
 i

Bonita Reference Guide

BONITA Workflow

System
The Open Source Workflow Project

(Bonita v2.1)

by

Miguel Valdes Faura

Christophe Loridan

Anne Geron

Roger Perey

ii

Table of Contents

Chapter 1. Introduction...1

Chapter 2. Concepts ..3

2.1 Terminology ...3

2.2 Process ...3
2.2.1 Process Basics..3
2.2.2 Life Cycle ...5
2.2.3 Cooperative Processes ...5
2.2.4 Models & Instances ..5
2.2.5 Versioning...7
2.2.6 Clone Processes..7
2.2.7 Concept of Hooks ..8
2.2.8 SubProcesses ...8
2.2.9 Relationship to Users ..9

2.3 Activities ...10
2.3.1 Activity Basics ..10
2.3.2 Transition between Activities..13
2.3.3 Iterating Activities ...14
2.3.4 Hook Concepts...20
2.3.5 Activity/Hooks and Transactions ...22
2.3.6 Practical Steps in Hook Usage ...23

2.4 User Interface ..24
2.4.1 User Relationship to Processes ...25
2.4.2 User Authentication Scenario ..25

2.5 User Roles ...26
2.5.1 J2EE Roles ...26
2.5.2 Bonita Roles ...26
2.5.3 Application Access Control ...28

2.6 Mappers Feature: Automatic Filling In of the Bonita Groups...30
2.6.1 Overview..30
2.6.2 LDAP, Custom, and Properties Mappers..30

2.7 Performer Assignment..32
2.7.1 Overview..32
2.7.2 Description of Performer Assignments..33

2.8 Initiator Mapper ..34
2.8.1 Overview..34
2.8.2 Initiator Description ..34

 iii

Chapter 3. User Management...37

3.1 Bonita User Management Basic Configuration..37

3.2 Changing the Basic Configuration ...37
3.2.1 J2EE Authentication ...38
3.2.2 Bonita User Management...38

Chapter 4. User Registration Interface ...39

4.1 Principle ...39

4.2 Creating the UserRegistrationBean...39

4.3 Managing Users (via the UserRegistrationBean) ..41
4.3.1 Creating Users ...41
4.3.2 Defining Users ..41
4.3.3 Deleting Users ..42

4.4 Creating User Roles ..42

4.5 Code Example ..43

Chapter 5. Project Interface..45

5.1 Principle ...45

5.2 Creating the ProjectSessionBean ..45

5.3 Initiating the ProjectSessionBean...46
5.3.1 Initiating the Session Bean (Cooperative Projects & Instances)..................................46
5.3.2 Initiating the Session Bean (Models) ...46
5.3.3 Initiating a Project Using the Clone Project Creation Option......................................47
5.3.4 Initiating Using the Instantiate Project Creation Option ...47
5.3.5 Code Example ..49

5.4 Managing a Project...49
5.4.1 Project Attributes ..50
5.4.2 Active/Hide a Workflow Process ...52
5.4.3 Getting the Name of a Project or an INSTANCE ..52
5.4.4 Getting the Name of the Parent Project ...52
5.4.5 Getting the Name of a Project’s Creator..53
5.4.6 Properties ...53
5.4.7 Project Details ...54
5.4.8 Code Example ..57

5.5 Defining and Obtaining Activity Information..58
5.5.1 Types of Activities ...58
5.5.2 Activities States ...59
5.5.3 Creating an Activity...60
5.5.4 Creating SubProcess Activity ...61
5.5.5 Configuring an Activity..62

iv

5.5.6 Iterating Activities ...66
5.5.7 Getting Information about Nodes in the Project ...67
5.5.8 Getting Information about a Specific Node...67
5.5.9 Deleting an Activity..69
5.5.10 Model Definition Check ..69

5.6 Managing Edges ..73
5.6.1 Adding an Edge to an Activity ..73
5.6.2 Deleting an Edge ...73
5.6.3 Getting Connected Activities from an Edge..74
5.6.4 Setting a Condition on an Edge..74
5.6.5 Getting the Condition for an Edge...75
5.6.6 Get All Existing Edges in a Project ...75
5.6.7 Get All Existing Edges for an Activity...75
5.6.8 Reading an Edge as a Java Object ..76
5.6.9 Changing the State of an Edge ..76

Chapter 6. Hook Interface ..79

6.1 Project Hook Management..81
6.1.1 Creating Hooks ...81
6.1.2 Deleting Hooks ..82
6.1.3 Managing Hooks ..82

6.2 Node Hook Management ..83
6.2.1 Creating Specific Hooks..83
6.2.2 Deleting Specific Hooks ..84
6.2.3 Managing Specific Hooks...85
6.2.4 Code Example ..86

Chapter 7. User Management Interface ..91

7.1 Getting the List of All Bonita Registered Users...91

7.2 Getting the List of Users for a Project ..91

7.3 Adding a User to a Project ...91

7.4 Checking Whether a User Is Part of a Project...92

7.5 Code Example ..92

Chapter 8. Project Role Management ...93

8.1 Managing Project Roles ..93
8.1.1 Declaring a New Role in the Project ..93
8.1.2 Allocating a Role to a User ...94
8.1.3 Getting a List of Roles That a User Can Assume ...94
8.1.4 Getting a List of Roles That a User Can Assume in the Scope of a Project...............95
8.1.5 Associating an Activity with a Role...96
8.1.6 Code Example ..97

8.2 Mappers ... 98
8.2.1 Adding and Deleting Role Mappers ..98
8.2.2 Code Example ..99

 v

8.3 Performer Assignment..100
8.3.1 Addition of a Performer Assignment to a Node...100
8.3.2 Code Example ..101

Chapter 9. User Session Interface...103

9.1 Principle ...103

9.2 Creating the UserSessionBean ...103

9.3 User Properties ...104
9.3.1 Setting User Properties ...104
9.3.2 Getting User Information...105

9.4 Users and Projects...109
9.4.1 Getting the List of Projects for the User ..109
9.4.2 Getting the List of Instances for the User..110
9.4.3 Managing the Project for the User..111

9.5 Users and Activities...112
9.5.1 Getting the List of Activities for the User...112
9.5.2 Getting Information on User activity...112
9.5.3 Getting the ToDo list for the User ...113
9.5.4 Managing Activities for the User..114

9.6 Code Example ..115

Chapter 10. Bonita Pagination ..117

Chapter 11. Bonita Entities ..125

11.1 Entity Diagrams ...126
11.1.1 Global Diagram..126
11.1.2 Diagram Focused on Project Entity Relations...127
11.1.3 Diagram Focused on Node Entity Relations ...128
11.1.4 Diagram Focused on User-Role Entities Relations ..129

11.2 Entities Attributes...130
11.2.1 BnAuthRoleValue ...130
11.2.2 BnEdgeValue...130
11.2.3 BnIterationValue ...131
11.2.4 BnNodeHookValue ..131
11.2.5 BnNodeInterHookValue ..132
11.2.6 BnNodePerformerAssignValue...132
11.2.7 BnNodePropertyValue ..133
11.2.8 BnNodeValue..133
11.2.9 BnProjectHookValue..134
11.2.10 BnProjectInterHookValue..135
11.2.11 BnProjectPropertyValue ..135
11.2.12 BnProjectValue ...136
11.2.13 BnRoleMapperValue ...137
11.2.14 BnRoleValue ..137
11.2.15 BnUserPropertyValue ...138
11.2.16 BnUserValue...138

vi

List of Figures

Figure 1-1. Bonita Workflow Diagram .. 1

Figure 2-1. SubProcess Diagram.. 9

Figure 2-2. Activity Life Cycle.. 10

Figure 2-3. Activity Life Cycles with SubProcess .. 12

Figure 2-4. Activity Patterns .. 13

Figure 2-5. Simple Iteration Loop... 14

Figure 2-6. Complex Iteration ... 15

Figure 2-7. Iteration with Multiple Exit Points ... 16

Figure 2-8. Comparison between Old and New Iteration Models.. 18

Figure 2-9. Comparison of Old and New Models with Multiple Exit Points 19

Figure 2-10. Iteration with Multiple Entry Points ... 20

Figure 2-11. User Interface ... 24

Figure 2-12. Code Example for User Authentication ... 25

Figure 2-13. Role Association Illustration .. 27

Figure 2-14. User Categories... 29

Figure 3-1. User Management Basic Configuration .. 37

Figure 3-2. J2EE Authentication .. 38

Figure 4-1. Code Example for the UserRegistrationBean ... 39

Figure 4-2. Coding Example of User Creation .. 43

Figure 5-1. Coding Example for a Project Session Bean .. 45

Figure 5-2. Cloning Code Example ... 49

Figure 5-3. Project Properties Code Example ... 57

Figure 5-4. Activity Types .. 58

Figure 5-5. Iteration Example .. 66

Figure 5-6. Check Model and Verification ... 70

Figure 5-7. CheckModelDefinition Code Example ... 72

Figure 6-1. Code Example Activity Properties .. 88

Figure 7-1. Code Example Get User Names ... 92

Figure 8-1. Code Example Project Roles .. 97

Figure 8-2. Code Example Add Role Mapper .. 99

Figure 8-3. Performer Assignment Code Example .. 101

Figure 9-1. Session Interface Code Example .. 104

Figure 9-2. User and Activities Code Example.. 115

Figure 11-1. Global Diagram .. 126

Figure 11-2. Project Entity Diagram ... 127

Figure 11-3. Node Entity Diagram ... 128

Figure 11-4. User Role Entity Diagram .. 129

 vii

List of Tables

Table 5-1. Process State Constants... 50

Table 5-2. Process Type Constants ... 50

Table 5-3. Process Status Constants.. 51

Table 5-4. Constant Values for Node Types .. 58

Table 5-5. Constant Values for Node States.. 59

Table 5-6. Edge Constants States... 76

Table 6-1. Node Hooks Events Constants .. 80

Table 6-2. Project Hook Events Constants ... 80

Table 6-3. Hook Type Constants ... 80

Table 11-1. BnAuthRoleValue Attributes ... 130

Table 11-2. BnEdgeValue Attributes ... 130

Table 11-3. BnIterationValue Attributes .. 131

Table 11-4. BnNodeHookValue Attributes... 131

Table 11-5. BnNodeInterHookValue Attributes .. 132

Table 11-6. BnNodePerformerAssignValue Attributes... 132

Table 11-7. BnNodePropertyValue Attributes.. 133

Table 11-8. BnNodeValue Attributes .. 133

Table 11-9. BnProjectHookValue Attributes... 134

Table 11-10. BnProjectInterHookValue Attributes ... 135

Table 11-11. BnProjectPropertyValue Attributes ... 135

Table 11-12. BnProjectValue Attributes ... 136

Table 11-13. BnRoleMapperValue Attributes ... 137

Table 11-14. BnRoleValue Attributes ... 137

Table 11-15. BnUserPropertyValue Attributes ... 138

Table 11-16. BnUserValue Attributes.. 138

 Chapter 1. Introduction ix

Preface

This document explains the use of Bonita Workflow API functions. Using the

information within document assists a Bonita Workflow designer in the

implementation of Workflow projects, models, and administration using Bonita API

functions.

 Chapter 2. Concepts 1

Chapter 1. Introduction

BONITA is a workflow system featuring innovative features like activities that can

start in anticipation, awareness infrastructure allowing user notification of any

events occurring during the execution in a given process, or automatic activation

of user’s code according to a defined activity life cycle. Traditional workflow

features like dynamic user/roles resolution, activity performer and sequential

execution are also included in Bonita to support both cooperative and

administrative workflow processes.

BONITA is a fully conformant J2EE application, taking advantage of the power

and robustness of the J2EE platform. The BONITA API is accessible thru project and

user EJB’s.

Processes are created using either a graphical definition tool or by using the

Project interface API. A process is defined as a set of activities and an associated

execution model. The enactment engine takes care of scheduling the activities

according to the defined execution model. The User API provides full control over

the execution of the process, for example, allowing the starting or stopping of an

activity. BONITA also supports dynamic modification of an existing process, that

is, the Project interface API can be applied to a running process.

Bonita Manager

Bonita Java Web Start

Application

Browser

YOUR APPLICATION

DB
Business Partner or

other system

Existing System
ERP System

LDAP

User Registration

Session Bean

Project Session Bean

User Session Bean

CMP Entity Beans

Bean Container
Message Driven Bean

J

A

A

S

Engine Session Bean

 Bonita API User Registration API User API Project API

Authentication &

Acces Control

Set & Query

Execute

Bonita

Hooks

Execute

OR

JMS

Topics

Listens

Instant Messaging Or

Mailer

Figure 1-1. Bonita Workflow Diagram

2

• User Registration Session bean provides the interface for:

− User creation and management

− Group creation

• The Project Session Bean provides the interface for:

− Creation of the process

− Definition of nodes and edges

− Listing and Modification of properties

• The User Session Bean implements commands and queries related to:

− Projects of a user

− Todo Lists

− Activity execution

− Start/terminate/Cancel commands

• The Engine Bean is a special session bean implementing the state machine

and controlling Process execution. The Engine Bean is not part of the API.

• Each method call in the Bonita API involving a state modification of the

workflow system is registered into a JMS Topic. Depending on user

preferences, (defined in user creation), the Message Driven Bean notifies the

user via Instant Messaging services, or a Traditional Mailer.

Bonita Hooks can access existing systems in the SI, (ERP or other), or Business

partner systems using JCA or Web services.

Both User and project APIs are available as a Session Bean, or as web services.

 Chapter 3. User Management 3

Chapter 2. Concepts

2.1 Terminology

• A process is a set of activities. In BONITA, the term project is also used.

• An activity is an atomic unit of work. In BONITA, activities are also termed

Nodes.

• A transition is a dependency expressing an order constraint between two

activities. In BONITA, transitions are also termed Edges.

• A property is a workflow unit of data, commonly known as workflow relevant

data.

• A hook is user defined logic adding automatic or specific behavior to

activities/nodes and workflow processes

• A mapper is a unit of work allowing dynamic role resolution at workflow

instantiation.

• A performer assignment is a unit of work adding additional activity

assignment rules at run time.

2.2 Process

2.2.1 Process Basics

Bonita supports both cooperative and administrative workflow processes. These

processes are mapped to three Bonita types:

• Cooperative: flexible workflow process allowing definition and execution

operations just after the process is created

• Model: workflow process containing the workflow definition logic. These

projects can be instantiated by users.

• Instance: workflow process representing a specific execution of a workflow

model.

The status of a workflow process is controlled either by definition or at runtime by

the workflow process administrator(s). Three possible statuses are allowed for a

workflow process:

• Active: the workflow process can be modified or executed. Active is the

default status for a cooperative, model, or instance process.

• Hidden: the process is not yet available. Operations like execution, cancel, or

termination of cooperatives and instances projects as well as model

instantiation are not allowed. This is the status mode allowing model

modifications after instantiation.

4

• Undeployed: as for hidden processes, the undeployed status means that the

process is not yet available. However, the restrictions are quite different: only

the instantiation operation is not allowed. This status is suitable when dealing

with different versions of a same model.

 Chapter 3. User Management 5

2.2.2 Life Cycle

BONITA has a very simple process life cycle and goes through the following states:

• Once it is created, a process is in initial state. As soon as the process is in the

initial state, it can be controlled using either User API and/or Project API

requests. The User API allows monitoring of process execution. When the first

activity starts, using the User API, the process enters the started state. The

execution of the process is performed by the BONITA enactment engine,

under control of applications using the User API.

• When the first activity begins execution, a process is started (enters started

state). While executing, the process definition may be modified using the

Project API. When all activities terminate, the process remains in the started

state and the process is still modifiable. For example, new activities could be

added to the process.

• A process is terminated (enters terminated state) once it has been explicitly

terminated by an application through the User API. In the terminated state,

the process definition cannot be modified.

2.2.3 Cooperative Processes

Bonita has a simple view of cooperative process enactment: once a process is

defined, it is enacted. For example; using the Project API we could create a

process with a single activity, and then be able to execute it using the User API

and have the ability to dynamically add new activities to the process definition.

This brings flexibility to workflow participants, and is particularly convenient for

cooperative (ad hoc) processes.

Typically, you would set up a specific process to perform a given job between

several colleagues. To allow some level of reuse of a process definition, we

introduce the concept of process clone (see section 2.2.5 clone processes).

2.2.4 Models & Instances

There are scenarios where the reuse of a process definition is of key importance;

in these scenarios, a long-time is spent carefully defining a generic process model

that instantiates in the same way many times. These processes are called

administrative processes (process models).

A process model is a specific definition of a process that may be instantiated

multiple times. These processes are based on a model-instance workflow

paradigm. In this kind of workflow process, the Project API is used to define the

workflow model. When the process definition is complete, the workflow users are

able to instantiate the workflow model via Project API. Once the model

instance(s) are created, workflow participants can access the User API to

accomplish the following; obtain their ToDo list, execute assigned activities, or

other workflow user functions.

6

A process model keeps track of all its instances. That is, all instances of this process

are retrievable through the User API functions.

Cooperative or administrative workflows use the same component (i.e. Project)

API. Depending on the type of the process created/initialized, this API must also

be initialized. There are also differences between the above workflow types

concerning process execution. Cooperative workflows are ready for execution

and modification from creation. On the other hand, administrative workflows must

be instantiated first. The term process model refers to Bonita projects defined in

the context of administrative workflow use.

In future releases of BONITA Workflow, the concept of the Process model will be

extended with the implementation of a Process Model Repository. This allows

importing of process definitions in a variety of formats.

BONITA INSTANTIATION MECHANISM

Previous versions of the Bonita workflow engine were “duplicating” the whole

process model (activities, properties, edges, hooks…) as a new clone of the

project in a new process instance. This duplication took a long time even for

medium workflow processes, and was a problem for users at instantiation.

Newer Bonita versions (1.4 and later) are revamped to improve performance.

Only those activities in the Ready state (including their properties, roles, and

existing users) are copied at the creation of the new instance. Once an activity

starts, hooks are executed under the Model Hooks (which are not copied). Then,

after activity termination, edges and Ready or Executable follow on activities are

copied as well.

 Notes:

An instantiated process model can still be modified, but be aware that the

modifications may cause errors in the instance execution.

An instance can still be modified, but be aware that modifications may conflict

with the model definition applied at execution time.

 Chapter 3. User Management 7

2.2.5 Versioning

There are scenarios where multiple versions of the same workflow model are

required. In general this requirement is due to some improvements/changes to be

added to an existing workflow model. The versioning feature allows workflow

administrators to control the migration of a deployed workflow model when this

model needs to be modified or improved.

For information about how to use versioned models, refer to Chapter 5, “Project

Interface.”

To maintain compatibility with Bonita versions prior to v2.1, the engine will

automatically manage models without a particular version as models under 1.0

version.

2.2.6 Clone Processes

A process clone is a duplicate of an existing process. Once the cloning operation

is complete, the two processes execute independently.

After the cloning operation:

• The process instance has the same set of activities as the process model, with

each activity allocated to same role defined in the model. All activities are in

an initial state, and have the same properties as defined in the model, with

the same associated value(s). All activities have the same hooks and the

same transition conditions as those defined in the original process.

• The process properties are the same as defined in the process model, with

the same initial value(s).

• The users associated to the process are the same as those defined in the first

process, and have the same associated roles.

• The process instance can be controlled without restrictions through the User

and Project APIs.

• Iterations between activities are the same as defined in the process model.

Process cloning is available for both cooperative and administrative workflow

processes.

8

2.2.7 Concept of Hooks

Hooks are user-defined logic that can be triggered at some defined point in the

process life cycle. The types of Hooks are:

• OnInstantiate hook is called before the workflow instance is created. The

OnInstantiate hook is not considered to be in the same transaction as the

process instantiation action.

• OnTerminate hook is called automatically after workflow instance termination

ends.

2.2.8 SubProcesses

Sometimes, an independently existing business process can take part in another

more sophisticated process. Instead of redefining the activities, edges, properties,

and hooks in the parent process, the independent process could be included as

a “subProcess” within a specific node.

As the execution logic is inside the subProcess, the subProcess activities are

started and terminated automatically by the Workflow engine according to the

subProcess state.

Creating a SubProcess ActivityCreating a SubProcess ActivityCreating a SubProcess ActivityCreating a SubProcess Activity::::

When a subProcess activity is defined in the process model, the sub process is

automatically cloned by Bonita as a new process and given the name of the

subProcess activity defined in the parent process. Links are maintained between

the sub process and the parent Process.

