
Nova Bonita documentation

BonitaTeam ()

- September 2008 -

Copyright © Bull SAS - OW2 Consortium

ii

Table of Contents
Introduction .. iv
1. General information .. 1

1.1. Nova Bonita introduction ... 1
1.2. Feature list .. 1
1.3. Restrictions ... 3

2. Prerequisites ... 4
2.1. Hardware .. 4
2.2. Software ... 4

3. Concepts ... 6
3.1. Terminology .. 6
3.2. Package .. 6

3.2.1. LifeCycle ... 7
3.2.2. Versioning .. 7

3.3. Process ... 7
3.3.1. Process Basics ... 7
3.3.2. Life Cycles (process/instance) .. 7
3.3.3. Process definition & process Instances ... 8
3.3.4. Versioning .. 8
3.3.5. Concept of Hooks .. 8
3.3.6. SubProcesses ... 9

3.4. Activities .. 9
3.4.1. Activity Basics .. 9
3.4.2. Life cycle for tasks (aka manual activity) .. 10
3.4.3. Transition between Activities ... 10
3.4.4. Iterating Activities .. 11
3.4.5. Activity multi-instantiation ... 12
3.4.6. Concepts of hooks/connectors ... 13
3.4.7. Activity/Hooks and Transactions ... 13

3.5. Role Mappers Feature .. 14
3.5.1. Overview .. 14
3.5.2. Custom Mappers .. 15
3.5.3. Instance Initiator .. 15

3.6. Performer Assignment ... 15
3.6.1. Overview .. 15
3.6.2. Custom Performer Assignment ... 15
3.6.3. Variable Performer Assignment .. 15

4. Configuration and Services ... 16
4.1. Services Container .. 16
4.2. Services .. 18

4.2.1. Persistence .. 18
4.2.2. Identity ... 18
4.2.3. Security .. 19
4.2.4. Task Management .. 20
4.2.5. Journal and History .. 20
4.2.6. Timers .. 20

5. Installation guide ... 22
5.1. Installation ... 22
5.2. Standard vs Enterprise installation ... 24

5.2.1. Standard installation (Bonita as a library) .. 24
5.2.2. Enterprise installation (Bonita as a server) ... 24

6. Developer's guide .. 27

Nova Bonita documentation

iii

6.1. Designing a xpdl process with ProEd ... 27
6.2. Nova Bonita APIs ... 27

6.2.1. Getting started with Bonita APIs ... 27
6.2.2. ... 28

6.3. Running the examples ... 28
6.4. Java Properties ... 30
6.5. Administration operations ... 30
6.6. Database configuration .. 31

6.6.1. Changing the default database configuration .. 31
7. Change history between Bonita v3 and Nova Bonita .. 33

7.1. Concept of package ... 33
7.1.1. Package life cycle .. 33

7.2. Processes, instances, activities and tasks life cycles ... 33
7.2.1. Process life cycle ... 33
7.2.2. Instance life cycle .. 33
7.2.3. Activity life cycle ... 34
7.2.4. Task life cycles .. 34

7.3. APIs ... 34
7.4. Hooks ... 34

7.4.1. for task ... 35
7.4.2. for automatic activity .. 35
7.4.3. for process .. 36
7.4.4. Interactive hook ... 36

7.5. Deadlines .. 36
7.6. Mappers .. 36
7.7. Performer assignments ... 36
7.8. Variables ... 36
7.9. Iterations ... 36

iv

Introduction
This documentation is intended for Bonita administrators, architects and developers. It introduce the Bonita
v4 architecture, presents some of the main concepts in Bonita and also provides some useful installation
and configuration instructions. If you are already familiar with previous Bonita versions you will find in
the last chapter a change history between those versions and Bonita v4.

Chapter 1 , General information describes the new version Bonita v4 called Nova Bonita

Chapter 2 , Prerequisites focus on the hardware and software prerequisites

Chapter 3, Concepts describes main workflow concepts

Chapter 4 ,Configuration and Services describes main configuration features and default services

Chapter 5, Installation guide guides you on installing the Bonita v4

Chapter 6, Developer's Guide guides you through the descovery of Nova Bonita functionalities.

Chapter 7, Change history between Bonita v3 and Bonita v4

1

Chapter 1. General information
1.1. Nova Bonita introduction

Nova Bonita is the name of new version of Bonita v4.

“Nova” technology is based on the “Process Virtual Machine” conceptual model for processes. The Process
Virtual Machine defines a generic process engine enabling support for multiple process languages (such
BPEL, XPDL…).

On top of that, it leads to a pluggable and embeddable design of process engines that gives modelling
freedom to the business analyst. Additionally, it enables the developer to leverage process technology
embedded in a Java application.

For more information about the Process Virtual Machine, check Nova Bonita FAQs
[http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/FAQ] on the Bonita web site [http://
bonita.objectweb.org].

1.2. Feature list
Nova Bonita (aka Bonita v4) is a lightweight workflow/BPM solution that provide XPDL 1.0 support.
Nova Bonita V4 comes with an enhanced XPDL extension module, a rich workflow API, support
for iterations and deadlines, multiple variables types support, activities multi instantiation, processes
versioning and a set services such configurable journal, history and timers services.

Bonita 4.0.1 is the latest stable release. For a detailed list of improvements and bug fixes included in this
version please check the releases notes.

Hereafter you can find the list of features available in Bonita v4:

• Powerful workflow API covering deployment, definition, runtime and history workflow data

• QuereyAPsI vs RuntimeAPIs for advanced resources (hooks, mappers and performer assignments)

• Standard (J2SE) vs Enterprise (J2EE) deployment

• JEE deployment includes support for both 1.4 and 1.5 standards

• Support for XPDL 1.0 activities : Join, Split, Activity (Route, implementation no and subFlow) in both
automatic and manual execution modes

• Support of main XPDL 1.0 elements : Datafield, DataType, Participant, Transition, RedefinableHeader,
Transition Restriction, Package...

• Support of advanced entities/resources: Hooks, mappers, performer assignments and activities multi-
instantiators (via XPDL extended attributes)

• Persistent execution (through a configurable persistence service, hibernate by default)

• Subprocesses support

• Activities multi-instantiation support

• Iterations/cycles support

http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/FAQ
http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/FAQ
http://bonita.objectweb.org
http://bonita.objectweb.org
http://bonita.objectweb.org

General information

2

• Activities deadlines support through the Process Virtual Machine generic and configurable Timer
service

• Configurable journal and history workflow modules: history db vs history xml implementations

• Advanced process deployment capabilities including ".bar" file deployment and local vs global
resources (hooks, mappers, performer assignments and instantiators)

• Processes and package versioning

• Standard security service based on JAAS LoginModules: Test, standard and J2EE login modules are
included in the package

• Tasks (aka manual activities)assign and re-assign capabilities

• Unified life cycle for workflow activities (XPDL activities types) execution handling synchronization
with Tasks, also known as manual activities, life cycle.

• Task Management module handling init, ready, executing, finished, dead, suspend and resume states

• Transitions conditions advanced support based on BeanShell scripting language and multiple variables
types

• Workflow data: both process and activity level variables support

• Integer, String, Float, Boolean, Date and Enumerated types are supported as variable types

• Default mapper implementation: Initiator Mapper

• Process Virtual Machine technology based

• BPM Designer (ProEd):

• Eclipse and Desktop versions

• "Easy workflow project" creation wizard available in Eclipse version

• Graphical support for advanced Nova Bonita entities: hooks, mappers, performers and instantiators

• Support for multiple variables types

• "Smart" conditions editor: graphical definition of complex conditions based on multiple operators
and variables types

• Automatic generation of start and end BPM steps

• BPM Console

• Web 2.0 console supporting both desktop and traditional portal layout modes

• Monitoring vs Worklist applications (portlets)

• Internal user repository handling access rights to applications

• Automatic generation of forms vs customized forms

• Console customization capabilities: on the fly page creation, add/remove applications and widgets,
look and feel...

General information

3

• Applications (portlets) and widgets support

1.3. Restrictions
Nova Bonita comes out with an innovative architecture based on a generic and extensible engine, called
"The Process Virtual Machine" and a powerful injection technology allowing services pluggability.

Nova Bonita includes support for elements defined in the XPDL 1.0 standard. Next versions will
add support for XPDL 2.0 standard coverage as well as the following new features: asynchronous
activities execution, process changes (instance modifications), native clustering... Check the
roadmap [http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/Roadmap] for more information about
next developments.

This release does not yet support the following features available in Bonita v3:

• Block activities

• Process definition and process modifications via Java APIs (process changes on the fly)

• Hooks: processes hook (onInstantiate) as well as activity onCancelled hook are not yet supported

http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/Roadmap
http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/Roadmap
http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/Roadmap

4

Chapter 2. Prerequisites
2.1. Hardware

A 1GHz processor is recommended, with a minimum of 512 Mb of RAM. Windows users can avoid swap
file adjustments and get improved performance by using 1Gb or more of RAM

2.2. Software
• Nova Bonita has been successully tested in the following environments (should work in others but those

ones are part of Nova Bonita continuous integration infrastructure):

• Operating Systems

• Solaris-10 (SunOS 5.10) x86

• GNU/Linux kernel 2.6.25-2 x86 Debian

• Windows XP

• Java Virtual Machines (jdk 1.5 and 1.6):

• Sun-jdk1.5.0_13

• Jrockit-R27.1.0-jdk1.5.0_08

• Ibm-java2-i386-50

• Jrockit-R27.2.0-jdk1.6.0

• Sun-jdk1.6.0_06

• Relational Databases:

• Mysql-server 5.0.51a-6

• Postgresql 8.3.3-1

• Oracle 11.1.0

• H2 1.0.76

• HSQL 1.8.0.7

• Application Servers:

• Tomcat 5.5.26

• JOnAS 4.8.6

• Jboss-4.2.2.GA

• JOnAS 5.0.5 snapshot

• Jboss-5.0.0.CR2

Prerequisites

5

• Easybeans 1.0.1

• Nova Bonita requires Apache Ant 1.6.5 or higher. Apache ant will allow users to deal with configuration
and administration operations

It can be downloaded from http://ant.apache.org

6

Chapter 3. Concepts
3.1. Terminology

Bonita is an XPDL compliant workflow solution, so most of the concepts presented in this section are
the ones included in the XPDL specification. Please, refer to this specification for more details. In the
following lines we will briefly introduce those concepts and explain in details the way in which they are
leveraged in Nova Bonita:

• Package issued from XPDL acts as a container for main workflow objects that can be shared by multiple
workflow processes.

