
Nova Bonita documentation

Bonita Workflow Team ()

- April 2008 -

Copyright © Bull SAS - OW2 Consortium

ii

Table of Contents
Introduction .. iii
1. General information .. 1

1.1. Nova Bonita introduction ... 1
1.2. Feature list .. 1
1.3. Restrictions ... 2

2. Prerequisites ... 3
2.1. Hardware .. 3
2.2. Software ... 3

3. Change history between Bonita v3 and Nova Bonita ... 4
3.1. Concept of package .. 4
3.2. Processes, instances, activities and tasks life cycles ... 4

3.2.1. Process life cycle ... 4
3.2.2. Instance life cycle .. 4
3.2.3. Activity life cycle .. 4
3.2.4. Task life cycles ... 5

3.3. APIs ... 5
3.4. Hooks .. 5

3.4.1. for activities .. 5
3.4.2. for process .. 6
3.4.3. Interactive hook ... 7

3.5. Deadlines .. 7
3.6. Mappers .. 7
3.7. Performer assignments .. 7
3.8. Variables .. 7
3.9. Iterations ... 7

4. Installation guide .. 9
4.1. Installation .. 9
4.2. Standard vs Enterprise installation ... 10

4.2.1. Standard installation .. 10
4.2.2. Enterprise installation .. 11

5. Configuration and Services ... 12
5.1. Services Container .. 12
5.2. Services .. 12

5.2.1. Persistence .. 13
5.2.2. Identity ... 13
5.2.3. Security .. 14
5.2.4. Task Management .. 14
5.2.5. Journal and History .. 15
5.2.6. Timers .. 15

6. User guide ... 16
6.1. Designing a xpdl process with ProEd ... 16
6.2. Nova Bonita APIs ... 16

6.2.1. Getting started with Bonita APIs ... 16
6.2.2. Nova Bonita APIs, playing with ! .. 17

6.3. Running the example ... 18

iii

Introduction
This documentation is targetted for Bonita users. It presents the installation procedure and a quick user
guide of Nova Bonita Release Candidate 1 features.

Chapter 1 , General information describes the new version Bonita v4 called Nova Bonita

Chapter 2 , Prerequisites describes the hardware and software prerequisites

Chapter 3, Installation guide describes how to install the Nova Bonita milestone 4

Chapter 4, Change history between Bonita v3 and Bonita v4

Chapter 5, Configuration and Services describes main configuration features and default services

Chapter 6, User Guide guides you through the descovery Nova Bonita functionalities.

1

Chapter 1. General information
1.1. Nova Bonita introduction

Nova Bonita is the name of new version of Bonita v4.

“Nova” technology is based on the “Process Virtual Machine” conceptual model for processes. The Process
Virtual Machine defines a generic process engine enabling support for multiple process languages (such
BPEL, XPDL…).

On top of that, it leads to a pluggable and embeddable design of process engines that gives modelling
freedom to the business analyst. Additionally, it enables the developer to leverage process technology
embedded in a Java application.

For more information about the Process Virtual Machine, check Nova Bonita FAQs
[http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/FAQ] on the Bonita web site [http://
bonita.objectweb.org].

1.2. Feature list
Nova Bonita (aka Bonita v4) is a lightweight workflow/BPM solution that provide XPDL support. Nova
Bonita Release Candidate 1 comes with an enhanced XPDL extension module, a reworked workflow API,
support for iterations and deadlines and a set of new features and services such journal, history and timers
services. Hereafter you can find the list of features included in this milestone:

• Powerful workflow API covering deployment, definition, runtime and history workflow data

• ReadOnly API and advanced resources (hooks, mappers and performer assignments)

• Standard (J2SE) vs Enterprise (J2EE) deployment

• JEE deployment inludes support for both 1.4 and 1.5 standards

• Support for XPDL 1.0 activities : Join, Split, Activity (Route, implementation no and subFlow) in both
start and finish modes automatic and manual

• Support of main XPDL 1.0 elements : Datafield, DataType, Participant, Transition, RedefinableHeader,
Transition Restriction and Package...

• Support of advanced entities/resources: Hooks, mappers and performer assignments

• Persistent execution

• Subprocesses support

• Iterations support

• Activities deadlines support through the Process Virtual Machine generic and configurable Timer
service

• Configurable journal and history workflow modules

• Advanced process deployment capabilities including ".bar" file deployment and local vs global
resources (hooks, mappers)

http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/FAQ
http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/FAQ
http://bonita.objectweb.org
http://bonita.objectweb.org
http://bonita.objectweb.org

General information

2

• Default persistence service implementation based on Hibernate

• Standard security service based on JAAS LoginModules: Test, standard and J2EE login modules are
included in the package

• Configurable identity service. Default in-memory vs FileSystem vs database based implementations

• Unified life cycle for workflow activities (XPDL activities types) execution handling synchronization
with Tasks, also known as manual activities, life cycle.