Instantiating a Process with a SubProcess Activity:

Instantiating a Process with a subProcess activity causes new instance of the

parent process to be created. The Bonita engine will identify the subProcess

instance by means of an identifier.

As with any other activity, the subProcess activity can be iterated.

Constraints:

As in a normal process, activities, properties, and hooks in the sub-process must

not have the same name as another activity, property, or hook existing in the

whole process.

 Chapter 3. User Management 9

Properties Propagation:

The properties of the subProcess Activity in the global Process are propagated as

Process properties in the subProcess, as shown in the following figure:

Activity 1

- Act. Property P1 (Propagate True)

- Act. Property P2 (Propagate False)

SubProcess Activity SP

- Act. Property SP.P1 (Propagate = True)

- Act. Property P1

Activity 2

- Act. Property P1

- Act . Property SP.P1

Project Property : Prop

Activity A1

(own properties)

Activity A2

(own properties)

Sub Process

Project Property P1

Project Property SP.P1

Property : Project Property

Property : Activity Property wich has to be propagated

Process

Figure 2-1. SubProcess Diagram

2.2.9 Relationship to Users

A process has an associated set of Users. A user has access to the corresponding

process, which means:

• The User knows about the existence of the process.

• The User can take over roles that exist in the scope of the process.

• The User can be notified of various events occurring in the process.

• The User can control the execution of the process.

Users assuming the Admin role can modify the definition of the process. The

Admin role is specific to a process. This means the Admin role for “process1” is

different from the Admin role for “process2”.

The User on behalf of whom the project has been created is automatically

assigned the Admin role. This User is responsible for the creation of other users in

the process, and to allocate roles to other users (including the Admin role that

could be allocated to several users).

10

2.3 Activities

2.3.1 Activity Basics

The activity is the basic unit of work within a process.

Execution of an activity can either be automatic, or manual:

• Automatic: The BONITA enactment engine starts the activity when applicable

transitions from preceding activities are successfully evaluated.

• Manual: the BONITA enactment engine will not start a manual activity until

some application has explicitly started it thru the User API.

The life cycle of an activity is as follows:

Only for activities that can be anticipated

Ready Terminated

Dead Initial

Anticipating

Anticipable

Start Terminate Activity created

without parents

Activity

connected to a

parent Parents executing

or anticipating

Parents completed &

Transitions Conditions OK

(Traditional activities)

Cancel or

Transitions Conditions NOK

Cancel

 (Automatic activities)

Executing

Start

Parents completed &

Transitions Conditions OK

(Traditional activities)

Parents completed &

Transitions Conditions OK

Figure 2-2. Activity Life Cycle

 Chapter 3. User Management 11

• Ready: This is the state of an activity ready to be started. There are two

possible situations for this state to occur. In the first, an activity has no parent

activity (this is the first activity of the workflow process). In the second, a

normal activity has parent activities that have all terminated successfully, and

whose transition conditions to the activity have been successfully evaluated.

• Initial: This is the state of an activity waiting for some processing to complete

before being ready to run. In the case of normal activities, at least one of the

parent activities is still executing. In the case of an activity that can be

anticipated, at least one of the parent activities has not started.

• Anticipatable: This is the state of an activity that can be started without

waiting for its parent activity(s) to complete. However, all of the parent

activities must have started.

Note:

A brief explanation of anticipatable and traditional modes. If we have two

activities, A and B, with A as the parent activity, the anticipatable mode means

an activity (B) may start before its parent activities (A) have completed. In the

traditional mode, activity B must wait for activity A to complete before starting.

• Anticipating: A previously anticipatable activity that has been started.

Automatic activities are automatically transitioned from anticipatable to

anticipating. Manual activities must be explicitly started. An anticipating

activity cannot be terminated until all parent activities have terminated, and

the transition conditions have been successfully evaluated.

• Executing: An activity in execution.

• Dead: A cancelled activity. All dependant activities are automatically

cancelled. Cancellation occurs in two cases: explicit cancellation, or

unsuccessful evaluation of an inner transition condition.

• Terminated: An activity that has terminated successfully.

For automatic activities, BONITA automatically causes:

• (For non anticipatable activities) - Transition the state from ready to

terminated, (For anticipatable activities) - Transition the state from

anticipatable to anticipating,

• (For anticipatable activities) - Transition the state from anticipating to

terminated state whenever all parent activities complete.

• Execute any hooks

• Terminate the activity when the executing hooks complete

For activities involving a sub process, the life cycle is described below:

12

Father Process Act 1

Act 2 SupP_Act

State : Initial or Ready

Sub Process

SubAct 1

SubAct 2
State : Initial

State : Initial

Father Process Act 1

Act 2 SupP_Act

State : Executing

Sub Process

SubAct 1

SubAct 2 State : Ready

State : Initial

Figure 2-3. Activity Life Cycles with SubProcess

An activity is associated with a role. All the users allocated that role in the scope

of the process have the ability to control the activity.

An activity is enclosed in a Transaction, and every call to a method of the Bonita

API that changes the state of an activity is considered part of that transaction

(except those beginning with “getxxx” which only retrieve information).

 Chapter 3. User Management 13

2.3.2 Transition between Activities

Most of the usual transition patterns can be achieved using BONITA Workflow.

There is no special node to achieve these patterns; rather, any activity can

behave as a routing node.

The transition pattern is determined according to the type of the activity, which

can be AND-JOIN (also known as "synchronize join"), or OR-JOIN (also known as

"asynchronous join").

The transition pattern is also determined from the number of outgoing edges in an

activity; this is called the SPLIT construct (allowing several activities to execute in

parallel). This is not a specific type of activity; if there are several outgoing nodes

from a given activity, it is a SPLIT construct.

The usual patterns are summed up below, where the activity controlling the

pattern is figured in blue, with the type of the activity shown beside.

The SplitAct (split activity)

allows two parallel

activities to start. This is

achieved by having two

outgoing edges, one to

P1Act activity, and one to

P2Act Activity.

The SyncAct (synchronous

activity) is type AND-JOIN. It

will execute only when both

P1Act and P2Act are in the

terminated state. If one of

those activities is cancelled,

then SyncAct is also

cancelled.

The AsJoinAct

(asynchronous activity) is

of type OR-JOIN. It will

execute whenever either

P1Act or P2Act are

terminated. If both of

these activities are

cancelled, then

AsJoinAct is also

cancelled.

SplitAct

P1Act P2Act

P1Act P1ActP2Act P2Act

SyncAct AsJoinActAndJoin OrJoin

Figure 2-4. Activity Patterns

The transition patterns can be refined by defining conditions on edges between

activities. A condition operates on the value of a property of the activities, and is

expressed in Java. Any string that can be the operand of an “if” statement is

valid. Assuming that the property “Prop” is defined for a given activity, any of the

following constructs is a valid condition:

Prop.equals (“SomeString”)

(Prop.indexOf (“SomePart”) == 2)

(Prop.lenght() == 9)

(orderType.equals("PO")) && (new Integer(Qte).intValue() >

100)

14

2.3.3 Iterating Activities

Bonita supports arbitrary cycles within a process, which means that one or more

activities can be repetitively executed.

For this example, attach a single iteration to the last activity of the cycle. This

iteration bears the name of the first activity of the cycle and the loop condition:

while the condition evaluates to true, the Bonita execution engine will loop to the

first activity while executing the termination algorithm for the last activity.

The following figure is an example of a simple loop.

FirstFirst

SecondSecond
Iteration Specification:

From: Second To: First

W hile: someProp.equals(“goon”)

Figure 2-5. Simple Iteration Loop

The condition is related to the value of the property “someProp”. This property is

bound to the activity second, either directly (it is an activity property), or because

it has been defined at the level of the process (it is a project property).

 Chapter 3. User Management 15

The following is an example of a more complex iteration loop.

FirstFirst

Intermediate2Intermediate2

SecondSecond

Intermediate1Intermediate1

Figure 2-6. Complex Iteration

Note that all the execution paths going from activity first to activity second are

included in the cycle, as in the above example, where intermediate1 and

intermediate2 are iterated several times.

16

Iteration in Bonita V2

Iteration behavior is modified in Bonita v2.

Old/previous behavior: (Bonita v1 series)

When the iteration is entered, the outgoing transitions from activity “second” to

oneExitPoint and from activity “Intermediate2” to anOtherExitPoint were frozen,

meaning they were not evaluated during the course of the iteration.

New behavior: (Bonita v2)

The frozen mode is removed.

Now, when the iteration is entered, it’s possible to exit at any time.

Example: it is possible to exit from Intermediate2 to anOtherExitPoint or to exit

from second to oneExitPoint.

Example: it is possible to exit from Intermediate2 to anOtherExitPoint or to exit

from second to oneExitPoint.

FirstFirst

Intermediate2Intermediate2

SecondSecond

Intermediate1Intermediate1

anOtherExitPointanOtherExitPointoneExitPointoneExitPoint

Figure 2-7. Iteration with Multiple Exit Points

 Note:

With this new behavior it is not possible to iterate and leave the iteration at the

same time.

 Chapter 3. User Management 17

The following Guidelines explain how to design iterations in our model:

Premise: It is not possible to continue execution inside iterations and exit at the

same time.

1. Only one iteration is allowed between two connecting nodes

2. It is possible to have more than one iteration starting in the same node

3. All transitions exiting from a node starting the iteration must meet a

condition. If there is more than one transition for exiting from that node,

all transitions must meet a condition.

4. If there are multiple exit points within the iteration it is strictly necessary

to have conditions on all the transitions exiting from that node. The

Conditions must be mutually exclusive for those conditions to take a path
to either continue iterating or to exit from the iteration.

 Note:

If guidelines 3 and 4 are not followed, errors may occur during the process

execution.

To guarantee that a model is correctly defined and to avoid the problems

mentioned above, a new API method has been added:

ProjectSessionBean.checkModelDefinition()

The above guidelines are validated using this method. This method should be

called at the end of a process definition class. For more information see Chapter

0, “Checking Model Definition.”

18

The following figure shows a comparison between the old iteration model and the

new iteration model.

Old ModelOld Model:: ((Bonita v1Bonita v1))

IteratorIterator FinalFinalMiddleMiddleInitialInitial

Iteration condition
Mandatory

IteratorIterator FinalFinalMiddleMiddleInitialInitial

Iteration condition
Mandatory

Edge

condition

New ModelNew Model: : ((Bonita v2Bonita v2))

Figure 2-8. Comparison between Old and New Iteration Models

The following Guidelines apply.

Premise: It is not possible to continue execution inside iterations and exit at the
same time.

1. Only one iteration is allowed between two connecting nodes

2. It is possible to have more than one iteration starting in the same node

3. All transitions exiting from a node starting the iteration must meet a

condition. If there is more than one transition for exiting from that node,

all transitions must meet a condition.

To guarantee this premise, the iteration condition and edge condition must be

exclusive. This means that when one is true the other is false.

Only iterations from Iterator to Initial are possible. Conditions can be a group of

conditions like: (((…) && (…)) || (…)). (Remember: only a single iteration

between nodes is allowed.)

There could be another iteration starting in the Iterator activity going to Middle or

to Iterator itself.

Iterations from Iterator to Final activity are not allowed because a cycle does not

exist.

An edge condition from Iterator to Final activity is strictly necessary and must be

the opposite of the iteration condition. If there are multiple edges outgoing from

Iterator to other activities, all of them must meet a condition not equal to the

iteration condition (this is necessary to accomplish the above premise).

 Chapter 3. User Management 19

The following figure shows a comparison between the old iteration model and the

new model with multiple exit points within the iteration:

Old ModelOld Model

IteratorIterator FinalFinalMiddleMiddleInitialInitial

Iteration condition
Mandatory

ParallelParallel

IteratorIterator FinalFinalMiddleMiddleInitialInitial

Iteration condition
Mandatory

Edge

condition1

New ModelNew Model

ParallelParallel

Mandatory

Edge

condition2

Edge

condition3

Figure 2-9. Comparison of Old and New Models with Multiple Exit Points

Guidelines applied:

The main concept of these new constraints is to guarantee that the execution

path does not arrive at an activity whose state is ”Terminated” or “indeterminate”

while executing the iteration.

Remember, edge condition2 and edge condition3 must be exclusive.

It is also possible to have multiple entry points into iterations, as shown in the

following example:

Assume that the iteration is declared between second and first as in the example

in Figure 2-10:

If there are multiple exit points within the iteration, it is strictly necessary to have

conditions on all transitions exiting from that node. Conditions must be mutually

exclusive for those conditions taking a path to either continue iterating or to exit

from the iteration.

20

Because second is an AND activity, it starts only when activity “anotherEntryPoint”

has terminated. This is only true for the first occurrence of second: for subsequent

executions of this iteration, the incoming transitions from anotherEntryPoint are

ignored.

FirstFirst

SecondSecond

(AND activity)(AND activity)

anotherEntryPointanotherEntryPoint

Figure 2-10. Iteration with Multiple Entry Points

2.3.4 Hook Concepts

Hooks are user-defined logic that can be triggered at defined points in the life of

an activity. Those defined points are:

• Before Start hook is called just before the activity starts. The Before Start hook

is not considered to be in the same transaction as the activity. The Before

Start hook is not triggered for automatic activities.

• After Start hook is called just after an activity starts. It is considered to be in the

same transaction as the activity. The After Start hook is not triggered for

automatic activities that cannot be anticipated.

• Cancel hook is called before canceling an activity and it’s considered to be

in the same transaction as the activity.

• Before Terminate hook is called just before an activity terminates. The Before

Terminate hook is considered to be in the same transaction as the activity.

• After Terminate hook is called just after the activity has terminated. It is not

considered to be in the same transaction as the activity.

• Anticipating hook is called when an automatic activity is started if the activity

is anticipable. It is considered to be in the same transaction as the activity.

• OnReady hook is called when an activity becomes ready, so it would be very

useful to notify the user responsible for executing it. It is not considered to be

in the same transaction as the activity.

• OnDeadline hook is called when the activity deadline expires. It is not

considered to be in the same transaction as the activity.

 Chapter 3. User Management 21

Hook Fault management

If an exception occurs during the execution of a hook, the error is propagated to

the application having triggered the execution of the hook.

Consider the following simple scenario:

An application calls the terminate Activity statement in “Activity1”; this

triggers the execution of a before Terminate hook which raises an exception;

the exception is caught by the application.

Things may be a little bit trickier if automatic activities are used:

• Imagine that the terminate Activity statement in “Activity 1” completes

normally, and “Activity 1” has an outgoing edge defined for automatic

activity “Activity 2”.

• “Activity 2” is started and terminated automatically in the context of the first

call related to “Activity 1”.

• Therefore if “Activity 2” has a Before Terminate Activity hook that raises an

exception, it will interrupt the call related to “Activity 1”.

• This means “Activity1” does not terminate (the activity stays in the executing

state) and the system throws an exception due to the “Activity2” execution

error.

The previous examples show two error scenarios related to transactional hooks

execution.

 Important:

Be aware that Hooks can be executed in a transactional or in a non-transactional

context, depending on their types (i.e. before start, after start, …)

Transactional hooks are executed in the same transactional context as the

activity for which they are executed. Available transactional hooks in Bonita are:

After Start, Before Terminate, Anticipate, and On Cancel hooks (see the following

section, “Activity/Hooks and Transactions”).

• Any changes performed on a transactional resource are included in the

existing transactional context.

• Any exception raised by the Hook aborts the existing transaction, so the

activity is re-executed later. Furthermore, all operations executed by the hook

before the exception was raised are rolled-back.

Bonita also has the capability to create hooks for executing outside a

transactional context. In that case, Before Start and After Terminate hooks are

executed outside the activity transactional context.

22

 Important:

It is extremely recommended not to use these hooks (Before Start and After

Terminate), to access Bonita APIs or other transactional APIs.

If one of these hooks fails during its execution, the system throws an exception but

the activity starts/terminates without roll-back on the operation.

Consider the last sample scenario described previously and change Before

Terminate hook to After Terminate hook. Let’s go over the execution:

• Imagine that the terminate Activity statement on “Activity 1” completes

normally, and that “Activity 1” has a defined outgoing edge to automatic

activity “Activity 2”.

• “Activity 2” is started and terminates automatically in the context of the first

call related to “Activity 1”.

• Therefore if “Activity 2” has an After Terminate Activity hook that raises an

exception, the hook does not interrupt the call related to “Activity 1”.

• This means, “Activity1” terminates without problem, but the system throws an

exception due to “Activity2” execution error.

2.3.5 Activity/Hooks and Transactions

Any change of state (startActivity, terminateActivity, cancelActivity statements)

performed against an activity is part of a transaction.

This transaction typically involves more than one activity: for example, a terminate

Activity statement performed on a father activity triggers a change of state in all

daughter activities. In this manner, BONITA keeps transactional consistency across

activities.

BONITA aborts a transaction in two cases:

• A failure at system level (e.g. impossible to access the BONITA database)

• An exception was not caught by a transactional Hook.

When Hooks are executed in a transactional context:

• Any changes performed on a transactional resource are included in this

existing transactional context.

• Any exception raised by the Hook aborts the existing transaction.

 Chapter 3. User Management 23

2.3.6 Practical Steps in Hook Usage

Loading Hooks

Hooks code can be stored in the Bonita database as beanshell programs. This

type of hook is called an Interactive Hook, or "InterHook". To use an Interactive

hook, store the hook programs in the Bonita database, either through the

graphical tool grapheditor (just right click on an activity, select add Hook, and

use the editor to enter beanshell code), or thru the project API (see addInterHook,

setInterHookValue, setNodeInterHookValue). At execution time, the Bonita

executive takes care of importing the code from the Bonita database.

Hooks code may also be stored on the file system as standard java classes. In that

case, you need to load the code into the application server. The way to do this is

as follows:

• Create your source.java file, (i.e. MyHook.java). The code must be within the

package hero.hook.

• Copy your java source file to the directory

$BONITA_HOME/src/resources/hooks/hero/hook (UNIX)

%BONITA_HOME%/src/resources/hooks/hero/hook (Windows)

• Go to the BONITA_HOME directory and type: ant deployHook -

DhookClass=<name of your java source file>. For example: ant deployHook –
DhookClass=MyHook

Hooks Interface

All hooks must implement the hook interface (hero.hook.NodeHookI). This

interface is quite simple, with a single method having two parameters: an object

EngineBean which is a session bean allowing access to the Bonita executive, and

a BnNodeLocal object, which is a local interface to the entity bean representing

the activity whose execution has triggered the execution of the Hook. Also, each

hook must define the META data return string for example:

public String getMetadata() {

 return Constants.Nd.XXXXXX;

Where XXXXXX is a value specified in Table 6-1, Node Hooks Events Constants.

 Notes:

• Direct use of the EngineBean object is not recommended.

• The BnNodeLocal object can be used to retrieve information about the

currently executing activity.

24

2.4 User Interface

BONITA makes a distinction between Users and Participants:

• Users are people who make use of the workflow system (whatever process

they are part of).

• Participants are all the users that are allowed to play some role in a given

process.

First, a user must be registered in the Bonita System for authentication (using the

Bonita User Registration API). Then, the user must be declared as a participant in

each project they are involved in (also using Bonita Project API). The user is then

able to take part in the process.

Users are managed in a BONITA specific database (or thru a LDAP repository). This

database allows storing of properties (also called preferences), for a given user.

Properties are defined (key, value) pairs where both key and value are String

variables. The application can set and retrieve properties via the User API

interface. BONITA makes use of specific user properties in order to store the User

preferences.

User Registration API

User Session API Getting Information about user

Properties

Project API

Declaring user as participant

(Mandatory)

Name

Mail

Passwd

(Optional)

Jabber

(User Specific)

Prop 1

Prop 2

…

USER PROFILE
User Registration

 Properties Creation &Modification

Process

participate

Figure 2-11. User Interface

 Chapter 3. User Management 25

2.4.1 User Relationship to Processes

Users must be explicitly associated to processes in order to participate and to

have visibility of events occurring in those processes.

Two scenarios allow associating a User with a process: that is, making a User a

Participant of this process.

• Whenever a process is created, it is created on behalf of the User that

initiated the Project Interface. This User is automatically associated to the

newly created process, and assumes the Admin role in the scope of the

process.

• The users assuming the admin role for a given process have permission to

associate new users to the process, and to allocate any role to them.

2.4.2 User Authentication Scenario

BONITA performs User Authentication using either a specific database (i.e. mySql,

Postgres …), or an Ldap repository. The following code is an example of

authentication of the ADMIN user. It uses the “TestClient” login context

implemented in Bonita.

