
OpenSplice DDS
Version 4.1

Java Reference Guide
�������	

OpenSplice DDS
JAVA REFERENCE GUIDE
Part Number: OS-JREFG Doc Issue 21, 15 April 2009
PRISMTECH

Copyright Notice
© 2009 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
Java Reference Guide

�������	

CONTENTS

Table of Contents
List of Figures xvii

Preface
About the Java Reference Guide . xix
Contacts . xxi

Introduction
About the Java Reference Guide 3
Document Structure . 3
Operations . 4

API Reference
Chapter 1 DCPS API General Description 7

1.1 IDL Mapping to Java . 8
1.1.1 IDL-Constant Mapping . 8
1.1.2 IDL-Sequence Mapping. 9
1.2 Thread Safety . 9
1.3 Signal Handling. 10
1.4 Memory Management . 11
1.5 Parameter Passing . 11
1.6 Casting of Objects. 13
1.7 Listeners Interfaces . 14
1.8 Inheritance of Abstract Operations . 15

Chapter 2 DCPS Modules 17
2.1 Functionality . 17
2.2 Infrastructure Module . 18
2.3 Domain Module. 19
2.4 Topic-Definition Module . 20
2.5 Publication Module. 21
2.6 Subscription Module . 22

Chapter 3 DCPS Classes and Operations 25
3.1 Infrastructure Module . 26
3.1.1 Interface Entity . 26
3.1.1.1 enable . 27
3.1.1.2 get_instance_handle . 29
3.1.1.3 get_listener (abstract) . 30
v
Java Reference Guide

�������	

Table of Contents
3.1.1.4 get_qos (abstract) . 30
3.1.1.5 get_status_changes . 30
3.1.1.6 get_statuscondition . 32
3.1.1.7 set_listener (abstract) . 32
3.1.1.8 set_qos (abstract) . 33
3.1.2 Class DomainEntity. 33
3.1.3 Class QosPolicy. 33
3.1.3.1 DeadlineQosPolicy . 42
3.1.3.2 DestinationOrderQosPolicy . 44
3.1.3.3 DurabilityQosPolicy . 46
3.1.3.4 DurabilityServiceQosPolicy . 49
3.1.3.5 EntityFactoryQosPolicy . 52
3.1.3.6 GroupDataQosPolicy . 53
3.1.3.7 HistoryQosPolicy . 53
3.1.3.8 LatencyBudgetQosPolicy . 56
3.1.3.9 LifespanQosPolicy . 57
3.1.3.10 LivelinessQosPolicy . 58
3.1.3.11 OwnershipQosPolicy . 60
3.1.3.12 OwnershipStrengthQosPolicy . 63
3.1.3.13 PartitionQosPolicy . 64
3.1.3.14 PresentationQosPolicy . 65
3.1.3.15 ReaderDataLifecycleQosPolicy . 67
3.1.3.16 ReliabilityQosPolicy. 69
3.1.3.17 ResourceLimitsQosPolicy . 70
3.1.3.18 SchedulingQosPolicy . 72
3.1.3.19 TimeBasedFilterQosPolicy. 74
3.1.3.20 TopicDataQosPolicy. 74
3.1.3.21 TransportPriorityQosPolicy . 75
3.1.3.22 UserDataQosPolicy . 76
3.1.3.23 WriterDataLifecycleQosPolicy . 76
3.1.4 Listener Interface. 77
3.1.5 Class Status . 79
3.1.5.1 InconsistentTopicStatus . 83
3.1.5.2 LivelinessChangedStatus . 84
3.1.5.3 LivelinessLostStatus. 85
3.1.5.4 OfferedDeadlineMissedStatus . 86
3.1.5.5 OfferedIncompatibleQosStatus . 87
3.1.5.6 PublicationMatchedStatus . 90
3.1.5.7 RequestedDeadlineMissedStatus . 90
3.1.5.8 RequestedIncompatibleQosStatus . 91
3.1.5.9 SampleLostStatus . 93
3.1.5.10 SampleRejectedStatus . 94
vi
Java Reference Guide �������	

Table of Contents
3.1.5.11 SubscriptionMatchedStatus . 95
3.1.6 Class WaitSet. 96
3.1.6.1 attach_condition . 97
3.1.6.2 detach_condition. 98
3.1.6.3 get_conditions. 99
3.1.6.4 wait . 100
3.1.7 Class Condition . 101
3.1.7.1 get_trigger_value . 102
3.1.8 Class GuardCondition . 103
3.1.8.1 get_trigger_value (inherited) . 104
3.1.8.2 set_trigger_value. 104
3.1.9 Class StatusCondition . 105
3.1.9.1 get_enabled_statuses. 106
3.1.9.2 get_entity . 108
3.1.9.3 get_trigger_value (inherited) . 108
3.1.9.4 set_enabled_statuses . 109
3.2 Domain Module. 111
3.2.1 Class DomainParticipant . 111
3.2.1.1 assert_liveliness . 115
3.2.1.2 contains_entity . 116
3.2.1.3 create_contentfilteredtopic . 117
3.2.1.4 create_multitopic . 118
3.2.1.5 create_publisher . 120
3.2.1.6 create_subscriber . 122
3.2.1.7 create_topic. 124
3.2.1.8 delete_contained_entities . 127
3.2.1.9 delete_contentfilteredtopic . 128
3.2.1.10 delete_multitopic . 130
3.2.1.11 delete_publisher . 131
3.2.1.12 delete_subscriber . 132
3.2.1.13 delete_topic. 133
3.2.1.14 enable (inherited) . 134
3.2.1.15 find_topic . 135
3.2.1.16 get_builtin_subscriber. 136
3.2.1.17 get_current_time . 137
3.2.1.18 get_default_publisher_qos . 138
3.2.1.19 get_default_subscriber_qos . 139
3.2.1.20 get_default_topic_qos. 140
3.2.1.21 get_discovered_participants . 142
3.2.1.22 get_discovered_participant_data . 142
3.2.1.23 get_discovered_topics. 142
3.2.1.24 get_discovered_topic_data . 142
vii
Java Reference Guide

�������	

Table of Contents
3.2.1.25 get_domain_id . 143
3.2.1.26 get_listener . 143
3.2.1.27 get_qos . 144
3.2.1.28 get_status_changes (inherited) . 145
3.2.1.29 get_statuscondition (inherited) . 145
3.2.1.30 ignore_participant. 145
3.2.1.31 ignore_publication . 146
3.2.1.32 ignore_subscription . 146
3.2.1.33 ignore_topic . 146
3.2.1.34 lookup_topicdescription . 147
3.2.1.35 set_default_publisher_qos . 147
3.2.1.36 set_default_subscriber_qos. 149
3.2.1.37 set_default_topic_qos . 150
3.2.1.38 set_listener . 151
3.2.1.39 set_qos . 153
3.2.2 Class DomainParticipantFactory . 154
3.2.2.1 create_participant . 155
3.2.2.2 delete_participant . 158
3.2.2.3 get_default_participant_qos . 159
3.2.2.4 get_instance . 160
3.2.2.5 get_qos . 161
3.2.2.6 lookup_participant . 162
3.2.2.7 set_default_participant_qos . 163
3.2.2.8 set_qos . 164
3.2.3 DomainParticipantListener Interface. 165
3.2.3.1 on_data_available (inherited, abstract). 167
3.2.3.2 on_data_on_readers (inherited, abstract) . 167
3.2.3.3 on_inconsistent_topic (inherited, abstract). 168
3.2.3.4 on_liveliness_changed (inherited, abstract) . 168
3.2.3.5 on_liveliness_lost (inherited, abstract) . 168
3.2.3.6 on_offered_deadline_missed (inherited, abstract) 168
3.2.3.7 on_offered_incompatible_qos (inherited, abstract) 169
3.2.3.8 on_publication_matched (inherited, abstract) . 169
3.2.3.9 on_requested_deadline_missed (inherited, abstract) 169
3.2.3.10 on_requested_incompatible_qos (inherited, abstract) 169
3.2.3.11 on_sample_lost (inherited, abstract). 170
3.2.3.12 on_sample_rejected (inherited, abstract) . 170
3.2.3.13 on_subscription_match (inherited, abstract). 170
3.3 Topic-Definition Module . 171
3.3.1 Interface TopicDescription . 172
3.3.1.1 get_name. 173
3.3.1.2 get_participant . 173
viii
Java Reference Guide �������	

Table of Contents
3.3.1.3 get_type_name . 174
3.3.2 Interface Topic. 175
3.3.2.1 enable (inherited) . 176
3.3.2.2 get_inconsistent_topic_status . 176
3.3.2.3 get_listener . 177
3.3.2.4 get_name (inherited) . 178
3.3.2.5 get_participant (inherited) . 178
3.3.2.6 get_qos . 178
3.3.2.7 get_status_changes (inherited) . 179
3.3.2.8 get_statuscondition (inherited) . 179
3.3.2.9 get_type_name (inherited) . 179
3.3.2.10 set_listener . 180
3.3.2.11 set_qos . 181
3.3.3 Interface ContentFilteredTopic . 183
3.3.3.1 get_expression_parameters. 184
3.3.3.2 get_filter_expression. 185
3.3.3.3 get_name (inherited) . 186
3.3.3.4 get_participant (inherited) . 186
3.3.3.5 get_related_topic. 186
3.3.3.6 get_type_name (inherited) . 187
3.3.3.7 set_expression_parameters . 187
3.3.4 Interface MultiTopic . 188
3.3.4.1 get_expression_parameters. 189
3.3.4.2 get_name (inherited) . 190
3.3.4.3 get_participant (inherited) . 191
3.3.4.4 get_subscription_expression. 191
3.3.4.5 get_type_name (inherited) . 192
3.3.4.6 set_expression_parameters . 192
3.3.5 TopicListener interface . 193
3.3.5.1 on_inconsistent_topic (abstract) . 194
3.3.6 Topic-Definition type specific interfaces . 195
3.3.6.1 Interface TypeSupport . 195
3.3.6.2 get_type_name . 196
3.3.6.3 register_type . 196
3.3.6.4 Class FooTypeSupport . 196
3.3.6.5 get_type_name . 197
3.3.6.6 register_type . 198
3.4 Publication Module. 200
3.4.1 Interface Publisher . 201
3.4.1.1 begin_coherent_changes. 203
3.4.1.2 copy_from_topic_qos . 204
3.4.1.3 create_datawriter. 205
ix
Java Reference Guide

�������	

Table of Contents
3.4.1.4 delete_contained_entities . 208
3.4.1.5 delete_datawriter . 209
3.4.1.6 enable (inherited) . 210
3.4.1.7 end_coherent_changes . 210
3.4.1.8 get_default_datawriter_qos . 211
3.4.1.9 get_listener . 212
3.4.1.10 get_participant . 213
3.4.1.11 get_qos . 214
3.4.1.12 get_status_changes (inherited) . 214
3.4.1.13 get_statuscondition (inherited) . 215
3.4.1.14 lookup_datawriter. 215
3.4.1.15 resume_publications . 216
3.4.1.16 set_default_datawriter_qos. 217
3.4.1.17 set_listener . 218
3.4.1.18 set_qos . 220
3.4.1.19 suspend_publications . 221
3.4.1.20 wait_for_acknowledgments . 222
3.4.2 Publication Type Specific Classes. 224
3.4.2.1 Interface DataWriter . 224
3.4.2.2 assert_liveliness . 227
3.4.2.3 dispose (abstract) . 228
3.4.2.4 dispose_w_timestamp (abstract). 229
3.4.2.5 enable (inherited) . 229
3.4.2.6 get_key_value (abstract). 229
3.4.2.7 get_listener . 229
3.4.2.8 get_liveliness_lost_status . 230
3.4.2.9 get_matched_subscription_data . 231
3.4.2.10 get_matched_subscriptions. 231
3.4.2.11 get_offered_deadline_missed_status . 232
3.4.2.12 get_offered_incompatible_qos_status . 233
3.4.2.13 get_publication_matched_status. 234
3.4.2.14 get_publisher . 234
3.4.2.15 get_qos . 235
3.4.2.16 get_status_changes (inherited) . 235
3.4.2.17 get_statuscondition (inherited) . 236
3.4.2.18 get_topic . 236
3.4.2.19 lookup_instance (abstract) . 237
3.4.2.20 register_instance (abstract) . 237
3.4.2.21 register_instance_w_timestamp (abstract) . 237
3.4.2.22 set_listener . 237
3.4.2.23 set_qos . 239
3.4.2.24 unregister_instance (abstract) . 241
x
Java Reference Guide �������	

Table of Contents
3.4.2.25 unregister_instance_w_timestamp (abstract) . 241
3.4.2.26 wait_for_acknowledgments . 241
3.4.2.27 write (abstract) . 242
3.4.2.28 write_w_timestamp (abstract) . 243
3.4.2.29 writedispose (abstract) . 243
3.4.2.30 writedispose_w_timestamp (abstract) . 243
3.4.2.31 Interface FooDataWriter . 244
3.4.2.32 assert_liveliness (inherited) . 247
3.4.2.33 dispose . 247
3.4.2.34 dispose_w_timestamp. 250
3.4.2.35 enable (inherited) . 252
3.4.2.36 get_key_value . 252
3.4.2.37 get_listener (inherited) . 253
3.4.2.38 get_liveliness_lost_status (inherited) . 253
3.4.2.39 get_matched_subscription_data (inherited) . 254
3.4.2.40 get_matched_subscriptions (inherited) . 254
3.4.2.41 get_offered_deadline_missed_status (inherited) 254
3.4.2.42 get_offered_incompatible_qos_status (inherited) 254
3.4.2.43 get_publication_matched_status (inherited) . 255
3.4.2.44 get_publisher (inherited). 255
3.4.2.45 get_qos (inherited) . 255
3.4.2.46 get_status_changes (inherited) . 255
3.4.2.47 get_statuscondition (inherited) . 255
3.4.2.48 get_topic (inherited) . 256
3.4.2.49 lookup_instance . 256
3.4.2.50 register_instance . 257
3.4.2.51 register_instance_w_timestamp . 259
3.4.2.52 set_listener (inherited) . 260
3.4.2.53 set_qos (inherited) . 260
3.4.2.54 unregister_instance . 260
3.4.2.55 unregister_instance_w_timestamp . 263
3.4.2.56 write . 265
3.4.2.57 write_w_timestamp. 267
3.4.2.58 writedispose . 268
3.4.2.59 writedispose_w_timestamp. 272
3.4.3 PublisherListener interface . 273
3.4.3.1 on_liveliness_lost (inherited, abstract) . 274
3.4.3.2 on_offered_deadline_missed (inherited, abstract) 275
3.4.3.3 on_offered_incompatible_qos (inherited, abstract) 275
3.4.3.4 on_publication_matched (inherited, abstract) . 275
3.4.4 DataWriterListener interface . 275
3.4.4.1 on_liveliness_lost . 277
xi
Java Reference Guide

�������	

Table of Contents
3.4.4.2 on_offered_deadline_missed . 278
3.4.4.3 on_offered_incompatible_qos . 279
3.4.4.4 on_publication_matched. 280
3.5 Subscription Module . 280
3.5.1 Interface Subscriber. 281
3.5.1.1 begin_access . 283
3.5.1.2 copy_from_topic_qos . 284
3.5.1.3 create_datareader . 285
3.5.1.4 delete_contained_entities . 288
3.5.1.5 delete_datareader . 289
3.5.1.6 enable (inherited) . 290
3.5.1.7 end_access . 290
3.5.1.8 get_datareaders . 291
3.5.1.9 get_default_datareader_qos . 291
3.5.1.10 get_listener . 292
3.5.1.11 get_participant . 293
3.5.1.12 get_qos . 293
3.5.1.13 get_status_changes (inherited) . 294
3.5.1.14 get_statuscondition (inherited) . 295
3.5.1.15 lookup_datareader . 295
3.5.1.16 notify_datareaders . 296
3.5.1.17 set_default_datareader_qos . 297
3.5.1.18 set_listener . 298
3.5.1.19 set_qos . 300
3.5.2 Subscription Type Specific Classes. 302
3.5.2.1 Interface DataReader . 302
3.5.2.2 create_querycondition . 306
3.5.2.3 create_readcondition. 308
3.5.2.4 delete_contained_entities . 309
3.5.2.5 delete_readcondition. 310
3.5.2.6 enable (inherited) . 312
3.5.2.7 get_key_value (abstract). 312
3.5.2.8 get_listener . 312
3.5.2.9 get_liveliness_changed_status . 313
3.5.2.10 get_matched_publication_data . 314
3.5.2.11 get_matched_publications . 314
3.5.2.12 get_qos . 314
3.5.2.13 get_requested_deadline_missed_status . 315
3.5.2.14 get_requested_incompatible_qos_status . 316
3.5.2.15 get_sample_lost_status . 317
3.5.2.16 get_sample_rejected_status . 319
3.5.2.17 get_status_changes (inherited) . 319
xii
Java Reference Guide �������	

Table of Contents
3.5.2.18 get_statuscondition (inherited) . 320
3.5.2.19 get_subscriber . 320
3.5.2.20 get_subscription_matched_status . 321
3.5.2.21 get_topicdescription . 321
3.5.2.22 lookup_instance (abstract) . 321
3.5.2.23 read (abstract) . 322
3.5.2.24 read_instance (abstract) . 322
3.5.2.25 read_next_instance (abstract) . 322
3.5.2.26 read_next_instance_w_condition (abstract) . 323
3.5.2.27 read_next_sample (abstract) . 323
3.5.2.28 read_w_condition (abstract) . 323
3.5.2.29 return_loan (abstract) . 324
3.5.2.30 set_listener . 324
3.5.2.31 set_qos . 326
3.5.2.32 take (abstract) . 328
3.5.2.33 take_instance (abstract) . 328
3.5.2.34 take_next_instance (abstract) . 328
3.5.2.35 take_next_instance_w_condition (abstract) . 329
3.5.2.36 take_next_sample (abstract) . 329
3.5.2.37 take_w_condition (abstract) . 329
3.5.2.38 wait_for_historical_data . 330
3.5.2.39 Interface FooDataReader . 331
3.5.2.40 create_querycondition (inherited). 336
3.5.2.41 create_readcondition (inherited) . 336
3.5.2.42 delete_contained_entities (inherited) . 336
3.5.2.43 delete_readcondition (inherited) . 337
3.5.2.44 enable (inherited) . 337
3.5.2.45 get_key_value . 337
3.5.2.46 get_listener (inherited) . 337
3.5.2.47 get_liveliness_changed_status (inherited) . 338
3.5.2.48 get_matched_publication_data (inherited) . 338
3.5.2.49 get_matched_publications (inherited) . 338
3.5.2.50 get_qos (inherited) . 338
3.5.2.51 get_requested_deadline_missed_status (inherited) 339
3.5.2.52 get_requested_incompatible_qos_status (inherited). 339
3.5.2.53 get_sample_lost_status (inherited) . 339
3.5.2.54 get_sample_rejected_status (inherited) . 339
3.5.2.55 get_status_changes (inherited) . 339
3.5.2.56 get_statuscondition (inherited) . 340
3.5.2.57 get_subscriber (inherited) . 340
3.5.2.58 get_subscription_match_status (inherited) . 340
3.5.2.59 get_topicdescription (inherited) . 340
xiii
Java Reference Guide

�������	

Table of Contents
3.5.2.60 lookup_instance . 341
3.5.2.61 read . 341
3.5.2.62 read_instance . 345
3.5.2.63 read_next_instance . 347
3.5.2.64 read_next_instance_w_condition . 349
3.5.2.65 read_next_sample . 351
3.5.2.66 read_w_condition . 351
3.5.2.67 return_loan . 353
3.5.2.68 set_listener (inherited) . 355
3.5.2.69 set_qos (inherited) . 355
3.5.2.70 take . 355
3.5.2.71 take_instance . 357
3.5.2.72 take_next_instance . 359
3.5.2.73 take_next_instance_w_condition . 360
3.5.2.74 take_next_sample . 362
3.5.2.75 take_w_condition . 362
3.5.2.76 wait_for_historical_data (inherited) . 364
3.5.3 Class DataSample . 364
3.5.4 Class SampleInfo. 364
3.5.4.1 SampleInfo . 364
3.5.5 SubscriberListener Interface . 368
3.5.5.1 on_data_available (inherited) . 369
3.5.5.2 on_data_on_readers . 369
3.5.5.3 on_liveliness_changed (inherited) . 371
3.5.5.4 on_requested_deadline_missed (inherited) . 371
3.5.5.5 on_requested_incompatible_qos (inherited). 371
3.5.5.6 on_sample_lost (inherited) . 371
3.5.5.7 on_sample_rejected (inherited) . 372
3.5.5.8 on_subscription_matched (inherited,) . 372
3.5.6 DataReaderListener interface . 372
3.5.6.1 on_data_available . 373
3.5.6.2 on_liveliness_changed . 375
3.5.6.3 on_requested_deadline_missed . 376
3.5.6.4 on_requested_incompatible_qos . 377
3.5.6.5 on_sample_lost . 378
3.5.6.6 on_sample_rejected . 378
3.5.6.7 on_subscription_matched (abstract) . 379
3.5.7 Interface ReadCondition . 379
3.5.7.1 get_datareader. 380
3.5.7.2 get_instance_state_mask . 381
3.5.7.3 get_sample_state_mask . 381
3.5.7.4 get_trigger_value (inherited) . 382
xiv
Java Reference Guide �������	

Table of Contents
3.5.7.5 get_view_state_mask . 382
3.5.8 Interface QueryCondition . 383
3.5.8.1 get_datareader (inherited) . 384
3.5.8.2 get_instance_state_mask (inherited). 385
3.5.8.3 get_query_parameters. 385
3.5.8.4 get_query_expression . 386
3.5.8.5 get_sample_state_mask (inherited) . 387
3.5.8.6 get_trigger_value (inherited) . 387
3.5.8.7 get_view_state_mask (inherited) . 387
3.5.8.8 set_query_parameters . 387

Appendix A Quality Of Service 391
Affected Entities . 391
Basic Usage . 391
DataReaderQos . 393
DataWriterQos. 396
DomainParticipantFactoryQos . 398
DomainParticipantQos. 399
PublisherQos . 401
SubscriberQos . 402
TopicQos . 404

Appendix B API Constants and Types 407
Duration and Time. 407
Status to Support Listeners and Conditions. 409
States . 410
QosPolicy. 411

Appendix C Platform Specific Model IDL Interface 417
dds_dcps.idl . 417
Foo.idl . 446

Appendix D SampleStates, ViewStates and InstanceStates 451
SampleInfo Class . 451
sample_state. 451
instance_state . 452
view_state . 454
State Masks . 456
Operations Concerning States . 457
xv
Java Reference Guide

�������	

Table of Contents
Appendix E Interface Inheritance 461

Appendix F Listeners, Conditions and Waitsets 463
Communication Status Event . 465
Listeners. 468
Conditions and Waitsets . 470
StatusCondition Trigger State . 472
ReadCondition and QueryCondition Trigger State . 473
GuardCondition Trigger State . 473

Appendix G Topic Definitions 475
Topic Definition Example . 475
Complex Topics. 476
IDL Preprocessor. 476

Appendix H DCPS Queries and Filters 481
SQL Grammar in BNF . 481
SQL Token Expression . 482
SQL Examples. 483

Bibliography 487

Glossary 491

Index 495
xvi
Java Reference Guide �������	

List of Figures
Figure 1 Java Reference Guide Document Structure . 3
Figure 2 DCPS Module Composition . 17
Figure 3 DCPS Infrastructure Module’s Class Model 18
Figure 4 DCPS Domain Module’s Class Model . 19
Figure 5 DCPS Topic-Definition Module’s Class Model 20
Figure 6 Typed Classes for Data Type “Foo” Pre-processor Generation . . . 21
Figure 7 DCPS Publication Module Class Model . 22
Figure 8 DCPS Subscription Module’s Class Model . 23
Figure 9 DCPS Infrastructure Module’s Class Model 26
Figure 10 QosPolicy Settings . 34
Figure 11 DCPS Listeners . 78
Figure 12 DCPS Status Values . 81
Figure 13 DCPS WaitSets . 96
Figure 14 DCPS Conditions . 102
Figure 15 DCPS Domain Module’s Class Model . 111
Figure 16 DCPS Topic-Definition Module’s Class Model 171
Figure 17 Pre-processor Generation of the Typed Classes for
 Data Type “Foo” . 172
Figure 18 DCPS Publication Module’s Class Model 200
Figure 19 DCPS Subscription Module’s Class Model 280
Figure 20: sample_state for a Single Sample State Chart 452
Figure 21: State Chart of the instance_state for a Single Instance 454
Figure 22: view_state for a Single Instance State Chart 455
Figure 23 DCPS Inheritance . 461
Figure 24: Plain Communication Status State Chart 466
Figure 25: Read Communication Status DataReader Statecraft 467
Figure 26: Subscriber Statecraft for a Read Communication Status 467
Figure 27: DCPS Listeners . 469
Figure 28: DCPS WaitSets . 470
Figure 29 DCPS Conditions . 471
Figure 30: Blocking Behaviour of a Waitset State Chart 472
xvii
Java Reference Guide�������	

List of Figures
xviii
Java Reference Guide

�������	

Preface
About the Java Reference Guide

The Java Reference Guide provides details of the OpenSplice DDS (Subscription
Paradigm for the Logical Interconnection of Concurrent Engines Application
Programming Interfaces for the Java language.
This reference guide is based on the OMG’s Data Distribution Service Specification
and Java Language Mapping Specification.
The Java Reference Guide focuses on the Data Centric Publish Subscribe (DCPS)
layer and does not cover the DLRL layer. The purpose of the DCPS is the
distribution of data (publish/subscribe). The structure of the DCPS is divided into
five modules. Each module consists of several classes, which in turn generally
contain several operations.

Intended Audience
The Java Reference Guide is intended to be used by Java programmers who are
using OpenSplice DDS to develop applications.

Organisation
The Java Reference Guide is organised into the following topics.
The Introduction describes the details of the document structure.
Chapter 1, DCPS API General Description, is a general description of the DCPS
API and its error codes.
Chapter 2, DCPS Modules, provides the detailed description of the DCPS modules.
Chapter 3, DCPS Classes and Operations, provides the detailed description of the
DCPS classes, structs and operations.
The following appendices are included, as well a Bibliography containing
references material and Glossary:
Appendix A, Quality Of Service
Appendix B, API Constants and Types
Appendix C, Platform Specific Model IDL Interface
Appendix D, SampleStates, ViewStates and InstanceStates
Appendix E, Interface Inheritance
Appendix F, Listeners, Conditions and Waitsets
Appendix G, Topic Definitions
Appendix H, DCPS Queries and Filters
xix
Java Reference Guide

�������	

Preface
Conventions
The conventions listed below are used to guide and assist the reader in
understanding the Java Reference Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.
Information applies to Windows (e.g. NT, 2000, XP) only.
Information applies to Unix based systems (e.g. Solaris) only.
C language specific
C++ language specific
Java language specific
Hypertext links are shown as blue italic underlined.
On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page xxi, are as hypertext links: click on the reference to go to the item.

Courier fonts indicate programming code and file names.
Extended code fragments are shown in shaded boxes:

Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Arial Bold is used to indicate user related actions, e.g. File | Save from a menu.

Step 1: One of several steps required to complete a task.

