E x t e n d i n g B e n c h m a r k M a n a g e r

The Benchmark Manager has a plugin-based architecture. It allows extending the Benchmark
Manager, so it can support any benchmark, for which a plugin is available.

The Benchmark Manager plugin is a set of Java classes, accompanied by metadata in XML-
based format. The plugin has three different responsibilities:

1. Creating experiment configuration – different benchmarks operate in distinct ways
which have to be properly configured. It's impossible to create a common configuration
mechanism that would be sufficient for every benchmark. Thus, the plugin must create
a user interface suitable for configuration of the benchmark. The configurator specifies
several user interface screens which are presented to the user in sequence, and
processes the input in the displayed screens. User's input in a screen can influence the
structure of following screens. The output of the configurator is the configuration of
the experiment, which is stored in experiment metadata.

2. Scheduling of tasks – benchmarks require a sequence of tasks to perform low level
operations – compile the benchmarked software, deploy it, run the benchmark, etc.
The benchmark manager plugin must ensure that the tasks in the sequence will be
executed in the correct order, on specified hosts, and with the required parameters.
The part of the benchmark manager plugin responsible for scheduling of tasks is the
task generator. The experiment configuration is used to generate the task sequence.

3. Determining which versions of software will be benchmarked during a
regression analysis – a regression analysis benchmarks software in regular intervals.
The part of the benchmark plugin, which finds versions of the benchmarked software
available at the scheduled benchmarks times is called a version provider. It must deal
with problems like that the benchmarked software might not have changed between
some benchmarked times, or BEEN my not be running in some of those times.

107

Diagram 2: Benchmark plugin workflow.

Web Interface

Benchmark Manager

Plugin

Configurator

Task generator Task Manager

Configuration

Experiment
metadata

Task
sequence

 3.1 Packaging
Benchmark manager plugins are distributed as JAR files. The JAR file must contain an XML
plugin descriptor and Java code implementing the configurator, task generator and version
provider.

The name of plugin descriptor file must be plugin.xml and it must be located in the root of
the JAR file. Benchmark Manager plugins are managed by the Java Plugin Framework (JPF,
http://jpf.sourceforge.net/) – the plugin.xml file is a JPF plugin manifest. BEEN does not use
all features available in JPF, and thus not all elements of the plugin manifest are used by BEEN.
We will describe the structure of the plugin descriptor on the example (plugin descriptor of a
testing plugin, included in BEEN):
<?xml version="1.0" ?>
<!DOCTYPE plugin PUBLIC "-//JPF//Java Plug-in Manifest 0.5"
 "http://jpf.sourceforge.net/plugin_0_5.dtd">

<plugin id="cz.cuni.mff.been.plugins.simpletest" version="0.1">
 <doc>
 <doc-text>
 <![CDATA[
 Simple benchmark plugin test.

 This plugin runs 4 tasks:

 ...
]]>
 </doc-text>
 </doc>

 <attributes>
 <attribute id="pluginName" value="Simple test" />
 </attributes>

 <requires>
 <import plugin-id="cz.cuni.mff.been.benchmarkmanager.core" />
 </requires>

 <runtime>
 <library type="code" path="code/" id="core" />
 </runtime>

 <extension id="RUBiS"
 plugin-id="cz.cuni.mff.been.benchmarkmanager.core"
 point-id="benchmark"
 >
 <parameter id="generator"
 value="cz.cuni.mff.been.benchmarkmanager.plugins
 .simpletest.SimpleTestGenerator"
 />
 <parameter id="configurator"
 value="cz.cuni.mff.been.benchmarkmanager.plugins
 .simpletest.SimpleTestConfigurator"/>
 <parameter id="versionprovider"
 value="cz.cuni.mff.been.benchmarkmanager.plugins
 .simpletest.SimpleTestVersionProvider"/>
 </extension>

108

http://jpf.sourceforge.net/

</plugin>
The DOCTYPE of the XML document is of a plugin manifest for JPF. The plugin element is
the root element. The id attribute of the the plugin element specifies a unique identification
of the benchmark plugin. The best way to create the id is to use a naming scheme similar to
the one used in Java's packages. There may not be two plugins with same id installed. The
version attribute is mandatory, though it is not used by BEEN.

Each plugin can contain a a brief description. It is displayed to the user during the selection of
a plugin for an experiment. The description should be inside the doc-text sub-element of
the doc element. You can use XHTML tags in the description. Usage of the XHTML tags
requires you to put the description into a CDATA section, or escape the tags using XML
entities.

The plugin descriptor should contain the name of the plugin. The name is displayed to the
user as the name of the plugin during selection of a plugin for an experiment. Use the
attribute element with the pluginName id to specify the plugin name. If the plugin name
isn't specified, then the plugin id will be displayed in the user interface as the name of the
plugin.

The requires element is a mandatory element in all plugin descriptors, required by JPF. In
essence, all Benchmark Manager plugins extend a core plugin, which is distributed with the
Benchmark Manager. You don't need to understand the meaning of this element, you can copy
& paste it from this example plugin descriptor.

The library element specifies location of the plugin code. You must set the type attribute
of the library element to code. The path attribute specifies the location of the plugin code
relative to the root directory of the plugin's JAR file. If the path is a directory name, it must end
with a “/” character. In the case of the plugin above, the code is in the code subdirectory of the
JAR file. The id attribute of the library element is not used by BEEN, but the suggested
value is the id of your plugin.