All other users are authenticated the same way.

i m p o r t j a v a x . s e c u r i t y . a u t h . l o g i n . L o g i n C o n t e x t ;

i m p o r t h e r o . c l i e n t . t e s t . S i m p l e C a l l b a c k H a n d l e r ;

…

p u b l i c c l a s s M y W o r k F l o w C l a s s {

 s t a t i c p u b l i c v o i d m a i n (S t r i n g [] a r g s) t h r o w s E x c e p t i o n {

 / / U s e r A d m i n a u t h e n t i c a t i o n

 c h a r [] p a s s w o r d = { ' t ' , 'o ' , ' t ' , 'o '} ;

 S i m p l e C a l l b a c k H a n d l e r h a n d l e r = n e w S i m p l e C a l l b a c k H a n d l e r (" a d m i n " , p a s s w o r d) ;

 L o g i n C o n t e x t l c = n e w L o g i n C o n t e x t (" T e s t C l i e n t " , h a n d l e r) ;

 l c . l o g i n () ;

 …

}

Figure 2-12. Code Example for User Authentication

26

2.5 User Roles

The User Registration Interface, which allows creation of users in the Bonita

database, is accessible without role restrictions. This means anyone can call its

methods, with no need for authentication.

2.5.1 J2EE Roles

Some Bonita Java Beans deal with the J2EE roles: “Admin” and “users”. After

authentication, only users having J2EE roles are able to access the Project and

User Session Interface.

When created with the User Registration Interface, a Bonita user is automatically

assigned the “Admin” J2EE role. Those users can access the User Registration

interface and create Bonita users.

Once created, and after J2EE authentication, each Bonita user can access the

Project Interface and create a new process, clone a process, or instantiate an

existing process.

This J2EE security policy can be modified to enforce access control to Bonita Java

beans methods, but in that case, be aware that Bonita beans source code has to

be adapted to your policy (especially if you modify role names). If you use this

security option, migration to newer Bonita versions is more difficult.

It is strongly recommended to leave the Bonita way of running as is, and to

implement any user access restrictions using Project or User Interface methods at

an application level. See the Application Access Control paragraph below for

more details.

2.5.2 Bonita Roles

BONITA roles are related to activities access within processes. Each Process has its

specific role management. This permits different means to associate to the same

role name in the scope of two different processes.

Activities are associated with roles. A user, assuming a given role, administers an

activity. There is a single role associated with each activity.

Users participate in a project, and within the scope of this project, a user can

assume one or several roles.

 Chapter 3. User Management 27

Process 2

Role 1

Role 2

Role 3

User 1

User 2

User 3

User 4

Process 1

Participate in this Project with this Role

Figure 2-13. Role Association Illustration

User2 and User1 execute Process1 independently. User1 can also execute all

process2 activities due to User1 accreditation in roles for Process1 and Process2.

Note:

Despite that User 3 has no role to play in any process, Bonita User3 would be able

to clone or instantiate (but not modify), any process. User3 needs only to know

the name of a process to be able to call the Project interface methods to do this.

However:

− No Project or User session Interface API methods will return the name of

an existing process that User3 is not involved in.

− After instantiation, User3 is not able to start any activity due to standard

Bonita role access control.

28

Default Bonita roles

Bonita handles two pre-existing roles: “admin” and “InitialRole”. When created,

an activity is automatically associated with the “InitialRole”. This role is modified to

suit application functional requirements.

The InitialRole may be left as is for the first activity of the Workflow Process. This role

could be granted to a participant of the process in charge of starting the

workflow. This may be done independently of other functional roles that this

activity may have in the process.

Additionally, this role could be left in place for automatic activities not required

by other users.

2.5.3 Application Access Control

As mentioned previously, standard Bonita access control is open and allows

adaptation to organizational needs.

The Bonita access control mechanism has a basic authentication scenario based

on workflow projects roles:

• A User creating the project becomes the admin of the project (user is

assigned admin role).

• Only this admin user can add other participants/users to this project.

• Only admin users can modify the project (set, add and delete entities).

• Users taking part in the project are authorized to obtain project information

(get project entities data).

• Project hooks and mappers may contain confidential information, so get

data methods are available to admin users only.

• Participants of the project can set/update properties of activities in which

they have a corresponding role.

The Bonita Graph Editor application follows these constraints:

• Only the creator of a process and the users assigned the Bonita “admin” role

can modify the process.

• Even if assigned a role to play in this process, another user cannot add,

delete, or modify, any node within the process. That user though is able to

visualize the evolution of the process.

 Chapter 3. User Management 29

For example, a typical workflow application distinguishes three categories of

users:

− Designer

− Operator

− User

Designer(s) Operator (s)

Users

(Different Bonita groups for

each category of users)

Role:

- To create or modify

process models

- To test the models

Role:

- To manage users

- To instantiate model according to its

own site requirement

- To do user/group association

Role:

- To perform processes they are

involved in

Figure 2-14. User Categories

The application interface (specifically the graphical interface), implements

methods to restrain users’ actions.

Application restrictions could implement stronger access control than Bonita

access control. It is advised, based on points previously mentioned, that lesser

access control than the Bonita standard access control NOT be implemented.

− In this project, this node is associated to this role

− In this project, these users are participant

− In this project, this user can assume these roles

− In this project, this user can access the node if he has the node role

30

2.6 Mappers Feature: Automatic Filling In of the Bonita

Groups

The Mappers feature permits automatic definition of the Bonita roles as defined in

the project model when the project is instantiated.

2.6.1 Overview

Three methods (three types of mappers) are available, depending on the

method employed to retrieve users in the system.

1. Using an LDAP server to obtain groups/roles (LDAP mapper)

2. Calling a java class to request a database (custom mapper)

3. Getting the initiator of the project instance (properties mapper)

As with other definitions of process elements, access to this functionality is

performed through the Bonita API (See the ProjectSessionBean API in section 5.2).

Access is also available using the graphEditor (ProEd) application.

The Mapper function is of particular interest for process instantiation usage of the

Bonita workflow System. The automatic filling in of groups/roles happens at the first

instantiation of the project model (for both the project model and the first

instance). Thereafter it happens with each instance creation.

2.6.2 LDAP, Custom, and Properties Mappers

LDAP Mapper:

This mapper uses an LDAP directory to retrieve users corresponding with a specific

role defined for a Bonita Workflow project. Please refer to the documentation

(Bonita LDAP configuration for JOnAS) for use of this type of mapper.

• LDAP mapper specifics:

− The location of the LDAP groups. This depends on the attributes: roleDN

and roleNameAttribute.
− There is no mapping between roles/groups defined in LDAP and roles

defined in the Bonita database (same name for both bases).

− The attribute name: uid is used to provide mapping between the actor

identifier in the LDAP base and the userName in the Bonita database.

− If the group does not exist in the LDAP an exception is thrown.

− Users found in the groups must be deployed before usage of the mapper

function. Otherwise an exception is thrown.

− The name of the mapper may be any name.

 Chapter 3. User Management 31

• Limitations within this version of Bonita Workflow:

− Groups cannot be recursive. Group’s inclusions are ignored.

− There is no verification that the distinguished names (dn) for users found in

the LDAP groups are compatible with the LDAP tree containing users

defined in the JOnAS LDAP realm configuration.

Custom Mapper

This mapper provides process developers use of their own user’s storage base.

When this type of mapper is utilized, a call to a java class is performed. The name

of this mapper is the name of the called java class (i.e.:

hero.mapper.CustomSeachGroup), located under

BONITA_HOME\src\resources\mappers\hero\mapper. After retrieving user

information, it must be added to the project instance and also to the targeted

role. The Bonita workflow engine loads and executes these mapper classes at

runtime. If you add a custom mapper, please follow the next steps:

1. Look at the sample class above and implement the custom mapper logic in

a new java file.

2. Create a source .java file, i.e. MyMapper.java. It must be within the package

hero.mapper.

3. Copy the java source file created above into the directory

BONITA_HOME/src/resources/mappers/hero/mapper

4. Go to the BONITA_HOME directory and type: ant deployMapper -

DmapperClass=<name of java source file>. For example, ant deployMapper –
DmapperClass=MyMapper

Properties Mapper

Presently, this type of mapper fills in the role with the user name of the creator of

the instance (based on the authenticated user that initiates the instance). This

mapper is useful for administrative workflow processes to assign the role specified

in the property to the user instantiating the process.

Examples of mapper code are available under

BONITA_HOME/src/resources/mappers/hero/mapper.

32

2.7 Performer Assignment

Performer Assignment increases Bonita functionality by providing a means to

modify standard assignment rules for activities.

2.7.1 Overview

This feature permits additional assignment rules other than those defined in the

standard Bonita model.

In the standard model (oriented toward cooperative Workflow), all users defined

in the group associated to the activity can see and execute the ToDo List within

this group.

By adding this functionality, a specified user can:

• Assign the activity to a user of a group by calling a java class in charge to do

the user selection into the user group (callback performer assignment)

• Dynamically assign the activity to a user by using an activity property

(properties performer assignment)

When this functionality is used, the user is notified (via mail notification), that the

activity is ready to start.

The users of the groups, (roles in Bonita), associated to the activity will see the

activity but cannot start or terminate it.

This functionality is accessible within the Bonita API (see ProjectSessionBean API)

and inside the Bonita graphEditor application.

Furthermore, an activity can be assigned to the initiator of the instance. This

requires the use of a properties mapper (as described previously).

 Note:

Only one performer assignment is valid at a given point. This means that although

multiple performer assignments via the Bonita API may execute, only the last

assignment is reflected in the structure BnNodeValue (see Table 11.2.8,

BnNodeValue Attributes).

 Chapter 3. User Management 33

2.7.2 Description of Performer Assignments

CALLBACK PERFORMER ASSIGNMENT

Callback Performer assignment allows the process developer to code a request

with its own algorithm of user selection. When callback performer assignment is

used, a call to a java class is performed.

The name of this callback performer assignment is the name of the called java

class (i.e.: hero.performerAssign.CallbackSelectActors) located under

BONITA_HOME\src\resources\performerAssigns\hero\performerAssign. As

mappers, callbacks are loaded and executed by the Bonita workflow engine. To

add your own callback, please follow the next steps:

1. Look at the sample class specified above and implement the performer

assignment logic in a new java file.

2. Create a source .java file, i.e. MyPerformer.java. It must be within the

package hero.performer.

3. Copy the java source file into the directory

BONITA_HOME/src/resources/performers/hero/performer

4. Go to BONITA_HOME directory and type: ant deployPerformer -

DperformerClass=<name of you java source file>. For example,

ant deployPerformer –DperformerClass=MyPerformer

PROPERTIES PERFORMER ASSIGNMENT

Properties Performer Assignment allows the process developer to provide, at

properties performer assignment creation, the activity property used by the

workflow engine to assign the activity. This activity property must be

defined either within a previously started activity, with the property propagation,

or within the targeted activity about to be assigned.

34

2.8 Initiator Mapper

This feature implements restrictions to the workflow models in Bonita.

2.8.1 Overview

The Initiator Mapper feature adds additional security constraints to the workflow

instantiation operation. Through use of Initiator Mapper, the definition of users

allowed to instantiate a particular workflow models is restricted (normally all users

by default).

Initiator Mapper functionality permits:

• Access to the LDAP directory to dynamically resolve the list of users permitted

to instantiate a workflow process. This depends on the LDAP logic

organization using the default LDAP Initiator.

• Dynamic resolution of the list of users allowed to instantiate the workflow

model. This depends on logic implementing a Custom Initiator

This functionality is implemented in the Bonita API (see ProjectSessionBean API).

The resolution of this entity is done at getModels execution time.

2.8.2 Initiator Description

CUSTOM INITIATOR

The Custom Initiator permits the process developer to code a request with its own

algorithm of user selection. When this type of custom initiator mapper is added, a

call to a java class is performed.

The name of this Custom Initiator is the name of the called java class (i.e.:

hero.initiatorMapper.CustomGroupMembers.java) located under

BONITA_HOME\src\resources\iniitatorMappers\hero\initiatorMapper. As

mappers and performer assignments, your custom initiators are loaded and

executed by the Bonita workflow engine. If adding a custom initiator, follow the

next steps:

1. Look at the sample class above and implement initiator logic within a new

java file.

2. Create a source .java file, i.e. MyInitiator.java. It must be within the package

hero.initiatorMapper.

3. Copy the java source file into the following directory:

BONITA_HOME/ src\resources\iniitatorMappers\hero\initiatorMapper

4. Go to BONITA_HOME directory and type: ant deployInitiator -

DinitiatorClass=<name of you java source file>. For example,

ant deployInitiatorMapper –DinitiatorMapperClass=MyInitiator

 Chapter 3. User Management 35

LDAP INITIATOR

The LDAP Initiator uses the LDAP directory to retrieve users corresponding to a

specific role defined in a Bonita Workflow project. Please refer to the

documentation (Bonita LDAP configuration for JOnAS), to implement The LDAP

Initiator.

• LDAP initiator specifies:

− The location of the LDAP groups. This depends on the attributes: roleDN

and roleNameAttribute

− There is no mapping between roles/groups in the LDAP directory and

roles specified in the Bonita database (same name in both bases).

− The attribute name: UID is used to provide the mapping between the

actor identifier in the LDAP base and the userName specified in the

Bonita base.

− If the LDAP group does not exist an exception is thrown.

− Users found in the LDAP groups must be deployed before using the

mapper function. Otherwise an exception is thrown.

− The name of the initiator may be any name

• Limitations of this version of Bonita:

− Groups cannot be recursive. Group inclusions are ignored.

− There is no verification that the distinguished names (dn) specified for

users found in the LDAP groups are compatible with the LDAP tree

containing users defined in the JOnAS LDAP realm configuration.

 Chapter 4. User Registration Interface 37

Chapter 3. User Management

3.1 Bonita User Management Basic Configuration

After Bonita installation and configuration, user specific data is stored in the

Bonita database chosen during the configuration phase. This consists of tables

created in the Bonita database providing security control and user management

as shown below.

Bonita User Management

J2EE Authentication

Realm : dsrlm_1

DSN ame : bonita

DSUrl : bonita

Mapper : hsql

(default)
 User, with the following J2EE role:

Admin (for Bonita Authentication)

Bonita Process roles

User Specific Profile

Bonita
Datasource

Figure 3-1. User Management Basic Configuration

This basic configuration could be changed according to preference. For

example, modify the configuration to utilize an existing user defined database or

to use an enterprise LDAP Directory.

3.2 Changing the Basic Configuration

User Management may move to the following schema to make an application

fully integrate an enterprise Information System. Bonita takes advantage of User

Management defined at upper levels to interface with the workflow application.

38

O tengine

Datasource

 Datasource

Realm

Bonita User Management

J2EE Authentication

 User, with the following J2EE roles:

Admin (for Bonita Authentication)

Bonita Process roles

User Specific Profile

Bonita

Datasource

Ldap Realm

OR

Figure 3-2. J2EE Authentication

3.2.1 J2EE Authentication

Bonita uses the security realm defined in the global context for Jonas (jonas-

realm.xml file in JONAS_BASE/conf directory). To change the basic configuration:

To use another Datasource Security Realm:

Modify the existing datasource (called dsrlm_1) with selected user and roles

queries.

To use an LDAP Security Realm:

Uncomment the <jonas-ldaprealm> sample file and reconfigure it. Take a look at

http://jonas.objectweb.org/current/doc/Config.html#Config-Security (look for

Configure LDAP resource in the jonas-realm.xml file)

3.2.2 Bonita User Management

By default, Bonita uses the hero.user.DefaultUserBase implementation class to

manage users. To add a User management class:

• Implement the hero.user.UserBase interface that provides users required
information dealing with the specified user’s management system (database,

LDAP directory, User Interface…). This class must be located within the

hero.user package.

• Copy the java source file into BONITA_HOME/src/resources/users/hero/user

directory.

• Go to BONITA_HOME/src directory and type: ant deployUserBase -

DhookClass=<name of you java source file>. For example: ant deployUser –

DuserClass=MyUserClass

• Update the value of the user.base attribute with the class name

implementation (in the BONITA_HOME/ant.properties file).

 Chapter 5. Project Interface 39

Chapter 4. User Registration Interface

4.1 Principle

The User Registration interface provides access to the J2EE users and roles

definition.

For EJB Session access, the User Registration interface automatically retrieves the

identity of the calling user in the J2EE security context. Because of this, calling the

User Registration interface from an unidentified context fails with an exception.

Also, the Bonita source permits only users with “Admin” or “users” J2EE roles to

access Project and User Session Interfaces.

 Important:

UserRegistration API should only be used when the User Management

configuration is the Bonita default configuration. If a user-defined User

Management implementation is being used, do NOT use the UserRegistration API.

4.2 Creating the UserRegistrationBean

The UserRegistrationBean may be seen as a handle for adding a new user or role

in the J2EE Application Server security context. First create the handle, and then

call the UserRegistration interface methods. This API is a stateless session bean.

im p o r t j a v a x .s e c u r i ty .a u t h . lo g in .L o g in C o n te x t ;

im p o r t h e ro .c l i e n t . t e s t .S im p le C a l lb a c k H a n d le r ;

im p o r t h e ro . in t e r f a c e s .P r o je c tS e s s io n ;

im p o r t h e ro . in t e r f a c e s .P r o je c tS e s s io n H om e ;

im p o r t h e ro . in t e r f a c e s .P r o je c tS e s s io n U t i l ;

p u b l i c c la s s M yW o rk F lo w C la s s {

 s t a t i c p u b l i c v o id m a in (S t r in g [] a r g s) th ro w s E x c e p t io n {

 / / U s e r A d m in a u th e n t i c a t io n

 c h a r [] p a s sw o rd = { 't ', 'o ', 't ', 'o '} ;

 S im p le C a l lb a c k H a n d le r h a n d le r = n ew S im p le C a l lb a c k H a n d le r (" a d m in " ,p a s s w o rd) ;

 L o g in C o n te x t l c = n e w L o g in C o n te x t (" T e s tC l i e n t " , h a n d le r) ;

 l c . lo g in () ;

 / / U s e r R e g is t r a t io n B e a n C re a t io n u s in g R em o te In te r f a c e

 U s e rR e g i s t r a t io n H om e u s e rR H om e= (U s e rR e g i s t r a t io n H om e) U s e rR e g i s t r a t io n U t i l .g e tH o m e () ;

 U s e rR e g i s t r a t io n u rS e s s io n = u s e rR H o m e .c r e a t e () ;

 …

}

Figure 4-1. Code Example for the UserRegistrationBean

40

 Chapter 5. Project Interface 41

4.3 Managing Users (via the UserRegistrationBean)

4.3.1 Creating Users

void userCreate (String name, String password, String email)

This function creates a user account with an email account. The user is

automatically assigned to the “Admin” group.

An exception is thrown in the following cases:

− If user name already exists

− If an invalid parameter is specified

void userCreate (String name, String password, String email,

String jabber)

This function creates a user account with an instant messaging and/or email

address. The user is automatically assigned to the “Admin” group.

An exception is thrown in the following cases:

− If user name already exists

− If an invalid parameter is specified

4.3.2 Defining Users

void setUserProperty (String userName, String key, String value)

This API function is used with the UserRegistration Bean and sets a property for

the specified user “username”. User properties define user preferences. User

properties are a key/value pair. If key already exists assign the new value. If

key does not exist, create key and assign value.

An exception is thrown in the following cases:

− If user name does not exist

− If an invalid parameter is specified

void setUserRole (String userName, String roleName)

Set a new authorization role for the user.

An exception is thrown in the following cases:

− If user name does not exist

− If roleName cannot be added (I.e. role name not found).

42

4.3.3 Deleting Users

void deleteUser (String userName)

Delete a user from the Bonita database. If the specified user (username) is

included in active projects this method throws an exception.

An exception is thrown in the following cases:

− If user name does not exist

− If user name is involved in other projects/processes

4.4 Creating User Roles

void roleCreate (String name, String roleGroup)

This creates a new authorization role in the system for “name”. This role is used

to control the user access to different APIs. Remember that the User

Registration API deals with J2EE identities. These roles must not be confused

with Bonita roles associated with projects.

This function is useful for changing the defaults roles of Bonita and allows more

precise control over access rights.

