Bonita Workflow

Bonita AP

<
O
7
'
O
<
<
=
Z
O
o

Bonita Workflow
Bonita AP

Bonita Workflow v3.0

Software

January 2007
Copyright Bull SAS

Table of Contents

Chapter 1. 0] 1 e [T 1T) o 1
Chapter 2. (@0] 0T =T @ 13PN 3
2.1 TEIMINOIOQY «eeteieeiieierteeteterte ettt ettt te et e st e te e s st e st e tesse et et esseeseansansanseessansensesnaensansesnsensesaesnsensensenns 3
2.2 PIOCESS ctteiieieesttesteeteesteetee e e ste e te st e s et e sttessbeatesaseasbe e st esseenstesaeesabanstesaee et e esseenbe e beenttenaeeaneeenbeenteenraan 3
2.2.1 PrOCESS BOSICS .uiviiiieiietieieeteeett ettt et s e et et s b e ereesaesbeeteessesbesseesaesbentessaesaeseeeseensenns 3
22.2 LIFE YL ittt ettt ettt ettt e e et e e sbe e sa e s st e st e e sbe e b e eareenra e aeenseensaennns 5
2.2.3 COOPETATIVE PrOCESSESvvevieiiectiieiieeieetieeteeiteeste et e eesaeesssesbeesaessseebeesseesseanseesseasssessenans 5
2.2.4 MOAEIS & INSTANCES ..veieeeitieieee sttt ettt e et e st e et e beesseenbeenseesseenseesnns 5
2.2.5 YV EISIONING vt eteetieteetteteteettete st e tebetesteestesaesbeessesseeseesaassassaessessasesssessassesseessassesseessarsessesseassens 7
2.2.6 ClONE PrOCESSES ... tieieeieeiteteete sttt ettt te e ste e ste et e e e sae e st e e beebessseensesrseensaenseenseenseenssennns 7
22.7 CONCEPT OF HOOKS ..ttt ettt ettt e ea e et eteeaeeneeateeeaeeeaeeeaae e 8
2.2.8 SUDPTOCESSES ...ttt sttt st st e st e st e e b e e ae e besbeessaesseessnesssanssesnsenns 8
229 REIATONSNID TO USEIS vttt ettt ettt et ettt e et ete e e etre e be e aeeeaeeeaae e 9

G T o 117) 1T SRR
2.3.1 ACTVITY BASICS .ttt ettt ettt e e st esaa et e sabeeebeenseenbeebaensseseesasesssenssenanas 10
2.3.2 TransitioN PETWEEN ACTHVITIES ..c..iiiiieeeeeeee et 13
2.3.3 HErATNG ACTIVITIES ettt ettt st b e s e e eab et e e aeesraensaeas 14
2.3.4 HOOK CONC TS ittt ettt ettt ettt e e et e e b e e saesseesabeesbesssessseesbeessanseenseens 20
2.3.5 Activity/HOOKS AN TFANSACHONS ..vceviciiieie ettt et 22
2.3.6 Practical STEPs iN HOOK USTGE ...cviiiiieieiececteieceetete ettt sttt as 23

2.4 USEI INTEITACE ittt ettt s et e st e ebeebeesaesbeebeessessesseessesseseessensesaenseas 24
2.4.1 User RelatioNSNID 1O PrOCESSESccvieiieeeeeeteectee ettt ettt eaneeas s 25
2.4.2 User AUTheNntiCatioN SCENQAIMO ..ottt as 25

2.5 USEI ROIES ettt ettt et s e st et e st e st eae e aesseeseensens e st ente s e seentensesneeaeen 26
2.5.1 J2EE ROIES .ttt et ettt ettt ettt n et e st et e et e ae et e aesne e e eneeneens 26
2.52 BONITA ROIES .ottt et sttt b e b e essese e s e beesaesbasseessensesaeennas 26
2.5.3 APPRICATION ACCESS CONTTON ..ottt ettt 28

2.6 Mappers Feature: Automatic Filling In of the Bonita Groups.........cceeveevieceesieesiesie e 30
2.6.1 OVEIVIEW ...ttt ettt st et e sb e s sa et e sseebeesaasbasseessassesseesaessestessesssessessesssensensenses 30
2.6.2 LDAP, Custom, and Properties MOPPDES.ccvieiicieeeeeeecereeeteeeee ettt eneeveeaee s 30

2.7 PerfOrmMEr ASSIONMENT ..ottt e rte ettt e st eerb e sbesbeebeesseesteesbeessaesaesasesssansseenses 32
2.7.1 OVEIVIEW ...ttt ettt st et e s b e st et esseebeesaas b assaessasseaseesaessestessesssassessesssensensenses 32
2.7.2 Description of Performer ASSIgNMENTSocveiiieieceeee et 33

2.8 INITIATON MOPDPET ..ttt ettt ettt et e et e be e sbe e e bt e baessbeesbassbassbeasseessaesseesseansaesssesasesssaessennses 34
2.8.1 OVEIVIEW ...ttt ettt sttt e st e st et et e eseenten s e s eessensesseentensensessesaeensesneensensenseenes 34
2.8.2 INITIATOr DESCIIPTION ettt et er ettt e s e e erb e e bessaeesseesbeeseassaansaens 34

Chapter 3. UIST Y e e @ =T 0 aT=T o | F PP 37

3.1 Bonita User Management Basic ConfiguIratioNcceeeecieieeeieeiece ettt 37
3.2 Changing the BAsiC CONfIGQUITTIONiiiiiiieieee et 37
3.2.1 NP4 == \U) 1 =1 ol Tele | i] o I 38
3.2.2 Bonita User MANAGEMENT ..ottt es 38
Chapter 4. User Registration INterfaceoviviiiiiiii e 39
I 11 0 Vot][TSRS 39
4.2 Creating the UserRegistratioNBEANvi ittt s sab e e 39
4.3 Managing Users (via the UserRegistrationBeaN)c..ccveveeieieriieiceeeceeeeee e 4]
43.1 CrEATNG USETS vttt sttt et st e ste e b et ssess e s seesaesbessesaesssessessesssansensenses 4]
43.2 DEFINING USETS ..ttt ettt et e et e st e e b e e beebe e baesaesseessbesbesssessseesseessasssenseens 4]
43.3 DEIETING USEIS .ttt ettt ettt ettt e e e et e et e e sa e s e e sabesbessaessseessaessansaenseens 42

4.4 CreQiiNg USEI ROIEScci ettt sttt st st e eveeseesaesbeeseesaessesseessessansenssensesaessnas 42
4.5 COAE EXAMPUE ..ttt ettt et e et be e aeeebe e baesteeesbaesbesabeasseessaeaseasseenssenssesasessseensennsas 43
Chapter 5. ProJeCt INtErfACE . e e 45
ST PHINCIPIE ettt ettt et e ettt e e e ae e ete e tae et e ebe e taesateebeeassenteeeteetaeeaeeeareeateenteennas 45
5.2 Creating the ProjeCtSESSIONBEONoc.iiiiiiieeee ettt saesaees 45
5.3 Initiating the ProjeCtSESSIONBEAN.......icieiititeeetee ettt sr e s ees v bbb saessesaesaeas 46
5.3.1 Initiating the Session Bean (Cooperative Projects & INStaNCes).....ooveveevecveeveviennennen. 46
532 Initiating the Session BeAN (MOAEIS)coueceveeieieeieeeee ettt 46
533 Initiating a Project Using the Clone Project Creation Option......cccceeeevveciieveecneenne. 47
53.4 Initiating Using the Instantiate Project Creation Option ... 47
53.5 COAE EXAMIPIE ..t ettt et e et e e e ete e e eat e e ebesesbeesasseessseaenseesneeas 49

5.4 MONAGING O PrOJECT .ttt ettt st e s rb e aesbe e b e eab e e beesbeessaessaesasessseensennsas 49
5.4.1 ProjECt AHTIOUTES ..ottt et erb e e e reensae s 50
54.2 ACTIVE/HIAE O WOIKIIOW PIrOCESS ...ttt aes 52
5.4.3 Getting the Name of a Project or an INSTANCEcocveieiinenieeeee e 52
5.4.4 Getting the Name of the PArent ProjeCT ... 52
5.4.5 Getting the Name of a Project’s CreQtor. ... 53
5.4.6 PrOPEITIES ..ttt ettt ettt e e et e et e et be st e sba e sbeerbeeabeeabaeaeeeraensaenn 53
5.4.7 PrOJECT DETQIIS ..ottt ettt sab e b e e raeeaaeeare e aaeereensaenn 54
548 COAE EXAMIPIE ..ttt e te e etae e et e s eeataeebeseasaeesasaeessseeensessnreas 57

5.5 Defining and Obtaining Activity INfOrMOtiONoccuiiiieeceeee e 58
5.5.1 TYPES OF ACTIVITIES ettt s re bbb e e e s te e s e e seaeenaeeanas 58
552 ACTIVITIES STATES ..ot e e et eeae et ee et e eeaeseenneeenreeeenns 59
553 Creating AN ACTIVITY vttt e sae b e e be b e esseeabeessaassaensaens 60
554 Creating SUDPIOCESS ACTIVITY .uiiiiiece ettt ettt 61
555 ConfigUNG AN ACTIVITY ittt e sbe e se e raesae s 62

Bonita Workflow - Bonita API

5.5.6 HFEIATNG ACTIVITIES ettt st eaesaeeae s 66

5.5.7 Getting Information about Nodes in the ProjeCt ... 67
5.5.8 Getting Information about a SPecCific NOdE ... 67
5.5.9 DeletiNg AN ACTIVITY oottt ettt st s bbb seesaesaeeneas 69
5.5.10 Model DefiNiIoN CRECK ...c.oi it 69

5.6 MONAGING EAQGES vttt et s a e st e ebe e st esbesbeeseessasseseesaessesanssensesaesseas 73
5.6.1 Adding an EAGE 10 AN ACTIVITY cueiiiiceceeceeee ettt 73
5.6.2 DeletiNG QN EAGE vttt v e et ae b et ess s be s sb e s e saensesaesnnas 73
5.6.3 Getting Connected Activities from AN EAQEccveieceeciieciececece et 74
5.6.4 Setting a Condition ON AN EAQEccviiiieieceeeceeee ettt st 74
5.6.5 Getting the Condition for AN EAGEcooivieieieieeececeeee e 75
5.6.6 Get All EXisting EJQEs iN O PrOJECT ...uiiiiiiececeee et 75
5.6.7 Get All Existing EJges for an ACTHVITY ..cooiiicieeeececcee e 75
5.6.8 Reading an Edge as A JAVA ODJECT ...ttt 76
5.6.9 Changing the State of AN EAGE ..ot 76
Chapter 6. HOOK INTEITACE i e 79
6.1 ProjeCt HOOK MONQGEMENT ..ottt ettt ettt seeneesaesneen 81
6.1.1 CreQtiNG HOOKS ..ottt ettt et et eve et e s be e beeabeebesnbeesseessaesaasssensaens 81
6.1.2 DElETING HOOKS ...ttt sttt ettt et e se et a e se e e et eeneensenaesnean 82
6.1.3 MANAGING HOOKS ...ttt sttt sttt bbb e nnan 82

6.2 Node HOOK MONAGEMENT ...ttt sttt et sae bttt e s e nte s e sseeneesaesaeen 83
6.2.1 Credting SPECIfiC HOOKSottt et 83
6.2.2 Deleting SPECIfIC HOOKSouvieieeieiieeee ettt 84
6.2.3 MaNAGING SPECITIC HOOKS ..ottt eae e 85
6.2.4 COAE EXAMIPIE .. ettt e e te e et e e e ete e e sat e e ebeseesaeesaseeessssaensessarens 86
Chapter 7. User Management INterfaCe ...ooviviiiiiiiccce e 91
7.1 Getting the List of All BONita ReGISTEIrEd USEIS.....ocvevieeieieieceeeeeeeeeee ettt 21
7.2 Getting the List Of USErs fOr Q PrOJECT ..o 91
VACI Nelellale e MU= g fo T el ud (o] T SO SPRRSRR 91
7.4 Checking Whether a User IS PArt Of G PrOJECT ...ttt 92
7.5 COAE EXAMIPUE ..ttt et e ettt e e ete e e et e e e ae e e e ateeeebeseeabesessesenseeessseeensaaesnseaans 92
Chapter 8. Project Role MaNAgeEMENT ... i e 93
8.1 MANAGING PrOJECT ROIES ..ottt sttt ve e sae st e v essass e seesaess e seesaessesaessnas 93
8.1.1 Declaring a New Role iN The ProjeCt ... 93
8.1.2 AllOCATNG A ROIE TO A USEI ...ttt sttt s re e v ra s enrens 94
8.1.3 Getting a List of Roles That a User CaAn ASSUMEcvivieeeeeiinieeieieieeee e 94
8.1.4 Getting a List of Roles That a User Can Assume in the Scope of a Project............... 95
8.1.5 Associating an Activity With G ROIEcviiieceeeee e 926
8.1.6 COAE EXAMIPIE .. ettt e te e et e e e te e eeat e e enbesesaeesasaeessseeensessnaeas 97

S I Y o o] 1= 3SR
8.2.1 Adding and Deleting ROIE MOPPETSc.vevuvruieieieieere ettt eeenseeens 98
822 (@Yo SN = Ce o a1 o)1 SRS 99

98

8.3 PerfOrmMEr ASSIONIMENT .. .ottt et e st e et e e s e e s ae e tae s aeeseessessbeeseesseenbaesseesseansaeans 100
8.3.1 Addition of a Performer Assignment 10 A NOE......cceccviiieeiiciieieeceeecee e 100
8.3.2 COAE EXAMIPIE ...ttt ettt ettt sttt e e e b e e ava e saesseestbeesseessessseessaesseassasssaees 101

Chapter 9. User Session INterfaCe.. .. 103

L2 B 11 0 ot)L OSSPSR 103

9.2 Creafing the USerSESSIONBEQANccviiiieiiiiciicieiee ettt eveete b be s esse s e sa s e sessaessessesseesnens 103

G T U T gl o (T @ 1T 11T OSSPSR 104
9.3.1 SEHING USEr PrOPEITIES ..ottt ettt ettt saeeneenean 104
932 Getting USer INfOrMOTION ..ottt 105

9.4 USEIS AN PrOJECTS ...ttt et e st et e st e st e e sa e b esbeeteess e s e saessesbanseessessessnensans 109
9.4.1 Getting the List of Projects for the USEr ...t 109
9.4.2 Getting the List of Instances for the USer........cooiiveiioiieieieiceeeeeeee e 110
9.4.3 Managing the Project for the USEr ...t 111

9.5 USEIS AN ACTIVITIES .cuiiiiceeeee ettt ettt s b e e teess e b e baesb e bassaessesessnannans 112
9.5.1 Getting the List of Activities for the USer ... 112
9.5.2 Getting Information 0N USer ACHVITYiiuiiiie et 112
9.5.3 Getting the TODO list fOr the USEToeieeeeieieeee et 113
9.5.4 Managing ACTiVITIES fOr The USEr......ioui et 114

D6 COUE EXAMPIE ettt ettt e e et e et e e ettae e etaeeebe e e abeeetaaeeeteeeenseseasesesaeeessaeenees 115

Chapter 10. Bonita PAGINATION ..eieieie et e et e e e e e e e e a e eas 117
Chapter TT. Bonita ENtHES cuuvieiii e e 125

11T ENTiY DIQQGIAMS oottt ettt ettt ettt e sae s te s se et e s e ebeesaasaessaesaessessesaessessensanssensessesseans 126
[B € (o] oo D] 1o T £ o o PSSR 126
11.1.2 Diagram Focused on Project Enfity REIQTIONS......ccceiieieieciceeeceeeceeeee 127
11.1.3 Diagram Focused on Node Entity RelQtioNSc.coveveeievienieeeeceeeceeeeei e 128
11.1.4 Diagram Focused on User-Role Entities RelAtionsccceeveeviiecieviieciecie e 129

11,2 ENTHIES ATTIDUTES .t ettt r e s e e et e ess e s e ba e besbessaessesaesaeennans 130
11.2.17 BNAUTNROIEVAIUE ...ttt ettt st 130
T1.2.2 BNEAGEVAIUE....coieeie ettt sttt ettt sttt st e s e et e e be e steenbaeaeesbeesssanssennsenn 130
11.2.3 BNHErQHONVAIUE ...ttt et st s st sae st ne s 131
11.2.4 BNNOAEHOOKVAIUE ...ttt st sr et enes 131
11.2.5 BNNOAEINTEIHOOKVAIUE .c.eviiiiiiieee ettt sttt et et saaesaae e s 132
11.2.6 BNNOJEPErfOrMErASSIGNVAIUEc.ociiiitieeteeteee ettt er e seeee 132
11.2.7 BNNOAEPIOPREMYVAIUE ..o ettt et et v s e aae e eaae e 133
TT.2.8 BNNOAEVAIUE ...ttt ettt ettt et e st e st e et esbaesbaesseesbaesssanssesnnenn 133
11.2.9 BNProjeCtHOOKVAIUEovieiceieceectectettet ettt sttt st ss e ere s seens 134
11.2.10 BNProjeCtiNtErHOOKV AIUEooviiiceieiieeteet ettt ettt ve v ene 135
11.2.17 BNProjeCtPropertyVaAlUEcoiiieeceeeeeeeetetete ettt re e seene 135
T1.2.12 BNPrOJECTVIAIUE ettt sttt sa e s re st s e ss b e sre e s et e saenes 136
11.2.13 BNROIEMAOPPEIVAIUE ...ttt et ettt e eaae e eaaae e 137
T1.2.74 BNROIEVAIUE ...ttt sttt ettt st 137
11.2.15 BNUSEIPIOREITYVAIUE ... ettt ettt ettt eave e eaaae e 138
TT.2.16 BNUSEIVAIUEG ...ttt sttt see et sae s e stees e ens e sesneensenseeneenes 138

iv

Bonita Workflow - Bonita API

List of Figures

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 3-1.
Figure 3-2.
Figure 4-1.
Figure 4-2.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 6-1.
Figure 7-1.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 9-1.
Figure 9-2.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.

Bonita WOrKIOW DIGGITIM ..ttt e e e e e e e e e e e e e a e e e e e e e e e e nns 1
U] o] (e Yol X I Bl o o o o T PP 9
ACTIVITY LIfE Gy IO ettt e e e e e e e e e e e e eas 10
Activity Life Cycles With SUDPIOCESS ... e e 12
YNl 11771 Y2 s @ L1 (=] £ 1S PP 13
N laglellcRi 1 ol 1To) a1 Koo o F PP 14
(@Y oY @113 QL L =T) 11 o T 15
[teration with MUIIPIE EXIT POINTS «..uuieiie e et e e e e e ens 16
Comparison between Old and New Ilteration MOdEls.......ccvviviiiiiiiiiiiiieicceeeee, 18
Comparison of Old and New Models with Multiple Exit POINTS ... 19
[teration with MUPle ENtry POINTS ... et e e e e 20
UL ST [1= o o PP 24
Code Example for User Authenticationcceeiiiiii i 25
[NelISW-Neleile] il ||V e (1] o NPT 27
U g @l 1 =Te o] (=T PPN 29
User Management Basic Configuration ...t e e ea e 37
J2EE AUTNENTICOTON et e 38
Code Example for the UserRegistrationBeanveeieiiiiiei e e 39
Coding Example of User CreQtion ...t e e e e e ee e 43
Coding Example for a Project Session BEAN ... 45
(@ile]allaTe K@l eTe =X = oo a]] 1= TS 49
Project Properties Code EXAMPIE c..iiie ittt e e ea e 57
F N 11771 Y2 A4 © =1 PR 58
RS 1T T e T 11 P 66
Check Model and VerifiCOtioN ... e e e e e e 70
CheckModelDefinition Code EXAMPIEeeieieieiie et e e e e ee e 72
Code Example ACHVITY PrOPEITIES ... e ettt e e et ea e e e e e ee e 88
Code EXaMPIE Gt USEr NOMES . cunieeeiie et et e e e e e e e e e e e e e e e e e e enaee e e e eneeneen 92
Code EXAMPIE PrOJECT ROIES .uuiiuiiuiieiiii ittt ettt et e e st e e e e e s e eaeaneen 97
Code EXample Add ROIE MOPDET . uuiuii ittt et e e e e aees 99
Performer Assignment Code EXAMPIE wuuiuiiiiieiiiiiieiieei et e e e 101
Session Interface Code EXAMPIE ... et e e e e e e e eeae 104
User and Activities Code EXAMPIE et e e e e 115
(€]le] oTe | D] oTe] oo o IR 126
Project ENtity DIOGIOM ... ee et e et et eenaenens 127
[N[oTe I3 =l o 11172] o e (o |o'a TSP 128
U ST g o] I3 = oY 113 Y21] o T (o o a I 129

List of Tables

Table 5-T. ProcCess STAte CoONS N S ..ttt e r e e e e e a e aanes 50
Table 5-2. ProCess TYPE CONSTONTS ...t e e e e e e e e e e e e e e e e n e e e e e e enneens 50
Table 5-3. Process STatus CoONSTONTS. ... i e e e a e 51
Table 5-4. Constant VAIUES fOr NOGE TYES tuuiuiuiiiiiieiie et iie e et r e ee et r e e e e e e e e e e enaeaennen 58
Table 5-5. Constant Values for NOAe STOTesS. ... e e e 59
Table 5-6. Edge ConstaNTs STATES .. e e e e e e e e 76
Table 6-1. Node HOOkS Events CoNStANTS ...t e e 80
Table 6-2. Project HOOK EVENTS CoONSTANTS 1.uiuiiiiii e e e e e 80
Table 6-3. HOOK TYPE CONSTONTS .. ittt et et e e e et e e e e e e e e e e e e e eaenas 80
Table 11-1. BNAUThROIEVAIUE AHTIDUTES ..iuii i e 130
Table 11-2. BNEAGeVAIUE ATIDUTES ... e e e e e e e e e 130
Table 11-3. BnlterationValue AHTDUTES ... e 131
Table 11-4. BNNOAeHOOKV AIUE AHTIOUIES . ciuii e 131
Table 11-5. BnNodelnterHookValue ATTIDUTES ... e 132
Table 11-6. BnNodePerformerAssignValue AHTIDUTES. ... e 132
Table 11-7. BnNNodePropertyValue AHTIDUTES ... e 133
Table 11-8. BnNodeValue AHDUTES (1T OF 2) ciun i e 133
Table 11-9. BnProjectHoOKValue AHTIDUTES. ... e e 134
Table 11-10. BnProjectinterHookValue AHIDUTIES ... e 135
Table 11-11. BnProjectPropertyValue AHTIDUTES ... e 135
Table 11-12. BNProjectValue AHMIUTES .. e 136
Table 11-13. BnRoleMapperValue AHTIDUTES ... 137
Table 11-14. BNROIEVAIUE AMTIDUTES 1iuiiii i e 137
Table 11-15. BnUserPropertyValue AHDUTES ..o e 138
Table 11-16. BNUSErValue AtTOUTES ... 138

vi Bonita Workflow - Bonita API

Preface

This document explains the use of Bonita Workflow API functions. Using the
information within document assists a Bonita Workflow designer in the

implementation of Workflow projects, models, and administration using Bonita API
functions.