The extension element is used to specify which classes implement the configurator, the task
generator and the version provider. The id attribute of the extension element is not used by
BEEN, but the suggested value is the id of your plugin. Also set the parameter elements for
configurator, generator and version provider to the classes implementing them in your plugin.

 3.2 Experiment Metadata
Configuration of every benchmarking experiment is stored in experiment metadata,
implemented by the ExperimentMetadata class.

Information stored in the experiment metadata:

● Benchmark properties – standard Java Properties, i.e. name-value pairs. They are
used to store most of the configuration of the experiment (e.g. property with the name
ejb.server and value “JBoss”).

● Host roles – hosts used during benchmarking serve different purposes (e.g. several
hosts are clients and one host is the server). Each of these purposes is called a host role.
Each benchmark requires hosts in distinct roles, with every role containing a specified
number of hosts. Hosts in roles are specified using RSL. For more information about
RSL, see section Restriction Specification Language (RSL) (Part I, 11).

There are two types of roles, standard roles and benchmarking roles. The RSL
specification of hosts in benchmarking roles is resolved to specific hosts by the
Benchmark Manager, and user selects the required number of hosts from those hosts.

109

Then tasks running in the benchmark roles are run on the exact hosts that were
selected by the user. The RSL in the standard roles isn't resolved by the Benchmark
Manager, but is stored in the task Descriptors of the tasks of this role. The Task
Manager then resolves the RSL when he starts the tasks. The postponing of the RSL
resolution in the standard roles is used to allow the Task Manager to assign hosts most
suitable or available at the moment of the task's start. This is used for roles that
compile software.

● Run count – number of benchmark runs that have to be performed.

● Binary count – number of software binaries that have to be benchmarked during the
experiment.

Consult the Javadoc documentation of the ExperimentMetadata class for API to the
experiment metadata.

 3.3 Configurator
Configurator's task is to configure a benchmarking experiment via user's input in a user
interface created by the configurator. The interface of the configuration is specific to the used
benchmark. The user is presented a sequence of configuration screens. The configurator is a
finite state automaton, which processes the user's input in the previous screen, changes it's
state accordingly (e.g. by remembering the values set by the user), and creates the next screen
which will be shown to the user. The sequence of the screens, or their structure, can change
based on user's input (e.g. selection of benchmarked software is followed by a configuration
screen for the selected software). The configurator must also create screens when the user is
moving backwards in the configuration screen sequence.

Technically, the configurator is a class extending the Configurator class. The
Configurator class provides access to experiment metadata and other utility methods, and
abstract methods that must be overridden by the plugin's configurator. These methods return
the first configuration screen, the next screen and the previous screen. Returning null from
any of these methods means that the configuration is finished. The methods for creating the
next and previous screen receive the previous screen that was presented to the user as a
parameter and the user's input can be retrieved from it.

110

Each configuration screen is composed of various user interface elements (radio buttons, text
input boxes, etc.). The screen is defined by the configurator via composition of instances of
classes representing the interface elements. The screen's definition is then sent to the user
interface component of BEEN, which analyses it and displays the user interface elements.
When the user proceeds to the next screen, his input in the previous screen is stored in the
same classes which are in turn sent to the configurator for further processing.

The screens are represented by instances of the Screen class, and identified by a Screen ID,
which is assigned by the configurator. The configurator detects the previous screen by its
Screen ID and thus correctly processes the user's input. The screen is divided into sections –
instances of Section class, which have a heading, description and may contain various
controls. Supported control classes are:

● RadioWithSections – represents radio buttons with each of them containing a
Section.

● Static Text – displays static text to the user. The text cannot be modified.

● Input – text input. Can be of several sizes, and the user's input can be validated by a
custom validator.

● Select – a list of options. User can select one item from the list.

● MultiSelect – a list of options. User can select several items from the list.

● Role – input element for entering RSL restrictions for a host role. It checks the
syntactic validity of the entered RSL, and can display RSL syntax help.

Example – creating a simple screen:
Input hostCountInput = new Input(
 "Host count", // text input label
 "1", // default value
 Input.Size.SMALL, // input size

111

Diagram 3: Cooperation of the web interface and the configurator.

Web Interface Benchmark Manager

Configurator

Process user input

Create new screen

Generate controls
 and display them

 in the web browser

Get user input

getNextConfiguratorScreen(currScreen)
getPreviousConfiguratorScreen(currScreen)

return newScreen

 intValidator // integer validator
);

Option[] options = new Option[] {
 new Option("1", "Option 1"), // "1" is the option's ID

// "Option 1" is the label
// of the option

 new Option("2", "Option 2"),
};

Select select = new Select(
 "Misc options", // select label
 options, // select options
 0 // index of the option selected
); // by default

Section section = new Section(
 new Item[] { // controls in the section

hostCountInput,
select

 },
 "Sample section", // section label
 "Simple example section" // section description section
);

return new Screen(
 new SID(1), // screen ID
 new Section[] { section } // sections in the screen
);

Example – processing input from the screen:
Section section = screen.getSections()[0];
Input input = (Input) section.getItems()[0];
int hostCount = Integer.valueOf(input.getValue());
Select select = (Select) section.getItems()[1];
String option = exclusivitySelect.getSelectedId();

For further details, see the Javadoc documentation of the Configurator class.

 3.4 Task Generator
The task generator creates a sequence of tasks for the execution of one benchmark experiment.
The sequence is created in accordance to the experiment configuration stored in experiment
metadata.