For more information about security roles and J2EE refer to:

http://jonas.objectweb.org/current/doc/PG_Security.html#PG_Security

An exception is thrown in the following case:

− If the role name already exists

 Chapter 5. Project Interface 43

4.5 Code Example

The following figure is a code Example for user creation.

im po rt jav ax .secu rity .au th .log in .L o g inC on tex t;

im po rt h e ro .c lien t.tes t.S im p leC allb ackH and le r;

im po rt h e ro .in te rfa ces .P ro jec tS ess io n ;

im po rt h e ro .in te rfa ces .P ro jec tS ess io nH om e;

im po rt h e ro .in te rfa ces .P ro jec tS ess io nU til;

p ub lic c la ss M yW orkF low C lass {

 s ta tic pub lic v o id m a in (S tring [] a rgs) th row s E xcep tio n{

 // U se r A dm in au th en tica tio n

 ch a r[] p assw ord= { 't ', 'o ', 't ', 'o '} ;

 S im p leC a llb ackH and ler h and ler = n ew S im p leC allb ackH and le r("adm in ",p assw o rd);

 L og inC on tex t lc = n ew Lo g inC on tex t("T estC lien t" , h and ler) ;

 lc .lo g in ();

 // U ser R eg is tra tio n B ean C rea tion u sin g R em ote In terface

 U se rR eg is tra tionH om e userR H om e= (U se rR egis tra tio nH om e) U se rR egis tra tio nU til.g e tH om e();

 U se rR eg is tra tion u srR eg = u se rRH om e .c rea te();

 // U ser " jack " (cu s tom er) c rea tion in B on ita d a tab ase

 try{

 u serR eg .u se rC rea te ("jack "," jack ","m igu el.v a ld es-fau ra@ ex t.b u ll.n e t");

 } ca tch (E x cep tion e){S ystem .ou t.p rin tln (e) ;} // M ayb e u ser ex is ts

 // U ser " jo hn " (se rv ice cu stom er) c rea tio n in B on ita d a tab ase

 try{

 u serR eg .u se rC rea te ("jo hn"," john ","m igue l.v a ld es-fau ra@ ex t.b u ll.n e t");

 } ca tch (E x cep tion e){S ystem .ou t.p rin tln (e) ;} // M ayb e u ser ex is ts

 u serR eg .rem ov e();

}

Figure 4-2. Coding Example of User Creation

 Chapter 6. Hook Interface 45

Chapter 5. Project Interface

5.1 Principle

The Project interface provides access to API functions that permit modification of

execution for a given process.

In the case of EJB Session access, the Project interface automatically retrieves the

identity of the calling user in the J2EE security context. In this case, calling the

Project interface from an unidentified context fails with an exception. Therefore,

this interface is initiated for a given user. Only the processes where Users are

declared can be accessed.

Once the Project interface is created, it must be initiated. Initiating the Project

interface allows specifying which project is going to be managed thru the

Interface.

An example of code using this interface is shown below.

5.2 Creating the ProjectSessionBean

Think of the ProjetSessionBean as a handle into the BONITA workflow System. First,

create the handle then associate a given project to this handle in order to modify

it.

im p o r t j a v a x .s e c u r i ty .a u t h . lo g in .L o g i n C o n te x t ;

im p o r t h e r o .c l i e n t . t e s t .S im p le C a l lb a c k H a n d le r ;

im p o r t h e r o . in t e r f a c e s .P r o je c tS e s s io n H o m e ;

im p o r t h e r o . in t e r f a c e s .P r o je c tS e s s io n ;

im p o r t h e r o . in t e r f a c e s .P r o je c tS e s s io n U t i l ;

im p o r t h e r o . in t e r f a c e s .C o n s ta n t s ;

im p o r t j a v a .u t i l . * ;

p u b l i c c l a s s S a m p le P ro je c tA p i {

 s ta t ic p u b l ic v o id m a in (S tr in g [] a r g s) t h r o w s E x c e p t io n {

 / / U s e r A d m in lo g in

 c h a r [] p a s sw o r d = { 't ', 'o ', 't ', 'o '} ;

 S im p le C a llb a c k H a n d le r h a n d le r = n e w S im p le C a l lb a c k H a n d le r (" a d m in " ,p a s sw o r d) ;

 L o g in C o n te x t l c = n e w L o g in C o n te x t (" T e s tC l i e n t " , h a n d le r) ;

 l c . l o g in () ;

 / / P ro je c t S e s s io n B e a n C re a t io n u s in g R e m o te I n te r f a c e

 P r o j e c tS e s s io n H o m e p r jH o m e = (P r o j e c tS e s s io n H o m e) P ro je c tS e s s io n U t i l . g e tH o m e () ;

 P r o j e c tS e s s io n p r j S e s s io n = p r jH o m e .c r e a te () ;

Figure 5-1. Coding Example for a Project Session Bean

46

5.3 Initiating the ProjectSessionBean

5.3.1 Initiating the Session Bean (Cooperative Projects &

Instances)

void initProject (String projectName)

Creates or initializes a cooperative workflow project. This method may be

used to initialize workflow instances.

The Project interface is initialized with the given projectName.

If the projectName does not exist, a new empty project is created and given

this name. The user is assigned the Bonita “admin” role for this project. There

are no restrictions on the number of characters in the process/project name.

An exception is thrown in the following cases:

− If project name is null

− If project name already exists a warning message is displayed

− If there is a problem in the project version, type, or status

5.3.2 Initiating the Session Bean (Models)

void initModel (String modelName)

Creates or initializes workflow models.

The Project interface is initialized with the given modelName. If the

corresponding modelName does not exist, a new empty model is created

and given this name. The user is assigned the Bonita “admin” role for this

project. There are no restrictions on the number of characters in the

process/project name.

An exception is thrown in the following cases:

− If model name is null

− If model name already exists a warning message is displayed

− If there is a problem in the project version, type, or status

 Chapter 6. Hook Interface 47

5.3.3 Initiating a Project Using the Clone Project Creation Option

void initProject (String oldProject, String newProject)

The Project interface is initialized after oldProject is cloned. This interface is

initialized with the given newProject project name.

 Important:

After using the initProject method, all subsequent interface methods deal with the

corresponding project.

An exception is thrown in the following cases:

− If either old project name or new project name is null

− If new project name already exists

− If the creator does not have ADMIN privileges

− If creator name does not exist

5.3.4 Initiating Using the Instantiate Project Creation Option

void instantiateProject (String modelName)

The Project interface is initialized after new project instance is created. This

interface is initialized with the new project instance name given by Bonita

automatically. Bonita derives the instance name from the model name as

follows:

<instance-name> = <model-name>_instance<sequence-number>

All subsequent interface methods deal with the corresponding project

instance.

After this instantiation, users have to be added to the new instance if they

were not defined in the process model (if a RoleMapper entity was not

defined). Also, users must be assigned roles to start/stop activities in this new

project.

 Note:

Only workflow models can be instantiated. Cooperative projects are ready-to-

define, ready-to-execute just after creation.

An exception is thrown in the following case:

− If there is any error detected in creating the instance of this project

48

void initModelWithVersion (String modelName, String modelVersion)

Create a workflow process model or Initialize the Project Session Bean for this

model for a particular version. This method is called after the API “create”

call. After execution, all the API methods of ProjectSession API are available.

An exception is thrown in the following case:

− If modelName is null

String instantiateProject (String project, Hashtable

initProperties)

Create a project instance. Call this method after executing the “create” API

call. After execution, an instance of the specified project and all methods of

ProjectSession API are available. This call uses the default project version.

Return the Hashtable – the default value for properties defined at process

level.

String instantiateProject (String project, String version,

Hashtable initProperties)

Create a project instance with the specified version. Call this method after

executing the “create” API call. After execution, an instance of the specified

project and all methods of ProjectSession API are available.

Return the Hashtable – the default value for properties defined at process

level.

String instantiateProject (String project, String version)

Create a project instance with the specified version. Call this method after

executing the “create” API call. After execution, an instance of the specified

project and all methods of ProjectSession API are available.

Return a new Hashtable – the default value for properties defined at process

level.

 Chapter 6. Hook Interface 49

5.3.5 Code Example

 //***/
 //********* API Documentation - Sample 1 (adapted version) *************/

 //***/

 //Process creation by user admin

 prjSession.initProject("Original Process");

 // if "Original Process" does not exists, it is created.

 // Process definition see following sections

 // adding activities, edges, ...

 //

 //Process "Original Process" Cloning into "Clone Process"

 try {

 prjSession.initModel("Original Process", "Clone Process");

 } catch(Exception e) {System.out.println(e);} //Maybe project does not exists

 // "Original Process" instantiation

 try {

 prjSession.instantiateProject("Original Process");

 } catch(Exception e) {System.out.println(e);} //Maybe project does not exists

 // The new instance becomes the current project

Figure 5-2. Cloning Code Example

5.4 Managing a Project

With BONITA, there is a single API dealing with projects (i.e. the

ProjectSessionBean). This API is used to control processes, no matter which kind of

process they are:

• Processes may exist by themselves without a relationship to a process model.

In this category processes are created from scratch, or cloned from parent

processes.

• A process may be a process model, from which process instances could be

derived. Presently, a process model may be executed as well, but this

behavior will be removed in the near future.

• Process instances are specific executable processes whose definitions are

contained in a process model. At creation time, the specific context of this

instance is taken into account to make the instance unique.

50

5.4.1 Project Attributes

A project has a name, assigned at creation time thru the Project API.

The names of process instances are constrained. BONITA automatically allocates

a name using following pattern:

<Project Model Name>_instance<Project Instance Number>.

The <Project Instance Number> is automatically assigned and managed by

BONITA.

A project has properties, which are key/value pairs. Enumeration String types are

also permitted.

When a project is created Bonita records the name of the user creating the

project and the project creation date and other attributes.

The constant values associated with process states are shown in the following

table.

CONSTANT VALUE

hero.interfaces.Constants.Pj.INITAL 0

hero.interfaces.Constants.Pj.STARTED 1

hero.interfaces.Constants.Pj.TERMINATED 2

Table 5-1. Process State Constants

The constant values associated with process types are shown in the following

table.

CONSTANTCONSTANTCONSTANTCONSTANT VALUEVALUEVALUEVALUE

hero.interfaces.Constants.Pj.COOPERATIVE Cooperative

hero.interfaces.Constants.Pj.MODEL Model

hero.interfaces.Constants.Pj.INSTANCE Instance

hero.interfaces.Constants.Pj.ACTIVITY Activity

Table 5-2. Process Type Constants

The constant values associated with process status are shown in the following

table.

CONSTANT VALUE

hero.interfaces.Constants.Pj.ACTIVE Active

hero.interfaces.Constants.Pj.HIDDEN Hidden

 Chapter 6. Hook Interface 51

Table 5-3. Process Status Constants

52

5.4.2 Active/Hide a Workflow Process

void activeProcess ()

This sets the process status to Active (model/cooperative/instance).

Workflow processes can only be executed or instantiated if status equals

active

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the process is already active, a warning message is issued.

void hideProcess ()

This sets the process status to Hidden (model/cooperative/instance).

This state allows workflow model modifications once they are instantiated.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the process is already hidden, a warning message is issued.

5.4.3 Getting the Name of a Project or an INSTANCE

String getName ();

Return the name of the project being managed by the current instance of

the ProjectSessionBean interface. If there is no current instance, null is

returned.

String getProjectNameOfInstance (String instanceName)

Return the project name for the instance “instanceName”.

An exception is thrown in the following case:

− If instanceName is not a project instance

5.4.4 Getting the Name of the Parent Project

String getParent ()

If the current project is a subProcess, returns the name of its parent project. If

this is not a sub process, returns the name of the created project.

 Chapter 6. Hook Interface 53

5.4.5 Getting the Name of a Project’s Creator

String getCreator ();

A string is returned with the name of the user creating the current Project. The

projects creator name is automatically saved by the BONITA executive after

a project is created thru the ProjectSessionBean Interface.

5.4.6 Properties

void setProperty (String key, String value)

If key does not exist, creates a new property and assigns the value. If key

exists, this function overrides the value of the existing property with the new

value.

An exception is thrown in the following cases:

− If the value specified is not allowed (see setPossibleValues)

− If an invalid parameter is specified

− If issuer does not have access to this project

void setPropertyPossibleValues (String key, Collection values)

Set property possible values. Argument “values” represent a collection of

data as possible property values. If “values” already exist for the specified

key, the “values” remain unchanged (see updatePropertyPossibleValues).

These values are compared when the setProperty API call is executed.

An exception is thrown in the following cases:

− If the user of the issuing application is not defined in this project

− If “key” is not found

void updatePropertyPossibleValues (String key, Collection values,

Collection defaultValues)

This API method allows users to dynamically change the possible values

defined for this property (see setPropertyPossibleValues). This API method is

used for enumeration types only. A default value is mandatory for this

method.

An exception is thrown in the following cases:

− If the user of the issuing application is not defined in this project

− If “key” is not found

− If a default value is not one of the possible values

54

Collection getProperties ()

Return a (BnProjectPropertyValue Collection) of all properties existing

for this project. See Table 11-11 BnProjectPropertyValue Attributes. If no

properties exist for the project, “NULL” is returned.

Collection getPropertiesKey ()

Return a (String Collection) of all the properties keys for the current

project. The referenced property is a pair key/value representing workflow

relevant data but just the key names are returned. If no key values are

assigned, “NULL” is returned.

BnProjectPropertyValue getProperty (String key)

Return the property value of the project for the specified key. The property is

from a key/value pair associated to this project.

void deleteProperty (String key);

Delete a property of an existing project based on the specified key.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the specified key/property is not found

5.4.7 Project Details

BnProjectValue getDetails ()

Return project information: project attributes, nodes, edges, hooks,

properties...

Values returned are shown in Table 11-12, BnProjectValue Attributes.

ArrayList getChoices (String value, Collection possibleValues)

Get the list of choices into the value of the enumerated property. This API

returns a list of possible choices based on the possible values. An example of

usage is a checkbox with multiple selections.

 Chapter 6. Hook Interface 55

String getVersion ()

Return a String with the project version.

String getStatus ()

Return a String with the project status (Active or Hidden).

String getType ()

Return the type of the project (Cooperative/Model/Instance).

Collection getRolesValue ()

Return a Collection of BnRoleValue objects – representing the roles of the

project.

BnRoleValue getRoleValue (String roleName)

Return the values of this role in the project. See Table 11-14, BnRoleValue

Attributes.

Collection getUsersRole (String roleName)

Return a collection of users matching with roleName in the current project.

BnProjectPropertyValue getProperty (String key)

Get a property value of the project. Return the properties associated to

key/value pair for this project.

Returns null if the value is not found.

Collection getInterHooks ()

Return a collection of ProjectInterHookValue containing the project

InterHooks.

Returns null if no InterHooks exist.

String getInterHookValue (String hook)

Returns a String with the inter hook value script. This method returns the hook

script associated to all project nodes.

An exception is thrown in the following case:

− If the issuing application does not have ADMIN privileges

56

Object[] getIterations ()

Return a collection of BnIterationLightValue with all project iterations.

Collection getIterations (String from)

Get node destinations for this iteration. Return a collection of

BnIterationLightValue of project iteration destinations for node “from”.

boolean getIterationExist (String from)

Returns TRUE if this node starts one or more iterations.

Collection getIterationConditions (String from)

Return a Collection of iteration conditions that start in node “from”. There may

be multiple iterations specified for node “from”.

An exception is thrown in the following case:

− If String from (node) is not found

boolean isTerminated ()

Test if all the projects nodes are terminated (in terminated state.) Returns TRUE

if all project nodes are in terminate state. Returns FALSE if any node is not in

terminate state.

boolean existingProject (String projectName)

Test to see if a project with projectName name exists. Returns TRUE if project

name exists. This API uses the default project version (set to 1.0 in

EventConstants.java).

An exception is thrown in the following case:

− If projectName is null

boolean existingProject (String projectName, String

projectVersion)

Test to see if a project with projectName name exists with the specified

projectVersion. Returns TRUE if project and version name exist.

An exception is thrown in the following case:

− If projectName is null

 Chapter 6. Hook Interface 57

5.4.8 Code Example

 /***/

 /************** API Documentation - Sample 2 *******************/

 /***/

 String processName = prjSession.getName() ;

 System.out.println("Current Process : " + processName) ;

 try {

 String parentName = prjSession.getParent();
 System.out.println("Parent Process : " + parentName) ;

 } catch(Exception e) {System.out.println(e);} //Maybe there is no parent

 try {

 String creatorName = prjSession.getCreator();

 System.out.println("Process Creator : " + creatorName) ;
 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem

 try {

 prjSession.setProperty("userId","user1");

 prjSession.setProperty("recordId","1111");
 prjSession.setProperty("orderId","0001");

 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem

 // First way to get properties values
 System.out.println("First way to access proprerty values : ");

 Collection properties = prjSession.getProperties() ;
 Iterator i = properties.iterator();

 while (i.hasNext())

 {
 hero.interfaces.BnProjectPropertyValue property = (hero.interfaces.BnProjectPropertyValue)i.next();

 try {

 String propertyKeyName = property.getTheKey();
 String propertyValue = (String)property.getTheValue();

 System.out.println("Property (Key, Value) : " + propertyKeyName + "/" + propertyValue);

 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem
 }

 // Second way to get properties values
 System.out.println("Second way to access proprerty values : ");

 properties = prjSession.getPropertiesKey() ;

 i = properties.iterator();
 while (i.hasNext())

 {

 String propertyKey = (String)i.next();
 try {

 hero.interfaces.BnProjectPropertyValue propertyValue = prjSession.getProperty(propertyKey);

 System.out.println("Property (Key, Value) : " + i + "/" + propertyValue);
 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem

 }

 //Deleting Property

 try {

 prjSession.deleteProperty("orderId");
 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem

 //Verification

 System.out.println("Properties after one deletion : ");
 Collection propertiesLeft = prjSession.getPropertiesKey() ;

 Iterator j = properties.iterator();

 while (j.hasNext())
 {

 String propertyLeftKey = (String)j.next();

 try {

 hero.interfaces.BnProjectPropertyValue propertyValue = prjSession.getProperty(propertyLeftKey);
 System.out.println("Property (Key, Value) : " + i + "/" + propertyValue);

 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem

 }

Figure 5-3. Project Properties Code Example

58

5.5 Defining and Obtaining Activity Information

5.5.1 Types of Activities

An Activity type can be one of the following types.

Traditional

(Manual) or

Automatic

Activity 1Activity 1

Activity 3Activity 3

Activity 2Activity 2

ANDAND

AND_JOIN_NOD
AND_JOIN_AUTOMATIC_NOD

Traditional

(Manual) or

Automatic

Activity 1Activity 1

Activity 3Activity 3

Activity 2Activity 2

OROR

OR_JOIN_NOD
OR_JOIN_AUTOMATIC_NOD

Figure 5-4. Activity Types

Another possibility is SUB_PROCESS_NODE: this node is itself a complete process

included in the current process as a sub-process.

The following table displays the constant values associated with activity types.

CONSTANT VALUE

hero.interfaces.Constants.Nd.AND_JOIN_ NODE 1

hero.interfaces.Constants.Nd.OR_JOIN_NODE 2

hero.interfaces.Constants.Nd.AND_JOIN_AUTOMATIC_NODE 3

hero.interfaces.Constants.Nd.OR_JOIN_AUTOMATIC_NODE 4

hero.interfaces.Constants.Nd.SUB_PROCESS_NODE 5

Table 5-4. Constant Values for Node Types

 Chapter 6. Hook Interface 59

5.5.2 Activities States

 See:

See the “Activities basics “section 2.3.1 of this document.

The constant values associated with the main activities states are shown in the

following table.