• Process (called Workflow Process into XPDL) contains the elements that make up a workflow:
activities, data fields, participants, transitions,

• Activity is the base workflow entity to build a process. It contains others sub entities that will determine
the behavior of the activity (the implementaion : no or subflow, the start mode: manual/automatic, the
performer, the performer assignment, the transition restrictions : Split or Join).

• Task is a runtime object created as a specific activity type which is also called manual activity.
Workflow tasks could be managed by an independant module receiving tasks from other applications.

• Participant is an actor in a workflow process. The following types are supported: SYSTEM, HUMAN,
ROLE. Participants are associated to tasks.

• Transition is a dependency expressing an order constraint between two activities. The notion of loop
(also called iteration) is also represented via a transition.

• Variable (aka Workflow Relevant Data in XPDL) is a workflow unit of data. Variables can be local
to an activity or global to the process or a package. Nova Bonita support the following data types:
Enumeration, String, Float, Integer, Boolean, Datetime, Performer.

• Hook is user defined logic adding automatic or specific behavior to activities and workflow processes

• Mapper is a unit of work allowing dynamic role resolution each time an activity with human task
behavior is created (instantiated).

• Performer assignment is a unit of work adding additional activity assignment rules at run time.

Each one of those entities are leveraged by both BPM definition and runtime environments. Definition
data, runtime recorded data and archived data are so automatically managed by the engine. To easily play
with those three aspects that characterizes workflow entities, Bonita has introduced UUID's (Universally
Unique Identifier). Each entity has its own typed UUID that can be used when doing operations at both
definition and runtime sides through the Bonita facade API's.

3.2. Package
Package element in an XPDL definition file contains: processes, participants, datafields..... The idea is to
put together multiple processes definition in one single XPDL file that will be deployed once in the engine.
These processes can share participants and datafields.

Process deployment implies to deploy at least a package (ie. the XPDL file that contains the Package
element). Package is the minimal unit of deployment.

Concepts

7

The notion of package concerns also the scope of deployed java classes/artifacts (i.e hooks, mappers and
performer assignments). If java classes are deployed within a package, they will be visible for all processes
included in this package (XPDL file). Undeployment operation of a package will undeploy all these classes
as well. Java classes can also be deployed globally (meaning at workflow server level) and so be acceded
by any process/activity of any package.

QueryDefinitionAPI provides access to deployment and undeployement package related data.

3.2.1. LifeCycle
A package has its own life cycle:

• Deployed: When deployment operation is successfully executed (through the Management API), state
of the package is deployed.

• Undeployed: when undeploy() operation is successfully performed, the state of the package becomes
undeployed. An 'undeployed-package-handler' (refer to section Configuration and Services for more
info) is then called. This handler is responsible for storing undeployment related data into the archive/
history repository through the default environment configuration.

3.2.2. Versioning
Packaging versionning is fully supported in this version. The Bonita API provides operations allowing to
deploy and undeploy different package versions as well as to retrieve useful data from those packages.

The only contraint on regards to the version for the deployment is the following:

• It's forbidden to deploy two times in sequence a package with the same package Id if the version is the
same in both packages (XPDL constraint)

3.3. Process
Processes are defined within a package and deployed into the engine by deploying the package.

3.3.1. Process Basics
• Process definition: contains the workflow definition logic (elements that makes up a workflow). A

process definition is instantiated.

• Process Instance: represents a specific execution of a workflow process. It may run as an
implementation of an activity of type subflow.

3.3.2. Life Cycles (process/instance)
A process has the following life cycle:

• Deployed: when the package containing the process is successfully deployed, the process is created into
the engine and its state is deployed.

• Undeployed: when the process is successfully undeployed via the undeployment of the package
containing the process its state become undeployed.

A process instance has the following life cycle:

• Initial: once the process instance has been created, state is set to initial.

Concepts

8

• Started: when instantiateProcess() method of the RuntimeAPI is called, firstly the instance is created
(Initial state) and secondly the execution is automatically started which causes the state of the instance
to become started.

• Finished: when the execution has reached the "bonitaEnd" activity (last activity in a workflow
process), the instance state is set to finished.

3.3.3. Process definition & process Instances
Common BPM scenarios are focused on the re-use of a process definitions; in these scenarios, a long-
time is spent when defining a generic process model that instantiates in the same way many times. These
processes are called business processes (aka process models in Bonita).

A process is a specific definition of a process that may be instantiated multiple times. These processes
are based on a process-instance workflow paradigm. Processes are created into the the engine via the
ManagmentAPI (deployment operations giving an XPDL file). Java DefinitionAPI allowing the creation
of a process via a java API is not yet supported for this release.. When the process is created, the workflow
users are able to instantiate the workflow process via the RuntimeAPI to create process instance(s),
execute assigned tasks... Once the process instance(s) are created, workflow participants can access the
QueryRuntimeAPI to accomplish the following: obtain their "ToDo", "done", "suspended" lists, or access
the QueryDefinitionAPI to get definition (as a complement of runtime data) informations about process,
activities, tasks, instances, participants

A process keeps track of all its instances. That is, all instances of this process are retrievable through the
QueryRuntimeAPI operations.

Bonita instantiation mechanism:

At process instantiation time a new process object issued from a deployed process definition is created. This
object is initialized with definition elements and specific parameters such as variables. A root execution
object pointing to the process object is created and started. It causes the execution to point to (and enter
into) the first activity of the process. The root execution references a ProcessInstance object representing
the runtime data being recorded in the journal all along the life of the process instance.

3.3.4. Versioning
Versionning of processes is fully supported. The only contraints on regards to the version for the
deployment is:

• It's forbidden to deploy two processes with the same process id in the same package even if the versions
are not the same (XPDL constraint)

3.3.5. Concept of Hooks
Hooks are user-defined logic that can be triggered at some defined point in the process life cycle. Process
Hooks are not supported in this version.

Process hooks types are:

• OnInstantiate hook is called when a workflow instance is created. The OnInstantiate hook is not
considered to be in the same transaction as the process instantiation action.

• OnFinish hook is called automatically after workflow instance termination ends.

• OnCancel hook is called automatically when a user or a workflow administrator decide to cancel a
workflow instance

Concepts

9

3.3.6. SubProcesses
Sometimes, an independently existing business process can take part in another more sophisticated process.
Instead of redefining the activities, edges, properties, and hooks in the parent process, the independent
process may run as an implementation of an activity of type subflow. As the execution logic is inside
the subProcess, the subProcess activities are started and finished automatically by the Workflow engine
according to the subProcess state. Creating a SubProcess Activity: When a subProcess activity is defined
in the process, a specific activity with subflow behavior is created (process id of the process, local variables,
in/out/in-out parameters of the sub...).. Instantiating a Process with a SubProcess Activity: At runtime,
the execution enter into the subflow type activity, the following operations are done:

• An instance of the process referenced by the subflow activity is created.

• A new root execution is created into this instance and is automatically started (then execution enters in
the first activity of the subflow).

• Local variables of the subflow activity (defined through extended attributes in XPDL 1.0) are created as
global variables of the instance in the subflow (this is the default way to pass variables to a subflow when
processes are defined using the ProEd editor). At the end of the subflow execution, global variables
are automatically propagated to the parent process as local variables of the subprocess activity.

• If both formal parameters into the subflow process and actual parameters into the subflow activity
have been defined, the list of actual parameters are mapped to the formal parameters (these XPDL
definitions are supported by Bonita engine but not yet by ProEd editor).

3.4. Activities
Activity has no state (only started and finished dates are managed). Notion of state at this level depends
only on the activity types: Task, Subflow, Route, Automatic (detailed below). When the execution enters
into the activity it executes the logic (behavior/type) of this activity.

3.4.1. Activity Basics
The activity is the basic unit of work within a process.

Bonita engine is supporting all kinds of activities specified within XPDL 1.0. Those activity types are
the following:

• Manual activity (startMode = manual, Implementation = No): When the execution enters into a manual
activity a task object (aka human task or user task) is created. QueryRuntimeAPI allows to get access
to the task according to the task state. RuntimeAPI allows to manage the task state (start, suspend,
resume and finish operations). In further releases tasks could be managed by an external and pluggable
task module that will allow tasks creation comming from a workflow engine as well as from any other
applications such a forum, an online manager....

• Automatic activity (startMode = automatic, Implementation = No) : the activity is automatically
executed by the engine.

• Route activity (Route element): Route are specialized to express Transition Restriction (e.g. SPLIT is
automatically executed by the engine.

• Subflow activity (implementation = Subflow startMode = automatic): the activity is automatically
executed by the engine.

• BlockActivity (BlockActivity element): the activity references an ActivitySet (set of activities) ans is
automatically executed by the engine.

Concepts

10

In addition to information determining the activity type, additional informations can be added to the activity
definition depending on its type (this data can be accessed via the QueryDefinitionAPI):

• Name and Id: Id is unique within the process.

• Transition Restriction: logic of control for incoming or/and outgoing transtions (e.g. Split and Join).
This attribuite applies to any activity type. Routes behaviour only relates to Transition restriction.

• Performer: actor defined in charge of the activity (Human or Role)

• Deadline: duedate for a particular activity

• Advanced Bonita features defined using extended attributes: local variables, role mapper, performer
assignment

• Description, documentation, icon

Runtime (recorded) data concerning activities is divided in a common part and a body. the common
part is represented by an object called "ActivityInstance". This object is returned by operations included
in the queryRuntimeAPI. The "Body" relates to the specific behaviour of each activity (TaskInstance,
SubflowBody, RouteBody and AutomaticBody are the types supported)

Route and subflow activity types can't execute hooks. Only Tasks and Automatic activities types are able
to execute them. Refer to section Hooks here below for more details about hooks usage.