The task generator creates the task descriptors of the required tasks and stores them in a task
sequence, which is submitted to the Task Manager after the task generator finishes. The task
sequence isn't a flat list of tasks, but a hierarchical data structure. It's structure respects the
hierarchy of a benchmark experiment, which can contain several binaries, which in turn can
contain several runs. Thus, some tasks are associated with the experiment (e.g. initialization of
a database used by all binaries and runs), some tasks are associated with a binary (e.g.
compilation of the binary), and some tasks with a run (e.g. execution and measurement of the
run).

The task generator of a benchmark plugin must extend the TaskGenerator class. The
TaskGenerator class handles communication with other BEEN components, storage of

112

metadata and presents the abstract method generate() that must be overridden.

A task generator can log messages with several level of importance. These log messages are
stored as log messages of the Benchmark Manager. Experiment metadata can be retrieved by
the getExperiment() method. The task generator can get a reference to the Software
Repository, Host Manager and Results Repository. Finding packages in the Software Repository
is simplified by several helper methods.

Creation of task descriptors is simplified. The createTaskDesctriptor(String
taskName) method creates a task descriptor which will run a task with the given task name.
The task will run on the host belonging to the active host role specified by the last call of the
setActiveRole(String roleName). If several hosts belong to the active host role, you
can specify the host's index in the createTaskDescritor() method.

The createTaskDescriptor() method doesn't automatically add new task descriptor to
the task sequence. That is accomplished with addTask(TaskDescriptor) method. The
tasks need to be associated with their binaries and runs. They are associated with the last
opened binary and run. Binaries are opened and closed via the createNewBinary() and
closeBinary() methods, respectively. Runs are opened and closed via the
createNewRun() and closeRun() methods, respectively. If no run is currently open, the
task is associated only with the last open binary (e.g. a task that compiles the binary). If no
binary is currently open, the task is associated only with the experiment (e.g. initialization of
database which will be used by all binaries and runs).

The correct order of execution of the tasks is guaranteed by task dependencies. The
dependencies can specify that a task will be started after a certain checkpoint is set by a
specific task. Standard checkpoints are set automatically by BEEN when tasks start and finish
(see the Javadoc documentation of the Task class). Proper usage of dependencies can make
some tasks run in parallel (on the same host, or on different hosts), and other tasks in a
sequence. The TaskGenerator class provides wrapper methods for creating dependencies.

For further details, see the Javadoc documentation of the TaskGenerator class.

Example – task generation:
// NOTE: tasks used in this example task generator don't exist
public class ExampleTaskGenerator extends TaskGenerator {

 public void generate() throws GeneratorException {
 setActiveRole("client");

 // Get a benchmark property.
 String timeout = getExperiment().getProperty("timeout");

 // Open a new binary.
 CreateNewBinary();
 // Created task will be associated with currently opened
 // binary.
 TaskDescriptor taskForBinary = createTaskDescriptor(
 "init-binary"
);
 addTask(taskForBinary);

 TaskDescriptor previousRun;
 // Create tasks for every run.
 for (int i = 0; i < getDefaultRunCount(); i++) {
 // Open a new run.

113

 CreateNewRun();

 TaskDescriptor taskForRun = createTaskDescriptor(
 "run-benchmark"
);
 // Set a task property.
 taskForRun.addTaskProperties("timeout", timeout);

 // We want the tasks of all runs to execute in a sequence,
 // and after the first binary initialization task is
 // finished.
 if (i == 0) {
 // Add dependency on the succesfull finish of the
 // binariy's initialization task.
 taskForRun.addDependencyCheckpoint(
 createSuccessDepenency(taskForBinary.getTaskTid()
);
 } else {
 // Add dependency on the succesfull finish of the
 // previous run's task.
 taskForRun.addDependencyCheckpoint(
 createSuccessDepenency(previousRun.getTaskTid()
);
 }

 closeRun();
 previousRun = taskForRun;
 }

 closeBinary();
 }
}

 3.5 Version Provider
Regression benchmarks are run in a user-defined schedule. When the time of a new regression
benchmark comes, the Benchmark Manager must determine which versions of the software
have to be benchmarked. For example, if the software hasn't changed since the last
benchmarking, it's unnecessary to benchmark it again. Also, if BEEN has been turned off for
some time, several versions might be needed to be benchmarked. Finding which versions have
to be benchmarked is the job of the version provider.

The version provider finds the versions using the information about the regression analysis
schedule, last run of the regression benchmark of the analysis and from the time and date
interval during which the regression benchmarks of the analysis should be done.

114

 4 E x t e n d i n g R e s u l t s R e p o s i t o r y

Results Repository can be extended to support additional benchmarks and statistical
processing of their results. As mentioned in section Results Collection (Part I, 10.1), the results
collection process consists of data validation, conversion of the data into a common format
and upload of the resulting files to the Results Repository. Validation and conversion have to
be implemented as a separate tasks for each benchmark. Data upload is generic operation and
is common for all benchmarks. To process results of a new benchmark, custom R scripts must
be written.

 4.1 Validation and Conversion Tasks
After the benchmark run is finished, tasks that validate and convert results must be scheduled
to run on the hosts participating in the experiment. Writing such task consists of creating a
class derived from abstract class CheckAndConvertTask.
The most important method of the class is the checkAndConvertOneRun method, which
should take the raw data generated by the benchmark, validate its integrity and convert results
into one or more tables in the format supported by the Results Repository. Output format is a
simple text file which contains one row of the table on each line with columns of the table
separated by the tab characters. For each table created, notifyTableCreation method has
to be called to let the Results Repository know about the table and its validity. If all tables
created during the data conversion are valid, checkAndConvertOneRun should return
true, otherwise it should return false.