Vii

viii Bonita Workflow - Bonita API

Chapter 1.Introduction

Bonita is a workflow system with innovative features such as;
e Activities that can start in anticipation,

e Awareness infrastructure — this allows user nofification of any events during the
execution of a given process,

¢ Automatic activation of user’'s code according to a defined activity life
cycle.

Traditional workflow features, such as dynamic user/roles resolution, activity
performer, and sequential execution, are also included in Bonita supporting both
cooperative and administrative workflow processes.

Bonita is a fully conformant J2EE application, taking advantage of the power and
robustness of the J2EE platform. The Bonita APl is accessible through either project
and/or user EJB's.

Bonita processes are created using either a graphical definition tool or by using
the Bonita Project interface API. A Bonita process is defined as a set of activities
and an associated execution model. The Bonita enactment engine maintains
activity scheduling based on the defined execution model. The Bonita User API
provides full control over process execution: for example, starting or stopping of
an activity. Bonita also supports dynamic modification of an existing process, that
is, the Bonita Project interface APl can be applied fo a running process.

Bonita Java Web Start
Instant Messaging Or YOUR APPLICATION Bonita Manager Application
Mailer

e e — Browser

b rd

lUser Registration API] l Project API l l User API Bonita API

- Bean Container
Message Driven Bean

List er/
y Bonita

Hooks

JMS
. It - . :
o o Freine Sesion pean =
Project Session Bean
CMP Entity Beans

User Registration
Session Bean

Afthentication &
es Control

>
N

.
.
.

L

t ORl
4
Business Partner or
LDAP other system

Existing System
ERP System

Figure 1-1. Bonita Workflow Diagram

Chapter 1. Introduction 1

2

e User Registration Session bean provides the interface for:
— User creation and management
— Group creation

¢ The Project Session Bean provides the interface for:
— Creation of the process
— Definition of nodes and edges
— Listing and Modification of properties

e The User Session Bean implements commands and queries related to:
— Projects of a user
— Todo Lists
— Activity execution
- Start/terminate/Cancel commands

¢ The Engine Bean is a special session bean implementing the state machine
and controlling Process execution. The Engine Bean is not part of the API.

¢ Each method callin the Bonita APl involving a state modification of the
workflow system is registered into a JMS Topic. Depending on user
preferences, (defined in user creation), the Message Driven Bean nofifies the
user via Instant Messaging services, or a Traditional Mailer.

Bonita Hooks can access existing systems in the SI, (ERP or other), or Business
partner systems using JCA or Web services.

Both User and project APIs are available as a Session Bean, or as web services.

Bonita Workflow - Bonita API

Chapter 2.Concepts

2.1 Terminology

A process is a set of activities. In Bonita, the term project is also used.

An activity is an atomic unit of work. In Bonita, activities are also termed
Nodes.

A transition is a dependency expressing an order constraint between two
activities. In Bonita, transitions are also termed Edges.

A property is a workflow unit of data, commonly known as workflow relevant
data.

A hook is user defined logic adding automatic or specific behavior fo
activities/nodes and workflow processes

A mapper is a unit of work allowing dynamic role resolution at workflow
instantiation.

A performer assignment is a unit of work adding additional activity
assignment rules at run time.

2.2 Process

2.2.1 Process Basics

Bonita supports both cooperative and administrative workflow processes. These
processes are mapped to three Bonita types:

Cooperdative: flexible workflow process allowing definition and execution
operations just after the process is created

Model: workflow process containing the workflow definition logic. These
projects can be instantiated by users.

Instance: workflow process representing a specific execution of a workflow
model.

The status of a workflow process is controlled either by definition or at runtime by
the workflow process administrator(s). Three possible statuses are allowed for a
workflow process:

Active: the workflow process can be modified or executed. Active is the
default status for a cooperative, model, or instance process.

Hidden: the process is not yet available. Operations like execution, cancel, or
termination of cooperatives and instances projects as well as model
instantiation are not allowed. This is the status mode allowing model
modifications after instantiation.

Chapter 2. Concepts 3

¢ Undeployed: as for hidden processes, the undeployed status means that the
process is not yet available. However, the restrictions are quite different: only
the instantiation operation is not allowed. This status is suitable when dealing

with different versions of a same model.

4 Bonita Workflow - Bonita API

2.2.2 Life Cycle

Bonita has a very simple process life cycle and goes through the following states:

e Onceitis created, a process is in initial state. As soon as the process is in the
initial state, it can be controlled using either User APl and/or Project API
requests. The User API allows monitoring of process execution. When the first
activity starts, using the User API, the process enters the started state. The
execution of the process is performed by the Bonita enactment engine,
under control of applications using the User API.

¢ When the first activity begins execution, a process is started (enters started
state). While executing, the process definition may be modified using the
Project API. When all activities terminate, the process remains in the started
state and the process is still modifiable. For example, new activities could be
added to the process.

e A processis terminated (enters terminated state) once it has been explicitly
terminated by an application through the User API. In the terminated state,
the process definition cannot be modified.

2.2.3 Cooperative Processes

Bonita has a simple view of cooperative process enactment: once a process is
defined, it is enacted. For example; using the Project APl we could create a
process with a single activity, and then be able to execute it using the User API
and have the ability to dynamically add new activities to the process definition.
This brings flexibility to workflow participants, and is particularly convenient for
cooperative (ad hoc) processes.

Typically, you would set up a specific process to perform a given job between
several colleagues. To allow some level of reuse of a process definition, we
infroduce the concept of process clone (see section 2.2.5 clone processes).

2.2.4 Models & Instances

There are scenarios where the reuse of a process definition is of key importance;
in these scenarios, a long-time is spent carefully defining a generic process model
that instantiates in the same way many times. These processes are called
administrative processes (process models).

A process model is a specific definition of a process that may be instantiated
multiple times. These processes are based on a model-instance workflow
paradigm. In this kind of workflow process, the Project APl is used to define the
workflow model. When the process definition is complete, the workflow users are
able to instantiate the workflow model via Project API. Once the model
instance(s) are created, workflow participants can access the User APl to
accomplish the following; obtain their ToDo list, execute assigned activities, or
other workflow user functions.

Chapter 2. Concepts 5

6

A process model keeps track of allits instances. That is, all instances of this process
are refrievable through the User API functions.

Cooperative or administrative workflows use the same component (i.e. Project)
API. Depending on the type of the process created/initialized, this APl must also
be inifialized. There are also differences between the above workflow types
concerning process execution. Cooperative workflows are ready for execution
and modification from creation. On the other hand, administrative workflows must
be instantiated first. The term process model refers to Bonita projects defined in
the context of administrative workflow use.

In future releases of Bonita Workflow, the concept of the Process model will be
extended with the implementation of a Process Model Repository. This allows
importing of process definitions in a variety of formats.

Bonita INSTANTIATION MECHANISM

Previous versions of the Bonita workflow engine were "duplicating” the whole
process model (activities, properties, edges, hooks...) as a new clone of the
project in a new process instance. This duplication fook a long time even for
medium workflow processes, and was a problem for users at instantiation.

Newer Bonita versions (1.4 and later) are revamped to improve performance.
Only those activities in the Ready state (including their properties, roles, and
existing users) are copied at the creation of the new instance. Once an activity
starts, hooks are executed under the Model Hooks (which are not copied). Then,
after activity termination, edges and Ready or Executable follow on activities are
copied as well.

Notes:

An instantiated process model can still be modified, but be aware that the
modifications may cause errors in the instance execution.

An instance can still be modified, but be aware that modifications may conflict
with the model definition applied at execution time.

Bonita Workflow - Bonita API

2.2.5

2.2.6

Versioning

There are scenarios where multiple versions of the same workflow model are
required. In general this requirement is due to some improvements/changes to be
added to an existing workflow model. The versioning feature allows workflow
administrators to control the migration of a deployed workflow model when this
model needs to be modified orimproved.

For information about how to use versioned models, refer to Chapter 5, “Project
Interface.”

To maintain compatibility with Bonita versions prior to v2.1, the engine will
automatically manage models without a particular version as models under 1.0
version.

Clone Processes

A process clone is a duplicate of an existing process. Once the cloning operation
is complete, the two processes execute independently.

After the cloning operation:

e The process instance has the same set of activities as the process model, with
each activity allocated to same role defined in the model. All activities are in
an initial state, and have the same properties as defined in the model, with
the same associated value(s). All activities have the same hooks and the
same transition conditions as those defined in the original process.

e The process properties are the same as defined in the process model, with
the same initial value(s).

e The users associated to the process are the same as those defined in the first
process, and have the same associated roles.

¢ The process instance can be controlled without restrictions through the User
and Project APIs.

e lferations between activities are the same as defined in the process model.

Process cloning is available for both cooperative and administrative workflow
processes.

Chapter 2. Concepts 7

2.2.7 Concept of Hooks

Hooks are user-defined logic that can be triggered at some defined point in the
process life cycle. The types of Hooks are:

* Oninstantiate hook is called before the workflow instance is created. The
OnlInstantiate hook is not considered to be in the same transaction as the
process instantiation action.

e OnTerminate hook is called automatically after workflow instance termination
ends.

2.2.8 SubProcesses

Sometimes, an independently existing business process can take part in another
more sophisticated process. Instead of redefining the activities, edges, properties,
and hooks in the parent process, the independent process could be included as
a “subProcess” within a specific node.

As the execution logic is inside the subProcess, the subProcess activities are
started and terminated automatically by the Workflow engine according fo the
subProcess state.

Creating a SubProcess Activity:

When a subProcess activity is defined in the process model, the sub process is
automatically cloned by Bonita as a new process and given the name of the

subProcess activity defined in the parent process. Links are maintained between
the sub process and the parent Process.

Instantiating a Process with a SubProcess Activity:

Instantiating a Process with a subProcess activity causes new instance of the
parent process to be created. The Bonita engine will identify the subProcess
instance by means of an identifier.

As with any other activity, the subProcess activity can be iterated.

Constraints:

As in a normal process, activities, properties, and hooks in the sub-process must

not have the same name as another activity, property, or hook existing in the
whole process.

8 Bonita Workflow - Bonita API

Properties Propagation:

The properties of the subProcess Activity in the global Process are propagated as
Process properties in the subProcess, as shown in the following figure:

Process

Project Property : Prop

Activity 1 Sub Process
- Act. Property P1 (Propagate True)
- Act. Property P2 (Propagate False)

Project Property P1
Project Property SP.P1

/_’—;_\ Activity Al

SubProcess Activity SP . (own properties)
- Act. Property SP.P1 (Propagate = True)
- Act. Property P1

-~

I Activity A2
(own properties)

y

Activity 2
- Act. Property P1
- Act . Property SP.P1

Property : Project Property
Property : Activity Property wich has to be propagated

Figure 2-1. SubProcess Diagram

2.2.9 Relationship to Users
A process has an associated set of Users. A user has access to the corresponding
process, which means:
e The User knows about the existence of the process.
e The User can take over roles that exist in the scope of the process.
e The User can be nofified of various events occurring in the process.
e The User can control the execution of the process.
Users assuming the Admin role can modify the definition of the process. The

Admin role is specific to a process. This means the Admin role for “process1™ is
different from the Admin role for “process2”.

The User on behalf of whom the project has been created is automatically
assigned the Admin role. This User is responsible for the creation of other users in
the process, and to allocate roles to other users (including the Admin role that
could be allocated to several users).

Chapter 2. Concepts 9

2.3

2.3.1

Activity created
without parents

Activity
connected to a
parent

Activities

Activity Basics

The activity is the basic unit of work within a process.

Execution of an activity can either be automatic, or manuail:

e Avutomatic: The Bonita enactment engine starts the activity when applicable

fransitions from preceding activities are successfully evaluated.

¢ Manual: the Bonita enactment engine will not start a manual activity until

some application has explicitly started it thru the User API.

The life cycle of an activity is as follows:

Ready

Parents completed &
Transitions Conditions OK

Initial

Start .
Executing
Parents completed &
Transitions Conditions OK
(Traditional activities)
Anticipating \
Cancel or
Parents completed &
Transitions Conditions OK
(Traditional activities) Start
]
» Anticipable

Terminate

Parents executing
or anticipating

Cancel

(Automatic activities)

Transitions Conditions NOK

|Only for activities that can be anticipated

Figure 2-2. Activity Life Cycle

10 Bonita Workflow - Bonita API

Terminated

Dead

e Ready: Thisis the state of an activity ready fo be started. There are two
possible situations for this state to occur. In the first, an activity has no parent
activity (this is the first activity of the workflow process). In the second, a
normal activity has parent activities that have all terminated successfully, and
whose fransition conditions to the activity have been successfully evaluated.

e Initial: This is the state of an activity waiting for some processing to complete
before being ready to run. In the case of normal activities, at least one of the
parent activities is still executing. In the case of an activity that can be
anficipated, at least one of the parent activities has not started.

e Anticipatable: This is the state of an activity that can be started without
waiting for its parent activity(s) to complete. However, all of the parent
activities must have started.

Note:

A brief explanation of anticipatable and traditional modes. If we have two
activities, A and B, with A as the parent activity, the anticipatable mode means
an activity (B) may start before its parent activities (A) have completed. In the
fraditional mode, activity B must wait for activity A to complete before starting.

¢ Anticipating: A previously anficipatable activity that has been started.
Automatic activities are automatically transitioned from anticipatable to
anficipating. Manual activities must be explicitly started. An anticipating
activity cannot be terminated until all parent activities have terminated, and
the transition conditions have been successfully evaluated.

e Executing: An activity in execution.

e Dead: A cancelled activity. All dependant activities are automatically
cancelled. Cancellation occurs in two cases: explicit cancellation, or
unsuccessful evaluation of an inner fransition condition.

¢ Terminated: An activity that has terminated successfully.

For automatic activities, Bonita automatically causes:

e (Fornon anficipatable activities) - Transition the state from ready fo
terminated, (For anticipatable activities) - Transition the state from
anficipatable to anficipating,

e (For anfticipatable activities) - Transition the state from anficipating to
terminated state whenever all parent activities complete.

e Execute any hooks

¢ Terminate the activity when the executing hooks complete

For activities involving a sub process, the life cycle is described below:

Chapter 2. Concepts 11

Father Process Father Process

SupP_Act SupP_Act
State : Initial gy Ready State : Efecuting
A 4 A
Sub Process Sub Process

State : Initial State - Ready

State : Initial State : Initial

Figure 2-3. Activity Life Cycles with SubProcess

An activity is associated with a role. All the users allocated that role in the scope
of the process have the ability to control the activity.

An activity is enclosed in a Transaction, and every call to a method of the Bonita

API that changes the state of an activity is considered part of that transaction
(except those beginning with “getxxx” which only retrieve information).

12 Bonita Workflow - Bonita API

2.3.2 Transition between Activities

Most of the usual transition patterns can be achieved using Bonita Workflow.
There is no special node to achieve these patterns; rather, any activity can
behave as a routing node.

The transition pattern is determined according to the type of the activity, which
can be AND-JOIN (also known as "synchronize join"), or OR-JOIN (also known as
"asynchronous join").

The transition pattern is also determined from the number of outgoing edges in an
activity; this is called the SPLIT construct (allowing several activities fo execute in
parallel). This is not a specific type of activity; if there are several outgoing nodes
from a given activity, it is a SPLIT construct.

The usual patterns are summed up below, where the activity conftrolling the
pattern is figured in blue, with the type of the activity shown beside.

The SplitAct (split activity) The SyncAct (synchronous The AslJoinAct

allows two parallel activity) is type AND-JOIN. It (asynchronous activity) is
activities to start. This is will execute only when both of type OR-JOIN. It will
achieved by having two PTAct and P2Act are in the execute whenever either
outgoing edges, one to terminated state. If one of P1Act or P2Act are
P1Act activity, and one to those activities is cancelled, terminated. If both of
P2Act Activity. then SyncAct is also these activities are
cancelled. cancelled, then

AsJoinAct is also

\l/ \1, concelled.\ll
SplitAct | P1Act | | P2Act | | P1Act | | P2Act |

P1Act P2Act AndJoin | SyncAct AsJoinAct

OrJoin

Figure 2-4. Activity Patterns

The transition patterns can be refined by defining conditions on edges between
activities. A condition operates on the value of a property of the activities, and is
expressed in Java. Any string that can be the operand of an “if” statement is
valid. Assuming that the property “Prop” is defined for a given activity, any of the
following constructs is a valid conditfion:

Prop.equals (“SomeString”)

(Prop.indexOf (“SomePart”) == 2)

(Prop.lenght () == 9)

(orderType.equals ("PO")) && (new Integer (Qte).intValue() >
100)

Chapter 2. Concepts 13

2.3.3

Iterating Activities

Bonita supports arbitrary cycles within a process, which means that one or more
activities can be repetitively executed.

For this example, attach a single iteration to the last activity of the cycle. This
iteration bears the name of the first activity of the cycle and the loop condition:
while the condition evaluates o frue, the Bonita execution engine will loop to the
first activity while executing the termination algorithm for the last activity.

The following figure is an example of a simple loop.

lteration Specification:
From: Second To: First
W hile: someProp.equals(“goon”)

Figure 2-5. Simple Iteration Loop

The condition is related to the value of the property “someProp”. This property is
bound to the activity second, either directly (it is an activity property), or because
it has been defined at the level of the process (it is a project property).

14 Bonita Workflow - Bonita API

The following is an example of a more complex iteration loop.

Intermediate1 Intermediate2

Figure 2-6. Complex Iteration

Note that all the execution paths going from activity first to activity second are
included in the cycle, as in the above example, where intermediatel and
infermediate2 are iterated several fimes.

Chapter 2. Concepts 15

16

Iteration in Bonita V2
Iteration behavior is modified in Bonita v2.

Old/previous behavior: (Bonita v1 series)

When the iteration is entered, the outgoing transitions from activity “second” to
onekExitPoint and from activity “Intermediate2” to anOtherExitPoint were frozen,
meaning they were not evaluated during the course of the iteration.

New behavior: (Bonita v2)

The frozen mode is removed.

Now, when the iteration is entered, it's possible to exit at any time.
Example: it is possible to exit from Intermediate2 to anOtherExitPoint or to exit
from second to oneExitPoint.
Example: it is possible to exit from Intermediate2 to anOtherExitPoint or to exit
from second to oneExitPoint.

-————---- > Frst

Intermediate1 Intermediate2

I=mmmm oo Second

oneExitPoint anOtherExitPoint

Figure 2-7. lteration with Multiple Exit Points

Note:

With this new behavior it is not possible to iterate and leave the iteration at the
same fime.

Bonita Workflow - Bonita API

The following Guidelines explain how to design iterations in our model:

Premise:

It is not possible to continue execution inside iterations and exit at the
same time.

Only one iteration is allowed between two connecting nodes
It is possible to have more than one iteration starting in the same node

All transitions exiting from a node starting the iteration must meet a
condition. If there is more than one transition for exiting from that node,
all transitions must meet a condition.

If there are multiple exit points within the iteration it is strictly necessary
to have conditions on all the transitions exiting from that node. The
Conditions must be mutually exclusive for those conditions to take a path
to either continue iterating or to exit from the iteration.

Note:

If guidelines 3 and 4 are not followed, errors may occur during the process
execution.

To guarantee that a model is correctly defined and to avoid the problems
mentioned above, a new APl method has been added:

ProjectSessionBean.checkModelDefinition ()

The above guidelines are validated using this method. This method should be
called at the end of a process definition class. For more information see Chapter
0, "Checking Model Definition.”

Chapter 2. Concepts 17

The following figure shows a comparison between the old iteration model and the
new iteration model.

Old Model: (Bonita v1)
Iteratio_rll condition

Initial ' lterator

New Model: (Bonita v2)

Iteratio_rll condition

|
Initial Middle lterator

Figure 2-8. Comparison between Old and New lIteration Models

The following Guidelines apply.

Premise: It is not possible to continue execution inside iterations and exit at the
same time.

1. Only one iteration is allowed between two connecting nodes
2. ltispossible to have more than one iteration starting in the same node

3. All transitions exiting from a node starting the iteration must meet a
condition. If there is more than one transition for exiting from that node,
all transitions must meet a condition.

To guarantee this premise, the iteration condition and edge condition must be
exclusive. This means that when one is frue the other is false.

Only iterations from Iterator to Initial are possible. Conditions can be a group of
conditions like: (((...) && (...)) |] (...)). (Remember: only a single iteration
between nodes is allowed.)

There could be another iteration starting in the Iterator activity going to Middle or
to Iterator itself.

Iterations from Iterator to Final activity are not allowed because a cycle does not
exist.

An edge condition from Iterator to Final activity is strictly necessary and must be
the opposite of the iteration condition. If there are multiple edges outgoing from
Iterator to other activities, all of them must meet a condition not equal fo the
iteration condition (this is necessary to accomplish the above premise).

18 Bonita Workflow - Bonita API

The following figure shows a comparison between the old iteration model and the
new model with multiple exit points within the iteration:

Old Model
Iteratio_r|1 condition

Initial ' lterator

Parallel

New Model

lteration Elondition
I Edge

condition1
>

Initial ' lterator

Parallel

Figure 2-9. Comparison of Old and New Models with Multiple Exit Points

Guidelines applied:

If there are multiple exit points within the iteration, it is strictly necessary to have

conditions on all fransitions exiting from that node. Conditions must be mutually

exclusive for those conditions taking a path to either confinue iterating or to exit
from the iteration

The main concept of these new constraints is to guarantee that the execution
path does not arrive at an activity whose state is "Terminated” or “indeterminate”
while executing the iteration.

Remember, edge condition2 and edge condition3 must be exclusive.

It is also possible to have multiple entry points into iterations, as shown in the
following example:

Assume that the iteration is declared between second and first as in the example
in Figure 2-10:

Chapter 2. Concepts 19

Because second is an AND activity, it starts only when activity “anotherEntryPoint”
has terminated. This is only frue for the first occurrence of second: for subsequent
executions of this iteration, the incoming fransitions from anotherEntryPoint are
ignored.

anotherEntryPoint

Second

(AN D activity)

Figure 2-10. Iteration with Multiple Entry Points

2.3.4 Hook Concepts

Hooks are user-defined logic that can be triggered at defined points in the life of
an activity. Those defined points are:

¢ Before Start hook is called just before the activity starts. The Before Start hook
is not considered to be in the same transaction as the activity. The Before
Start hook is not triggered for automatic activities.

e After Start hook is called just after an activity starts. It is considered to be in the
same fransaction as the activity. The After Start hook is not triggered for
automatic activities that cannot be anticipated.

e Cancel hook is called before canceling an activity and it’s considered to be
in the same transaction as the activity.

¢ Before Terminate hook is called just before an activity terminates. The Before
Terminate hook is considered to be in the same fransaction as the activity.

e After Terminate hook is called just after the activity has terminated. It is not
considered to be in the same transaction as the activity.

¢ Anticipating hook is called when an automatic activity is started if the activity
is anticipable. It is considered to be in the same transaction as the activity.

e OnReady hook is called when an activity becomes ready, so it would be very
useful to notify the user responsible for executing it. It is not considered to be
in the same transaction as the activity.

e OnDeadline hook is called when the activity deadline expires. It is not
considered to be in the same transaction as the activity.