3.4.2. Life cycle for tasks (aka manual activity)
Only tasks has its a own life cycle. this life cycle is composed by the following states:

• Ready: This is the state of an activity ready to be started. There are two possible situations for this
state to occur:

• Activity for which there is no ingoing transitions

• Ingoing connected activities of a particular activity are successfully finished and transition conditions
were evaluated to true

• Initial: This is the default state of tasks that are not yet ready to be executed

• Executing: An activity under execution.

• Suspended: An activity having that was either in Ready or Executing state that has been suspended.
Resume operation put back the activity with its initial state.

• Finished: An activity that has successfully finished.

3.4.3. Transition between Activities
Most of the usual transition patterns can be achieved through Nova Bonita Workflow. There is no special
activities to achieve these patterns; however, any activity can behave as a routing node (obviously the
case for Route activity). The transition pattern depends on the Transition Restrictions (e.g. Join, Split) and
transition conditions defined. Transition Restrictions can be one or both of the followings:

• Join: describing the semantics of an activity with multiple (>= 1) incoming transitions;

• Split: describing the semantics of an activity with multiple (>= 1) outcoming transitions.

For Join, possibles types are:

Concepts

11

• AND (also known as "synchronize join"): the activity is not initiated until the transition conditions on
all incoming routes evaluate to true.

• XOR (also known as "asynchronous join"): No synchronisation is required. the activity is executed
when the first execution enter the activity.

For Split, allowed types are:

• AND: the number of child executions that will be created depends on the number of outgoing transitions
and the conditions (evaluated to true) associated with each transition.

• XOR: A single transition route is selected. when evaluation the conditions on the outgoing transitions
the first one evaluated to true is taken.

Note

The current version of Nova Bonita Designer, only generates Join types . If more than one
ougoing transitions is set (without Split within the Transitiion Restriction), an implicit Split
And is constructed by the engine.

The transition patterns can be refined by defining conditions in edges between activities. A condition
operates on the value of one or more variables of activities, and is expressed in Java. Any java expression
statement is valid. Assuming that the variable “Var” is defined for a given activity, any of the following
constructs is a valid condition: (str1.compareTo("initial value") == 0) && (enum1.compareTo("yes") == 0)
&& (float1.compareTo("1.0") == 0) && (int1.compareTo("123") == 0) && (boolean1.compareTo("true")
== 0) && (date1.compareTo("2008-09-25T13:14:58") == 0)

3.4.4. Iterating Activities
Bonita supports both structured (one entry and exit point in the cycle) and arbitrary cycles/iterations. Nova
bonita iteration feature is natively supported through the use of XPDL Transition element: a loop may be
represented via a transition that returns to an activity that was on a path that led to the transition.

The following Guidelines explain how to design iterations in Nova Bonita:

Premise: It is not possible to continue execution inside iterations and exit at the same time.

1. Only a single iteration is allowed between two connecting nodes.

2. All transitions exiting from a node starting the iteration must meet a condition. If there is more than
one transition for exiting from that node, all transitions must meet a condition.

Following figure illustrates a typical design that matches our model:

Concepts

12

To guarantee the premise, the iteration condition and edge condition must be exclusive. This means that
when one is true the other is false. Only iterations from Iterator to Initial are possible. Conditions can be
a group of conditions like: (((…) && (…)) || (…)). (Remember: only a single iteration between nodes is
allowed.) There could be another iteration starting in the Iterator activity going to Middle or to Iterator
itself. Iterations from Iterator to Final activity are not allowed because a cycle does not exist. An edge
condition from Iterator to Final activity is strictly necessary and must be the opposite of the iteration
condition. If there are multiple edges outgoing from Iterator to other activities, all of them must meet a
condition not equal to the iteration condition (this is necessary to accomplish the above premise)..

Note that:

• the initial node must be XOR type to allow to validate its entry condtion either at the first entry and then
to continue into the cycle. At each time only one execution can enters into the node.

• If the Iterator point has not Split Xor transition restriction a Warning is produced when deploying the
process. Only a Split Xor setting can avoid threads of execution goes both outside the cycle and inside
the cycle which is not authorized.

• Join XOR inside iterations (meaning that multiple branches have been created that may include tasks) do
not cancel/delete non selected execution path (meaning that the tasks created during the past iterations
may still be acceeded by end users).

• At each cycle of the iteration, for activities inside the iteration path, new runtime records
(ActivitiyInstance interface) are created/recorded (with distincts iteration id). If iterations have been
performed the parameter: iteration Id must be specified into some methods of the QueryRuntimeAPI.

3.4.5. Activity multi-instantiation
Multi-instantiation of activities is a new porwerful feature introduced by Nova Bonita.. This feature covers
all types of activities previously described in section 4.1. The idea is to determine at runtime the number of
instances to create for a particular activity. This feature is really useful in situations in which, at definition
time, process designers do not know in advance the number of occurences of a particular activity to be
created.

The principle is based on the execution of an "Multi-Instantiator" class (added to the activity definition)
that returns an object containing:

• a list of values which size is determining the number of instances to be created and so executed. This
list of values is used to set for each created activity instance a dedicated activity variable (this activity
variable is also added to the definition of the activity);

• the number of finished instances expected to take the transition (called joinNumber). This number must
be greater than 0 and lesser than or equal to the number of created instances.

Caution

This version has a restriction on the joinNumber. Only: equal to criteria must be taken in
account to match the behavior of the engine.

The condition on the outgoing transition must not contain local variables.

Here after an example of multi-instantiation definition within activity definition.

<Activity Id="Approval" Name="Approval">
 -.../...
 <ExtendedAttribute Name="MultiInstantiation">

Concepts

13

 <Variable>performer</Variable>
 <MultiInstantiator>org.ow2.bonita.example.aw.instantiator.ApprovalInstantiator</
MultiInstantiator>
 </ExtendedAttribute>
 <ExtendedAttribute Name="property" Value="performer" -/>
 -.../...
</Activity>

The class given into the defintion must implement the interface: MultiInstantiator. Refer to the javadoc API
for MultiInstantiator interface (org.ow2.bonita.definition package) as well as the developpementGuide for
more details.

3.4.6. Concepts of hooks/connectors
Hooks in Nova Bonita Workflow context are external java classes performing user-defined operations.
Hooks may be called at different moments in the activity lifetime. Only two types of activity allows setting
of hooks: manual (task) and automatic activity. Hooks are prefixed by the type of activity for which they
are associated.

In activities of type task, hooks may be called at different moments of the taks lifecycle:

• task:onReady: is called when the task becomes available.

• Task:onStart: is called as soon as the task is started.

• Task:onFinish: is called as soon as the task is finished.

• task:onSuspend: is called when the task is suspended by a user.

• task:onResume: is called when the task is resumed from a suspended state.

In automatic activities, hooks can only be called at one moment (when the activity is executed) :

• automatic:onEnter

Refer to the developpementGuide to get more details on hooks (writing, compiling, deploying hooks as
well as samples).

Note

For deadline feature, the name of the class that implements the hook interface is specified
within XPDL Deadline element. The event name (aka Hook type is called ON_DEADLINE.

3.4.7. Activity/Hooks and Transactions
Hooks are always executed within the transaction involved in the last activity change state (i.e.
instantiateProcess, startTask, finishTask, suspendTask...). Transaction can involve more than one activity
in synchronous executions (typically a task connected to one or more automatic activities). If the execution
of the hook raises an exception, it will abort or not the transaction depending on the implemented interface
(Hook vs TxHook):

• Hook interface, if an exception occurs it is catched by the engine and no rollback is performed. Hook
interface is intended to execute methods of APIs that are allowed to perform read/query operations :
QueryDefinitionAPI and QueryRuntimeAPI.

• TxHook interface, if an exception occurs it is raised by the engine and the transaction is not commited
(rollback). TxHook interface is intended for executing Bonita APIs operations that are related to write/

Concepts

14

set operations: RuntimeAPI, ManagementAPI, DefinitionAPI (not yet supported), CommandAPI. This
interface should also be used to call business logic in which transactions are involved.

Refer to the javadoc on API for Hook/TxHook interfaces (org.ow2.bonita.definition package) as well as
the developpementGuide for more details on Fault Management and on Activity/Hooks and Transactions
features.

3.5. Role Mappers Feature

3.5.1. Overview
This feature can be added in the XPDL definition as an extended attribute inside the "Participant"
element of type Role.

 <Participant Id="manager" Name="manager">
 <ParticipantType Type="ROLE" -/>
 <ExtendedAttributes>
 <ExtendedAttribute Name="Mapper" Value="Custom" -/>
 <ExtendedAttribute Name="MapperClassName"
Value="org.ow2.bonita.tests.functionnal.mappers.AdminRoleMapper" -/>
 </ExtendedAttributes>
 </Participant>

 -..../....

 <Activity Id="myTask" Name="myTask">
 <Implementation>
 <No -/>
 </Implementation>
 <Performer>manager</Performer>
 <StartMode>
 <Manual -/>
 </StartMode>
 -..../....

This feature is dedicated to manual activities (human tasks) where a "Performer" (element of XPDL
Activity) referencing such type of participant has been defined. When the task runtime is created the
mapper feature is executed allowing the dynamic resolution of the participant that will be assigned to the
activity. A list of candidates users for the task is filled-in with the returned values of the role mapper. In
the case that the mapper is an 'Initiator Instance' mapper (default implementation) the user that creates the
instance is assigned to the task (this default implementation is useful for testing purposes).

Two types of mappers are available, depending on the method employed to retrieve users in the system.

• Calling a java class to request a users base (Custom mapper).

• Getting the initiator of the process instance (Instance Initiator mapper)

Role Mappers can be defined the ProEd editor application. The Bonita API allows to retrieve related data
of performers defined in a XPDL file. The QueryDefinitionAPI allows to get the role mapper definition
(getProcessParticipant operation).