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

i
WIN

UNIX

C
C++
Java
xx
Java Reference Guide

�������	

Preface
Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
General Enquiries: info@prismtech.com

Corporate Headquarters European Head Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

Tel: +1 781 270 1177
Fax: +1 781 238 1700

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
xxi
Java Reference Guide

�������	

http://www.prismtech.com
mailto: info@prismtech.com

Preface
xxii
Java Reference Guide

�������	

INTRODUCTION

About the Java Reference Guide
Document Structure

The Java Reference Guide document structure is based on the structure of the DCPS
Platform Independent Model (DCPS PIM) of the Data Distribution Service
Specification. The detailed description is subdivided into the PIM Modules, which
are then subdivided into classes.
Some of the classes are implemented as structs in the DCPS Platform Specific
Model (DCPS PSM) of the Data Distribution Service Specification, as indicated in
the Interface Description Language (IDL) chapter of the PSM (see Appendix C,
Platform Specific Model IDL Interface.
• In the classes as described in the PIM, which are implemented as a class in the

PSM, the operations are described in detail.
• In the classes as described in the PIM, which are implemented as a struct in the

PSM, the struct contents are described in detail.
• The order of the modules and classes is conform the PIM part.
• The order of the operations or struct contents is alphabetical.
• Each description of a class or struct starts with the API description header file.

Figure 1 Java Reference Guide Document Structure

Modules . . .

DDS-DCPS

Classes . . .

Operations . . .

Structs . . .

detailed description
 3
Java Reference Guide�������	

Introduction
Operations
Operations are described in detail in the class they are implemented in. This means
inherited operations, only refer to the operation in the class they are inherited from.
Abstract operations only refer to the type specific implementations in their
respective derived class. An exception is made for the abstract operations
(implemented as an interface), which must be implemented in the application.
Abstract interfaces are described in detail in this manual. In the API description
header file, the inherited and abstract operations are commented out since they are
not implemented in this class.
4
Java Reference Guide

�������	

API REFERENCE

CHAPTER

1 DCPS API General Description
The structure of the DCPS is divided into modules, which are described in detail in
the next chapter. Each module consists of several classes, which in turn may contain
several operations.
Some of these operations have an operation return code of type int, which possible
value is defined in the next table. See Section 1.1, IDL Mapping to Java, on page 8
for an explanation of IDL constants.

Table 1 Return Codes

Return Code Description
RETCODE_OK Successful return
RETCODE_ERROR Generic, unspecified error
RETCODE_BAD_PARAMETER Illegal parameter value
RETCODE_UNSUPPORTED Unsupported operation or QosPolicy setting.

Can only be returned by operations that are
optional or operations that uses an optional
<Entity>QoS as a parameter

RETCODE_ALREADY_DELETED The object target of this operation has already been
deleted

RETCODE_OUT_OF_RESOURCES Service ran out of the resources needed to complete
the operation

RETCODE_NOT_ENABLED Operation invoked on an Entity that is not yet
enabled

RETCODE_IMMUTABLE_POLICY Application attempted to modify an immutable
QosPolicy

RETCODE_INCONSISTENT_POLICY Application specified a set of policies that are not
consistent with each other

RETCODE_PRECONDITION_NOT_MET A pre-condition for the operation was not met
7
 API Reference�������	

1 DCPS API General Description 1.1 IDL Mapping to Java

Return Codes are located in the package DDS. The operation return codes
RETCODE_OK , RETCODE_ERROR , RETCODE_BAD_PARAMETER ,
RETCODE_UNSUPPORTED and RETCODE_ALREADY_DELETED are default for
operations that return an operation return code and are therefore not explicitly
mentioned in the DDS specification. However, in this manual they are mentioned
along with each operation.
Some operations are not implemented. These operations are mentioned including
their synopsis, but not described in this manual and return RETCODE_UNSUPPORTED
when called from the application. All constants and types are listed in Appendix B,
API Constants and Types.
The return code RETCODE_ILLEGAL_OPERATION can never be returned in Java: it
indicates that you try to invoke an operation on the wrong class, which in a language
like Java, that natively supports Object Orientation by supporting the concept of
classes with internal operations, is never possible.

1.1 IDL Mapping to Java
1.1.1 IDL-Constant Mapping

Constants, declared outside the scope of a IDL interface, are mapped to a public
interface with the same name as the constant and containing a field, named value,
that holds the constant’s value. For example the IDL constant:

module DDS {
const ReturnCode_t RETCODE_OK = 0;

}

is mapped to the following interface class:
Package DDS;

RETCODE_TIMEOUT The operation timed out
RETCODE_ILLEGAL_OPERATION An operation was invoked on an inappropriate

object or at an inappropriate time (as determined by
QosPolicies that control the behaviour of the object
in question). There is no precondition that could be
changed to make the operation succeed.
In Java, this code can never be returned!!

RETCODE_NO_DATA Indicates a situation where the operation did not
return any data

Table 1 Return Codes

Return Code Description
8
API Reference

�������	

1 DCPS API General Description 1.2 Thread Safety

public interface RETCODE_OK {
public static final int value = (int)(0);

}

The value of the constant can be retrieved with:
RETCODE_OK.value

A few examples of the usage of constants:
• use the OR operation to compose a value:

condition.set_enabled_statuses (
INCONSISTENT_TOPIC_STATUS.value |

 SAMPLE_REJECTED_STATUS.value);

• use the AND operation to check a value:
if ((status & INCONSISTENT_TOPIC_STATUS.value) ==

INCONSISTENT_TOPIC_STATUS.value) {
error = true;

}

1.1.2 IDL-Sequence Mapping
An IDL sequence is mapped to a Java array with the same name. The holder class,
see section 1.5 on page 11, for the sequence is generated too. For example the IDL
sequence:

typedef sequence<long> Data

is mapped to the following holder class:
public final class DataHolder
{

public int[] value = null;
public DataHolder () { }
public DataHolder (int[] initialValue)
{

value = initialValue;
 }
}

The array can be initiated using the constructor:
int[] data = new int[10];
DataHolder dataHolder = new DataHolder(data);

To reference to an element of the array use for example:
int x = dataHolder.value[2];

The length of the array is found using:
int length = dataHolder.value.length;

1.2 Thread Safety
All operations are thread safe.
9
API Reference�������	

1 DCPS API General Description 1.3 Signal Handling

1.3 Signal Handling
The Data Distribution Service sets signal handlers in order to assure that resources
are released when signals that terminate the application process are cached. These
signal handlers only call the exit function in order to force exit handlers to be
activated.
If the application needs to set signal handlers for its own use, two situations can
occur. In the first case the application sets a signal handler for a specific signal while
the Data Distribution Service has not set a handler yet. The Data Distribution
Service will not set it’s own handler in this case, but expects the application signal
handler to call the exit function when the signal is meant to terminate the process. In
the second case the Data Distribution Service has already set a signal handler for a
specific signal and the application program redefines the signal handling by setting
its own handler. In that case the application should either chain the Data Distribution
Service signal handler (to be executed as last) or to call the exit function itself when
the cached signal is meant to terminate the application process.
The Data Distribution Service service will conditionally set the signal handlers
when creating the DomainParticipantFactory, which is the first call to
DDS.DomainParticipantFactory.get_instance() for Java.
The Data Distribution Service only sets signal handlers for signals that have the
default behavior of terminating the process without dumping a core.
The Java Virtual Machine uses its own signal handlers internally. Which signals are
caught by it, depends on the platform it is running on. The Splice-DDS signal
handlers conflict with the ones used internally by the Java Virtual Machine. To
avoid this problem the signal-chaining facility of the virtual machine must be used.
The signal-chaining facility is installed by loading the shared library libjsig.so
before libc, libthead and/or libpthread. The libjsig.so library is
provided with the Java virtual machine. This library ensures that calls such as
signal(), sigset() and sigaction() are intercepted so that they do not
actually replace the Java virtual machine signal handlers. Instead, signal handlers of
the application are “chained” behind the handlers of the Java virtual machine. When
any of these signals are raised and found not to be targeted at the Java virtual
machine, the signals invoke the signal handlers installed by the application. When
just the Data Distribution System is used without any application signal handlers, no
action needs to be taken.
The library libjsig.so can be loaded before the Java application by using the
LD_PRELOAD environment variable, for example:

LD_PRELOAD = <libjvm directory>/libjsig.so
export LD_PRELOAD

UNIX
10
API Reference

�������	

1 DCPS API General Description 1.4 Memory Management

1.4 Memory Management
When objects are being created, they will occupy memory resources. Release of the
memory resources is the responsibility of the Java garbage collector. The memory of
an object is released, after all references to this object have run out of scope or have
explicitly been removed (set to null).

1.5 Parameter Passing
Support for passing out and inout parameter in a function call requires the use of
additional “holder” classes. These classes are available for all of the data types in
the DDS package and are generated for all user defined IDL types, except those
defined by typedefs. For user defined IDL types, the holder class name is
constructed by appending “Holder” to the mapped Java name of the type, i.e.
FooHolder for user defined type Foo.
Each holder class has a default constructor and has a public instance member,
named value, which is the typed value. The default constructor sets the value field to
null for object references.
The Holder class for the type DataReaderSeq is shown below:

public final class DataReaderSeqHolder
{

public DDS.DataReader value[] = null;
public DataReaderSeqHolder ()
{
}

}

Example of usage of the DataReaderSeqHolder class:
DDS.DataReader reader;
DDS.DataReaderSeqHolder readersholder = new
DDS.DataReaderSeqHolder;
// Get data readers objects
subscriber.get_datareaders (readersholder, DDS.ANY_STATE.value,
DDS.ANY_VIEW.value,

DDS.ANY_INSTANCE_STATE.value);
// Get first data reader object from the sequence
if(readersholder.value[0] != null)

reader = readersholder.value[0];

In this example a holder is declared for the type DataReaderSeq. After the call to the
function subscriber.get_datareaders, the readersholder contains a reference to an
array of DataReader objects. A reader is retrieved in the last line of the example
code.
11
API Reference�������	

1 DCPS API General Description 1.5 Parameter Passing

The Holder classes defined in DCPS are listed in Table 2:
Table 2 DCPS Holder Classes

BuiltinTopicKey_tHolder PresentationQosPolicyAccessScopeKindHolder

ConditionHolder PresentationQosPolicyHolder

ConditionSeqHolder PublicationBuiltinTopicDataHolder

ContentFilteredTopicHolder PublicationMatchStatusHolder

DataReaderHolder PublisherHolder

DataReaderListenerHolder PublisherListenerHolder

DataReaderQosHolder PublisherQosHolder

DataReaderSeqHolder QosPolicyCountHolder

DataWriterHolder QosPolicyCountSeqHolder

DataWriterListenerHolder QueryConditionHolder

DataWriterQosHolder ReadConditionHolder

DeadlineQosPolicyHolder ReaderDataLifecycleQosPolicyHolder

DestinationOrderQosPolicyHolder ReliabilityQosPolicyHolder

DestinationOrderQosPolicyKindHolder ReliabilityQosPolicyKindHolder

DomainParticipantFactoryHolder RequestedDeadlineMissedStatusHolder

DomainParticipantHolder RequestedIncompatibleQosStatusHolder

DomainParticipantListenerHolder ResourceLimitsQosPolicyHolder

DomainParticipantQosHolder SampleInfoHolder

DurabilityQosPolicyHolder SampleInfoSeqHolder

DurabilityQosPolicyKindHolder SampleLostStatusHolder

Duration_tHolder SampleRejectedStatusHolder

EntityFactoryQosPolicyHolder SampleRejectedStatusKindHolder

EntityHolder SampleStateSeqHolder

GroupDataQosPolicyHolder StatusConditionHolder

GuardConditionHolder StringSeqHolder

HistoryQosPolicyHolder SubscriberHolder

HistoryQosPolicyKindHolder SubscriberListenerHolder

InconsistentTopicStatusHolder SubscriberQosHolder

InstanceHandleSeqHolder SubscriptionBuiltinTopicDataHolder

InstanceStateSeqHolder SubscriptionMatchStatusHolder

LatencyBudgetQosPolicyHolder Time_tHolder

LifespanQosPolicyHolder TimeBasedFilterQosPolicyHolder

ListenerHolder TopicBuiltinTopicDataHolder

LivelinessChangedStatusHolder TopicDataQosPolicyHolder
12
API Reference

�������	

1 DCPS API General Description 1.6 Casting of Objects

1.6 Casting of Objects
Instances of classes can also be cast to instances of other classes, with one
restriction: the class of the object you’re casting and the class you’re casting it to
must be related by inheritance. So a class can be cast to a subclass, not to any
random class.
For any user defined interface a Helper class is generated with the method narrow()
to cast to the derived class type. The following Java code is generated:

abstract public class <typename> Helper {
public static <typename> narrow(java.lang.Object obj);

}

The static method narrow(), defined in the Helper class, is a method to cast a
superclass object to the <typename> object.
For the user defined structure Foo, the following Helper classes are generated:
• FooDataWriterHelper
• FooDataReaderHelper
• FooTypeSupportHelper
The example below demonstrates the casting of an DataReader type to a
FooDataReader type by calling the function narrow:

// Create the DomainParticipant participant first
...
// The participant creates a new subscriber
DDS.Subscriber subscriber =

participant.create_subscriber(subqos, sublistener);
// The subscriber creates a new FooDataReader

LivelinessLostStatusHolder TopicDescriptionHolder

LivelinessQosPolicyHolder TopicHolder

LivelinessQosPolicyKindHolder TopicListenerHolder

MultiTopicHolder TopicQosHolder

OfferedDeadlineMissedStatusHolder TopicSeqHolder

OfferedIncompatibleQosStatusHolder TransportPriorityQosPolicyHolder

OwnershipQosPolicyHolder TypeSupportHolder

OwnershipQosPolicyKindHolder UserDataQosPolicyHolder

OwnershipStrengthQosPolicyHolder ViewStateSeqHolder

ParticipantBuiltinTopicDataHolder WaitSetHolder

PartitionQosPolicyHolder WriterDataLifecycleQosPolicyHolder

Table 2 DCPS Holder Classes (Continued)
13
API Reference�������	

1 DCPS API General Description 1.7 Listeners Interfaces

DS.DataReader reader = subscriber.create_datareader(topic,
drqos, drlistener);

// The DataReader is cast to a FooDataReader,
// using the static method narrow() in the Helper class
FooDataReader foo_reader =

FooDataReaderHelper.narrow(reader);

1.7 Listeners Interfaces
The Listener provides a generic mechanism (actually a callback function) for the
Data Distribution Service to notify the application of relevant asynchronous status
change events, such as a missed deadline, violation of a QosPolicy setting, etc.
The Listener is related to changes in communication status.
The Listener interfaces are designed as an interface at PIM level. In other words,
such an interface is part of the application which must implement the interface
operations. A user defined class for these operations must be provided by the
application which must extend from the specific Listener class. All Listener
operations must be implemented in the user defined class, it is up to the application
whether an operation is empty or contains some functionality.
Each DCPS Entity supports its own specialized kind of Listener. Therefore, the
following Listeners are available:
• DomainParticipantListener

• TopicListener

• PublisherListener

• DataWriterListener

• SubscriberListener

• DataReaderListener

Example
For example, since a DataReader is an Entity, it has the ability to have a
Listener associated with it. In this case, the associated Listener must be of
type DataReaderListener. This interface must be implemented by the
application. A user defined class must be provided by the application (for instance
My_DataReaderListener) w h i c h m u s t e x t e n d f r o m t h e
DataReaderListener class. All DataReaderListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.
As an example, one of the operations in the DataReaderListener is the
on_liveliness_changed. This operation (implemented by the application) will
be called by the Data Distribution Service when the liveliness of the associated
DataWriter has changed. In other words, it serves as a callback function to the
14
API Reference

�������	

1 DCPS API General Description 1.8 Inheritance of Abstract Operations

event of a change in liveliness. The parameters of the operation are supplied by the
Data Distribution Service. In this example, the reference to the DataReader and
the status of the liveliness are provided.

1.8 Inheritance of Abstract Operations
This manual is based on:
• PIM part of the DDS-DCPS specification (to describe the modules);
• PSM part of the DDS-DCPS specification (to describe the classes and operations).
At PIM level, inheritance is used to define abstract classes and operations. The
OMG IDL PSM (see Appendix C, Platform Specific Model IDL Interface) defines
the interface for an application to interact with the Data Distribution Service. The
DCPS API for the Java programming language conforms to the OMG Java
Language Mapping Specification (Java to IDL).
Inheritance of operations is not implemented when different type parameters for the
same operation are used. In this case operations are implemented in their respective
derived class (e.g. get_qos and set_qos). These operations are commented out in
the IDL PSM.
15
API Reference�������	

1 DCPS API General Description 1.8 Inheritance of Abstract Operations

16
API Reference

�������	

CHAPTER

2 DCPS Modules
DCPS is divided into five modules, which are described briefly in this chapter. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes as described in the PIM are implemented as a
struct in the PSM; these classes are treated as a class in this chapter according to
the PIM with a remark about their implementation (struct). In the next chapter their
actual implementations are described.
Each class contains several operations, which may be abstract. Those classes,
which are implemented as a struct do not have any operations. The modules and the
classes are ordered conform the DDS-DCPS specification. The classes, interfaces
and operations are described in the next chapter.

Figure 2 DCPS Module Composition

2.1 Functionality
The modules have the following function in the Data Distribution Service:
Infrastructure Module - Defines the abstract classes and interfaces, which are

refined by the other modules. It also provides the support for the interaction
between the application and the Data Distribution Service (event-based and
state-based);

Domain Module

Publication
Module

Subscription
Module

Topic-Definition
Module

Infrastructure
Module
17
 API Reference�������	

2 DCPS Modules 2.2 Infrastructure Module

Domain Module - Contains the DomainParticipant class, which is the entry
point of the application and DomainParticipantListener interface;

Topic-Definition Module - Contains the Topic, ContentFilteredTopic and
MultiTopic classes. It also contains the TopicListener interface and all
support to define Topic objects and assign QosPolicy settings to them;

Publication Module - Contains the Publisher and DataWriter classes. It also
contains the PublisherListener and DataWriterListener interfaces;

Subscription Module - Contains the Subscriber, DataReader,
ReadCondition and QueryCondition classes. It also contains the
SubscriberListener and DataReaderListener interfaces.

2.2 Infrastructure Module
This module defines the abstract classes and interfaces, which, in the PIM
definition, are refined by the other modules. It also provides the support for the
interaction between the application and the Data Distribution Service (event-based
and state-based). The event-based interaction is supported by Listeners, the
state-based interaction is supported by WaitSets and Conditions.

Figure 3 DCPS Infrastructure Module’s Class Model
This module contains the following classes:
• Entity (abstract)
• DomainEntity (abstract)
• QosPolicy (abstract, class)
• Listener (interface)

GuardCondition

set_trigger_value()

Condition

get_trigger_value()

WaitSet

attach_condition()
detach_condition()
get_conditions()
wait()

*

*

*

*

QosPolicy

name : string

Status

StatusCondition

get_enabled_statuses()
get_entity()
set_enabled_statuses()

Listener

<<Interface>>Entity

enable()
<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

**

qos

* 1* 1

status

11

entity

0..10..1

statuscondition

0..1* 0..1*

listener

DomainParticipant
(from Domain Module) DomainEntity**11

ReadCondition
(from Subscription Module)

QueryCondition
(from Subscription Module)
18
API Reference

�������	

2 DCPS Modules 2.3 Domain Module

• Status (abstract, class)
• WaitSet

• Condition

• GuardCondition

• StatusCondition

2.3 Domain Module
This module contains the class DomainParticipant, which acts as an entry point
of the Data Distribution Service and acts as a factory for many of the classes. The
DomainParticipant also acts as a container for the other objects that make up the
Data Distribution Service. It isolates applications within the same Domain from
other applications in a different Domain on the same set of computers. A Domain is
a “virtual network” and applications with the same domainId are isolated from
applications with a different domainId. In this way, several independent distributed
applications can coexist in the same physical network without interfering, or even
being aware of each other.

Figure 4 DCPS Domain Module’s Class Model
This module contains the following classes:
• DomainParticipant

SubscriberListener
(from Subscription Module)

<<Interface>>

TopicListener

on_inconsistent_topic()

<<Interface>>

PublisherListener
(from Publication Module)

<<Interface>> Entity
(from Infrastructure Module)

Publisher
(from Publication Module)

Subscriber
(from Subscription Module)

ContentFilteredTopic
(from Topic-Definition Module)

MultiTopic
(from Topic-Definition Module)DomainParticipantFactory

create_participant()
delete_participant()
get_default_participant_qos()
get_instance()
lookup_participant()
set_default_participant_qos()

DomainEntity
(from Infrastructure Module)

QosPolicy
(from Infrastructure Module)

**

default_participant_qos

DomainParticipantListener

DomainParticipant

assert_liveliness()
contains_entity()
create_contentfilteredtopic()
create_multitopic()
create_publisher()
create_subscriber()
create_topic()
delete_contained_entities()
delete_contentfilteredtopic()
delete_multitopic()
delete_publisher()
delete_subscriber()
delete_topic()
find_topic()
get_builtin_subscriber()
get_current_time()
get_default_publisher_qos()
get_default_subscriber_qos()
get_default_topic_qos()
get_domain_id()
get_listener()
get_qos()
ignore_participant()
ignore_publication()
ignore_subscription()
ignore_topic()
lookup_topic_description()
set_default_publisher_qos()
set_default_subscriber_qos()
set_default_topic_qos()
set_listener()
set_qos()

**

11

**

qos<<implicit>>

**
default_publisher_qos

** default_topic_qos
**

default_subscriber_qos

0..10..1

<<implicit>>

Topic
(from Topic-Definition Module)

TopicDescription
(from Topic-Definition Module)

**

<<implicit>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>
19
API Reference�������	

2 DCPS Modules 2.4 Topic-Definition Module

• DomainParticipantFactory

• DomainParticipantListener (interface)

2.4 Topic-Definition Module
This module contains the Topic, ContentFilteredTopic and MultiTopic
classes. It also contains the TopicListener interface and all support to define
Topic objects and assign QosPolicy settings to them.

Figure 5 DCPS Topic-Definition Module’s Class Model
This module contains the following classes:
• TopicDescription (abstract)
• Topic

• ContentFilteredTopic

• MultiTopic

• TopicListener (interface)
• Topic-Definition type specific classes
“Topic-Definition type specific classes” contains the generic class and the generated
data type specific classes. In case of data type Foo (this also applies to other types);
“Topic-Definition type specific classes” contains the following classes:
• TypeSupport (abstract)

DomainEntity
(from Infrastructure Module)

DataReader
(from Subscription Module)

TypeSupport

get_type_name()
register_type()

<<Interface>>

TopicDescription

get_name()
get_participant()
get_type_name()

1

*

1

*

11

DomainParticipant
(from Domain Module)

TopicListener

on_inconsistent_topic()

<<Interface>>QosPolicy
(from Infrastructure Module)

DataWriter
(from Publication Module)

MultiTopic

get_expression_parameters()
get_subscription_expression()
set_expression_parameters()

ContentFilteredTopic

get_expression_parameters()
get_filter_expression()
get_related_topic()
set_expression_parameters()

Topic

get_inconsistent_topic_status()
get_listener()
get_qos()
set_listener()
set_qos()

0..10..1**

1* 1*

**

11

WaitSet
(from Infrastructure Module)

StatusCondition
(from Infrastructure Module)

*

1

*

1

** **

<<create>>

<<create>>

<<create>>
20
API Reference

�������	

2 DCPS Modules 2.5 Publication Module

• FooTypeSupport

Figure 6 Typed Classes for Data Type “Foo” Pre-processor Generation

2.5 Publication Module
This module supports writing of the data, it contains the Publisher and
DataWriter classes. I t a lso contains the PublisherListener and
DataWriterListener interfaces. Furthermore, it contains all support needed for
publication.

TypeSupport

get_type_name()
register_type()

<<Interface>> DataWriter
(from Publication Module)

DataReader
(from Subscription Module)

FooDataReader

get_key_value()
read()
read_instance()
read_next_instance()
read_next_instance_w_condition()
read_next_sample()
read_w_condition()
return_loan()
take()
take_instance()
take_next_instance()
take_next_instance_w_condition()
take_next_sample()
take_w_condition()

FooDataWriter

dispose()
dispose_w_timestamp()
get_key_value()
register()
register_w_timestamp()
unregister()
unregister_w_timestamp()
write()
write_w_timestamp()

Foo

FooTypeSupport

get_type_name()
register_type()
21
API Reference�������	

2 DCPS Modules 2.6 Subscription Module

Figure 7 DCPS Publication Module Class Model
This module contains the following classes:
• Publisher

• Publication type specific classes
• PublisherListener (interface)
• DataWriterListener (interface)
“Publication type specific classes” contains the generic class and the generated data
type specific classes. In case of data type Foo (this also applies to other types);
“Publication type specific classes” contains the following classes:
• DataWriter (abstract)
• FooDataWriter

2.6 Subscription Module
This module supports access to the data, it contains the Subscriber,
DataReader, ReadCondition and QueryCondition classes. It also contains
the SubscriberListener and DataReaderListener interfaces. Furthermore,
it contains all support needed for subscription.