• Task Management module handling init, ready, executing, finished, dead, suspend and resume states

• Transitions conditions basic support based on BeanShell scripting language

• Support of ProEd XPDL designer

• Workflow data: both process and activity level variables support

• Default mapper implementation: Initiator Role (aka properties roleMapper in Bonita v3)

• Process Virtual Machine 1.0.beta1 integration

1.3. Restrictions
Nova Bonita milestone 4 comes out with an innovative architecture based on a generic and extensible
engine, called "The Process Virtual Machine" and a powerful injection technology allowing services
pluggability.

Nova Bonita Release Candidate 1 also include basic support for elements defined in the XPDL 1.0 standard.
Next release candidates versions will continue to improve the standard coverage and services support:
asynchronous execution, versioning... Check the roadmap [http://wiki.bonita.objectweb.org/xwiki/bin/
view/Main/Roadmap] for more information.

This Release Candidate does not support the following features available in Bonita v3:

• block activities

• Process definition and process modifications via Java APIs

• process versionning

• Hooks: processes hook (onInstantiate) as well as activity onCancelled hook are not yet supported

• Role mapper: ldap type is not supported

http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/Roadmap
http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/Roadmap
http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/Roadmap

3

Chapter 2. Prerequisites
2.1. Hardware

A 1GHz processor is recommended, with a minimum of 512 Mb of RAM. Windows users can avoid swap
file adjustments and get improved performance by using 1Gb or more of RAM

2.2. Software
• Nova Bonita requires Java Development Kit (JDK) 1.5 (also called JDK 5.0) but also runs with with

next release.

The JDK software can be downloaded from http://java.sun.com/j2se/1.5.0

• Nova Bonita requires Apache Ant 1.6.5 or higher

It can be downloaded from http://ant.apache.org

4

Chapter 3. Change history between
Bonita v3 and Nova Bonita

Main concepts and features that made the friendly usage and the bonita v3 brand have been kept: hooks,
role mapper, performer assignments, local/global variables, rich and powerful API. Most of these features
have been revisited in order to become even more efficient thanks to the PVM execution environment.
Aim was to be the most compatible with the last version but of course some changes are required.

Goal of this chapter is to list/focus all these differences.

3.1. Concept of package
The concept of package has been introduced by XPDL specification from the WfMC in order to be
a container for main workflow objects that can be shared by multiple workflow processes that can
support an overall business application. Amoung these elements are: participants, datafields, others process
workflows/sublows.

This concept has been natively taken in account by Nova Bonita engine. According the requirements and
needs of our customers this concept should be enforced.

3.2. Processes, instances, activities and tasks
life cycles

One major change concerns the adding of task entity. If the activity is manual (ie. startMode=manual)
when the execution enters the graph node of the activity a task is created. This task has its own life cycle
with some synchronisation with the activity entity. Within this version task is still managed by the engine
but in the future, it will be possible to plug an external task module to manage the tasks.

3.2.1. Process life cycle
States for process: UNDEPLOYED, DEPLOYED

Deployment of processes implies deployment of a package. Same thing for the undeployment. Package
can be deployed and undeployed several times in order to make modifications onto its contained elements
(process, participants, activities, ...). This is the way to maintain processes before the introduction of
versionning in next version.

See the developpement guide for more details.

3.2.2. Instance life cycle
States for process instance: INITIAL, STARTED, FINISHED

No difference with bonita v3.

CANCELED state is not yet supported.

3.2.3. Activity life cycle
States for activities: INITIAL, READY, EXECUTING, FINISHED, CANCELED

Change history between Bonita v3 and Nova Bonita

5

Mostly the same than in Bonita v3 but now this lifecyle applies to any kind of activity: manual, automatic,
subflow, route... hooks are also associated to this activity life cycle.

3.2.4. Task life cycles
States for task: INITIAL, READY, EXECUTING, SUSPENDED, FINISHED, CANCELED

State SUSPENDED has been introduced. This state can be reached either from READY or from
EXECUTING. transition is also reciproque.

Tasks are particular types of activities (such subflow, route...) associated to human actors.

3.3. APIs
Bonita v3 APIs were divided into 5 different areas and can be compared to bonita v4 API (see Chapter 4)

• ProjectSessionBean: is covered by both DefinitionAPI (for set/add methods) and QueryDefinitionAPI
(for get methods)

• UserSessionBean: is covered by both RuntimeAPI and QueryRuntimeAPI

• AdminSessionBean: has fonctions that could be found into QueryDefinitionAPI and QueryRuntimeAPI
according on the type of information (runtime or definition information). At now there's no check for
admin role

• UsersRegistrationBrean: is not relevant for bonita v4 because user base is not managed by the engine.

• historyAPI: is covered by QueryRuntimeAPI.

Bonita v3 can only be acceeded as a remote workflow server. Bonita v4 supports both java workflow
library and remote workflow server (see Chapter 4).