Note

• The execution of a mapper for a particular participant is performed each time a task is
created (only for tasks having this performer assigned)

• If there is no role mapper defined for participant of type role, no assignment of task is done
(meaning, the taks is not yet assigned, but it could be done afterwards through the API)

Concepts

15

3.5.2. Custom Mappers
This mapper type allows to perfeclty match with the users-roles mappings and constraints available in
organizations. When this type of mapper is selected, a call to a java class is performed. This java class must
implement the "RoleMapper" interface. In particular the "searchMembers" method of this interface must
be implemented and will return the collection of expected users (see the javadoc of interface RoleMapper).
The class name is specified into the extended attribute with Name MapperClassname. Refer to the section
called "Mappers"4.2 in the developpementGuide to get more details on the practical steps to follow to
define and deploy mapper classes into Nova Bonita (developping, compiling and deploying steps)..

3.5.3. Instance Initiator
This type of mapper fills in the candidates list of a task with the user that created the workflow instance
(based on the authenticated user that initiates the instance). This user be able to perform operations to
this the task.

3.6. Performer Assignment

3.6.1. Overview
This feature extends first assignment rules for tasks that was done through mappers. Mappers resolutions
can assign a task to a list of possible candidates users (those ones are able to see and perform operations over
the task). This list of candidates can be refined for each particular activity through the use of performers
assignments elements. Depending on the type of performer assignment the following functionnalities can
be added:

• Assign the activity (only tasks) to a user by calling a java class in charge to perform a user selection
from the list of candidates (Custom performer assignment).

• Dynamically assign the activity to a user by using the value of a variable that has been previously set
with the selected user Id (Variable performer assignment).

Once the performer assignment has been performed, the task is assigned to the selected user. This feature
can be added though the ProEd editor application. QueryDefinitionAPI allows read access to the definition
of the performer assignment.

3.6.2. Custom Performer Assignment
The java class must implement the "PerformerAssign" interface. In particular the "selectUser" method of
this interface must be implemented. The return value of this method is the name of the selected user (see the
javadoc of interface PerformerAssign). The class name is specified in an XPDL "extended attribute" called
Name PerformerAssign. Refer to the section Performer Assignments in the developpementGuide to get
details on the practical steps to deploy and define performerAssign classes into Nova Bonita (developping,
compiling and deploying steps). Notice that the candidates list is passed to the "selectUser" method to
simplify the user selection. Of course other strategy could be considered.

3.6.3. Variable Performer Assignment
With this type, assignment depends on the value of a variable previously set.

16

Chapter 4. Configuration and Services
This chapter introduces the services configuration infrastructure provided by Nova Bonita as well as main
services included in this 4.0.1 version.

4.1. Services Container
The Process Virtual Machine technology includes a services container allowing the injection of services
and objets that will be required during workflow definition and execution. Objects and services used by the
Bonita engine are defined through a XML file. A dedicated parser and a wiring framework are in charge of
creating those objects. Security, identity, persistence, notifications, human task and timers are examples
of pluggable services.

This services container (aka IoC container) can be configured through a configuration file. A default
configuration file is included in the package under the /conf directory (environment.xml):

<environment-definition>

 <environment-factory>
 <hibernate-configuration name='hibernate-configuration:core' >
 <properties resource='hibernate-core.properties' -/>
 <mappings resource='bonita.runtime.mappings.hbm.xml' -/>
 <mappings resource='bonita.querier.mappings.hbm.xml' -/>
 </hibernate-configuration>
 <object name='hook-executor'
class='org.ow2.bonita.definition.activity.HookExecutorImpl' -/>
 <hibernate-session-factory name='hibernate-session-factory:core' configuration='hibernate-
configuration:core' -/>
 <object name='uuid-generator' class='org.ow2.bonita.services.impl.DefaultUUIDGenerator' -/
>
 <variable-types resource='bonita.type.resolver.xml' -/>
 <hibernate-configuration name='hibernate-configuration:history' >
 <properties resource='hibernate-history.properties' -/>
 <mappings resource='bonita.querier.mappings.hbm.xml' -/>
 <mapping resource='bonita.history.stub.hbm.xml' -/>
 <cache-configuration resource='bonita.querier.cache.xml' usage='read-write' -/>
 </hibernate-configuration>
 <job-executor threads='1' auto-start='true' -/>
 <hibernate-session-factory name='hibernate-session-factory:history'
configuration='hibernate-configuration:history' -/>
 <command-service>
 <retry-interceptor -/>
 <environment-interceptor -/>
 <standard-transaction-interceptor -/>
 </command-service>
 <chainer name='finished-instance-handler'>
 <object class='org.ow2.bonita.services.handlers.impl.DeleteFinishedInstanceHandler' -/>
 <object class='org.ow2.bonita.services.handlers.impl.ArchiveFinishedInstanceHandler' -/>
 </chainer>
 <chainer name='undeployed-package-handler'>
 <object class='org.ow2.bonita.services.handlers.impl.ArchiveUndeployedPackageHandler' -/
>
 </chainer>
 </environment-factory>

 <environment>
 <journal name='journal' class='org.ow2.bonita.persistence.db.DbJournal'>
 <arg><string value='querier-session:core' -/></arg>
 </journal>
 <history name='history' class='org.ow2.bonita.persistence.db.DbHistory'>
 <arg><string value='querier-session:history' -/></arg>
 </history>
 <!-- DbJournal cannot be shared by several environments.
 It contains a session cache that needs to be recreated for each environment --->
 <chainer name='recorder'>
 <recorder class='org.ow2.bonita.persistence.log.LoggerRecorder' -/>
 <ref object='journal' -/>

Configuration and Services

17

 </chainer>
 <chainer name='archiver'>
 <archiver class='org.ow2.bonita.persistence.log.LoggerArchiver' -/>
 <ref object='history' -/>
 </chainer>
 <!-- Query Api has an object reference to the journal,
 so it cannot be shared by multiple environments --->
 <queryApi name='queryList'>
 <ref object='journal' -/>
 <ref object='history' -/>
 </queryApi>
 <!-- DbRepository cannot be shared by several environments.
 It contains a session cache that needs to be recreated for each environment --->
 <repository class='org.ow2.bonita.persistence.db.DbRepository'>
 <arg><string value='runtime-session:core' -/></arg>
 </repository>
 <security class='org.ow2.bonita.facade.AutoDetectSecurityContext'/>
 <runtime-db-session name='runtime-session:core' session='hibernate-session:core'/>
 <timer-session -/>
 <transaction -/>
 <job-db-session session='hibernate-session:core' -/>
 <hibernate-session name='hibernate-session:history' factory='hibernate-session-
factory:history' -/>
 <querier-db-session name='querier-session:core' session='hibernate-session:core'/>
 <querier-db-session name='querier-session:history' session='hibernate-session:history' -/>
 <hibernate-session name='hibernate-session:core' factory='hibernate-session-
factory:core' -/>
 </environment>

 </environment-definition>

Currently, following objects implementations can be injected in the environment:

• repository: data repository storing BPM processes, instances, activities... Db persistence (class
org.ow2.bonita.repository.db.DbRepository) implementation is included in this version.

• recorder: object responsible of BPM execution logs. Default implementation handles BPM logs in
the command line console (org.ow2.bonita.persistence.log.LoggerRecorder). Recorder and Journal (see
next) objects can be chained (new ones can be added as well on top of the recorder chainer). This give
you a powerful mechanism to handle workflow execution data

• journal: object responsible for storing or retrieving BPM execution data. Db persistence (class
org.ow2.bonita.persistence.db.DbJournal) implementation is provided by default.

• archiver: object intended for BPM logs archiving. Default implementation handles
logs on workflow data archiving through the default implementation (class
org.ow2.bonita.persistence.log.LoggerArchiver). Archiver and History (see next) objects can be chained
(new ones can be added as well on top of the archiver chainer). This give you a powerful mechanism
to handle BPM archived data

• history: object intended for storing or retrieving BPM archieved data. Default implementation is
provided and available in the following class: org.ow2.bonita.persistence.db.DBHistory. This class will
store the BPM history in a relational database (commonly a dedicated database)

• queryList: object intended to configure how the QueryRuntimeAPI will retrieve the workflow
execution data. This retrieval could be configured to chain with the expected order into the journal and
the history.

• finished-instance-handler: action to perform when a BPM instance is finished. This object could chain
two distinct actions: for a given workflow instance, deleting the runtime object including its tasks from
the repository and then store data in the archive and remove data from journal. Default implementations
are proposed for both chained actions.

• undeployed-package-handler action to perform when a BPM package is undeployed. Default
implementation is proposed allowing to store undeployment related data into the archive

Configuration and Services

18

• security: object implementing the security strategy in Bonita. By default 4
different implementations are provided: org.ow2.bonita.facade.AutoDetectSecurityContext,
org.ow2.bonita.facade.StandardSecurityContext, org.ow2.bonita.facade.EJB2SecurityContext and
org.ow2.bonita.facade.EJB3SecurityContext. Those implementations are based on JAAS security.
AutoDetect meaning that Bonita will make the choice for you on the one to be used (i.e if your Bonita
is deployed in Jboss 4.x is going to be EJB2SecurityContext).

For users that don't want to use JAAS security you can just add your own implementation of
the BonitaSecurityContext interface. This interface just requires the implementation of the getUser
operation so you can easily plug your own security in Bonita by leveraging this mechanism.

* Note 1: As explained before persistence objects are provided as default implementations in the
environment. Notice that in a persistence configuration additional resources are required, i.e for hibernate
persistence you can specify mapings, cache configuration...

* Note 2: The environment is divided in two different contexts: application and block. Objects declared
inside the application context are created once and reused while objects declared inside the block context
are created for each operation.