WaitSet
(from Infrastructure Module)

PublisherListener

<<Interface>>

DomainParticipant
(from Domain Module)

DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>

StatusCondition
(from Infrastructure Module)

*

*

*

*

Publisher

begin_coherent_changes()
copy_from_topic_qos()
create_datawriter()
delete_contained_entities()
delete_datawriter()
end_coherent_changes()
get_default_datawriter_qos()
get_listener()
get_participant()
get_qos()
lookup_datawriter()
resume_publications()
set_default_datawriter_qos()
set_listener()
set_qos()
suspend_publications()

1

*

1

*

<<implicit>>

1

0..1

1

0..1 <<implicit>>

QosPolicy
(from Infrastructure Module)

**
qos

<<implicit>>

**

default_datawriter_qos

DataWriter

assert_liveliness()
<<abstract>> dispose()
<<abstract>> dispose_w_timestamp()
<<abstract>> get_key_value()
get_listener()
get_liveliness_lost_status()
get_matched_subscription_data()
get_matched_subscriptions()
get_offered_deadline_missed_status()
get_offered_incompatible_qos_status()
get_publication_match_status()
get_publisher()
get_qos()
get_topic()
<<abstract>> register()
<<abstract>> register_w_timestamp()
set_listener()
set_qos()
<<abstract>> unregister()
<<abstract>> unregister_w_timestamp()
<<abstract>> write()
<<abstract>> write_w_timestamp()

0..1

*

0..1

*

<<implicit>>

1

0..1

1

0..1

<<implicit>>

**

<<implicit>>

1

*

1

*

Topic
(from Topic-Definition Module)

**

* 1* 1

<<create>>

<<create>>
22
API Reference

�������	

2 DCPS Modules 2.6 Subscription Module

Figure 8 DCPS Subscription Module’s Class Model
This module contains the following classes:
• Subscriber

• Subscription type specific classes
• DataSample

• SampleInfo (class)
• SubscriberListener (interface)
• DataReaderListener (interface)
• ReadCondition

• QueryCondition

QueryCondition

get_query_arguments()
get_query_expression()
set_query_arguments()

DomainParticipant
(from Domain Module)

SampleInfo

sample_state
view_state
instance_state
source_timestamp
instance_handle
disposed_generation_count
no_writers_generation_count
sample_rank
generation_rank
absolute_generation_rank

WaitSet
(from Infrastructure Module)

Topic
(from Topic-Definition Module)

SubscriberListener

on_data_on_readers()

<<Interface>>

TopicDescription
(from Topic-Definition Module)

**

<<implicit>>

DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>

DataSample

11

ReadCondition

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

*

*

*

*
<<implicit>>

StatusCondition
(from Infrastructure Module)

** **

QosPolicy

name : string

**

Subscriber

begin_access()
copy_from_topic_qos()
create_datareader()
delete_contained_entities()
delete_datareader()
end_access()
get_datareaders()
get_default_datareader_qos()
get_listener()
get_participant()
get_qos()
lookup_datareader()
notify_datareaders()
set_default_datareader_qos()
set_listener()
set_qos()

0..10..1

<<implicit>>

1

0..1

1

0..1

<<implicit>>

**

qos

<<implicit>>

**

default_datareader_qos

DataReader

create_querycondition()
create_readcondition()
delete_contained_entities()
delete_readcondition()
<<abstract>> get_key_value()
get_listener()
get_liveliness_changed_status()
get_matched_publication_data()
get_matched_publications()
get_qos()
get_requested_deadline_missed_status()
get_requested_incompatible_qos_status()
get_sample_lost_status()
get_sample_rejected_status()
get_subscriber()
get_subscription_match_status()
get_topicdescription()
<<abstract>> lookup_instance()
<<abstract>> read()
<<abstract>> read_instance()
<<abstract>> read_next_instance()
<<abstract>> read_next_instance_w_condition()
<<abstract>> read_next_sample()
<<abstract>> read_w_condition()
<<abstract>> return_loan()
set_listener()
set_qos()
<<abstract>> take()
<<abstract>> take_instance()
<<abstract>> take_next_instance()
<<abstract>> take_next_instance_w_condition()
<<abstract>> take_next_sample()
<<abstract>> take_w_condition()

*
1

*
1

0..10..1

**

*

1

*

1

0..10..1

<<implicit>>

**

<<implicit>>

1

*

1

*

<<create>>

<<create>>

<<create>>

<<create>>
23
API Reference�������	

2 DCPS Modules 2.6 Subscription Module

“Subscription type specific classes” contains the generic class and the generated
data type specific classes. In case of data type Foo (this also applies to other types);
“Subscription type specific classes” contains the following classes:
• DataReader (abstract)
• FooDataReader
24
API Reference

�������	

CHAPTER

3 DCPS Classes and Operations
This chapter describes, for each module, its classes and operations in detail. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes are implemented as a struct in the PSM. Some of
the other classes are abstract, which means they contain some abstract operations.
The Listener interfaces are designed as an interface at PIM level. In other words,
the application must implement the interface operations. Therefore, all Listener
classes are abstract. A user defined class for these operations must be provided by
the application which must extend from the specific Listener class. All Listener
operations must be implemented in the user defined class. It is up to the application
whether an operation is empty or contains some functionality.
Each class contains several operations, which may be abstract (base class).
Abstract operations are not implemented in their base class, but in a type specific
class or an application defined class (in case of a Listener). Classes that are
implemented as a struct do not have any operations. Some operations are inherited,
which means they are implemented in their base class.
The abstract operations in a class are listed (including their synopsis), but not
implemented in that class. These operations are implemented in their respective
derived classes. The interfaces are fully described, since they must be implemented
by the application.
25
 API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1 Infrastructure Module

Figure 9 DCPS Infrastructure Module’s Class Model
This module contains the following classes:
• Entity (interface)
• DomainEntity (abstract)
• QosPolicy (abstract, class)
• Listener (interface)
• Status (abstract, class)
• WaitSet

• Condition

• GuardCondition

• StatusCondition

3.1.1 Interface Entity
Entity is the interface for all the DCPS objects. It acts as a generic interface for
Entity objects.
The interface description is as follows:

public interface Entity
{
//
// abstract operations (implemented in class
// DomainParticipant, Topic,
// Publisher, DataWriter, Subscriber and DataReader)
//

GuardCondition

set_trigger_value()

Condition

get_trigger_value()

WaitSet

attach_condition()
detach_condition()
get_conditions()
wait()

*

*

*

*

QosPolicy

name : string

Status

StatusCondition

get_enabled_statuses()
get_entity()
set_enabled_statuses()

Listener

<<Interface>>Entity

enable()
<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

**

qos

* 1* 1

status

11

entity

0..10..1

statuscondition

0..1* 0..1*

listener

DomainParticipant
(from Domain Module) DomainEntity**11

ReadCondition
(from Subscription Module)

QueryCondition
(from Subscription Module)
26
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

// public int
// set_qos
// (EntityQos qos);
// public int
// get_qos
// (EntityQosHolder qos);
// public int
// set_listener
// (Listener a_listener,
// int mask);
// public Listener
// get_listener
// (void);
//
// implemented API operations
//

public int
 enable
 (void);
public StatusCondition
 get_statuscondition
 (void);
public int
 get_status_changes
 (void);
public long
 get_instance_handle
 (void);

};

The following paragraphs list all Entity operations. The abstract operations are
listed but not fully described because they are not implemented in this specific class.
The full description of these operations is given in the subclasses, which contain the
type specific implementation of these operations.

3.1.1.1 enable

Scope
DDS.Entity

Synopsis
import DDS.*;
public int
 enable
 (void);
27
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Description
This operation enables the Entity on which it is being called when the Entity
was created with the EntityFactoryQosPolicy set to false.

Parameters
<none>

Return Value
int - Poss ib le r e tu rn codes o f the opera t ion a re : RETCODE_OK ,

RETCODE_ERROR , RETCODE_ALREADY_DELETED , RETCODE_OUT_
OF_RESOURCES or RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation enables the Entity. Created Entity objects can start in either an
e n a b l e d o r d i s a b l e d s t a t e . T h i s i s c o n t ro l l e d b y t h e v a l u e o f t h e
EntityFactoryQosPolicy on the corresponding factory for the Entity.
Enabled entities are immediately activated at creation time meaning all their
immutable QoS settings can no longer be changed. Disabled Entities are not yet
activated, so it is still possible to change there immutable QoS settings. However,
once activated the immutable QoS settings can no longer be changed.
Creating disabled entities can make sense when the creator of the Entity does not
yet know which QoS settings to apply, thus allowing another piece of code to set the
QoS later on. This is for example the case in the DLRL, where the ObjectHomes
create all underlying DCPS entities but do not know which QoS settings to apply.
The user can then apply the required QoS settings afterwards.
The default setting of EntityFactoryQosPolicy is such that, by default, entities
are created in an enabled state so that it is not necessary to explicitly call enable on
newly created entities.
The enable operation is idempotent. Calling enable on an already enabled
Entity returns RETCODE_OK and has no effect.
If an Entity has not yet been enabled, the only operations that can be invoked on it
are: the ones to set, get or copy the QosPolicy settings, the ones that set (or get) the
listener, the ones that get the StatusCondition, the get_status_changes
operation (although the status of a disabled entity never changes), and the ‘factory’
operations that create, delete or lookup1 other Entities. Other operations will
return the error RETCODE_NOT_ENABLED.
Entities created from a factory that is disabled, are created disabled regardless of
the setting of the EntityFactoryQosPolicy.

1. This includes the lookup_topicdescription, but not the find_topic.

28
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Calling enable on an Entity whose factory is not enabled will fail and return
RETCODE_PRECONDITION_NOT_MET.
If the EntityFactoryQosPolicy has autoenable_created_entities set to
true, the enable operation on the factory will automatically enable all Entities
created from the factory.
The Listeners associated with an Entity are not called until the Entity is
enabled. Conditions associated with an Entity that is not enabled are "inactive",
that is, have a trigger_value which is false.

Return Code
When the operation returns:
• RETCODE_OK - the application enabled the Entity (or it was already enabled)
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - the factory of the Entity is not enabled.

3.1.1.2 get_instance_handle

Scope
DDS.Entity

Synopsis
import DDS.*;
public long
 get_instance_handle
 (void);

Description
This operation returns the instance_handle of the builtin topic sample that
represents the specified Entity.

Parameters
<none>

Return Value
long - Result value is the instance_handle of the builtin topic sample that

represents the state of this Entity.
29
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
The relevant state of some Entity objects are distributed using so-called builtin
topics. Each builtin topic sample represents the state of a specific Entity and has a
unique instance_handle. This operation returns the instance_handle of the
builtin topic sample that represents the specified Entity.
Some Entities (i.e. Publisher and Subscriber) do not have a corresponding
builtin topic sample, but they still have an instance_handle that uniquely
identifies the Entity.
The instance_handles obtained this way can also be used to check whether a
specific Entity is located in a specific DomainParticipant. (See section
3.2.1.2, contains_entity, on page 116.)

3.1.1.3 get_listener (abstract)
This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, DomainParticipant, Topic, Publisher,
Subscriber, DataWriter and DataReader will provide a class specific
implementation of this abstract operation.

Synopsis
import DDS.*;
public Listener
 get_listener
 (void);

3.1.1.4 get_qos (abstract)
This abstract operation is defined as a generic operation to access an object with the
QosPolicy settings. Each subclass derived from this class, DomainParticipant,
Topic, Publisher, Subscriber, DataWriter and DataReader will provide a
class specific implementation of this abstract operation.

Synopsis
import DDS.*;
public int
 get_qos
 (EntityQosHolder qos);

3.1.1.5 get_status_changes

Scope
DDS.Entity
30
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public int
 get_status_changes
 (void);

Description
This operation returns a mask with the communication statuses in the Entity that
are “triggered”.

Parameters
<none>

Return Value
int - a bit mask in which each bit shows which value has changed.

Detailed Description
This operation returns a mask with the communication statuses in the Entity that
are “triggered”. That is the set of communication statuses whose value have
changed since the last time the application called this operation. This operation
shows whether a change has occurred even when the status seems unchanged
because the status changed back to the original status.
When the Entity is first created or if the Entity is not enabled, all
communication statuses are in the “un-triggered” state so the mask returned by the
operation is empty.
The result value is a bit mask in which each bit shows which value has changed. The
relevant bits represent one of the following statuses:
• INCONSISTENT_TOPIC_STATUS

• OFFERED_DEADLINE_MISSED_STATUS

• REQUESTED_DEADLINE_MISSED_STATUS

• OFFERED_INCOMPATIBLE_QOS_STATUS

• REQUESTED_INCOMPATIBLE_QOS_STATUS

• SAMPLE_LOST_STATUS

• SAMPLE_REJECTED_STATUS

• DATA_ON_READERS_STATUS

• DATA_AVAILABLE_STATUS

• LIVELINESS_LOST_STATUS

• LIVELINESS_CHANGED_STATUS

• PUBLICATION_MATCHED_STATUS
31
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• SUBSCRIPTION_MATCHED_STATUS

Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the resulting status mask. Not all statuses are relevant to
all Entity objects. See the respective Listener interfaces for each Entity for
more information

3.1.1.6 get_statuscondition

Scope
DDS.Entity

Synopsis
import DDS.*;
public StatusCondition
 get_statuscondition
 (void);

Description
This operation allows access to the StatusCondition associated with the
Entity.

Parameters
<none>

Return Value
StatusCondition - Result value is the StatusCondition of the Entity.

Detailed Description
Each Entity has a StatusCondition associated with it. This operation allows
access to the StatusCondition associated with the Entity. The returned
condition can then be added to a WaitSet so that the application can wait for
specific status changes that affect the Entity.

3.1.1.7 set_listener (abstract)
This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, DomainParticipant, Topic, Publisher,
Subscriber, DataWriter and DataReader will provide a class specific
implementation of this abstract operation.

Synopsis
import DDS.*;
public int
 set_listener
32
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 (Listener a_listener,
 int mask);

3.1.1.8 set_qos (abstract)
This abstract operation is defined as a generic operation to modify an object with the
QosPolicy settings. Each subclass derived from this class, DomainParticipant,
Topic, Publisher, Subscriber, DataWriter and DataReader will provide a
class specific implementation of this abstract operation.

Synopsis
import DDS.*;
public int
 set_qos
 (EntityQos qos);

3.1.2 Class DomainEntity
This class is the abstract base class for the all entities except DomainParticipant.
The main purpose is to express that DomainParticipant is a special kind of
Entity, which acts as a container of all other Entity objects, but cannot contain
another DomainParticipant within itself. Therefore, this class is not part of the
IDL interface in the DCPS PSM description.
The class DomainEntity does not contain any operations.

3.1.3 Class QosPolicy
Each Entity provides an <Entity>Qos class that implements the basic
mechanism for an application to specify Quality of Service attributes. This class
consists of Entity specific QosPolicy attributes. QosPolicy attributes are class
types where each type specifies the information that controls an Entity related
(configurable) property of the Data Distribution Service.
All QosPolicies applicable to an Entity are aggregated in a corresponding
<Entity>Qos, which is a compound class that is set atomically so that it represents
a coherent set of QosPolicy attributes.
Compound classes are used whenever multiple attributes must be set coherently to
define a consistent attribute for a QosPolicy.
33
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

A full description of any <Entity>Qos is given in Appendix A, Quality Of Service.
The complete list of individual QosPolicy settings and their meaning is described
in this paragraph.

Figure 10 QosPolicy Settings

Requested/Offered
In several cases, for communications to occur properly (or efficiently), a
QosPolicy on the requesting side must be compatible with a corresponding
QosPolicy on the offering side. For example, if a DataReader requests to receive
data reliably while the corresponding DataWriter defines a best-effort
QosPolicy, communication will not happen as requested. This means, the

QosPolicy

name : string

HistoryQosPolicy

kind : HistoryQosPolicyKind
depth : long

LifespanQosPolicy

duration : Duration_t

WriterDataLifecycleQosPolicy

autodispose_unregistered_instances : boolean

UserDataQosPolicy

value [*] : octet

DurabilityQosPolicy

kind : DurabilityQosPolicyKind

PresentationQosPolicy

access_scope : PresentationQosPolicyAccessScopeKind
coherent_access : boolean
ordered_access : boolean

LivelinessQosPolicy

kind : LivelinessQosPolicyKind
lease_duration : Duration_t

PartitionQosPolicy

name[*] : string

ReliabilityQosPolicy

kind : ReliabilityQosPolicyKind
max_blocking_time : Duration_t

DestinationOrderQosPolicy

kind : DestinationOrderQosPolicyKind

ResourceLimitsQosPolicy

max_samples : long
max_instances : long
max_samples_per_instance : long

EntityFactoryQosPolicy

autoenable_created_entities : boolean

ReaderDataLifecycleQosPolicy

autopurge_nowriter_samples_delay : Duration_t
autopurge_disposed_samples_delay : Duration_t

TopicDataQosPolicy

value [*] : octet

GroupDataQosPolicy

value [*] : octet

TransportPriorityQosPolicy

value : long

OwnershipQosPolicy

kind : OwnershipQosPolicyKind

OwnershipStrengthQosPolicy

value : long

TimeBasedFilterQosPolicy

minimum_separation : Duration_t

DeadlineQosPolicy

period : Duration_t

LatencyBudgetQosPolicy

duration : Duration_t

DurabilityServiceQosPolicy

service_cleanup_delay : Duration_t
history_kind : HistoryQosPolicyKind
history_depth : long
max_samples : long
max_instances : long
max_samples_per_instance : long
34
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

specification for QosPolicy follows the Requested/Offered (RxO) pattern while
trying to maintain the desirable decoupling of publication and subscription as much
as possible. In this pattern:
• the requesting side can specify a “requested” attribute for a particular QosPolicy
• the offering side specifies an “offered” attribute for that QosPolicy
The Data Distribution Service will then determine whether the attribute requested
by the requesting side is compatible with what is offered by the offering side. Only
when the two QosPolicy settings are compatible, communication is established. If
the two QosPolicy settings are not compatible, the Data Distribution Service will
not establish communication between the two Entity objects and notify this fact
by means of the OFFERED_INCOMPATIBLE_QOS status on the offering side and the
REQUESTED_INCOMPATIBLE_QOS status on the requesting side. The application
can detect this fact by means of a Listener or Condition.
The interface description of the QosPolicy classes is as follows:
// class <Entity>Qos
//
package DDS;
//
// class <name>QosPolicy

//
public final class UserDataQosPolicy
{ public byte value[]; };

public final class TopicDataQosPolicy
{ public byte value[]; };

public final class GroupDataQosPolicy
{ public byte value[]; };

public final class TransportPriorityQosPolicy
{ public int value; };

public final class LifespanQosPolicy
{ public Duration_t duration; };

public class DurabilityQosPolicyKind
{ public static final DurabilityQosPolicyKind

VOLATILE_DURABILITY_QOS;
 public static final DurabilityQosPolicyKind

TRANSIENT_LOCAL_DURABILITY_QOS;
 public static final DurabilityQosPolicyKind

TRANSIENT_DURABILITY_QOS;
 public static final DurabilityQosPolicyKind

PERSISTENT_DURABILITY_QOS; };
35
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

public final class DurabilityQosPolicy
{ public DurabilityQosPolicyKind kind; };

public class PresentationQosPolicyAccessScopeKind
{ public static final PresentationQosPolicyAccessScopeKind

INSTANCE_PRESENTATION_QOS;
 public static final PresentationQosPolicyAccessScopeKind

TOPIC_PRESENTATION_QOS;
 public static final PresentationQosPolicyAccessScopeKind

GROUP_PRESENTATION_QOS; };

public final class PresentationQosPolicy
{ public PresentationQosPolicyAccessScopeKind access_scope;
 public boolean coherent_access;
 public boolean ordered_access; };

public final class DeadlineQosPolicy
{ public Duration_t period; };

public final class LatencyBudgetQosPolicy
{ public Duration_t duration; };

public class OwnershipQosPolicyKind
{ public static final OwnershipQosPolicyKind

SHARED_OWNERSHIP_QOS;
 public static final OwnershipQosPolicyKind

EXCLUSIVE_OWNERSHIP_QOS; };

public final class OwnershipQosPolicy
{ public OwnershipQosPolicyKind kind; };

public final class OwnershipStrengthQosPolicy
{ public int value; };

public class LivelinessQosPolicyKind
{ public static final LivelinessQosPolicyKind

AUTOMATIC_LIVELINESS_QOS;
 public static final LivelinessQosPolicyKind

MANUAL_BY_PARTICIPANT_LIVELINESS_QOS;
 public static final LivelinessQosPolicyKind

MANUAL_BY_TOPIC_LIVELINESS_QOS;};

public final class LivelinessQosPolicy
{ public LivelinessQosPolicyKind kind;
 public Duration_t lease_duration; };

public final class TimeBasedFilterQosPolicy
{ public Duration_t minimum_separation; };
36
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

public final class PartitionQosPolicy
{ public String name[]; };

public class ReliabilityQosPolicyKind
{ public static final ReliabilityQosPolicyKind

BEST_EFFORT_RELIABILITY_QOS;
 public static final ReliabilityQosPolicyKind

RELIABLE_RELIABILITY_QOS; };

public final class ReliabilityQosPolicy
{ public ReliabilityQosPolicyKind kind;
 public Duration_t max_blocking_time; };

public class DestinationOrderQosPolicyKind
{ public static final DestinationOrderQosPolicyKind

BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS;
 public static final DestinationOrderQosPolicyKind

BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS;};

public final class DestinationOrderQosPolicy
{ public DestinationOrderQosPolicyKind kind; };

public class HistoryQosPolicyKind
{ public static final HistoryQosPolicyKind KEEP_LAST_HISTORY_QOS;
 public static final

HistoryQosPolicyKind KEEP_ALL_HISTORY_QOS; };

public final class HistoryQosPolicy
{ public HistoryQosPolicyKind kind;
 public int depth; };

public final class ResourceLimitsQosPolicy
{ public int max_samples;

public int max_instances;
public int max_samples_per_instance; };

public final class EntityFactoryQosPolicy
{ public boolean autoenable_created_entities; };

public final class WriterDataLifecycleQosPolicy
{ public boolean autodispose_unregistered_instances; };

public final class ReaderDataLifecycleQosPolicy
{ public Duration_t autopurge_nowriter_samples_delay;

public Duration_t autopurge_disposed_samples_delay; };

public final class DurabilityServiceQosPolicy
{ public Duration_t service_cleanup_delay;

public HistoryQosPolicyKind history_kind;
public int history_depth;
37
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

public int max_samples;
public int max_instances;
public int max_samples_per_instance; };

public class SchedulingClassQosPolicyKind
{ public static final SchedulingClassQosPolicyKind

SCHEDULE_DEFAULT;
public static final SchedulingClassQosPolicyKind

 SCHEDULE_TIMESHARING;
public static final SchedulingClassQosPolicyKind

 SCHEDULE_REALTIME; };

public class SchedulingClassQosPolicy
{ public SchedulingClassQosPolicyKind kind; };

public class SchedulingPriorityQosPolicyKind
{ public static final SchedulingPriorityQosPolicyKind

PRIORITY_RELATIVE;
public static final SchedulingPriorityQosPolicyKind

PRIORITY_ABSOLUTE; };

public class SchedulingPriorityQosPolicy
{ public SchedulingPriorityQosPolicyKind kind; };

public class SchedulingQosPolicy
{ public SchedulingClassQosPolicy scheduling_class;

public SchedulingPriorityQosPolicy scheduling_priority_kind;
public int scheduling_priority; };

Default Attributes
The default value of each QosPolicy attribute are listed in the next table:

Table 3 QosPolicy Default Attributes

QosPolicy Attribute Value
user_data value.length 0

topic_data value.length 0

group_data value.length 0

transport_priority value 0

lifespan duration DURATION_INFINITE

durability kind VOLATILE_DURABILITY_QOS

presentation access_scope INSTANCE_PRESENTATION_QOS

coherent_access false

ordered_access false

deadline period DURATION_INFINITE
38
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

latency_budget duration 0

ownership_strength value 0

ownership kind SHARED_OWNERSHIP_QOS

liveliness kind AUTOMATIC_LIVELINESS_QOS

lease_duration DURATION_INFINITE

time_based_filter minimum_separation 0

partition name.length 0

reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_time 100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

history kind KEEP_LAST_HISTORY_QOS

depth 1

resource_limits max_samples LENGTH_UNLIMITED

max_instances LENGTH_UNLIMITED

max_samples_per_instance LENGTH_UNLIMITED

entity_factory autoenable_created_entiti
es

true

writer_data_lifecycle autodispose_
unregistered_instances

true

reader_data_lifecycle autopurge_
nowriter_samples_delay

DURATION_INFINITE

autopurge_
disposed_samples_delay

DURATION_INFINITE

durability_service history_kind KEEP_LAST

history_depth 1

max_samples LENGTH_UNLIMITED

max_instances LENGTH_UNLIMITED

max_samples_per_instance LENGTH_UNLIMITED

service_cleanup_delay 0

watchdog_scheduling,
listener_scheduling

scheduling_class.kind SCHEDULE_DEFAULT

scheduling_priority_kind.
kind

PRIORITY_RELATIVE

scheduling_priority 0

Table 3 QosPolicy Default Attributes (Continued)

QosPolicy Attribute Value
39
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

RxO
The QosPolicy settings that need to be set in a compatible manner between the
publisher and subscriber ends are indicated by the setting of the “RxO”
(Requested/Offered) property. The “RxO” property of each QosPolicy is listed in
Table 4, QosPolicy Basics, on page 41:
• A “RxO” setting of “Yes” indicates that the QosPolicy can be set at both ends

(publishing and subscribing) and the attributes must be set in a compatible
manner. In this case the compatible attributes are explicitly defined

• A “RxO” setting of “No” indicates that the QosPolicy can be set at both ends
(publishing and subscribing) but the two settings are independent. That is, all
combinations of attributes are compatible

• A “RxO” setting of “Not applicable” indicates that the QosPolicy can only be
specified at either the publishing or the subscribing end, but not at both ends. So
compatibility does not apply

Changeable
The “changeable” property determines whether the QosPolicy can be changed
after the Entity is enabled. In other words, a QosPolicy with “changeable”
setting of “No” is considered “immutable” and can only be specified either at
Entity creation time or prior to calling the enable operation on the Entity.
When the application tries to change a QosPolicy with “changeable” setting of
“No”, the Data Dis t r ibut ion Service wi l l no t i fy th is by re turning a
RETCODE_IMMUTABLE_POLICY.
The basic way to modify or set the <Entity>Qos is by using a get_qos and
set_qos operation to get all QosPolicy settings from this Entity (that is the
<Entity>Qos), modify several specific QosPolicy settings and put them back
using an user operation to set all QosPolicy settings on this Entity (that is the
<Entity>Qos). An example of these operations for the DataWriter are get_qos
and set_qos, which take the <Entity>Qos as a parameter.
40
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

The “RxO” setting and the “changeable” setting of each QosPolicy are listed in
the next table:

Table 4 QosPolicy Basics

QosPolicy Concerns Entity RxO Changeable
After

Enabling
user_data DomainParticipant

DataReader
DataWriter

No Yes

topic_data Topic No Yes
group_data Publisher

Subscriber
No Yes

transport_priority Topic
DataWriter

Not applicable Yes

lifespan Topic
DataWriter

Not applicable Yes

durability Topic
DataReader
DataWriter

Yes No

presentation Publisher
Subscriber

Yes No

deadline Topic
DataReader
DataWriter

Yes Yes

latency_budget Topic
DataReader
DataWriter

Yes Yes

ownership Topic
DataReader
DataWriter

Yes No

ownership_strength DataWriter Not applicable Yes
liveliness Topic

DataReader
DataWriter

Yes No

time_based_filter DataReader Not applicable Yes
partition Publisher

Subscriber
No Yes
41
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

The following paragraphs describe each <name>QosPolicy class.

3.1.3.1 DeadlineQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public final class DeadlineQosPolicy
{ public Duration_t period; }

Description
This QosPolicy defines the period within which a new sample is expected by the
DDS_DataReader or to be written by the DataWriter.

reliability Topic
DataReader
DataWriter

Yes No

destination_order Topic
DataReader
DataWriter

Yes No

history Topic
DataReader
DataWriter

No No

resource_limits Topic
DataReader
DataWriter

No No

entity_factory DomainParticipantFactory
DomainParticipant
Publisher
Subscriber

No Yes

writer_data_lifecycle DataWriter Not applicable Yes
reader_data_lifecycle DataReader Not applicable Yes
durability_service Topic No No
scheduling DomainParticipant Not applicable No

Table 4 QosPolicy Basics (Continued)

QosPolicy Concerns Entity RxO Changeable
After

Enabling
42
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Attributes
Duration_t period - specifies the period within which a new sample is expected

or to be written.

Detailed Description
This QosPolicy will set the period within which a DataReader expects a new
sample or, in case of a DataWriter, the period in which it expects applications to
write the sample. The default value of the period is DURATION_INFINITE,
indicating that there is no deadline. The QosPolicy may be used to monitor the
real-time behaviour, a Listener or a StatusCondition may be used to catch the
event that is generated when a deadline is missed.
DeadlineQosPolicy is instance oriented (i.e. the period is monitored for each
individual instance).
The exact consequences of a missed deadline depend on the Entity in which it
occured, and the OwnershipQosPolicy value of that Entity:
• In case a DataWriter misses an instance deadline (regardless of its
OwnershipQosPolicy setting), an offered_deadline_missed_status is
raised, which can be detected by either a Listener or a StatusCondition.
There are no further consequences.

• In case a DataReader misses an instance deadline, a
requested_deadline_missed_status is raised, which can be detected by
either a Listener or a StatusCondition. In case the OwnershipQosPolicy
is set to SHARED, there are no further consequences. In case the
OwnershipQosPolicy is set to EXCLUSIVE, the ownership of that instance on
that particular DataReader is transferred to the next available highest strength
DataWriter, but this will have no impact on the instance_state whatsoever.
So even when a deadline is missed for an instance that has no other
(lower-strength) DataWriters to transfer ownership to, the instance_state
remains unchanged. See also Section 3.1.3.11, OwnershipQosPolicy.