A new API has also be added for improving workflow processes deployment as well as advanced entities
deployment: hooks, mappers and performers assignments. This API is called ManagementAPI. No need
anymore to deploy xpdl first and the compile and copy by hand advanced entities in a particular server
directory. Any deployment/undeployment operation can be performed through the ManagementAPI.

Furthermore Nova Bonita v4 provides extensibility to the APIs by the addition of the commandAPI.
Developper is now free to write and execute its own commands and consequently can extends the proposed
API. This is a service oriented feature and it also should avoid to provide a querier language for complexe
request (involving requests with multiple criteria).

3.4. Hooks
Pieces of end-users java code that are executed at particular moments of processes/activities life cycle

3.4.1. for activities
Xpdl definition of hooks has changed in order to extend rollbacking capabilities to all hook types making
by the way the usage of hook simpler. An example of the new one is given here after

<ExtendedAttribute Name="hook" Value="hero.hook1">
 <HookEventName>on_ready</HookEventName>
 <rollback>false</rollback>

Change history between Bonita v3 and Nova Bonita

6

</ExtendedAttribute>

The element rollback has been introduced to indicate if the hook will be or not rollbacked.

Hook events have also been adapted to match the constraints of activities life cycle.

• ON_READY

• ON_EXECUTING

• ON_FINISHED

• ON_CANCELLED

Main change is the suppression of before/after for terminate and before/after start types because of the
introduction of the rollback parameter. An other change is the move from START to EXECUTING which
keep the same meaning for time events.

Hooks can be now uniformaly defined for all activity types (getting hooks usage also simpler):

• "manual" (start and finsh are done by the end user; It implies a task creation and management)

• "automatic" (start and finish are performed automatically by the engine)

• activity implemented by a subflow

Note: if using proEd, the designer can select for each hook:

• either rollback=true (case1)

• or rollback=false (case2)

Hooks are always executed into a transaction. In case1, if an exception has occured the exception is raised
by the engine and the transaction is rollbacked.In case2, the occuring exception is catched by the engine.

To implement a hook class the developper has the choice between two interfaces. Look at the javadoc of
these interfaces for more details:

• org.bonita.ow2.definition.TxHook

• org.bonita.ow2.definition.Hook

If rollback=false has been previously defined, only Hook interface can be implemented otherwise an
exception is raised at runtime. Then it prevents the use of TxHook interface. These hooks are intended
to execute not critical operations for the workflow. Only query API are proposed to be acceeded into the
parameters of the execute() method of the interface.

Note that ON_CANCELLED hook is not yet supported.

If modification on hook class is required it can be hot deployed to replace the previous one (see the
ManagementAPI). It can be also deployed within the bar archive or independendtly. It can be also
undeployed if the class is not required by a deployed process.

3.4.2. for process
ON_INSTANTIATE hook (set within the process element of XPDL definition) is not yet supported.

ON_CANCELLED hook is not yet supported.

Change history between Bonita v3 and Nova Bonita

7

3.4.3. Interactive hook
Interactive hooks (also called Bean Shell) are not yet supported for activity and process. Those hooks will
be implemented soon adding support for others scripting languages such Groovy

3.5. Deadlines
Deadline feature within Bonita v4 is the same as for Bonita v3. org.ow2.bonita.definition.TxHook or
org.ow2.bonita.definition.Hook interface must be implemented in case of deadline hook (ON_DEADLINE
event). See javadoc for more details.

3.6. Mappers
org.ow2.bonita.definition.RoleMapper interface must be implemented (see javadoc for more details).

Main difference concerns the moment in which the searchMembers() method is executed. In Bonita v3
it was executed at process instantiation since in Bonita v4 it is at the creation of the task from which the
activity has been defined with a role mapper. It has the advantage to take in account modification of the
groups within the external user base

3.7. Performer assignments
org.ow2.bonita.definition.PerformerAssign interface must be implemented (see javadoc for more details).

3.8. Variables
Properties entity in Bonita v3 has been renamed to Variables in Bonita v4. This seems a more natural way
to work with workflow relevant data.

Variables support and flexibility in Bonita v3 was too limited. Only String and enumerated types were
supported. In Bonita v4 support for common variables types as well as as advanced ones (including own
Java based ones) will be added in next RC (currently, the RC1 version support same types than v3).

Getting and Setting variables operations directly leverages Java Objects, meaning that a get operation
returns an Object so the developer only needs to use the instanceOf operator to determine the type of a
particular variable.

3.9. Iterations
Iterations support in Nova Bonita follows the innovative mechanism included in Bonita v3, meaning
supporting complex and advanced uses cases: unstructured iterations or arbitrary cycles.

Main difference between Bonita v3 and v4 related to iterations is that in v4 there is no need anymore for
a dedicated entity called iteration. Transitions can be used in Bonita v4 to create a cycle in a workflow
processes.