4.2. Services
Services in Nova Bonita is all about pluggability. Standard (StandAlone Java based) and Enterprise (JEE
Server based) versions of Nova Bonita can be easily configured thanks to the services container. To
allow that, each workflow related service has been thought in terms of an interface with different possible
implementations. In the following lines you will find a description of main services supported in Nova
Bonita:

4.2.1. Persistence
Persistence is one of key technical services injected into the services container. This service, as well as
other major services in Nova Bonita, is based on a service interface. That means that multiple persistence
implementations can be plugged on top.

The Persistence service interface (called DbSession) is responsible to save and load objects from a
relational database. By default, a persistence implementation based on the Hibernate ORM framework
(called HibernateDbSession) is provided (JPA and JCR would be other examples of persistence
implementations).

The Process Virtual Machine core definition and execution elements (processes, nodes, transitions,
events, actions, variables and executions) as well as the XPDL extension ones (join, split, manual and
automatic activities, conditions, variables...) are persisted through this service. Process Virtual Machine
core elements are also cached by leveraging the default persistence service implementation (Hibernate
based). Workflow packages, processes, instances, tasks and advanced classes (such hooks or mappers)
are are stored through this persistence service. Workflow repository is the term used in Nova Bonita to
store those entities.

4.2.2. Identity
Identity service main objective is to give freedom to system administrators to leverage their favorite
organization user repository. Traditional user repositories such LDAP, ActiveDirectory as well as any
other user repository (database or API) can be plugged as implementations of this service.

By default, some user repositories implementations are provided for testing purposes: in memory, basic
FileSystem based persistence, and basic database persistence (based on a predefined database schema).
Those implementations can also be used in production if there is no other user repository available.

Configuration and Services

19

The Identity service is so an extensible interface (known as IdentityServiceOp) build around three main
concepts: Users, Groups and Memberships:

• User: a particular user inside an users repository. Users can be created, modified, removed and
queried (some of those operations could be not allowed for some repositories (i.e LDAP) through the
IdentityService API).

• Group: a group of users in a particular users repository. A group could contain either users security
restrictions or hierarchical information. As for users, groupes can also be created, removed, modified
and queried.

• Membership: a membership represents a user position in a particular group. An user could have two
different membership in two different groups. Membership related operations concern set, remove or
updates on users position inside groups.

Both Security and Human Task services will use the Identity one by checking user login/password and
user rights (Security) and by resolving workflow logical roles with users and so to assign manual activities
to users based on some hierarchical information (Tasks Management)

By default, Nova Bonita is packaged with a test based identity module based on a properties file. This
file contains the user/login allowed to reach Nova Bonita APIs. This properties file is in fact a Test Login
Module (see security module description below), meaning that the same properties file is used for security
and identity configuration.

4.2.3. Security

The security service is based on JAAS standard. Main purpose of this service is to provide both
authentication and authorization capabilities to the workflow engine. As security directly relates to users
permissions, this service also relates to the identity one (commonly security is configured on top of the
identity service).

As for other services, the Nova Bonita team is concerned on let you the freedom to choose and plug
your favorite security implementation. At the same time we also want to provide one ore more default
implementations that allow users to quickly set up and start playing with Nova Bonita.

For testing purposes Nova Bonita includes a default JAAS login module checking user/password
values stored in a file. This easily allow to start playing with Nova Bonita in a testing security
environment in which the login module acts as a lightweight users repository. This login module
(org.ow2.novabpm.identity.auth.PlainLoginModule) is the one provided in Nova Bonita examples
directory.

The current implementation of the security service allows you directly work with the default identity
service to handle users authentication. Users must login before start calling the Bonita APIs.

The Security service is composed by two different JAAS LoginModules. The first one (called
PlainLoginModule) is responsible to handle security authentication and authorization. This one could just
be replaced by you favorite JAAS Login Module. The second one (StorageLoginModule) is responsible
to keep data of authenticated users (basically for security context initialization). Those login modules
can be configured in both standard and enterprise environments (note that most of JEE servers already
provides a Storage Login Module so you could just replace the one proposed by Nova Bonita by the
one leveraged by you app server). Some examples of security configuration files for both standard and
enterprise environments are included in the Bonita distribution (under the /conf directory).

Configuration and Services

20

4.2.4. Task Management
Task management is all about providing the right information to the right people at the right time !. This
is one of the most important services that must be provided by a workflow solution.

As human task management can be re-used in other domains (not only by workflow solutions but by any
Java based application) we wanted those features to be a service rather than an internal workflow module.
As a result, this service is generic and extensible Task Management service that can be either used in Nova
Bonita extension to handle manual task assignments and executions or either by any Java application or
Domain Specific Language (i.e BPEL4People extension for instance).

Traditional features such users - roles/group mapping, delegation, scalation, task deadlines handling or
manual activities execution life cycle are in scope of this service. Advanced features such configurable
activity life cycle, interactions with other task managements system, services or collaborative applications
and integration with organizational rules are also part of the main responsabilities of this service.

The current implementation focus on support of manual tasks (also known as manual activities) in Nova
Bonita. Basic features such Bonita RoleMappers and Performer Assignments entities allowing users - roles
mapping are already supported. Together with the identity and security service, users can login into the
system, get their tasks todo list and execute them. As other service in Nova Bonita this module is executed
in a persistent environment.

4.2.5. Journal and History
This module concerns the way in which the workflow data is stored during the workflow execution and
archived when the execution is completed. This is indeed a crucial module in a workflow solution.

While in Bonita v3 journal data (aka execution workflow data) and history data (aka archived data) where
handled by different mechanism, in Nova Bonita we decided to unify them as the underlying essence of
both is to handle workflow data. For that to be done, we created the concept of workflow record. A record
is a minimal set of attributes describing a workflow entity execution. That means that each workflow entity
related to the execution has its own associated record: instance record, task record, hook record...

Those records are recorded during the workflow execution and stored depending on the persistence service
implementation (db, xml...). The Nova Bonita API will retrieve record data from the records storage and
sent them back to the users (meaning that records also acts as value objects in Nova Bonita APIs).

As soon as a workflow instance is finished, a typical scenario would be (by default) to move instance
related workflow data from the production environment to a history one. While the physical device and the
data structure could changed from one workflow engine deployment to another (XML, BI database...), the
internal format could remain the same (records). This is exactly what is happening in Nova Bonita, when
archiving data the engine just move execution records from the production to the history environment
without data transformation inbetween.

4.2.6. Timers
To handle activities deadlines, a timer service is required that can schedule timers to be executed in the
future. Timers must have the ability to contain some contextual information and reference the program
logic that needs to be executed when the timer expires. A typical scenario would be a manual activity
(task) that needs to be monitored with a timer. For example, if this task is not completed within 2 days,
notify the manager.

This service, as well as any other asynchrous service in Nova Bonita is based on the Process Virtual
Machine Job executor framework. Job executor framework is responsible for handling jobs. A job could

Configuration and Services

21

be a timer scheduling or an asynchronous message for instance. When a job is created and stored in
the database, the job executor starts a new transaction, fetch the job from the database and perform the
instructions contained in the message.

22

Chapter 5. Installation guide
5.1. Installation

Nova Bonita V4 adds support for both standard and enterprise deployments. After unzipping this release
you could easily use Nova Bonita "as a library" inside your web or rich client application or to deploy it
into you favorite application server and use it remotely.

So, first of all you should start by unzipping the Bonita distribution package:

>unzip bonita-4.0.1.zip

A new directory bonita-4.0.1 will be created with the following structure:

README
build.xml
build.properties
License.txt
release_notes.txt
conf/
doc/
javadoc/
examples/
ear/
lib/

Let's describe those items :

• README

This file gives the basic information related to Nova Bonita

• build.xml

This file is an "ant" file (aka makefile) that provides tasks to deal with Nova Bonita administration
operations (detailled commands instructions are given in following sections).

• build.properties

This file contains the J2EE properties required to deploy and to use Nova Bonita APIs deployed in
a remote J2EE server (JOnAS, Jboss and EasyBeans properties are provided by default allowing to
execute Nova Bonita samples remotely).

• License.txt

The license of Nova Bonita. Bonita is released under the LGPL license v2.1.

• conf/

This directory contains default configuration files for Nova Bonita. That includes "environment" xml
files (including services and objects used as default by the engine), login modules configurations (JAAS
compliant login modules samples) and hibernate persistence configuration (as a default implementation
to handle Nova Bonita persistence). Standard (JSE) and Enterprise (JEE) versions are provided for JBoss
and JOnAS application servers as well as with Easybeans EJB3 container

• doc/

This directory contains Nova Bonita documentation:

Installation guide

23

• referenceGuide.pdf

This is the document that you are actually reading. The bonita reference guide gives a detailed
overview of features, architecture as well as installations and configurations instructions.

• developmentGuide.pdf

This document describes the design and development process in Nova Bonita Workflow. The designer
(ProEd) application is covered in this document. You will also find useful information about how to
develop BPM connectors (aka, hooks, mappers, performer assignments and instantiators)

• quickStartGuide.pdf

This guide covers main features of Nova Bonita, and will help you to get started right away. This
document is intended for users looking to get started quickly on Nova Bonita runtime and graphical
tools.

• javadoc/

This directory contains developer's javadoc documentation of Nova Bonita. This javadoc describes in
details Nova Bonita APIs

• examples/

This directory contains workflow examples provided with Nova Bonita package. Those samples
applications illustrates how to use Nova Bonita APIs from within a client application. That includes
the process definition (XPDL) files, java related workflow artifacts (Hooks, mappers and performer
assigns) and client applications which illustrates how to deploy, execute and query workflow processes
through Nova Bonita APIs in both JSE and J2EE environments.

• Approval Workflow sample

This is a generic Approval Workflow process. Two versions of this process exists. One with
a single approval performed by the manager (which decides whether he accepts or rejects an
hypothetical request) and an other involving the multi-instantiation for the approval step followed
by a "CheckDecision" step (to decide what should be the decision). Both sample applications show
how hooks entities can be used by both manual and automatic activities. The version with multi-
instantiation illustrates additional features like activities multi-instances coupled with a performer
assignment.