This QosPolicy is applicable to a DataReader, a DataWriter and a Topic.
After enabling of the concerning Entity, this QosPolicy may be changed by
using the set_qos operation.
43
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a t u s o n t h e o f f e r i n g s i d e a n d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of the DataWriter and
DataReader. In other words, the communication between any DataWriter and
DataReader depends on what is expected by the DataReader. As a consequence,
a DataWriter that has an incompatible QoS with respect to what a DataReader
specifies, is not allowed to send its data to that specific DataReader. A
DataReader that has an incompatible QoS with respect to what a DataWriter
specifies, does not get any data from that particular DataWriter.
Changing an existing deadline period using the set_qos operation on either the
DataWriter or DataReader may have consequences for the connectivity between
readers and writers, depending on their RxO values. (See also in Section 3.1.3, Class
QosPolicy, the paragraph entitled Requested/Offered.) Consider a writer with
deadline period Pw and a reader with deadline period Pr, where Pw <= Pr. In this
case a connection between that reader and that writer is established. Now suppose
Pw is changed so that Pw > Pr, then the existing connection between reader and
writer will be lost, and the reader will behave as if the writer unregistered all its
instances, transferring the ownership of these instances when appropriate. See also
Section 3.1.3.11, OwnershipQosPolicy.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way, the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.2 DestinationOrderQosPolicy

Scope
DDS

Table 5 DeadlineQosPolicy

Period Compatibility
offered period < requested period compatible
offered period = requested period compatible
offered period > requested period INcompatible
44
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*

public class DestinationOrderQosPolicyKind
{ public static final DestinationOrderQosPolicyKind

BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS;
 public static final DestinationOrderQosPolicyKind

 BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS;
}
public class DestinationOrderQosPolicy
{ public DestinationOrderQosPolicyKind kind; }

Description
This QosPolicy controls the order in which the DataReader stores the data.

Attributes
DestinationOrderQosPolicyKind kind - controls the order in which the

DataReader stores the data.

Detailed Description
This QosPolicy controls the order in which the DataReader stores the data. The
order of storage is controlled by the timestamp. However a choice can be made to
use the timestamp of the DataReader (time of reception) or the timestamp of the
DataWriter (source timestamp).
This QosPolicy is applicable to a DataWriter, DataReader and a Topic. After
enabling of the concerning entity, this QosPolicy cannot be changed any more.
Attribute
The QosPolicy is controlled by the attribute kind which may be:
• BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

• BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

When set to BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS, the order is
based on the timestamp, at the moment the sample was received by the
DataReader.
When set to BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS, the order is
based on the timestamp, which was set by the DataWriter. This means that the
system needs some time synchronisation.
45
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a t u s o n t h e o f f e r i n g s i d e a n d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Whether communication is established, it is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of the DataWriter and
DataReader. In other words, the communication between any DataWriter and
DataReader depends on what is expected by the DataReader. As a consequence,
a DataWriter that has an incompatible QoS with respect to what a DataReader
specified, is not allowed to send its data to that specific DataReader. A
DataReader that has an incompatible QoS with respect to what a DataWriter
specified, does not get any data from that particular DataWriter.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way, the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.3 DurabilityQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public class DurabilityQosPolicyKind
{
 public static final DurabilityQosPolicyKind

VOLATILE_DURABILITY_QOS;
 public static final DurabilityQosPolicyKind

TRANSIENT_LOCAL_DURABILITY_QOS;
 public static final DurabilityQosPolicyKind

TRANSIENT_DURABILITY_QOS;
 public static final DurabilityQosPolicyKind

PERSISTENT_DURABILITY_QOS;

Table 6 Requested/Offered DestinationOrderQosPolicy

BY_RECEPTION_TIMESTAMP BY_SOURCE_TIMESTAMP

BY_RECEPTION_TIMESTAMP compatible INcompatible
BY_SOURCE_TIMESTAMP compatible compatible

Offered
Requested
46
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

}
public class DurabilityQosPolicy
{
 public DurabilityQosPolicyKind kind;
}

Description
This QosPolicy controls whether the data should be stored for late joining readers.

Attributes
DurabilityQosPolicyKind kind - specifies the type of durability from

VOLATILE_DURABILITY_QOS (short life) to PERSISTENT_DURABILITY_QOS
(long life).

Detailed Description
The decoupling between DataReader and DataWriter offered by the Data
Distribution Service allows an application to write data even if there are no current
readers on the network. Moreover, a DataReader that joins the network after some
data has been written could potentially be interested in accessing the most current
values of the data as well as some history. This QosPolicy controls whether the
Data Distribution Service will actually make data available to late-joining
DataReaders.
This QosPolicy is applicable to a DataReader, DataWriter and Topic. After
enabling of the concerning Entity, this QosPolicy cannot be changed any more.

Attributes
The QosPolicy is controlled by the attribute kind which may be:
• VOLATILE_DURABILITY_QOS - the samples are not available to late-joining
DataReaders. In other words, only DataReaders, which were present at the
time of the writing and have subscribed to this Topic, will receive the sample.
When a DataReader subscribes afterwards (late-joining), it will only be able to
read the next written sample. This setting is typically used for data, which is
updated quickly

• TRANSIENT_LOCAL_DURABILITY_QOS - the functionality behind this setting is
not yet implemented. It is scheduled for a future release

• TRANSIENT_DURABILITY_QOS - some samples are available to late-joining
DataReaders (stored in memory). This means that the late-joining
DataReaders are able to read these previously written samples. The
DataReader does not necessarily have to exist at the time of writing. Not all
samples are stored (depending on QosPolicy History and QosPolicy
resource_limits). The storage does not depend on the DataWriter and will
47
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

outlive the DataWriter. This may be used to implement reallocation of
applications because the data is saved in the Data Distribution Service (not in the
DataWriter). This setting is typically used for state related information of an
application. In this case also the DurabilityServiceQosPolicy settings are
relevant for the behaviour of the Data Distribution Service

• PERSISTENT_DURABILITY_QOS - the data is stored in permanent storage (e.g.
hard disk). This means that the samples are also available after a system restart.
The samples not only outlives the DataWriters, but even the Data Distribution
Service and the system. This setting is typically used for attributes and settings for
an application or the system. In this case also the
DurabilityServiceQosPolicy settings are relevant for the behaviour of the
Data Distribution Service.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a t u s o n t h e o f f e r i n g s i d e a n d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

This means that the Request/Offering mechanism is applicable between:
• the DataWriter and the DataReader. If the QosPolicy settings between
DataWriter and DataReader are inconsistent, no communication between
them is established. In addition the DataWriter will be informed via a
REQUESTED_INCOMPATIBLE_QOS status change and the DataReader will be
informed via an OFFERED_INCOMPATIBLE_QOS status change;

• the DataWriter and the Data Distribution Service (as a built-in DataReader).
If the QosPolicy settings between DataWriter and the Data Distribution
Service are inconsistent, no communication between them is established. In that
case data published by the DataWriter will not be maintained by the service and
as a consequence will not be available for late joining DataReaders. The
QosPolicy of the Data Distribution Service in the role of DataReader is
specified by the Topic QosPolicy

Table 7 Requested/Offered DurabilityQosPolicy

VOLATILE TRANSIENT PERSISTENT

VOLATILE compatible INcompatible INcompatible
TRANSIENT compatible compatible incompatible
PERSISTENT compatible compatible compatible

Offered
Requested
48
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• the Data Distribution Service (as a built-in DataWriter) and the DataReader. If
the QosPolicy settings between the Data Distribution Service and the
DataReader are inconsistent, no communication between them is established. In
that case the Data Distribution Service will not publish historical data to late
joining DataReaders. The QosPolicy of the Data Distribution Service in the
role of DataWriter is specified by the Topic QosPolicy

Cleanup
The DurabilityQosPolicy kind setting TRANSIENT_DURABILITY_QOS and
PERSISTENT_DURABILITY_QOS d e t e r m in e t h a t t h e
DurabilityServiceQosPolicy applies for the Topic. It controls amongst
others at which time the durability service is allowed to remove all information
regarding a data-instance. Information on a data-instance is maintained until the
following conditions are met:
• the instance has been explicitly disposed of (instance_state =
NOT_ALIVE_DISPOSED_INSTANCE_STATE)

• and the system detects that there are no more “live” DataWriter objects writing
the instance, that is, all DataWriter either unregister_instance the
instance (call unregister_instance operation) or lose their liveliness

• and a time interval longer than service_cleanup_delay has elapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met

T h e u s e o f t h e DurabilityServiceQosPolicy a t t r i b u t e
service_cleanup_delay is apparent in the situation where an application
disposes of an instance and it crashes before having a chance to complete
additional tasks related to the disposition. Upon re-start the application may ask for
i n i t i a l d a t a t o r e g a i n i t s s t a t e a n d t h e d e l a y in t r o d u c e d b y t h e
service_cleanup_delay allows the re-started application to receive the
information on the disposed of instance and complete the interrupted tasks.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.4 DurabilityServiceQosPolicy

Scope
DDS
49
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public final class DurabilityServiceQosPolicy
{
 public Duration_t service_cleanup_delay;
 public HistoryQosPolicyKind history_kind;
 public int history_depth;
 public int max_samples;
 public int max_instances;
 public int max_samples_per_instance; };

Description
This QosPolicy controls the behaviour of the durability service regarding transient
and persistent data.

Attributes
Duration_t service_cleanup_delay - specifies how long the durability

service must wait before it is allowed to remove the information on the transient
or persistent topic data-instances as a result of incoming dispose messages.

HistoryQosPolicyKind history_kind - specifies the type of history, which
may be KEEP_LAST_HISTORY_QOS or KEEP_ALL_HISTORY_QOS, the
durability service must apply for the transient or persistent topic data-instances.

int history_depth - specifies the number of samples of each instance of data
(identified by its key) that is managed by the durability service for the transient
o r p e r s i s t e n t t o p i c d a t a - i n s t a n c e s . I f history_kind i s
KEEP_LAST_HISTORY_QOS, history_depth must be smaller than or equal to
max_samples_per_instance for this QosPolicy to be consistent.

int max_samples - specifies the maximum number of data samples for all
instances the durability service will manage for the transient or persistent topic
data-instances.

int max_instances - specifies the maximum number of instances the durability
service - manage for the transient or persistent topic data-instances.

int max_samples_per_instance - specifies the maximum number of samples
of any single instance the durability service will manage for the transient or
persistent topic data-instances. If history_kind is KEEP_LAST_HISTORY_QOS,
max_samples_per_instance must be greater than or equal to
history_depth for this QosPolicy to be consistent.
50
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This QosPolicy controls the behaviour of the durability service regarding transient
and persistent data. It controls for the transient or persistent topic; the time at which
information regarding the topic may be discarded, the history policy it must set and
the resource limits it must apply.

Cleanup
The setting of the DurabilityServiceQosPolicy only applies when kind of
the DurabilityQosPolicy is either TRANSIENT_DURABILITY_QOS or
PERSISTENT_DURABILITY_QOS. The service_cleanup_delay setting
controls at which time the durability service” is allowed to remove all information
regarding a data-instance. Information on a data-instance is maintained until the
following conditions are met:
• the instance has been explicitly disposed of (instance_state =
NOT_ALIVE_DISPOSED_INSTANCE_STATE)

• and the system detects that there are no more “live” DataWriter objects writing
the instance, that is, all DataWriter either unregister_instance the
instance (call unregister_instance operation) or lose their liveliness

• and a time interval longer than service_cleanup_delay has elapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met.

The use of the attribute service_cleanup_delay is apparent in the situation
where an application disposes of an instance and it crashes before having a
chance to complete additional tasks related to the disposition. Upon re-start the
application may ask for initial data to regain its state and the delay introduced by the
service_cleanup_delay allows the re-started application to receive the
information on the disposed of instance and complete the interrupted tasks

History
The attributes history_kind and history_depth apply to the history settings of
the Durability Service’s internal DataWriter and DataReader managing the
topic. The HistoryQosPolicy behaviour, as described in Section 3.1.3.7,
HistoryQosPolicy, on page 53 applies to these attributes.

Resource Limits
The at t r ibutes max_samples , max_instances and max_samples_
per_instance apply to the resource limits of the Durability Service’s internal
DataWriter and DataReader m anag i ng t h e t o p i c . Th e
ResourceLimitsQosPolicy behaviour, as described in paragraph 3.1.3.17
(ResourceLimitsQosPolicy) applies to these attributes.
51
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

TopicQos
This QosPolicy can be set on a Topic only. After enabling of the concerning
Topic, this QosPolicy can not be changed any more.

3.1.3.5 EntityFactoryQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public final class EntityFactoryQosPolicy

{ public boolean autoenable_created_entities; };

Description
This QosPolicy controls the behaviour of the Entity as a factory for other
entities.

Attributes
boolean autoenable_created_entities - specifies whether the entity acting

a s a f a c t o r y a u t o m a t i c a l l y e na b l e s t he i n s t a nce s i t c r ea t e s . I f
autoenable_created_entities is true the factory will automatically enable each
created Entity, otherwise it will not.

Detailed Description
This QosPolicy controls the behaviour of the Entity as a factory for other
entities. It concerns only DomainParticipantFactory (as factory for
DomainParticipant), DomainParticipant (as a factory for Publisher,
Subscriber, and Topic), Publisher (as factory for DataWriter), and
Subscriber (as factory for DataReader).
This policy is mutable. A change in the policy affects only the entities created after
the change; not the previously created entities.
The setting of autoenable_created_entities to true indicates that the
factory create_<entity> operation will automatically invoke the enable
operation each time a new Entity is created. Therefore, the Entity returned by
create_<entity> will already be enabled. A setting of false indicates that the
Entity will not be automatically enabled: the application will need to enable it
explicitly by means of the enable operation. See paragraph 3.1.1.1 (enable) for a
detailed description about the differences between enabled and disabled entities.
The default setting of autoenable_created_entities is true meaning that by
default it is not necessary to explicitly call enable on newly created entities.
52
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.3.6 GroupDataQosPolicy

Scope
DDS

Synopsis
import DDS.*;

public final class GroupDataQosPolicy
{ public byte value[]; }

Description
This QosPolicy allows the application to attach additional information to a
Publisher or Subscriber Entity. This information is distributed with the
BuiltinTopics.

Attributes
byte value[] - a sequence of bytes that holds the application group data. By

default, the sequence has length 0.

Detailed Description
This QosPolicy allows the application to attach additional information to a
Publisher or Subscriber Entity. This information is distributed with the
BuiltinTopic. An application that discovers a new Entity of the listed kind, can
use this information to add additional functionality. The GroupDataQosPolicy is
changeable and updates of the BuiltinTopic instance must be expected. Note that the
Data Distribution Service is not aware of the real structure of the group data (the
Data Distribution System handles it as an opaque type) and that the application is
responsible for correct mapping on structural types for the specific platform.

3.1.3.7 HistoryQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public class HistoryQosPolicyKind
{
 public static final HistoryQosPolicyKind

KEEP_LAST_HISTORY_QOS;
 public static final HistoryQosPolicyKind

 KEEP_ALL_HISTORY_QOS;
}
public final class HistoryQosPolicy
53
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

{
 public HistoryQosPolicyKind kind;
 public int depth;
}

Description
This QosPolicy controls which samples will be stored when the value of an
instance changes (one or more times) before it is finally communicated.

Attributes
HistoryQosPolicyKind kind - specifies the type of history, which may be

KEEP_LAST_HISTORY_QOS or KEEP_ALL_HISTORY_QOS.
int depth - specifies the number of samples of each instance of data (identified by

its key) managed by this Entity.

Detailed Description
This QosPolicy controls whether the Data Distribution Service should deliver only
the most recent sample, attempt to deliver all samples, or do something in between.
In other words, how the DataWriter or DataReader should store samples.
Normally, only the most recent sample is available but some history can be stored.
DataWriter
On the publishing side this QosPolicy controls the samples that should be
maintained by the DataWriter on behalf of existing DataReader objects. The
behaviour with respect to a DataReader objects discovered after a sample is
written is controlled by the DurabilityQosPolicy.

DataReader
On the subscribing side it controls the samples that should be maintained until the
application “takes” them from the Data Distribution Service.
This QosPolicy is applicable to a DataReader, DataWriter and Topic. After
enabling of the concerning Entity, this QosPolicy cannot be changed any more.

Attributes
The QosPolicy is controlled by the attribute kind which can be:
• KEEP_LAST_HISTORY_QOS - the Data Distribution Service will only attempt to

keep the latest values of the instance and discard the older ones. The attribute
“depth” determines how many samples in history will be stored. In other words,
only the most recent samples in history are stored. On the publishing side, the
Data Distribution Service will only keep the most recent “depth” samples of each
instance of data (identified by its key) managed by the DataWriter. On the
54
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

subscribing side, the DataReader will only keep the most recent “depth”
samples received for each instance (identified by its key) until the application
“takes” them via the DataReader.take operation.

• KEEP_LAST_HISTORY_QOS - is the default kind. The default value of depth is
1, indicating that only the most recent value should be delivered. If a depth other
than 1 is specified, it should be compatible with the settings of the
ResourcelimitsQosPolicy max_samples_per_instance. For these two
QosPolicy settings to be compatible, they must verify that depth <=
max_samples_per_instance, otherwise a RETCODE_INCONSISTENT_
POLICY is generated on relevant operations

• KEEP_ALL_HISTORY_QOS - all samples are stored, provided, the resources are
available. On the publishing side, the Data Distribution Service will attempt to
keep all samples (representing each value written) of each instance of data
(identified by its key) managed by the DataWriter until they can be delivered to
all subscribers.
On the subscribing side, the Data Distribution Service will attempt to keep all
samples of each instance of data (identified by its key) managed by the
DataReader. These samples are kept until the application “takes” them from the
Data Distribution Service via the DataReader.take operation. The setting of
depth has no effect. Its implied value is LENGTH_UNLIMITED. The resources that
the Data Distribution Service can use to keep this history are limited by the
settings of the ResourceLimitsQosPolicy. If the limit is reached, the
behaviour of the Data Distribution Service will depend on the
ReliabilityQosPolicy.
If the ReliabilityQosPolicy is BEST_EFFORT_RELIABILITY_QOS, the old
values are discarded. If ReliabilityQosPolicy is
RELIABLE_RELIABILITY_QOS, the Data Distribution Service will block the
DataWriter until it can deliver the necessary old values to all subscribers

On the subscribing side it controls the samples that should be maintained until the
application “takes” them from the Data Distribution Service. On the publishing side
this QosPolicy controls the samples that should be maintained by the
DataWriter on behalf of DataReader objects. The behaviour with respect to a
DataReader objects discovered after a sample is written is controlled by the
DurabilityQosPolicy. In more detail, this QosPolicy specifies the behaviour
of the Data Distribution Service in case the value of a sample changes (one or more
times) before it can be successfully communicated to one or more Subscribers.
55
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Requested/Offered
The setting of the QosPolicy offered is independent of the one requested, in other
words they are never considered incompatible. The communication will not be
r e j e c t e d o n a c c o u n t o f t h i s QosPolicy. T h e n o t i f i c a t i o n
OFFERED_INCOMPATIBLE_QOS s t a t u s on t he o f f e r i ng s i de o r
REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be raised.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.8 LatencyBudgetQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public final class LatencyBudgetQosPolicy
{
 public Duration_t duration;
}

Description
Specifies the maximum acceptable additional delay to the typical transport delay
from the time the data is written until the data is delivered at the DataReader and the
application is notified of this fact.

Attributes
Duration_t duration - specifies the maximum acceptable additional delay from

the time the data is written until the data is delivered.

Detailed Description
This QosPolicy specifies the maximum acceptable additional delay to the typical
transport delay from the time the data is written until the data is delivered at the
DataReader and the application is notified of this fact. This QosPolicy provides
a means for the application to indicate to the Data Distribution Service the
“urgency” of the data-communication. By having a non-zero duration the Data
Distribution Service can optimize its internal operation. The default value of the
duration is zero, indicating that the delay should be minimized.
56
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

This QosPolicy is applicable to a DataReader, DataWriter and Topic. After
enabling of the concerning Entity, this QosPolicy may be changed by using the
set_qos operation.

Requested/Offered
This QosPolicy is considered a hint to the Data Distribution Service, which will
automatically adapt its behaviour to meet the requirements of the shortest delay if
possible. In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a tu s on t h e o f f e r i ng s id e an d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Note that even when the offered duration is considered compatible to the requested
duration, this duration is not enforced in any way: there will be no notification on
any violations of the requested duration.
Changing an existing latency budget using the set_qos operation on either the
DataWriter or DataReader may have consequences for the connectivity between
readers and writers, depending on their RxO values. (See also in Section 3.1.3, Class
QosPolicy, the paragraph entitled Requested/Offered.) Consider a writer with
budget Bw and a reader with budget Br, where Bw <= Br. In this case a connection
between that reader and that writer is established. Now suppose Bw is changed so
that Bw > Br, then the existing connection between reader and writer will be lost,
and the reader will behave as if the writer unregistered all its instances, transferring
the ownership of these instances when appropriate. See also Section 3.1.3.11,
OwnershipQosPolicy.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.9 LifespanQosPolicy

Scope
DDS

Table 8 LatencyBudgetQosPolicy

Duration Compatibility
offered duration < requested duration compatible
offered duration = requested duration compatible
offered duration > requested duration INcompatible
57
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public final class LifespanQosPolicy
{
 public Duration_t duration;
}

Description
This QosPolicy specifies the duration of the validity of the data written by the
DataWriter.

Attributes
Duration_t duration - specifies the length in time of the validity of the data.

Detailed Description
This QosPolicy specifies the duration of the validity of the data written by the
DataWriter. When this time has expired, the data will be removed or if it has not
been delivered yet, it will not be delivered at all. In other words, the duration is
the time in which the data is still valid. This means that during this period a
DataReader can access the data or if the data has not been delivered yet, it still will
be delivered. The default value of the duration is DURATION_INFINITE,
indicating that the data does not expire.
This QosPolicy is applicable to a DataWriter and a Topic. After enabling of the
concerning Entity, this QosPolicy may be changed by using the set_qos
operation.

Requested/Offered
The setting of this QosPolicy is only applicable to the publishing side, in other
words the Requested/Offered constraints are not applicable. The communication
wil l not be rejected on account of this QosPolicy. The notif icat ion
OFFERED_INCOMPATIBLE_QOS status on the offering side will not be raised.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.10 LivelinessQosPolicy

Scope
DDS
58
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public class LivelinessQosPolicyKind
{
 public static final LivelinessQosPolicyKind

AUTOMATIC_LIVELINESS_QOS;
 public static final LivelinessQosPolicyKind

MANUAL_BY_PARTICIPANT_LIVELINESS_QOS;
 public static final LivelinessQosPolicyKind

MANUAL_BY_TOPIC_LIVELINESS_QOS;
}
public final class LivelinessQosPolicy
{ public LivelinessQosPolicyKind kind;
 public Duration_t lease_duration;}

Description
This QosPolicy controls the way the liveliness of an Entity is being determined.

Attributes
LivelinessQosPolicyKind kind - the way the liveliness of an Entity is

determined.
Duration_t lease_duration - the duration of the interval within which the

liveliness must be determined.

Detailed Description
This QosPolicy controls the way the liveliness of an Entity is being determined.
The liveliness must be reported periodically before the lease_duration expires.
This QosPolicy is applicable to a DataReader, a DataWriter and a Topic.
After enabling of the concerning Entity, this QosPolicy cannot be changed any
more.

Attributes
The QosPolicy is controlled by the attribute kind which can be:
• AUTOMATIC_LIVELINESS_QOS - the Data Distribution Service will take care of

reporting the Liveliness automatically with a rate determined by the
lease_duration.

• MANUAL_BY_PARTICIPANT_LIVELINESS_QOS - the application must take care
of reporting the liveliness before the lease_duration expires. If an Entity
reports its liveliness, all Entities within the same DomainParticipant that
have their liveliness kind set to MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
59
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

can be considered alive by the Data Distribution Service. Liveliness can reported
explicitly by calling the operation assert_liveliness on the
DomainParticipant or implicitly by writing some data.

• MANUAL_BY_TOPIC_LIVELINESS_QOS - the application must take care of
reporting the liveliness before the lease_duration expires. This can explicitly
be done by calling the operation assert_liveliness on the DataWriter or
implicitly by writing some data.

The lease_duration specifies the duration of the interval within which the
liveliness should be reported.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a t u s o n t h e o f f e r i n g s i d e a n d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of the DataWriter and
DataReader. In other words, the communication between any DataWriter and
DataReader depends on what is expected by the DataReader. As a consequence,
a DataWriter that has an incompatible QoS with respect to what a DataReader
specified is not allowed to send its data to that specific DataReader. A
DataReader that has an incompatible QoS with respect to what a DataWriter
specified does not get any data from that particular DataWriter.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.11 OwnershipQosPolicy

Scope
DDS

Table 9 LivelinessQosPolicy

AUTOMATIC MANUAL_BY_PARTICIPANT MANUAL_BY_TOPIC

AUTOMATIC COMPATIBLE INCOMPATIBLE INCOMPATIBLE
MANUAL_BY_PARTICIPANT COMPATIBLE COMPATIBLE INCOMPATIBLE
MANUAL_BY_TOPIC COMPATIBLE COMPATIBLE COMPATIBLE

Offered
Requested
60
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public class OwnershipQosPolicyKind
{
 public static final OwnershipQosPolicyKind SHARED_OWNERSHIP_QOS;
 public static final OwnershipQosPolicyKind

EXCLUSIVE_OWNERSHIP_QOS;
}
public final class OwnershipQosPolicy
{ public OwnershipQosPolicyKind kind; }

Description
This QosPolicy specifies whether a DataWriter exclusively owns an instance.

Attributes
OwnershipQosPolicyKind kind - specifies whether a DataWriter exclusively

owns an instance.

Detailed Description
This QosPolicy specifies whether a DataWriter exclusively may own an
instance. In other words, whether multiple DataWriter objects can write the same
instance at the same time. The DataReader objects will only read the
modifications on an instance from the DataWriter owning the instance.
Exclusive ownership is on an instance-by-instance basis. That is, a Subscriber
can receive values written by a lower strength DataWriter as long as they affect
instances whose values have not been written or registered by a higher-strength
DataWriter.
This QosPolicy is applicable to a DataReader, a DataWriter and a Topic.
After enabling of the concerning Entity, this QosPolicy cannot be changed any
more.

Attribute
The QosPolicy is controlled by the attribute kind which can be:
• SHARED_OWNERSHIP_QOS (default) - the same instance can be written by

multiple DataWriter objects. All updates will be made available to the
DataReader objects. In other words it does not have a specific owner

• EXCLUSIVE_OWNERSHIP_QOS - the instance will only be accepted from one
DataWriter which is the only one whose modifications will be visible to the
DataReader objects.
61
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a tus on the o ffe r ing s ide and
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of the DataWriter and
DataReader. The value of the OWNERSHIP kind offered must exactly match the
one requested or else they are considered incompatible. As a consequence, a
DataWriter that has an incompatible QoS with respect to what a DataReader
specified is not allowed to send its data to that specific DataReader. A
DataReader that has an incompatible QoS with respect to what a DataWriter
specified does not get any data from that particular DataWriter.

Exclusive Ownership
The DataWriter with the highest OwnershipStrengthQosPolicy value and
being alive (depending on the LivelinessQosPolicy) and which has not violated
its DeadlineQosPolicy contract with respect to the instance, will be considered
the owner of the instance. Consequently, the ownership can change as a result of:
• a DataWriter in the system with a higher value of the
OwnershipStrengthQosPolicy modifies the instance

• a change in the OwnershipStrengthQosPolicy value (becomes less) of the
DataWriter owning the instance

• a change in the liveliness (becomes not alive) of the DataWriter owning the
instance

• a deadline with respect to the instance that is missed by the DataWriter that
owns the instance

Timeline
Each DataReader may detect the change of ownership at a different time. In other
words, at a particular point in time, the DataReader objects do not have a
consistent picture of who owns each instance for that Topic. Outside this grey area
in time all DataReader objects will consider the same DataWriter to be the
owner.