For compatibility reasons iterations entities defined as XPDL extended attributes (Bonita v3) are still
supported.

The current implementation in Nova Bonita RC1 has some restrictions:

Change history between Bonita v3 and Nova Bonita

8

- A cycle must have at least one XOR entry point

- Split activities as exit points are only supported in case of XOR

- Join XOR inside iterations do not cancel/delete non selected execution path

Those restrictions will be fixed in next RCs with the addition of a new behaviour for XOR activities in
which non selected execution path will be automatically deleted/removed

9

Chapter 4. Installation guide

4.1. Installation
Nova Bonita Release Candidate release adds support for both standard and enterprise deployments. After
unzipping this release you could easily use Nova Bonita "as a library" inside your web or rich client
application or to deploy it into you favorite application server and use it remotely.

So, first of all you should start by unzipping the Bonita distribution package:

>unzip bonita-4.0.RC1.zip

A new directory bonita-4.0.RC1 will be created with the following structure:

README
build.xml
build.properties
License.txt
release_notes.txt
conf/
doc/
examples/
ear/
lib/

Let's describe those items :

• README

This file gives the basic information related to Nova Bonita

• build.xml

This file is an ant file that provides tasks to run both unit tests and examples (detailled command are
given in following sections).

• build.properties

This file contains the J2EE properties required to deploy and leverage Nova Bonita APIs deployed in a
remote J2EE server (by default properties are set to deploy in the EasyBeans EJB3 container)

• License.txt

The license of Nova Bonita. Bonita is released under the LGPL license.

• conf/

This directory contains default configuration files for Nova Bonita. That includes the "Environment"
xml file (including services and objects used as default by the engine), login modules (JAAS compliant
login modules samples) and hibernate persistence configuration (as a default implementation to handle
Nova Bonita persistence). Standard (JSE) and Enterprise (JEE) versions are provided as well as out of
the box integration with Jboss and JOnAS application servers as well as with Easybeans EJB3 container

• doc/

This directory contains the documentation of Nova Bonita. It contains 2 directories :

Installation guide

10

• html/

For HTML documentation

• pdf/

For PDF documentation

• examples/

This directory contains an example provided with Nova Bonita package. This sample application
illustrates how to leverage Nova Bonita APIs from a client application. That includes the sample source
required to leveraged those APIs in both JSE and J2EE environments.

• Approval Workflow sample

This is a generic Approval Workflow process. Workflow deployment, definition and execution phases
are illustrated in this sample. The sample application is provided in both standard and enterprise
environments in which the workflow APIs are leveraged as POJOs or as Session Beans respectively.

• lib/

This directory contains the libraries used in Nova Bonita RC1. Nova Bonita can be integrated in your
applciation/IS in different ways (integrated in a web application, inside a rich client application, remotly
deployed in a JEE application server...). Depending on your integration environment only some of those
libraries will be required.

4.2. Standard vs Enterprise installation
Find hereafter some instructions about how to deploy and leverage Nova Bonita in both Standard and
Enterprise environments:

4.2.1. Standard installation
To integrate Nova Bonita in your application you only need to add a couple of libraries to your
environment.

The following ones are the only required by Nova Bonita:

bonita.jar
pvm.jar
bsh.jar
novaBpmIdentity.jar
novaBpmUtil.jar
xstream.jar

To leverage the Nova Bonita default persistence service based on hibernate, you should also need those
ones:

hibernate3.jar
dom4j.jar
commons-logging.jar
commons-collections.jar
hsqldb.jar
cglib.jar
antlr.jar
asm.jar
asm-attrs.jar
jboss-j2ee.jar

Installation guide

11

4.2.2. Enterprise installation
Move to the Nova Bonita installation directory and:

• call "ant ear.eb", "ant ear.jboss4" or "ant ear.jonas4" respectively task to generate the bonita.ear file
corresponding to your favorite application server.

• deploy this ear into your favorite JEE 1.4 or 1.5 application server.

• In you are using another application server that the one listed before, you could easily reuse the bonita.ear
generated by one of the previous tasks and deploy it in your environment (Weblogic, Websphere...)

4.2.2.1. EasyBeans EJB3 Installation and deployment (a complete
example)

Here after you will find steps required to deploy Nova Bonita (JEE version) in EasyBeans EJB3 container:

• Download easybeans up to RC3 jar file at http://maven.objectweb.org/maven2/org/ow2/easybeans/
easybeans-uberjar-toplink-essentials/1.0.0.RC3/easybeans-uberjar-toplink-essentials-1.0.0.RC3.jar
Easybeans is using a directory called 'easybeans-deploy' in the basedir to deploy new archives

Note: At the time of writing this documentation we got informed that EasyBeans team has released the
1.0 final version.