If the data conversion fails (i.e. the checkAndConvertOneRun method returns false),
getCrashList method is called automatically. This method should return list of all files that
the task was unable to convert. Those files will be uploaded to the Results Repository as raw
data.

For more details, see Javadoc documentation for the CheckAndConvertTask class.

 4.2 R Script Packages
The Results Repository can be further extended via R packages. These packages are ZIP files
which contain R source scripts. Once the package is uploaded via the web user interface, it is
loaded into the Results Repository and sourced by R for immediate usage. The functions from
the scripts contained in the package can be used then in the callback and invalidation scripts.
The package is identified by its filename.

Each package contains following files:

● description – file containing one line describing the package. This description is
displayed in the web user interface.

● *.r – all files with the .r extension contain source code of the R scripts. These files
are all loaded by R and all functions they contain can later be used either by other R
scripts or as a callback functions. To avoid conflicts in function names, script authors
are encouraged to use naming convention: packagname.functionname, e.g.
Xampler.generateAnalysisRegressionGraph.

● *.hlp – contain documentation on the functions provided in the package. Each

115

function.hlp file is assumed to contain documentation of the function with name
function. Function names and file names are case-sensitive. Each help file has to
contain function signature on the first line. Rest of the file should be valid HTML with
the description of the parameters and return value of the function.

 4.3 Writing R Functions
By default, the Results Repository contains package called base. This package contains
functions for reading contents of the results database, generic graph drawing, etc.

Functions that are used as callbacks for scripts have to accept following parameters:

● Run callbacks:
functionName(aid, eid, bid, rid, valid, ...)

● Complete and incomplete binary callbacks:
functionName(aid, eid, bid, valid, ...)

● Complete and incomplete experiment callbacks:
functionName(aid, eid, valid, ...)

All arguments specified above are required; function author may use any arguments in place of
the ellipsis. Required arguments are filled automatically by Java. For example, an experiment
callback function implemented in R can have following signature:
xampler.generateExperimentGraph <- function(aid, eid, valid =

TRUE, color = ”blue”, statistic = ”mean”)
In the user interface, where experiment callback is entered, you can call it using:
xampler.generateExperimentGraph(”red”, ”median”)

Documentation files for the functions should describe format as seen by the user – that is
without the implied required parameters.

116

 5 D e b u g g i n g B E E N

Debugging BEEN is not an easy task because its distributed nature and the fact that almost
every part of BEEN runs in separate Java Virtual Machine. However, BEEN contains several
function to aid with this task.

 5.1 Debugging Host Runtime and Task Manager
The Host Runtime and the Task manager are quite easy to debug, because they are not tasks,
but normal Java classes. The Host Runtime is run by executing the main method of the
HostRuntimeRunner class; the Task manager is run by executing the main method of the
TaskManagerRunner class.

You can use conventional debugging facilities of the Java platform of your favorite IDE to
attach a debugger to the Host Runtime or the Task Manager and trace the execution, set
breakpoints, inspect variables, etc.

 5.2 Debugging Tasks
As the tasks run in separate JVM, they are not easy to debug. In fact, the easiest method of
debugging them is to user the logging facilities provided by the Host Runtime and the Task
Manager.

For the debug messages, use the log level DEBUG (i.e. in the task, write the messages using the
Task.logDebug method). For detailed trace messages, use the log level TRACE (i.e. in the
task, write the messages using the Task.logTrace method)

By default, messages at the TRACE and DEBUG level will be dropped by the Task Manager.
You can override this setting by passing a log level name (i.e. “DEBUG”) to the Task Manager
start-up script. Messages with log level lower than the set one will be dropped.

Windows example:
taskmanager.bat DEBUG

Linux example:
./taskmanager.sh DEBUG

For the description of the available log levels, see section Task Manager (Part I, 5).

 5.3 Debugging Services
The services can be executed with parameters which allow connecting of the remote debugger.
To enable remote debugging of the Services, follow these steps:

1. In the web interface, click the Configuration tab.

2. Check the Debugging options checkbox and click Save.

3. Click the Services tab.

4. Run the service you want to debug remotely using the Start (remote debug) button.
The Host Runtime will pass additional parameters to the JVM in which the service

117

executes:
-Xdebug -Xrunjdwp:transport=dt_socket,address=8000,
suspend=y,server=y

5. Attach a debugger to the service's JVM.

 5.4 Debugging Load Monitor
You can enable debug messages from the Load Monitor by setting the environment variable
BEEN_HOSTRUNTIME_DEBUG to “true”.

118

Part IV
A p p e n d i c e s
 P a r t I V : A p p e n d i c e s

119

 A p p e n d i x A : O b j e c t s a n d P r o p e r t i e s
o f t h e H o s t

Following table list all objects and properties (except user-defined ones, of course) that can be
found in the host database. For each property or object table contains its full path, type (for
properties) and short description of the object or property value.

Name Type Description

adapters integer Number of network adapters installed on the
host.

aliases integer Number of software aliases present on the host.

applications integer Number of the applications detected on the host

detector string Identification string of the detector library that
collected data for this host.

drives integer Number of disk drives installed on the host.

checkdate string Date of the data collection (format is YYYY/MM/DD).

checktime string Time of the data collection (format is hh:mm.ss).

memberof list List all groups this host is member of.

name string Canonical name of the host on the network.

processors integer Number of processors detected on the host.

adapter(i) Object which stores details about on network adapter
or interface.

adapter(i).mac string Hardware address of the network adapter.

adapter(i).name string Name of the network adapter or interface.

adapter(i).type string Name of the communication protocol used by the
adapter.

adapter(i).vendor string Name of the vendor of the adapter.

alias(i) Object which stores details about one software alias.

alias(i).alias string Name of the software alias.

alias(i).name string Name of the application this alias represents.

alias(i).vendor string Name of the vendor of the application this alias
represents.

alias(i).version version Version of the application this alias represents.

application(i) Object which stores details about one application.

application(i).name string Name of the application.