Table 10 Requested/Offered OwnershipQosPolicy

SHARED EXCLUSIVE

SHARED compatible INcompatible
EXCLUSIVE INcompatible compatible

Offered
Requested
62
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

If multiple DataWriter objects with the same OwnershipStrengthQosPolicy
modify the same instance, all DataReader objects will make the same choice of the
particular DataWriter that is the owner. The DataReader is also notified of this
via a status change that is accessible by means of the Listener or Condition
mechanisms.

Ownership of an Instance
DataWriter objects are not aware whether they own a particular instance. There is
no error or notification given to a DataWriter that modifies an instance it does not
currently own.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.12 OwnershipStrengthQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public final class OwnershipStrengthQosPolicy
{ public int value; }

Description
This QosPolicy specifies the value of the ownership strength of a DataWriter
used to determine the ownership of an instance.

Attributes
int value - specifies the ownership strength of the DataWriter.

Detailed Description
This QosPolicy specifies the value of the ownership strength of a DataWriter
used to determine the ownership of an instance. This ownership is used to arbitrate
among multiple DataWriter objects that attempt to modify the same instance. This
QosPolicy on ly app l ies i f the OwnershipQosPolicy i s o f kind
EXCLUSIVE_OWNERSHIP_QOS . F o r m o r e i n f o r m a t i o n , s e e
OwnershipQosPolicy.
63
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

This QosPolicy is applicable to a DataWriter only. After enabling of the
concerning Entity, this QosPolicy may be changed by using the set_qos
operation. When changed, the ownership of the instances may change with it.

3.1.3.13 PartitionQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public final class PartitionQosPolicy
{
 public String name[];
}

Description
This QosPolicy specifies the logical partitions in which the Subscribers
and Publishers are active.

Attributes
String name[] - the array of strings, which specifies the partitions.

Detailed Description
This QosPolicy specifies the logical partitions inside the domain in which the
Subscribers and Publishers are active. This QosPolicy is particularly used
to create a separate subspace, like a real domain versus a simulation domain. A
Publisher and/or Subscriber can participate in more than one partition.
Each string in the sequence of strings name defines a partition name. A
partition name may contain wildcards. Sharing a partition means that at least
one of the partition names in the sequence matches. When none of the
partition names match, it is not considered an “incompatible” QoS and does not
trigger any listeners or conditions. It only means, no communication is
established. The default value of the attribute is an empty (zero-sized) sequence.
This is treated as a special value that matches the “partition”.
This QosPolicy is applicable to a Publisher and Subscriber. After enabling of
the concerning Entity, this QosPolicy may be changed by using the set_qos
operation. When changed, it modifies the association of DataReader and
DataWriter objects. It may establish new associations or break existing
associations. By default, DataWriter and DataReader objects belonging to a
Publisher or Subscriber that do not specify a PartitionQosPolicy, will
participate in the default partition. In this case the partition name is ““.
64
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Requested/Offered
The offered setting of this QosPolicy is independent of the one requested, in other
words they are never considered incompatible. The communication will not be
r e j e c t e d o n a c c o u n t o f t h i s QosPolicy. T h e n o t i f i c a t i o n
OFFERED_INCOMPATIBLE_QOS s t a t u s on t he o f f e r i ng s i de o r
REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be raised

3.1.3.14 PresentationQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public class PresentationQosPolicyAccessScopeKind
{
 public static final PresentationQosPolicyAccessScopeKind

INSTANCE_PRESENTATION_QOS;
 public static final PresentationQosPolicyAccessScopeKind

TOPIC_PRESENTATION_QOS;
 public static final PresentationQosPolicyAccessScopeKind

GROUP_PRESENTATION_QOS;
}
public final class PresentationQosPolicy
{ public PresentationQosPolicyAccessScopeKind access_scope;
 public boolean coherent_access;
 public boolean ordered_access; }

Note: This QosPolicy is not yet implemented. It is scheduled for a future release.

Description
This QosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application.

Attributes
PresentationQosPolicyAccessScopeKind access_scope - the samples

controlled by this policy.
boolean coherent_access - functionality behind this setting is not yet

implemented. It is scheduled for a future release specifies whether the access
should be coherent or not.

boolean ordered_access - functionality behind this setting is not yet
implemented. It is scheduled for a future release specifies whether the access
should be ordered or not.
65
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This QosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application. In other words, how changes to
data-instances can be made dependent on each other and also the kind of
dependencies that can be propagated and maintained by the Data Distribution
Service. It affects the application’s ability to group a set of changes and to preserve
the order in which they were sent. It also specifies the largest scope spanning the
Entity objects for which the order and coherency of changes can be preserved.
This QosPolicy is applicable to a Publisher and Subscriber. After enabling of
the concerning Entity, this QosPolicy cannot be changed any more.

Attributes
The two booleans control whether coherent access and ordered access are supported
within the scope access_scope. Since only INSTANCE_PRESENTATION_QOS
(the lowest level) is implemented, coherent access and ordered access are not
applicable.
The changes to each instance are considered un-ordered relative to changes to any
other instance. That means that changes (creations, deletions, modifications) made
to two instances are not necessarily seen in the order they occur, the ordering applies
to each instance separately. This is the case even if the same application thread
makes the changes using the same DataWriter. This is the defaul t
access_scope.
The two booleans control whether coherent access and ordered access are supported
within the scope access_scope. The booleans are:
• coherent_access, the functionality behind this setting is not yet implemented.

It is scheduled for a future release
• ordered_access, specifies support for ordered access to the samples received at

the subscription end. That is, the ability of the subscriber to see changes in the
same order as they occurred at the publishing end. The default setting of
ordered_access is false.

• The access_scope controls the maximum extent for which order is preserved
by the Data Distribution Service:
 - INSTANCE_PRESENTATION_QOS - (the lowest level), changes to each instance

are considered un-ordered relative to changes to any other instance. That means
that changes (creations, deletions, modifications) made to two instances are not
necessarily seen in the order they occur, the ordering applies to each instance
separately. This is the case even if the same application thread makes the
changes using the same DataWriter. This is the default access_scope
66
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 - TOPIC_PRESENTATION_QOS - the functionality behind this setting is not yet
implemented. It is scheduled for a future release

 - GROUP_PRESENTATION_QOS - the functionality behind this setting is not yet
implemented. It is scheduled for a future release.

The attribute access_scope will set the scope for both coherent_access and
ordered_access, they can not be set separately.
Note that this QosPolicy controls the ordering at which related changes are made
available to the Subscriber. In other words the Subscriber can access the
changes in the proper order. However, it does not necessarily imply that the
Subscriber will indeed access the changes in the correct order. For that to occur,
the application at the Subscriber end must use the proper logic in reading the
DataReader.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a tu s on t h e o f f e r i ng s id e an d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Only the default settings for this policy are currently supported. Deviations from
this default will not be taken into account by the Publisher and/or Subscriber.

3.1.3.15 ReaderDataLifecycleQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public final class ReaderDataLifecycleQosPolicy
{
 public Duration_t autopurge_nowriter_samples_delay;
 public Duration_t autopurge_disposed_samples_delay;
}

Table 11 Requested/Offered PresentationQosPolicy

INSTANCE Topic Group

instance compatible INcompatible INcompatible
topic compatible compatible INcompatible
group compatible compatible compatible

Offered
Requested
67
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Description
This QosPolicy specifies the maximum duration for which the DataReader will
maintain information regarding a data instance for which the instance_state
b e c o m e s e i t h e r NOT_ALIVE_NO_WRITERS_INSTANCE_STATE o r
NOT_ALIVE_DISPOSED_INSTANCE_STATE.

Attributes
Duration_t autopurge_nowriter_samples_delay - specifies the duration

for which the DataReader will maintain information regarding a data instance
f o r w h i c h t h e instance_state b e com es
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE. By default the duration value
is DURATION_INFINITE. When the delay time has expired, the data instance is
marked so that it can be purged in the next garbage collection sweep.

Duration_t autopurge_disposed_samples_delay - specifies the duration
for which the DataReader will maintain information regarding a data instance
f o r w h i c h t h e instance_state b e com es
NOT_ALIVE_DISPOSED_INSTANCE_STATE. By default the duration value is
DURATION_INFINITE. When the delay time has expired, the data instance is
marked so that it can be purged in the next garbage collection sweep.

Detailed Description
This QosPolicy specifies the maximum duration for which the DataReader will
maintain information regarding a data instance for which the instance_state
b e c o m e s e i t h e r NOT_ALIVE_NO_WRITERS_INSTANCE_STATE o r
NOT_ALIVE_DISPOSED_INSTANCE_STATE. The DataReader manages resources
for instances and samples of those instances. The amount of resources managed
depends on other QosPolicies like the HistoryQosPolicy and the
ResourceLimitsQosPolicy. The DataReader can only release resources for
data instances for which all samples have been taken and the instance_state has
be com e NOT_ALIVE_NO_WRITERS_INSTANCE_STATE o r
NOT_ALIVE_DISPOSED_INSTANCE_STATE. If an application does not take the
samples belonging to a data instance with such an instance_state, the
DataReader will never be able to release the maintained resources. By means of
this QosPolicy the application can instruct the DataReader to release all
resources related to the concerning data instance after a specified duration.
This QosPolicy is applicable to a DataReader only. After enabling of the
concerning DataReader, this QosPolicy can be changed using the set_qos
operation.
68
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.3.16 ReliabilityQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public class ReliabilityQosPolicyKind
{
 public static final ReliabilityQosPolicyKind

BEST_EFFORT_RELIABILITY_QOS;
 public static final ReliabilityQosPolicyKind

RELIABLE_RELIABILITY_QOS;
}
public final class ReliabilityQosPolicy
{
 public ReliabilityQosPolicyKind kind;
 public Duration_t max_blocking_time;
}

Description
This QosPolicy controls the level of reliability of the data distribution offered or
requested by the DataWriters and DataReaders.

Attributes
ReliabilityQosPolicyKind kind - specifies the type of reliability which may

be BEST_EFFORT_RELIABILITY_QOS or RELIABLE_RELIABILITY_QOS.
Duration_t max_blocking_time - specifies the maximum time the write

operation may block when the DataWriter does not have space to store the
value written.

Detailed Description
This QosPolicy controls the level of reliability of the data distribution requested
by a DataReader or offered by a DataWriter. In other words, it controls whether
data is allowed to get lost in transmission or not.
This QosPolicy is applicable to a DataReader, DataWriter and Topic. After
enabling of the concerning Entity, this QosPolicy cannot be changed any more.

Attributes
• RELIABLE_RELIABILITY_QOS - the Data Distribution Service will attempt to

deliver all samples in the DataWriters history; arrival-checks are performed
and data may get re-transmitted in case of lost data. In the steady-state (no
modifications communicated via the DataWriter) the Data Distribution Service
69
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

guarantees that all samples in the DataWriter history will eventually be
delivered to the all DataReader objects. Outside the steady-state the
HistoryQosPolicy and ResourceLimitsQosPolicy determine how
samples become part of the history and whether samples can be discarded from it.
In this case also the max_blocking_time must be set

• BEST_EFFORT_RELIABILITY_QOS - the Data Distribution Service will only
attempt to deliver the data; no arrival-checks are being performed and any lost
data is not re-transmitted (non-reliable). Presumably new values for the samples
are generated often enough by the application so that it is not necessary to resent
or acknowledge any samples.

The setting of the attribute max_blocking_time depends on the setting of the
HistoryQosPolicy and ResourceLimitsQosPolicy. In case the
HistoryQosPolicy kind is set to KEEP_ALL_HISTORY_QOS, the write
operation on the DataWriter may block if the modification would cause one of the
limits, specified in the ResourceLimitsQosPolicy, to be exceeded. Under these
c i r c u m s t a n c e s , t h e max_blocking_time a t t r i b u t e o f t h e
ReliabilityQosPolicy configures the maximum duration the write operation
may block.

Requested/Offered
In case the Requested/Offered QosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS s t a t u s o n t h e o f f e r i n g s i d e a n d
REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.17 ResourceLimitsQosPolicy

Scope
DDS

Table 12 Requested/Offered ReliabilityQosPolicy

BEST_EFFORT RELIABLE

BEST_EFFORT compatible INcompatible
RELIABLE compatible compatible

Offered
Requested
70
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public final class ResourceLimitsQosPolicy
{
 public int max_samples;
 public int max_instances;
 public int max_samples_per_instance;
}

Description
This QosPolicy will specify the maximum amount of resources, which can be used
by a DataWriter or DataReader.
Note: This QosPolicy is not yet fully implemented. Missing features are
scheduled for a future release.

Attributes
int max_samples - the maximum number of data samples for all instances for

any single DataWriter (or DataReader). By default, LENGTH_UNLIMITED.
int max_instances - the maximum number of instances for any single

DataWriter (or DataReader). By default, LENGTH_UNLIMITED. Any other
value than LENGTH_UNLIMITED will currently be ignored.

int max_samples_per_instance - the maximum number of samples of any
single instance for any single DataWriter (or DataReader). By default,
LENGTH_UNLIMITED.

Detailed Description
This QosPolicy controls the maximum amount of resources that the Data
Distribution Service can use in order to meet the requirements imposed by the
application and other QosPolicy settings.
This QosPolicy is applicable to a DataReader, a DataWriter and a Topic.
After enabling of the concerning Entity, this QosPolicy cannot be changed any
more.

Requested/Offered
The value of the QosPolicy offered is independent of the one requested, in other
words they are never considered incompatible. The communication will not be
r e j e c t e d o n a c c o u n t o f t h i s QosPolicy. T h e n o t i f i c a t i o n
OFFERED_INCOMPATIBLE_QOS s t a t u s on t he o f f e r i ng s i de o r
REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be raised.
71
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Resource Limits
If the DataWriter objects are publishing samples faster than they are taken by the
DataReader objects, the Data Distribution Service will eventually hit against some
of the QosPolicy-imposed resource limits. Note that this may occur when just a
single DataReader cannot keep up with its corresponding DataWriter.
In case the HistoryQosPolicy is KEEP_LAST_HISTORY_QOS, the setting of
ResourceLimitsQosPolicy max_samples_per_instance must be
compatible with the HistoryQosPolicy depth. For these two QosPolicy
s e t t i n g s t o b e c o m p a t i b l e , t h e y m u s t v e r i f y t h a t depth <=
max_samples_per_instance.

TopicQos
This QosPolicy can be set on a Topic. The DataWriter and/or DataReader
can copy this qos by using the operations copy_from_topic_qos and then
set_qos. That way the application can relatively easily ensure the QosPolicy for
the Topic, DataReader and DataWriter are consistent.

3.1.3.18 SchedulingQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public class SchedulingClassQosPolicyKind
{
 public static final SchedulingClassQosPolicyKind
 SCHEDULE_DEFAULT;
 public static final SchedulingClassQosPolicyKind
 SCHEDULE_TIMESHARING;
 public static final SchedulingClassQosPolicyKind
 SCHEDULE_REALTIME;
}
public class SchedulingClassQosPolicy
{
 public SchedulingClassQosPolicyKind kind;
}
public class SchedulingPriorityQosPolicyKind
{
 public static final SchedulingPriorityQosPolicyKind

PRIORITY_RELATIVE;
 public static final SchedulingPriorityQosPolicyKind

PRIORITY_ABSOLUTE;
}
public class SchedulingPriorityQosPolicy
72
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

{
 public SchedulingPriorityQosPolicyKind kind;
}
public class SchedulingQosPolicy
{
 public SchedulingClassQosPolicy scheduling_class;
 public SchedulingPriorityQosPolicy scheduling_priority_kind;
 public int scheduling_priority;
}

Description
This QosPolicy specifies the scheduling parameters that will be used for a thread
that is spawned by the DomainParticipant.
Note that some scheduling parameters may not be supported by the underlying
Operating System, or that you may need special privileges to select particular
settings.

Attributes
SchedulingClassQosPolicyKind scheduling_class.kind - specifies the

schedu l ing c l a s s used by the Opera t ing Sys t em, which may be
SCHEDULE_DEFAULT, SCHEDULE_TIMESHARING or SCHEDULE_REALTIME.
Threads can only be spawned within the scheduling classes that are supported
by the underlying Operating System.

SchedulingPriorityQosPolicyKind scheduling_priority_kind.kind
- specifies the priority type, which may be either PRIORITY_RELATIVE or
PRIORITY_ABSOLUTE.

int scheduling_priority - specifies the priority that will be assigned to threads
spawned by the DomainParticipant. Threads can only be spawned with
priorities that are supported by the underlying Operating System.

Detailed Description
This QosPolicy specifies the scheduling parameters that will be used for threads
spawned by the DomainParticipant. Note that some scheduling parameters may
not be supported by the underlying Operating System, or that you may need special
privileges to select particular settings. Refer to the documentation of your OS for
more details on this subject.
Although the behaviour of the scheduling_class is highly dependent on the
underlying OS, in general it can be said that when running in a Timesharing class
your thread will have to yield execution to other threads of equal priority regularly.
In a Realtime class your thread normally runs until completion, and can only be
pre-empted by higher priority threads. Often the highest range of priorities is not
accessible through a Timesharing Class.
73
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

The scheduling_priority_kind determines whether the specified
scheduling_priority should be interpreted as an absolute priority, or whether it
should be interpreted relative to the priority of its creator, in this case the priority of
the thread that created the DomainParticipant.

3.1.3.19 TimeBasedFilterQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public final class TimeBasedFilterQosPolicy
{
 public Duration_t minimum_separation;
}

Note: This QosPolicy is not yet implemented. It is scheduled for a future release.

3.1.3.20 TopicDataQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public final class TopicDataQosPolicy
{
 public byte value[];
}

Description
This QosPolicy allows the application to attach additional information to a Topic
Entity. This information is distributed with the BuiltinTopics.

Attributes
byte value[] - a sequence of bytes that holds the application topic data. By

default, the sequence has length 0.

Detailed Description
This QosPolicy allows the application to attach additional information to a Topic
Entity. This information is distributed with the BuiltinTopic. An application that
discovers a new Topic entity, can use this information to add additional
functionality. The TopicDataQosPolicy is changeable and updates of the
BuiltinTopic instance must be expected. Note that the Data Distribution Service
74
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

is not aware of the real structure of the topic data (the Data Distribution System
handles it as an opaque type) and that the application is responsible for correct
mapping on structural types for the specific platform.

3.1.3.21 TransportPriorityQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public final class TransportPriorityQosPolicy
{
 public int value;
}

Description
This QosPolicy specifies the priority with which the Data Distribution System can
handle the data produced by the DataWriter.

Attributes
int value - specifies the priority with which the Data Distribution System can

handle the data produced by the DataWriter.

Detailed Description
This QosPolicy specifies the priority with which the Data Distribution System can
handle the data produced by a DataWriter. This QosPolicy is considered to be a
hint to the Data Distribution Service to control the priorities of the underlying
transport means. A higher value represents a higher priority and the full range of the
type is supported. By default the transport priority is set to 0.
The TransportPriorityQosPolicy is applicable to both Topic and
DataWriter entities. After enabling of the concerning Entities, this
QosPolicy may be changed by using the set_qos operation.

TopicQos
Note that changing this QosPolicy for the Topic does not influence the behaviour
of the Data Distribution System for existing DataWriter entities because this
QosPolicy is only used by the operation copy_from_topic_qos and when
specifying DATAWRITER_QOS_USE_TOPIC_QOS when creating the DataWriter.
75
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.3.22 UserDataQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public final class UserDataQosPolicy
{
 public byte value[];
}

Description
This QosPolicy allows the application to attach additional information to a
DomainParticipant, DataReader or DataWriter entity. This information is
distributed with the Builtin Topics.

Attributes
byte value[] - a sequence of bytes that holds the application user data. By

default, the sequence has length 0.

Detailed Description
This QosPolicy allows the application to attach additional information to a
DomainParticipant, DataReader or DataWriter entity. This information is
distributed with the Builtin Topics. An application that discovers a new Entity of
the listed kind, can use this information to add additional functionality. The
UserDataQosPolicy is changeable and updates of the Builtin Topic instance must
be expected. Note that the Data Distribution Service is not aware of the real
structure of the user data (the Data Distribution System handles it as an opaque
type) and that the application is responsible for correct mapping on structural types
for the specific platform.

3.1.3.23 WriterDataLifecycleQosPolicy

Scope
DDS

Synopsis
import DDS.*;
public final class WriterDataLifecycleQosPolicy
{
 public boolean autodispose_unregistered_instances;
}

76
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Note: The functionality behind this QosPolicy is not yet fully implemented.
Missing features are scheduled for a future release.

Description
This QosPolicy specifies whether the Data Distribution Service should
automatically dispose instances that are unregistered by the DataWriter.

Attributes
boolean autodispose_unregistered_instances - specifies whether the

Data Distribution Service should automatically dispose instances that are
unregistered by this DataWriter.

Detailed Description
This QosPolicy controls the behaviour of the DataWriter with regards to the
lifecycle of the data-instances it manages, that is, the data instances that have been
registered either explicitly using one of the register operations or implicitly by
directly writing the data using the special HANDLE_NIL parameter. (See also Section
3.4.2.50, register_instance, on page 257).
The autodispose_unregistered_instances flag controls what happens
when an instance gets unregistered by the DataWriter:
• If the DataWriter unregisters the instance explicitly using either
unregister_instance or unregister_instance_w_timestamp, then the
autodispose_unregistered_instances flag is currently ignored and the
instance is never disposed automatically.

• If the DataWriter unregisters its instances implicitly because it is deleted or if a
DataReader detects a loss of liveliness of a connected DataWriter, then the
autodispose_unregistered_instances flag determines whether the
concerned instances are automatically disposed (true) or not (false).

The default value for the autodispose_unregistered_instances flag is
true. For TRANSIENT and PERSISTENT topics this means that all instances that
are not explicitly unregistered by the application will by default be removed from
the Transient and Persistent stores when the DataWriter is deleted or when a loss of
its liveliness is detected.

3.1.4 Listener Interface
This interface is the abstract base interface for all Listener interfaces.
Listeners provide a generic mechanism for the Data Distribution Service to
notify the application of relevant asynchronous status change events, such as a
missed deadline, violation of a QosPolicy setting, etc. Each DCPS Entity
supports its own specialized kind of Listener. Listeners are related to changes
77
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

in communication status. For each Entity type, one specific Listener is derived
from this interface. In the following modules, the following Listeners are derived
from this interface:
• DomainParticipantListener

• TopicListener

• PublisherListener

• DataWriterListener

• SubscriberListener

• DataReaderListener

The Entity type specific Listener interfaces are part of the application which
must implement the interface operations. A user defined class for these operations
must be provided by the application which must extend from the specific Listener
class. All Listener operations must be implemented in the user defined class, it is up
to the application whether an operation is empty or contains some functionality.

Figure 11 DCPS Listeners
The base class Listener does not contain any operations.

Listener
(from Infrastructure Module)

<<Interface>>

DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>
DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>

SubscriberListener

on_data_on_readers()

<<Interface>>

PublisherListener
<<Interface>>

TopicListener

on_inconsistent_topic()

<<Interface>>

DomainParticipantListener
78
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.5 Class Status
Each concrete Entity class has a set of Status attributes and for each attribute the
Entity class provides an operation to read the value. Changes to Status attributes
will affect associated StatusCondition and (invoked and associated) Listener
objects.
The communication statuses whose changes can be communicated to the application
depend on the Entity. The following table shows the relevant statuses for each
Entity.

Table 13 Status Description Per Entity

Entity Status Name Meaning
Topic INCONSISTENT_TOPIC_STATUS Another Topic exists with the same name but

with different characteristics.
Subscriber DATA_ON_READERS_STATUS New information is available.
DataReader SAMPLE_REJECTED_STATUS A (received) sample has been rejected.

LIVELINESS_CHANGED_STATUS The liveliness of one or more DataWriter
objects that were writing instances read through
t h e DataReader h a s c h a n g e d . S o m e
DataWriter have become “alive” or “not
alive”.

REQUESTED_
DEADLINE_MISSED_STATUS

The deadline that the DataReader was
expecting through its DeadlineQosPolicy
was not respected for a specific instance.

REQUESTED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with
what is offered.

DATA_AVAILABLE_STATUS New information is available.
SAMPLE_LOST_STATUS A sample has been lost (never received).
SUBSCRIPTION_MATCH_STATUS The DataReader has found a DataWriter

that matches the Topic and has compatible
QoS.
79
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

A Status a t t r i b u t e c a n b e r e t r i e v e d w i t h t h e o p e r a t i o n
get_<status_name>_status . F o r e x a m p l e , t o g e t t h e
InconsistentTopicStatus value, the application must call the operation
get_inconsistent_topic_status.
Conceptually associated with each Entity communication status is a logical
StatusChangedFlag. This flag indicates whether that particular communication
status has changed. The StatusChangedFlag is only conceptual, therefore, it is
not important whether this flag actually exists.
For the plain communication Status, the StatusChangedFlag is initially set to
false. It becomes true whenever the plain communication Status changes and it
is reset to false each time the application accesses the plain communication
Status via the proper get_<status_name>_status operation on the Entity.
A flag set means that a change has occurred since the last time the application has
read its value.

DataWriter LIVELINESS_LOST_STATUS The liveliness that the DataWriter has
c o m m i t t e d t h r o u g h i t s
LivelinessQosPolicy was not respected;
thus DataReader objects will consider the
DataWriter as no longer “alive”.

OFFERED_
DEADLINE_MISSED_STATUS

The deadline that the DataWriter has
committed through its DeadlineQosPolicy
was not respected for a specific instance.

OFFERED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with
what was requested.

PUBLICATION_MATCH_STATUS The DataWriter has found DataReader
that matches the Topic and has compatible
QoS.

Table 13 Status Description Per Entity (Continued)

Entity Status Name Meaning
80
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Figure 12 DCPS Status Values
Each Status attribute is implemented as a class without any operations. The
interface description of these class is as follows:

// public class <name>Status
//

public final class InconsistentTopicStatus
{
 public int total_count;
 public int total_count_change;
};
public final class SampleLostStatus
{
 public int total_count;
 public int total_count_change;
};
public final class SampleRejectedStatusKind
{

public static final SampleRejectedStatusKind
NOT_REJECTED;

public static final SampleRejectedStatusKind
REJECTED_BY_INSTANCES_LIMIT;

public static final SampleRejectedStatusKind
REJECTED_BY_SAMPLES_LIMIT;

public static final SampleRejectedStatusKind
REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT;

Status

SampleLostStatus

total_count : long
total_count_change : long

InconsistentTopicStatus

total_count : long
total_count_change : long

SampleRejectedStatus

total_count : long
total_count_change : long
last_reason : SampleRejectedStatusKind
last_instance_handle : InstanceHandle_t

PublicationMatchStatus

total_count : long
total_count_change : long
last_subscription_handle : InstanceHandle_t

LivelinessChangedStatus

active_count : long
inactive_count : long
active_count_change : long
inactive_count_change : long

OfferedDeadlineMissedStatus

total_count : long
total_count_change : long
last_instance_handle : InstanceHandle_t

RequestedDeadlineMissedStatus

total_count : long
total_count_change : long
last_instance_handle : InstanceHandle_t

SubscriptionMatchStatus

total_count : long
total_count_change : long
last_publication_handle : InstanceHandle_t

LivelinessLostStatus

total_count
total_count_change

OfferedIncompatibleQosStatus

total_count
total_count_change
last_policy_id
policies [*]

RequestedIncompatibeQosStatus

total_count
total_count_change
last_policy_id
policies [*]

QosPolicyCount

policy_id
count
81
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

};
public final class SampleRejectedStatus
{

public int total_count;
public int total_count_change;
public SampleRejectedStatusKind last_reason;
public long last_instance_handle;

};
public final class LivelinessLostStatus
{

public int total_count;
public int total_count_change;

};
public final class LivelinessChangedStatus
{

public int alive_count;
public int not_alive_count;
public int alive_count_change;
public int not_alive_count_change;
public long last_publication_handle;};

public final class OfferedDeadlineMissedStatus
{

public int total_count;
public int total_count_change;
public long last_instance_handle;

};
public final class RequestedDeadlineMissedStatus
{

public int total_count;
public int total_count_change;
public long last_instance_handle;

};
public final class OfferedIncompatibleQosStatus
{

public int total_count;
public int total_count_change;
public int last_policy_id;
public QosPolicyCount policies[];

};
public final class RequestedIncompatibleQosStatus
{

public int total_count;
public int total_count_change;
public int last_policy_id;
public QosPolicyCount policies[];

};
public final class PublicationMatchedStatus
{

public int total_count;
82
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

public int total_count_change;
public int current_count;
public int current_count_change;
public long last_subscription_handle;

};
public final class SubscriptionMatchedStatus
{

public int total_count;
public int total_count_change;
public int current_count;
public int current_count_change;
public long last_publication_handle;

};
//
// implemented API operations
// <no operations>
//

The following paragraphs describe the usage of each <name>Status struct.