20 Bonita Workflow - Bonita API

Hook Fault management

If an exception occurs during the execution of a hook, the error is propagated to
the application having triggered the execution of the hook.

Consider the following simple scenario:
An application calls the terminate Activity statement in “Activity1”; this
triggers the execution of a before Terminate hook which raises an exception;
the exception is caught by the application.

Things may be a little bit trickier if automatic activities are used:

¢ Imagine that the terminate Activity statement in “Activity 1" completes
normally, and “Activity 1" has an outgoing edge defined for automatic
activity “Activity 2".

e “Activity 2" is started and terminated automatically in the context of the first
callrelated to “Activity 1".

e Therefore if "Activity 2" has a Before Terminate Activity hook that raises an
exception, it will interrupt the call related to “Activity 1.

e This means “Activity1” does not terminate (the activity stays in the executing
state) and the system throws an exception due to the "Activity2” execution
error.

The previous examples show two error scenarios related to transactional hooks
execution.

Important:

Be aware that Hooks can be executed in a transactional or in a non-transactional
context, depending on their types (i.e. before start, after start, ...)

Transactional hooks are executed in the same transactional context as the
activity for which they are executed. Available transactional hooks in Bonita are:
After Start, Before Terminate, Anficipate, and On Cancel hooks (see the following
section, "Activity/Hooks and Transactions”).

¢ Any changes performed on a fransactional resource are included in the
existing fransactional context.

¢ Any exception raised by the Hook aborts the existing fransaction, so the
activity is re-executed later. Furthermore, all operations executed by the hook
before the exception was raised are rolled-back.

Bonita also has the capability to create hooks for executing outside a

fransactional context. In that case, Before Start and After Terminate hooks are
executed outside the activity transactional context.

Chapter 2. Concepts 21

2.3.5

22

A Important:

It is extremely recommended not to use these hooks (Before Start and After
Terminate), to access Bonita APIs or other transactional APIs.

If one of these hooks fails during its execution, the system throws an exception but
the activity starts/terminates without roll-back on the operation.

Consider the last sample scenario described previously and change Before
Terminate hook to After Terminate hook. Let's go over the execution:

¢ Imagine that the terminate Activity statement on “Activity 1" completes
normally, and that *Activity 1" has a defined outgoing edge to automatic
activity “Activity 2".

e “Activity 2" is started and terminates automatically in the context of the first
callrelated to “Activity 1".

e Therefore if “Activity 2" has an After Terminate Activity hook that raises an
exception, the hook does not interrupt the call related to *Activity 1.

¢ This means, "Activity1” terminates without problem, but the system throws an
exception due to “Activity2" execution error.

Activity/Hooks and Transactions

Any change of state (startActivity, terminate Activity, cancelActivity statements)
performed against an activity is part of a fransaction.

This transaction typically involves more than one activity: for example, a terminate
Activity statement performed on a father activity triggers a change of state in all
daughter activities. In this manner, Bonita keeps tfransactional consistency across
activities.

Bonita aborts a transaction in two cases:

e Afailure at system level (e.g.impossible to access the Bonita database)

¢ An exception was not caught by a transactional Hook.

When Hooks are executed in a transactional context:

¢ Any changes performed on a fransactional resource are included in this
existing fransactional context.

¢ Any exception raised by the Hook aborts the existing transaction.

Bonita Workflow - Bonita API

2.3.6

Practical Steps in Hook Usage

Loading Hooks

Hooks code can be stored in the Bonita database as beanshell programs. This
type of hook is called an Interactive Hook, or "InterHook". To use an Interactive
hook, store the hook programs in the Bonita database, either through the
graphical tool grapheditor (just right click on an activity, select add Hook, and
use the editor to enter beanshell code), or thru the project API (see addinterHook,
setinterHookValue, setNodelnterHookValue). At execution time, the Bonita
executive takes care of importing the code from the Bonita database.

Hooks code may also be stored on the file system as standard java classes. In that
case, you need to load the code info the application server. The way to do this is
as follows:

¢ Creatfe your source.java file, (i.e. MyHook.java). The code must be within the
package hero.hook.

e Copy your java source file to the directory
$BONITA_HOME/src/resources/hooks/hero/hook (UNIX)
%BONITA_HOME%/src [resources/hooks/hero/hook (Windows)

e Go to the BONITA_HOME directory and type: ant deployHook -
DhookClass=<name of your java source file>. For example: ant deployHook —
DhookClass=MyHook

Hooks Interface

All hooks must implement the hook interface (hero.hook.NodeHookl). This
interface is quite simple, with a single method having two parameters: an object
EngineBean which is a session bean allowing access to the Bonita executive, and
a BnNodelocal object, which is a local interface to the entity bean representing
the activity whose execution has triggered the execution of the Hook. Also, each
hook must define the META data return string for example:

public String getMetadata() {
return Constants.Nd.XXXXXX;

Where XXXXXX is a value specified in Table 6-1, Node Hooks Events Constants.

Notes:

e Direct use of the EngineBean object is not recommended.

e The BnNodelocal object can be used to retfrieve information about the
currently executing activity.

Chapter 2. Concepts 23

2.4 User Interface

Bonita makes a distinction between Users and Participants:

e Users are people who make use of the workflow system (whatever process
they are part of).

e Participants are all the users that are allowed to play some role in a given
process.

First, a user must be registered in the Bonita System for authentication (using the
Bonita User Registration API). Then, the user must be declared as a participant in
each project they are involved in (also using Bonita Project API). The user is then
able to take partin the process.

Users are managed in a Bonita-specific database (or thru a LDAP repository). This
database allows storing of properties (also called preferences), for a given user.
Properties are defined (key, value) pairs where both key and value are String
variables. The application can set and retrieve properties via the User API
interface. Bonita makes use of specific user properties in order to store the User
preferences.

USER PROFILE
User Registration

(Mandatory) Properties Creation &Modification User Registration API
Name et

Mail
[] Passwd
= (Optional)
Jabber —
(User Specific)
Prop 1
Prop 2

4

Getting Information about user =—>| User Session API
Properties

participate

Declaring user as participant

Project API

Process

Figure 2-11. User Interface

24 Bonita Workflow - Bonita API

2.4.1 User Relationship to Processes

Users must be explicitly associated to processes in order to parficipate and to
have visibility of events occurring in those processes.

Two scenarios allow associating a User with a process: that is, making a User a
Participant of this process.

e Whenever a process is created, it is created on behalf of the User that
initiated the Project Interface. This User is automatically associated to the
newly created process, and assumes the Admin role in the scope of the
process.

¢ The users assuming the admin role for a given process have permission to
associate new users to the process, and to allocate any role to them.

2.4.2 User Authentication Scenario

Bonita performs User Authentication using either a specific database (i.e. mySql,
Postgres ...), or an Ldap repository. The following code is an example of
authentication of the ADMIN user. It uses the “TestClient” login context
implemented in Bonita.

All other users are authenticated the same way.

import javax.security.auth.login.LoginContext;
import hero.client.test.Sim pleCallbackH andler;

public class M yW orkFlow Class {

static public void main(String[] args) throws Exception {
// User Admin authentication
char[] password={"t",'o","t",'0 '} ;
SimpleCallbackHandler handler = new SimpleCallbackHandler("admin",password);
LoginContextlc = new LoginContext("TestClient", handler);
le.login();

Figure 2-12. Code Example for User Authentication

Chapter 2. Concepts 25

2.5 User Roles

The User Registration Interface, which allows creation of users in the Bonita
database, is accessible without role restrictions. This means anyone can call its
methods, with no need for authentication.

2.5.1 J2EE Roles

Some Bonita Java Beans deal with the J2EE roles: “Admin” and “users”. After
authentication, only users having J2EE roles are able to access the Project and
User Session Interface.

When created with the User Registration Interface, a Bonita user is automatically
assigned the "Admin™ J2EE role. Those users can access the User Registration
interface and create Bonita users.

Once created, and after J2EE authentication, each Bonita user can access the
Project Interface and create a new process, clone a process, or instantiate an
existing process.

This J2EE security policy can be modified to enforce access control to Bonita Java
beans methods, but in that case, be aware that Bonita beans source code has to
be adapted to your policy (especially if you modify role names). If you use this
security option, migration to newer Bonita versions is more difficult.

It is sfrongly recommended to leave the Bonita way of running as is, and to
implement any user access restrictions using Project or User Interface methods at
an application level. See the Application Access Control paragraph below for
more details.

2.5.2 Bonita Roles

Bonita roles are related to activities access within processes. Each Process has its
specific role management. This permits different means to associate to the same
role name in the scope of two different processes.

Activities are associated with roles. A user, assuming a given role, administers an
activity. There is a single role associated with each activity.

Users participate in a project, and within the scope of this project, a user can
assume one or several roles.

26 Bonita Workflow - Bonita API

Process 2 User 4

~

2 > Participate in this Project with this Role

Figure 2-13. Role Association lllustration

User2 and Userl execute Process] independently. Userl can also execute all
process2 activities due fo User1 accreditation in roles for Process1 and Process2.

Note:

Despite that User 3 has no role to play in any process, Bonita User3 would be able
to clone orinstantiate (but not modify), any process. User3 needs only to know
the name of a process to be able to call the Project interface methods to do this.

However:

— No Project or User session Interface APl methods will return the name of
an existing process that User3 is not involved in.

— Afterinstantiation, User3 is not able to start any activity due to standard
Bonita role access conftrol.

Chapter 2. Concepts 27

Default Bonita roles

Bonita handles two pre-existing roles: “admin” and “InitialRole”. When created,
an activity is automatically associated with the “InitialRole”. This role is modified to
suit application functional requirements.

The InitialRole may be left as is for the first activity of the Workflow Process. This role
could be granted to a participant of the process in charge of starting the
workflow. This may be done independently of other functional roles that this
activity may have in the process.

Additionally, this role could be left in place for automatic activities not required
by other users.

2.5.3 Application Access Control

28

As mentioned previously, standard Bonita access conftrol is open and allows
adaptation to organizational needs.

The Bonita access control mechanism has a basic authentication scenario based
on workflow projects roles:

e A User creating the project becomes the admin of the project (user is
assigned admin role).

¢ Only this admin user can add other participants/users to this project.
e Only admin users can modify the project (set, add and delete entities).

e Users taking part in the project are authorized to obtain project information
(get project entities data).

e Project hooks and mappers may contain confidential information, so get
data methods are available to admin users only.

¢ Parficipants of the project can set/update properties of activities in which
they have a corresponding role.
The Bonita Graph Editor application follows these constraints:

e Only the creator of a process and the users assigned the Bonita “admin” role
can modify the process.

e Evenif assigned arole to play in this process, another user cannot add,
delete, or modify, any node within the process. That user though is able to
visualize the evolution of the process.

Bonita Workflow - Bonita API

For example, a typical workflow application distinguishes three categories of

users:
— Designer
— Operator

- User

—a

Designer(s)

-
1

Operator (s)

Role: Role:

- To create or modify -
process models -
- To test the models

Figure 2-14. User Categories

To manage users

To instantiate model according to its
own site requirement

To do user/group association

e
-
“‘_';u

Users
(Different Bonita groups for
each category of users)

Role:
- To perform processes they are
involved in

The application interface (specifically the graphical interface), implements
methods to restrain users’ actions.

Application restrictions could implement stronger access confrol than Bonita
access conftrol. Itis advised, based on points previously mentioned, that lesser
access control than the Bonita standard access control NOT be implemented.

— In this project, this node is associated to this role

In this project, these users are participant

In this project, this user can assume these roles

— In this project, this user can access the node if he has the node role

Chapter 2. Concepts 29

2.6 Mappers Feature: Automatic Filling In of the Bonita
Groups

The Mappers feature permits automatic definition of the Bonita roles as defined in
the project model when the project is instantiated.

2.6.1 Overview

Three methods (three types of mappers) are available, depending on the
method employed to retrieve users in the system.

1. Using an LDAP server to obtain groups/roles (LDAP mapper)
2. Cadlling ajava class to request a database (custom mapper)

3. Getting the initiator of the project instance (properties mapper)

As with other definitions of process elements, access to this functionality is
performed through the Bonita API (See the ProjectSessionBean APl in section 5.2).
Access is also available using the graphEditor (ProEd) application.

The Mapper function is of particular interest for process instantiation usage of the
Bonita workflow System. The automatic filling in of groups/roles happens at the first
instantiation of the project model (for both the project model and the first
instance). Thereafter it happens with each instance creation.

2.6.2 LDAP, Custom, and Properties Mappers

LDAP Mapper:

This mapper uses an LDAP directory to retfrieve users corresponding with a specific
role defined for a Bonita Workflow project. Please refer to the documentation
(Bonita LDAP configuration for JOnAS) for use of this type of mapper.

e LDAP mapper specifics:

— The location of the LDAP groups. This depends on the aftributes: roleDN
and roleNameAtftribute.

— There is no mapping between roles/groups defined in LDAP and roles
defined in the Bonita database (same name for both bases).

— The attribute name: uid is used to provide mapping between the actor
identifier in the LDAP base and the userName in the Bonita database.

— If the group does not exist in the LDAP an exception is thrown.

— Users found in the groups must be deployed before usage of the mapper
function. Otherwise an exception is thrown.

— The name of the mapper may be any name.

30 Bonita Workflow - Bonita API

e Limitations within this version of Bonita Workflow:

— Groups cannot be recursive. Group's inclusions are ignored.

— There is no verification that the distinguished names (dn) for users found in
the LDAP groups are compatible with the LDAP free containing users
defined in the JOnAS LDAP realm configuration.

Custom Mapper

This mapper provides process developers use of their own user’s storage base.
When this type of mapper is utilized, a call to ajava class is performed. The name
of this mapper is the name of the called java class (i.e.:
hero.mapper.CustomSeachGroup), located under
BONITA_HOME\src\resources\mappers\hero\mapper. After retrieving user
information, it must be added fo the project instance and also fo the targeted
role. The Bonita workflow engine loads and executes these mapper classes at
runtime. If you add a custom mapper, please follow the next steps:

1. Look at the sample class above and implement the custom mapper logic in
a new java file.

2. Create asource .javafile, i.e. MyMapper.java. It must be within the package
hero.mapper.

3. Copy the java source file created above into the directory
BONITA_HOME /src/resources/mappers/hero/mapper

4. Go to the BONITA_HOME directory and type: ant deployMapper -
DmapperClass=<name of java source file>. For example, ant deployMapper —
DmapperClass=MyMapper

Properties Mapper

Presently, this type of mapper fills in the role with the user name of the creator of
the instance (based on the authenticated user that initiates the instance). This
mapper is useful for administrative workflow processes to assign the role specified

in the property to the user instantiating the process.

Examples of mapper code are available under
BONITA_HOME /src/resources/mappers/hero/mapper.

Chapter 2. Concepts 31

2.7 Performer Assignment

Performer Assignment increases Bonita functionality by providing a means to
modify standard assignment rules for activities.

2.7.1 Overview

This feature permits additional assignment rules other than those defined in the
standard Bonita model.

In the standard model (oriented toward cooperative Workflow), all users defined
in the group associated to the activity can see and execute the ToDo List within
this group.

By adding this functionality, a specified user can:

e Assign the activity to a user of a group by calling a java class in charge to do
the user selection into the user group (callback performer assignment)

¢ Dynamically assign the activity to a user by using an activity property
(properties performer assignment)

When this functionality is used, the user is notified (via mail nofification), that the
activity is ready to start.

The users of the groups, (roles in Bonita), associated to the activity will see the
activity but cannot start or terminate it.

This functionality is accessible within the Bonita API (see ProjectSessionBean API)
and inside the Bonita graphEditor application.

Furthermore, an activity can be assigned to the initiator of the instance. This
requires the use of a properties mapper (as described previously).

Note:

Only one performer assignment is valid at a given point. This means that although
multiple performer assignments via the Bonita APl may execute, only the last
assignment is reflected in the structure BnNodeValue (see Table 11.2.8,
BnNodeValue Attributes).

32 Bonita Workflow - Bonita API

2.7.2 Description of Performer Assignments

CALLBACK PERFORMER ASSIGNMENT

Callback Performer assignment allows the process developer to code a request
with its own algorithm of user selection. When callback performer assignment is
used, a call to ajava class is performed.

The name of this callback performer assignment is the name of the called java
class (i.e.: hero.performerAssign.CallbackSelectActors) located under
BONITA_HOMEN\src\resources\performerAssigns\hero\performerAssign. As
mappers, callbacks are loaded and executed by the Bonita workflow engine. To
add your own callback, please follow the next steps:

1. Look at the sample class specified above and implement the performer
assignment logic in a new java file.

2. Create asource .java file, i.e. MyPerformer.java. It must be within the
package hero.performer.

3. Copy the java source file into the directory
BONITA_HOME/src/resources/performers/hero/performer

4. Go to BONITA_HOME directory and type: ant deployPerformer -
DperformerClass=<name of you java source file>. For example,

ant deployPerformer -DperformerClass=MyPerformer

PROPERTIES PERFORMER ASSIGNMENT

Properties Performer Assignment allows the process developer to provide, at
properties performer assignment creation, the activity property used by the
workflow engine to assign the activity. This activity property must be

defined either within a previously started activity, with the property propagation,
or within the targeted activity about to be assigned.

Chapter 2. Concepts 33

2.8 Initiator Mapper

This feature implements restrictions to the workflow models in Bonita.

2.8.1 Overview

The Initiator Mapper feature adds additional security constraints to the workflow
instantiation operation. Through use of Initiator Mapper, the definition of users
allowed to instantiate a particular workflow models is restricted (normally all users
by default).

Initiator Mapper functionality permits:

e Access to the LDAP directory to dynamically resolve the list of users permitted
to instantiate a workflow process. This depends on the LDAP logic
organization using the default LDAP Initiator.

¢ Dynamic resolution of the list of users allowed to instantiate the workflow
model. This depends on logic implementing a Custom Initiator

This functionality is implemented in the Bonita API (see ProjectSessionBean API).
The resolution of this entity is done at getModels execution time.

2.8.2 Initiator Description

CUSTOM INITIATOR

The Custom Initiator permits the process developer to code a request with its own
algorithm of user selection. When this type of custom initiator mapper is added, a
call to ajava class is performed.

The name of this Custom Initiator is the name of the called java class (i.e.:
hero.initiatorMapper.CustomGroupMembers.java) located under
BONITA_HOMEN\src\resources\iniitatorMappers\hero\initiatorMapper. As
mappers and performer assignments, your custom initiators are loaded and
executed by the Bonita workflow engine. If adding a custom initiator, follow the
next steps:

1. Look at the sample class above and implement initiator logic within a new
java file.

2. Create asource .java file, i.e. Mylnitiator.java. It must be within the package
hero.initiatorMapper.

3. Copy the java source file into the following directory:
BONITA_HOME/ src\resources\iniitatorMappers\hero\initiatorMapper

4, Go to BONITA_HOME directory and type: ant deploylnitiator -
DinitiatorClass=<name of you java source file>. For example,

ant deploylnitiatorMapper -DinitiatorMapperClass=Mylnitiator

34 Bonita Workflow - Bonita API

LDAP INITIATOR

The LDAP Initiator uses the LDAP directory to retrieve users corresponding to a
specific role defined in a Bonita Workflow project. Please refer to the
documentation (Bonita LDAP configuration for JOnAS), to implement The LDAP

Initiator.

e LDAP initiator specifies:

The location of the LDAP groups. This depends on the attributes: roleDN
and roleNameAttribute

There is no mapping between roles/groups in the LDAP directory and
roles specified in the Bonita database (same name in both bases).

The afttribute name: UID is used to provide the mapping between the
actor identifier in the LDAP base and the userName specified in the
Bonita base.

If the LDAP group does not exist an exception is thrown.

Users found in the LDAP groups must be deployed before using the
mapyper function. Otherwise an exception is thrown.

The name of the initiator may be any name

e Limitations of this version of Bonita:

Groups cannot be recursive. Group inclusions are ignored.

There is no verification that the distinguished names (dn) specified for
users found in the LDAP groups are compatible with the LDAP tree
containing users defined in the JONAS LDAP realm configuration.

Chapter 2. Concepts 35

Chapter 3.User Management

3.1 Bonita User Management Basic Configuration

After Bonita installation and configuration, user specific data is stored in the
Bonita database chosen during the configuration phase. This consists of tables
created in the Bonita database providing security control and user management
as shown below.

Realm : dsrim_1
DSName : bonita
DSUrl : bonita

Mapper : hsql P EE Authentication

User, with the following REE role:
Admin (for Bonita Authentication)

\ =I_Boniia User Management |

Bonita Process roles
User Specific Profile

Bonita

Datasource

Figure 3-1. User Management Basic Configuration

This basic configuration could be changed according to preference. For
example, modify the configuration to utilize an existing user defined database or
to use an enterprise LDAP Directory.

3.2 Changing the Basic Configuration

User Management may move to the following schema to make an application
fully integrate an enterprise Information System. Bonita takes advantage of User
Management defined at upper levels to interface with the workflow application.

Chapter 3. User Management 37

Datasource
Realm

I R EE Authentication

<):IH User, with the following L2 EE roles:

Admin (for Bonita Authentication)

Bonita User Management

Bonita Process roles
User Specific Profile

Datasource

Figure 3-2. J2EE Authenftication

3.2.1 J2EE Authentication

Bonita uses the security realm defined in the global context for Jonas (jonas-
realm.xml file in JONAS_BASE/conf directory). To change the basic configuration:

To use another Datasource Security Realm:

Modify the existing datasource (called dsrim_1) with selected user and roles
queries.

To use an LDAP Security Realm:

Uncomment the <jonas-ldaprealm> sample file and reconfigure it. Take a look at
http://jonas.objectweb.org/current/doc/Config.html#Config-Security (look for
Configure LDAP resource in the jonas-realm.xml file)

3.2.2 Bonita User Management

38

By default, Bonita uses the hero.user.DefaultUserBase implementation class to
manage users. To add a User management class:

e Implement the hero.user.UserBase interface that provides users required
information dealing with the specified user's management system (database,
LDAP directory, User Interface...). This class must be located within the
hero.user package.

e Copy the java source file intfo BONITA_HOME/src/resources/users/hero/user
directory.

e Go to BONITA_HOME/src directory and type: ant deployUserBase -
DhookClass=<name of you java source file>. For example: ant deployUser —
DuserClass=MyUserClass

e Update the value of the user.base attribute with the class name
implementation (in the BONITA_HOME/ant.properties file).

Bonita Workflow - Bonita API

Chapter 4.User Registration Interface

4.1 Principle

The User Registration interface provides access to the J2EE users and roles
definition.

For EJB Session access, the User Registration interface automatically retrieves the
identity of the calling user in the J2EE security context. Because of this, calling the
User Registration interface from an unidentified context fails with an exception.

Also, the Bonita source permits only users with “Admin” or “users” J2EE roles to
access Project and User Session Interfaces.

A Important:

UserRegistration API should only be used when the User Management
configuration is the Bonita default configuration. If a user-defined User
Management implementation is being used, do NOT use the UserRegistration API.