120

Name Type Description

application(i).vendor string Name of the vendor of the application.

application(i).version version Version of the application.

beendisk Object which stores data about the drive on which
BEEN is installed.

beendisk.beenhome string Full path to the installation directory of the BEEN.

beendisk.freespace integer Size of the free space (in bytes) on the drive on which
BEEN is installed.

beendisk.size integer Total size (in bytes) of the drive on which BEEN is
installed.

drive(i) Object which stores details about one disk drive
installed on the host.

drive(i).device string Name of the device assigned to the drive by the OS.

drive(i).media string Media type this drive accepts (e.g. CD-ROM).

drive(i).model string Model name of the drive.

drive(i).partitions integer Number of partitions detected for the drive.

drive(i).size integer Total size of the drive in bytes.

drive(i).partition(j) Object which stores details about one partition on the
parent drive.

drive(i).partition(j).
device

string Name of the device assigned to the partition by the OS.

drive(i).partition(j).
filesystem

string Name of the file system used on the partition.

drive(i).partition(j).
freespace

integer Free space available on the partition in bytes.

drive(i).partition(j).
name

string Mount point (or disk name on Windows).

drive(i).partition(j).
size

integer Total size of the partition in bytes.

java Object which stores details about Java installed on the
host.

java.runtime string Name of the Java runtime installed on the host.

java.runtimever version Version of the Java runtime.

java.specification version Version of the Java specification JVM conforms to.

java.vendor string Name of the vendor of the Java.

java.version version Version of the Java installed on the host.

java.vmvendor string Vendor of the JVM installed on the host.

121

Name Type Description

java.vmversion version Version of the JVM installed on the host.

memory Object which stores details about memory on the host.

memory.pagefile integer Total size of all paging files in bytes.

memory.physical integer Total size of RAM in bytes.

memory.swap integer Total size of the swap space in use in bytes.

memory.virtual integer Size of the virtual memory available to each process.

os Object which stores details about the operating
system.

os.arch string Identification of the processor architecture for which
OS has been compiled (e.g. x86_64).

os.family string Operating system family (can be one of Windows,
Linux, Solaris or Other).

os.name string Name of the operating system.

os.vendor string Name of the system vendor.

os.windows Object which stores details about the Windows
operating system.

os.windows.build string Build identification string.

os.windows.encryption integer Encryption strength in bits provided by the OS.

os.windows.sp version Version of the service pack installed.

os.windows.sysdir string Path to the system directory of the OS.

os.windows.version version Version of the Windows operating system.

os.windows.windir string Path to the installation directory of the Windows.

os.linux Object which stores details about Linux operating
system. Present only if host runs on Linux.

os.linux.distribution string Name of the Linux distribution (e.g. Fedora Core).

os.linux.distversion version Version of the Linux distribution (e.g. 5).

os.linux.kernelversion version Version of the kernel.

os.linux.osrelease string Linux release string.

os.linux.osversion string Linux version string.

os.other Object which stores details operating system which
does not have native detector library support.

os.other.version version Version of the OS as reported by the Java.

os.solaris Object which stores details about the Solaris OS.

122

Name Type Description

processor(i) Object which stores details about the processor.

processor(i).cache integer Size of the built-in L2 cache of the processor.

processor(i).model string Model name of the processor.

processor(i).speed integer Speed of the processor in Hz.

processor(i).vendor string Name of the vendor of the processor.

user Object which contains all user-defined objects and
properties.

Child objects of the os object depend on the operating system running on the host. Only one
of linux, windows, other or solaris is present at any time.

All indexed object (like drives or partitions) use placeholder indices i and j instead of
numbers. These indices have to be replaced by the correct number in the real-world use.

123

 A p p e n d i x B : R e s u l t s R e p o s i t o r y
M e t a d a t a

Following tables describe entity metadata, that can be displayed in the web user interface. All
metadata values are strings.

 1.1 Analysis Metadata

Name Description

Name analysis name

Type analysis type, either comparison of regression
Comment human readable comment

Created on date and time when the analysis was created

Valid true if at least one contained experiment is valid; false
otherwise

Experiments number of contained experiments

Valid experiments number of experiments that contain at least one valid binary

Complete experiments number of complete experiments in analysis

 1.2 Experiment Metadata

Name Description

Name experiment name

Comment human readable comment

Created on date and time when the experiment was created

Plugin id plugin ID

Plugin name name of the plugin used when performing the experiment

Context name name of the context associated with experiment

Valid true if at least one contained binary is valid; false otherwise

Complete true if all contained binaries has uploaded results; false
otherwise

Binaries number of contained binaries

Valid binaries number of valid binaries

Complete binaries number of complete binaries

Expected binaries number of binaries that are expected to upload results

Expected runs per binary number of runs per each binary that are expected to upload results

Samples per run count number of samples that each run is expected to contain
(benchmark-specific, optional)

124

 1.3 Binary Metadata

Name Description

Name binary name

Comment human readable comment

Created on date and time when the binary was created

Valid true if at least one uploaded run is valid; false otherwise

Complete true if all runs have uploaded results; false otherwise

Runs number of contained runs

Valid runs number of valid runs

Expected runs number of runs that are expected to upload results

Last valid run idx index of next valid run upon results upload, used internally by the
Results Repository

Last crashed run idx index of next crashed run upon results upload, used internally by
the Results Repository

 1.4 Run Metadata

Name Description

Valid true if results of run are valid; false otherwise

Complete true if run is completely uploaded; false otherwise

125

 A p p e n d i x C : R S L G r a m m a r

The grammar presented here is a simplified version of the grammar used to parse RSL and
serves for informational purposes only. The “real” grammar with syntactic look-ahead
specification and embedded code for construction of the RSL parser can be found in
Parser.jj file in BEEN sources. The RSL parser is generated in build time using javacc32 tool.