An advanced version of this sample is also included. In this version Nova Bonita engine is packaged
in a .war file together with the approval workflow sample and a simple web application. This sample
illustrates how simple it is to embeed Nova Bonita in a web application running in a web container (i.e
Tomcat). See "Java Properties" chapter below for more details about Tomcat configuration for Bonita

• Carpool sample

This example is a carpool simulation in which requesters and publishers are put in relationship to each
other. This process illustrates the way in which deadlines and asynchrous services can be leveraged
in Nova Bonita.

• WebSales sample

This example is a web sale simulation process in which a customer and an online shop agent/employee
are involved in a purchase request process. In this sample iterations/loops as well as multiple types
of variables are illustrated.

Installation guide

24

• lib/

This directory contains the libraries used in Nova Bonita v4. Nova Bonita can be integrated in your
application/IS in different ways (integrated in a web application, inside a rich client application, remotly
deployed in a JEE application server...). Depending on your integration environment only some of those
libraries will be required.

5.2. Standard vs Enterprise installation
Find hereafter some instructions about how to deploy and to reach Nova Bonita in both Standard and
Enterprise environments:

5.2.1. Standard installation (Bonita as a library)
To use Bonita embedded in your java application just add the libraries located under /lib/server directory
in your application classpath.

The main library allowing to deal with Bonita is:

bonita-server.jar

5.2.2. Enterprise installation (Bonita as a server)
This is intended for BPM deployments in which Bonita is going to be deployed in a dedicated server,
meaning that different applications will reach Bonita remotely. In those cases, client applications only
requires one bonita library called:

bonita-client.jar

I this deployment configuration the Bonita server will often be deployed in a application server. Hereafter
you will find the instructions to deploy Bonita as a BPM server.

Move to the Nova Bonita installation directory and:

• call "ant ear.ejb2", "ant ear.ejb3" respectively tasks to generate the bonita.ear file corresponding to either
JEE 1.4 or 1.5 specification.

• deploy this ear into your favorite JEE 1.4 or 1.5 application server.

• *Note: If you are using Jboss or JOnAS application servers or the EasyBeans EJB3 container you can
directly deploy and start using Nova Bonita examples. Specific descriptors and classpath configurations
for those servers are included in this distribution. In case you are using another JEE 1.4 application
server (Weblogic, Websphere, Oracle, Geronimo, Glassfish...) just add specific descriptors for those
application servers into the bonita.ear file and configure your client side to reach the Bonita APIs (take
as example existing configurations for JOnAS and Jboss).

bonita.ear file generated through ant "ear.ejb3" task can be deployed in any EJB3 compliant application
server. in this version of the specification, standard descriptiors should work in any EJB3 environment.

5.2.2.1. Jboss 4.x and 5.x installation and deployment

Find hereafter required steps to deploy and run Nova Bonita in Jboss apps:

• Download Jboss 4.x or 5.x from Jboss web site: http://www.jboss.org and follows jboss application
server installation instructions

Installation guide

25

• Edit build.properties file and set your Jboss configuration settings: URL provider (localhost with port
1099 by default) and set "jboss.home" and "jboss.lib" properties values (those properties must be
initialized with the path corresponding to the directory in which Jboss was installed and the path in
which jboss client libraries are available).

• Type "ant ear.ejb2" or "ant ear.ejb3" (depending on the jboss version you want to use) under your Bonita
installation directory to generate the bonita.ear file

• Copy the bonita.ear file generated into JBOSS_HOME/server/default/deploy directory (default
configuration)

• Start the Jboss application server by executing run.bat or run.sh under JBOSS_HOME/bin directory.
Bonita should be deployed at that time

• Bonita is now up and running under Jboss

5.2.2.2. JOnAS 4.x and 5.x installation and deployment

Find hereafter required steps to deploy and run Nova Bonita in JOnAS apps:

• Download JOnAS 4.x or 5.x from JOnAS web site: http://jonas.ow2.org and follows JOnAS application
server installation instructions

• Edit build.properties file and set your JOnAS configuration settings: URL provider (localhost with
port 1099 by default) and set "jonas.root" and "jonas.lib" properties values (those properties must be
initialized with the path corresponding to the directory in which JOnAS was installed and the path in
which JOnAS client libraries are available).

• Type "ant ear.ejb2" or "ant ear.ejb3" (depending on the JOnAS version you want to use) under your
Bonita installation directory to generate the bonita.ear file

• Copy the bonita.ear file generated into JONAS_ROOT/apps/autoload directory (default configuration)

• Start the JOnAS application server by executing "jonas start.bat" or "jonas start.sh" under
JONAS_ROOT/bin directory. Bonita should be deployed at that time

• Bonita is now up and running under JOnAS

5.2.2.3. EasyBeans EJB3 Installation and deployment

Hereafter you will find steps required to deploy Nova Bonita (JEE version) in EasyBeans EJB3 container:

• Download easybeans up to v1.0 at http://www.easybeans.net/xwiki/bin/view/Main/Downloads
(standalone version). EasyBeans is using a directory called 'easybeans-deploy' in the basedir to deploy
new archives

• Create a directory with this name in the folder from where you will start easybeans container and copy
the bonita.ear file in to the created 'easybeans-deploy' directory

• Be sure to have all security permissions in your java.policy file: permission java.security.AllPermission

• Add novaBpmIdentity.jar in your CLASSPATh environment variable. This jar is available under /lib
directory of Nova Bonita distribution

• Then start easybeans :

Installation guide

26

java -classspath "lib\easybeans\novaBpmIdentity.jar;easybeans.jar" -
Dorg.ow2.bonita.environment=environment.xml -Djava.security.manager -
Djava.security.policy=java.policy org.ow2.easybeans.server.EasyBeans

27

Chapter 6. Developer's guide
This chapter describes how to start playing with Nova Bonita v4. More precisely it describes main steps
to define and deploy workflow processes and how to start running them in Nova Bonita:

• How to create a process definition

• How to deploy a process definition

• How to develop a simple application by leveraging Bonita APIs

For end users, there is a dedicated document: quickStartGuide.pdf that illustrates the steps described above
using a 100% graphical environment.

6.1. Designing a xpdl process with ProEd
Like in previous Bonita versions, processes could be created either through a java api or through a
graphical editor : Nova Bonita designer (aka ProEd). The java api to build Bonita v4 processes is not
yet developped, so processes should be deployed as .xpdl files. That can easily be done under ProEd
and then imported as xpdl files. For that, you can use either the Desktop or the Eclipse based versions
that are available to download on the Bonita download [http://forge.objectweb.org/project/showfiles.php?
group_id=56&release_id=302/] page.

Please, refer to the Nova Bonita development guide (under /doc directory) to learn more about how to
use ProEd.

Once a process definition is completed, ProEd saves the description of the designed process as an xpdl file
that should be imported as described in the following section.

6.2. Nova Bonita APIs
If you are already familiar with previous Bonita versions and you have already developped your own
applications on top of Bonita, we want to minimize your effort when migrating to Bonita v4. Compatibility
from Bonita v3 to v4 is one of our main concerns.

At the same time, we took the chance to review and to improve Bonita v3 APIs in this new major version
so basically the Bonita v3 API spirit is still there but we applied some improvements in Nova Bonita to
simplify some operations and to add added value features.

Nova Bonita APIs has been refactored each intermediate release until become stable in this final version.

6.2.1. Getting started with Bonita APIs
Nova Bonita APIs are divided into 5 different areas:

• DefinitionAPI: to create/modify major process elements into the engine (packages, processes, activities,
role mappers, variables by calling java methods instead of importing xpdl files. It will allows also to
modify the execution of runtime elements such as tasks and instances.

• QueryDefinitionAPI: to get useful workflow definition data from a particualr process definition:
packages, processes, activities, role mappers,

• RuntimeAPI: to manage process, instance and task life cycle operations as well as variables set/updates

http://forge.objectweb.org/project/showfiles.php?group_id=56&release_id=302/
http://forge.objectweb.org/project/showfiles.php?group_id=56&release_id=302/
http://forge.objectweb.org/project/showfiles.php?group_id=56&release_id=302/

Developer's guide

28

• QueryRuntimeAPI: to get recorded/runtime informations for packages, processes, instances, activities,
tasks (support for dynamic queries will be added in the future). It allows also to get tasks (aka manual
activities) per state for a particular user and as well to get/list workflow instances.variables.

• ManagementAPI: to deploy workflow processes into the engine. XPDL files and advanced entities
such hooks, mappers and performer assignments can be deployed individually or in one shot

There's also a generic API that allow to execute specific commands (queries) that could be needed (and
not available in the APIs) in the context of a particular workflow based application:

• CommandAPI: to allow developpers to write and execute its own commands (mostly queries)

6.2.2.1. Nova Bonita APIs, playing with !

Nova Bonita v4 is an extensible and embeddable workflow solution that can be easily deployed in both
standard (JSE) and Enterprise (JEE) environments.

• Nova Bonita can be easily integrated in your application as a workflow library.

• Nova Bonita can also be deployed in a JEE application server and so reached remotely by external
applications

6.2.2.2. Nova Bonita local vs remote applications !

An utility class has been provided to unify access to Bonita APIs from both local and remote environments
and so to avoid the use of lookups in JEE deployments: org.ow2.bonita.util.AccessorUtil. Through this
class, Nova Bonita APIs can be reached in a unified way in both local and remote applications. From a
developer point of view Nova Bonita APIs are just Java POJOs.

The AccessorUtil objet will also be leveraged inside BPM artifacts such hooks, mappers or performer
assignments to deal with Nova Bonita APIs.

By configuration you can specify the way in which the Bonita APIs will be reached, the system property
called "org.ow2.bonita.api-type" must be defined at client side to specify whether the APIs will be reached
locally or remotely (possible values are "Standard","AutoDetect",'EJB2" and "EJB3").