4.2 Creating the UserRegistrationBean

The UserRegistrationBean may be seen as a handle for adding a new user or role
in the J2EE Application Server security context. First create the handle, and then
call the UserRegistration interface methods. This APl is a stateless session bean.

import javax.security.auth.login.LoginContext;
import hero.client.test.SimpleCallbackHandler;

import hero.interfaces.ProjectSession;
import hero.interfaces.ProjectSessionHome;
import hero.interfaces.ProjectSessionU til;

public class MyW orkFlow Class {

static public void main(String[] args) throws Exception {
User Admin authentication

char[] password={"t",'o",'t",'o"};
SimpleCallbackHandler handler new SimpleCallbackHandler("admin",password);
LoginContext lc new LoginContext("TestClient", handler);

Ic.login();

// User Registration Bean Creation using Remote Interface
UserRegistrationHome userRHome= (UserRegistrationHome) UserRegistrationU til.getHome();
UserRegistration urSession = userRHome.create();

Figure 4-1. Code Example for the UserRegistrationBean

Chapter 4. User Registration Interface 39

40 Bonita Workflow - Bonita API

4.3 Managing Users (via the UserRegistrationBean)

4.3.1 Creating Users

void userCreate (String name, String password, String email)

This function creates a user account with an email account. The user is
automatically assigned to the “Admin” group.

An exception is thrown in the following cases:

— If user name already exists

— If aninvalid parameter is specified

void userCreate (String name, String password, String email,
String jabber)

This function creates a user account with an instant messaging and/or email
address. The user is automatically assigned to the *Admin” group.

An exception is thrown in the following cases:

— If user name already exists

— If aninvalid parameter is specified

4.3.2 Defining Users

void setUserProperty (String userName, String key, String value)

This APl function is used with the UserRegistration Bean and sets a property for
the specified user “username”. User properties define user preferences. User
properties are a key/value pair. If key already exists assign the new value. If
key does not exist, create key and assign value.

An exception is thrown in the following cases:

— If user name does not exist

— If aninvalid parameter is specified

void setUserRole (String userName, String roleName)

Set a new authorization role for the user.

An exception is thrown in the following cases:
— If user name does not exist
— IfroleName cannot be added (l.e. role name not found).

Chapter 4. User Registration Interface 41

4.3.3 Deleting Users

void deleteUser (String userName)

Delete a user from the Bonita database. If the specified user (username) is
included in active projects this method throws an exception.

An exception is thrown in the following cases:

— If user name does not exist

— If user name is involved in other projects/processes

4.4 Creating User Roles

void roleCreate (String name, String roleGroup)

This creates a new authorization role in the system for “name”. This role is used
to control the user access o different APls. Remember that the User
Registration APl deals with J2EE identities. These roles must not be confused
with Bonita roles associated with projects.

This function is useful for changing the defaults roles of Bonita and allows more
precise confrol over access rights.

For more information about security roles and J2EE refer to:
http://jonas.objectweb.org/current/doc/PG Security . himI#PG_ Security

An exception is thrown in the following case:

— If the role name already exists

42 Bonita Workflow - Bonita API

4.5

Code Example

The following figure is a code Example for user creatfion.

import javax.security.auth.login.LoginContext;
import hero.client.test.SimpleCallbackHandler;

import hero.interfaces.ProjectSession;
import hero.interfaces.ProjectSessionHome;

import hero.interfaces.ProjectSessionUtil;

public class MyW orkFlow Class {

static public void main(String[] args) throws Exception{
// User Admin authentication
char[] password={"t",'o",'"t",'0"};

SimpleCallbackHandler handler = new SimpleCallbackHandler("admin",password);

LoginContext lc = new LoginContext("TestClient", handler);
lc.login();

// User Registration Bean Creation using Remote Interface

UserRegistrationHome userRHome= (UserRegistrationHome) UserRegistrationUtil.getHome();

UserRegistration usrReg = userRHome.create();

// User "jack" (customer) creation in Bonita database
try{

userReg.userCreate("jack","jack","miguel.valdes-faura@ ext.bull.net");
tcatch(Exception e){System.out.println(e) ;} // Maybe user exists

// User "john" (service customer) creation in Bonita database

try{
userReg.userCreate("john","john","miguel.valdes-faura@ ext.bull.net");

jcatch(Exception e){System.out.println(e) ;} // Maybe user exists

userReg.remove();

Figure 4-2. Coding Example of User Creation

Chapter 4. User Registration Interface

43

Chapter 5.Project Interface

5.1

5.2

Principle

The Project interface provides access to API functions that permit modification of
execution for a given process.

In the case of EJB Session access, the Project interface automatically retrieves the
identity of the calling user in the J2EE security context. In this case, calling the
Project interface from an unidentified context fails with an exception. Therefore,
this interface is initiated for a given user. Only the processes where Users are
declared can be accessed.

Once the Project interface is created, it must be initiated. Initiating the Project
interface allows specifying which project is going to be managed thru the
Interface.

An example of code using this interface is shown below.

Creating the ProjectSessionBean

Think of the ProjetSessionBean as a handle into the Bonita workflow System. First,
create the handle then associate a given project to this handle in order to modify
it.

import javax.security.auth.login.LoginContext;
import hero.client.test.SimpleCallbackHandler;

import hero.interfaces.ProjectSessionHome;
import hero.interfaces.ProjectSession;
import hero.interfaces.ProjectSessionU til;

import hero.interfaces.Constants;
import java.util.*;
public class SampleProjectApi {
static public void main(String[] args) throws Exception{

// User Admin login

char[] password={"t,'o",'t",'o"} ;

SimpleCallbackHandler handler = new SimpleCallbackHandler("admin",password);
LoginContextlc = new LoginContext("TestClient", handler);

lc.login();

/' Project Session Bean Creation using Remote Interface
ProjectSessionHome priHome= (ProjectSessionHome) ProjectSessionUtil.getHome();
ProjectSession prjSession = prjHome.create();

Figure 5-1. Coding Example for a Project Session Bean

Chapter 5. Project Interface 45

5.3 Initiating the ProjectSessionBean

5.3.1 Initiating the Session Bean (Cooperative Projects &
Instances)

void initProject (String projectName)

Creates or initializes a cooperative workflow project. This method may be
used to initialize workflow instances.

The Project interface is initialized with the given projectName.

If the projectName does not exist, a new empty project is created and given
this name. The user is assigned the Bonita “admin” role for this project. There
are no restrictions on the number of characters in the process/project name.
An exception is thrown in the following cases:

— If project name is null

— If project name already exists a warning message is displayed

— Ifthere is a problem in the project version, type, or status

5.3.2 Initiating the Session Bean (Models)

void initModel (String modelName)

Creates or initializes workflow models.

The Project interface is initialized with the given modelName. If the
corresponding modelName does not exist, a new empty model is created
and given this name. The user is assigned the Bonita “admin” role for this
project. There are no restrictions on the number of characters in the
process/project name.

An exception is thrown in the following cases:

— If model name is null

— If model name already exists a warning message is displayed

— If there is a problem in the project version, type, or status

46 Bonita Workflow - Bonita API

5.3.3 Initiating a Project Using the Clone Project Creation Option

void initProject (String oldProject, String newProject)

The Project interface is initialized after oldProject is cloned. This interface is
initialized with the given newProject project name.

A Important:

After using the initProject method, all subsequent interface methods deal with the
corresponding project.

An exception is thrown in the following cases:

— If either old project name or new project name is null
— If new project name already exists

— If the creator does not have ADMIN privileges

— If creator name does not exist

5.3.4 Initiating Using the Instantiate Project Creation Option

void instantiateProject (String modelName)

The Project interface is initialized after new project instance is created. This
interface is initialized with the new project instance name given by Bonita
automatically. Bonita derives the instance name from the model name as
follows:

<instance-name> = <model-name>_instance<sequence-number>

All subsequent inferface methods deal with the corresponding project
instance.

After this instantiation, users have to be added to the new instance if they
were not defined in the process model (if a RoleMapper entity was not
defined). Also, users must be assigned roles fo start/stop activities in this new
project.

Note:

Only workflow models can be instantiated. Cooperative projects are ready-to-
define, ready-to-execute just after creation.

An exception is thrown in the following case:
— Ifthere is any error detected in creating the instance of this project

Chapter 5. Project Interface 47

48

void initModelWithVersion (String modelName, String modelVersion)

Create a workflow process model or Initialize the Project Session Bean for this
model for a particular version. This method is called after the API “create”
call. After execution, all the APl methods of ProjectSession APl are available.
An exception is thrown in the following case:

— IfmodelName is null

String instantiateProject (String project, Hashtable
initProperties)

Create a project instance. Call this method after executing the “create” API
call. After execution, an instance of the specified project and all methods of
ProjectSession APl are available. This call uses the default project version.
Return the Hashtable — the default value for properties defined at process
level.

String instantiateProject (String project, String version,
Hashtable initProperties)

Create a project instance with the specified version. Call this method after
executing the “create” API call. After execution, an instance of the specified
project and all methods of ProjectSession API are available.

Return the Hashtable — the default value for properties defined at process
level.

String instantiateProject (String project, String version)

Create a project instance with the specified version. Call this method after
executing the “create” API call. After execution, an instance of the specified
project and all methods of ProjectSession API are available.

Return a new Hashtable — the default value for properties defined at process
level.

Bonita Workflow - Bonita API

5.3.5 Code Example

[FEFEEREEE AP] Documentation - Sample 1 (adapted version) ¥/

//Process creation by user admin
prjSession.initProject("Original Process");
//if "Original Process" does not exists, it is created.
// Process definition see following sections
// adding activities, edges, ...
"

//Process "Original Process" Cloning into "Clone Process"
try {
prjSession.initModel("Original Process", "Clone Process");
} catch(Exception e) {System.out.println(e);} //Maybe project does not exists

// "Original Process" instantiation
try {
prjSession.instantiateProject("Original Process");
} catch(Exception e) {System.out.println(e);} //Maybe project does not exists
// The new instance becomes the current project

Figure 5-2. Cloning Code Example

5.4 Managing a Project

With Bonita, there is a single APl dealing with projects (i.e. the
ProjectSessionBean). This APl is used to control processes, no matter which kind of
process they are:

e Processes may exist by themselves without a relationship to a process model.
In this category processes are created from scratch, or cloned from parent
processes.

e A process may be a process model, from which process instances could be
derived. Presently, a process model may be executed as well, but this
behavior will be removed in the near future.

e Process instances are specific executable processes whose definitions are
contained in a process model. At creation time, the specific context of this
instance is taken into account to make the instance unique.

Chapter 5. Project Interface 49

5.4.1 Project Attributes

A project has a name, assigned at creation time thru the Project API.

The names of process instances are constrained. Bonita automatically allocates a
name using following pattern:

<Project Model Name>_instance<Project Instance Number>.

The <Project Instance Number> is automatically assigned and managed by
Bonita.

A project has properties, which are key/value pairs. Enumeration String types are
also permitted.

When a project is created Bonita records the name of the user creating the
project and the project creation date and other attributes.

The constant values associated with process states are shown in the following

fable.

CONSTANT VALUE
hero.interfaces.Constants.Pj.INITAL 0
hero.interfaces.Constants.Pj.STARTED 1
hero.interfaces.Constants.Pj.TERMINATED 2

Table 5-1. Process State Constants

The constant values associated with process types are shown in the following

fable.

CONSTANT VALUE
hero.interfaces.Constants.Pj. COOPERATIVE Cooperative
hero.interfaces.Constants.Pj.MODEL Model
hero.interfaces.Constants.Pj.INSTANCE Instance
hero.interfaces.Constants.Pj.ACTIVITY Activity

Table 5-2. Process Type Constants

The constant values associated with process status are shown in the following

table.

CONSTANT VALUE
hero.interfaces.Constants.Pj.ACTIVE Acftive
hero.interfaces.Constants.Pj.HIDDEN Hidden

50 Bonita Workflow - Bonita API

Table 5-3. Process Status Constants

Chapter 5. Project Interface 51

5.4.2 Active/Hide a Workflow Process

void activeProcess ()

This sets the process status to Active (model/cooperative/instance).

Workflow processes can only be executed or instantiated if status equals
active

An exception is thrown in the following cases:
— If the issuing application does not have ADMIN privileges
— If the process is already active, a warning message is issued.

void hideProcess ()

This sets the process status to Hidden (model/cooperative/instance).
This state allows workflow model modifications once they are instantiated.

An exception is thrown in the following cases:
— If the issuing application does not have ADMIN privileges
— If the process is already hidden, a warning message is issued.

5.4.3 Getting the Name of a Project or an INSTANCE

String getName () ;
Return the name of the project being managed by the current instance of

the ProjectSessionBean interface. If there is no current instance, null is
returned.

String getProjectNameOfInstance (String instanceName)
Return the project name for the instance “instanceName™.

An exception is thrown in the following case:
— IfinstanceName is not a project instance

5.4.4 Getting the Name of the Parent Project

String getParent ()

If the current project is a subProcess, returns the name of its parent project. If
this is not a sub process, returns the name of the created project.

52 Bonita Workflow - Bonita API

5.4.5

5.4.6

Getting the Name of a Project’s Creator

String getCreator ();

A string is returned with the name of the user creating the current Project. The
projects creator name is automatically saved by the Bonita executive after a
project is created thru the ProjectSessionBean Interface.

Properties

void setProperty (String key, String value)

If key does not exist, creates a new property and assigns the value. If key
exists, this function overrides the value of the existing property with the new
value.

An exception is thrown in the following cases:

— If the value specified is not allowed (see setPossibleValues)

— If aninvalid parameter is specified

— Ifissuer does not have access to this project

void setPropertyPossibleValues (String key, Collection values)

Set property possible values. Argument “values” represent a collection of

data as possible property values. If *values” already exist for the specified
key, the "values” remain unchanged (see updatePropertyPossibleValues).
These values are compared when the setProperty APl call is executed.

An exception is thrown in the following cases:

— If the user of the issuing application is not defined in this project

- If "key” is not found

void updatePropertyPossibleValues (String key, Collection values,
Collection defaultValues)

This APl method allows users to dynamically change the possible values
defined for this property (see setPropertyPossibleValues). This APl method is
used for enumeration types only. A default value is mandatory for this
method.

An exception is thrown in the following cases:

— If the user of the issuing application is not defined in this project

- If "key” is not found

— If a default value is not one of the possible values

Chapter 5. Project Interface 53

Collection getProperties ()

Refurn a (BnProjectPropertyValue Collection) of all properties existing
for this project. See Table 11-11 BnProjectPropertyValue Attributes. If no
properties exist for the project, “NULL" is returned.

Collection getPropertiesKey ()

Return a (string Collection) of all the properties keys for the current
project. The referenced property is a pair key/value representing workflow
relevant data but just the key names are returned. If no key values are
assigned, “NULL" is returned.

BnProjectPropertyValue getProperty (String key)

Return the property value of the project for the specified key. The property is
from a key/value pair associated to this project.

void deleteProperty (String key);

Delete a property of an existing project based on the specified key.

An exception is thrown in the following cases:
— If the issuing application does not have ADMIN privileges
— If the specified key/property is not found

5.4.7 Project Details

BnProjectValue getDetails ()

Return project information: project attributes, nodes, edges, hooks,
properties...
Values returned are shown in Table 11-12, BnProjectValue Attributes.

ArrayList getChoices (String value, Collection possibleValues)
Get the list of choices into the value of the enumerated property. This API

returns a list of possible choices based on the possible values. An example of
usage is a checkbox with multiple selections.

54 Bonita Workflow - Bonita API

String getVersion ()

Return a String with the project version.

String getStatus ()

Return a String with the project status (Active or Hidden).

String getType ()

Return the type of the project (Cooperative/Model/Instance).

Collection getRolesValue ()
Return a Collection of BnRoleValue objects — representing the roles of the
project.

BnRoleValue getRoleValue (String roleName)
Return the values of this role in the project. See Table 11-14, BnRoleValue
Attributes.

Collection getUsersRole (String roleName)

Return a collection of users matching with roleName in the current project.

BnProjectPropertyValue getProperty (String key)

Get a property value of the project. Return the properties associated to
key/value pair for this project.

Returns null if the value is not found.

Collection getInterHooks ()

Return a collection of ProjectinterHookValue containing the project
InterHooks.
Returns null if no InterHooks exist.

String getInterHookValue (String hook)

Returns a String with the inter hook value script. This method returns the hook
script associated to all project nodes.

An exception is thrown in the following case:
— If the issuing application does not have ADMIN privileges

Chapter 5. Project Interface 55

56

Object[] getIterations ()

Return a collection of BnlterationLightValue with all project iterations.

Collection getIterations (String from)

Get node destinations for this iteration. Return a collection of
BnlterationLightValue of project iteration destinations for node “from™.

boolean getIterationExist (String from)

Returns TRUE if this node starts one or more iterations.

Collection getIterationConditions (String from)

Return a Collection of iteration conditions that start in node “from”. There may
be multiple iterations specified for node “from™.

An exception is thrown in the following case:

— I String from (node) is not found

boolean isTerminated ()

Test if all the projects nodes are terminated (in terminated state.) Returns TRUE
if all project nodes are in terminate state. Returns FALSE if any node is notin
terminate state.

boolean existingProject (String projectName)

Test to see if a project with projectName name exists. Returns TRUE if project
name exists. This APl uses the default project version (set to 1.0 in
EventConstants.java).

An exception is thrown in the following case:

- If projectName is null

boolean existingProject (String projectName, String
projectVersion)

Test to see if a project with projectName name exists with the specified
projectVersion. Returns TRUE if project and version name exist.

An exception is thrown in the following case:

— If projectName is null

Bonita Workflow - Bonita API

5.4.8

Code Example

A R R R R RS SRR R R RRRRE

/************** API DOCumentatiOn - Sample 2 *******************/
sttt st ol ok R SRR SRR s s R R R R Rk

String processName = prjSession.getName() ;
System.out.println("Current Process : " + processName) ;

try {
String parentName = prjSession.getParent();
System.out.println("Parent Process : " + parentName) ;
} catch(Exception e) {System.out.println(e);} /Maybe there is no parent

try {
String creatorName = prjSession.getCreator();
System.out.printIn("Process Creator : " + creatorName) ;
} catch(Exception e) {System.out.println(e);} /Maybe there is a problem

try {
prjSession.setProperty("userld","user1");
prjSession.setProperty("recordIld","1111");
prjSession.setProperty("orderld","0001");
} catch(Exception e) {System.out.println(e);} /Maybe there is a problem

// First way to get properties values
System.out.printIn("First way to access proprerty values : ");

Collection properties = prjSession.getProperties() ;
Iterator i = properties.iterator();
while (i.hasNext())

hero.interfaces.BnProjectPropertyValue property = (hero.interfaces.BnProjectPropertyValue)i.next();
try {

String propertyKeyName = property.getTheKey();

String propertyValue = (String)property.getTheValue();

System.out.printIn("Property (Key, Value) : " + propertyKeyName + "/" + propertyValue);
} catch(Exception e) {System.out.println(e);} /Maybe there is a problem

}

// Second way to get properties values
System.out.println("Second way to access proprerty values : ");
properties = prjSession.getPropertiesKey() ;

i = properties.iterator();

while (i.hasNext())

String propertyKey = (String)i.next();

try {
hero.interfaces.BnProjectProperty Value propertyValue = prjSession.getProperty(propertyKey);
System.out.printIn("Property (Key, Value) : " + i+ "/" + propertyValue);

} catch(Exception e) {System.out.println(e);} /Maybe there is a problem

}

//Deleting Property
try {
prjSession.deleteProperty("orderld");
} catch(Exception e) {System.out.println(e);} /Maybe there is a problem

//Verification

System.out.println("Properties after one deletion : ");
Collection propertiesLeft = prjSession.getPropertiesKey() ;
Iterator j = properties.iterator();

while (j.hasNext())

{

String propertyLeftKey = (String)j.next();

try {
hero.interfaces.BnProjectPropertyValue propertyValue = prjSession.getProperty(propertyLeftKey);
System.out.printIn("Property (Key, Value) : " + i+ "/" + propertyValue);

} catch(Exception e) {System.out.println(e);} /Maybe there is a problem

Figure 5-3. Project Properties Code Example

Chapter 5. Project Interface

57

5.5 Defining and Obtaining Activity Information

5.5.1 Types of Activities

An Activity type can be one of the following types.

Activity 1 Activity 1

Activity 3 Activity 3

Activity 2 Traditional Activity 2 Traditional

(Manual) or (Manual) or
Automatic Automatic

AND_JOIN_NOD ORJOIN_NOD
AND_JOIN_AUTOMATIC NOD OR DOIN_AUTOMATIC NOD

Figure 5-4. Activity Types

Another possibility is SUB_PROCESS_NODE: this node is itself a complete process
included in the current process as a sub-process.

The following table displays the constant values associated with activity types.

CONSTANT VALUE
hero.interfaces.Constants. Nd.AND _JOIN NODE 1

hero.interfaces.Constants.Nd.OR_JOIN NODE 2
hero.interfaces.Constants. Nd.AND JOIN AUTOMATIC NODE 3
4
5

hero.interfaces.Constants. Nd.OR_JOIN AUTOMATIC NODE
hero.interfaces.Constants. Nd.SUB_ PROCESS NODE

Table 5-4. Constant Values for Node Types

58 Bonita Workflow - Bonita API

5.5.2 Activities States

. See:

See the "Activities basics “section 2.3.1 of this document.

The constant values associated with the main activities states are shown in the
following table.

CONSTANT VALUE
hero.interfaces.Constants.Nd.INITIAL 0
hero.interfaces.Constants.Nd.READY
hero.interfaces.Constants.Nd.DEAD
hero.interfaces.Constants.Nd.ANTICIPABLE
hero.interfaces.Constants.Nd.ANTICIPATING
hero.interfaces.Constants.Nd.EXECUTING
hero.interfaces.Constants.Nd.EXECUTED
hero.interfaces.Constants.Nd.INERROR
hero.interfaces.Constants.Nd.FINISHED
hero.interfaces.Constants.Nd.TERMINATED
hero.interfaces.Constants.Nd.CHECKEDOUT
hero.interfaces.Constants.Nd.ANT_SUSPENDED 11
hero.interfaces.Constants.Nd.EXEC_SUSPENDED 12
hero.interfaces.Constants.Nd.BAD_TRANSITION 13
hero.interfaces.Constants.Nd.INITIAL 14

—_

NV O |IN |~ MW N

o

Table 5-5. Constant Values for Node States

Chapter 5. Project Interface 59

5.5.3

Creating an Activity

void addNode (String name, int nodeType)

Add “String name"” node to the project. This method creates a node with the
corresponding node type (See Table 5-4, Constant Values for Node Types)
and assigns to it a role equal to InitialRole. This role is not assigned to any user
at creation time, so this activity is not eligible for use until the setNodeRole
method is called. This API call uses a default version of 1.0.