• Create a directory with this name in the folder from where you will start easybeans container and copy
the bonita.ear file in to the created 'easybeans-deploy' directory

• Be sure to have all security permissions in your java.policy file: permission java.security.AllPermission

• Then start easybeans :

java $JAVA_OPTS -Dorg.ow2.bonita.environment="name of the envrinoment file to use" -
Djava.security.manager -Djava.security.policy="path to your java.policy" -jar "easybeans RC3 jar file"

• Then start easybeans :

WARNING : if you want to use another DB than HSQL, you should start your EE container with
the appropriate driver in the classpath. In that case, instead of starting easybeans with -jar option, you
have to start it like : -cp "path to driver or $CLASSPATH...":"easybeans RC3 jar file":"easybeans
main class" Easybeans main class can be found in the MANIFEST file of Easybeans jar file
(org.ow2.easybeans.server.EasyBeans)

12

Chapter 5. Configuration and Services
This chapter introduces the services configuration infraestructure provided by Nova Bonita as well as main
services included in this RC1 version.

5.1. Services Container
The Process Virtual Machine technology includes a services container allowing the injection of services
and objets that will be leveraged during workflow definition and execution. Objects and services used
by the Bonita engine are defined through a XML file. A dedicated parser and a wiring framework are in
charge of creating those objects. Security, identity, persistence, notifications, human task and timers are
examples of pluggable services.

This services container (aka IoC container) can be configured through a configuration file. A default
configuration file is included in the package under the /conf directory (environment.xml.mem).

Currently, following objects implementations can be injected in the environment:

• repository: data repository storing workflow processes, instances, activities... Db persistence (class
org.ow2.bonita.repository.db.DbRepository) implementation is included in this milestone.

• recorder: object responsible of workflow execution logs. Default implementation handles workflow
logs in the command line console (org.ow2.bonita.services.record.impl.LoggerRecorder). Recorder and
Journal (see next) objects can be chained (new ones can be added as well on top of the recorder chainer).
This give you a powerful mechanism to handle workflow execution data

• journal: object responsible for storing or retrieving workflow execution data. Db persistence (class
org.ow2.bonita.services.record.impl.DbJournal) implementation is provided.

• archiver: object intended for workflow logs archiving. Default implementation
handles logs on workflow data archiving through the default implementation (class
org.ow2.bonita.services.record.impl.LoggerArchiver). Archiver and History (see next) objects can be
chained (new ones can be added as well on top of the archiver chainer). This give you a powerful
mechanism to handle workflow archived data

• history: object intended for storing or retrieving workflow archieved data. Default implementation
provided is the one available in the following class: org.ow2.bonita.services.record.impl.XMLHistory.
This class will store workflow history in the file system as XML files

• queryList: object intended to configure how the QueryRuntimeAPI will retrieve the workflow execution
data. This retrieval could be configured to chain with the expected order into the journal and the history.

• finished-instance-handler: action to perform when a workflow instance is finished. This object could
chain two distinct actions: for a given workflow instance, deleting the runtime object including its
tasks from the repository and then store data in the archive and remove data from journal. Default
implementations are proposed for both chained actions.

As explained before persistence objects are provided as default implementations in the environment.
Notice that in a persistence configuration additional resources are required, i.e for hibernate persistence
you can specify mapings, cache configuration...

5.2. Services
Services in Nova Bonita is all about pluggability. Standard (StandAlone Java based) and Enterprise (JEE
Server based) versions of Nova Bonita can be easily configured thanks to the services container. To

Configuration and Services

13

allow that, each workflow related service has been thought in terms of an interface with different possible
implementations. In the following lines you will find a description of main services supported in Nova
Bonita:

5.2.1. Persistence
Persistence is one of key technical services injected into the services container. This service, as well as
other major services in Nova Bonita, is based on a service interface. That means that multiple persistence
implementations can be plugged on top.

The Persistence service interface (called DbSession) is responsible to save and load objects from a
relational database. By default, a persistence implementation based on the Hibernate ORM framework
(called HibernateDbSession) is provided (JPA and JCR to come).

The Process Virtual Machine core definition and execution elements (processes, nodes, transitions,
events, actions, variables and executions) as well as the XPDL extension ones (join, split, manual and
automatic activities, conditions, variables...) are persisted through this service. Process Virtual Machine
core elements are also cached by leveraging the default persistence service implementation (Hibernate
based). Workflow packages, processes, instances, tasks and advanced classes (such hooks or mappers)
are are stored through this persistence service. Workflow repository is the term used in Nova Bonita to
store those entities.

5.2.2. Identity
Identity service main objective is to give freedom to system administrators to leverage your organization
user repository. Traditional user repositories such LDAP, ActiveDirectory as well as any other user
repository (database or API) can be plugged as implementations of this service.

By default, some user repositories implementations are provided for testing purposes: in memory, basic
FileSystem based persistence, and basic database persistence (based on a predefined database schema).
Those implementations can also be used in production if there is no other user repository available.