Hereafter you will find an example on how to use the AccessorUtil class from your client application:

 RuntimeAPI runtimeAPI = AccessorUtil.getRuntimeAPI();
 QueryRuntimeAPI queryRuntimenAPI = AccessorUtil.getQueryRuntimeAPI();

You will find some samples applications leveraging this API under the /examples directory. For a detailed
insight on Nova Bonita APis, please take a look to the Nova Bonita javadoc apis (available under /javadoc
directory)

6.3. Running the examples
The Nova Bonita package contains some complete workflow examples. Those examples can be easily
compiled, deployed and executed (in both JSE and JEE modes), thanks to a set of "ant" tasks available
on examples directory. Hereafter you will find some information about how to play with one of those
examples (ApprovalWorkflow sample). For others (carpool and websales samples), you can proceed the
same way by replacing the references to approval workflow by the one corresponding to your sample name:

Developer's guide

29

• The Bonita basic Approval Workflow: a simple Approval Workflow application illustrating the
workflow definition, workflow deployment and execution phases.

• The Bonita Multi-instance Approval Workflow: a version of the Approval Workflow application in
which the "approval" activity is dynamically assigned to a set of users at runtime. This example
illustrates activities multi-instantiation paradigm.

The build.xml in the root directory (BONITA_HOME/examples/approvalWorkflow directory) contains
required targets to compile and launch the example in both standard (JSE) and enterprise (JEE)
environments:

The Approval Workflow sample is configured to run together with the default hibernate persistence
service. Main Process Virtual Machine entities, XPDL extension as well as execution related data will be
persisted in a relational database. By default Nova Bonita embeeds HSQL database and uses it as a default
database. You can easily change this default configuration and use your favorite database by modifiying
the hibernate-core.properties file located under "conf" directory.

>ant aw-standalone

This sample application leverages the Security and Identity services so you must provide a right user login/
passwd to run the sample. The default identity module (based on a properties file) is provided with three
users ("john", "jack" and "james" logins with "bpm", "bpm" and "bpm" as password). All three can login
into to system but only john and jack are able to play in the Approval Workflow sample. This behaviour
is due to the users - role mapping defined in the previous workflow sample.

The java example simply deploy the xpdl file as well as advanced java entities such hooks and mappers
in the engine (deployBar method in ManagementAPI), then creates a workflow instance and calls
getTasksList, startTask and finishTask methods from the RuntimeAPI

This sample application can be launched at both standard and enterprise modes. In the enterprise mode
Nova Bonita APIs are available as Stateless Session Beans. Enterprise sample version can easily be
executed with the following ant tasks:

>ant aw-jonas4 (for a deployment in JOnAS application server version 4)

>ant aw-jboss4 (for a deployment in JBoss AS version 4)

>ant aw-eb (for a deployment in EasyBeans EJB3 container)

*Note that the enterprise version requires Nova Bonita (bonita.ear file) to be deployed in an application
server (see Enterprise Instalaltion chapter of this Guide to know more about how to deploy Nova Bonita
in a JEE application server).

As for basic Approval Workflow sample, you can easily launch the multi-instantiated version as follows:

>ant aw-multiInst-standalone

Multi-instantiation version of Approval Workflow can also be launched remotely. Please type "ant -p" to
get an overview of remote execution tasks.

An advanced version of this sample is also provided. This version package the approval workflow sample
as well as the Nova Bonita engine (standalone mode) in a war file together with a simple web application.
This war file can be deployed in a web container (i.e Tomcat) as an standalone workflow application.
This web application allows to deploy, undeploy and create instances of a deployed workflow sample to
illustrates how to reach Nova Bonita APIs from a web application (API calls will directly leverage the
Bonita POJO based API).

Developer's guide

30

In order to generate this war file, just type:

>ant war (for aw.war file generation)

once this file is generated, just deploy it in your favorite web container (i.e Tomcat). The web application
will be available by default at http://localhost:8080/aw if you are using Tomcat.

6.4. Java Properties
There are couple of considerations that must be taken into account when using Nova Bonita in both JSE
and JEE versions. Security and Bonita environment configurations should be set when running Bonita
as a library in your web application (so to be added when running your Tomcat server). Those JAVA
properties are concerned:

• org.ow2.bonita.environment = URL to the xml file containing the workflow environment configuration
or filepath to this file or resource path

Nova Bonita engine environment lookup mechanism will check for the environment location following
this order: first URL, second, filepath and third resource

• java.security.auth.login.config = PATH where the login configuration is available (default
configurations are available under /conf directory)

JAVA_OPTS environment variable can be used for this purpose.

org.ow2.bonita.environment property must also be set when using Bonita as a server (deployed in an
application server). In this scenario, the client side application would require the security related property
and the Bonita server side only the Bonita evironment.

If those properties are not defined, for instance when starting JOnAS or Jboss servers, Nova Bonita will
take as default the environment.xml file include in the bonita.ear.

6.5. Administration operations
The Nova Bonita distribution provides a set of administration utilities/commands that can be executed
through ant tasks. Hereafter you will find main commands availiable:

deployBarDb Deploy the bar file in standalone mode
deployBarEb Deploy the bar file in enterprise mode
ear.ejb2 Generate an ear which can be use in an ejb2 environment (Jonas 4 or Jboss 4
application server)
ear.ejb3 Generate an ear which can be use in an ejb3 environment (easybeans, jonas 5,
jboss 5)
info display helpful information on this distribution
init-db Generate database schema from the environment configuration
test-eb Run the test suite in easybeans and put the results in target/testresults
test-jboss4 Run the test suite in jboss 4 and put the results in target/testresults
test-jboss5 Run the test suite in jboss 5 and put the results in target/testresults
test-jonas4 Run the test suite in jonas 4 and put the results in target/testresults
test-jonas5 Run the test suite in jonas 5 and put the results in target/testresults
tests runs the test suite in database and put the results in target/testresults
undeployBarDb Undeploy the process in standalone mode
undeployBarEb Undeploy the process in enterprise mode
usageDeploy The usage to successfully deploy a bar file
usageUndeploy The usage to successfully undeploy a bar file

Through those commands, BPMprocesses can be deployed , undeployed, J2E enterprise version can be
generated, database schema can be initialized or still th test suite can be launched.

Developer's guide

31

6.6. Database configuration
Nova Bonita distribution is configured by default to run with an embedded database (HSQL database). This
allows you to start playing with Bonita without configuring your own database. The default database will be
created in your filesystem and soon as you execute one of the samples provided in the distribution (default
location would be the "java.io.tmpdir" system variable: i.e /tmp in Linux Systems or Local Settings/tmp
in windows platforms).

Database configuration for HSQL is available under the /conf directory of the distribution (hibernate-
core.properties file).

hibernate.dialect org.hibernate.dialect.HSQLDialect
hibernate.connection.driver_class org.hsqldb.jdbcDriver
hibernate.connection.url jdbc:hsqldb:file:${java.io.tmpdir}/bonita-db/
bonita_core.db;shutdown=true
hibernate.connection.username sa
hibernate.connection.password
hibernate.hbm2ddl.auto update
hibernate.cache.use_second_level_cache true
hibernate.cache.use_query_cache true
hibernate.cache.provider_class org.hibernate.cache.EhCacheProvider
hibernate.show_sql false
hibernate.format_sql false
hibernate.use_sql_comments false

This configuration (core) concerns the Nova Bonita definition and runtime information. As you can see in
the /conf directory, there is also another file called hibernate-history.properties which contains the database
configuration for the Nova Bonita history database. In fact process history data can be stored either in
XML files or in a database (please check Configuration and Services chapter) and so this file concerns the
choice of a database to store history data.

6.6.1. Changing the default database configuration
Hereafter the instructions to update the default database configuration in Nova Bonita to use your favorite
releational database:

• Copy your database driver into the Nova Bonita distribution /lib directory (i.e mysql.jar, oracle.jar)

• Configure hibernate.properties file for your favorite database (i.e examples for MySQL, Oracle and
Postgres are provided in both core and history proerties files). Note that you can use different
databases or instances for "core" and "history" configurations. By default, if you only update hibernate-
core.properties file and you keep the default history service to use the XML service (see the
environment.xml file) no history data will be stored in the database.

• Open a command line and go to the Nova Bonita distribution main directory and type "ant init-db":

init-db:
 [input]
 [input] Which hibernate configuration to use to generate database -?
 [input] Default value for bonita engine database is: hibernate-configuration:core
 [input] Default value for bonita DbHistory database is: hibernate-
configuration:history
 [input] []

This command allows Nova Bonita administrators to initialize a particular database instance with the Nova
Bonita database schema (including FK and indexes). Just select the database you want to initialize (core
vs history) by copying either "hibernate-configuration:core" or "hibernate-configuration:history" chains.

Developer's guide

32

Note: Previous values names are correlated to the corresponding environment files (environment.xml and
environment-xml-history.xml) so if you change the values of those files you should take care to use the
sames during the DB initialization.

33

Chapter 7. Change history between
Bonita v3 and Nova Bonita

Main concepts and features that made the friendly usage and the Bonita v3 brand have been kept: hooks,
role mapper, performer assignments, local/global variables, rich and powerful API. Most of these features
have been revisited in order to become even more efficient thanks to the PVM execution environment.
Aim was to be the most compatible with the last version but of course some changes are required.

Goal of this chapter is to list/focus all these differences.

7.1. Concept of package
The concept of package has been introduced by XPDL specification from the WfMC in order to be
a container for main workflow objects that can be shared by multiple workflow processes that can
support an overall business application. Amoung these elements are: participants, datafields, others process
workflows/sublows.

This concept has been natively taken in account by Nova Bonita engine. According the requirements and
needs of our customers this concept should be enforced.

7.1.1. Package life cycle
States for package: UNDEPLOYED, DEPLOYED

7.2. Processes, instances, activities and tasks
life cycles

One major change concerns the adding of task entity. If the activity is manual (ie. startMode=manual)
when the execution enters the graph node of the activity a task is created. This task has its own life cycle
with some synchronisation with the activity entity. Within this version task is still managed by the engine
but in the future, it will be possible to plug an external task module to manage the tasks.

7.2.1. Process life cycle
States for process: UNDEPLOYED, DEPLOYED

Deployment of processes implies deployment of a package. Same thing for the undeployment. Package
can be deployed and undeployed several times in order to make modifications onto its contained elements
(process, participants, activities, ...). This is the way to maintain processes before the introduction of
versionning in next version.