CONSTANT VALUE

hero.interfaces.Constants.Nd.INITIAL 0

hero.interfaces.Constants.Nd.READY 1

hero.interfaces.Constants.Nd.DEAD 2

hero.interfaces.Constants.Nd.ANTICIPABLE 3

hero.interfaces.Constants.Nd.ANTICIPATING 4

hero.interfaces.Constants.Nd.EXECUTING 5

hero.interfaces.Constants.Nd.EXECUTED 6

hero.interfaces.Constants.Nd.INERROR 7

hero.interfaces.Constants.Nd.FINISHED 8

hero.interfaces.Constants.Nd.TERMINATED 9

hero.interfaces.Constants.Nd.CHECKEDOUT 10

hero.interfaces.Constants.Nd.ANT_SUSPENDED 11

hero.interfaces.Constants.Nd.EXEC_SUSPENDED 12

hero.interfaces.Constants.Nd.BAD_TRANSITION 13

hero.interfaces.Constants.Nd.INITIAL 14

Table 5-5. Constant Values for Node States

60

5.5.3 Creating an Activity

void addNode (String name, int nodeType)

Add “String name” node to the project. This method creates a node with the

corresponding node type (See Table 5-4, Constant Values for Node Types)

and assigns to it a role equal to InitialRole. This role is not assigned to any user

at creation time, so this activity is not eligible for use until the setNodeRole

method is called. This API call uses a default version of 1.0.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the specified node name already exists

− If node name is null

− If a parameter value is invalid

 Note:

If JMS is enabled, a message is sent to the caller.

void addNode (String name, String projectVersion, int nodeType)

Add “String name” node to the project. This method creates a node with the

corresponding node type (See Table 5-4. Constant Values for Node

Types) and assigns to it a role equal to InitialRole. This role is not assigned to

any user at creation time, so this activity is not eligible for use until the

setNodeRole method is called. If the nodeType is a sub process, the version of

the parent and sub process must match.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the specified node name already exists

− If node name is null

− If a parameter value is invalid

− If created node is a sub process, the projectVersion does not match the

parent projectVersion

 Note:

If JMS is enabled, a message is sent to the caller.

 Chapter 6. Hook Interface 61

5.5.4 Creating SubProcess Activity

void addNodeSubProcess (String name, String projectName)

Add “name” subProcess node to the specified project. This method creates

the subProject from an existing project and creates the node associated to it.

The type of created node is

hero.interfaces.Constants.Nd.SUB_PROCESS_NODE

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If an error occurs in the add sub process

void addNodeSubProcess (String name, String projectName, String

projectVersion)

Add “name” subProcess node to the specified project. This method creates

the subProject from an existing project and creates the node associated to it.

The type of created node is

hero.interfaces.Constants.Nd.SUB_PROCESS_NODE

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If an error occurs in the add sub process

void deleteSubProcessNode (String name, String version)

Delete a node (“name”) with type subProcess from the project if this node is

not in the executing state.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the state of the node is executing

− If name cannot be found

− If name has a subProcess (all subProcess nodes must be removed first)

62

5.5.5 Configuring an Activity

void setEditNode (String node, String role, String description,

long deadline)

Set the information on node changes (including role, description, and

deadline). This is commonly used by the graphical client application included

in the Bonita distribution (struts based)

An exception is thrown in the following case:

− If the issuing application does not have ADMIN privileges

void setNodeAnticipable (String name)

Set the node in anticipable mode. The anticipable attribute is set true. See

Section 11.2.8, BnNodeValue attributes. Please see Section 2.3.1 for an

explanation of traditional versus anticipable mode.

An exception is thrown in the following case:

− If the issuing application does not have ADMIN privileges

void setNodeAutomatic (String name)

Set the node in automatic mode (sets node to anticipating state). The

responsibility of activity execution is now under control of the Bonita engine.

(That is, the Node “name” is no longer manually started.)

An exception is thrown in the following case:

− If the issuing application does not have ADMIN privileges

void setNodeDeadline (String name, long date)

Set an absolute node deadline (i.e. 11-05-2006). The activity deadline is the

latest date by which the activity must be finished. This API Call is deprecated.

Call is replaced by setNodeDeadlines following below.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the specified date is before the current date.

 Chapter 6. Hook Interface 63

void setNodeDeadlines (String name, Collection co)

Set one or more deadlines for the node. The activity deadline is the latest

date by which the activity must be completed.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the new deadline is before/earlier than current date.

 Note:

If JMS is enabled, a message is sent.

void setNodeRelativeDeadline (String name, long date)

Set a relative node deadline (ex: 2 hours). Activity deadline is the latest date

or time in which the activity must be finished. Call is deprecated and replaced

by setRelativeDeadlines explained below.

An exception is thrown in the following case:

− If the issuing application does not have ADMIN privileges

Set one or more deadlines for the node. The activity deadline is the latest

date by which the activity must be completed.

An exception is thrown in the following case:

− If the issuing application does not have ADMIN privileges

 Note:

If JMS is enabled, a message is sent.

void setNodeDescription (String name, String description)

Set the node description. Node description represents explicit execution

related information for this task.

An exception is thrown in the following case:

− If the issuing application does not have ADMIN privileges

64

void setNodeProperty (String nodeName, String key, String value)

Set a property of a node for “nodeName”. A property is a pair key/value

representing workflow relevant data. This method propagates the defined

key/value property to other nodes automatically. If the key name does not

exist, the key is created and assigned the value.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If key name does not exist a warning message is issued.

− If the supplied value is not allowed (see setNodePropertyPossibleValues)

void setNodeProperty (String nodeName, String key, String value,

Boolean propagate)

Set a property of a node. A property is a pair key/value representing workflow

relevant data. The use of the propagate argument specifies whether to

propagate this property. If the key name does not exist, the key is created

and assigned the value.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If key name does not exist a warning message is issued.

− If the supplied value is not allowed (see setNodePropertyPossibleValues)

void setNodePropertyPossibleValues (String nodeName, String key,

Collection values)

Set possible property values for a specific node. The values argument

represents acceptable values as property values. Key/value must be

enumerated type.

If the key name does not exist, the key is created and assigned the value.

An exception is thrown in the following case:

− If the issuing application does not have ADMIN privileges

Void updateNodePropertyPossibleValues (String nodeName, String

key, Collection values, Collection defaultValues)

Update possible values for a specific node. Key/value must be enumerated

type. The collection of defaultValues represents the values replacing the

collection of (current) values.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If key name does not exist.

− If current value does not compare to stored value (invalid value error.)

 Chapter 6. Hook Interface 65

void setNodeTraditional (String name)

Set the node in traditional mode. When a node is traditional the anticipable

attribute is set to false. This method must be used if you want to execute this

activity in a traditional. Refer to Section 2.3.1 for an explanation of traditional

versus anticipable mode.

An exception is thrown in the following case:

− If the issuing application does not have ADMIN privileges

void setNodeType (String name, int type)

Set the node type. Change the current type of the node (if node is not

executing). See Table 5-1, Constant Values for Node Types.

An exception is thrown in the following case:

− If the issuing application does not have ADMIN privileges

void addInitiatorMapper (String mapperName, int mapperType)

Add or Update a mapper for the INITIATOR role. This type of mapper uses a

Java file loaded at run time. If the mapper name exists it is updated,

otherwise the mapper name is created.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If a parameter value is invalid

66

5.5.6 Iterating Activities

void addIteration(String from, String to, String condition)

Add a new iteration between two nodes. The intent is to iterate “from” node

B “to” node A. The “from” parameter is the name of the first node (node

testing a value), the “to” parameter is the name of the node to execute

based on the value.

 Note:

The iteration must be added to the node executing last (“from” or Activity B

below). In the following figure, activity A is executed, then some activities

between A and B take place, and then B is executed. After the processing of B,

control goes back to A if the iteration condition set in B evaluates to true.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the iteration request does meet the listed constraints in Section 2.3.3,

Iterations.

Activity A (To) …
Edge Edge

Activity B (From)

Iteration from B to A

Figure 5-5. Iteration Example

The iteration condition may be something like “lastNodeProperty.equals

(\”value\”)”. The value of the property is evaluated depending on the execution

of the process. That is, the value may change during process execution and is

evaluated to make the iteration decision.

void deleteIteration (String from, String to)

Delete iteration between two nodes.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the “From” and/or “To” nodes do not exist

 Chapter 6. Hook Interface 67

5.5.7 Getting Information about Nodes in the Project

Object getNodes ()

Returns project nodes data as an array of StrutsNodeValue. This is especially

useful for a Struts-based web application, but may be used in any type of

application.

Collection getNodesNames ()

Return a String Collection of all node names in the project. If no nodes exist,
“NULL” is returned.

5.5.8 Getting Information about a Specific Node

BnNodeValue getNode (String projectName, String nodeName)

Get Node Value from a specific project (See Table 11.2.8, BnNodeValue

Attributes).

An exception is thrown in the following cases:

− If the project name does not exist

− If the named project is not accessible by this requestor

String getNodeDeadline (String nodeName)

Return a node deadline. Activity deadline is the latest date or time by which

the activity must complete. If no deadline exists null is returned. This call is

deprecated and replaced by getNodeDeadlines.

An exception is thrown in the following case:

− If the node name does not exist

Collection getNodeDeadlines (String nodeName)

Return a collection of deadlines for the node. Activity deadline is the latest

date by which the activity must finish. If no deadlines exist for the node, null is

returned.

An exception is thrown in the following case:

− If the node name does not exist

String getNodeDescription (String name)

Return the node description. Node description represents explicit execution

related information for this task. See Table 11.2.8, BnNodeValue Attributes.

68

String getNodeExecutor (String name)

Return the node executor. Return the name of the user executing the activity.

See Table 11.2.8, BnNodeValue Attributes.

Collection getNodeProperties (String nodeName)

Returns a (BnNodePropertyValue Collection) of Node properties as a list of

pair key/value properties assigned to the node. See Table 11.2.8,

BnNodeValue Attributes. If no key/value properties exist, “NULL” is returned.

BnNodePropertyValue getNodeProperty (String nodeName, String key)

Return Node property value. Get the pair key/value properties associated to

the node. See Table 11.2.8, BnNodeValue Attributes. If no key/value

properties exist, “NULL” is returned.

int getNodeState (String name)

Return the state of the node. See Table 11.2.8, BnNodeValue Attributes.

int getNodeType (String name)

Return the type of the node. See Table 11.2.8, BnNodeValue Attributes.

BnNodeValue getNodeValue (String name)

Return the node name Value. See Table 11.2.8, BnNodeValue Attributes.

An exception is thrown in the following case:

− If the node name does not exist

boolean getNodeAnticipable (String name)

Return true if the node is ready for execution in anticipated mode. See Table

11.2.8, BnNodeValue Attributes.

 Chapter 6. Hook Interface 69

5.5.9 Deleting an Activity

void deleteNode (String name)

Delete a node from the project.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the named node is executing

− If the named node has a sub process (must delete sub process first)

void deleteNodeProperty (String nodeName, String key)

Delete a property of a node. Deletes the node property associated with this

key

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the named key/property is not found

− If the named node does not exist

5.5.10 Model Definition Check

void checkModelDefinition ()

This functionality was added in Bonita v2. This method checks that the model

is defined correctly. It must be called at the end of process model definition.

Presently only iteration guidelines (explained in Section 2.3.3. Iterating

Activities) are verified, but in future versions this method may include other

model definition verification.

70

checkModelDefinition Method Verification

The next two examples explain the checkModelDefitinion () method verification.

Iteration

cond4
Example1

cond2

cond1 cond3
A DCB E F

Iteration

path1
Example2

path2

A
path3

DCB E

Figure 5-6. Check Model and Verification

 Chapter 6. Hook Interface 71

checkIteration method:

• Checks that the iteration's conditions are not empty

• In example1 it is not possible to have a null value: i.e. cond2.equals (""). In that

case a HeroException is thrown.

 Note:

The value "true" is NOT allowed as this creates a condition that produces an

infinite loop.

• Checks if a path between from � to activities exists and is defined in the

iteration. This process repeated to guarantee that the model is well defined

(some transitions could have been removed). If the path does not exist, an

exception is thrown.

• If multiple iterations exist in the same node, then a check verifies that the

iteration conditions are different. If the conditions are not different, an

exception is thrown. In example2 of Figure 5-6 (Check Model and

Verification), path1 condition must be different from path2 condition.

checkMandatoryIterationConditions ():

• Verifies that mandatory conditions on the out edges of nodes creating an exit

point from the iteration.

In example1 of Figure 5-6 (Check Model and Verification), cond1 and cond3

have to be set.

− throws a HeroException if these edges don't specify a condition

− throws a HeroException if the condition is empty (NULL): cond1.equals("")

− throws a HeroException if the condition value is "true":

cond1.equals("true")

• Verifies that mandatory conditions on the out edges for the node starting the

iteration differ from the iteration's condition.

In example1 of Figure 5-6 (Check Model and Verification), cond1 must be

different from cond2 and cond3 must be different from cond4.

Throw a HeroException if the iteration's starting condition and out edge's

condition are equal.

72

Code Example

 .../...

 ProjectSessionHome prjHome = (ProjectSessionHome) ProjectSessionUtil.getHome();

 ProjectSession prjSession = prjHome.create();

 prjSession.initModel("DoubleIteration");

 try {

// Activities creation

prjSession.addNode("A", hero.interfaces.Constants.Nd.AND_JOIN_NODE);

prjSession.addNode("B", hero.interfaces.Constants.Nd.AND_JOIN_AUTOMATIC_NODE);

prjSession.addNode("C", hero.interfaces.Constants.Nd.AND_JOIN_AUTOMATIC_NODE);

prjSession.addNode("D", hero.interfaces.Constants.Nd.AND_JOIN_AUTOMATIC_NODE);

prjSession.addNode("E", hero.interfaces.Constants.Nd.AND_JOIN_AUTOMATIC_NODE);

prjSession.addNode("F", hero.interfaces.Constants.Nd.AND_JOIN_AUTOMATIC_NODE);

// Setting Activities types

prjSession.setNodeTraditional("A");

prjSession.setNodeTraditional("B");

prjSession.setNodeTraditional("C");

prjSession.setNodeTraditional("D");

prjSession.setNodeTraditional("E");

prjSession.setNodeTraditional("F");

// Adding project properties

prjSession.setProperty("condition1", "50"); // % to do 1st iteration

prjSession.setProperty("condition2", "50"); // % to do 2nd iteration

prjSession.setProperty("randomNum", "0"); // random number who decides

 // if we iterate or not

// Adding edges between activities

prjSession.addEdge("A", "B");

prjSession.addEdge("B", "C");

prjSession.addEdge("C", "D");

String fromDtoE = prjSession.addEdge("D", "E"); // Exit conditions from iterations

String fromEtoF = prjSession.addEdge("E", "F");

// Adding 'D' & 'E' edge conditions

prjSession.setEdgeCondition(fromDtoE,

"(new Integer(randomNum).intValue() >= new Integer(condition1).intValue())");

prjSession.setEdgeCondition(fromEtoF,

"(new Integer(randomNum).intValue() >= new Integer(condition2).intValue())");

// Adding D & E hooks (that generate random values saved in randomNum property)

.../...

// Adding iterations: between D--->B and E--->C

prjSession.addIteration("D", "B",

"(new Integer(randomNum).intValue() < new Integer(condition1).intValue())");

prjSession.addIteration("E", "C",

"(new Integer(randomNum).intValue() < new Integer(condition2).intValue())");

// Check model definition

prjSession.checkModelDefinition();

 }

Figure 5-7. CheckModelDefinition Code Example

 Chapter 6. Hook Interface 73

5.6 Managing Edges

5.6.1 Adding an Edge to an Activity

An edge is a way to establish a dependency between two activities.

Edges have unique names in the scope of the project. The name of the edge can

be assigned by the application, or automatically generated by BONITA. Edges

may also be created using the ProEd facility.

String addEdge (String in, String out);

The two activities, named “in” and “out”, are connected by a new edge.

The method returns the name of the newly created edge. In this case the

name is assigned by BONITA.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the “IN” or “OUT” node does not exist

− If a path from “IN” to “OUT” does not exist

− If an edge already exists

− If “OUT” is in execution

5.6.2 Deleting an Edge

void deleteEdge (String name);

The edge with the parameter “name” is deleted.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If the named edge does not exist

− If out edge is in execution

 Note:

If JMS is enabled, a message is sent.

74

5.6.3 Getting Connected Activities from an Edge

String getEdgeInNode (String edgeName);

Return the name of the inbound node of the given edgeName.

An exception is thrown in the following case:

− If the named edge does not exist

String getEdgeOutNode (String edgeName);

Get back the name of the outbound node of the given edgeName.

An exception is thrown in the following case:

− If the named edge does not exist

5.6.4 Setting a Condition on an Edge

void setEdgeCondition (String edge, String condition);

A condition operates on the value of a property of the activities and is

expressed in Java. Any string that can be the operand of an “if” statement is

valid. Assuming that the property Prop is defined for a given activity, any of

the following examples constructs is a valid condition:

Condition = “Prop.equals (\“SomeString\”)

Condition = “(Prop.indexOf (\“SomePart\”) == 2)”

Condition = “(Prop.lenght () == 9)”

An exception is thrown in the following case:

− If the issuing application does not have ADMIN privileges

 Note:

During execution an Edge condition is evaluated. If a condition does not follow

correct format an exception is thrown.

 Chapter 6. Hook Interface 75

5.6.5 Getting the Condition for an Edge

String getEdgeCondition (String edge);

Get the edge Condition. This condition is evaluated at run-time in order to

perform activity transition. See setEdgeCondition above.

An exception is thrown in the following case:

− If the named edge does not exist

5.6.6 Get All Existing Edges in a Project

Collection getEdgesNames ()

Return a String collection of all existing edges in the project. If no edges exist,

“NULL” is returned.

5.6.7 Get All Existing Edges for an Activity

Collection getNodeInEdges ()

Return a (String Collection) of all existing inbound edges for a given node. If

no edges exist, “NULL” is returned.

Collection getNodeOutEdges ()

Return a (String Collection) of all existing outbound edges for a given node. If

no edges exist, “NULL” is returned.

76

5.6.8 Reading an Edge as a Java Object

hero.interfaces.BnEdgeValue getEdgeValue (String name);

Get the edge value. See Table 11-2.

An exception is thrown in the following case:

− If the named edge does not exist

5.6.9 Changing the State of an Edge

Void setEdgeState (hero.interfaces.BnEdgeLocal edge, int state);

Set the edge state (see the following table) to integer state. Table 11-2,

BnEdgeValue Attributes.

 Note:

If JMS is enabled, a message is sent.

CONSTANT VALUE

 INITIAL 0

 ACTIVE 1

 ANTICIPATING 2

 DEAD 3

Table 5-6. Edge Constants States

 Chapter 6. Hook Interface 77

 Chapter 7. User Management Interface 79

Chapter 6. Hook Interface

Hooks are code executed at specific points during an activity life cycle.

Hooks may be coded in a scripting language (i.e. XPDL), or as a java library (java

code).

Hooks may be defined at the project level. These hooks are activated when a

project is instantiated or when the project finishes.

Hooks may also be defined at the activity level. These hooks are activated only in

the context of the related activity.

The hook interface is divided in two sets (Hooks and InterHooks).

• Interactive Hooks/(InterHooks):

Script hooks are called interactive Hooks. Calls relative to interhooks contain

“Inter” in their name. Their hook type is hero.hook.Hook.BSINTERACTIVE.

• Hooks execute upon detection of one of the following events. If the hook

does not include that method, an exception is raised. This means a “hook”

routine may contain multiple methods dealing with the listed events but the

hook must specify which event is acted.

For example, the following code lists multiple hook events, but the return

String from getMETAdata specifies what event this hook code acts upon.

public String getMetadata() {

return Constants.Nd.BEFORETERMINATE;
}
public void create(Object b,BnNodeLocal n) throws HeroHookException {}
public void beforeStart(Object b,BnNodeLocal n) throws HeroHookException {}
public void afterTerminate(Object b,BnNodeLocal n) throws HeroHookException {}
public void onCancel(Object b,BnNodeLocal n) throws HeroHookException {}
public void anticipate(Object b,BnNodeLocal n) throws HeroHookException {}
public void onDeadline(Object b,BnNodeLocal n) throws HeroHookException {}
public void afterStart(Object b, BnNodeLocal n) throws HeroHookException {}
public void onReady(Object b,BnNodeLocal n) throws HeroHookException {}
public void beforeTerminate(Object b,BnNodeLocal n) throws HeroHookException {
try {

String nodeName = n.getName();
BnProjectLocal project = n.getBnProject();
String prjName = project.getName();

For more examples refer to Section 3 of the BSOA Workflow Developer’s

Guide.