3.1.5.1 InconsistentTopicStatus

Scope
DDS.Topic

Synopsis
import DDS.*;
public final class InconsistentTopicStatus
{
 public int total_count;
 public int total_count_change;
};

Description
This class contains the statistics about attempts to create other Topics with the
same name but with different characteristics.

Attributes
int total_count - the total detected cumulative count of Topic creations,

whose name matches the Topic to which this Status is attached and whose
characteristics are inconsistent.

int total_count_change - the change in total_count since the last time the
Listener was called or the Status was read.
83
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This class contains the statistics about attempts to create other Topics with the
same name but with different characteristics.
The attribute total_count holds the total detected cumulative count of Topic
creations, whose name matches the Topic to which this Status is attached and
whose characteristics are inconsistent.
The attribute total_count_change holds the incremental number of inconsistent
Topics, since the last time the Listener was called or the Status was read.

3.1.5.2 LivelinessChangedStatus

Scope
DDS.Topic

Synopsis
import DDS.*;
public final class LivelinessChangedStatus
{

public int alive_count;
public int not_alive_count;
public int alive_count_change;
public int not_alive_count_change;
public long last_publication_handle;

};

Description
This class contains the statistics about whether the liveliness of one or more
connected DataWriter objects has changed.

Attributes
int alive_count - the total count of currently alive DataWriter objects that

write the topic read by the DataReader to which this Status is attached.
int not_alive_count - the total count of currently not alive DataWriter

objects that wrote the topic read by the DataReader to which this Status is
attached.

int alive_count_change - the change in alive_count since the last time the
Listener was called or the Status was read.

int not_alive_count_change - the change in not_alive_count since the
last time the Listener was called or the Status was read.

long last_publication_handle - handle to the last DataWriter whose
change in liveliness caused this status to change.
84
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This class contains the statistics about whether the liveliness of one or more
connected DataWriter objects that were writing instances read through the
DataReader has changed. In other words, some DataWriter have become
“alive” or “not alive”.
The attribute alive_count holds the total number of currently alive DataWriter
objects that write the topic read by the DataReader to which this Status is
attached. This count increases when a newly matched DataWriter asserts its
liveliness for the first time or when a DataWriter previously considered to be not
alive reasserts its liveliness. The count decreases when a DataWriter considered
alive fails to assert its liveliness and becomes not alive, whether because it was
deleted normally or for some other reason.
The attribute not_alive_count holds the total count of currently not alive
DataWriters that wrote the topic read by the DataReader to which this Status
is attached, and that are no longer asserting their liveliness. This count increases
when a DataWriter considered alive fails to assert its liveliness and becomes not
alive for some reason other than the normal deletion of that DataWriter. It
decreases when a previously not alive DataWriter either reasserts its liveliness or
is deleted normally.
The attribute alive_count_change holds the change in alive_count since the
last time the Listener was called or the Status was read.
T h e a t t r i b u t e not_alive_count_change h o l d s t h e c h a n g e i n
not_alive_count since the last time the Listener was called or the Status
was read.
The attribute last_publication_handle contains the instance handle to the
PublicationBuiltinTopicData instance that represents the last datawriter
whose change in liveliness caused this status to change. Be aware that this handle
be lo ng s t o an o th er d a t a r e a d e r, t h e
PublicationBuiltinTopicDataDataReader in the builtin-subscriber, and has
n o m e a n i n g i n t h e c o n t e x t o f t h e d a t a r e a d e r f r o m w h i c h t h e
LivelinessChangedStatus was obtained. If the builtin-subscriber has not
expl ic i t ly been obta ined us ing get_builtin_subscriber on the
DomainParticipant , t h e n t h e r e i s n o
PublicationBuiltinTopicDataDataReader as well, in which case the
last_publication_handle will be set to HANDLE_NIL.

3.1.5.3 LivelinessLostStatus

Scope
DDS.Topic
85
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public final class LivelinessLostStatus
{

public int total_count;
public int total_count_change;

};

Description
This class contains the statistics about whether the liveliness of the DataWriter to
w h i c h t h i s Status i s a t t a c h e d h a s b e e n c o m m i t t e d t h ro u g h i t s
LivelinessQosPolicy.

Attributes
int total_count - the total cumulative count of times the DataWriter to which

this Status is attached failed to actively signal its liveliness within the offered
liveliness period.

int total_count_change - the change in total_count since the last time the
Listener was called or the Status was read.

Detailed Description
This class contains the statistics about whether the liveliness of the DataWriter to
w h i c h t h i s Status i s a t t a c h e d h a s b e e n c o m m i t t e d t h ro u g h i t s
LivelinessQosPolicy. In other words, whether the DataWriter failed to
actively signal its liveliness within the offered liveliness period. In such a case, the
connected DataReader objects will consider the DataWriter as no longer
“alive”.
The attribute total_count holds the total cumulative number of times that the
previously-alive DataWriter became not alive due to a failure to actively signal its
liveliness within its offered liveliness period. This count does not change when an
already not alive DataWriter simply remains not alive for another liveliness
period.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the Status was read.

3.1.5.4 OfferedDeadlineMissedStatus

Scope
DDS.Topic

Synopsis
import DDS.*;
86
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

public final class OfferedDeadlineMissedStatus
{

 public int total_count;
 public int total_count_change;
 public long last_instance_handle;

};

Description
This class contains the statistics about whether the deadline that the DataWriter to
which this Status is attached has committed through its DeadlineQosPolicy
was not respected for a specific instance.

Attributes
int total_count - the total cumulative count of times the DataWriter to which

this Status is attached failed to write within its offered deadline.
int total_count_change - the change in total_count since the last time the

Listener was called or the Status was read.
long last_instance_handle - the handle to the last instance in the

DataWriter to which this Status is attached, for which an offered deadline
was missed.

Detailed Description
This class contains the statistics about whether the deadline that the DataWriter to
which this Status is attached has committed through its DeadlineQosPolicy
was not respected for a specific instance.
The attribute total_count holds the total cumulative number of offered deadline
periods elapsed during which the DataWriter to which this Status is attached
failed to provide data. Missed deadlines accumulate; that is, each deadline period
the total_count will be incremented by one.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the Status was read.
The attribute last_instance_handle holds the handle to the last instance in the
DataWriter to which this Status is attached, for which an offered deadline was
missed.

3.1.5.5 OfferedIncompatibleQosStatus

Scope
DDS.Topic
87
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public final class OfferedIncompatibleQosStatus
{
 public int total_count;
 public int total_count_change;
 public int last_policy_id;
 public QosPolicyCount policies[];
};

Description
This class contains the statistics about whether an offered QosPolicy setting was
incompatible with the requested QosPolicy setting.

Attributes
int total_count - the total cumulative count of DataReader objects

discovered by the DataWriter with the same Topic and Partition and with
a requested DataReaderQos that was incompatible with the one offered by the
DataWriter.

int total_count_change - the change in total_count since the last time the
Listener was called or the Status was read.

int last_policy_id - the id of one of the QosPolicy settings that was found to
be incompatible with what was offered, the last time an incompatibility was
detected.

QosPolicyCount policies[] - a list containing for each QosPolicy the total
number of times that the concerned DataWriter discovered a DataReader
for the same Topic and a requested DataReaderQos that is incompatible with
the one offered by the DataWriter.

Detailed Description
This class contains the statistics about whether an offered QosPolicy setting was
incompatible with the requested QosPolicy setting.
The Request/Offering mechanism is applicable between:
• the DataWriter and the DataReader. If the QosPolicy settings between
DataWriter and DataReader are incompatible, no communication between
them is established. In addition the DataWriter will be informed via a
REQUESTED_INCOMPATIBLE_QOS status change and the DataReader will be
informed via an OFFERED_INCOMPATIBLE_QOS status change.

• the DataWriter and the Durability Service (as a built-in DataReader). If the
QosPolicy settings between DataWriter and the Durability Service are
inconsistent, no communication between them is established. In that case data
88
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

published by the DataWriter will not be maintained by the service and as a
consequence will not be available for late joining DataReaders. The
QosPolicy of the Durability Service in the role of DataReader is specified by
the DurabilityServiceQosPolicy in the Topic.

• the Durability Service (as a built-in DataWriter) and the DataReader. If the
QosPolicy settings between the Durability Service and the DataReader are
inconsistent, no communication between them is established. In that case the
Durability Service will not publish historical data to late joining DataReaders.
The QosPolicy of the Durability Service in the role of DataWriter is specified
by the DurabilityServiceQosPolicy in the Topic.

The attribute total_count holds the total cumulative count of DataReader
objects discovered by the DataWriter with the same Topic and a requested
DataReaderQos that was incompatible with the one offered by the DataWriter.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the Status was read.
The attribute last_policy_id holds the id of one of the QosPolicy settings that
was found to be incompatible with what was offered, the last t ime an
incompatibility was detected.
The attribute policies holds a list containing for each QosPolicy the total
number of times that the concerned DataWriter discovered an incompatible
DataReader for the same Topic. Each element in the list represents a counter for a
different QosPolicy, identified by a corresponding unique index number. A named
list of all index numbers is expressed as a set of constants in the API. See Table 13
for an overview of all these constants.

Table 14 Overview of All Named QosPolicy Indexes

Index name Index Value
INVALID_QOS_POLICY_ID 0

USERDATA_QOS_POLICY_ID 1

DURABILITY_QOS_POLICY_ID 2

PRESENTATION_QOS_POLICY_ID 3

DEADLINE_QOS_POLICY_ID 4

LATENCYBUDGET_QOS_POLICY_ID 5

OWNERSHIP_QOS_POLICY_ID 6

OWNERSHIPSTRENGTH_QOS_POLICY_ID 7

LIVELINESS_QOS_POLICY_ID 8

TIMEBASEDFILTER_QOS_POLICY_ID 9
89
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.5.6 PublicationMatchedStatus

Scope
DDS.Topic

Synopsis
import DDS.*;
public final class PublicationMatchedStatus
{
 public int total_count;
 public int total_count_change;
 public int current_count;
 public int current_count_change;
 public long last_subscription_handle;
};

Note: The functionality behind the PublicationMatchedStatus is not yet
implemented. It is scheduled for a future release.

3.1.5.7 RequestedDeadlineMissedStatus

Scope
DDS.Topic

PARTITION_QOS_POLICY_ID 10

RELIABILITY_QOS_POLICY_ID 11

DESTINATIONORDER_QOS_POLICY_ID 12

HISTORY_QOS_POLICY_ID 13

RESOURCELIMITS_QOS_POLICY_ID 14

ENTITYFACTORY_QOS_POLICY_ID 15

WRITERDATALIFECYCLE_QOS_POLICY_ID 16

READERDATALIFECYCLE_QOS_POLICY_ID 17

TOPICDATA_QOS_POLICY_ID 18

GROUPDATA_QOS_POLICY_ID 19

TRANSPORTPRIORITY_QOS_POLICY_ID 20

LIFESPAN_QOS_POLICY_ID 21

DURABILITYSERVICE_QOS_POLICY_ID 22

Table 14 Overview of All Named QosPolicy Indexes (Continued)

Index name Index Value
90
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public final class RequestedDeadlineMissedStatus
{
 public int total_count;
 public int total_count_change;
 public long last_instance_handle;
};

Description
This class contains the statistics about whether the deadline that the DataReader to
which this Status is attached was expecting through its DeadlineQosPolicy
was not respected for a specific instance.

Attributes
int total_count - the total cumulative count of the missed deadlines detected

for any instance read by the DataReader to which this Status is attached.
int total_count_change - the change in total_count since the last time the

Listener was called or the Status was read.
long last_instance_handle - the handle to the last instance in the

DataReader to which this Status is attached for which a missed deadline was
detected.

Detailed Description
This class the statistics about whether the deadline that the DataReader to which
this Status is attached was expecting through its DeadlineQosPolicy was not
respected for a specific instance. Missed deadlines accumulate, that is, each
deadline period the total_count will be incremented by one for each instance for
which data was not received.
The attribute total_count holds the total cumulative count of the missed
deadlines detected for any instance read by the DataReader.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the Status was read.
The attribute last_instance_handle holds the handle to the last instance in the
DataReader for which a missed deadline was detected.

3.1.5.8 RequestedIncompatibleQosStatus

Scope
DDS.Topic
91
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public final class RequestedIncompatibleQosStatus
{
 public int total_count;
 public int total_count_change;
 public int last_policy_id;
 public QosPolicyCount policies[];
};

Description
This class contains the statistics about whether a requested QosPolicy setting was
incompatible with the offered QosPolicy setting.

Attributes
int total_count - the total cumulative count of DataWriter objects,

discovered by the DataReader to which this Status is attached, with the
same Topic and an offered DataWriterQos that was incompatible with the
one requested by the DataReader.

int total_count_change - the change in total_count since the last time the
Listener was called or the Status was read.

int last_policy_id - the <name>_QOS_POLICY_ID of one of the
QosPolicies that was found to be incompatible with what was requested, the
last time an incompatibility was detected.

QosPolicyCount policies[] - a list containing (for each QosPolicy) the total
number of times that the concerned DataReader discovered a DataWriter
with the same Topic and an offered DataWriterQos that is incompatible with
the one requested by the DataReader.

Detailed Description
This class contains the statistics about whether a requested QosPolicy setting was
incompatible with the offered QosPolicy setting.
The Request/Offering mechanism is applicable between:
• the DataWriter and the DataReader. If the QosPolicy settings between
DataWriter and DataReader are incompatible, no communication between
them is established. In addition the DataWriter will be informed via a
REQUESTED_INCOMPATIBLE_QOS status change and the DataReader will be
informed via an OFFERED_INCOMPATIBLE_QOS status change.

• the DataWriter and the Durability Service (as a built-in DataReader). If the
QosPolicy settings between DataWriter and the Durability Service are
inconsistent, no communication between them is established. In that case data
92
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

published by the DataWriter will not be maintained by the service and as a
consequence will not be available for late joining DataReaders. The
QosPolicy of the Durability Service in the role of DataReader is specified by
the DurabilityServiceQosPolicy in the Topic.

• the Durability Service (as a built-in DataWriter) and the DataReader. If the
QosPolicy settings between the Durability Service and the DataReader are
inconsistent, no communication between them is established. In that case the
Durability Service will not publish historical data to late joining DataReaders.
The QosPolicy of the Durability Service in the role of DataWriter is specified
by the DurabilityServiceQosPolicy in the Topic.

The attribute total_count holds the total cumulative count of DataWriter
objects discovered by the DataReader with the same Topic and an offered
DataWriterQos that was incompatible with the one requested by the
DataReader.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the Status was read.
The attribute last_policy_id holds the <name>_QOS_POLICY_ID of one of the
QosPolicies that was found to be incompatible with what was requested, the last
time an incompatibility was detected.
The attribute policies holds a list containing for each QosPolicy the total
number of times that the concerned DataReader discovered an incompatible
DataWriter for the same Topic. Each element in the list represents a counter for a
different QosPolicy, identified by a corresponding unique index number. A named
list of all index numbers is expressed as a set of constants in the API. See Table 14,
Overview of All Named QosPolicy Indexes, on page 89 for an overview of all these
constants.

3.1.5.9 SampleLostStatus

Scope
DDS.Topic

Synopsis
import DDS.*;
public final class SampleLostStatus
{
 public int total_count;
 public int total_count_change;
};
93
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Description
This class contains the statistics about whether a sample has been lost (never
received).

Attributes
int total_count - the total cumulative count of all samples lost across all

instances of data published under the Topic.
int total_count_change - the change in total_count since the last time the

Listener was called or the Status was read.

Detailed Description
This class contains the statistics about whether a sample has been lost (never
received). The status is independent of the differences in instances, in other words, it
includes all samples lost across all instances of data published under the Topic.
total_count holds the total cumulative count of all samples lost across all
instances of data published under the Topic.
total_count_change holds the change in total_count since the last time the
Listener was called or the Status was read.

3.1.5.10 SampleRejectedStatus

Scope
DDS.Topic

Synopsis
import DDS.*;
public final class SampleRejectedStatusKind

{
public static final SampleRejectedStatusKind

NOT_REJECTED;
public static final SampleRejectedStatusKind

REJECTED_BY_INSTANCES_LIMIT;
public static final SampleRejectedStatusKind

REJECTED_BY_SAMPLES_LIMIT;
public static final SampleRejectedStatusKind

REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT;
}
public final class SampleRejectedStatus
{
 public int total_count;
 public int total_count_change;
 public SampleRejectedStatusKind last_reason;
 public long last_instance_handle;

};
94
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Description
This class contains the statistics about samples that have been rejected.

Attributes
int total_count - the total cumulative count of samples rejected by the

DataReader to which this DDS_Status is attached.
int total_count_change - the change in total_count since the last time the

Listener was called or the DDS_Status was read.
SampleRejectedStatusKind last_reason - the reason for rejecting the last

sample.
long last_instance_handle - the handle to the instance which would have

been updated by the last sample that was rejected.

Detailed Description
This class contains the statistics about whether a received sample has been rejected.
The attribute total_count holds the total cumulative count of samples rejected by
the DataReader to which this DDS_Status is attached.
The attribute total_count_change holds the change in total_count since the
last time the Listener was called or the DDS_Status was read.
The attribute last_reason holds the reason for rejecting the last sample. The
attribute can have the following values:
• NOT_REJECTED - no sample has been rejected yet.
• REJECTED_BY_INSTANCES_LIMIT - the sample was rejected because it would

exceed the maximum number of instances set by the
ResourceLimitsQosPolicy.

• REJECTED_BY_SAMPLES_LIMIT - the sample was rejected because it would
exceed the maximum number of samples set by the ResourceLimits
QosPolicy.

• REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT - the sample was rejected
because it would exceed the maximum number of samples per instance set by the
ResourceLimitsQosPolicy.

The attribute last_instance_handle holds the handle to the instance which
would have updated by the last sample that was rejected.

3.1.5.11 SubscriptionMatchedStatus

Scope
DDS.Topic
95
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public final class SubscriptionMatchedStatus
{
 public int total_count;
 public int total_count_change;
 public int current_count;
 public int current_count_change;
 public long last_publication_handle;
};

Note: The functionality behind the SubscriptionMatchedStatus is not yet
implemented. It is scheduled for a future release.

3.1.6 Class WaitSet
A WaitSet object allows an application to wait until one or more of the attached
Condition objects evaluates to true or until the timeout expires.
The WaitSet has no factory and must be created by the application. It is directly
created as an object by using WaitSet constructors.

Figure 13 DCPS WaitSets
The interface description of this class is as follows:

public class WaitSet
{
//
// implemented API operations
//

public int
 _wait
 (ConditionSeqHolder active_conditions,

 Duration_t timeout);
public int
 attach_condition
 (Condition cond);
public int
 detach_condition
 (Condition cond);
public int
 get_conditions
 (ConditionSeqHolder attached_conditions);

};

Condition

get_trigger_value()

WaitSet

attach_condition()
detach_condition()
get_conditions()
wait()

** **
96
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

The following paragraphs describe the usage of all WaitSet operations.

3.1.6.1 attach_condition

Scope
DDS.WaitSet

Synopsis
import DDS.*;
public int
 attach_condition
 (Condition cond);

Description
This operation attaches a Condition to the WaitSet.

Parameters
in Condition cond - a reference to a Condition.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation attaches a Condition to the WaitSet. The parameter cond must be
either a ReadCondition , QueryCondition , StatusCondition or
GuardCondition. To get this parameter see:
• ReadCondition created by create_readcondition
• QueryCondition created by create_querycondition
• StatusCondition retrieved by get_statuscondition on an Entity
• GuardCondition created by the Java operation new.
When a GuardCondition is initially created, the trigger_value is false.
When a Condition, whose trigger_value evaluates to true, is attached to a
WaitSet that is currently being waited on (using the wait operation), the WaitSet
will unblock immediately.

Return Code
When the operation returns:
• RETCODE_OK - the Condition is attached to the WaitSet
• RETCODE_ERROR - an internal error has occurred
97
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• RETCODE_BAD_PARAMETER - the parameter cond is not a valid Condition
reference.

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.1.6.2 detach_condition

Scope
DDS.WaitSet

Synopsis
import DDS.*;
public int
 detach_condition
 (Condition cond);

Description
This operation detaches a Condition from the WaitSet.

Parameters
in Condition cond - a reference to a Condition in the WaitSet.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_OUT_OF_RESOURCES o r
RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation detaches a Condition from the WaitSet. If the Condition was
n o t a t t a c h e d t o t h i s WaitSet , t h e o p e r a t i o n r e t u r n s
RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - the Condition is detached from the WaitSet.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter cond is not a valid Condition

reference.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
98
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• RETCODE_PRECONDITION_NOT_MET - the Condition was not attached to this
WaitSet.

3.1.6.3 get_conditions

Scope
DDS.WaitSet

Synopsis
import DDS.*;
public int
 get_conditions
 (ConditionSeqHolder attached_conditions);

Description
This operation retrieves the list of attached conditions.

Parameters
inout ConditionSeqHolder attached_conditions - a Holder to a

sequence which is used to pass the list of attached conditions.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR or

RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation retrieves the list of attached conditions in the WaitSet. The
parameter attached_conditions is a Holder to a sequence which afterwards
will refer to the sequence of attached conditions. The array inside the
attached_conditions Holder may be pre-allocated by the application and can
be re-used in a subsequent invocation of the get_conditions operation. If the
pre-allocated array is not big enough to hold the the number of attached
Conditions, the sequence will automatically be (re-)allocated to fit the required
size. The resulting sequence will either be an empty sequence, meaning there were
no condi t ions a t t ached , o r wi l l con ta in a l i s t o f ReadCondition ,
QueryCondition, StatusCondition and GuardCondition. These conditions
previously have been attached by attach_condition and were created by there
respective create operation:
• ReadCondition created by create_readcondition
• QueryCondition created by create_querycondition
• StatusCondition retrieved by get_statuscondition on an Entity
99
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• GuardCondition created by the Java operation new.

Return Code
When the operation returns:
• RETCODE_OK - the list of attached conditions is returned
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.1.6.4 wait

Scope
DDS.WaitSet

Synopsis
import DDS.*;
public int
 _wait
 (ConditionSeqHolder active_conditions,

Duration_t timeout);

Description
This operation allows an application thread to wait for the occurrence of at least one
of the conditions that is attached to the WaitSet.

Parameters
inout ConditionSeqHolder active_conditions - parameter

active_conditions is a Holder to a sequence, which is used to pass the list
of all the attached conditions that have a trigger_value of true.

in Duration_t timeout - the maximum duration to block for the wait, after
which the appl ica t ion thread is unblocked. The spec ia l constant
DURATION_INFINITE can be used when the maximum waiting time does not
need to be bounded.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_OUT_OF_RESOURCES , RETCODE_TIMEOUT or RETCODE_
PRECONDITION_NOT_MET.
100
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Detailed Description
This operation allows an application thread to wait for the occurrence of at least one
of the conditions to evaluate to true that is attached to the WaitSet. If all of the
conditions attached to the WaitSet have a trigger_value of false, the wait
operation will block the calling thread. The result of the operation is the
continuation of the application thread after which the result is left in
active_conditions. This is a Holder for a sequence, which will contain the list
of all the attached conditions that have a trigger_value of true. The array
inside the active_conditions Holder may be pre-allocated by the application
and can be re-used in a subsequent invocation of the _wait operation. If the
pre-allocated array is not big enough to hold the the number of triggered
Conditions, the sequence will automatically be (re-)allocated to fit the required
size. The parameter timeout specifies the maximum duration for the wait to block
the calling application thread (when none of the attached conditions have a
trigger value of true). In that case the return value is RETCODE_TIMEOUT and the
active_conditions sequence is left empty. Since it is not allowed for more than
one application thread to be waiting on the same WaitSet, the operation returns
immediately with the value RETCODE_PRECONDITION_NOT_MET when the _wait
operation is invoked on a WaitSet which already has an application thread
blocking on it.

Return Code
When the operation returns:
• RETCODE_OK - at least one of the attached conditions has a trigger_value

of true.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_TIMEOUT - the timeout has elapsed without any of the attached
conditions becoming true.

• RETCODE_PRECONDITION_NOT_MET - the WaitSet already has an application
thread blocking on it.

3.1.7 Class Condition
This class is the base class for all the conditions that may be attached to a WaitSet.
This base class is specialized in three classes by the Data Distribution Service:
GuardCondition, StatusCondition and ReadCondition (also there is a
QueryCondition which is a specialized ReadCondition).
101
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Each Condition has a trigger_value that can be true or false and is set by
the Data Distribution Service (except a GuardCondition) depending on the
evaluation of the Condition.

Figure 14 DCPS Conditions
The interface description is as follows:

public interface Condition
{
//
// implemented API operations
//

public boolean
 get_trigger_value
 (void);

};

The next paragraph describes the usage of the Condition operation.

3.1.7.1 get_trigger_value

Scope
DDS.Condition

Condition

get_trigger_value()

QueryCondition

get_query_arguments()
get_query_expression()
set_query_arguments()

DataReader

ReadCondition

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

1

*

1

*

GuardCondition

set_trigger_value()

Entity

enable()
<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

StatusCondition

get_enabled_statuses()
get_entity()
set_enabled_statuses()

11

entity

0..10..1

statuscondition

DataWriter

PublisherSubscriber

Topic

DomainParticipant

DomainEntity

<<create>>

<<create>>
102
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Synopsis
import DDS.*;
public boolean
 get_trigger_value
 (void);

Description
This operation returns the trigger_value of the Condition.

Parameters
<none>

Return Value
boolean - is the trigger_value.

Detailed Description
A Condition has a trigger_value that can be true or false and is set by the
Data Distribution Service (except a GuardCondition). This operation returns the
trigger_value of the Condition.