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges

— If the specified node name already exists

— If node name is null

— If a parameter value is invalid

Note:

If IMS is enabled, a message is sent to the caller.

void addNode (String name, String projectVersion, int nodeType)

Add “String name” node to the project. This method creates a node with the
corresponding node type (See Table 5-4. Constant Values for Node
Types) and assigns fo it a role equal to InitialRole. This role is not assigned to
any user at creation time, so this activity is not eligible for use unfil the
setNodeRole method is called. If the nodeType is a sub process, the version of
the parent and sub process must match.

An exception is thrown in the following cases:
If the issuing application does not have ADMIN privileges

— If the specified node name already exists

— If node name is null

— If a parameter value is invalid

— If created node is a sub process, the projectVersion does not match the
parent projectVersion

Note:

If JIMS is enabled, a message is sent to the caller.

60 Bonita Workflow - Bonita API

5.5.4 Creating SubProcess Activity

void addNodeSubProcess (String name, String projectName)

Add “name” subProcess node to the specified project. This method creates
the subProject from an existing project and creates the node associated to it.
The type of created node is
hero.interfaces.Constants.Nd.SUB_PROCESS_NODE

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges

— If an error occurs in the add sub process

void addNodeSubProcess (String name, String projectName, String
projectVersion)

Add “name” subProcess node to the specified project. This method creates
the subProject from an existing project and creates the node associated to it.
The type of created node is
hero.interfaces.Constants.Nd.SUB_PROCESS_NODE

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges

— If an error occurs in the add sub process

void deleteSubProcessNode (String name, String version)

Delete a node (“name”) with type subProcess from the project if this node is
not in the executing state.
An exception is thrown in the following cases:
If the issuing application does not have ADMIN privileges
— If the state of the node is executing
— If name cannot be found
— If name has a subProcess (all subProcess nodes must be removed first)

Chapter 5. Project Interface 61

5.5.5 Configuring an Activity

void setEditNode (String node, String role, String description,
long deadline)

Set the information on node changes (including role, description, and
deadline). This is commonly used by the graphical client application included
in the Bonita distribution (struts based)

An exception is thrown in the following case:

— If the issuing application does not have ADMIN privileges

void setNodeAnticipable (String name)

Set the node in anfticipable mode. The anticipable attribute is set true. See
Section 11.2.8, BnNodeValue attributes. Please see Section 2.3.1 for an
explanation of traditional versus anficipable mode.

An exception is thrown in the following case:

— If the issuing application does not have ADMIN privileges

void setNodeAutomatic (String name)

Set the node in automatic mode (sets node to anficipating state). The
responsibility of activity execution is now under control of the Bonita engine.
(Thatis, the Node “name” is no longer manually started.)

An exception is thrown in the following case:

— If the issuing application does not have ADMIN privileges

void setNodeDeadline (String name, long date)

Set an absolute node deadline (i.e. 11-05-2006). The activity deadline is the
latest date by which the activity must be finished. This API Call is deprecated.
Call is replaced by setNodeDeadlines following below.

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges

— If the specified date is before the current date.

62 Bonita Workflow - Bonita API

void setNodeDeadlines (String name, Collection co)

Set one or more deadlines for the node. The activity deadline is the latest
date by which the activity must be completed.

An exception is thrown in the following cases:
— If the issuing application does not have ADMIN privileges
— If the new deadline is before/earlier than current date.

Note:

If JIMS is enabled, a message is senft.

void setNodeRelativeDeadline (String name, long date)

Set a relative node deadline (ex: 2 hours). Activity deadline is the latest date
or time in which the activity must be finished. Call is deprecated and replaced
by setRelativeDeadlines explained below.

An exception is thrown in the following case:
— If the issuing application does not have ADMIN privileges

Set one or more deadlines for the node. The activity deadline is the latest
date by which the activity must be completed.

An exception is thrown in the following case:
— If the issuing application does not have ADMIN privileges

Note:

If JIMS is enabled, a message is senft.

void setNodeDescription (String name, String description)

Set the node description. Node description represents explicit execution
related information for this task.

An exception is thrown in the following case:
— If the issuing application does not have ADMIN privileges

Chapter 5. Project Interface 63

64

void setNodeProperty (String nodeName, String key, String value)

Set a property of a node for “nodeName”. A property is a pair key/value
representing workflow relevant data. This method propagates the defined
key/value property to other nodes automatically. If the key name does not
exist, the key is created and assigned the value.

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges

— If key name does not exist a warning message is issued.

— If the supplied value is not allowed (see setNodePropertyPossibleValues)

void setNodeProperty (String nodeName, String key, String value,
Boolean propagate)

Set a property of a node. A property is a pair key/value representing workflow
relevant data. The use of the propagate argument specifies whether to
propagate this property. If the key name does not exist, the key is created
and assigned the value.

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges

— If key name does not exist a warning message is issued.

— If the supplied value is not allowed (see setNodePropertyPossibleValues)

void setNodePropertyPossibleValues (String nodeName, String key,
Collection values)

Set possible property values for a specific node. The values argument
represents acceptable values as property values. Key/value must be
enumerated type.

If the key name does not exist, the key is created and assigned the value.
An exception is thrown in the following case:

— If the issuing application does not have ADMIN privileges

Void updateNodePropertyPossibleValues (String nodeName, String
key, Collection values, Collection defaultValues)

Update possible values for a specific node. Key/value must be enumerated
type. The collection of defaultValues represents the values replacing the
collection of (current) values.

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges

— If key name does not exist.

— If current value does not compare to stored value (invalid value error.)

Bonita Workflow - Bonita API

void setNodeTraditional (String name)

Set the node in traditional mode. When a node is traditional the anticipable

aftribute is set to false. This method must be used if you want o execute this

activity in a traditional. Refer to Section 2.3.1 for an explanation of traditional
versus anticipable mode.

An exception is thrown in the following case:

— If the issuing application does not have ADMIN privileges

void setNodeType (String name, int type)

Set the node type. Change the current type of the node (if node is not
executing). See Table 5-1, Constant Values for Node Types.

An exception is thrown in the following case:

— If the issuing application does not have ADMIN privileges

void addInitiatorMapper (String mapperName, int mapperType)

Add or Update a mapper for the INITIATOR role. This type of mapper uses a
Java file loaded at run time. If the mapper name exists it is updated,
otherwise the mapper name is created.

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges

— If a parameter value is invalid

Chapter 5. Project Interface 65

5.5.6

Iterating Activities

void addIteration(String from, String to, String condition)

Add a new iteration between two nodes. The intent is to iterate “from” node
B “to” node A. The “from” parameter is the name of the first node (node
testing a value), the “to” parameter is the name of the node to execute
based on the value.

Note:

The iteration must be added to the node executing last (“from” or Activity B
below). In the following figure, activity A is executed, then some activities
between A and B take place, and then B is executed. After the processing of B,
confrol goes back to A if the iteration condition set in B evaluates to true.

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges

— If the iteration request does meet the listed constraints in Section 2.3.3,
[terations.

Activity A (To) Activity B (From)

Edge Edge

Iteration from B to A

Figure 5-5. Iteration Example

The iteration condition may be something like “lastNodeProperty.equals
(\"value\")". The value of the property is evaluated depending on the execution
of the process. That is, the value may change during process execution and is
evaluated to make the iteration decision.

void deleteIteration (String from, String to)

Delete iteratfion between two nodes.

An exception is thrown in the following cases:
— If the issuing application does not have ADMIN privileges
— If the “From” and/or “To"” nodes do noft exist

66 Bonita Workflow - Bonita API

5.5.7 Getting Information about Nodes in the Project

Object getNodes ()

Returns project nodes data as an array of StrutsNodeValue. This is especially
useful for a Struts-based web application, but may be used in any type of
application.

Collection getNodesNames ()

Return a String Collection of all node names in the project. If no nodes exist,
“NULL" is returned.

5.5.8 Getting Information about a Specific Node

BnNodeValue getNode (String projectName, String nodeName)

Get Node Value from a specific project (See Table 11.2.8, BnNodeValue
Attributes).

An exception is thrown in the following cases:

— If the project name does not exist

— If the named project is not accessible by this requestor

String getNodeDeadline (String nodeName)

Return a node deadline. Activity deadline is the latest date or fime by which
the activity must complete. If no deadline exists null is returned. This call is
deprecated and replaced by getNodeDeadlines.

An exception is thrown in the following case:
— If the node name does not exist

Collection getNodeDeadlines (String nodeName)

Return a collection of deadlines for the node. Activity deadline is the latest
date by which the activity must finish. If no deadlines exist for the node, null is
returned.

An exception is thrown in the following case:
— If the node name does not exist

String getNodeDescription (String name)

Return the node description. Node description represents explicit execution
related information for this fask. See Table 11.2.8, BnNodeValue Attributes.

Chapter 5. Project Interface 67

68

String getNodeExecutor (String name)

Return the node executor. Return the name of the user executing the activity.
See Table 11.2.8, BnNodeValue Attributes.

Collection getNodeProperties (String nodeName)

Returns a (BnNodePropertyValue Collection) of Node properties as a list of
pair key/value properties assigned to the node. See Table 11.2.8,
BnNodeValue Attributes. If no key/value properties exist, “NULL" is returned.

BnNodePropertyValue getNodeProperty (String nodeName, String key)

Return Node property value. Get the pair key/value properties associated to
the node. See Table 11.2.8, BnNodeValue Attributes. If no key/value

properties exist, “NULL" is returned.

int getNodeState (String name)

Return the state of the node. See Table 11.2.8, BnNodeValue Attributes.

int getNodeType (String name)

Return the type of the node. See Table 11.2.8, BnNodeValue Attributes.

BnNodeValue getNodeValue (String name)

Return the node name Value. See Table 11.2.8, BnNodeValue Attributes.

An exception is thrown in the following case:
If the node name does not exist

boolean getNodeAnticipable (String name)

Return true if the node is ready for execution in anticipated mode. See Table
11.2.8, BnNodeValue Attributes.

Bonita Workflow - Bonita API

5.5.9 Deleting an Activity

void deleteNode (String name)

Delete a node from the project.

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges

— If the named node is executing

— If the named node has a sub process (must delete sub process first)

void deleteNodeProperty (String nodeName, String key)

Delete a property of a node. Deletes the node property associated with this
key

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges

— If the named key/property is not found

— If the named node does not exist

5.5.10 Model Definition Check

void checkModelDefinition ()

This functionality was added in Bonita v2. This method checks that the model
is defined correctly. It must be called at the end of process model definition.

Presently only iteration guidelines (explained in Section 2.3.3. Iterating
Activities) are verified, but in future versions this method may include other
model definition verification.

Chapter 5. Project Interface 69

70

checkModelDefinition Method Verification

The next two examples explain the checkModelDefitinion () method verification.

Example1 condd
v
1 cond3
A » B > C o p [P g > F
A
cond2 lteration
.............. >
Example2 patht
H :
path3
A B C » D » E
....... pam ration
.............. >

Figure 5-6. Check Model and Verification

Bonita Workflow - Bonita API

checklteration method:

Checks that the iteration's conditions are not empty

In examplel it is not possible fo have a null value: i.e. cond2.equals (). In that
case a HeroException is thrown.

Note:

The value "true" is NOT allowed as this creates a condition that produces an
infinite loop.

Checks if a path between from =2 to activities exists and is defined in the
iteration. This process repeated to guarantee that the model is well defined
(some transitions could have been removed). If the path does not exist, an
exception is thrown.

If multiple iterations exist in the same node, then a check verifies that the
iteration conditions are different. If the conditions are not different, an
exception is thrown. In example2 of Figure 5-6 (Check Model and
Verification), path1 condition must be different from path2 condition.

checkMandatorylterationConditions ():

Verifies that mandatory conditions on the out edges of nodes creating an exit

point from the iteration.

In examplel of Figure 5-6 (Check Model and Verification), cond1 and cond3

have to be set.

— throws a HeroException if these edges don't specify a condition

— throws a HeroException if the condition is empty (NULL): condl.equals(™)

— throws a HeroException if the condition value is "true":
condl.equals("true")

Verifies that mandatory conditions on the out edges for the node starting the
iteration differ from the iteration's condition.

In examplel of Figure 5-6 (Check Model and Verification), cond1 must be
different from cond2 and cond3 must be different from cond4.

Throw a HeroException if the iteration’s starting condition and out edge's
condifion are equal.

Chapter 5. Project Interface 71

Code Example

el

ProjectSessionHare prijHore = (ProjectSessionHare) ProjectSessionUtil.getHare();

ProjectSession prjSession = prjHame.create();

prijSession.initModel ("Doublelteration”) ;

try {
// Activities creation
prijSession.addNode ("A", hero.interfaces.Constants.Nd.AND JOIN NCLE) ;
prijSession.addNode ("B", hero.interfaces.Constants.Nd.AND JOIN AUTOVATIC NCDE) ;
prijSession.addNode ("C", hero.interfaces.Constants.Nd.AND JOIN AUTOVATIC NCDE) ;
prijSession.addNode ("D", hero.interfaces.Constants.Nd.AND JOIN AUTOVATIC NCDE);
prjSession.addNode ("E", hero.interfaces.Constants.Nd.AND JOIN AUTOVATIC NCDE);
prijSession.addNode ("F", hero.interfaces.Constants.Nd.AND JOIN AUTOVATIC NCDE) ;

// Setting Activities types

prijSession.setNodeTraditional ("A");
prijSession.setNodeTraditional ("B") ;
prijSession.setNodeTraditional ("C");
prijSession.setNodeTraditional ("D");
prijSession.setNodeTraditional ("E") ;
prijSession.setNodeTraditional ("E");

// Adding project properties
priSession.setProperty ("conditionl", "50"); // % to do lst iteration
prjSession.setProperty ("condition2", "50"); // % to do 2nd iteration
prijSession. setProperty ("randaum", "0"); // random nurber who decides

// if we iterate or not

o

// BAdding edges ketween activities

prijSession.addEdge ("A", "B");

prijSession.addEdge ("B", "C");

prijSession.addEdge ("C", "D");

String frawDtoE = prijSession.addEdge("D", "E"); // Exit conditions fram iterations
String frarEtoF = prijSession.addEdge("E", "E");

// Ading 'D' & 'E' edge conditions
prjSession.setEdgeCondition (framDtcE,

" (new Integer (randarNum) .intValue() >= new Integer (conditionl).intValue())");
priSession. setEdgeCondition (frarEtoF,

"(new Integer (randarNum) .intValue() >= new Integer (condition2).intValue())");

// Adding D & E hooks (that generate random values saved in randonNum property)
e/

// Adding iterations: between D—>B and E——>C
prijSession.addTteration("D", "B",

"(new Integer (randarNum) .intValue() < new Integer (conditionl).intValue())");
prijSession.addTteration("E", "C",

" (new Integer (randarNum) .intValue() < new Integer (condition2).intValue())");

// Check model definition
prjSession.checkModelDefinition() ;

Figure 5-7. CheckModelDefinition Code Example

72 Bonita Workflow - Bonita API

5.6 Managing Edges

5.6.1 Adding an Edge to an Activity
An edge is a way to establish a dependency between two activities.

Edges have unique names in the scope of the project. The name of the edge can
be assigned by the application, or automatically generated by Bonita. Edges
may also be created using the ProEd facility.

String addEdge (String in, String out);

The two activities, named “in” and "“out”, are connected by a new edge.
The method returns the name of the newly created edge. In this case the
name is assighed by Bonita.

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges

— Ifthe “IN" or *OUT"” node does not exist

— If apath from “IN" to "OUT” does not exist

— If an edge already exists

- If"*OUT" is in execution

5.6.2 Deleting an Edge

void deleteEdge (String name);

The edge with the parameter "name™” is deleted.

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges
— If the named edge does not exist

— If out edge is in execution

Note:

If IMS is enabled, a message is sent.

Chapter 5. Project Interface 73

5.6.3 Getting Connected Activities from an Edge

String getEdgeInNode (String edgeName) ;

Return the name of the inbound node of the given edgeName.

An exception is thrown in the following case:
— If the named edge does not exist

String getEdgeOutNode (String edgeName) ;

Get back the name of the outbound node of the given edgeName.

An exception is thrown in the following case:
— If the named edge does not exist

5.6.4 Setting a Condition on an Edge

void setEdgeCondition (String edge, String condition);

A condifion operates on the value of a property of the activities and is
expressed in Java. Any string that can be the operand of an “if” statement is
valid. Assuming that the property Prop is defined for a given activity, any of
the following examples constructs is a valid condition:

Condition = “Prop.equals (\“SomeString\”)
Condition = “(Prop.index0Of (\“SomePart\”) == 2)”"
Condition = “(Prop.lenght () == 9)”

An exception is thrown in the following case:
— If the issuing application does not have ADMIN privileges

Note:

During execution an Edge condition is evaluated. If a condition does not follow
correct format an exception is thrown.

74 Bonita Workflow - Bonita API

5.6.5 Getting the Condition for an Edge

String getEdgeCondition (String edge);

Get the edge Condition. This condifion is evaluated at run-time in order to
perform activity fransition. See setEdgeCondition above.

An exception is thrown in the following case:
— If the named edge does not exist

5.6.6 Get All Existing Edges in a Project

Collection getEdgesNames ()

Return a String collection of all existing edges in the project. If no edges exist,
“NULL" is returned.

5.6.7 Get All Existing Edges for an Activity

Collection getNodeInEdges ()

Return a (String Collection) of all existing inbound edges for a given node. If
no edges exist, “NULL" is returned.

Collection getNodeOutEdges ()

Return a (String Collection) of all existing outbound edges for a given node. If
no edges exist, “NULL" is returned.

Chapter 5. Project Interface 75

5.6.8 Reading an Edge as a Java Object

hero.interfaces.BnEdgeValue getEdgeValue (String name);
Get the edge value. See Table 11-2.

An exception is thrown in the following case:
— If the named edge does not exist

5.6.9 Changing the State of an Edge

Void setEdgeState (hero.interfaces.BnEdgeLocal edge, int state);

Set the edge state (see the following table) to integer state. Table 11-2,
BnEdgeValue Atftributes.

Note:

If IMS is enabled, a message is sent.

CONSTANT VALUE
INITIAL 0
ACTIVE 1
ANTICIPATING 2
DEAD 3

Table 5-6. Edge Constants States

76 Bonita Workflow - Bonita API

Chapter 5. Project Interface 77

Chapter 6.Hook Interface

Hooks are code executed at specific points during an activity life cycle.

Hooks may be coded in a scripting language (i.e. XPDL), or as a java library (java
code).

Hooks may be defined at the project level. These hooks are activated when a

project is instantiated or when the project finishes.

Hooks may also be defined at the activity level. These hooks are activated only in
the context of the related activity.

The hook interface is divided in two sets (Hooks and InterHooks).

Interactive Hooks/(InterHooks):

Script hooks are called interactive Hooks. Calls relative to interhooks contain

“Inter” in their name. Their hook type is hero.hook.Hook.BSINTERACTIVE.

Hooks execute upon detection of one of the following events. If the hook
does not include that method, an exception is raised. This means a “hook”

routine may contain mulfiple methods dealing with the listed events but the

hook must specify which event is acted.
For example, the following code lists multiple hook events, but the return

String from getMETAdata specifies what event this hook code acts upon.

public String getMetadata() {

return Constants.Nd.BEFORETERMINATE;
}
public void create(Object b,BnNodeLocal n) throws HeroHookException {}
public void beforeStart (Object b,BnNodeLocal n) throws HeroHookException {}
public void afterTerminate(Object b,BnNodeLocal n) throws HeroHookException {}
public void onCancel (Object b,BnNodeLocal n) throws HeroHookException {}
public void anticipate (Object b,BnNodeLocal n) throws HeroHookException {}
public void onDeadline (Object b,BnNodeLocal n) throws HeroHookException {}
public void afterStart (Object b, BnNodeLocal n) throws HeroHookException {}
public void onReady(Object b,BnNodeLocal n) throws HeroHookException {}
public void beforeTerminate (Object b,BnNodeLocal n) throws HeroHookException {
try |

String nodeName = n.getName () ;

BnProjectLocal project = n.getBnProject();

String prjName = project.getName();

For more examples refer to Section 4 of the Bonita Workflow Developer’s
Guide.

Chapter 6. Hook Interface

79

80

Table 6-1 displays Node Hooks events:

EVENT VALUE METHOD
hero.interfaces.Constants. Nd.BEFORESTART | “beforeStart” beforeStart
hero.interfaces.Constants.Nd.AFTERSTART “afterStart” afterStart

herointerfaces.Constants Nd BEFORETERMIN
ATE

"beforeTerminat
e”;

beforeTermina
te

hero.interfaces.Constants. Nd.AFTERTERMINA
TE

“afterfTerminate”;

afterTerminat
e

hero.interfaces.Constants. Nd.ONCANCEL "onCancel” onCancel
hero.interfaces.Constants.Nd.ANTICIPATE “anticipate™; anficipate
hero.interfaces.Constants. Nd.ONREADY “onReady"; onReady
hero.interfaces.Constants Nd.ONDEADLINE |“onDeadLine™; onDeadline
Table 6-1. Node Hooks Events Constants
Project Hooks Events:

EVENT VALUE METHOD

hero.interfaces.Constants.Pj.ONINSTANTIATE

“onlnstantiate”

onlnstantiate

hero.interfaces.Constants.Pj. ONTERMINATE

“onTerminated”

onTerminated

Table 6-2. Project Hook Events Constants

Different hooks types taken in to account by the Bonita engine:

HOOK TYPE VALUE
hero.interfaces.Constants.Hook.JAVA 0
hero.interfaces.Constants.Hook.BSINTERACTI 6
VE

Table 6-3. Hook Type Constants

Bonita Workflow - Bonita API

6.1

6.1.1

Project Hook Management

Creating Hooks

void addHook (String hookName, String eventName, int hookType)

Add an existing hook file to the project. This hook type references a Java

class file loaded atf run time. The parameter *hookName” represents the java

class file to load by the system af run time. These class files must be located in

the application server classpath definition to execute correctly.

An exception is thrown in the following cases:

— If the issuing application does not have *ADMIN” privileges

— If hook name already exists in the project

— If aninvalid value is specified for type (see Table 6-3, Hook Type
Constants)

void addInterHook (String hookName, String eventName, int
hookType, String value)

Add an InterHook to the project. Creates a new hook associated to alll
project activities. See Section 6.1.3, Managing Hooks, for parameter values.
The fourth parameter “String value” represents a hook script used with
InterHook. See API call addNodelnterHook for a script example.

An exception is thrown in the following cases:

— If the issuing application does not have ADMIN privileges

— if hookName already exists

void setInterHookValue (String hook, String value)

Set the Interhook value. This value is the new Interhook script associated to all
project nodes. See addNodelnterHook below for a script example.

An exception is thrown in the following cases:
— If the issuing application does not have ADMIN privileges

Chapter 6. Hook Interface 81

6.1.2 Deleting Hooks

void deleteHook (String hookName)

Deletes the hook specified by hookName in current project.

An exception is thrown in the following cases:
— If the issuing application does not have “ADMIN” privileges
— If hook name does not exist in the project

void deleteInterHook (String hookName)

The hook or interHook specified by “hookName™ is deleted from all project
nodes.