The RSL grammar is written in BNF-like syntax. Nonterminals are printed in italic, terminals
are written in quotes. Alternatives are separated by “|” character. Characters “?”, “*” and “+”
denote a possible repetition (zero or one time, zero or more times, one or more times).
Parentheses are used for grouping. Expressions digit, digits, alpha, alphas, alphanum and
alphanums, not-slash and not-quote are used in obvious sense.

RSL expression is a stream of tokens. Whitespace (sequence of tabs, spaces, CR or LF
characters) between tokens is skipped. The tokens are:
package-type := "source" | "binary" | "task" | "data"
long := digits ("K" | "M" | "G" | "T" | "P")? alphas
version := digit (alphanum | "_" | "-")*
 "." (alphanum | "_" | "-")+
 ("." (alphanum | "_" | "-")+)*
date := digit digit digit digit # year
 "-" digit digit # month
 (
 "-" digit digit # day
 (
 "T" digit digit # hours
 ":" digit digit # minutes
 (
 ":" digit digit # seconds
 (
 "." digit # decimal fraction
)? # of a second
)?
 (# time zone
 "Z" # designator
 | ("+"|"-") digit digit ":" digit digit
)
)?
)?
pattern := "/" (non-slash | "\/") "/" "i"?
string := "\"" (non-quote | "\"") "\""
property-path := (alpha | "_") (alphanum | "_")*
 "." ((alpha | "_") (alphanum | "_")*)*

Those are the grammar rules with condition as a starting non-terminal:
condition := or-condition
or-condition := and-condition ("or" and-condition)*
and-condition := simple-condition
 | qualified-condition
 | sub-condition

32 https://javacc.dev.java.net/

126

https://javacc.dev.java.net/

 ("and" (simple-condition
 | qualified-condition
 | sub-condition)
)*
simple-condition := property-path
 ("==" | "!=" | "<" | "<=" | ">" | ">="
 | "contains" | "=~" | "!~")
 (long | version | date | pattern | string)
qualified-condition := property-path "{" condition "}"
sub-condition := "(" condition ")"

127

 A p p e n d i x D : S o u r c e C o d e L a y o u t

BEEN source code is divided into several directories. Their layout is based on usual
conventions used for the Java projects. The description of the directories follows:

● bin – batch files (for Windows) and shell scripts (for Linux) used for running the Task
Manager and the Host Runtime.

● build – created by the compile target, contains compiled Java classes.

● data – various data directories used by BEEN components.

● dist – results of the BEEN build – the been.jar file with compiled BEEN Java classes
and the tasks subdirectory, which contains task packages.

● doc – documentation files. Directly in the directory, there is a documentation source
file (in OpenOffice.org 2.0 .odt format) and generated PDF file. In the subdirectories,
the generated documentation of the Java and C++ sources is placed by the javadoc
and docs-native targets.

● examples – example data and classes used for BEEN development.

● lib – 3rd party libraries used by BEEN.

● native – C++ source code of the detectors and load monitors for all supported
platforms.

● resources – additional resources: DTD files, testing data files used by the unit tests,
example task descriptors and files (metadata.xml, config.xml, etc.) used in the
task packages.

● src – Java source code of BEEN. The source files are divided into packages, all of which
are subpackages of the cz.cuni.mff.been package.

● tests – Java unit tests of some parts of BEEN, written using JUnit framework. The
structure of the subdirectories matches the structure of the src directory.

● webinterface – code of the web interface which is deployed on the Tomcat servlet
container.

128

 A p p e n d i x E : T h i r d - p a r t y L i b r a r i e s

BEEN uses several third-party libraries for various purposes (logging, RSL parser generation,
benchmark plugin management, interface to source-control systems, etc.).

Most libraries are placed in the form of JAR files in the lib directory.

The complete list of the libraries, their files and licenses follows:

Name File(s) License

Apache Ant ant.jar Apache License 2.0

FileUpload commons-fileupload-1.0.jar Apache License 2.0

Jakarta Commons Logging commons-logging.jar Apache License 2.0

JavaCC javacc.jar BSD License

Java Plug-in Framework jpf.jar, jpf-boot.jar LGPL 2.1

JavaSVN javasvn.jar custom license

LOG4J log4j-1.2.12.jar Apache License 2.0

NetCDF netcdfAll.jar, pefsAll.jar LGPL 2.1

SJava sjava.jar, Environment.jar GPL 2.0

ANTLR antlr.jar BSD License

JavaCVS cvslib_36.jar GPL 2.0

Java Assembler jas.jar33 custom

Java Help jhall.jar34 Sun's Binary Code
License Agreement

JSP API jsp-api.jar Apache License 2.0

Servlet API servlet-api.jar Apache License 2.0

Selenium Core webinterface/tests/selenium-core/* Apache License 2.0

33 Distributed by Omegahat as a part of sjava.jar.

34 Distributed by Omegahat as a part of sjava.jar.

129

	 Part I: BEEN Overview
	 1 Introduction
	 1.1 License

	 2 Architecture Overview
	 2.1 Execution Framework
	 2.2 Benchmarking Framework
	 2.3 Technologies Used

	 3 Tasks
	 3.1 Task Communication and Synchronization
	 3.2 Task Descriptor
	 3.3 Task Status

	 4 Host Runtime
	 4.1 Host Runtime Lifecycle
	 4.2 Running Tasks
	 4.2.1 Timeouts and Restarts

	 4.3 Exclusive and Context-Exclusive Tasks
	 4.4 Load Monitor
	 4.5 Data Directory Structure
	 4.5.1 Tasks Directory

	 5 Task Manager
	 5.1 Configuration

	 6 Software Repository
	 6.1 Packages
	 6.1.1 Package Structure
	 6.1.2 Metadata Format Description
	 6.1.3 Package Names

	 6.2 Operations Supported
	 6.3 Package Storage
	 6.4 Optimizations

	 7 Managing Computers on the Network
	 7.1 Host Database
	 7.2 Host Data
	 7.3 Database Queries	
	 7.4 Host Groups	
	 7.5 Software Aliases
	 7.6 Host Manager Configuration

	 8 Monitoring Computer Utilization	
	 8.1 Monitoring Running Tasks
	 8.2 Host Utilization Monitoring

	 9 Benchmark Manager
	 9.1 Benchmark Entities
	 9.1.1 Experiment
	 9.1.2 Analysis
	 9.1.3 Binary
	 9.1.4 Run

	 9.2 Benchmark Plugins
	9.2.1 Configurator
	9.2.2 Generator
	9.2.3 Version Provider
	9.3 Experiment-level Scheduling and Monitoring
	9.4 Experiment Lifecycle

	 10 Results Repository
	 10.1 Results Collection
	 10.2 Results Repository Database
	 10.3 Failed Runs
	 10.4 Statistics Calculation
	 10.5 Cooperation with Benchmark Manager
	 10.6 Database Contents
	 10.6.1 Analysis Directory
	 10.6.2 Experiment Directory
	 10.6.3 Binary Directory
	 10.6.4 Load Directory

	 10.7 Results Repository Export Format

	 11 Restriction Specification Language (RSL)
	 11.1 Language Description
	 11.1.1 Conditions
	 11.1.2 Types
	Long
	Version
	Date
	String
	PackageType
	List (of strings)

	 11.1.3 Operators
	Equality Operators (==, !=)
	Comparison Operators (>, >=, <, <=)
	Containment Operator (contains)
	Regular Expression Operators (=~, !~)

	 12 Related projects

	 Part II: Using BEEN
	 1 Installing BEEN
	 1.1 Requirements
	 1.1.1 Supported Hardware/Software Platforms
	 1.1.2 Required Software

	 1.2 Installing BEEN Execution Environment
	 1.2.1 Windows
	 1.2.2 Linux

	 1.3 Installing Results Repository Prerequisites
	 1.3.1 Fedora Core 5
	 1.3.2 Gentoo 2006.1

	 1.4 Installing Web User Interface

	 2 Running BEEN
	 2.1 Running Task Manager
	 2.1.1 Windows
	 2.1.2 Linux

	 2.2 Running Host Runtime
	 2.2.1 Windows
	 2.2.2 Linux

	 2.3 Running and Configuring Web Interface
	 2.4 Running Services

	 3 Using Web User Interface
	 3.1 Web Interface Structure
	 3.2 Packages Module
	 3.2.1 Working with Packages
	Listing Packages
	Viewing Package Details
	Downloading Packages
	Deleting Packages
	Uploading Packages

	 3.3 Hosts Module
	 3.3.1 Working with Hosts
	Listing Hosts
	Displaying Detailed Information about Hosts

	 3.3.2 Working with Groups
	Listing Groups
	Editing Groups
	Adding Groups
	Deleting Groups

	 3.3.3 Working with Software Aliases
	Listing Alias Definitions
	Editing Alias Definitions
	Adding Alias Definitions
	Deleting Alias Definitions

	 3.4 Tasks Module
	 3.4.1 Displaying Context and Task Information
	Listing Contexts
	Displaying Context Details
	Displaying Task Details
	Killing Single Tasks
	Killing All Tasks in a Context
	Deleting Contexts

	 3.4.2 Running Tasks
	 3.4.3 Displaying Logs
	Displaying Logs of All Tasks
	Displaying Task Manager Logs

	 3.5 Benchmarks Module
	 3.5.1 Working with the Entity Hierarchy
	Listing Analyses
	Displaying Analysis Details
	Displaying Experiment Details

	 3.5.2 Creating Experiments
	Plugin Selection
	Choosing Experiment Name and Description
	Entering Scheduling Information
	Configuration of the Experiment
	Selection of Hosts into Benchmarking Roles
	Entering R Callback Scripts for Statistical Processing
	Confirmation of Entered Data
	Task Generation

	 3.5.3 Managing Plugins
	Listing Installed Plugins
	Installing Plugins

	 3.6 Results Module
	 3.6.1 Browsing the Entity Hierarchy
	Listing Analyses
	Exporting Analyses Data
	Deleting Analyses Data
	Displaying Analysis Details
	Exporting Experiment Data
	Deleting Experiment Data
	Displaying Experiment Details
	Exporting Binary Data
	Deleting Binary Data
	Displaying Binary Details
	Exporting Run Data
	Deleting Run Data
	Displaying Run Details