3.1.8 Class GuardCondition
A GuardCondition object is a specific Condition whose trigger_value is
completely under the control of the application. The GuardCondition has no
factory and must be created by the application. The GuardCondition is directly
created as an object by using the GuardCondition constructor. When a
GuardCondition is initially created, the trigger_value is false. The purpose
of the GuardCondition is to provide the means for an application to manually
wake up a WaitSet. This is accomplished by attaching the GuardCondition to
t he Waitset a n d s e t t i n g th e trigger_value by means o f t he
set_trigger_value operation.
The interface description of this class is as follows:

public interface GuardCondition
{
//
// extends interface Condition
//
// public boolean
// get_trigger_value
// (void);
//
// implemented API operations
//

public int
103
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 set_trigger_value
 (boolean value);

};

The following paragraphs describe the usage of all GuardCondition operations.
The inherited operation is listed but not fully described since it is not implemented
in this class. The full description of this operation is given in the class from which it
is inherited. This is described in their respective paragraph.

3.1.8.1 get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
Condition for further explanation.

Synopsis
import DDS.*;
public boolean
 get_trigger_value
 (void);

3.1.8.2 set_trigger_value

Scope
DDS.GuardCondition

Synopsis
import DDS.*;
public int
 set_trigger_value
 (boolean value);

Description
This operation sets the trigger_value of the GuardCondition.

Parameters
in boolean value - the boolean value to which the GuardCondition is set.

Return Value
int - Possible re turn codes of the operat ion are : RETCODE_OK or
RETCODE_ERROR.

Detailed Description
A GuardCondition object is a specific Condition which trigger_value is
completely under the control of the application. This operation must be used by the
application to manually wake-up a WaitSet . This operation sets the
104
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

trigger_value of the GuardCondition to the parameter value. The
GuardCondition is directly created using the GuardCondition constructor.
When a GuardCondition is initially created, the trigger_value is false.

Return Code
When the operation returns:
• RETCODE_OK - the specified trigger_value has successfully been applied.
• RETCODE_ERROR - an internal error has occurred.

3.1.9 Class StatusCondition
Entity objects that have status attributes also have a StatusCondition, access is
provided to the application by the get_statuscondition operation.
The communication statuses whose changes can be communicated to the application
depend on the Entity. The following table shows the relevant statuses for each
Entity.

The trigger_value of the StatusCondition depends on the communication
statuses of that Entity (e.g., missed deadline) and also depends on the value of the
StatusCondition a t t r ibute mask (enabled_statuses mask) . A
StatusCondition can be attached to a WaitSet in order to allow an application
to suspend until the trigger_value has become true.

Table 15 Status per Entity

Entity Status Name
Topic INCONSISTENT_TOPIC_STATUS

Subscriber DATA_ON_READERS_STATUS

DataReader SAMPLE_REJECTED_STATUS

LIVELINESS_CHANGED_STATUS

REQUESTED_DEADLINE_MISSED_STATUS

REQUESTED_INCOMPATIBLE_QOS_STATUS

DATA_AVAILABLE_STATUS

SAMPLE_LOST_STATUS

SUBSCRIPTION_MATCH_STATUS

DataWriter LIVELINESS_LOST_STATUS

OFFERED_DEADLINE_MISSED_STATUS

OFFERED_INCOMPATIBLE_QOS_STATUS

PUBLICATION_MATCH_STATUS
105
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

The trigger_value of a StatusCondition will be true if one of the enabled
StatusChangedFlags is set. That is, trigger_value==false only if all the
values of the StatusChangedFlags are false.
The sensitivity of the StatusCondition to a particular communication status is
controlled by the list of enabled_statuses set on the condition by means of the
set_enabled_statuses operation.
When the enabled_statuses are not changed by the set_enabled_statuses
operation, all statuses are enabled by default.
The interface description of this class is as follows:

public interface StatusCondition
{
//
// extends interface Condition
//
// boolean
// get_trigger_value
// (void);
//
// implemented API operations
//

public int
 get_enabled_statuses
 (void);

public int
 set_enabled_statuses
 (int mask);

public Entity
 get_entity
 (void);

};

The following paragraphs describe the usage of all StatusCondition operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.1.9.1 get_enabled_statuses

Scope
DDS.StatusCondition

Synopsis
import DDS.*;
public int
106
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

 get_enabled_statuses
 (void);

Description
This operation returns the list of enabled communication statuses of the
StatusCondition.

Parameters
<none>

Return Value
int - Result is a bit mask in which each bit shows which status is taken into account

for the StatusCondition.

Detailed Description
The trigger_value of the StatusCondition depends on the communication
status of that Entity (e.g., missed deadline, loss of information, etc.), ‘filtered’ by
the set of enabled_statuses on the StatusCondition.
This operation returns the list of communication statuses that are taken into account
to determine the trigger_value of the StatusCondition. This operation
r e t u r n s t h e s t a tu s e s t h a t w e r e e x p l i c i t l y s e t on t he l a s t c a l l t o
set_enabled_statuses or, if set_enabled_statuses was never called, the
default list.
The result value is a bit mask in which each bit shows which status is taken into
account for the StatusCondition. The relevant bits represents one of the
following statuses:
• INCONSISTENT_TOPIC_STATUS

• OFFERED_DEADLINE_MISSED_STATUS

• REQUESTED_DEADLINE_MISSED_STATUS

• OFFERED_INCOMPATIBLE_QOS_STATUS

• REQUESTED_INCOMPATIBLE_QOS_STATUS

• SAMPLE_LOST_STATUS

• SAMPLE_REJECTED_STATUS

• DATA_ON_READERS_STATUS

• DATA_AVAILABLE_STATUS

• LIVELINESS_LOST_STATUS

• LIVELINESS_CHANGED_STATUS

• PUBLICATION_MATCHED_STATUS

• SUBSCRIPTION_MATCHED_STATUS
107
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the result of type int.
Not all statuses are relevant to all Entity objects. See the respective Listener
objects for each Entity for more information.

3.1.9.2 get_entity

Scope
DDS.StatusCondition

Synopsis
import DDS.*;
public Entity
 get_entity
 (void);

Description
This operation returns the Entity associated with the StatusCondition or the
null reference.

Parameters
<none>

Return Value
Entity - Result value is a reference to the Entity associated with the

StatusCondition or the null reference.

Detailed Description
This operation returns the Entity associated with the StatusCondition. Note
that there is exactly one Entity associated with each StatusCondition. When
the Entity was already deleted (there is no associated Entity any more), the
null reference is returned.

3.1.9.3 get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
Condition for further explanation.

Synopsis
import DDS.*;
public boolean
 get_trigger_value
 (void);
108
API Reference

�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1.9.4 set_enabled_statuses

Scope
DDS.StatusCondition

Synopsis
import DDS.*;
public int
 set_enabled_statuses
 (int mask);

Description
This operation sets the list of communication statuses that are taken into account to
determine the trigger_value of the StatusCondition.

Parameters
in int mask - a bit mask in which each bit sets the status which is taken into

account for the StatusCondition.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR or

RETCODE_ALREADY_DELETED.

Detailed Description
The trigger_value of the StatusCondition depends on the communication
status of that Entity (e.g., missed deadline, loss of information, etc.), ‘filtered’ by
the set of enabled_statuses on the StatusCondition.
This operation sets the list of communication statuses that are taken into account to
determine the trigger_value of the StatusCondition. This operation may
change the trigger_value of the StatusCondition.
WaitSet objects behaviour depend on the changes of the trigger_value of their
attached Conditions. Therefore, any WaitSet to which the StatusCondition
is attached is potentially affected by this operation.
If this function is not invoked, the default list of enabled_statuses includes all
the statuses.
The parameter mask is a bit mask in which each bit shows which status is taken into
account for the StatusCondition. The relevant bits represents one of the
following statuses:
• INCONSISTENT_TOPIC_STATUS

• OFFERED_DEADLINE_MISSED_STATUS
109
API Reference�������	

3 DCPS Classes and Operations 3.1 Infrastructure Module

• REQUESTED_DEADLINE_MISSED_STATUS

• OFFERED_INCOMPATIBLE_QOS_STATUS

• REQUESTED_INCOMPATIBLE_QOS_STATUS

• SAMPLE_LOST_STATUS

• SAMPLE_REJECTED_STATUS

• DATA_ON_READERS_STATUS

• DATA_AVAILABLE_STATUS

• LIVELINESS_LOST_STATUS

• LIVELINESS_CHANGED_STATUS

• PUBLICATION_MATCHED_STATUS

• SUBSCRIPTION_MATCHED_STATUS

Each status bit is declared as a constant and can be used in an OR operation to set
the status bit in the parameter mask of type int. The constants are implemented as
an interface.
Not all statuses are relevant to all Entity objects. See the respective Listener
objects for each Entity for more information.

Return Code
When the operation returns:
• RETCODE_OK - the list of communication statuses is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the StatusCondition has already been

deleted.
110
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2 Domain Module

Figure 15 DCPS Domain Module’s Class Model
This module contains the following classes:
• DomainParticipant

• DomainParticipantFactory

• DomainParticipantListener (interface)

3.2.1 Class DomainParticipant
All the DCPS Entity objects are attached to a DomainParticipant.
A DomainParticipant represents the local membership of the application in a
Domain.
A Domain is a distributed concept that links all the applications that must be able to
communicate with each other. It represents a communication plane: only the
Publishers and the Subscribers attached to the same Domain can interact.
This class implements several functions:
• It acts as a container for all other Entity objects
• It acts as a factory for the Publisher, Subscriber, Topic,
ContentFilteredTopic and MultiTopic objects

• It provides access to the built-in Topic objects

SubscriberListener
(from Subscription Module)

<<Interface>>

TopicListener

on_inconsistent_topic()

<<Interface>>

PublisherListener
(from Publication Module)

<<Interface>> Entity
(from Infrastructure Module)

Publisher
(from Publication Module)

Subscriber
(from Subscription Module)

ContentFilteredTopic
(from Topic-Definition Module)

MultiTopic
(from Topic-Definition Module)DomainParticipantFactory

create_participant()
delete_participant()
get_default_participant_qos()
get_instance()
lookup_participant()
set_default_participant_qos()

DomainEntity
(from Infrastructure Module)

QosPolicy
(from Infrastructure Module)

**

default_participant_qos

DomainParticipantListener

DomainParticipant

assert_liveliness()
contains_entity()
create_contentfilteredtopic()
create_multitopic()
create_publisher()
create_subscriber()
create_topic()
delete_contained_entities()
delete_contentfilteredtopic()
delete_multitopic()
delete_publisher()
delete_subscriber()
delete_topic()
find_topic()
get_builtin_subscriber()
get_current_time()
get_default_publisher_qos()
get_default_subscriber_qos()
get_default_topic_qos()
get_domain_id()
get_listener()
get_qos()
ignore_participant()
ignore_publication()
ignore_subscription()
ignore_topic()
lookup_topic_description()
set_default_publisher_qos()
set_default_subscriber_qos()
set_default_topic_qos()
set_listener()
set_qos()

**

11

**

qos<<implicit>>

**
default_publisher_qos

** default_topic_qos
**

default_subscriber_qos

0..10..1

<<implicit>>

Topic
(from Topic-Definition Module)

TopicDescription
(from Topic-Definition Module)

**

<<implicit>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>

<<create>>
111
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• It provides information about Topic objects
• It isolates applications within the same Domain (sharing the same domainId)

from other applications in a different Domain on the same set of computers. In
this way, several independent distributed applications can coexist in the same
physical network without interfering, or even being aware of each other

• It provides administration services in the Domain, offering operations, which
allow the application to ignore locally any information about a given
Participant, Publication, Subscription or Topic

The interface description of this class is as follows:
public interface DomainParticipant
{
//
// extends interface Entity
//
// public StatusCondition
// get_statuscondition
// (void);
// public int
// get_status_changes
// (void);
// public int
// enable
// (void);
//
// implemented API operations
//

public Publisher
 create_publisher
 (PublisherQos qos,

 PublisherListener a_listener,
 int mask);

public int
 delete_publisher
 (Publisher p);
public Subscriber
 create_subscriber
 (SubscriberQos qos,

 SubscriberListener a_listener,
 int mask);

public int
 delete_subscriber
 (Subscriber s);
public Subscriber
 get_builtin_subscriber
 (void);
public Topic
 create_topic
112
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

 (String topic_name,
 String type_name,
 TopicQos qos,
 TopicListener a_listener,
 int mask);

public int
 delete_topic
 (Topic a_topic);
public Topic
 find_topic
 (String topic_name,

 Duration_t timeout);
public TopicDescription
 lookup_topicdescription
 (String name);
public ContentFilteredTopic
 create_contentfilteredtopic
 (String name,

 Topic related_topic,
 String filter_expression,
 String[] expression_parameters);

public int
 delete_contentfilteredtopic
 (ContentFilteredTopic a_contentfilteredtopic);
public MultiTopic
 create_multitopic
 (String name,

 String type_name,
 String subscription_expression,
 String[] expression_parameters);

public int
 delete_multitopic
 (MultiTopic a_multitopic);
public int
 delete_contained_entities
 (void);
public int
 set_qos
 (DomainParticipantQos qos);
public int
 get_qos
 (DomainParticipantQosHolder qos);
public int
 set_listener
 (DomainParticipantListener a_listener,

 int mask);
public DomainParticipantListener
 get_listener
 (void);
public int
113
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

 ignore_participant
 (long handle);
public int
 ignore_topic
 (long handle);
public int
 ignore_publication
 (long handle);
public int
 ignore_subscription
 (long handle);
public String
 get_domain_id
 (void);
public int
 get_discovered_participants
 (InstanceHandleSeqHolder participant_handles);
public int
 get_discovered_participant_data
 (long ParticipantBuiltinTopicDataHolder participant_data,
 handle);
public int
 get_discovered_topics
 (InstanceHandleSeqHolder topic_handles);
public int
 get_discovered_topic_data
 (long TopicBuiltinTopicDataHolder topic_data,
 handle);
public int
 assert_liveliness
 (void);
public int
 set_default_publisher_qos
 (PublisherQos qos);
public int
 get_default_publisher_qos
 (PublisherQosHolder qos);
public int
 set_default_subscriber_qos
 (SubscriberQos qos);
public int
 get_default_subscriber_qos
 (SubscriberQosHolder qos);
public int
 set_default_topic_qos
 (TopicQos qos);
public int
 get_default_topic_qos
 (TopicQosHolder qos);
public boolean
114
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

 contains_entity
 (long a_handle);
public int
 get_current_time
 (Time_tHolder current_time);

};

The following paragraphs describe the usage of all DomainParticipant
operations. The inherited operations are listed but not fully described because they
are not implemented in this class. The full description of these operations is given in
the classes from which they are inherited.

3.2.1.1 assert_liveliness

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 assert_liveliness
 (void);

Description
This operation asserts the liveliness for the DomainParticipant.

Parameters
<none>

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_NOT_ENABLED.

Detailed Description
This operation will manually assert the liveliness for the DomainParticipant.
This way, the Data Distribution Service is informed that the DomainParticipant
is still alive. This operation only needs to be used when the DomainParticipant
c o n t a i n s DataWriters w i t h t h e LivelinessQosPolicy s e t t o
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS, and it will only affect the
liveliness of those DataWriters.
Writing data via the write operation of a DataWriter will assert the liveliness on
the DataWriter i t s e l f and i t s DomainParticipant . The re fo re ,
assert_liveliness is only needed when not writing regularly.
115
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

The liveliness should be asserted by the application, depending on the
LivelinessQosPolicy.

Return Code
When the operation returns:
• RETCODE_OK - the liveliness of this DomainParticipant has successfully been

asserted.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the DomainParticipant is not enabled.

3.2.1.2 contains_entity

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public boolean
 contains_entity
 (long a_handle);

Description
This operation checks whether or not the given Entity represented by a_handle
is created by the DomainParticipant or any of its contained entities.

Parameters
in long a_handle - an Entity in the Data Distribution System.

Return Value
boolean - true if a_handle represents an Entity that is created by the

DomainParticipant or any of its contained Entities. Otherwise the return
value is false.
116
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation checks whether or not the given Entity represented by a_handle
is created by the DomainParticipant itself (TopicDescription, Publisher
or Subscriber) or created by any of its contained entities (DataReader,
ReadCondition, QueryCondition, DataWriter, etc.).
Return value is true if a_handle represents an Entity that is created by the
DomainParticipant or any of its contained Entities. Otherwise the return
value is false.

3.2.1.3 create_contentfilteredtopic

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public ContentFilteredTopic
 create_contentfilteredtopic
 (String name,
 Topic related_topic,
 String filter_expression,
 String[] expression_parameters);

Description
This operation creates a ContentFilteredTopic for a DomainParticipant in
order to allow DataReaders to subscribe to a subset of the topic content.

Parameters
in String name - the name of the ContentFilteredTopic.
in Topic related_topic - the reference to the base topic on which the filtering

will be applied. Therefore, a filtered topic is based on an existing Topic.
in String filter_expression - the SQL expression (subset of SQL), which

defines the filtering.
in String[] expression_parameters - the handle to a sequence of strings

with the parameter value used in the SQL expression (i.e., the number of %n
tokens in the expression). The number of values in expression_parameters
must be equal or greater than the highest referenced %n token in the
filter_expression (e.g. if %1 and %8 are used as parameter in the
filter_expression, the expression_parameters should at least contain
n+1 = 9 values).
117
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Value
ContentFilteredTopic - Return value is the reference to the newly created

ContentFilteredTopic. In case of an error, a null reference is returned.

Detailed Description
This operation creates a ContentFilteredTopic for a DomainParticipant in
order to allow DataReaders to subscribe to a subset of the topic content. The base
topic, which is being filtered is defined by the parameter related_topic. The
resulting ContentFilteredTopic only relates to the samples published under the
related_topic, which have been filtered according to their content. The resulting
ContentFilteredTopic only exists at the DataReader side and will never be
published. The samples of the related_topic are filtered according to the SQL
express ion (which i s a subse t of SQL) as def ined in the parameter
filter_expression (see Appendix H, DCPS Queries and Filters).
The filter_expression may also contain parameters, which appear as %n
tokens in the expression which must be set by the sequence of strings defined by the
pa ra me te r expression_parameters . T h e n u m b e r o f v a l u e s i n
expression_parameters must be equal or greater than the highest referenced
%n token in the filter_expression (e.g. if %1 and %8 are used as parameter in
the filter_expression, the expression_parameters should at least contain
n+1 = 9 values).
The filter_expression is a string that specifies the criteria to select the data
samples of interest. In other words, it identifies the selection of data from the
associated Topics. It is an SQL expression where the WHERE clause gives the
content filter.

3.2.1.4 create_multitopic

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public MultiTopic
 create_multitopic
 (String name,
 String type_name,
 String subscription_expression,
 String[] expression_parameters);

Note: This operation is not yet implemented. It is scheduled for a future release.
118
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Description
This operation creates a MultiTopic for a DomainParticipant in order to allow
DataReaders to subscribe to a filtered/re-arranged combination and/or subset of
the content of several topics.

Parameters
in String name - the name of the multi topic.
in String type_name - the name of the type of the MultiTopic. This

type_name must have been registered using register_type prior to calling
this operation.

in String subscription_expression - the SQL expression (subset of SQL),
which defines the selection, filtering, combining and re-arranging of the sample
data.

in String[] expression_parameters - the handle to a sequence of strings
with the parameter value used in the SQL expression (i.e., the number of %n
tokens in the expression). The number of values in expression_parameters
must be equal or greater than the highest referenced %n token in the
subscription_expression (e.g. if %1 and %8 are used as parameter in the
subscription_expression, the expression_parameters should at least
contain n+1 = 9 values).

Return Value
MultiTopic - Return value is the reference to the newly created MultiTopic. In

case of an error, a null reference is returned.

Detailed Description
This operation creates a multiple topic for a DomainParticipant in order to allow
DataReaders to subscribe to a filtered/re-arranged combination and/or subset of
the content of several topics.
Before the MultiTopic can be created, the type_name of the MultiTopic must
have been registered prior to calling this operation. Registering is done, using the
register_type operation from TypeSupport. The list of topics and the logic,
which defines the selection, filtering, combining and re-arranging of the sample
data , i s def ined by the SQL express ion (subse t of SQL) def ined in
subscription_expression.
The subscription_expression may also contain parameters, which appear as
% n t o k e n s i n t h e e x p r e s s i o n . These pa r a me te r s a r e de f i ned i n
expression_parameters. The number of values in expression_parameters must
be equa l o r g r ea t e r t han t he h igh e s t r e f e r e n c e d % n t o k e n i n t h e
119
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

subscription_expression (e.g. if %1 and %8 are used as parameter in the
subscription_expression, the expression_parameters should at least
contain n+1 = 9 values).
The subscription_expression is a string that specifies the criteria to select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated Topics. It is an SQL expression where the SELECT
clause provides the fields to be kept, the FROM part provides the names of the
Topics that are searched for those fields, and the WHERE clause gives the content
filter. The Topics combined may have different types but they are restricted in that
the type of the fields used for the NATURAL JOIN operation must be the same.
The DataReader, which is associated with a MultiTopic only accesses
information which exist locally in the DataReader, based on the Topics used in
the subscription_expression. The actual MultiTopic will never be
produced, only the individual Topics.

3.2.1.5 create_publisher

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public Publisher
 create_publisher
 (PublisherQos qos,
 PublisherListener a_listener,
 int mask);

Description
This operation creates a Publisher with the desired QosPolicy settings and if
applicable, attaches the optionally specified PublisherListener to it.

Parameters
in PublisherQos qos - a collection of QosPolicy settings for the new

Publisher. In case these settings are not self consistent, no Publisher is
created.

in PublisherListener a_listener - a r e f e re n c e t o t h e
PublisherListener instance which will be attached to the new Publisher.
It is permitted to use null as the value of the listener: this behaves as a
PublisherListener whose operations perform no action.

in int mask - a bit-mask in which each bit enables the invocation of the
PublisherListener for a certain status.
120
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Value
Publisher - Return value is a reference to the newly created Publisher. In case

of an error, the null reference is returned.

Detailed Description
This operation creates a Publisher with the desired QosPolicy settings and if
applicable, attaches the optionally specified PublisherListener to it. When the
PublisherListener is not applicable, the null reference must be supplied
instead. To delete the Publisher the operation delete_publisher or
delete_contained_entities must be used.
In case the specified QosPolicy settings are not consistent, no Publisher is
created and the null reference is returned.

Default QoS
The constant PUBLISHER_QOS_DEFAULT can be used as parameter qos to create a
Publisher with the default PublisherQos as set in the DomainParticipant.
The effect of using PUBLISHER_QOS_DEFAULT is the same as calling the operation
get_default_publisher_qos and using the resulting PublisherQos to create
the Publisher.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated PublisherListener
operation is invoked and the communication status is reset to false, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset.
The following statuses are applicable to the PublisherListener:
• OFFERED_DEADLINE_MISSED_STATUS (propagated)
• OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
• LIVELINESS_LOST_STATUS (propagated)
• PUBLICATION_MATCHED_STATUS (propagated).
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the PublisherListener.
121
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataWriterListener of a contained DataWriter, the DataWriterListener
on that contained DataWriter is invoked instead of the PublisherListener.
This means that a status change on a contained DataWriter only invokes the
PublisherListener if the contained DataWriter itself does not handle the
trigger event generated by the status change.
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
PublisherListener, the DomainParticipantListener of the containing
DomainParticipant is invoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DomainParticipantListener of the containing DomainParticipant and a
Publisher s pec i f i c be hav iou r when n e e d e d . I n c a s e t h e
DomainParticipantListener is also not attached or the communication status
is not activated in its mask, the application is not notified of the change.

3.2.1.6 create_subscriber

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public Subscriber
 create_subscriber
 (SubscriberQos qos,
 SubscriberListener a_listener,
 int mask);

Description
This operation creates a Subscriber with the desired QosPolicy settings and if
applicable, attaches the optionally specified SubscriberListener to it.

Parameters
in SubscriberQos qos - a collection of QosPolicy settings for the new

Subscriber. In case these settings are not self consistent, no Subscriber is
created.

in SubscriberListener a_listener - a r e f e r e n c e t o t h e
SubscriberListener instance which will be attached to the new
Subscriber. It is permitted to use null as the value of the listener: this
behaves as a SubscriberListener whose operations perform no action.
122
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

in int mask - a bit-mask in which each bit enables the invocation of the
SubscriberListener for a certain status.

Return Value
Subscriber - Return value is a reference to the newly created Subscriber. In

case of an error, the null reference is returned.

Detailed Description
This operation creates a Subscriber with the desired QosPolicy settings and if
applicable, attaches the optionally specified SubscriberListener to it. When the
SubscriberListener is not applicable, the null reference must be supplied
instead. To delete the Subscriber the operation delete_subscriber or
delete_contained_entities must be used.
In case the specified QosPolicy settings are not consistent, no Subscriber is
created and the null reference is returned.

Default QoS
The constant SUBSCRIBER_QOS_DEFAULT can be used as parameter qos to create
a Subscriber w i th t h e d e f a u l t SubscriberQos a s s e t i n t h e
Domainparticipant. The effect of using SUBSCRIBER_QOS_DEFAULT is the
same as calling the operation get_default_subscriber_qos and using the
resulting SubscriberQos to create the Subscriber.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated SubscriberListener
operation is invoked and the communication status is reset to false, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset.
The following statuses are applicable to the SubscriberListener:
• REQUESTED_DEADLINE_MISSED_STATUS (propagated)
• REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
• SAMPLE_LOST_STATUS (propagated)
• SAMPLE_REJECTED_STATUS (propagated)
• DATA_AVAILABLE_STATUS (propagated)
• LIVELINESS_CHANGED_STATUS (propagated)
• SUBSCRIPTION_MATCHED_STATUS (propagated).
123
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DATA_ON_READERS_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the SubscriberListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataReaderListener of a contained DataReader, the DataReaderListener
on that contained DataReader is invoked instead of the SubscriberListener.
This means that a status change on a contained DataReader only invokes the
SubscriberListener if the contained DataReader itself does not handle the
trigger event generated by the status change.
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
SubscriberListener, the DomainParticipantListener of the containing
DomainParticipant is invoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DomainParticipantListener of the containing DomainParticipant and a
Subscriber s p e c i f i c b e h a v i o u r w he n n e e d e d . I n c a s e t h e
DomainParticipantListener is also not attached or the communication status
is not activated in its mask, the application is not notified of the change.
The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with a get_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
D i s t r ib u t i o n Se r v i c e w i l l f i r s t l o o k i n a n a t t a c h e d a n d a c t i v a t e d
SubscriberListener or DomainParticipantListener (in that order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener , SubscriberListener o r
DomainParticipantListener for the DATA_AVAILABLE_STATUS (in that
order).

3.2.1.7 create_topic

Scope
DDS.DomainParticipant

Synopsis
import DDS.*
public Topic
124
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

 create_topic
 (String topic_name,
 String type_name,
 TopicQos qos,
 TopicListener a_listener,
 int mask);

Description
This operation creates a reference to a new or existing Topic under the given name,
for a specific type, with the desired QosPolicy settings and if applicable, attaches
the optionally specified TopicListener to it.

Parameters
in String topic_name - the name of the Topic to be created. A new Topic

will only be created, when no Topic, with the same name, is found within the
DomainParticipant.

in String type_name - a local alias of the data type, which must have been
registered before creating the Topic.

in TopicQos qos - a collection of QosPolicy settings for the new Topic. In
case these settings are not self consistent, no Topic is created.

in TopicListener a_listener - a reference to the TopicListener instance
which will be attached to the new Topic. It is permitted to use null as the
value of the listener: this behaves as a TopicListener whose operations
perform no action.

in int mask - a bit-mask in which each bit enables the invocation of the
TopicListener for a certain status.

Return Value
Topic - Return value is a reference to the new or existing Topic. In case of an

error, the null reference is returned.