The Identity service is so an extensible interface (known as IdentityServiceOp) build around three main
concepts: Users, Groups and Memberships:

• User: a particular user inside an users repository. Users can be created, modified, removed and
queried (some of those operations could be not allowed for some repositories (i.e LDAP) through the
IdentityService API).

• Group: a group of users in a particular users repository. A group could contain either users security
restrictions or hierarchical information. As for users, roles can also be created, removed, modified and
queried.

• Membership: a membership represents a user position in a particular group. An user could have two
different membership in two different groups. Membership related operations concern set, remove or
updates on users position inside groups.

Both Security and Human Task services will leverage the Identity one by checking user login/password
and user rights (Security) and by resolving workflow logical roles with users and so to assign manual
activities to users based on some hierarchical information (Tasks Management)

By default, Nova Bonitais packaged with a test based identity module based on a properties file. This file
contains the user/login allowed to reach Nova Bonita APIs. This properties file is in fact a Test Login
Module (see security module description below), meaning that the same properties file is used for security
and identity configuration.

Configuration and Services

14

5.2.3. Security
The security service is based on JAAS standard. Main purpose of this service is to provide both
authentication and authorization capabilities to the workflow engine. As security directly relates to users
permissions, this service also relates to the identity one (commonly security is based on top of the identity
service).

As for other services, the Nova Bonita team is concerned on let you the freedom to choose and plug
your favorite security implementation. At the same time we also want to provide one ore more default
implementations that allow users to quickly set up and start playing with Nova Bonita.

For testing purposes Nova Bonita includes a default JAAS login module checking user/password
values stored in a file. This easily allow to start playing with Nova Bonita in a testing security
environment in which the login module acts as a lightweight users repository. This login module
(org.ow2.novabpm.identity.auth.PlainLoginModule) is the one leveraged in Nova Bonita examples
directory.

The current implementation of the security service allows you directly leverage default identity service to
handle users authentication. Users must login before start calling the Bonita APIs. The current Nova Bonita
Milestone is not yet leveraging the Authorization capabilities provided by traditional security services,
meaning that any authenticated user can reach Nova Bonita APIs. In next releases autorization will apply
at APIs methods level. We could also imagine fine grained security uses cases in which authorization is
not only applied at API method level but also applies to the engine itself, to a particular workflow instance
or to the actions executed by the engine.

The Security service is composed by two different JAAS LoginModules. The first one (called
PlainLoginModule) is responsible to handle security authentication and authorization. This one could be
just replaced by you favorite JAAS Login Module. The second one (StorageLoginModule) is responsible
to keep data of authenticated users (basically for security context initialization). Those login modules can
be leveraged in both standard and enterprise environments (note that most of JEE servers already provides
a Storage Login Module so you could just replace the one proposed by Nova Bonita by the one leveraged
by you app server.)

5.2.4. Task Management
Task management is all about providing the right information to the right people at the right time !. This
is one of the most important services that must be provided by a workflow solution.

As human task management can be leveraged in other domains (not only by workflow solutions but by any
Java based application) we wanted those features to be a service rather than an internal workflow module.
As a result, this service is generic and extensible Task Management service that can be either used in Nova
Bonita extension to handle manual task assignments and executions or either by any Java application or
Domain Specific Language (i.e BPEL4People extension for instance).

Traditional features such users - roles/group mapping, delegation, scalation, task deadlines handling or
manual activities execution life cycle are in scope of this service. Advanced features such configurable
activity life cycle, interactions with other task managements system, services or collaborative applications
and integration with organizational rules are also part of the main responsabilities of this service.

The current implementation focus on support of manual tasks (also known as manual activities) in Nova
Bonita. Basic features such Bonita RoleMappers and Performer Assignments entities allowing users - roles
mapping are already supported. Together with the identity and security service, users can login into the
system, get their tasks todo list and execute them. As other service in Nova Bonita this module is executed
in a persistent environment.

Configuration and Services

15

5.2.5. Journal and History
This module concerns the way in which the workflow data is stored during the workflow execution and
archived when the execution is completed. This is indeed a crucial module in a workflow solution.

While in Bonita v3 journal data (aka execution workflow data) and history data (aka archived data) where
handled by different mechanism, in Nova Bonita we decided to unify them as the underlying essence of
both is to handle workflow data. For that to be done, we created the concept of workflow record. A record
is a minimal set of attributes describing a workflow entity execution. That means that each workflow entity
related to the execution has its own associated record: instance record, task record, hook record...

Those records are recorded during the workflow execution and stored depending on the persistence service
implementation (db, xml...). The Nova Bonita API will retrieve record data from the records storage and
sent them back to the users (meaning that records also acts as value objects in Nova Bonita APIs).

As soon as a workflow instance is finished, a typical scenario would be (by default) to move instance
related workflow data from the production environment to a history one. While the physical device and the
data structure could changed from one workflow engine deployment to another (XML, BI database...), the
internal format could remain the same (records). This is exactly what is happening in Nova Bonita, when
archiving data the engine just move execution records from the production to the history environment
without data transformation inbetween.