See the developpement guide for more details.

7.2.2. Instance life cycle
States for process instance: INITIAL, STARTED, FINISHED

No difference with bonita v3.

Change history between Bonita v3 and Nova Bonita

34

CANCELED state is not yet supported.

7.2.3. Activity life cycle
Activity has no state (oly started and finshed date). Notion of state at this level depends only on the type
of behavior defined within the activity. A specific body of the activity is created according the type of
the activity (Task, Subflow, Route, Automatic). The state is implemented by the body. At now only task
has a life cycle.

7.2.4. Task life cycles
States for task: INITIAL, READY, EXECUTING, SUSPENDED, FINISHED, CANCELED

State SUSPENDED has been introduced. This state can be reached either from READY or from
EXECUTING. transition is also reciproque.

Tasks are particular types of activities (such subflow, route...) associated to human actors.

7.3. APIs
Bonita v3 APIs were divided into 5 different areas and can be compared to bonita v4 API (see Chapter 4)

• ProjectSessionBean: is covered by both DefinitionAPI (for set/add methods) and QueryDefinitionAPI
(for get methods)

• UserSessionBean: is covered by both RuntimeAPI and QueryRuntimeAPI

• AdminSessionBean: has fonctions that could be found into QueryDefinitionAPI and QueryRuntimeAPI
according on the type of information (runtime or definition information). At now there's no check for
admin role

• UsersRegistrationBrean: is not relevant for bonita v4 because user base is not managed by the engine.

• historyAPI: is covered by QueryRuntimeAPI.

Bonita v3 can only be acceeded as a remote workflow server. Bonita v4 supports both java workflow
library and remote workflow server (see Chapter 4).

A new API has also be added for improving workflow processes deployment as well as advanced entities
deployment: hooks, mappers and performers assignments. This API is called ManagementAPI. No need
anymore to deploy xpdl first and the compile and copy by hand advanced entities in a particular server
directory. Any deployment/undeployment operation can be performed through the ManagementAPI.

Furthermore Nova Bonita v4 provides extensibility to the APIs by the addition of the commandAPI.
Developper is now free to write and execute its own commands and consequently can extends the proposed
API. This is a service oriented feature and it also should avoid to provide a querier language for complexe
request (involving requests with multiple criteria).

7.4. Hooks
Pieces of end-users java code that are executed at particular moments of either a process instance or a task
or an "automatic activity" (route and subflow type activity cannot have hook).

Change history between Bonita v3 and Nova Bonita

35

7.4.1. for task
Xpdl definition of hooks has changed in order to extend rollbacking capabilities to all hook types making
by the way the usage of hook simpler. An example of the new one is given here after

<ExtendedAttribute Name="hook" Value="org.ow2.bonita.integration.hook.OnReadyHook">
 <HookEventName>task:onReady</HookEventName>
 <rollback>false</rollback>
</ExtendedAttribute>

The element rollback has been introduced to indicate if the hook will be or not rollbacked.

Hook events have also been adapted to match the constraints of task life cycle.

• task:onReady

• task:onStart

• task:onFinish

• task:onSuspend

• task:onResume

Main change is the suppression of before/after for terminate and before/after start types because of the
introduction of the rollback parameter. An other change is the introduction of new events due to the new
state: SUSPENDED.

Note: if using proEd, the designer can select for each hook:

• either rollback=true (case1)

• or rollback=false (case2)

Hooks are always executed into a transaction. In case1, if an exception has occured the exception is raised
by the engine and the transaction is rollbacked. In case2, the occuring exception is catched by the engine.

To implement a hook class the developper has the choice between two interfaces. Look at the javadoc of
these interfaces for more details:

• org.bonita.ow2.definition.TxHook

• org.bonita.ow2.definition.Hook

If rollback=false has been previously defined, only Hook interface can be implemented otherwise an
exception is raised at runtime. Then it prevents the use of TxHook interface. These hooks are intended
to execute not critical operations for the workflow. Only query API are proposed to be acceeded into the
parameters of the execute() method of the interface.

If modification on hook class is required it can be hot deployed to replace the previous one (see the
ManagementAPI). It can be also deployed within the bar archive or independendtly. It can be also
undeployed if the class is not required by a deployed process.

7.4.2. for automatic activity
One type of event can be defined.

Change history between Bonita v3 and Nova Bonita

36

• automatic:onEnter

7.4.3. for process
ON_INSTANTIATE hook (set within the process element of XPDL definition) is not yet supported.

ON_CANCELLED hook is not yet supported.

7.4.4. Interactive hook
Interactive hooks (also called Bean Shell) are not yet supported for activity and process. Those hooks will
be implemented soon adding support for others scripting languages such Groovy

7.5. Deadlines
Deadline feature within Bonita v4 is the same as for Bonita v3. org.ow2.bonita.definition.TxHook or
org.ow2.bonita.definition.Hook interface must be implemented in case of deadline hook (ON_DEADLINE
event). See javadoc for more details.

7.6. Mappers
org.ow2.bonita.definition.RoleMapper interface must be implemented (see javadoc for more details).

Main difference concerns the moment in which the searchMembers() method is executed. In Bonita v3
it was executed at process instantiation since in Bonita v4 it is at the creation of the task from which the
activity has been defined with a role mapper. It has the advantage to take in account modification of the
groups within the external user base

7.7. Performer assignments
org.ow2.bonita.definition.PerformerAssign interface must be implemented (see javadoc for more details).

7.8. Variables
Properties entity in Bonita v3 has been renamed to Variables in Bonita v4. This seems a more natural way
to work with workflow relevant data.

Variables support and flexibility in Bonita v3 was too limited. Only String and enumerated types were
supported. In Bonita v4 support for common variables types as well as as advanced ones (including own
Java based ones) will be added in next releases (currently, the v4 version support same types than v3 and
adds: Float, Integer, Boolean, Datetime, Performer).

Getting and Setting variables operations directly handles Java Objects, meaning that a get operation returns
an Object so the developer only needs to use the instanceOf operator to determine the type of a particular
variable.

7.9. Iterations
Iterations support in Nova Bonita follows the innovative mechanism included in Bonita v3, meaning
supporting complex and advanced uses cases: unstructured iterations or arbitrary cycles.

Change history between Bonita v3 and Nova Bonita

37

Main difference between Bonita v3 and v4 related to iterations is that in v4 there is no need anymore for
a dedicated entity called iteration. Transitions can be used in Bonita v4 to create a cycle in a workflow
processes.

For compatibility reasons iterations entities defined as XPDL extended attributes (Bonita v3) are still
supported.

The current implementation has some restrictions:

- A cycle must have at least one XOR entry point

- Split activities as exit points are only supported in case of XOR

- Join XOR inside iterations do not cancel/delete non selected execution path

Those restrictions will be fixed in the next release with the addition of a new behaviour for XOR activities
in which non selected execution path will be automatically deleted/removed

	Nova Bonita documentation
	Table of Contents
	Introduction
	Chapter 1. General information
	1.1. Nova Bonita introduction
	1.2. Feature list
	1.3. Restrictions

	Chapter 2. Prerequisites
	2.1. Hardware
	2.2. Software

	Chapter 3. Concepts
	3.1. Terminology
	3.2. Package
	3.2.1. LifeCycle
	3.2.2. Versioning

	3.3. Process
	3.3.1. Process Basics
	3.3.2. Life Cycles (process/instance)
	3.3.3. Process definition & process Instances
	3.3.4. Versioning
	3.3.5. Concept of Hooks
	3.3.6. SubProcesses

	3.4. Activities
	3.4.1. Activity Basics
	3.4.2. Life cycle for tasks (aka manual activity)
	3.4.3. Transition between Activities
	3.4.4. Iterating Activities
	3.4.5. Activity multi-instantiation
	3.4.6. Concepts of hooks/connectors
	3.4.7. Activity/Hooks and Transactions

	3.5. Role Mappers Feature
	3.5.1. Overview
	3.5.2. Custom Mappers
	3.5.3. Instance Initiator

	3.6. Performer Assignment
	3.6.1. Overview
	3.6.2. Custom Performer Assignment
	3.6.3. Variable Performer Assignment

	Chapter 4. Configuration and Services
	4.1. Services Container
	4.2. Services
	4.2.1. Persistence
	4.2.2. Identity
	4.2.3. Security
	4.2.4. Task Management
	4.2.5. Journal and History
	4.2.6. Timers

	Chapter 5. Installation guide
	5.1. Installation
	5.2. Standard vs Enterprise installation
	5.2.1. Standard installation (Bonita as a library)
	5.2.2. Enterprise installation (Bonita as a server)
	5.2.2.1. Jboss 4.x and 5.x installation and deployment
	5.2.2.2. JOnAS 4.x and 5.x installation and deployment
	5.2.2.3. EasyBeans EJB3 Installation and deployment

	Chapter 6. Developer's guide
	6.1. Designing a xpdl process with ProEd
	6.2. Nova Bonita APIs
	6.2.1. Getting started with Bonita APIs
	6.2.2.
	6.2.2.1. Nova Bonita APIs, playing with !
	6.2.2.2. Nova Bonita local vs remote applications !

	6.3. Running the examples
	6.4. Java Properties
	6.5. Administration operations
	6.6. Database configuration
	6.6.1. Changing the default database configuration

	Chapter 7. Change history between Bonita v3 and Nova Bonita
	7.1. Concept of package
	7.1.1. Package life cycle

	7.2. Processes, instances, activities and tasks life cycles
	7.2.1. Process life cycle
	7.2.2. Instance life cycle
	7.2.3. Activity life cycle
	7.2.4. Task life cycles

	7.3. APIs
	7.4. Hooks
	7.4.1. for task
	7.4.2. for automatic activity
	7.4.3. for process
	7.4.4. Interactive hook

	7.5. Deadlines
	7.6. Mappers
	7.7. Performer assignments
	7.8. Variables
	7.9. Iterations

