
Mappers & Performer assignments within Bonita
This document is a HowTo introducing mappers and performer assignment features in Bonita
Workflow System. In the following lines we will present these powerful functionalities and
we describe different steps for use them within Bonita.

1. - Mappers feature: automatic filling in of the bonita groups

1.1. - Introduction

Mappers feature gives the possibility to fill in automatically the bonita roles defined into
the project model when the project is instantiated.

Three filling in methods are available (3 types of mappers) depending on the way to
retrieve the users in the information system

� by getting groups/roles in an LDAP server (ldap mapper)
� by calling a java class to request a database (custum mapper)
� by getting the initiator of the project instance (properties mapper)

Like others definitions of process elements, the access to this functionality is performed
throw the bonita API (See the ProjectSessionBean API). It's also accessible within the
graphEditor application.

This function is particularly interesting for process instantiation usage of Bonita workflow
System. The fill in of the groups happens at the first instantiation of the project model (for
both the project model and the 1st instance). Then, it happens at each instance creation.

1.2. - Mappers types

1.2.1. - LDAP mapper:

This mapper uses your LDAP directory to retrieve users corresponding with a specific
role defined in a Bonita Workflow project. Please refer to the documentation (Bonita
LDAP configuration for JOnAS) to apply this type of mapper .

• LDAP mapper specificities:

� The location of the LDAP groups depends on the attributes: roleDN and
roleNameAttribute .

� There is no mapping between roles/groups in the LDAP and roles in bonita

database (same name for both bases).

� The attribute name: uid has been used to realize the mapping between the actor
identifier in the LDAP base and the userName in the bonita base.

� If the goup does not exit an exception is thrown.

� Users found in the groups must have been deployed before usage of the
mapper function. Otherwise an exception is thrown.

� The name of the mapper could be what you want

• Limitations of this version:

� Groups cannot be recursive. Group’s inclusions are ignored.

� No checking that the distinguished names (dn) for the users found in the

groups are compatible with the LDAP tree containing the users defined in the
JOnAS LDAP realm configuration.

1.2.2. - Custom mapper

It lets the process developer to request its own user’s storage base. When this type of
mapper has been added, a call to a java class is performed. The name of this mapper is
the name of the called java class (ex.: hero.mapper.CustomGroupMembers) located
under BONITA_HOME\src\resources\mappers\hero\mapper. After retrieving users
these must be added to the project instance and also added to the targeted role. The
Bonita workflow engine loads and executes these classes at runtime, so, if you would
add your custom mapper, please follow the next steps:

- Take a look at sample class above and implements your custom mapper logic
in a new java file.

- Add your .java file into this directory and then launch “ant” task from your
$BONITA_HOME directory.

- After that, you can start JOnAS application server.

1.2.3. - Properties mapper

At now, this type of mapper fills in the role with the user name of the creator of the
instance (based on the authenticated user that initiates the instance). This mapper is very
useful for administrative workflow processes in order to assign the role specified in the
property to the user which has instantiated the process.

1.3. - Sample API to add mappers

.../....
 ProjectSessionHome projectSessionh=ProjectSessionUtil.getHome();
 ProjectSession pss=projectSessionh.create();

 String role1="Admintoto";
 pss.addRole(role1, "role added for activity 1");
 String role2="Admintiti";
 pss.addRole(role2, "role added for activity 2");

 // NODE 1
 pss.addNode("h1",Constants.Nd.AND_JOIN_NODE);
 pss.setNodeRole("h1",role1);

 // NODE 2
 pss.addNode("h2",Constants.Nd.AND_JOIN_NODE);
 pss.setNodeRole("h2",role2);

 // add MAPPERS
 pss.addRoleMapper(role1,"mapper1",Constants.Mapper.LDAP);
 pss.addRoleMapper(role2,"mapper2",Constants.Mapper.PROPERTIES);

 pss.instantiateProject(projectName);
..../....

2. - Performer assignments feature: to modify the standard assignment rules
for activities

2.1. - Introduction

This new feature allows getting additional assignment rules than in the standard bonita
model.
In the std model (oriented cooperative workflow), all the users defined into the group
associated to the activity can see and can execute (toDo List) this one.
By adding the new functionality, we can:

� assign the activity to a user of a group by calling a java class in charge to do the
user selection into the user group (callback performer assignment)

� assign dynamically the activity to a user by using an activity property (properties
performer assignment)

When this functionality is added, the user is notified (mail notification) that the activity is
ready to be started.

The users of the groups (role in Bonita) associated to the activity can see the activity but
cannot start and terminate it.

This functionality is accessible within the Bonita API (see ProjectSessionBean API) and
inside the Bonita graphEditor application.

Furthermore, we can assign an activity to the initiator of the instance. It needs only the
use of a properties mapper (as described above).

2.2. - Description of these performer assignments

2.2.1. - callback performer assignment

It lets the process developer writing a request with its own algorithm of user selection.
When this type of callback performer assignment has been added, a call to a java
class is performed.

The name of this callback performer assignment is the name of the called java
class (ex.: hero.performerAssign.CallbackSelectActors) located under
BONITA_HOME\src\resources\performerAssigns\hero\performerAssign. As mappers,
your callbacks are loaded and executed by Bonita workflow engine. If you would add
your own callback, please follow the next steps:

- Take a look at sample class above and implements your performer assignment
logic in a new java file.

- Add your .java file into this directory and then launch “ant” task from your
$BONITA_HOME directory.

- Start JOnAS application server.

2.2.2. - Properties performer assignment

It allows the process developer to provide at the properties performer assignment
creation the activity property that is used by the workflow engine to assign the
activity. This activity property has to be defined either into a previously sequenced
activity with the property propagation or into the targeted activity to be assign.

2.3.- Sample API to add mappers

..../....
 // NODE 1
 pss.addNode("h1",Constants.Nd.AND_JOIN_NODE);
 pss.setNodeRole("h1",role1);

 // NODE 2
 pss.addNode("h2",Constants.Nd.AND_JOIN_NODE);
 pss.setNodeRole("h2",role2);

 // NODE 3
 pss.addNode("h3",Constants.Nd.AND_JOIN_NODE);
 pss.setNodeRole("h3",role3);

.../....

 // activity property
 pss.setNodeProperty("h3","acteurH3","gaillarr");
..../....

 // PERFORMER ASSIGN
 pss.addNodePerformerAssign("h2",
"hero.performerAssign.CallbackSelectActors" ,
Constants.Performer.CALLBACK,"");
pss.addNodePerformerAssign("h3",
"hero.performerAssign.PropertySelectActors" ,
Constants.Performer.PROPERTIES ,"acteurH3");