80

Table 6-1 displays Node Hooks events:

EVENT VALUE METHOD

hero.interfaces.Constants.Nd.BEFORESTART “beforeStart” beforeStart

hero.interfaces.Constants.Nd.AFTERSTART “afterStart” afterStart

hero.interfaces.Constants.Nd.BEFORETERMIN

ATE

“beforeTerminat

e”;

beforeTermina

te

hero.interfaces.Constants.Nd.AFTERTERMINA

TE

“afterTerminate”; afterTerminat

e

hero.interfaces.Constants.Nd.ONCANCEL “onCancel” onCancel

hero.interfaces.Constants.Nd.ANTICIPATE “anticipate”; anticipate

hero.interfaces.Constants.Nd.ONREADY “onReady”; onReady

hero.interfaces.Constants.Nd.ONDEADLINE “onDeadLine”; onDeadline

Table 6-1. Node Hooks Events Constants

Project Hooks Events:

EVENT VALUE METHOD

hero.interfaces.Constants.Pj.ONINSTANTIATE “onInstantiate” onInstantiate

hero.interfaces.Constants.Pj.ONTERMINATE “onTerminated” onTerminated

Table 6-2. Project Hook Events Constants

Different hooks types taken in to account by the Bonita engine:

HOOK TYPE VALUE

hero.interfaces.Constants.Hook.JAVA 0

hero.interfaces.Constants.Hook.BSINTERACTI

VE

6

Table 6-3. Hook Type Constants

 Chapter 7. User Management Interface 81

6.1 Project Hook Management

6.1.1 Creating Hooks

void addHook (String hookName, String eventName, int hookType)

Add an existing hook file to the project. This hook type references a Java

class file loaded at run time. The parameter “hookName” represents the java

class file to load by the system at run time. These class files must be located in

the application server classpath definition to execute correctly.

An exception is thrown in the following cases:

− If the issuing application does not have “ADMIN” privileges

− If hook name already exists in the project

− If an invalid value is specified for type (see Table 6-3, Hook Type

Constants)

void addInterHook (String hookName, String eventName, int

hookType, String value)

Add an InterHook to the project. Creates a new hook associated to all

project activities. See Section 6.1.3, Managing Hooks, for parameter values.

The fourth parameter “String value” represents a hook script used with

InterHook. See API call addNodeInterHook for a script example.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− if hookName already exists

void setInterHookValue (String hook, String value)

Set the Interhook value. This value is the new Interhook script associated to all

project nodes. See addNodeInterHook below for a script example.

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

82

6.1.2 Deleting Hooks

void deleteHook (String hookName)

Deletes the hook specified by hookName in current project.

An exception is thrown in the following cases:

− If the issuing application does not have “ADMIN” privileges

− If hook name does not exist in the project

void deleteInterHook (String hookName)

The hook or interHook specified by “hookName” is deleted from all project

nodes.

An exception is thrown in the following cases:

− If the issuing application does not have “ADMIN” privileges

− If hook name does not exist in the project

6.1.3 Managing Hooks

Collection getHooks ()

Return a (ProjectHooksValue Collection) of all the hook names assigned to

the project. If no hooks exist in the project, “NULL” is returned.

void executeProcessHook ()

Execute the OnInstatiate hook associated to this process. This method can

only be called before a workflow model is instantiated.

An exception is thrown in the following case:

− If the project type indicates MODEL status (this would indicate the

process is already instantiated.)

 Chapter 7. User Management Interface 83

6.2 Node Hook Management

6.2.1 Creating Specific Hooks

void addNodeHook (String nodeName, String hookName,

String eventName, int hookType)

Add an existing hook file to the node (activity). The parameter “hookName”

represents the java class or TCL file loaded by the system at run time. These

classes must exist in the application server classpath definition for correct

hook execution. Place the hooks classes in

BONITA_HOME\src\resources\hooks and redeploy Bonita (an ant or ant light-

main tasks). Please refer to the Workflow Process Console Developers Guide

for detailed explanation.

An exception is thrown in the following cases:

− If the issuing application does not have “ADMIN” privileges

− If nodeName does not exist

− If hookName already exists

− If an invalid parameter is specified (See Table 6-3. Hook Type Constants)

void addNodeInterHook (String nodeName, String hookName,

String eventName, int hookType, String script)

The interhook name “hookName” is added to the node specified by

nodeName. The hook activation is triggered whenever the event

“eventName” occurs for this activity. See events defined in Table 6-1, Node

Hooks Events Constants. The InterHook uses a Java or a beanshell scripting file

(See example below), executed at run time.

An exception is thrown in the following cases:

− If nodeName does not exist

− If the issuing application does not have ADMIN privileges

− If hookName already exists

− If an invalid parameter is specified (See Table 6-3, Hook Type Constants)

Script file example:

The API call “addNodeInterHook” references a value “script” in parameter

four. As shown below, “script is defined as an ASCII string.

string script =

 "import hero.interfaces.BnProjectLocal;\n"

 + "import hero.interfaces.BnNodeLocal;\n"

 + "afterStart (Object b,Object n) {\n\n\n"

 + "System.out.println(\"InteractiveBnNode Hook test, node:

 \"+n.getName());"

 + "}";

prjSession.addNodeInterHook("projectInterTest",hero.interfaces

.Constants.Nd.AFTERSTART,Constants.Hook.BSINTERACTIVE,script);

84

void setNodeInterHookValue (String node, String hook, String

value)

Set the node Interhook value. This defines the script used by this node for the

specified hook.

An exception is thrown in the following case:

− If the issuing application does not have ADMIN privileges

6.2.2 Deleting Specific Hooks

void deleteNodeHook(String nodeName, String hookName)

Delete a node hook. Delete the hook (specified by hookName) for the

activity/node specified by nodeName.

An exception is thrown in the following cases:

− If hookName does not exist.

− If nodeName does not exist

− If the issuing application executing the function does not have ADMIN

privileges.

− If the EJB does not permit removal

void deleteNodeInterHook(String nodeName, String interHookName)

Delete a node interHook in node specified by nodeName. The hook or the

interHook with name interHookName is deleted from the node.

An exception is thrown in the following cases:

− If interHookName does not exist.

− If nodeName does not exist

− If the issuing application executing the function does not have ADMIN

privileges

− If the EJB does not permit removal

 Chapter 7. User Management Interface 85

6.2.3 Managing Specific Hooks

Collection getNodeHooks (String nodeName)

Return a (NodeHookValue Collection) of the Node hooks of the specified

node. If no hooks exist, “NULL” is returned.

An exception is thrown in the following case:

− If nodeName does not exist.

Collection getNodeInterHooks (String nodeName)

Return a (NodeInterHookValue Collection) of all Interactive Node hooks of

the specified node. If no interhooks exist, “NULL” is returned.

An exception is thrown in the following case:

− If nodeName does not exist.

BnNodeInterHookValue getNodeInterHook(String nodeName,

String interHook)

Return all the node inter hook data associated to the hook of name

« interHook » for the node « nodeName ». If interhook does not exist, “NULL” is

returned.

An exception is thrown in the following case:

− If nodeName does not exist.

String getNodeInterHookValue(String node, String hook)

This method returns the hook script associated with the interhook name

« hook » of this node. If Hook value does not exist, null is returned.

An exception is thrown in the following cases:

− If node Name does not exist

− If application does not have “ADMIN” privileges

86

6.2.4 Code Example

 Chapter 7. User Management Interface 87

 /***/

 /************** API Documentation - Sample 3 *******************/

 //************** Activities in Project *****************/

 /***/

 System.out.println("Activities creation ... ");

 try {

 prjSession.addNode("Activity 1",Constants.Nd.AND_JOIN_NODE);
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 try {

 prjSession.addNode("Activity 2",Constants.Nd.AND_JOIN_NODE);
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 try {

 prjSession.addNode("Activity 3",Constants.Nd.AND_JOIN_NODE);
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("Activity 3 definition ... ");
 try {

 Date dateLim = new Date(2005,05,02) ;

 prjSession.setNodeDeadline("Activity 3",dateLim.getTime()) ;
 prjSession.setNodeDescription("Activity 3","Activity 3 Description") ;

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("Setting Activities types");

 try {

 prjSession.setNodeTraditional("Activity 1");

 prjSession.setNodeAutomatic("Activity 2");

 prjSession.setNodeTraditional("Activity 3");
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("Setting node properties which will not be propagated to other nodes");
 try {

 prjSession.setNodeProperty("Activity 1","color","blue",false);

 System.out.println("Setting node properties which will be propagated to other nodes");
 prjSession.setNodeProperty("Activity 1","price","expensive",true);

 prjSession.setNodeProperty("Activity 1","shape","square");

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("Adding edges between activities");

 try {

 prjSession.addEdge("Activity 1","Activity 2");

 prjSession.addEdge("Activity 2","Activity 3");

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("Getting names of all the nodes in the project");

 Collection nodesNames = prjSession.getNodesNames() ;

 j = nodesNames.iterator();

 while (j.hasNext())

 {
 String nodeName = (String)j.next();

 System.out.println("Node : " + nodeName + " (anticipable : " + prjSession.getNodeAnticipable(nodeName) + ")");

 Collection nodeProperties = prjSession.getNodeProperties(nodeName) ;
 Iterator k = nodeProperties.iterator() ;

 while (k.hasNext())

 {
 hero.interfaces.BnNodePropertyValue nodeProperty = (hero.interfaces.BnNodePropertyValue)k.next();

 try {

 String nodePropertyKeyName = nodeProperty.getTheKey();
 String nodePropertyValue = nodeProperty.getTheValue();

 System.out.println(" --> Property (Key, Value) : " + nodePropertyKeyName + "/" + nodePropertyValue);

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 }

88

 System.out.println("Node deletion");

 try {

 prjSession.deleteNode("Activity 3") ;

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("Node deletion verification");

 try {

 nodesNames = prjSession.getNodesNames() ;

 j = nodesNames.iterator();

 while (j.hasNext())

 {

 String nodeName = (String)j.next();

 System.out.println("Node : " + nodeName); }

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

Figure 6-1. Code Example Activity Properties

 Chapter 7. User Management Interface 89

 Chapter 8. Project Role Management 91

Chapter 7. User Management Interface

The following methods are dedicated to managing users for a particular workflow

model or instance.

7.1 Getting the List of All Bonita Registered Users

Collection getAllUsers ()

Return a (String Collection) with the names of all registered users in the Bonita

System. If no users are found, “NULL” is returned.

7.2 Getting the List of Users for a Project

Collection getUsers ()

Return a (String Collection) of all users of the current project. If no users exist,

“NULL” is returned.

7.3 Adding a User to a Project

void addUser (String username);

Add a user to this project (This user must exist in the Bonita database)

An exception is thrown in the following cases:

− If the user name is not found for the project (user not registered)

− If the issuing application does not have “ADMIN” privileges

92

7.4 Checking Whether a User Is Part of a Project

boolean containsUser (String username);

Test if the “username” is associated to this project. Returns “true” if user found.

7.5 Code Example

 /***/

 /************** API Documentation - Sample 4 *******************/

 //************** Users in Project *****************/

 /***/

 System.out.println(" Getting users names of the project ");

 try {

 Collection usersNames = prjSession.getUsers() ;

 j = usersNames.iterator();

 while (j.hasNext())

 {

 String userName = (String)j.next();

 System.out.println("User : " + userName); }

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println(" Adding John in the project ");

 try {

 prjSession.addUser("john") ;

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 processName = prjSession.getName() ;

 System.out.println("Current Process : " + processName + " contains john :" + prjSession.containsUser("john")) ;

Figure 7-1. Code Example Get User Names

 Chapter 9. User Session Interface 93

Chapter 8. Project Role Management

8.1 Managing Project Roles

Using ProjectSession Bean

A project role is the means by which a User is associated to an activity. A project

role has a name and a description.

First, roles must be declared in a project. Then the role(s) can be associated to

Users and Activities.

8.1.1 Declaring a New Role in the Project

void addRole (String roleName, String description);

This function creates a role within this project. The created role is specific to

this project.

An exception is thrown in the following case:

− If the issuing application does not have “ADMIN” privileges

void deleteRole (String roleName)

Delete a role (and the Role mapper if it exists).

An exception is thrown in the following cases:

− If the issuing application does not have ADMIN privileges

− If roleName does not exist

94

8.1.2 Allocating a Role to a User

Roles are assigned to users in the scope of given project. That is, a user may

assume a different role for a different project or, in the scope of a project; a user

can assume several roles.

void setUserRole (String userName, String roleName);

Assigns to “username” the role specified in “roleName”.

An exception is thrown in the following cases:

− If the issuing application does not have “ADMIN” privileges

− If the user name and/or role name is not found

void unsetUserRole (String userName, String roleName);

Remove the role specified by “roleName” from the user specified by

“username”.

An exception is thrown in the following cases:

− If the issuing application does not have “ADMIN” privileges

− If the user name is not found

− If the role name is not found

 Note:

If JMS is enabled, a message is issued.

8.1.3 Getting a List of Roles That a User Can Assume

Collection getUserRoles (String userName)

Return a (BnRoleLocal Collection) of all roles available for this user

(independently of any project). If no roles exist, “NULL” is returned.

An exception is thrown in the following case:

− If the user name is not found

 Chapter 9. User Session Interface 95

8.1.4 Getting a List of Roles That a User Can Assume in the Scope

of a Project

Collection getRoles ()

Return a (BnRoleLocal Collection) of all roles of the current project. These

roles are associated with the nodes included in the project. If no roles exist,

“NULL” is returned.

Collection getRolesNames ()

Return a (String Collection) of the names of all roles for the current project as

a collection of String objects. If no roles are found, “NULL” is returned.

Collection getUserRolesInProject (String userName)

Return a (BnRoleValue Collection) of the roles of this user in the current

project. If no roles are assigned for the user, “NULL” is returned.

An exception is thrown in the following case:

− If the user name is not found

Collection getUserRolesInProjectNames (String userName)

Return a (String Collection) of the role names of the user in the current

project. If no roles are assigned, “NULL” is returned.

An exception is thrown in the following case:

− If the user name is not found

96

8.1.5 Associating an Activity with a Role

Only a single role can take over a given activity.

String getNodeRoleName (String nodeName)

Obtain the role name of the specified node.

An exception is thrown in the following case:

− If the node name is not found

void setNodeRole (String activityName, String role)

Sets or changes the role of an activity if the role name already exists. If JMS is

enabled a message is issued.

An exception is thrown in the following cases:

− If the issuing application does not have “ADMIN” privileges

− If the activity name is not found

− If the role name is not found

 Chapter 9. User Session Interface 97

8.1.6 Code Example

 /***/

 /************** API Documentation - Sample 5 *******************/

 //************** Roles in Project *****************/

 /***/

 System.out.println("Adding a Custumer role for john in the current project ");

 try {

 prjSession.setUserRole("john","Customer") ;

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println(" Getting role names of the project ");

 try {

 Collection rolesNames = prjSession.getRolesNames() ;

 j = rolesNames.iterator();

 while (j.hasNext())

 {

 String roleName = (String)j.next();

 System.out.println("Role : " + roleName); }

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println(" Getting role names for john user in this project ");

 try {

 Collection johnRolesNames = prjSession.getRolesNames() ;

 j = johnRolesNames.iterator();

 while (j.hasNext())

 {

 String johnRoleName = (String)j.next();

 System.out.println("John role : " + johnRoleName);

 }

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println(" Setting role names for an activites of this project ");

 try {

 System.out.println(" --> Getting the actuel role names for Activities ");

 try {

 System.out.println(" --> Activity 1 role : " + prjSession.getNodeRoleName("Activity 1"));

 System.out.println(" --> Activity 2 role : " + prjSession.getNodeRoleName("Activity 2"));

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println(" --> Setting activities new roles ");

 try {

 prjSession.setNodeRole("Activity 1","admin") ;

 prjSession.setNodeRole("Activity 2","Customer") ;

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println(" --> Getting the new role names for Activities ");

 try {
 System.out.println(" Activity 1 role : " + prjSession.getNodeRoleName("Activity 1"));

 System.out.println(" Activity 2 role : " + prjSession.getNodeRoleName("Activity 2"));

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

Figure 8-1. Code Example Project Roles

98

8.2 Mappers

8.2.1 Adding and Deleting Role Mappers

void addRoleMapper (String roleName, String mapperName,

int mapperType)

Add an existing mapper to the role « roleName ». This type of mapper uses a

Java file loaded at run time. If a role mapper does not exist, one is created

with mapperName.

The mapperType can be one of the following:

• Constants.Mapper.LDAP for a LDAP Mapper

• Constants.Mapper.PROPERTIES for a Properties Mapper

• Constants.Mapper.CUSTOM for a custom Mapper

An exception is thrown in the following case:

− If the issuing application does not have “ADMIN” privileges

− If the role name does not exist

− If an invalid value is used

void deleteRoleMapper (String roleName)

Delete a role mapper. If “roleName” does not exist an exception is thrown.

An exception is thrown in the following cases:

− If the issuing application does not have “ADMIN” privileges

− If the role name does not exist

Collection getRoleMappers ()

Return a (BnRoleMapperValue Collection) of all the role mappers of the

project. If “roleMapper “does not exist, “NULL” is returned.

 Chapter 9. User Session Interface 99

8.2.2 Code Example

.../....

 ProjectSessionHome projectSessionh=ProjectSessionUtil.getHome();

 ProjectSession pss=projectSessionh.create();

 String role1="Admintoto";

 pss.addRole(role1, "role added for activity 1");

 String role2="Admintiti";

 pss.addRole(role2, "role added for activity 2");

 // NODE 1

 pss.addNode("h1",Constants.Nd.AND_JOIN_NODE);

 pss.setNodeRole("h1",role1);

 // NODE 2

 pss.addNode("h2",Constants.Nd.AND_JOIN_NODE);

 pss.setNodeRole("h2",role2);

 // add MAPPERS

 pss.addRoleMapper(role1,"hero.mapper.mapper1",Constants.Mapper.LDAP);

pss.addRoleMapper(role2,"hero.mapper.mapper2",Constants.Mapper.PROPERTIES);

// Custom mapper : Constants.Mapper.CUSTOM

 pss.instantiateProject(projectName);

..../....

Figure 8-2. Code Example Add Role Mapper

Examples of Mapper code are available under:

 BONITA_HOME/src/resources/mappers/hero/mapper.

100

8.3 Performer Assignment

8.3.1 Addition of a Performer Assignment to a Node

void addNodePerformerAssign (String nodeName,

String performerAssignName, int performerAssignType,

String propertyName)

Add an existing performerAssign to the node. This type of performerAssign

uses a Java file loaded at run time.

PerformerAssignType can be one of the following:

• Constants.Performer.CALLBACK for a Callback Performer Assignment

• Constants.Performer.PROPERTIES for a Properties Callback Assignment

Multiple assignments are possible but only the last assignment is valid and

reflected in any “get”. This means, if the node has a current performer

assignment, the function updates the current assignment with the new

values.

An exception is thrown in the following cases:

− If the issuing application does not have “ADMIN” privileges

− If the node name does not exist

 Chapter 9. User Session Interface 101

8.3.2 Code Example

..../....

 // NODE 1

 pss.addNode("h1",Constants.Nd.AND_JOIN_NODE);

 pss.setNodeRole("h1",role1);

 // NODE 2

 pss.addNode("h2",Constants.Nd.AND_JOIN_NODE);

 pss.setNodeRole("h2",role2);

 // NODE 3

 pss.addNode("h3",Constants.Nd.AND_JOIN_NODE);

 pss.setNodeRole("h3",role3);

.../....

 // activity property

 pss.setNodeProperty("h3","acteurH3","gaillarr");

..../....

 // PERFORMER ASSIGN

 pss.addNodePerformerAssign("h2",

"hero.performerAssign.CallbackSelectActors" ,

Constants.Performer.CALLBACK,"");

pss.addNodePerformerAssign("h3",

"hero.performerAssign.PropertySelectActors" ,

Constants.Performer.PROPERTIES ,"acteurH3");

Figure 8-3. Performer Assignment Code Example

BnNodePerformerAssignValue getNodePerformerAssign (String

nodeName)

Return a value of type BnNodePerformerAssignValue. If no performer

assignment has occurred a null value is returned. See Table 11-6,

BnNodePerformerAssignValue Attributes.

An exception is thrown in the following case:

− If the node name does not exist

BnRoleLocal getNodeRole (String nodeName)

Return BnRoleLocal object – with role data.

BnNodeLightValue getNodeLightValue (String name)

Return the node Light Value basic node information.

An exception is thrown in the following case:

− If String name is not found

102

 Chapter 10. Bonita Pagination 103

Chapter 9. User Session Interface

9.1 Principle

The User Session interface provides access to process execution control functions.

The Session interface is initiated for a given user. Only the processes where the

User is declared are accessible.

For EJB Session access, the User interface automatically retrieves the identity of

the calling user in the J2EE security context. Therefore, calling the User interface

from an unidentified user context fails.

Much of the User interface methods require the Project name as a parameter.

The project name may be retrieved by the application logic. Alternatively, the

application may retrieve the project name using various search criteria.

 Note:

At this time, the corresponding search methods are not implemented.