An exception is thrown in the following cases:

— If the issuing application does not have *ADMIN” privileges

— If hook name does not exist in the project

6.1.3 Managing Hooks

Collection getHooks ()

Return a (ProjectHooksValue Collection) of all the hook names assigned to
the project. If no hooks exist in the project, “NULL" is returned.

void executeProcessHook ()

Execute the Onlinstatiate hook associated to this process. This method can
only be called before a workflow model is instantiated.

An exception is thrown in the following case:
— If the project type indicates MODEL status (this would indicate the
process is already instantiated.)

82 Bonita Workflow - Bonita API

6.2 Node Hook Management

6.2.1 Creating Specific Hooks

void addNodeHook (String nodeName, String hookName,
String eventName, int hookType)

Add an existing hook file to the node (activity). The parameter “hookName™”
represents the java class or TCL file loaded by the system at run time. These
classes must exist in the application server classpath definition for correct
hook execution. Place the hooks classes in
BONITA_HOME\src\resources\hooks and redeploy Bonita (an ant or ant light-
main tasks). Please refer to the Workflow Process Console Developers Guide
for detailed explanation.

An exception is thrown in the following cases:

— If the issuing application does not have “ADMIN” privileges

— If nodeName does not exist

— If hookName already exists

— If aninvalid parameter is specified (See Table 6-3. Hook Type Constants)

void addNodeInterHook (String nodeName, String hookName,
String eventName, int hookType, String script)

The intferhook name “hookName" is added to the node specified by
nodeName. The hook activation is tfriggered whenever the event
“eventName" occurs for this activity. See events defined in Table 6-1, Node
Hooks Events Constants. The InterHook uses a Java or a beanshell scripting file
(See example below), executed at run time.

An exception is thrown in the following cases:

— If nodeName does not exist

— Ifthe issuing application does not have ADMIN privileges

— If hookName already exists

— Ifaninvalid parameter is specified (See Table 6-3, Hook Type Constants)

Script file example:

The API call “addNodelnterHook” references a value “script” in parameter
four. As shown below, “script is defined as an ASCII string.

string script =
"import hero.interfaces.BnProjectLocal;\n"
+ "import hero.interfaces.BnNodeLocal;\n"
+ "afterStart (Object b,Object n) {\n\n\n"
+ "System.out.println(\"InteractiveBnNode Hook test, node:
\"+n.getName ());"
+ "}";

prjSession.addNodeInterHook ("projectInterTest",hero.interfaces
.Constants.Nd.AFTERSTART, Constants.Hook .BSINTERACTIVE, script) ;

Chapter 6. Hook Interface 83

void setNodeInterHookValue (String node, String hook, String
value)

Set the node Interhook value. This defines the script used by this node for the
specified hook.

An exception is thrown in the following case:

— If the issuing application does not have ADMIN privileges

6.2.2 Deleting Specific Hooks

void deleteNodeHook (String nodeName, String hookName)

Delete a node hook. Delete the hook (specified by hookName) for the

activity/node specified by nodeName.

An exception is thrown in the following cases:

— If hookName does not exist.

— If nodeName does not exist

— If the issuing application executing the function does not have ADMIN
privileges.

— If the EJB does not permit removal

void deleteNodeInterHook (String nodeName, String interHookName)

Delete a node interHook in node specified by nodeName. The hook or the

interHook with name inferHookName is deleted from the node.

An exception is thrown in the following cases:

— IfintferHookName does not exist.

— If nodeName does not exist

— If the issuing application executing the function does not have ADMIN
privileges

— If the EJB does not permit removal

84 Bonita Workflow - Bonita API

6.2.3

Managing Specific Hooks

Collection getNodeHooks (String nodeName)

Return a (NodeHookValue Collection) of the Node hooks of the specified
node. If no hooks exist, “NULL" is returned.

An exception is thrown in the following case:

— If nodeName does not exist.

Collection getNodeInterHooks (String nodeName)

Return a (NodelnterHookValue Collection) of all Interactive Node hooks of
the specified node. If no interhooks exist, “NULL" is returned.

An exception is thrown in the following case:

— If nodeName does not exist.

BnNodeInterHookValue getNodeInterHook (String nodeName,
String interHook)

Return all the node inter hook data associated to the hook of name
«interHook » for the node « nodeName ». If inferhook does not exist, “NULL" is
returned.

An exception is thrown in the following case:

— If nodeName does not exist.

String getNodeInterHookValue (String node, String hook)

This method returns the hook script associated with the interhook name
« hook » of this node. If Hook value does not exist, null is returned.

An exception is thrown in the following cases:

— If node Name does not exist

— If application does not have “ADMIN" privileges

Chapter 6. Hook Interface 85

6.2.4 Code Example

86 Bonita Workflow - Bonita API

[k AP] Documentation - Sample 3 skl ok

System.out.println(" Activities creation ... "');
try {
prjSession.addNode("Activity 1",Constants.Nd.AND JOIN NODE);
} catch(Exception €) {System.out.println(" —>" +e¢);} /Maybe something is wrong
try {
prjSession.addNode("Activity 2",Constants.Nd.AND _JOIN NODE);
} catch(Exception €) {System.out.println(" —>" +e¢);} //Maybe something is wrong
try {
prjSession.addNode("Activity 3",Constants.Nd.AND JOIN NODE);
} catch(Exception €) {System.out.println(" —>" +e¢);} /Maybe something is wrong

System.out.println("Activity 3 definition ... ");

try {
Date dateLim =new Date(2005,05,02) ;
prjSession.setNodeDeadline("Activity 3" dateLim.get Time()) ;
prjSession.setNodeDescription("Activity 3","Activity 3 Description") ;

} catch(Exception €) {System.out.println(" —>" +e¢);} //Maybe something is wrong

Systemout.println("Setting Activities types");

try {
prjSession.setNodeTraditional("Activity 1");
prjSession.setNodeAutomatic("Activity 2");
prjSession.setNodeTraditional("Activity 3");

} catch(Exception €) {System.out.println(" —>" +e¢);} //Maybe something is wrong

System.out. printIn("Setting node properties which will not be propagated to other nodes");

try {
prjSession.setNodeProperty("Activity 1","color”,"blue" false);
System.out.println("Setting node properties which will be propagated to other nodes");
prjSession.setNodeProperty("Activity 1","price", "expensive" true);
prjSession.setNodeProperty(" Activity 1","shape',"square");

} catch(Exception €) {System.out.println(" —>" +e¢);} /Maybe something is wrong

Systemout.println("Adding edges between activities");
try {
prjSession.addEdge("Activity 1","Activity 2");
prjSession.addEdge(""Activity 2","Activity 3");
} catch(Exception €) {System.out.println(" —>" +e¢);} /Maybe something is wrong

System.out.printin("Getting names of all the nodes in the project");
Collection nodesNames = prjSession.getNodesNames() ;
j =nodesNames.iterator();
while (j.hasNext())
{
String nodeName = (String)j.next();
Systemout.println("Node : " +nodeName +" (anticipable : " + prjSession. getNodeAnticipable(nodeName) + ")");
Collection nodeProperties = prjSession. getNodeProperties(nodeNamre) ;
Iterator k =nodeProperties.iterator() ;
while (k.hasNext())
{
hero.interfaces.BnNodePropertyValue nodeProperty = (hero.interfaces. BnNodeProperty Value)k.next();
try {
String nodePropertyKeyName =nodeProperty.get TheKey();
String nodePropertyValue = nodeProperty.get TheValue();
System.out.println(" --> Property (Key, Value) : "' + nodePropertyKeyName +"/" + nodeProperty Value);
} catch(Exception e) {System.out.println(" —"+e);} //Maybe something is wrong

Chapter 6. Hook Interface 87

88

System.out.println("Node deletion");
try {
prjSession.deleteNode("Activity 3") ;
} catch(Exception e) {System.out.println(" -->" +¢);} /Maybe something is wrong

System.out.println("Node deletion verification");
try {

nodesNames = prjSession.getNodesNames() ;

j = nodesNames.iterator();

while (j.hasNext())

{

String nodeName = (String)j.next();
System.out.println("Node : " + nodeName); }
} catch(Exception e) {System.out.println(" -->" +¢);} /Maybe something is wrong

Figure 6-1. Code Example Activity Properties

Bonita Workflow - Bonita API

Chapter 6. Hook Interface 89

Chapter 7.User Management Interface

The following methods are dedicated to managing users for a particular workflow
model or instance.

7.1 Getting the List of All Bonita Registered Users

Collection getAllUsers ()

Return a (String Collection) with the names of all registered users in the Bonita
System. If no users are found, “NULL" is returned.

7.2 Getting the List of Users for a Project

Collection getUsers ()

Return a (String Collection) of all users of the current project. If no users exist,
“NULL" is returned.

7.3 Adding a User to a Project

void addUser (String username);

Add a user to this project (This user must exist in the Bonita database)

An exception is thrown in the following cases:
— If the user name is not found for the project (user not registered)
— If the issuing application does not have *ADMIN” privileges

Chapter 7. User Management Interface 91

/.4

/7.5

92

Checking Whether a User Is Part of a Project

boolean containsUser (String username);

Test if the “username” is associated to this project. Returns “frue” if user found.

Code Example

/
[RERRERRkRRkk APl Documentation - Sample 4 /
//************** USCrS in PrOjeCt *****************/
/************* *****************/

System.out.println(" Getting users names of the project ");
try {

Collection usersNames = prjSession.getUsers() ;

Jj = usersNames.iterator();

while (j.hasNext())

{

String userName = (String)j.next();
System.out.println("User : "+ userName); }
} catch(Exception) {System.out.println(" --=>" + e);} //Maybe something is wrong

System.out.println(" Adding John in the project ");
try {
prjSession.addUser("'john") ;
} catch(Exception) {System.out.println(" --=>" + e);} //Maybe something is wrong

processName = prjSession.getName() ;

System.out.println("Current Process : " + processName + " contains john :" + prjSession.containsUser("john")) ;

Figure 7-1. Code Example Get User Names

Bonita Workflow - Bonita API

Chapter 8.Project Role Management

8.1 Managing Project Roles

Using ProjectSession Bean

A project role is the means by which a User is associated to an activity. A project
role has a name and a description.

First, roles must be declared in a project. Then the role(s) can be associated to
Users and Activities.

8.1.1 Declaring a New Role in the Project

void addRole (String roleName, String description);

This function creates a role within this project. The created role is specific to
this project.

An exception is thrown in the following case:

— If the issuing application does not have *ADMIN” privileges

void deleteRole (String roleName)

Delete arole (and the Role mapper if it exists).

An exception is thrown in the following cases:
— If the issuing application does not have ADMIN privileges
— If roleName does not exist

Chapter 8. Project Role Management 93

8.1.2

8.1.3

Allocating a Role to a User

Roles are assigned to users in the scope of given project. That is, a user may
assume a different role for a different project or, in the scope of a project; a user
can assume several roles.

void setUserRole (String userName, String roleName) ;

Assigns to “username” the role specified in “roleName”.

An exception is thrown in the following cases:
— If the issuing application does not have *ADMIN” privileges
— If the user name and/or role name is not found

void unsetUserRole (String userName, String roleName) ;

Remove the role specified by “roleName” from the user specified by
“username”.

An exception is thrown in the following cases:

— If the issuing application does not have *ADMIN” privileges

— If the user name is not found

— If the role name is not found

Note:

If IMS is enabled, a message is issued.

Getting a List of Roles That a User Can Assume

Collection getUserRoles (String userName)

Return a (BnRoleLocal Collection) of all roles available for this user
(independently of any project). If no roles exist, “NULL" is returned.
An exception is thrown in the following case:

— If the user name is not found

94 Bonita Workflow - Bonita API

8.1.4 Getting a List of Roles That a User Can Assume in the Scope
of a Project

Collection getRoles ()

Return a (BnRoleLocal Collection) of all roles of the current project. These
roles are associated with the nodes included in the project. If no roles exist,
“NULL" is returned.

Collection getRolesNames ()

Return a (String Collection) of the names of all roles for the current project as
a collection of String objects. If no roles are found, “NULL" is refurned.

Collection getUserRolesInProject (String userName)

Return a (BnRoleValue Collection) of the roles of this user in the current
project. If no roles are assigned for the user, *“NULL" is refurned.

An exception is thrown in the following case:
— If the user name is not found

Collection getUserRolesInProjectNames (String userName)

Return a (String Collection) of the role names of the user in the current
project. If no roles are assigned, “NULL" is returned.

An exception is thrown in the following case:
— If the user name is not found

Chapter 8. Project Role Management 95

8.1.5 Associating an Activity with a Role

Only a single role can take over a given activity.

String getNodeRoleName (String nodeName)

Obtain the role name of the specified node.

An exception is thrown in the following case:
— If the node name is not found

void setNodeRole (String activityName, String role)

Sets or changes the role of an activity if the role name already exists. If JMS is
enabled a message is issued.

An exception is thrown in the following cases:

— If the issuing application does not have *ADMIN" privileges

— If the activity name is not found

— If the role name is not found

96 Bonita Workflow - Bonita API

8.1.6

Code Example

st AP] Documentation - Sample 5 kit
[Roles in Project sk

/

System.out.printIn("Adding a Custumer role for john in the current project ");
try {
prjSession.setUserRole("john","Customer") ;
} catch(Exception e) {System.out.println(" -->" +¢);} /Maybe something is wrong

System.out.printIn(" Getting role names of the project ");
try {

Collection rolesNames = prjSession.getRolesNames() ;

j = rolesNames.iterator();

while (j.hasNext())

{

String roleName = (String)j.next();
System.out.println("Role : " -+ roleName); }
} catch(Exception e) {System.out.println(" -->" +¢);} /Maybe something is wrong

System.out.printIn(" Getting role names for john user in this project ");
try {

Collection johnRolesNames = prjSession.getRolesNames() ;

j =johnRolesNames.iterator();

while (j.hasNext())

{

String johnRoleName = (String)j.next();
System.out.println("John role : " +johnRoleName);

} catch(Exception e) {System.out.println(" -->" +¢);} /Maybe something is wrong

System.out.println(" Setting role names for an activites of this project ");

try {
System.out.printIn(" --> Getting the actuel role names for Activities ");
try {
System.out.println(" --> Activity 1 role : " + prjSession.getNodeRoleName("Activity 1"));
System.out.println(" --> Activity 2 role : " + prjSession.getNodeRoleName("Activity 2"));
} catch(Exception e) {System.out.println(" -->" + ¢);} //Maybe something is wrong

System.out.println(" --> Setting activities new roles ");

try {
prjSession.setNodeRole("Activity 1","admin") ;
prjSession.setNodeRole("Activity 2","Customer") ;

} catch(Exception e) {System.out.println(" -->" + ¢);} //Maybe something is wrong

System.out.printIn(" --> Getting the new role names for Activities ");
try {
System.out.println(" Activity 1 role : " + prjSession.getNodeRoleName(" Activity 1"));
System.out.println(" Activity 2 role : " + prjSession.getNodeRoleName(" Activity 2'));
} catch(Exception e) {System.out.println(" -->" + ¢);} //Maybe something is wrong

} catch(Exception e) {System.out.println(" -->" +¢);} /Maybe something is wrong

Figure 8-1. Code Example Project Roles

Chapter 8. Project Role Management

97

8.2 Mappers

8.2.1 Adding and Deleting Role Mappers

void addRoleMapper (String roleName, String mapperName,
int mapperType)

Add an existing mapper to the role « roleName ». This type of mapper uses a

Java file loaded at run time. If a role mapper does not exist, one is created

with mapperName.

The mapperType can be one of the following:
Constants.Mapper.LDAP for a LDAP Mapper
Constants.Mapper.PROPERTIES for a Properties Mapper
Constants.Mapper.CUSTOM for a custom Mapper

An exception is thrown in the following case:

— If the issuing application does not have “ADMIN” privileges

— If the role name does not exist

— If aninvalid value is used

void deleteRoleMapper (String roleName)
Delete arole mapper. If “roleName” does not exist an exception is thrown.
An exception is thrown in the following cases:

— If the issuing application does not have *ADMIN” privileges
— If the role name does not exist

Collection getRoleMappers ()

Return a (BnRoleMapperValue Collection) of all the role mappers of the
project. If “roleMapper “does not exist, “NULL" is returned.

98 Bonita Workflow - Bonita API

8.2.2 Code Example

VA

ProjectSessionHome projectSessionh=ProjectSessionUtil.getHome ();
ProjectSession pss=projectSessionh.create();

String rolel="Admintoto";
pss.addRole (rolel, "role added for activity 1");
String role2="Admintiti";
pss.addRole (role2, "role added for activity 2");

// NODE 1
pss.addNode ("hl",Constants.Nd.AND_ JOIN_NODE) ;
pss.setNodeRole ("hl",rolel);

// NODE 2
pss.addNode ("h2", Constants.Nd.AND_JOIN_NODE) ;
pss.setNodeRole ("h2",role2);

// add MAPPERS
pss.addRoleMapper (rolel, "hero.mapper.mapperl", Constants.Mapper.LDAP) ;
pss.addRoleMapper (role2, "hero.mapper.mapper2", Constants.Mapper.PROPERTIES) ;

// Custom mapper : Constants.Mapper.CUSTOM

pss.instantiateProject (projectName);

e

Figure 8-2. Code Example Add Role Mapper

Examples of Mapper code are available under:

BONITA_HOME/src/resources/mappers/hero/mapper.

Chapter 8. Project Role Management 99

8.3 Performer Assignment

8.3.1 Addition of a Performer Assignment to a Node

void addNodePerformerAssign (String nodeName,
String performerAssignName, int performerAssignType,
String propertyName)

Add an existing performerAssign to the node. This type of performerAssign
uses a Java file loaded at run fime.
PerformerAssignType can be one of the following:
. Constants.Performer.CALLBACK for a Callback Performer Assignment
« Constants.Performer.PROPERTIES for a Properties Callback Assignment
Multiple assignments are possible but only the last assignment is valid and
reflected in any “get”. This means, if the node has a current performer
assignment, the function updates the current assignment with the new
values.
An exception is thrown in the following cases:
— If the issuing application does not have *ADMIN” privileges
— If the node name does not exist

100 Bonita Workflow - Bonita API

8.3.2 Code Example

o/ e

// NODE 1

pss.addNode ("h1l",Constants.Nd.AND_JOIN_NODE) ;
pss.setNodeRole ("hl",rolel);

// NODE 2
pss.addNode ("h2", Constants.Nd.AND_JOIN_NODE) ;

pss.setNodeRole ("h2",role2);

// NODE 3
pss.addNode ("h3", Constants.Nd.AND_JOIN_NODE) ;

pss.setNodeRole ("h3",role3);
S

// activity property
pss.setNodeProperty ("h3", "acteurH3", "gaillarr");

S

// PERFORMER ASSIGN

pss.addNodePerformerAssign ("h2",
"hero.performerAssign.CallbackSelectActors" ,
Constants.Performer.CALLBACK, "");
pss.addNodePerformerAssign ("h3",
"hero.performerAssign.PropertySelectActors" ,
Constants.Performer.PROPERTIES , "acteurH3");

Figure 8-3. Performer Assignment Code Example
BnNodePerformerAssignValue getNodePerformerAssign (String
nodeName)

Return a value of type BnNodePerformerAssignValue. If no performer
assignment has occurred a null value is returned. See Table 11-6,
BnNodePerformerAssignValue Aftributes.

An exception is thrown in the following case:
— If the node name does not exist

BnRoleLocal getNodeRole (String nodeName)

Return BnRoleLocal object — with role data.

BnNodeLightValue getNodeLightValue (String name)

Return the node Light Value basic node information.

An exception is thrown in the following case:
— If String name is not found

Chapter 8. Project Role Management 101

102 Bonita Workflow - Bonita API

Chapter 9.User Session Interface

9.1 Principle

The User Session inferface provides access to process execution confrol functions.
The Session interface is initiated for a given user. Only the processes where the
User is declared are accessible.

For EJB Session access, the User interface automatically retrieves the identity of
the calling user in the J2EE security context. Therefore, calling the User interface
from an unidentified user context fails.

Much of the User interface methods require the Project name as a parameter.
The project name may be retrieved by the application logic. Alternatively, the
application may retrieve the project name using various search criteria.

Note:

At this time, the corresponding search methods are not implemented.

The UserSessionBean is a stateful session bean providing user APl methods for
obtaining information on user ToDo lists and started activities. Also, the
UserSessionBean may be used to produce activity events (i.e. start, terminate,
cancel).

The UserSessionBean is based on the Bonita Engine Session Bean: a recursive
implementation that manages previous execution operations and propagates
the activity state changes to activities connected to this one.

The User Session Bean API provides information about user projects and activities
(i.e. project list, ToDo list, and activity list), and is also used to obtain useful
information about project instances or user preferences. With this API, users can
perform task/activities using start, terminate, and cancel methods. The user may
also terminate workflow processes.

Coding examples using the User Session interface API are shown in the following
sections.

9.2 Creating the UserSessionBean

The UserSessionBean is seen as a connection handle into the Bonita workflow
System. After user authentication, this handle must be created with the user
idenfity.

Subsequent calls to the User Session API functions are related to this identity.

Chapter 9. User Session Interface 103

Code Example

import javax.security.auth.login.LoginContext;
import hero.client.test.SimpleCallbackHandler;

import hero.interfaces.UserSession;
import hero.interfaces.UserSessionHome;
import hero.interfaces.UserSessionU til;

import hero.interfaces.Constants;
importjava.util.*;
public class SampleUserApi {
static public void main(String[] args) throws Exception {
// User Admin login
char[] password={'t",'o",'t",'0"'};
SimpleCallbackHandler handler = new SimpleCallbackHandler("admin",password);
LoginContextlc = new LoginContext("TestClient", handler);
Ic.login();
// User Session Bean Creation using Remote Interface

UserSessionHome usrHome= (UserSessionHome) UserSessionU til.getHome();
UserSession usrSession = usrHome.create();

Figure 9-1. Session Interface Code Example

9.3 User Properties

9.3.1 Setting User Properties

void setUserProperty (String key, String value)

This function is in the UserSessionBean. Using name “key”, this function sets the
property (identified by the key), to the value “value”.

If the property already exists, the current value is overridden. If the property
does not exist, the key is created and its value is set to “value”.

An exception is thrown in the following cases:
— If the key name does not exist
— Ifaninvalid value is used

void setUserMail (String userName, String mail)
Set the mail of this user info the Bonita database.

An exception is thrown in the following case:
— If the user name does noft exist

104 Bonita Workflow - Bonita API

9.3.2

Getting User Information

String getUser ()

Return the name of the current authenticated User.

String getUserPassword ()

Return the current user password

String getUserMail (String userName)

Return the mail address for this user from Bonita database.

Collection getUserProperties ()

Return a (BnUserPropertyValue Collection) of the properties defined for the
current authenticated User.

Collection getModellist ()

Return a (BnProjectlLightValue Collection) of the current Workflow models
associated with this user.
If no models exist for the user, null is returned.

Collection getModellist (int offset, int numrows)

Return a collection of BnProjectlLightValue objects of a user model list starting
with “offset” for “numrows”. This method is equivalent to getProjectList but
returns only the current models of the user.

If no models exist, null is returned.