	 3.6.2 Managing R Script Packages
	Listing Installed R Script Packages
	Deleting R Script Packages
	Uploading R Script Packages

	 3.7 Configuration Module
	 3.8 Services Module
	 3.8.1 Working with Services
	Listing Services
	Starting, Restarting and Stopping Services
	Displaying Service Logs

	 4 Benchmarking with Xampler
	 4.1 Introduction to Xampler
	 4.2 Comparison Analyses with Xampler
	 4.3 Regression Analyses with Xampler
	 4.4 Required Packages
	 4.5 Xampler Role Requirements
	 4.6 Notes

	 5 Benchmarking with RUBiS	
	 5.1 Client Emulator
	 5.2 Server
	 5.3 Database
	 5.4 Using the RUBiS Plugin in BEEN
	 5.4.1 Required Packages
	 5.4.2 RUBiS Role Requirements
	 5.4.3 Notes

	 6 Executing a Simple Benchmarking Analysis
	 6.1 Executing RUBiS Comparison Analysis
	 6.1.1 Execution Steps

	 7 Compiling BEEN

	 Part III: Extending BEEN
	 1 Introduction
	 2 Writing Custom Tasks	
	 2.1 Packaging
	 2.2 Task Class
	 2.3 Jobs and Services
	 2.3.1 Jobs
	 2.3.2 Services

	 2.4 Existing Tasks
	 2.4.1 ant-build
	Task Properties
	Checkpoints Set

	 2.4.2 check-and-convert-rubis
	Task Properties
	Checkpoints Set

	 2.4.3 check-and-convert-xampler
	Task Properties
	Checkpoints Set

	 2.4.4 cvs-download
	Task Properties
	Checkpoints Set

	 2.4.5 regex-substitute
	Task Properties
	Checkpoints Set

	 2.4.6 example1task
	Task Properties
	Checkpoints Set

	 2.4.7 jboss-build
	Task Properties
	Checkpoints Set

	 2.4.8 jboss-configure
	Task Properties
	Checkpoints Set

	 2.4.9 jboss-run
	Task Properties
	Checkpoints Set

	 2.4.10 jboss-shutdown
	Task Properties
	Checkpoints Set

	 2.4.11 jonas-build
	Task Properties
	Checkpoints Set

	 2.4.12 jonas-configure
	Task Properties
	Checkpoints Set

	 2.4.13 jonas-run
	Task Properties
	Checkpoints Set

	 2.4.14 jonas-shutdown
	Task Properties
	Checkpoints Set

	 2.4.15 local-download
	Task Properties
	Checkpoints Set

	 2.4.16 log-upload
	Task Properties
	Checkpoints Set

	 2.4.17 mysql-initialize
	Task Properties
	Checkpoints Set

	 2.4.18 mysql-run
	Task Properties
	Checkpoints Set

	 2.4.19 mysql-runcommand
	Task Properties
	Checkpoints Set

	 2.4.20 mysql-shutdown
	Task Properties
	Checkpoints Set

	 2.4.21 native-cvs-download
	Task Properties
	Checkpoints Set

	 2.4.22 omniorb-compile-linux
	Task Properties
	Checkpoints Set

	 2.4.23 omniorb-source-package
	Task Properties
	Checkpoints Set

	 2.4.24 results-collect
	Task Properties
	Checkpoints Set

	 2.4.25 rubis-build-prepare
	Task Properties
	Checkpoints Set

	 2.4.26 rubis-deployer
	Task Properties
	Checkpoints Set

	 2.4.27 rubis-mysql-backup
	Task Properties
	Checkpoints Set

	 2.4.28 rubis-mysql-initialize
	Task Properties
	Checkpoints Set

	 2.4.29 rubis-mysql-restore
	Task Properties
	Checkpoints Set

	 2.4.30 rubis-run
	Task Properties
	Checkpoints Set

	 2.4.31 svn-checkout
	Task Properties
	Checkpoints Set

	 2.4.32 xampler-execute
	Task Properties
	Checkpoints Set

	 2.4.33 xampler-compile-linux
	Task Properties
	Checkpoints Set

	 2.4.34 log-tester
	Task Properties
	Checkpoints Set

	 2.4.35 testworker
	Task Properties
	Checkpoints Set

	 2.4.36 create-package-metadata
	Task Properties
	Checkpoints Set

	 2.4.37 localupload
	Task Properties
	Checkpoints Set

	 3 Extending Benchmark Manager
	 3.1 Packaging
	 3.2 Experiment Metadata
	 3.3 Configurator
	 3.4 Task Generator
	 3.5 Version Provider

	 4 Extending Results Repository
	 4.1 Validation and Conversion Tasks
	 4.2 R Script Packages
	 4.3 Writing R Functions

	 5 Debugging BEEN
	 5.1 Debugging Host Runtime and Task Manager
	 5.2 Debugging Tasks
	 5.3 Debugging Services
	 5.4 Debugging Load Monitor

	 Part IV: Appendices
	 Appendix A: Objects and Properties of the Host
	 Appendix B: Results Repository Metadata
	 1.1 Analysis Metadata
	 1.2 Experiment Metadata
	 1.3 Binary Metadata
	 1.4 Run Metadata

	 Appendix C: RSL Grammar
	 Appendix D: Source Code Layout
	 Appendix E: Third-party Libraries