The UserSessionBean is a stateful session bean providing user API methods for

obtaining information on user ToDo lists and started activities. Also, the

UserSessionBean may be used to produce activity events (i.e. start, terminate,

cancel).

The UserSessionBean is based on the Bonita Engine Session Bean: a recursive

implementation that manages previous execution operations and propagates

the activity state changes to activities connected to this one.

The User Session Bean API provides information about user projects and activities

(i.e. project list, ToDo list, and activity list), and is also used to obtain useful

information about project instances or user preferences. With this API, users can

perform task/activities using start, terminate, and cancel methods. The user may

also terminate workflow processes.

Coding examples using the User Session interface API are shown in the following

sections.

9.2 Creating the UserSessionBean

The UserSessionBean is seen as a connection handle into the BONITA workflow

System. After user authentication, this handle must be created with the user

identity.

Subsequent calls to the User Session API functions are related to this identity.

104

Code Example

im p o r t j a v a x .s e c u r i t y .a u th . lo g i n .L o g in C o n te x t ;

im p o r t h e r o .c l i e n t . t e s t .S im p le C a l lb a c k H a n d le r ;

im p o r t h e r o . in t e r f a c e s .U s e rS e s s io n ;

im p o r t h e r o . in t e r f a c e s .U s e rS e s s io n H o m e ;

im p o r t h e r o . in t e r f a c e s .U s e rS e s s io n U t i l ;

im p o r t h e r o . in t e r f a c e s .C o n s t a n t s ;

im p o r t j a v a .u t i l .* ;

p u b l i c c l a s s S a m p le U s e rA p i {

 s t a t ic p u b l i c v o id m a in (S t r in g [] a r g s) t h ro w s E x c e p t io n {

 / / U s e r A d m in lo g in
 c h a r [] p a s s w o r d = { 't ', 'o ', 't ', 'o '} ;

 S im p le C a l lb a c k H a n d le r h a n d le r = n e w S im p le C a l lb a c k H a n d le r (" a d m in " ,p a s sw o r d) ;

 L o g in C o n te x t l c = n ew L o g in C o n t e x t (" T e s tC l i e n t " , h a n d le r) ;

 l c . l o g in () ;

 / / U s e r S e s s io n B e a n C r e a t i o n u s in g R em o te In t e r f a c e

 U s e r S e s s io n H o m e u s rH o m e = (U s e r S e s s io n H o m e) U s e r S e s s io n U t i l .g e tH o m e () ;

 U s e r S e s s io n u s r S e s s io n = u s rH o m e .c r e a t e () ;

Figure 9-1. Session Interface Code Example

9.3 User Properties

9.3.1 Setting User Properties

void setUserProperty (String key, String value)

This function is in the UserSessionBean. Using name “key”, this function sets the

property (identified by the key), to the value “value”.

If the property already exists, the current value is overridden. If the property

does not exist, the key is created and its value is set to “value”.

An exception is thrown in the following cases:

− If the key name does not exist

− If an invalid value is used

void setUserMail (String userName, String mail)

Set the mail of this user into the Bonita database.

An exception is thrown in the following case:

− If the user name does not exist

 Chapter 10. Bonita Pagination 105

9.3.2 Getting User Information

String getUser ()

Return the name of the current authenticated User.

String getUserPassword ()

Return the current user password

String getUserMail (String userName)

Return the mail address for this user from Bonita database.

Collection getUserProperties ()

Return a (BnUserPropertyValue Collection) of the properties defined for the
current authenticated User.

Collection getModelList ()

Return a (BnProjectLightValue Collection) of the current Workflow models

associated with this user.

If no models exist for the user, null is returned.

Collection getModelList (int offset, int numrows)

Return a collection of BnProjectLightValue objects of a user model list starting

with “offset” for “numrows”. This method is equivalent to getProjectList but

returns only the current models of the user.

If no models exist, null is returned.

Collection getModels ()

Return a (BnProjectLightValue Collection) of the current available Workflow

models. If the user issuing the API call is part of an Initiator Mapper (see

section 2.8), then the initiator mapper file is used.

An exception is thrown in the following case:

− No active models exist

106

Collection getModelsLight ()

Return a (BnProjectLightValue Collection) of the current available Workflow

models without a check for Initiator Mapper.

An exception is thrown in the following case:

− No active models exist

Collection getCooperativeList ()

Similar to getProjectsList, returns a (BnProjectLightValue Collection) of the

current available Workflow projects with type cooperative.

If no cooperative projects exist for the user, null is returned.

Collection getCooperativeList (int offset, int numrows)

Return a collection of BnProjectLightValue objects of a user cooperative

projects list starting with “offset” for “numrows”. This method is equivalent to

getProjectList but returns only the current cooperative projects of the user.

If no cooperative projects exist, null is returned.

Collection getTerminatedListAllInstances ()

Return a BnNodeValue collection of all terminated project instances or

cooperative projects.

If no terminated instances or terminated cooperative projects exist for the

user, null is returned.

Collection getModelInstancesTodoList (String projectName)

Return a String collection of activity names of the model instances assigned

to this user.

An exception is thrown in the following case:

− The supplied projectName does not exist

Collection getModelInstancesTerminated (String projectName)

Return a String collection of activity names of the model instances terminated

by this user.

An exception is thrown in the following case:

− The supplied projectName does not exist

 Chapter 10. Bonita Pagination 107

Collection getModelInstancesTodoList (String projectName, int

offset, int numrows)

Return a String collection of activity names of the model instances assigned

to this user starting with “offset” for “numrows”.

An exception is thrown in the following case:

− The supplied projectName does not exist

Collection getModelInstancesTerminated (String projectName, int

offset, int numrows)

Return a String collection of activity names of the model instances terminated

by this user starting with “offset” for “numrows”.

An exception is thrown in the following case:

− The supplied projectName does not exist

Collection getInstancesActivityTodoList (String projectName,

String nodeName)

Return a BnNodeLightValue collection of activity instances assigned to this

user.

An exception is thrown in the following case:

− The supplied projectName does not exist

− The supplied nodeName does not exist

Collection getInstancesActivityTerminated (String projectName,

String nodeName)

Return a BnNodeLightValue collection of activity model instances terminated

by this user.

An exception is thrown in the following case:

− The supplied projectName does not exist

− The supplied nodeName does not exist

Collection getUserInstancesProject ()

Return a String collection of model names with ongoing instances for this user.

If no instances exist for this user, null is returned.

Collection getUserInstancesProjectNodes (String projectName)

Return a String collection of ready, anticipable, and executing activities for

current user instances.

An exception is thrown in the following case:

− The supplied projectName does not exist

108

Collection getUserInstancesProject (int offset, int numrows)

Return a String collection of model names with ongoing instances for this user

starting with offset for numrows.

If no instances exist for this user, null is returned.

Collection getInstanceNodes (String instanceName, String userName)

Return a String collection of ready and executing activities for a specified

user instance.

An exception is thrown in the following cases:

− The supplied projectName does not exist

− The supplied userName does not exist

Collection getInstancesList (int offset, int numrows)

Return a collection of BnProjectLightValue objects of a user instances list

starting with offset for numrows. This method is equivalent to getProjectList but

returns only the current instances of the user.

If no instances exist, null is returned.

Collection getInstancesListNames (int offset, int numrows)

Return a String collection of instances list names for this user starting with

“offset” for “numrows”. This method is equivalent to getProjectListNames but

returns only the current instances of the user.

If no instances exist, null is returned.

String getUserJabber ()

Return a String with the user jabber address.

 Chapter 10. Bonita Pagination 109

9.4 Users and Projects

9.4.1 Getting the List of Projects for the User

Collection getProjectList ()

Return a (BnProjectLightValue Collection) of the Workflow processes

associated to this user.

An exception is thrown in the following case:

− If the user does not exist in the database

Collection getProjectListNames ()

Return a (String Collection) of the project list names for this user.

An exception is thrown in the following case:

− If the user does not exist in the database

Collection getProjectsByProperty (String key, String value)

Return a (BnProjectValue Collection) of Workflow projects associated with a

property.

An exception is thrown in the following case:

− If the key/value names do not exist

Collection getProjectsByPropertyNames (String key, String value)

Return a (String Collection) of Workflow projects associated with a property.

An exception is thrown in the following case:

− If the key/value names do not exist

BnProjectLightValue getLightDetails ()

Return the basic project information: project attributes (without relationships).

110

9.4.2 Getting the List of Instances for the User

Collection getInstancesList ()

Return a (BnProjectLightValue Collection) of the user instances list. This

method is equivalent to getProjectList but returns only the current instances of

the user. If no instances exist, null is returned.

Collection getInstancesListNames ()

Get a (String Collection) of the instances list names for this user. This method is

equivalent to getProjectListNames but returns only the current instances of

the user. If there are no entries in the list, null is returned.

Collection getProjectInstances (String projectName, String

version)

Return a (BnProjectValue Collection) of the Workflow instances of this project.

An exception is thrown in the following case:

− If projectName does not exist

Collection getProjectInstances (String projectName)

Return a (BnProjectValue Collection) of the Workflow instances of this project.

An exception is thrown in the following case:

− If projectName does not exist

A default version value is used in this API call.

Collection getProjectInstancesNames (String projectName, String

version)

Return a (String Collection) of Workflow instance names of this project.

An exception is thrown in the following case:

− If projectName does not exist

Collection getProjectInstancesNames (String projectName)

Return a (String Collection) of workflow instance names of this project.

An exception is thrown in the following case:

− If projectName does not exist

A default version value is used in this API call.

 Chapter 10. Bonita Pagination 111

Collection getInstancesByProperty (String key, String value)

Return a (BnProjectValue Collection) of Workflow instances from a property.

An exception is thrown in the following case:

− If key/value does not exist

Collection getInstancesByPropertyNames (String key, String value)

Return a (String Collection) of a list of project instances from a property.

An exception is thrown in the following case:

− If key/value does not exist

9.4.3 Managing the Project for the User

void removeProject (String projectName)

Delete a Workflow project. The application must have “ADMIN” privileges or

an exception is thrown.

An exception is thrown in the following cases:

− If the project name does not exist

− If the project name has running instances.

− If you are not the parent process (sub-process trying to remove project).

void terminate (String projectName)

Attempt to terminate a project. (Termination occurs when all project activities

are terminated).

An exception is thrown in the following cases:

− If the project name does not exist

− If project name is active.

112

9.5 Users and Activities

9.5.1 Getting the List of Activities for the User

Collection getActivityList (String projectName)

Return a (String Collection) of all user activities for a specific project in

executing and anticipating state. See also the getToDoList for activities in

ready state.

An exception is thrown in the following case:

− If the project name does not exist

If no activities are found in executing state null is returned.

Collection getActivityListAllInstances ()

Return a (BnNodeValue Collection) list of executing user activities for all

instances (ready and anticipable state).

If no activities are found in executing state null is returned.

Collection getActivityListByProperty (String key, String value)

Return a (BnNodeValue Collection) of executing user activities matching the

property value (executing and anticipating state activities).

If the key/value is not found, null is returned.

9.5.2 Getting Information on User activity

BnNodeValue getNode (String projectName, String nodeName)

Return a type BnNodeValue for the specified node and project.

An exception is thrown in the following cases:

− If the project or node name does not exist

− If access to the project is denied

 Chapter 10. Bonita Pagination 113

9.5.3 Getting the ToDo list for the User

Collection getToDoList (String projectName)

Return a (String Collection) of all user activities from the specified project

(those in ready and anticipable state).

An exception is thrown in the following case:

− If the project name does not exist

If no users exist in the correct state, null is returned.

Collection getToDoListAllInstances ()

Return a (BnNodeValue Collection) of a list of ToDo activities for the user for

all instances (ready and anticipable state).

If no users exist in the correct state, null is returned

Collection getToDoListByProperty (String key, String value)

Return a (BnNodeValue Collection) of a list of ToDo activities for the user

matching the property value (ready and anticipable state activities).

If no users exist in the correct state, null is returned.

Collection getToDoListByProperties (int operation, Hashtable

properties)

Return a BnNodeValue collection of a list of ToDo activities (in ready and

anticipable state), matching the property value(s). Property values are a

key/value pair and up to three properties may be specified. Operation must

be a value of either hero.interfaces.Constants.OR or

hero.interfaces.Constants.AND.

An exception is thrown in the following case:

− Greater than three properties are specified.

(Contact the Bull HN Workflow project if greater then three properties are

required.)

If no data is found matching the specified properties, null is returned.

Collection getToDoListByActivityProperty (String key, String

value)

Return a BnNodeValue collection of a list of ToDo activities (in ready and

anticipable state), matching the key/value strings.

If no data is found matching the specified properties, null is returned.

114

9.5.4 Managing Activities for the User

void startActivity (String projectName, String nodeName)

Attempts to start an activity (when activity state is ready or anticipable)

An exception is thrown in the following cases:

− If the project name and/or node name does not exist and the activity

cannot start

− If the project or model is in hidden status

void terminateActivity (String projectName, String nodeName)

Attempts to terminate an activity (when activity state is executing or

anticipating)

An exception is thrown in the following cases:

− If the project name or node name does not exist and the activity cannot

terminate

− If the project or model is in hidden status

void cancelActivity (String projectName, String nodeName)

Attempts to cancel an activity (when activity is executing or anticipating)

An exception is thrown in the following cases:

− If the project name or node name does not exist and the activity cannot

terminate

− If the project or model is in hidden status

 Chapter 10. Bonita Pagination 115

9.6 Code Example

 //***/
 //************** API Documentation - Sample 6 ***************/

 //************** Users and Activities *****************/

 //***/
 System.out.println("Current User Name/Passwd : " + usrSession.getUser() + "/" + usrSession.getUserPassword());

 usrSession.setUserProperty("Language","Spanish");

 System.out.println("Getting Current User properties values");

 Collection properties = usrSession.getUserProperties() ;
 Iterator i = properties.iterator();

 while (i.hasNext())

 {
 hero.interfaces.BnUserPropertyValue property = (hero.interfaces.BnUserPropertyValue)i.next();
 try {
 String propertyKeyName = property.getTheKey();

 String propertyValue = (String)property.getTheValue();

 System.out.println("Property (Key, Value) : " + propertyKeyName + "/" + propertyValue);
 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem

 }

 System.out.println("\n Getting project names for this user");

 try {

 Collection prjNames = usrSession.getProjectListNames() ;
 Iterator j = prjNames.iterator();

 while (j.hasNext())

 {
 String prjName = (String)j.next();
 System.out.println(" --> Project : " + prjName); }

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("\n Starting & terminating Activities available for this user");
 try {

 Collection instNames = usrSession.getInstancesListNames() ;
 Iterator j = instNames.iterator();
 while (j.hasNext())

 {

 String instName = (String)j.next();
 System.out.println("--> INSTANCE : " + instName);

System.out.println("Getting ToDo list for this instance");
 Collection activityNames = usrSession.getToDoList(instName) ;

 Iterator k = activityNames.iterator();

 while (k.hasNext())
 {

 String activityName = (String)k.next();

 System.out.println(" --> activity : " + activityName);
 try {
 usrSession.startActivity(instName,activityName) ;

 System.out.println(" --> activity started");
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 } // End ToDo list

 System.out.println("Getting the activity List (executing aor anticipating) for yhe user");
 activityNames = usrSession.getActivityList(instName) ;

 k = activityNames.iterator();
 while (k.hasNext())

 {

 String activityName = (String)k.next();
 System.out.println(" --> activity : " + activityName);

 try {
 usrSession.terminateActivity(instName,activityName) ;
 System.out.println(" --> activity terminated");

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong
 } // End ToDo list

 } // End Intances List

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

Figure 9-2. User and Activities Code Example

116

 Chapter 11. Bonita Entities 117

Chapter 10. Bonita Pagination

For each available get method in the UserSession and AdminSession APIs there is

a paginated version of the existing method: e.g., the getToDoListAllInstances

method and the getToDoListAllInstancesAsPK method. The “AsPK” identifies a

method retrieving a collection of primary Keys corresponding to the 30 activities

available in the user ToDo list. Then, by means of the getToDoListAllInstancesByPK

method, the user or the end client application retrieves a defined number of

elements from the previous collection. Note that this method also has a

parameter defining the value of the “offset” between two different calls.

Collection getModelsAsPK ()

Return a Collection of BnProjectLightValue objects - the model list to be

instantiated. This API call uses the initiator mapper check to verify the user

executing the call is included within the Initiator Mapper. If the user is not a

defined user, null is returned.

Collection getModelsByPK (Collection list, int offset, int

numrows)

Return a Collection of BnProjectLightValue objects. The collection contains a

list of models starting with “offset for “numrows”.

Collection getModelsLightAsPK ()

Get available workflow models. This method is similar to getModels () with the

exception that the initiatorMapper check is not performed.

Return Collection of BnProjectLightValue objects reflecting the model list.

Collection getModelsLightByPK (Collection list, int offset, int

numrows)

Get available workflow models. This method is similar to getModels () with the

exception that the initiatorMapper check is not performed.

Return a Collection of BnProjectLightValue objects - the model list. The

returned collection of BnProjectLightValue objects is based on the supplied

“list”, starting with “offset” for “numrows”.

Collection getToDoListAsPK (String projectName)

Used to obtain all user activities from specific project (those in ready and

anticipable state) and return a String Collection with the list of ToDo activities

of the user for the specified project.

An exception is thrown in the following case:

− If projectName does not exist

Collection getToDoListByPK (String projectName, Collection list,

int offset, int numrows)

118

Used to obtain all user activities from a specific project (those in ready and

anticipable state) and return a String Collection with the list of ToDo activities

of the user for the specified project. The returned String collection is based on

the supplied “list”, starting with “offset” for “numrows”.

An exception is thrown in the following cases:

− If projectName does not exist

Collection getActivityListAsPK (String projectName)

Used to obtain all user activities from a specific project (those in executing

and anticipating state) and return a String Collection with the list of active

activities of the user for the specified project.

An exception is thrown in the following cases:

− If projectName does not exist

Collection getActivityListByPK (String projectName, Collection

list, int offset, int numrows)

Used to obtain all user activities from a specific project (those in executing

and anticipating state) and return a String Collection with the list of active

activities of the user for the specified project. The returned String collection is

based on the supplied “list”, starting with “offset” for “numrows”.

An exception is thrown in the following cases:

− If projectName does not exist

Collection getToDoListAllInstancesAsPK ()

Used to obtain all ToDo user activities for all instances/cooperative projects

(those in ready and anticipable state) and return a BnNodeValue Collection

of the list of ToDo activities of the user for all instances.

If no activities are found a null list is returned.

Collection getToDoListAllInstancesByPK (Collection list, int

offset, int numrows)

Used to obtain all ToDo user activities for all instances/cooperative projects

(those in ready and anticipable state) and return a BnNodeValue Collection

of the list of ToDo activities of the user for all instances. The returned

BnNodeValue collection is based on the supplied “list”, starting with “offset”

for “numrows”.

If no activities are found a null list is returned.

 Chapter 11. Bonita Entities 119

Collection getActivityListAllInstancesAsPK ()

Used to obtain a list of executing user activities for all instances/cooperative

projects (those in executing and anticipating state), and return a

BnNodeValue Collection with the list of executing activities for the user for all

instances.

If no activities are found a null list is returned.

Collection getActivityListAllInstancesByPK (Collection list, int

offset, int numrows)

Used to obtain a list of executing user activities for all instances/cooperative

projects (those in executing and anticipating state), and return a

BnNodeValue Collection with the list of executing activities for the user for all

instances. The returned BnNodeValue collection is based on the supplied

“list”, starting with “offset” for “numrows”.

If no activities are found a null list is returned.

Collection getTerminatedListAllInstancesAsPK ()

Used to obtain a subset of the terminated user activities for all

instances/cooperative projects and return a BnNodeValue Collection

containing the list of terminated activities for the user for all instances.

If no activities are found a null list is returned.

Collection getTerminatedListAllInstancesByPK (Collection list, int

offset, int numrows)

Used to obtain a subset of the terminated user activities for all

instances/cooperative projects and return a BnNodeValue Collection

containing the list of terminated activities for the user for all instances. The

returned BnNodeValue collection is based on the supplied “list”, starting with

“offset” for “numrows”.

If no activities are found a null list is returned.

Collection getToDoListByPropertyAsPK (String key, String value)

This API obtains a user activities “ToDo” BnNodeValue list matching the

project property value (the key/value pair). Returned are those activities in

ready and anticipable state only.

If no activities match the key/value or exist in the required state, a null list is

returned.