Collection getModels ()

Return a (BnProjectlightValue Collection) of the current available Workflow
models. If the user issuing the APl call is part of an Initiator Mapper (see
section 2.8), then the initiator mapper file is used.

An exception is thrown in the following case:

— No active models exist

Chapter 9. User Session Interface 105

Collection getModelsLight ()

Return a (BnProjectlLightValue Collection) of the current available Workflow
models without a check for Initiator Mapper.

An exception is thrown in the following case:
— No active models exist

Collection getCooperativeList ()

Similar to getProjectslList, returns a (BnProjectLightValue Collection) of the
current available Workflow projects with type cooperative.
If no cooperative projects exist for the user, null is returned.

Collection getCooperativeList (int offset, int numrows)

Return a collection of BnProjectLightValue objects of a user cooperative
projects list starting with “offset” for “numrows”. This method is equivalent to
getProjectlList but returns only the current cooperative projects of the user.

If no cooperative projects exist, null is retfurned.

Collection getTerminatedListAllInstances ()

Return a BnNodeValue collection of all terminated project instances or
cooperative projects.

If no terminated instances or terminated cooperative projects exist for the
user, nullis returned.

Collection getModelInstancesTodoList (String projectName)

Return a String collection of activity names of the model instances assigned
to this user.

An exception is thrown in the following case:

— The supplied projectName does not exist

Collection getModellInstancesTerminated (String projectName)

Return a String collection of activity names of the model instances terminated
by this user.

An exception is thrown in the following case:

— The supplied projectName does not exist

106 Bonita Workflow - Bonita API

Collection getModelInstancesTodoList (String projectName, int
offset, int numrows)

Return a String collection of activity names of the model instances assigned
to this user starting with “offset” for “numrows”.

An exception is thrown in the following case:

— The supplied projectName does not exist

Collection getModellInstancesTerminated (String projectName, int
offset, int numrows)

Return a String collection of activity names of the model instances terminated
by this user starting with “offset” for “numrows”.

An exception is thrown in the following case:

— The supplied projectName does not exist

Collection getInstancesActivityTodoList (String projectName,
String nodeName)

Return a BnNodelightValue collection of activity instances assigned to this
user.

An exception is thrown in the following case:

— The supplied projectName does not exist

— The supplied nodeName does not exist

Collection getInstancesActivityTerminated (String projectName,
String nodeName)

Return a BnNodelightValue collection of activity model instances terminated
by this user.

An exception is thrown in the following case:

— The supplied projectName does not exist

— The supplied nodeName does not exist

Collection getUserInstancesProject ()

Return a String collection of model names with ongoing instances for this user.
If no instances exist for this user, null is returned.

Collection getUserInstancesProjectNodes (String projectName)

Return a String collection of ready, anficipable, and executing activities for
current user instances.

An exception is thrown in the following case:

— The supplied projectName does not exist

Chapter 9. User Session Interface 107

Collection getUserInstancesProject (int offset, int numrows)

Return a String collection of model names with ongoing instances for this user
starting with offset for numrows.
If no instances exist for this user, null is returned.

Collection getInstanceNodes (String instanceName, String userName)

Return a String collection of ready and executing activities for a specified
user instance.

An exception is thrown in the following cases:

— The supplied projectName does not exist

— The supplied userName does not exist

Collection getInstancesList (int offset, int numrows)

Return a collection of BnProjectlLightValue objects of a user instances list
starting with offset for numrows. This method is equivalent to getProjectlList but
returns only the current instances of the user.

If no instances exist, null is returned.

Collection getInstancesListNames (int offset, int numrows)
Return a String collection of instances list names for this user starting with
“offset” for “numrows”. This method is equivalent to getProjectListNames but

returns only the current instances of the user.
If no instances exist, null is returned.

String getUserJabber ()

Return a String with the user jabber address.

108 Bonita Workflow - Bonita API

9.4 Users and Projects

9.4.1 Getting the List of Projects for the User

Collection getProjectList ()

Return a (BnProjectlLightValue Collection) of the Workflow processes
associated to this user.
An exception is thrown in the following case:

— If the user does not exist in the database
Collection getProjectListNames ()

Return a (String Collection) of the project list names for this user.
An exception is thrown in the following case:

— If the user does not exist in the database
Collection getProjectsByProperty (String key, String value)

Return a (BnProjectValue Collection) of Workflow projects associated with a
property.

An exception is thrown in the following case:

— If the key/value names do not exist

Collection getProjectsByPropertyNames (String key, String value)

Return a (String Collection) of Workflow projects associated with a property.

An exception is thrown in the following case:
— If the key/value names do not exist

BnProjectLightValue getLightDetails ()

Return the basic project information: project attributes (without relationships).

Chapter 9. User Session Interface 109

9.4.2

Getting the List of Instances for the User

Collection getInstancesList ()

Return a (BnProjectlLightValue Collection) of the user instances list. This
method is equivalent to getProjectList but returns only the current instances of
the user. If no instances exist, null is returned.

Collection getInstancesListNames ()

Get a (String Collection) of the instances list names for this user. This method is
equivalent to getProjectListNames but returns only the current instances of
the user. If there are no entries in the list, null is returned.

Collection getProjectInstances (String projectName, String
version)

Return a (BnProjectValue Collection) of the Workflow instances of this project.

An exception is thrown in the following case:
— If projectName does not exist

Collection getProjectInstances (String projectName)

Return a (BnProjectValue Collection) of the Workflow instances of this project.

An exception is thrown in the following case:
— If projectName does not exist
A default version value is used in this API calll.

Collection getProjectInstancesNames (String projectName, String
version)

Return a (String Collection) of Workflow instance names of this project.

An exception is thrown in the following case:
— If projectName does not exist

Collection getProjectInstancesNames (String projectName)

Return a (String Collection) of workflow instance names of this project.

An exception is thrown in the following case:
— If projectName does not exist
A default version value is used in this API calll.

110 Bonita Workflow - Bonita API

Collection getInstancesByProperty (String key, String value)

Return a (BnProjectValue Collection) of Workflow instances from a property.

An exception is thrown in the following case:
— If key/value does not exist

Collection getInstancesByPropertyNames (String key, String value)

Return a (String Collection) of a list of project instances from a property.

An exception is thrown in the following case:
— If key/value does not exist

9.4.3 Managing the Project for the User

void removeProject (String projectName)

Delete a Workflow project. The application must have “ADMIN" privileges or
an exception is thrown.

An exception is thrown in the following cases:

— If the project name does not exist

— If the project name has running instances.

— If you are not the parent process (sub-process trying to remove project).

void terminate (String projectName)

Attempt fo terminate a project. (Termination occurs when all project activities
are terminated).

An exception is thrown in the following cases:

— If the project name does not exist

— If project name is active.

Chapter 9. User Session Interface 111

9.5 Users and Activities

9.5.1 Getting the List of Activities for the User

Collection getActivityList (String projectName)

Return a (String Collection) of all user activities for a specific project in
executing and anticipating state. See also the getToDolist for acfivities in

ready state.

An exception is thrown in the following case:

— If the project name does not exist

If no activities are found in executing state null is retfurned.

Collection getActivityListAllInstances ()

Return a (BnNodeValue Collection) list of executing user activities for all
instances (ready and anticipable state).
If no activities are found in executing state null is returned.

Collection getActivityListByProperty (String key, String value)

Return a (BnNodeValue Collection) of executing user activities matching the
property value (executing and anticipating state activities).
If the key/value is not found, null is retfurned.

9.5.2 Getting Information on User activity

BnNodeValue getNode (String projectName, String nodeName)

Return a type BnNodeValue for the specified node and project.

An exception is thrown in the following cases:
— If the project or node name does not exist
— If access to the project is denied

112 Bonita Workflow - Bonita API

9.5.3 Getting the ToDo list for the User

Collection getToDolList (String projectName)

Return a (String Collection) of all user activities from the specified project
(those in ready and anticipable state).

An exception is thrown in the following case:

— If the project name does not exist

If no users exist in the correct state, null is returned.

Collection getToDoListAllInstances ()

Return a (BnNodeValue Collection) of a list of ToDo activities for the user for
allinstances (ready and anticipable state).
If no users exist in the correct state, null is returned

Collection getToDoListByProperty (String key, String wvalue)

Return a (BnNodeValue Collection) of a list of ToDo activities for the user
matching the property value (ready and anticipable state activities).

If no users exist in the correct state, null is returned.

Collection getToDolistByProperties (int operation, Hashtable
properties)

Return a BnNodeValue collection of a list of ToDo activities (in ready and
anficipable state), matching the property value(s). Property values are a
key/value pair and up to three properties may be specified. Operation must
be a value of either hero.interfaces.Constants.OR or
hero.interfaces.Constants. AND.

An exception is thrown in the following case:

— Greater than three properties are specified.

(Contact the Bull HN Workflow project if greater then three properties are
required.)

If no data is found matching the specified properties, null is returned.

Collection getToDoListByActivityProperty (String key, String
value)

Return a BnNodeValue collection of a list of ToDo activities (in ready and
anficipable state), matching the key/value strings.
If no datais found matching the specified properties, null is returned.

Chapter 9. User Session Interface 113

9.5.4 Managing Activities for the User

void startActivity (String projectName, String nodeName)

Attempts to start an activity (when activity state is ready or anticipable)

An exception is thrown in the following cases:

— If the project name and/or node name does not exist and the activity
cannot start

— If the project or model is in hidden status

void terminateActivity (String projectName, String nodeName)

Attempts to terminate an activity (when activity state is executing or

anficipating)

An exception is thrown in the following cases:

— If the project name or node name does not exist and the activity cannot
terminate

— If the project or model is in hidden status

void cancelActivity (String projectName, String nodeName)

Attempts to cancel an activity (when activity is executing or anticipating)

An exception is thrown in the following cases:

— If the project name or node name does not exist and the activity cannot
terminate

— If the project or model is in hidden status

114 Bonita Workflow - Bonita API

9.6

Code Example

/ /
[k APT Documentation - Sample 6 kot
J[rssspsries Users and Activities skt
/ /

usrSession.setUserProperty("Language","Spanish");

System.out.println("Getting Current User properties values");
Collection properties = usrSession.getUserProperties() ;
Tterator i = properties.iterator();
while (i.hasNext())

hero.interfaces.BnUserPropertyValue property = (hero.interfaces.BnUserPropertyValue)i.next();
ry {
String propertyKeyName = property.get TheKey();
String property Value = (String)property.get TheValue();
System.out.println("Property (Key, Value) : " + propertyKeyName + "/" + propertyValue);
} catch(Exception e) {System.out.println(e);} /Maybe there is a problem
}

System.out.println("\n Getting project names for this user");

Collection prjNames = usrSession.getProjectListNames() ;
Iterator j = prjNames.iterator();
while (j.hasNext())

String prjName = (String)j.next();
System.out.println(" --> Project : "+ prjName); }
} catch(Exception e) {System.out.printIn(" -->" + ¢);} /Maybe something is wrong

System.out.println("\n Starting & terminating Activities available for this user");
try {

Collection instNames = usrSession. getlnstancesListNames() ;

Iterator j = instNames.iterator();

while (j.hasNext())

String instName = (String)j.next();
System.out.println("--> INSTANCE : " + instName);

System.out.printIn("Getting ToDo list for this instance");
Collection activityNames = usrSession.get ToDoList(instName) ;
Iterator k = activityNames.iterator();
while (k.hasNext())
{
String activityName = (String)k.next();
System.out.println(" --> activity : " + activityName);
wy {
usrSession.startActivity(instName,activityName) ;
System.out.printIn(" --> activity started");
} catch(Exception e) {System.out.println(" -->" +¢);} /Maybe something is wrong
}+// End ToDo list

System.out.println("Getting the activity List (executing aor anticipating) for yhe user");
activityNames = usrSession.getActivityList(instName) ;
k = activityNames.iterator();
while (k.hasNext())
{
String activityName = (String)k.next();
System.out.println(" --> activity : " + activityName);
wy {
usrSession.terminateActivity(instName,activityName) ;
System.out.println(" --> activity terminated");
} catch(Exception e) {System.out.println(" -->" +¢);} /Maybe something is wrong
} // End ToDo list

} // End Intances List

} catch(Exception e) {System.out.printIn(" -->" + ¢);} /Maybe something is wrong

System.out.println("Current User Name/Passwd : " + usrSession.getUser() + "/" + usrSession.getUserPassword());

Figure 9-2. User and Activities Code Example

Chapter 9. User Session

Interface

115

116 Bonita Workflow - Bonita API

Chapter 10. Bonita Pagination

For each available get method in the UserSession and AdminSession APIs there is
a paginated version of the existing method: e.g., the getToDolListAllinstances
method and the getToDolistAllinstancesAsPK method. The “AsPK” identifies a
method retrieving a collection of primary Keys corresponding to the 30 activities
available in the user ToDo list. Then, by means of the getToDolistAllinstancesByPK
method, the user or the end client application refrieves a defined number of
elements from the previous collection. Note that this method also has a
parameter defining the value of the “offset” between two different calls.

Collection getModelsAsPK ()

Return a Collection of BnProjectLightValue objects - the model list to be
instantiated. This API call uses the initiator mapper check to verify the user
executing the call is included within the Initiator Mapper. If the user is not a
defined user, null is returned.

Collection getModelsByPK (Collection list, int offset, int
NUMrows)

Return a Collection of BnProjectLightValue objects. The collection contains a
list of models starting with “offset for “numrows”.

Collection getModelsLightAsPK ()

Get available workflow models. This method is similar to getModels () with the
exception that the initiatorMapper check is not performed.

Return Collection of BnProjectlLightValue objects reflecting the model list.

Collection getModelsLightByPK (Collection list, int offset, int
NUMrows)

Get available workflow models. This method is similar to getModels () with the
exception that the initiatorMapper check is not performed.

Return a Collection of BnProjectLightValue objects - the model list. The
returned collection of BnProjectlLightValue objects is based on the supplied
“list”, starting with "offset” for “numrows”.

Collection getToDoListAsPK (String projectName)

Used to obtain all user activities from specific project (those in ready and
anficipable state) and return a String Collection with the list of ToDo activities
of the user for the specified project.

An exception is thrown in the following case:

— If projectName does not exist

Collection getToDoListByPK (String projectName, Collection list,
int offset, int numrows)

Chapter 10. Bonita Pagination 117

Used to obtain all user activities from a specific project (those in ready and
anticipable state) and return a String Collection with the list of ToDo activities
of the user for the specified project. The returned String collection is based on
the supplied “list”, starting with “offset” for “numrows".

An exception is thrown in the following cases:

— If projectName does not exist

Collection getActivityListAsPK (String projectName)

Used to obtain all user activities from a specific project (those in executing
and anticipating state) and return a String Collection with the list of active
activities of the user for the specified project.

An exception is thrown in the following cases:

— If projectName does not exist

Collection getActivityListByPK (String projectName, Collection
list, int offset, int numrows)

Used to obtain all user activities from a specific project (those in executing
and anficipating state) and return a String Collection with the list of active
activities of the user for the specified project. The returned String collection is
based on the supplied “list”, starting with “offset” for “numrows”.

An exception is thrown in the following cases:

— If projectName does not exist

Collection getToDoListAllInstancesAsPK ()

Used to obtain all ToDo user activities for all instances/cooperative projects
(those in ready and anticipable state) and return a BnNodeValue Collection
of the list of ToDo activities of the user for all instances.

If no activities are found a null list is returned.

Collection getToDolListAllInstancesByPK (Collection list, int
offset, int numrows)

Used to obtain all ToDo user activities for all instances/cooperative projects
(those in ready and anticipable state) and return a BnNodeValue Collection
of the list of ToDo activities of the user for all instances. The returned
BnNodeValue collection is based on the supplied “list”, starting with “offset”
for "*numrows”.

If no activities are found a null list is returned.

118 Bonita Workflow - Bonita API

Collection getActivityListAllInstancesAsPK ()

Used to obtain a list of executing user activities for all instances/cooperative
projects (those in executing and anticipating state), and return a
BnNodeValue Collection with the list of executing activities for the user for all
instances.

If no activities are found a null list is returned.

Collection getActivityListAllInstancesByPK (Collection 1list, int
offset, int numrows)

Used to obtain a list of executing user activities for all instances/cooperative
projects (those in executing and anticipating state), and return a
BnNodeValue Collection with the list of executing activities for the user for all
instances. The returned BnNodeValue collection is based on the supplied
“list”, starting with "offset” for “numrows”.

If no activities are found a null list is returned.

Collection getTerminatedListAllInstancesAsPK ()

Used to obtain a subset of the terminated user activities for alll
instances/cooperative projects and return a BnNodeValue Collection
containing the list of terminated activities for the user for all instances.

If no activities are found a null list is refurned.

Collection getTerminatedListAllInstancesByPK (Collection list, int
offset, int numrows)

Used to obtain a subset of the terminated user activities for alll
instances/cooperative projects and return a BnNodeValue Collection
containing the list of terminated activities for the user for all instances. The
returned BnNodeValue collection is based on the supplied “list”, starting with
“offset” for “numrows”.

If no activities are found a null list is returned.

Collection getToDolListByPropertyAsPK (String key, String value)

This APl obtains a user activities “ToDo” BnNodeValue list matching the
project property value (the key/value pair). Returned are those activities in
ready and anficipable state only.

If no activities match the key/value or exist in the required state, a null list is
returned.

Chapter 10. Bonita Pagination 119

Collection getToDoListByPropertyByPK (String key, String value,
Collection list, int offset, int numrows)

This APl obtains a user activities “ToDo” BnNodeValue list matching the
project property value (the key/value pair). Returned are those activities in
ready and anticipable state only. The returned BnNodeValue collection is
based on the supplied “list”, starting with “offset” for *“numrows”.

If no activities match the key/value or exist in the required state, a null list is
returned.

Collection getToDolListByPropertiesAsPK (int operation, Hashtable
properties)

This APl obtains a user activities “ToDo” BnNodeValue list matching the

project properties (key/value pairs). The returned BnNodeValue list contains

only those activities in the ready and anticipable state. This method is

oriented to administrative workflow (workflow instances) and supports up to

three properties (key/value pairs). The Operation constants values are:

“hero.interfaces.Constants.AND", or “hero.interfaces.Constants.OR".

An exception is thrown in the following case:

— If more than 3 properties are entered (if more than 3 are required please
contact your Bull HN representative.

Collection getToDoListByPropertiesByPK (int operation, Hashtable
properties, Collection list, int offset, int numrows)

This APl obtains a user activities “ToDo" list matching the project properties
(key/value pairs). The returned BnNodeValue list contains only those activities
in the ready and anticipable state. This method is oriented to administrative
workflow (workflow instances) and supports up to three properties (key/value
pairs). The Operation constants values are: “hero.interfaces.Constants. AND”,
or “hero.interfaces.Constants.OR".

The returned BnNodeValue collection is based on the supplied “list”, starting
with “offset” for “numrows”.

If no activities match the key/value or exist in the required state, a null list is
returned.

Collection getToDoListByActivityPropertyAsPK (String key, String
value)

This APl obtains a user activities “ToDo" list matching the activity properties
(key/value pairs). The returned BnNodeValue list contains only those activities
in the ready and anticipable state.

If no activities match the key/value or exist in the required state, a null list is
returned.

120 Bonita Workflow - Bonita API

Collection getToDoListByActivityPropertyByPK (String key, String
value, Collection list, int offset, int numrows)

This APl obtains a user activities “ToDo” list matching the activity properties
(key/value pairs). The returned BnNodeValue list contains only those activities
in the ready and anticipable state. The returned BnNodeValue collection is
based on the supplied “list”, starting with “offset” for *“numrows”.

If no activities match the key/value or exist in the required state, a null list is
returned.

Collection getActivityListByPropertyAsPK (String key, String
value)

This APl obtains a BnNodeValue Collection of executing user activities names
matching the property value (key/value pair). The list contains only those
activities in executing and anticipating state.

If no activities match the key/value or exist in the required state, a null list is
returned.

Collection getActivityListByPropertyByPK (String key, String
value, Collection list, int offset, int numrows)

This APl obtains a BnNodeValue Collection of executing user activities names
matching the property value (key/value pair). The list contains only those
activities in executing and anticipating state. The retfurned BnNodeValue
collection is based on the supplied “list”, starting with “offset” for “numrows".

If no activities match the key/value or exist in the required state, a null list is
returned.

Collection getProjectInstancesNamesAsPK (String projectName,
String version)

Return a String Collection containing the names of project instances.

An exception is thrown in the following cases:
— If projectName does not exist
— If the specified name and version is not found

Collection getProjectInstancesNamesAsPK (String projectName)

Return a String Collection containing the names of project instances using the
default version.

If no project instances are found, a null list is refurned.

An exception is thrown in the following case:
— If projectName does not exist

Chapter 10. Bonita Pagination 121

122

Collection getProjectInstancesNamesByPK (String projectName,
Collection list, int offset, int numrows)

Return a String Collection containing the names of project instances using the
specified version. The returned String collection is based on the supplied “list”,
starting with “offset” for *numrows”.

If no project instances are found, a null list is returned.

Collection getProjectInstancesAsPK (String projectName, String
version)

Return a BnProjectValue Collection containing a list of project instances for
the specified version.
If no project instances are found, a null list is retfurned.

An exception is thrown in the following case:
— If projectName and/or version does not exist

Collection getProjectInstancesAsPK (String projectName)

Return a BnProjectValue Collection containing a list of project instances for
the defaulf version.

An exception is thrown in the following case:

— If projectName does not exist

Collection getProjectInstancesByPK (String projectName, Collection
list, int offset, int numrows)

Return a BnProjectValue Collection containing a list of project instances for
the specified version. The returned BnProjectValue collection is based on the
supplied “list”, starting with “offset” for “numrows”.

If no project instances are found, a null list is returned.

Collection getInstancesByPropertyAsPK (String key, String value)

Return a BnProjectValue Collection containing a list of project instances
meeting the key/value property.
If no Instances are found, null is returned.

Collection getInstancesByPropertyByPK (String key, String value,
Collection list, int offset, int numrows)

Return a BnProjectValue Collection containing a list of project instances
meeting the key/value property. The returned BnProjectValue collection is
based on the supplied “list”, starting with “offset” for *“numrows”.

If no Instances are found, null is returned.

Collection getInstancesByPropertyNamesAsPK (String key, String
value)

Bonita Workflow - Bonita API

Return a String Collection containing a list of project instances based on the
supplied key/value pair.
If no instances are found, nullis returned.

Collection getInstancesByPropertyNamesByPK (String key, String
value, Collection list, int offset, int numrows)

Return a BnProjectValue Collection containing a list of project instances
meeting the key/value property.
If no instances are found, nullis returned.

Collection getProjectsByPropertyAsPK (String key, String value)

Return a BnProjectValue Collection containing a list of projects based on the
supplied key/value pair.
If no projects are found, null is returned.

Collection getProjectsByPropertyByPK (String key, String value,
Collection list, int offset, int numrows)

Return a BnProjectValue Collection containing a list of projects based on the
supplied key/value pair. The returned BnProjectValue collection is based on
the supplied “list”, starting with “offset” for “numrows”.

If no projects are found, null is returned.