5.2.6. Timers
To handle activities deadlines, a timer service is required that can schedule timers to be executed in the
future. Timers must have the ability to contain some contextual information and reference the program
logic that needs to be executed when the timer expires. A typical scenario would be a manual activity
(task) that needs to be monitored with a timer. For example, if this task is not completed within 2 days,
notify the manager.

This service, as well as any other asynchrous service in Nova Bonita is based on the Process Virtual
Machine Job executor framework. Job executor framework is responsible for handling jobs. A job could
be a timer scheduling or an asynchronous message for instance. When a job is created and stored in
the database, the job executor starts a new transaction, fetch the job from the database and perform the
instructions contained in the message.

16

Chapter 6. User guide
This chapter describes how to start playing with Nova Bonita RC1. More precisely it describe main steps
to define and deploy workflow processes and how to start running them in Nova Bonita:

• How to create a process definition

• How to deploy a process definition

• How to develop a simple application by leveraging Bonita APIs

6.1. Designing a xpdl process with ProEd
Like in previous Bonita versions, processes could be created either through a java api or through a graphical
editor : ProEd. The java api to build Bonita v4 processes is not yet developped, so processes should be
deployed as .xpdl files. That can easily be done under proed (see restrictions below) and then imported
as xpdl files. For that, use the stand alone version of the process editor that can be downloaded on Bonita
download [http://forge.objectweb.org/project/showfiles.php?group_id=56&release_id=302/] page.

Please, refer to the Nova Bonita development guide, under /doc directory to learn more about how to use
proEd.

As final result proEd saves the description of the designed process as an xpdl file that should be imported
as described in the following section.

6.2. Nova Bonita APIs
If you are already familiar with previous Bonita versions and you have already developped your own
applications on top of Bonita, we want to minimize your effort when migrating to Bonita v4. Compatibility
from Bonita v3 to v4 is one of our main concern.

At the same time, we took the chance to review and to improve Bonita v3 APIs in this new major version
so basically the Bonita v3 API spirit is still there but we applied some improvements in Nova Bonita to
simplify some operations and to add added value features.

Nova Bonita APIs has been refactored each milestone release until become stable in this first release
candidate version.

6.2.1. Getting started with Bonita APIs
Nova Bonita APIs are divided into 5 different areas:

• DefinitionAPI: to create/modify major process elements into the engine (packages, processes, activities,
role mappers, variables by calling java methods instead of importing xpdl files. It will allows also to
modify the execution of runtime elements such as tasks and instances.

• QueryDefinitionAPI: to get workflow definition data for packages, processes, activities, role
mappers,

• RuntimeAPI: to manage process, instance and task life cycle operations as well as to set/updates
variables

• QueryRuntimeAPI: to get recorded/runtime informations for packages, processes, instances, activities,
tasks (support for dynamic queries will be added in the future). It allows also to get tasks (aka manual

http://forge.objectweb.org/project/showfiles.php?group_id=56&release_id=302/
http://forge.objectweb.org/project/showfiles.php?group_id=56&release_id=302/

User guide

17

activities) list parametrized by the with state for the authenticated user and as well to get/list variables
in a particular or a set of workflow instances.

• ManagementAPI: to deploy workflow processes into the engine. XPDL files and advanced entities
such hooks, mappers and performer assignments can be deployed individually or in one shot

There's also a generic API that allow to execute specific commands that should be needed by the workflow
based application.

• CommandAPI: to allow developpers to write and execute its own commands packaged within its
application.

6.2.2. Nova Bonita APIs, playing with !
Nova Bonita RC1 is an extensible and embeddable workflow solution that can be easily deployed in both
standard (JSE) and Enterprise (JEE) environments.

• Nova Bonita can be easily integrated in your application as a workflow library. In that case your
application can directly reach the workflow APIs as POJOs.

• Nova Bonita can also be deployed in a JEE application server and so leverage it remotely thanks to the
Workflow Session Beans APIs.

6.2.2.1. Nova Bonita as a java workflow library in your application

The java APIs can be accessed thru an API accessor object as described in the example below:

 APIAccessorImpl accessor = new APIAccessorImpl();
 RuntimeAPI runtimeAPI = accessor.getRuntimeAPI();

 QueryAPIAccessorImpl accessorQ = new QueryAPIAccessorImpl();
 QueryRuntimeAPI queryRuntimeAPI = accessorQ.getQueryRuntimeAPI();

There are 2 different accessor interfaces available:

• QueryAPIAccessor: to get access to QueryRuntimeAPI QueryDefinitionAPI interfaces.

• APIAccessor: to get access to getRuntimeAPI, ManagementAPI, DefinitionAPI, CommandAPI
interfaces.