120

Collection getToDoListByPropertyByPK (String key, String value,
Collection list, int offset, int numrows)

This API obtains a user activities “ToDo” BnNodeValue list matching the

project property value (the key/value pair). Returned are those activities in

ready and anticipable state only. The returned BnNodeValue collection is

based on the supplied “list”, starting with “offset” for “numrows”.

If no activities match the key/value or exist in the required state, a null list is

returned.

Collection getToDoListByPropertiesAsPK (int operation, Hashtable

properties)

This API obtains a user activities “ToDo” BnNodeValue list matching the

project properties (key/value pairs). The returned BnNodeValue list contains

only those activities in the ready and anticipable state. This method is

oriented to administrative workflow (workflow instances) and supports up to

three properties (key/value pairs). The Operation constants values are:

“hero.interfaces.Constants.AND”, or “hero.interfaces.Constants.OR”.

An exception is thrown in the following case:

− If more than 3 properties are entered (if more than 3 are required please

contact your Bull HN representative.

Collection getToDoListByPropertiesByPK (int operation, Hashtable

properties, Collection list, int offset, int numrows)

This API obtains a user activities “ToDo” list matching the project properties

(key/value pairs). The returned BnNodeValue list contains only those activities

in the ready and anticipable state. This method is oriented to administrative

workflow (workflow instances) and supports up to three properties (key/value

pairs). The Operation constants values are: “hero.interfaces.Constants.AND”,

or “hero.interfaces.Constants.OR”.

The returned BnNodeValue collection is based on the supplied “list”, starting

with “offset” for “numrows”.

If no activities match the key/value or exist in the required state, a null list is

returned.

Collection getToDoListByActivityPropertyAsPK (String key, String

value)

This API obtains a user activities “ToDo” list matching the activity properties

(key/value pairs). The returned BnNodeValue list contains only those activities

in the ready and anticipable state.

If no activities match the key/value or exist in the required state, a null list is

returned.

 Chapter 11. Bonita Entities 121

Collection getToDoListByActivityPropertyByPK (String key, String

value, Collection list, int offset, int numrows)

This API obtains a user activities “ToDo” list matching the activity properties

(key/value pairs). The returned BnNodeValue list contains only those activities

in the ready and anticipable state. The returned BnNodeValue collection is

based on the supplied “list”, starting with “offset” for “numrows”.

If no activities match the key/value or exist in the required state, a null list is

returned.

Collection getActivityListByPropertyAsPK (String key, String

value)

This API obtains a BnNodeValue Collection of executing user activities names

matching the property value (key/value pair). The list contains only those

activities in executing and anticipating state.

If no activities match the key/value or exist in the required state, a null list is

returned.

Collection getActivityListByPropertyByPK (String key, String

value, Collection list, int offset, int numrows)

This API obtains a BnNodeValue Collection of executing user activities names

matching the property value (key/value pair). The list contains only those

activities in executing and anticipating state. The returned BnNodeValue

collection is based on the supplied “list”, starting with “offset” for “numrows”.

If no activities match the key/value or exist in the required state, a null list is

returned.

Collection getProjectInstancesNamesAsPK (String projectName,

String version)

Return a String Collection containing the names of project instances.

An exception is thrown in the following cases:

− If projectName does not exist

− If the specified name and version is not found

Collection getProjectInstancesNamesAsPK (String projectName)

Return a String Collection containing the names of project instances using the

default version.

If no project instances are found, a null list is returned.

An exception is thrown in the following case:

− If projectName does not exist

122

Collection getProjectInstancesNamesByPK (String projectName,

Collection list, int offset, int numrows)

Return a String Collection containing the names of project instances using the

specified version. The returned String collection is based on the supplied “list”,

starting with “offset” for “numrows”.

If no project instances are found, a null list is returned.

Collection getProjectInstancesAsPK (String projectName, String

version)

Return a BnProjectValue Collection containing a list of project instances for

the specified version.

If no project instances are found, a null list is returned.

An exception is thrown in the following case:

− If projectName and/or version does not exist

Collection getProjectInstancesAsPK (String projectName)

Return a BnProjectValue Collection containing a list of project instances for

the default version.

An exception is thrown in the following case:

− If projectName does not exist

Collection getProjectInstancesByPK (String projectName, Collection

list, int offset, int numrows)

Return a BnProjectValue Collection containing a list of project instances for

the specified version. The returned BnProjectValue collection is based on the

supplied “list”, starting with “offset” for “numrows”.

If no project instances are found, a null list is returned.

Collection getInstancesByPropertyAsPK (String key, String value)

Return a BnProjectValue Collection containing a list of project instances

meeting the key/value property.

If no Instances are found, null is returned.

Collection getInstancesByPropertyByPK (String key, String value,

Collection list, int offset, int numrows)

Return a BnProjectValue Collection containing a list of project instances

meeting the key/value property. The returned BnProjectValue collection is

based on the supplied “list”, starting with “offset” for “numrows”.

If no Instances are found, null is returned.

Collection getInstancesByPropertyNamesAsPK (String key, String

value)

 Chapter 11. Bonita Entities 123

Return a String Collection containing a list of project instances based on the

supplied key/value pair.

If no instances are found, null is returned.

Collection getInstancesByPropertyNamesByPK (String key, String

value, Collection list, int offset, int numrows)

Return a BnProjectValue Collection containing a list of project instances

meeting the key/value property.

If no instances are found, null is returned.

Collection getProjectsByPropertyAsPK (String key, String value)

Return a BnProjectValue Collection containing a list of projects based on the

supplied key/value pair.

If no projects are found, null is returned.

Collection getProjectsByPropertyByPK (String key, String value,

Collection list, int offset, int numrows)

Return a BnProjectValue Collection containing a list of projects based on the

supplied key/value pair. The returned BnProjectValue collection is based on

the supplied “list”, starting with “offset” for “numrows”.

If no projects are found, null is returned.

Collection getProjectsByPropertyNamesAsPK (String key, String

value)

Return a String Collection containing a list of project names based on the

supplied key/value pair.

If no projects are found, null is returned.

Collection getProjectsByPropertyNamesByPK (String key, String

value, Collection list, int offset, int numrows)

Return a String Collection containing a list of project names based on the

supplied key/value pair. The returned String collection is based on the

supplied “list”, starting with “offset” for “numrows”.

If no projects are found, null is returned.

124

Collection getInstancesActivityTodoListAsPK (String projectName,

String nodeName)

Return a BnNodeLightValue Collection containing a subset of activities model

instances assigned to this user.

If no model instances are found, null is returned.

Collection getInstancesActivityTodoListByPK (String projectName,

String nodeName, Collection list, int offset, int numrows)

Return a BnNodeLightValue Collection containing a subset of activities model

instances assigned to this user. The returned BnNodeLightValue collection is

based on the supplied “list”, starting with “offset” for “numrows”.

If no model instances are found, null is returned.

Collection getInstancesActivityTerminatedAsPK (String projectName,

String nodeName)

Return a BnNodeLightValue Collection containing a subset of activities model

instances terminated by this user.

If no model instances are found, null is returned.

Collection getInstancesActivityTerminatedByPK (String projectName,

String nodeName, Collection list, int offset, int numrows)

Return a BnNodeLightValue Collection containing a subset of activities model

instances terminated by this user. The returned BnNodeLightValue collection is

based on the supplied “list”, starting with “offset” for “numrows”.

If no model instances are found, null is returned.

Collection getUserInstancesProjectNodesAsPK (String projectName)

Return a String Collection containing the names of activities in the ready,

anticipable, and executing state for the current user instances.

If no instances are found, null is returned.

An exception is thrown in the following case:

− If projectName does not exist

Collection getUserInstancesProjectNodesByPK (String projectName,

Collection list, int offset, int numrows)

Return a String Collection containing the names of activities in the ready,

anticipable, and executing state for the current user instances. The returned

String collection is based on the supplied “list”, starting with “offset” for

“numrows”.

If no instances are found, null is returned.

An exception is thrown in the following case:

− If projectName does not exist

Chapter 11. Bonita Entities

Many entry points in API allow retrieving data about the process entities, such as

the relevant information for a given activity. Although Bonita currently makes use

of the Enterprise Java Beans entities to store data, the corresponding information

has been made available at the API level as java beans.

The following is a first level of description of those java beans. For further

information, refer to the code in the Bonita/build/generate/hero/interfaces

directory.

The following naming convention applies for all entities managed at the API level.

If Entity is the name of the internally used Enterprise Java Bean, EntityValue is the

name of the corresponding plain old java object, EntityLightValue is the name of

a simpler java object (very often, EntityLightValue has only fields that have a

simple type).

To directly use the internal EJB through the remote or local interfaces (this choice

is not recommended), each of these entities may be accessed using its name

suffixed by hero.interfaces. Many entry points in API allow retrieving data about

the process entities, such as the relevant information for a given activity.

Although Bonita currently makes use of the Enterprise Java Beans entities to store

data, the corresponding information has been made available at the API level as

java beans.

The following is a first level of description of those java beans. For further

information, refer to the code in the Bonita/build/generate/hero/interfaces

directory.

The following naming convention applies for all entities managed at the API level.

If Entity is the name of the internally used Enterprise Java Bean, EntityValue is the

name of the corresponding plain old java object, EntityLightValue is the name of

a simpler java object (very often, EntityLightValue has only fields that have a

simple type).

To directly use the internal EJB thru the remote or local interfaces (this choice is

not recommended), each of these entities may be accessed using its name

suffixed by hero.interfaces.

11.1 Entity Diagrams

11.1.1 Global Diagram

Figure 11-1. Global Diagram

11.1.2 Diagram Focused on Project Entity Relations

Figure 11-2. Project Entity Diagram

11.1.3 Diagram Focused on Node Entity Relations

Figure 11-3. Node Entity Diagram

11.1.4 Diagram Focused on User-Role Entities Relations

Figure 11-4. User Role Entity Diagram

11.2 Entities Attributes

11.2.1 BnAuthRoleValue

TYPE ATTRIBUTE MEANING

String id Auth Role ID

boolean idHasBeenSet Default = false

String name; Auth Role Name

boolean nameHasBeenSet Default = false

String bnRoleGroup; Auth Role Group Role

name

boolean bnRoleGroupHasBeenSet Default = false

hero.interfaces.BnAuthRolePK pk; Auth Role Primary Key

Table 11-1. BnAuthRoleValue Attributes

11.2.2 BnEdgeValue

TYPE ATTRIBUTE MEANING

String id; Edge ID

boolean idHasBeenSet Default = false

String name; Edge Name

boolean nameHasBeenSet Default = false

int state; Edge State

boolean stateHasBeenSet Default = false

String condition; Edge Condition

boolean conditionHasBeenSet Default = false

java.sql.Date creationDate; Date edge created

boolean creationDateHasBeenSet Default = false

java.sql.Date modificationDate; Date edge modified

boolean modificationDateHasBeen

Set

Default = false

hero.interfaces.BnNodeValue InBnNode; Edge Input (from) node

boolean InBnNodeHasBeenSet Default = false

hero.interfaces.BnNodeValue OutBnNode; Edge Output (to) node

boolean OutBnNodeHasBeenSet Default = false

hero.interfaces.BnEdgePK pk; Edge Primary Key

Table 11-2. BnEdgeValue Attributes

11.2.3 BnIterationValue

TYPE ATTRIBUTE MEANING

String id; Iteration ID

boolean idHasBeenSet Default = false

String fromNode; Iterating from node

boolean fromNodeHasBeenSet Default = false

String toNode; Iterating to node

boolean toNodeHasBeenSet Default = false

String condition; Iteration Condition

boolean conditionHasBeenSet Default = false

hero.interfaces.BnIterationPK pk; Iteration Primary Key

Table 11-3. BnIterationValue Attributes

11.2.4 BnNodeHookValue

TYPE ATTRIBUTE MEANING

String id; Node Hook Id

boolean idHasBeenSet Default = false

String name; Node hook name

boolean nameHasBeenSet Default = false

String event; Node Hook event

boolean eventHasBeenSet Default = false

int type; Node Hook type

boolean typeHasBeenSet Default = false

hero.interfaces.BnNodeHookPK pk Node Hook Primary Key

Table 11-4. BnNodeHookValue Attributes

11.2.5 BnNodeInterHookValue

TYPE ATTRIBUTE MEANING

String id Node InterHook ID

boolean idHasBeenSet Default = false

String name; Node InterHook name

boolean nameHasBeenSet Default = false

String event Node InterHook event

boolean eventHasBeenSet Default = false

int type Node InterHook type

boolean typeHasBeenSet Default = false

String script Node InterHook script

boolean scriptHasBeenSet Default = false

hero.interfaces.BnNodeInterHookPK pk Node InterHook Primary

Key

Table 11-5. BnNodeInterHookValue Attributes

11.2.6 BnNodePerformerAssignValue

TYPE ATTRIBUTE MEANING

String id Node Performer Id

boolean idHasBeenSet Default = false

String name Node Performer name

boolean nameHasBeenSet Default = false

int type; Node Performer type (i.e.

callback)

boolean typeHasBeenSet Default = false

String propertyName Used with property

assignment

boolean propertyNameHasBeenS

et

Default = false

hero.interfaces.BnNodePerformerAssig

nPK

pk Node Performer Primary

Key

Table 11-6. BnNodePerformerAssignValue Attributes

11.2.7 BnNodePropertyValue

TYPE ATTRIBUTE MEANING

String id; Node Property Id

boolean idHasBeenSet Default = false

String theKey; Node Property Key name

boolean theKeyHasBeenSet Default = false

String theValue; Node Property Value

boolean theValueHasBeenSet Default = false

boolean propagate; True = propagate

boolean propagateHasBeenSet Default = false

hero.interfaces.BnNodePropertyPK pk; Node Property Primary

Key

Table 11-7. BnNodePropertyValue Attributes

11.2.8 BnNodeValue

TYPE ATTRIBUTE MEANING

String id; Node Id

boolean idHasBeenSet Default = false

int type; Node type

boolean typeHasBeenSet Default = false

int state; Node state

boolean stateHasBeenSet Default = false

boolean anticipable; Set by

setNodeAnticipable

boolean anticipableHasBeenSet Default = false

String name; Node name

boolean nameHasBeenSet Default = false

String reference Node SubProcess use

boolean referenceHasBeenSet Default = false

String description; Node description

boolean descriptionHasBeenSet Default = false

String activityPerformer; Performer name

boolean activityPerformerHasBeenSet Default = false

Date startDate Node start date

boolean startDateHasBeenSet Default = false

Table 11-8. BnNodeValue Attributes (1 of 2)

TYPE ATTRIBUTE MEANING

Date endDate Node end date

boolean endDateHasBeenSet Default = false

Collection deadlines Node deadlines

boolean deadlinesHasBeenSet Default = false

Collection relativeDeadlines Node relative deadlines

boolean relativeDeadlinesHasBeenSet Default = false

String creator Node creator

boolean creatorHasBeenSet Default = false

String executor Node executor

boolean executorHasBeenSet Default = false

Date creationDate Node creation date

boolean creationDateHasBeenSet Default = false

BnRoleValue BnRole Node Role value

boolean BnRoleHasBeenSet Default = false

BnNodePerformerAssignValue BnNodePerformerAssign Node Performer

boolean BnNodePerformerAssignHasBeen

Set

Default = false

BnProjectLightValue BnProject Node Light value

boolean BnProjectHasBeenSet Default = false

Collection BnProperties Node Properties

Collection BnHooks Node Hooks

Collection BnInterHooks Node Interhooks

BnNodePK primaryKey Node Primary Key

Table 11-10. BnNodeValue Attributes (2 of 2)

11.2.9 BnProjectHookValue

TYPE ATTRIBUTE MEANING

String id; Project Hook Id

boolean idHasBeenSet Default = false

String name; Hook name

boolean nameHasBeenSet Default = false

String event; Hook event

boolean eventHasBeenSet Default = false

int type; Hook type

boolean typeHasBeenSet Default = false

hero.interfaces.BnProjectHookPK pk; Project Hook Primary key

Table 11-9. BnProjectHookValue Attributes

11.2.10 BnProjectInterHookValue

TYPE ATTRIBUTE MEANING

String id; Project InterHook Id

boolean idHasBeenSet Default = false

String name; Project InterHook name

boolean nameHasBeenSet Default = false

String event; Project InterHook event

boolean eventHasBeenSet Default = false

int type; Project InterHook type

boolean typeHasBeenSet Default = false

String script; Project Interhook script

boolean scriptHasBeenSet Default = false

hero.interfaces.BnProjectInterHookPK pk; Project InterHook Primary

Key

Table 11-10. BnProjectInterHookValue Attributes

11.2.11 BnProjectPropertyValue

TYPE ATTRIBUTE MEANING

String id; Property ID

Boolean idHasBeenSet Default = false

String theKey; Property Key

Boolean theKeyHasBeenSet Default = false

String theValue; Property value

Boolean theValueHasBeenSet Default = false

Collection possibleValues Possible values (allowed)

boolean possibleValuesHasBeenSet Default = false

hero.interfaces.BnProjectPropertyPK pk; Property Primary Key

Table 11-11. BnProjectPropertyValue Attributes

11.2.12 BnProjectValue

TYPE ATTRIBUTE MEANING

String id; Project Value ID

boolean idHasBeenSet Default = false

String parent; Parent name

boolean parentHasBeenSet Default = false

String name; Project name

boolean nameHasBeenSet Default = false

String version Project version

boolean versionHasBeenSet Default = false

String status Project status

boolean statusHasBeenSet Default = false

String type Project type

boolean typeHasBeenSet Default = false

String creator; Project creator

boolean creatorHasBeenSet Default = false

int state; Project state

boolean stateHasBeenSet Default = false

java.util.Date creationDate; Project creation date

boolean creationDateHasBeenSet Default = false

java.util.Date endDate Project end date

boolean endDateHasBeenSet Default = false

Collection BnUsers Project users

Collection BnRoles Project roles

BnInitiatorMapperValue BnInitiatorMapper Initiator mapper

boolean BnInitiatorMapperHasBeen

Set

Default = false

Collection BnNodes Project nodes

Collection BnEdges Project edges

Collection BnAgents Project agents

Collection BnAgentEdges Project agent edges

Collection BnProperties Project properties

Collection BnIterations Project iterations

Collection BnHooks Project hooks

Collection BnInterHooks Project interhooks

hero.interfaces.BnProjectPK pk; Project Primary key

Table 11-12. BnProjectValue Attributes

11.2.13 BnRoleMapperValue

TYPE ATTRIBUTE MEANING

String id; Role Mapper ID

boolean idHasBeenSet Default = false

String name; Role Mapper name

boolean nameHasBeenSet Default = false

int type; Role Mapper type

boolean typeHasBeenSet Default = false

hero.interfaces.BnRoleMapperPK pk; Role Mapper Primary Key

Table 11-13. BnRoleMapperValue Attributes

11.2.14 BnRoleValue

TYPE ATTRIBUTE MEANING

String id; Role value ID

boolean idHasBeenSet Default = false

String description; Role value description

boolean descriptionHasBeenSet Default = false

String name; Role value name

boolean nameHasBeenSet Default = false

hero.interfaces.BnRoleMapperValue BnRoleMapper; Role value mapper

boolean BnRoleMapperHasBeenSet Default = false

hero.interfaces.BnRolePK pk; Role value Primary Key

Table 11-14. BnRoleValue Attributes

11.2.15 BnUserPropertyValue

TYPE ATTRIBUTE MEANING

String id; User Property ID

boolean idHasBeenSet Default = false

String theKey; User Property key

boolean theKeyHasBeenSet Default = false

String theValue; User Property value

boolean theValueHasBeenSet Default = false

hero.interfaces.BnUserPropertyPK pk; User Property Primary Key

Table 11-15. BnUserPropertyValue Attributes

11.2.16 BnUserValue

TYPE ATTRIBUTE MEANING

String id; User ID

boolean idHasBeenSet Default = false

String name; User name

boolean nameHasBeenSet Default = false

String password; User password

boolean passwordHasBeenSet Default = false

String email; User email

boolean emailHasBeenSet Default = false

String jabber; User jabber name

boolean jabberHasBeenSet Default = false

java.sql.Date creationDate; User creation date

boolean creationDateHasBeenSet Default = false

java.sql.Date modificationDate; User modification date

boolean modificationDateHasBeen

Set

Default = false

Collection BnProjects User projects

Collection BnRoles User roles

Collection BnAuthRoles User authorized roles

hero.interfaces.BnUserPK pk; User Primary Key

Table 11-16. BnUserValue Attributes