Collection getProjectsByPropertyNamesAsPK (String key, String
value)

Return a String Collection containing a list of project names based on the
supplied key/value pair.
If no projects are found, null is returned.

Collection getProjectsByPropertyNamesByPK (String key, String
value, Collection list, int offset, int numrows)

Return a String Collection containing a list of project names based on the
supplied key/value pair. The returned String collection is based on the
supplied “list”, starting with “offset” for “numrows”.

If no projects are found, null is returned.

Chapter 10. Bonita Pagination 123

Collection getInstancesActivityTodoListAsPK (String projectName,
String nodeName)

Return a BnNodelightValue Collection containing a subset of activities model
instances assigned to this user.

If no model instances are found, null is retfurned.

Collection getInstancesActivityTodoListByPK (String projectName,
String nodeName, Collection list, int offset, int numrows)

Return a BnNodelightValue Collection containing a subset of activities model
instances assigned to this user. The returned BnNodelightValue collection is
based on the supplied “list”, starting with “offset” for *“numrows”.

If no model instances are found, null is returned.

Collection getInstancesActivityTerminatedAsPK (String projectName,
String nodeName)

Return a BnNodelightValue Collection containing a subset of activities model
instances terminated by this user.

If no model instances are found, null is returned.

Collection getInstancesActivityTerminatedByPK (String projectName,
String nodeName, Collection list, int offset, int numrows)

Return a BnNodelightValue Collection containing a subset of activities model
instances terminated by this user. The returned BnNodelightValue collection is
based on the supplied “list”, starting with “offset” for *“numrows”.

If no model instances are found, null is returned.

Collection getUserInstancesProjectNodesAsPK (String projectName)

Return a String Collection containing the names of activities in the ready,
anficipable, and executing state for the current user instances.

If no instances are found, null is returned.

An exception is thrown in the following case:
— If projectName does not exist

Collection getUserInstancesProjectNodesByPK (String projectName,
Collection list, int offset, int numrows)

Return a String Collection containing the names of activities in the ready,
anficipable, and executing state for the current user instances. The returned
String collection is based on the supplied “list”, starting with “offset” for
“numrows”.

If no instances are found, nullis returned.

An exception is thrown in the following case:

— If projectName does not exist

124 Bonita Workflow - Bonita API

Chapter 11. Bonita Entities

Many entry points in APl allow retrieving data about the process entities, such as
the relevant information for a given activity. Although Bonita currently makes use
of the Enterprise Java Beans entities to store data, the corresponding information
has been made available at the APl level as java beans.

The following is a first level of description of those java beans. For further
information, refer to the code in the Bonita/build/generate/hero/interfaces
directory.

The following naming convention applies for all entities managed at the APl level.

If Entity is the name of the internally used Enterprise Java Bean, EnfityValue is the
name of the corresponding plain old java object, EnfityLightValue is the name of
asimpler java object (very often, EntityLightValue has only fields that have a
simple type).

To directly use the internal EJB through the remote or local interfaces (this choice
is not recommended), each of these enfities may be accessed using its name
suffixed by hero.interfaces. Many enfry points in API allow retrieving data about
the process entities, such as the relevant information for a given activity.
Although Bonita currently makes use of the Enterprise Java Beans entities to store
data, the corresponding information has been made available at the API level as
java beans.

The following is a first level of description of those java beans. For further
information, refer to the code in the Bonita/build/generate/hero/interfaces
directory.

The following naming convention applies for all entities managed at the APl level.

If Entity is the name of the internally used Enterprise Java Bean, EnfityValue is the
name of the corresponding plain old java object, EnfityLightValue is the name of
asimpler java object (very often, EntityLightValue has only fields that have a
simple type).

To directly use the internal EJB thru the remote or local interfaces (this choice is

not recommended), each of these entities may be accessed using its name
suffixed by hero.interfaces.

Chapter 11. Bonita Entities 125

11.1 Entity Diagrams

11.1.1 Global Diagram

jl:{/localhost: 9005/bo

Fichier Vue Aide
ENNODEHOOK ENAGENTEDGE BNAGENT ENPROJECTHOOK =]
TYPE BNPROJECT_ID BNUSER_ID TYPE
EVENT %D ERD) ENFROJECT_ID
BNNODE_ID BNNODE_ID BNPROJECT_ID 7 4 EVENT
NAME BNAGENT_ID DESCRIFTION ol NAME BNITERATION
?ID STATE STATE 71D FROMNODE
NAME NAME ITERATIONCONDITI(
ENNODEINTERHOOK CREATIONDATE| REATIONDATE| ENPROJECHNTERHODR TONODE
TYPE TYPE
SerIPT T ENFROJECT_ID
EVENT ENNODE ENPROJECT_ID ullv
BNNODE_ID L ENROLEID ; EVENT
TS 7 ID ? ENEDGE \ NAME ENPROJECTPROPERTY
2 1D BNFROJECT_ID FK_INNODE 21D POSSIBLEVALUES
STARTDATE ECT_ID N BENPROJECT_ID
BNNODEPROPERTY) EXECUTOR mﬁb\ ENPROJECT THEKEY
POSSIBLEVALUES ANTICIPAELE STATE B % ID %D
BNNODE_ID ENDDATE NAME 1 BNINITIATORMAPPER_ID THEVALUE
THEKEY TYPE % ID CREATOR
PROPAGATE TRANSITION EDGECONDITION ENDDATE E
% ID ACTIITYPERFORMER CREATIONDATE TYPE ENINITLNIO RN ARRER o
THEVALUE DEADLINES MODIFICATIONDATE| STATE L;:fs
BNNODEPERFORMERASSIGN RELATIVEDEADLINES STATUS 71D
TYPE CREATOR NAME
PROPERTY HYe | DESCRIPTION 1 ERROUE PARENT *\i ENUSER_ENPROJECT
BNNODE ID SiEali 71D EREAHONDATE BNPROJECT_ID
st ACTHATION BNROLEMAPPER_ID ENUSER 7 BNUSER 1D
¥ 1D —— PASSWORD
CREATIONDATE (e TE e
BNFROJECT_ID EMAN
EUANIE) NAME BNAUTHROLE_ENLSER
BNTI_I;J:,I;EEMAPPER _? {;5’35" 1 ¢ BNAUTHROLE_ID
Bmﬂm’;ﬂ;‘;g“ NAME . CREATIONDATE 1 s
%D L ENUSER_ENROLE MODIFICATIONDATE|
NAME BNROLE_ID v NISERPROPERTY
? D BNUSER_ID S HER Y, ENAUTHROLE
ERUSEAD AUTHROLEGROUF|
S NAME 1 L
THEVALUE D ~|

Figure 11-1. Global Diagram

126 Bonita Workflow - Bonita API

11.1.2

Diagram Focused on Project Entity Relations

Fichier Yue Aide

005/bonita

% ID

ENINITIATORMAFPPER
T¥YPE
NAME

ENROLE

=

1D
BENROLEMAPPER_ID
DESCRIPTION
BNPROJECT_ID
NAME

L7 ID

ENITERATION ENPROJECTPROPERTY
FROMNODE POSSIBLEVALUES
ITERATIONCONDITION | BNPROJECT.ID
TONODE Ak THEKEY 9
BNPROJECT_ID ?ID 24—

THEVALUE A

%D

ENNODE
ENROLE D

ENPROJECT_ID
STARTDATE
EXECUTOR
ANTICIPABLE
ENDDATE
TYPE
TRANSITION
ACTIVITYPERFORMER
DEADLINES
RELATIVEDEADLINES
CREATOR
DESCRIFTION

STATE

ACTIVATION

NAME

T
CREATIO.

ENPROJECT

% 1D

ENINITIATORMAPPER_1D]
CREATOR

ENDDATE

T¥YPE

STATE

STATUS

NAME

*k
ENAGENTEDGE
ENPROJECT_ID

2 |%ID

CREATIONDATE

BNNODE_ID 3}
BENAGENT_ID
STATE
NAME
CREATIONDATE|

ENEDGE
FK_INNODE
BENPROJECT_ID
ENNODE_ID
STATE
NAME

7D
EDGECONDITION
CREATIONDATE
MODIFICATIONDATE|

ENPROJECTHOOK
TYPE
ENPROJECT_ID
EVENT
NAME

71D

ENPROJECTINTERHOOK
T¥YPE

SCRIPT
BNPROJECT_ID
EVENT
NAME
7 ID
BNUSER_BNPROJECT
BAGENT T3] BNPROJECTID
EllsE DD ENUSER_ID
7D
BNPROJECT_ID
DESCRIPTION
STATE
NAME
CREATIONDATE
BNNEXTNUMBER
MAXNUMEBER
NAME
7 ID

Figure 11-2. Project Entity Diagram

Chapter 11. Bonita Entities

127

11.1.3 Diagram Focused on Node Entity Relations

005/bonita

Fichier Yue Aide
BNAGENT
ENROLE
2D ENPROJECT . IE[’)"USE"JD
% ID 7
BNROLEMAFPER_ID) 111 < >
T e lx ESCRITION L _Vl/)‘ BNINITIATORMARPERID] 1 F1 g’:_': ’;gﬁ;&;"
TYPE \ ENPROJECT_ID ¥ E::;‘;;i STATE
EVENT NAME NAME
TYPE
ENNDDE_ID (G7ET *? ENAGENTEDGE CREATIONDATE|
NAME STATUS BNPROJECT_ID
21D NAME 71D
PARENT ? BNNODEID Y%
CREATIONDATE BNAGENT_ID
BNTNV(;[E)EINTERHOOK / STATE
NAME
Soet CREATIONDATE]
EVENT 4 BNNODE
BNNODE_ID BNROLE_ID
NAME —? ID £
7 1D Al EnPrOJECIID
STARTDATE
EXECUTOR
ANTICIPABLE
ST
TYPE
LI) TRANSITION ENEDGE
U3/ ACTIITYPERFORMER FK_INNODE
il ldatl3 DEADLINES BNPROJECT_ID
1o RELATIVEDEADLINES BNNODE_ID
THEVALUE CREATOR STATE
DESCRIFTION NAME
ENNODEPERFORMERASSIGN STATE ® D
TYPE ACTIVATION EDGECONDITION
PROPERTY HKYH NAME CREATIONDATE
BNNODE_ID Il | CREATIONDATE MODIFICATIONDATE
NAME ENNEXTNUMEER
® ID MAXNUMEER
NAME
71D

Figure 11-3. Node Entity Diagram

128 Bonita Workflow - Bonita API

11.1.4 Diagram Focused on User-Role Entities Relations

sqldb:hsqgli//localh 0005/bonita

Fichier Yue Aide
ENNODE
| gnROLE ID 1 — ENPROJECT
7 AET 1D B
N ENPROJECT_ID iNRgv;;:;ITORMAPPER_!D
STARTDATE EEoE
EXECUTOR e
ANTICIPABLE e
ENDDATE STATUS
TYPE NAME
TRANSITION PARENT
ACTIVITYPERFORMER|
e CREATIONDATE
RELATIVEDEADLINES
CREATOR
DESCRIPTION E
ENROLEMAPPER FIATE KY VENIISER_ENPROJECT
TYPE ACTIVATION L{ BNPROJECT_ID
NAME NAME ENUSER_ID
% 1D CREATIONDATE ?’L:k
ENROLE ENUSERPROPERTY
% 1D THEKEY
BNROLEMAPPER_ID e = BNUSER_ID
gﬁ:gﬂg? TD PASSWORD 7 1D ENALUTHROLE
NaME EMAN EHEVALUE AUTHROLEGROUP,
BNUSER_BENROLE NAME NAME
BNROLE_ID * 1 JABRER J 7 1D
BNUSER_ID g 7 ID 1
® CREATIONDATE 1 5
MODIFICATIONDATE g BNAUTHROLE_BNUSERJ‘E
5, BENAUTHROLE_ID
) BNNEXTNUMBER
MAXNUMBER
NAME
71D
v

Figure 11-4. User Role Entity Diagram

Chapter 11. Bonita Entities 129

11.2 Entities Attributes

11.2.1 BnAuthRoleValue
TYPE ATTRIBUTE MEANING
String id Auth Role ID
boolean idHasBeenSet Default = false
String name; Auth Role Name
boolean nameHasBeenSet Default = false
String bnRoleGroup; Auth Role Group Role
name
boolean bnRoleGroupHasBeenSet | Default = false

hero.interfaces.BnAuthRolePK

pk;

Auth Role Primary Key

Table 11-1. BnAuthRoleValue Attributes

11.2.2 BnEdgeValue

TYPE ATTRIBUTE MEANING
String id; Edge ID
boolean idHasBeenSet Default = false
String name; Edge Name
boolean nameHasBeenSet Default = false
int state; Edge State
boolean stateHasBeenSet Default = false
String condition; Edge Condition
boolean conditionHasBeenSet Default = false
java.sqgl.Date creationDate; Date edge created

boolean

creationDateHasBeenSet

Default = false

java.sqgl.Date

modificationDate;

Date edge modified

boolean

modificationDateHasBeen
Set

Default = false

hero.interfaces.BnNodeValue InBnNode; Edge Input (from) node
boolean InBhNodeHasBeenSet Default = false
hero.interfaces.BnNodeValue OutBnNode; Edge Output (to) node
boolean OutBnNodeHasBeenSet Default = false
hero.interfaces.BnEdgePK pk; Edge Primary Key

Table 11-2. BnEdgeValue Attributes

130 Bonita Workflow - Bonita API

11.2.3 BnlterationValue

TYPE ATTRIBUTE MEANING
String id; Iteration ID
boolean idHasBeenSet Default = false
String fromNode; lterating from node
boolean fromNodeHasBeenSet Default = false
String toNode; lterating to node
boolean toNodeHasBeenSet Default = false
String condition; Iteration Condition
boolean conditionHasBeenSet Default = false

hero.interfaces.BnlterationPK

pk;

Iteration Primary Key

Table 11-3. BnlterationValue Atftributes

11.2.4 BnNodeHookValue

TYPE ATTRIBUTE MEANING
String id; Node Hook Id
boolean idHasBeenSet Default = false
String name; Node hook name
boolean nameHasBeenSet Default = false
String event; Node Hook event
boolean eventHasBeenSet Default = false
int type; Node Hook type
boolean typeHasBeenSet Default = false
hero.interfaces.BnNodeHookPK pk Node Hook Primary Key

Table 11-4. BnNodeHookValue Attributes

Chapter 11. Bonita Entities

131

11.2.5 BnNodelnterHookValue

TYPE ATTRIBUTE MEANING
String id Node InterHook ID
boolean idHasBeenSet Default = false
String name; Node InterHook hame
boolean nameHasBeenSet Default = false
String event Node InterHook event
boolean eventHasBeenSet Default = false
int type Node InterHook type
boolean typeHasBeenSet Default = false
String script Node InterHook script
boolean scriptHasBeenSet Default = false
hero.interfaces.BnNodelnterHookPK pk Node InterHook Primary

Key

Table 11-5. BnNodelnterHookValue Attributes

11.2.6 BnNodePerformerAssignValue
TYPE ATTRIBUTE MEANING

String id Node Performer Id

boolean idHasBeenSet Default = false

String name Node Performer name

boolean nameHasBeenSet Default = false

int type; Node Performer type (i.e.
callback)

boolean typeHasBeenSet Default = false

String propertyName Used with property
assignment

boolean propertyNameHasBeenS | Default = false

et

hero.interfaces.BnNodePerformerAssig
nPK

pk

Node Performer Primary
Key

Table 11-6. BnNodePerformerAssignValue Attributes

132 Bonita Workflow - Bonita API

11.2.7 BnNodePropertyValue

TYPE ATTRIBUTE MEANING
String id; Node Property Id
boolean idHasBeenSet Default = false
String theKey; Node Property Key name
boolean theKeyHasBeenSet Default = false
String theValue; Node Property Value
boolean theValueHasBeenSet Default = false
boolean propagate; True = propagate
boolean propagateHasBeenSet Default = false

hero.interfaces.BnNodePropertyPK pk;

Node Property Primary
Key

Table 11-7. BnNodePropertyValue Attributes

11.2.8 BnNodeValue

TYPE ATTRIBUTE MEANING
String id; Node Id
boolean idHasBeenSet Default = false
int type; Node type
boolean typeHasBeenSet Default = false
int state; Node state
boolean stateHasBeenSet Default = false
boolean anficipable; Set by

setNodeAntficipable

boolean anticipableHasBeenSet Default = false
String name; Node name
boolean nameHasBeenSet Default = false
String reference Node SubProcess use
boolean referenceHasBeenSet Default = false
String description; Node description
boolean descriptionHasBeenSet Default = false
String activityPerformer; Performer name
boolean activityPerformerHasBeenSet Default = false
Date startDate Node start date
boolean startDateHasBeenSet Default = false

Table 11-8. BnNodeValue Attributes (1 of 2)

Chapter 11. Bonita Entities

133

TYPE ATTRIBUTE MEANING
Date endDate Node end date
boolean endDateHasBeenSet Default = false
Collection deadlines Node deadlines
boolean deadlinesHasBeenSet Default = false
Collection relativeDeadlines Node relative deadlines
boolean relativeDeadlinesHasBeenSet Default = false
String creator Node creator
boolean creatorHasBeenSet Default = false
String executor Node executor
boolean executorHasBeenSet Default = false
Date creatfionDate Node creation date
boolean creationDateHasBeenSet Default = false
BnRoleValue BnRole Node Role value
boolean BnRoleHasBeenSet Default = false
BnNodePerformerAssignValue BnNodePerformerAssign Node Performer

boolean

BnNodePerformerAssignHasBeen
Set

Default = false

BnProjectLightValue BnProject Node Light value
boolean BnProjectHasBeenSet Default = false
Collection BnProperties Node Properties
Collection BnHooks Node Hooks
Collection BninterHooks Node Interhooks
BnNodePK primaryKey Node Primary Key

Table 11-10.BnNodeValue Attributes (2 of 2)
11.2.9 BnProjectHookValue

TYPE ATTRIBUTE MEANING
String id; Project Hook Id
boolean idHasBeenSet Default = false
String name; Hook name
boolean nameHasBeenSet Default = false
String event; Hook event
boolean eventHasBeenSet Default = false
int type: Hook type
boolean typeHasBeenSet Default = false
hero.interfaces.BnProjectHookPK pk; Project Hook Primary key

Table 11-9. BnProjectHookValue Attributes

134 Bonita Workflow - Bonita API

11.2.10 BnProjectinterHookValue

TYPE ATTRIBUTE MEANING
String id; Project InterHook Id
boolean idHasBeenSet Default = false
String name; Project InterHook name
boolean nameHasBeenSet Default = false
String event; Project InterHook event
boolean eventHasBeenSet Default = false
int type; Project InterHook type
boolean typeHasBeenSet Default = false
String script; Project Interhook script
boolean scriptHasBeenSet Default = false
hero.interfaces.BnProjectinterHookPK | pk; Project InterHook Primary

Key

Table 11-10.BnProjectinterHookValue Attributes
11.2.11 BnProjectPropertyValue

TYPE ATTRIBUTE MEANING
String id; Property ID
Boolean idHasBeenSet Default = false
String theKey; Property Key
Boolean theKeyHasBeenSet Default = false
String theVdalue; Property value
Boolean theValueHasBeenSet Default = false
Collection possibleValues Possible values (allowed)
boolean possibleValuesHasBeenSet | Default = false
hero.interfaces.BnProjectPropertyPK pk; Property Primary Key

Table 11-11.BnProjectPropertyValue Attributes

Chapter 11. Bonita Entities

135

11.2.12 BnProjectValue

TYPE ATTRIBUTE MEANING
String id; Project Value ID
boolean idHasBeenSet Default = false
String parent; Parent name
boolean parentHasBeenSet Default = false
String name; Project name
boolean nameHasBeenSet Default = false
String version Project version
boolean versionHasBeenSet Default = false
String status Project status
boolean statusHasBeenSet Default = false
String type Project type
boolean typeHasBeenSet Default = false
String creator; Project creator
boolean creatorHasBeenSet Default = false
int state; Project state
boolean stateHasBeenSet Default = false
java.util.Date creationDate; Project creation date

boolean creationDateHasBeenSet | Default = false
java.util.Date endDate Project end date
boolean endDateHasBeenSet Default = false
Collection BnUsers Project users
Collection BnRoles Project roles

BninitiatorMapperValue

BninitiatorMapper

Initiator mapper

boolean BninitiatorMapperHasBeen | Default = false

Set
Collection BnNodes Project nodes
Collection BnEdges Project edges
Collection BnAgents Project agents
Collection BnAgentEdges Project agent edges
Collection BnProperties Project properties
Collection Bnlterations Project iterations
Collection BnHooks Project hooks
Collection BninterHooks Project interhooks

hero.interfaces.BnProjectPK

pk;

Project Primary key

Table 11-12.BnProjectValue Attributes

136 Bonita Workflow - Bonita API

11.2.13

BnRoleMapperValue

TYPE ATTRIBUTE MEANING
String id; Role Mapper ID
boolean idHasBeenSet Default = false
String name; Role Mapper name
boolean nameHasBeenSet Default = false
int type; Role Mapper type
boolean typeHasBeenSet Default = false
hero.interfaces.BnRoleMapperPK pk; Role Mapper Primary Key

Table 11-13.BnRoleMapperValue Attributes

11.2.14 BnRoleValue

TYPE ATTRIBUTE MEANING
String id; Role value ID
boolean idHasBeenSet Default = false
String description; Role value description
boolean descriptionHasBeenSet Default = false
String name; Role value name
boolean nameHasBeenSet Default = false
hero.interfaces.BnRoleMapperValue | BnRoleMapper; Role value mapper

boolean

BnRoleMapperHasBeenSet

Default = false

hero.interfaces.BnRolePK

pk;

Role value Primary Key

Table 11-14.BnRoleValue Attributes

Chapter 11. Bonita Entities

137

11.2.15 BnUserPropertyValue

TYPE ATTRIBUTE MEANING
String id; User Property ID
boolean idHasBeenSet Default = false
String theKey; User Property key
boolean theKeyHasBeenSet Default = false
String theValue; User Property value
boolean theValueHasBeenSet Default = false

hero.interfaces.BnUserPropertyPK

pk;

User Property Primary Key

Table 11-15.BnUserPropertyValue Attributes

11.2.16 BnUserValue

TYPE ATTRIBUTE MEANING
String id; User ID
boolean idHasBeenSet Default = false
String name; User name
boolean nameHasBeenSet Default = false
String password; User password
boolean passwordHasBeenSet Default = false
String email; User email
boolean emailHasBeenSet Default = false
String jabber; User jabber name
boolean jabberHasBeenSet Default = false
java.sgl.Date creationDate; User creation date

boolean creationDateHasBeenSet | Default = false
java.sgl.Date modificationDate; User modification date
boolean modificationDateHasBeen | Default = false

Set
Collection BnProjects User projects
Collection BnRoles User roles
Collection BnAuthRoles User authorized roles
hero.interfaces.BnUserPK pk; User Primary Key

Table 11-16.BnUserValue Attributes

138 Bonita Workflow - Bonita API

Chapter 11. Bonita Entities 139

140 Bonita Workflow - Bonita API