APIAccessorImpl and QueryAPIAccessorImpl classes are implementing the two interfaces. Instantiation
of these classes gives access to the expected bonita API.
There is also an utility class called AccessorUtil (under the org.ow2.bonita.util package) that allows
developers to directly get the APIs in both standalone or Session Bean modes. You will find a sample
application leveraging this API under the /examples directory

6.2.2.2. Nova Bonita as a remote workflow server

The session Bean APIs can be accessed by simply executing a lookup on the expected API interface. The
jndi name is the name of the java interface:

 RuntimeAPI runtimeAPI = (RuntimeAPI) initialContext.lookup("runtimeAPI");
 QueryDefinitionAPI queryDefinitionAPI =
 (QueryDefinitionAPI) initialContext.lookup("QueryDefinitionAPI ");

User guide

18

For a detailed insight on Nova Bonita APis, please take a look to the Nova Bonita javadoc [http://
forge.objectweb.org/project/download.php?group_id=56&file_id=10312]

6.3. Running the example
The Nova Bonita package contains a complete workflow example. This sample is located under examples
directory:

• The Bonita Approval Workflow: a simple Approval Workflow application illustrating the workflow
definition, workflow deployment and execution phases.

The build.xml in the root directory contains required targets to complie and launch the example in both
standard (JSE) and enterprise (JEE) environments:

The Approval Workflow sample is configured to leverage the default hibernate persistence service. Core
Process Virtual Machine entities, XPDL extension as well as execution related data will be persisted in
a relational database. By default Nova Bonita embeeds HSQL database and uses it as a default database.
You can easily change this default configuration and use your favorite database by modifiying the
hibernate.properties file located under "conf" directory.

>ant aw-db

This sample application leverages the Security and Identity services so you must provide a right user login/
passwd to run the sample. The default identity module (based on a properties file) is provided with three
users ("John", "Jack" and "James" logins with "bonita", "jackpass" and "jamespass" as password). All three
can login into to system but only John and Jack are able to play in the Approval Workflow sample. This
behaviour is due to the users - role mapping defined in the previous workflow sample.

The java example simply deploy the xpdl file as well as advanced java entities such hooks and mappers
in the engine (deployBar method in ManagementAPI), then creates a workflow instance and leverage
getTasksList, startTask and finishTask methods from the RuntimeAPI

This sample application can be launched in both standard and enterprise modes. In the enterprise mode
Nova Bonita APIs are available as Stateless Session Beans. Enterprise sample version can easily be
executed with the following ant tasks:

>ant aw-jonas4 (for a deployment in JOnAS application server version 4)

>ant aw-jboss4 (for a deployment in Jboss AS version 4)

>ant aw-eb (for a deployment in EasyBeans EJB3 container)

*Note that the enterprise version requires Nova Bonita (bonita.ear file) to be deployed in an application
server

Nova Bonita milestone 4 unit test suite can also be launched from the installation directory (this operation
is a good way to check that Nova Bonita was propertly configured)

ant tests

http://forge.objectweb.org/project/download.php?group_id=56&file_id=10312
http://forge.objectweb.org/project/download.php?group_id=56&file_id=10312
http://forge.objectweb.org/project/download.php?group_id=56&file_id=10312

	Nova Bonita documentation
	Table of Contents
	Introduction
	Chapter 1. General information
	1.1. Nova Bonita introduction
	1.2. Feature list
	1.3. Restrictions

	Chapter 2. Prerequisites
	2.1. Hardware
	2.2. Software

	Chapter 3. Change history between Bonita v3 and Nova Bonita
	3.1. Concept of package
	3.2. Processes, instances, activities and tasks life cycles
	3.2.1. Process life cycle
	3.2.2. Instance life cycle
	3.2.3. Activity life cycle
	3.2.4. Task life cycles

	3.3. APIs
	3.4. Hooks
	3.4.1. for activities
	3.4.2. for process
	3.4.3. Interactive hook

	3.5. Deadlines
	3.6. Mappers
	3.7. Performer assignments
	3.8. Variables
	3.9. Iterations

	Chapter 4. Installation guide
	4.1. Installation
	4.2. Standard vs Enterprise installation
	4.2.1. Standard installation
	4.2.2. Enterprise installation
	4.2.2.1. EasyBeans EJB3 Installation and deployment (a complete example)

	Chapter 5. Configuration and Services
	5.1. Services Container
	5.2. Services
	5.2.1. Persistence
	5.2.2. Identity
	5.2.3. Security
	5.2.4. Task Management
	5.2.5. Journal and History
	5.2.6. Timers

	Chapter 6. User guide
	6.1. Designing a xpdl process with ProEd
	6.2. Nova Bonita APIs
	6.2.1. Getting started with Bonita APIs
	6.2.2. Nova Bonita APIs, playing with !
	6.2.2.1. Nova Bonita as a java workflow library in your application
	6.2.2.2. Nova Bonita as a remote workflow server

	6.3. Running the example