Detailed Description
This operation creates a reference to a new or existing Topic under the given name,
for a specific type, with the desired QosPolicy settings and if applicable, attaches
the optionally specified TopicListener to it. When the TopicListener is not
applicable, the null reference must be supplied instead. In case the specified
QosPolicy settings are not consistent, no Topic is created and the null reference
i s r e tu rned . To de le te t he Topic t he opera t ion delete_topic o r
delete_contained_entities must be used.
125
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Default QoS
The constant TOPIC_QOS_DEFAULT can be used as parameter qos to create a
Topic with the default TopicQos as set in the DomainParticipant. The effect
of us ing TOPIC_QOS_DEFAULT i s the same as cal l ing the operat ion
get_default_topic_qos and using the resulting TopicQos to create the Topic.
The Topic is bound to the type type_name. Prior to creating the Topic, the
type_name must have been registered with the Data Distribution Service.
Registering the type_name is done using the data type specific register_type
operation.

Existing Topic Name
B e f o r e c r e a t i n g a n e w Topic , t h i s o p e ra t i o n p e r f o r m s a
lookup_topicdescription for the specified topic_name. When a Topic is
found with the same name in the current domain, the QoS and type_name of the
found Topic are matched against the parameters qos and type_name. When they
are the same, no Topic is created but a new proxy of the existing Topic is returned.
When they are not exactly the same, no Topic is created and the null reference is
returned.
When a Topic is obtained multiple times, it must also be deleted that same number
of times using delete_topic or calling delete_contained_entities once to
delete all the proxies.

Local Proxy
Since a Topic is a global concept in the system, access is provided through a local
proxy. In other words, the reference returned is actually not a reference to a Topic
but to a locally created proxy. The Data Distribution Service propagates Topics
and makes remotely created Topics locally available through this proxy. For each
create, a new proxy is created. Therefore the Topic must be deleted the same
number of times, as the Topic was created with the same topic_name per
Domain. In other words, each reference (local proxy) must be deleted separately.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated TopicListener
operation is invoked and the communication status is reset to false, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset.
The following statuses are applicable to the TopicListener:
126
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• INCONSISTENT_TOPIC_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the TopicListener.

Status Propagation
In case a communication status is not activated in the mask of the TopicListener,
the DomainParticipantListener of the containing DomainParticipant is
invoked (if attached and activated for the status that occurred). This allows the
application to set a default behaviour in the DomainParticipantListener of the
containing DomainParticipant and a Topic specific behaviour when needed. In
case the DomainParticipantListener is a lso not at tached or the
communication status is not activated in its mask, the application is not notified of
the change.

3.2.1.8 delete_contained_entities

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 delete_contained_entities
 (void);

Description
This operation deletes all the Entity objects that were created on the
DomainParticipant.

Parameters
<none>

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes all the Entity objects that were created on the
DomainParticipant. In other words, it deletes all Publisher, Subscriber,
Topic, ContentFilteredTopic and MultiTopic objects. Prior to deleting each
127
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

contained Entity, this operation regressively calls the corresponding
delete_contained_entities operation on each Entity (if applicable). In
other words, all Entity objects in the Publisher and Subscriber are deleted,
including the DataWriter and DataReader. Also the QueryCondition and
ReadCondition objects contained by the DataReader are deleted.

Topic
Since a Topic is a global concept in the system, access is provided through a local
proxy. The Data Distribution Service propagates Topics and makes remotely
created Topics locally available through this proxy. Such a proxy is created by the
create_topic or find_topic operation. When a reference to the same Topic
was created multiple times (either by create_topic or find_topic), all
references (local proxies) are deleted. With the last proxy, the Topic itself is also
removed from the system.

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if a contained DataReader cannot be deleted because the application has
called a read or take operation and has not called the corresponding
return_loan operation to return the loaned samples. In such cases, the operation
does not roll-back any entity deletions performed prior to the detection of the
problem.

Return Code
When the operation returns:
• RETCODE_OK - the contained Entity objects are deleted and the application may

delete the DomainParticipant.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - one or more of the contained entities are

in a state where they cannot be deleted.

3.2.1.9 delete_contentfilteredtopic

Scope
DDS.DomainParticipant
128
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Synopsis
import DDS.*;
public int
 delete_contentfilteredtopic
 (ContentFilteredTopic a_contentfilteredtopic);

Description
This operation deletes a ContentFilteredTopic.

Parameters
in ContentFilteredTopic a_contentfilteredtopic - a reference to the

ContentFilteredTopic, which is to be deleted.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes a ContentFilteredTopic.
The deletion of a ContentFilteredTopic is not allowed if there are any existing
DataReader objects that are using the ContentFilteredTopic. If the
delete_contentfilteredtopic o p e r a t i o n i s c a l l e d o n a
ContentFilteredTopic with existing DataReader objects attached to it will
return PRECONDITION_NOT_MET.
The delete_contentfilteredtopic operation must be called on the same
DomainParticipant object used to create the ContentFilteredTopic. If
delete_contentfilteredtopic is called on a different DomainParticipant
the operation will have no effect and it will return PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - the ContentFilteredTopic is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_contentfilteredtopic is not

a valid ContentFilteredTopic reference.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

129

API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DomainParticipant, as used when the ContentFilteredTopic was created,
or the ContentFilteredTopic is being used by one or more DataReader
objects.

3.2.1.10 delete_multitopic

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 delete_multitopic
 (MultiTopic a_multitopic);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation deletes a MultiTopic.

Parameters
in MultiTopic a_multitopic - a reference to the MultiTopic, which is to be

deleted.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_ NOT_MET.

Detailed Description
This operation deletes a MultiTopic.
The deletion of a MultiTopic is not allowed if there are any existing DataReader
objects that are using the MultiTopic. If the delete_multitopic operation is
called on a MultiTopic with existing DataReader objects attached to it will
return RETCODE_PRECONDITION_NOT_MET.
The delete_multitopic o p e r a t i o n m u s t b e c a l l e d o n t h e s a m e
DomainParticipant o b j e c t u s e d t o c re a t e t h e MultiTopic . I f
delete_multitopic is called on a different DomainParticipant the operation
will have no effect and it will return RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
130
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• RETCODE_OK - the MultiTopic is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_multitopic is not a valid
MultiTopic reference.

• RETCODE_ALREADY_DELETED - the DomainParticipant has already been
deleted

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DomainParticipant, as used when the MultiTopic was created, or the
MultiTopic is being used by one or more DataReader objects.

3.2.1.11 delete_publisher

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 delete_publisher
 (Publisher p);

Description
This operation deletes a Publisher.

Parameters
in Publisher p - a reference to the Publisher, which is to be deleted.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_ DELETED ,
RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_ NOT_MET.

Detailed Description
This operation deletes a Publisher. A Publisher cannot be deleted when it has
any attached DataWriter objects. When the operation is called on a Publisher
w i t h DataWriter o b j e c t s , t h e o p e r a t i o n r e t u r n s
RETCODE_PRECONDITION_NOT_MET. When the operation is called on a different
DomainParticipant, as used when the Publisher was created, the operation
has no effect and returns RETCODE_PRECONDITION_NOT_MET.
131
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Code
When the operation returns:
• RETCODE_OK - the Publisher is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter p is not a valid Publisher

reference.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DomainParticipant, as used when the Publisher was created, or the
Publisher contains one or more DataWriter objects.

3.2.1.12 delete_subscriber

Scope
DDS.DomainParticipant

Synopsis
import DDS.*
public int
 delete_subscriber
 (Subscriber s);

Description
This operation deletes a Subscriber.

Parameters
in Subscriber s - a reference to the Subscriber, which is to be deleted.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_ DELETED ,
RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_ NOT_MET.

Detailed Description
This operation deletes a Subscriber. A Subscriber cannot be deleted when it
has any attached DataReader objects. When the operation is called on a
Subscriber w i t h DataReader o b j e c t s , t h e o p e r a t i o n r e t u r n s
132
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

RETCODE_PRECONDITION_NOT_MET. When the operation is called on a different
DomainParticipant, as used when the Subscriber was created, the operation
has no effect and returns RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - the Subscriber is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter s is not a valid Subscriber

reference.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DomainParticipant, as used when the Subscriber was created, or the
Subscriber contains one or more DataReader objects.

3.2.1.13 delete_topic

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 delete_topic
 (Topic a_topic);

Description
This operation deletes a Topic.

Parameters
in Topic a_topic - a reference to the Topic, which is to be deleted.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_ DELETED ,
RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_ NOT_MET.
133
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation deletes a Topic. A Topic cannot be deleted when there are any
DataReader, DataWriter, ContentFilteredTopic or MultiTopic objects,
which are using the Topic. When the operation is called on a Topic referenced by
any of these objects, the operation returns RETCODE_PRECONDITION_NOT_MET.
When the operation is called on a different DomainParticipant, as used when
the Topic was c r ea t e d , t he ope ra t i on ha s no e f f ec t and r e tu rn s
RETCODE_PRECONDITION_NOT_MET.

Local Proxy
Since a Topic is a global concept in the system, access is provided through a local
proxy. In other words, the reference is actually not a reference to a Topic but to the
local proxy. The Data Distribution Service propagates Topics and makes remotely
created Topics locally available through this proxy. Such a proxy is created by the
create_topic or find_topic operation. This operation will delete the local
proxy. When a reference to the same Topic was created multiple times (either by
create_topic or find_topic), each reference (local proxy) must be deleted
separately. When this proxy is the last proxy for this Topic, the Topic itself is also
removed from the system. As mentioned, a proxy may only be deleted when there
are no other entities attached to it. However, it is possible to delete a proxy while
there are entities attached to a different proxy.

Return Code
When the operation returns:
• RETCODE_OK - the Topic is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_topic is not a valid Topic

reference.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DomainParticipant, as used when the Topic was created, or the Topic is still
referenced by other objects.

3.2.1.14 enable (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.
134
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Synopsis
import DDS.*;
public int
 enable
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.15 find_topic

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public Topic
 find_topic
 (String topic_name,
 Duration_t timeout);

Description
This operation gives access to an existing (or ready to exist) enabled Topic, based
on its topic_name.

Parameters
in String topic_name - the name of the Topic that the application wants

access to.
in Duration_t timeout - the maximum duration to block for the find_topic,

after which the application thread is unblocked. The special constant
DURATION_INFINITE can be used when the maximum waiting time does not
need to be bounded.

Return Value
Topic - a reference to the Topic found.

Detailed Description
This operation gives access to an existing Topic, based on its topic_name. The
operation takes as arguments the topic_name of the Topic and a timeout.
If a Topic of the same topic_name already exists, it gives access to this Topic.
Otherwise it waits (blocks the caller) until another mechanism creates it. This other
mechanism can be another thread, a configuration tool, or some other Data
Distribution Service utility. If after the specified timeout the Topic can still not be
found, the caller gets unblocked and the null reference is returned.
135
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

A Topic obtained by means of find_topic, must also be deleted by means of
delete_topic so that the local resources can be released. If a Topic is obtained
multiple times it must also be deleted that same number of times using
delete_topic or calling delete_contained_entities once to delete all the
proxies.
A Topic t ha t i s ob ta ined by means o f find_topic in a spec i f i c
DomainParticipant can only be used to create DataReaders and
DataWriters in that DomainParticipant if its corresponding TypeSupport
has been registered to that same DomainParticipant.

Local Proxy
Since a Topic is a global concept in the system, access is provided through a local
proxy. In other words, the reference returned is actually not a reference to a Topic
but to a locally created proxy. The Data Distribution Service propagates Topics
and makes remotely created Topics locally available through this proxy. For each
time this operation is called, a new proxy is created. Therefore the Topic must be
deleted the same number of times, as the Topic was created with the same
topic_name per Domain. In other words, each reference (local proxy) must be
deleted separately.

3.2.1.16 get_builtin_subscriber

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public Subscriber
 get_builtin_subscriber
 (void);

Description
This operat ion returns the bui l t- in Subscriber associated with the
DomainParticipant.

Parameters
<none>

Return Value
Subscriber - Result value is a reference to the built-in Subscriber associated

with the DomainParticipant.
136
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
This operation returns the bui l t- in Subscriber associated with the
DomainParticipant. Each DomainParticipant contains several built-in
Topic objects. The built-in Subscriber contains the corresponding DataReader
objects to access them. All these DataReader objects belong to a single built-in
Subscriber. Note that there is exactly one built-in Subscriber associated with
each DomainParticipant.

3.2.1.17 get_current_time

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 get_current_time
 (Time_tHolder current_time);

Description
This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well as received data in current_time.

Parameters
inout Time_tHolder current_time - the value of the current time as used by

the Data Distribution System. The input value of current_time is ignored.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES or RETCODE_NOT_ENABLED.

Detailed Description
This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well as received data in current_time.
The input value of current_time is ignored by the operation.

Return Code
When the operation returns:
• RETCODE_OK - the value of the current time is returned in current_time.
• RETCODE_ERROR - an internal error has occurred.
137
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• RETCODE_BAD_PARAMETER - the parameter current_time is not a valid
reference.

• RETCODE_ALREADY_DELETED - the DomainParticipant has already been
deleted

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• RETCODE_NOT_ENABLED - the DomainParticipant is not enabled.

3.2.1.18 get_default_publisher_qos

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 get_default_publisher_qos
 (PublisherQosHolder qos);

Description
This operation gets an object with the default Publisher QosPolicy settings of
the DomainParticipant.

Parameters
inout PublisherQosHolder qos - a reference to the dest ination

PublisherQosHolder object in which the default QosPolicy settings for the
Publisher are written.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation gets an object of the class PublisherQos with the default
Publisher QosPolicy settings of the DomainParticipant (that is the
PublisherQos) which is used for newly created Publisher objects, in case the
constant PUBLISHER_QOS_DEFAULT is used. The default PublisherQos is only
used when the constant is supplied as parameter qos to specify the PublisherQos
in the create_publisher operation. The application must provide the
PublisherQos object in which the QosPolicy settings can be stored and pass the
138
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

qos reference to the operation. The operation writes the default QosPolicy
settings to the object referenced to by qos. Any settings in the object are
overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to set_default_publisher_qos, or, if the call was never made,
the default values as specified for each QosPolicy setting as defined in Table 2,
DCPS Holder Classes, on page 12.

Return Code
When the operation returns:
• RETCODE_OK - the default Publisher QosPolicy settings of this
DomainParticipant have successfully been copied into the specified
PublisherQosHolder parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.1.19 get_default_subscriber_qos

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 get_default_subscriber_qos
 (SubscriberQosHolder qos);

Description
This operation gets an object with the default Subscriber QosPolicy settings of
the DomainParticipant.

Parameters
inout SubscriberQosHolder qos - a reference to the destination

SubscriberQosHolder object in which the default QosPolicy settings for
the Subscriber are written.
139
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation gets an object of the class SubscriberQos with the default
Subscriber QosPolicy settings of the DomainParticipant (that is the
SubscriberQos) which is used for newly created Subscriber objects, in case
the constant SUBSCRIBER_QOS_DEFAULT is used. The default SubscriberQos is
only used when the constant is supplied as parameter qos to specify the
SubscriberQos in the create_subscriber operation. The application must
provide the QoS object in which the policy can be stored and pass the qos reference
to the operation. The operation writes the default QosPolicy to the object
referenced to by qos. Any settings in the object are overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to set_default_subscriber_qos, or, if the call was never made,
the default values as specified for each QosPolicy as defined in Table 2, DCPS
Holder Classes, on page 12.

Return Code
When the operation returns:
• RETCODE_OK - the default Subscriber QosPolicy settings of this
DomainParticipant have successfully been copied into the specified
SubscriberQosHolder parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.1.20 get_default_topic_qos

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 get_default_topic_qos
 (TopicQosHolder qos);
140
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Description
This operation gets an object with the default Topic QosPolicy settings of the
DomainParticipant.

Parameters
inout TopicQosHolder qos - a reference to the destination TopicQosHolder

object in which the default QosPolicy settings for the Topic are written.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation gets an object of the class TopicQos with the default Topic
QosPolicy settings of the DomainParticipant (that is the TopicQos) which is
used for newly created Topic objects, in case the constant TOPIC_QOS_DEFAULT
is used. The default TopicQos is only used when the constant is supplied as
parameter qos to specify the TopicQos in the create_topic operation. The
application must provide an object of the TopicQos class in which the policy can
be stored and pass the qos reference to the operation. The operation writes the
default QosPolicy settings to the object referenced to by qos. Any settings in the
object are overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to set_default_topic_qos, or, if the call was never made, the
default values as specified for each QosPolicy as defined in Table 2, DCPS Holder
Classes, on page 12.

Return Code
When the operation returns:
• RETCODE_OK - the default Topic QosPolicy settings of this
DomainParticipant have successfully been copied into the specified
TopicQosHolder parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
141
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.21 get_discovered_participants

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 get_discovered_participants
 (InstanceHandleSeqHolder participant_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.22 get_discovered_participant_data

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 get_discovered_participant_data
 (long ParticipantBuiltinTopicDataHolder participant_data,
 handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.23 get_discovered_topics

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 get_discovered_topics
 (InstanceHandleSeqHolder topic_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.24 get_discovered_topic_data

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
142
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

public int
 get_discovered_topic_data
 (long TopicBuiltinTopicDataHolder topic_data,
 handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.25 get_domain_id

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public String
 get_domain_id
 (void);

Description
This opera t ion re turns the DomainId o f the Domain to which th i s
DomainParticipant is attached.

Parameters
<none>

Return Value
String - result is the DomainId.

Detailed Description
This opera t ion re turns the DomainId o f the Domain to which th i s
DomainParticipant is attached. A DomainId consists of a string that represents
a U R I t o t h e l o c a t i o n o f t he c o n f i g u r a t i o n f i l e (e . g .
“file:///projects/DDS/ospl.xml”). This file specifies all configuration
details of the Domain to which it refers.
A DomainId may contain the null reference: in that case the location of the
configuration file is extracted from the environment variable called OSPL_URI.

3.2.1.26 get_listener

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
143
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

public DomainParticipantListener
 get_listener
 (void);

Description
This operation allows access to a DomainParticipantListener.

Parameters
<none>

Return Value
DomainParticipantListener - r e s u l t i s a r e f e r e n c e t o t h e

DomainParticipantListener attached to the DomainParticipant.

Detailed Description
This operation allows access to a DomainParticipantListener attached to the
DomainParticipant. When no DomainParticipantListener was attached to
the DomainParticipant, the null reference is returned.

3.2.1.27 get_qos

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 get_qos
 (DomainParticipantQosHolder qos);

Description
This operation allows access to the existing set of QoS policies for a
DomainParticipant.

Parameters
inout DomainParticipantQosHolder qos - a reference to the destination

DomainParticipantQosHolder object in which the QosPolicy settings
will be copied.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.
144
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QoS policy values applied to this
DomainParticipant has successfully been copied into the specified
DomainParticipantQosHolder parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

Detailed Description
This operation al lows access to the exist ing set of QoS policies of a
DomainParticipant o n w h i c h t h i s o p e r a t i o n i s u s e d . T h i s
DomainparticipantQos is stored at the location referenced by the qos
parameter.

3.2.1.28 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public int
 get_status_changes
 (void);

3.2.1.29 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public StatusCondition
 get_statuscondition
 (void);

3.2.1.30 ignore_participant

Scope
DDS.DomainParticipant
145
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Synopsis
import DDS.*
public int
 ignore_participant
 (long handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.31 ignore_publication

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 ignore_publication
 (long handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.32 ignore_subscription

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 ignore_subscription
 (long handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.2.1.33 ignore_topic

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 ignore_topic
 (long handle);

Note: This operation is not yet implemented. It is scheduled for a future release.
146
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.34 lookup_topicdescription

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public TopicDescription
 lookup_topicdescription
 (String name);

Description
This operation gives access to a locally-created TopicDescription, with a
matching name.

Parameters
in String name - the name of the TopicDescription to look for.

Return Value
TopicDescription - Return value is a reference to the TopicDescription

found. When no such TopicDescription is found, the null reference is
returned.

Detailed Description
The operation lookup_topicdescription gives access to a locally-created
TopicDescription, based on its name. The operation takes as argument the name
of the TopicDescription.
If one or more local TopicDescription proxies (see also Section 3.2.1.15,
find_topic, on page 135) of the same name already exist, a reference to one of the
already existing local proxies is returned: lookup_topicdescription will never
create a new local proxy. That means that the proxy that is returned does not need to
be deleted separately from its original. When no local proxy exists, it returns the
null reference. The operation never blocks.
The operation lookup_topicdescription may be used to locate any
locally-created Topic, ContentFilteredTopic, and MultiTopic object.

3.2.1.35 set_default_publisher_qos

Scope
DDS.DomainParticipant
147
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Synopsis
import DDS.*;
public int
 set_default_publisher_qos
 (PublisherQos qos);

Description
This operation sets the default PublisherQos of the DomainParticipant.

Parameters
in PublisherQos qos - a collection of QosPolicy settings, which contains the

new default QosPolicy settings for the newly created Publishers.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_UNSUPPORTED ,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation sets the default PublisherQos of the DomainParticipant (that
is the compound class with the QosPolicy settings) which is used for newly
created Publisher objects, in case the constant PUBLISHER_QOS_DEFAULT is
used. The default PublisherQos is only used when the constant is supplied as
parameter qos to specify the PublisherQos in the create_publisher
operation. The PublisherQos is always self consistent, because its policies do not
depend on each o ther. This means th i s opera t ion never re turns the
RETCODE_INCONSISTENT_POLICY. The values set by this operation are returned
by get_default_publisher_qos.

Return Code
When the operation returns:
• RETCODE_OK - the new default PublisherQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid PublisherQos.
• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are

currently not supported by OpenSplice.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
148
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.1.36 set_default_subscriber_qos

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 set_default_subscriber_qos
 (SubscriberQos qos);

Description
This operation sets the default SubscriberQos of the DomainParticipant.

Parameters
in SubscriberQos qos - a collection of QosPolicy settings, which contains

the new default QosPolicy settings for the newly created Subscribers.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_UNSUPPORTED ,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation sets the default SubscriberQos of the DomainParticipant (that
is the compound class with the QosPolicy settings) which is used for newly
created Subscriber objects, in case the constant SUBSCRIBER_QOS_DEFAULT is
used. The default SubscriberQos is only used when the constant is supplied as
parameter qos to specify the SubscriberQos in the create_subscriber
operation. The SubscriberQos is always self consistent, because its policies do
not depend on each other. This means this operation never returns the
RETCODE_INCONSISTENT_POLICY. The values set by this operation are returned
by get_default_subscriber_qos.

Return Code
When the operation returns:
• RETCODE_OK - the new default SubscriberQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid PublisherQos.
• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are

currently not supported by OpenSplice.
149
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• RETCODE_ALREADY_DELETED - the DomainParticipant has already been
deleted.

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.2.1.37 set_default_topic_qos

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 set_default_topic_qos
 (TopicQos qos);

Description
This operation sets the default TopicQos of the DomainParticipant.

Parameters
in TopicQos qos - a collection of QosPolicy settings, which contains the new

default QosPolicy settings for the newly created Topics.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_UNSUPPORTED ,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation sets the default TopicQos of the DomainParticipant (that is the
compound class with the QosPolicy settings) which is used for newly created
Topic objects, in case the constant TOPIC_QOS_DEFAULT is used. The default
TopicQos is only used when the constant is supplied as parameter qos to specify
the TopicQos in the create_topic operation. This operation checks if the
TopicQos is self consistent. If it is not, the operation has no effect and returns
RETCODE_INCONSISTENT_POLICY. The values set by this operation are returned
by get_default_topic_qos.

Return Code
When the operation returns:
• RETCODE_OK - the new default TopicQos is set
150
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid TopicQos. It

contains a QosPolicy setting with an invalid Duration_t value.
• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are

currently not supported by OpenSplice.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_INCONSISTENT_POLICY - the parameter qos contains conflicting
QosPolicy settings, e.g. a history depth that is higher than the specified resource
limits.

3.2.1.38 set_listener

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 set_listener
 (DomainParticipantListener a_listener,
 int mask);

Description
Thi s ope ra t i on a t t a ches a DomainParticipantListener t o t he
DomainParticipant.

Parameters
in DomainParticipantListener a_listener - a reference to the

DomainParticipantListener instance, which will be attached to the
DomainParticipant.

in int mask - a bit mask in which each bit enables the invocation of the
DomainParticipantListener for a certain status.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.
151
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
Thi s ope ra t i on a t t a ches a DomainParticipantListener t o t h e
DomainParticipant. Only one DomainParticipantListener can be
attached to each DomainParticipant. If a DomainParticipantListener was
already attached, the operation will replace it with the new one. When a_listener
is the null reference, it represents a listener that is treated as a NOOP1 for all
statuses activated in the bitmask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
false. It becomes true whenever that communication status changes. For each
co m m un ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d
DomainParticipantListener operation is invoked and the communication
status is reset to false, as the listener implicitly accesses the status which is passed
as a parameter to that operation. The status is reset prior to calling the listener, so if
the application calls the get_<status_name>_status from inside the listener it
will see the status already reset. An exception to this rule is the null listener, which
does not reset the communication statuses for which it is invoked.
The following statuses are applicable to the DomainParticipantListener:
• INCONSISTENT_TOPIC_STATUS (propagated)
• OFFERED_DEADLINE_MISSED_STATUS (propagated)
• REQUESTED_DEADLINE_MISSED_STATUS (propagated)
• OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
• REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
• SAMPLE_LOST_STATUS (propagated)
• SAMPLE_REJECTED_STATUS (propagated)
• DATA_ON_READERS_STATUS (propagated)
• DATA_AVAILABLE_STATUS (propagated)
• LIVELINESS_LOST_STATUS (propagated)
• LIVELINESS_CHANGED_STATUS (propagated)
• PUBLICATION_MATCHED_STATUS (propagated)
• SUBSCRIPTION_MATCHED_STATUS (propagated).
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the DomainParticipantListener.

1. Short for No-Operation, an instruction that peforms nothing at all.

152
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the Listener of
a contained entity, the Listener on that contained entity is invoked instead of the
DomainParticipantListener. This means that a status change on a contained
entity only invokes the DomainParticipantListener if the contained entity
itself does not handle the trigger event generated by the status change.
The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with a get_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
D i s t r ib u t i o n Se r v i c e w i l l f i r s t l o o k i n a n a t t a c h e d a n d a c t i v a t e d
SubscriberListener or DomainParticipantListener (in that order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener or DomainParticipant
Listener for the DATA_AVAILABLE_STATUS (in that order).

Return Code
When the operation returns:
• RETCODE_OK - the DomainParticipantListener is attached
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.1.39 set_qos

Scope
DDS.DomainParticipant

Synopsis
import DDS.*;
public int
 set_qos
 (DomainParticipantQos qos);
153
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DomainParticipant.

Parameters
in DomainParticipantQos qos - the new set of QosPolicy settings for the

DomainParticipant.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DomainParticipant. The parameter qos contains the object with the
QosPolicy settings which is checked for self-consistency.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new DomainParticipantQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DomainParticipant has already been

deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.2 Class DomainParticipantFactory
The purpose of this class is to al low the creat ion and destruct ion of
DomainParticipant objects. DomainParticipantFactory itself has no
factory. It is a pre-existing singleton object that can be accessed by means of the
get_instance operation on the DomainParticipantFactory object.
The pre-defined value TheParticipantFactory can also be used as an alias for
the singleton factory returned by the operation get_instance.
The interface description of this class is as follows:
 public class DomainParticipantFactory

{

154
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

//
// implemented API operations
//

public static DomainParticipantFactory
 get_instance
 (void);
public DomainParticipant
 create_participant
 (String domainId,

 DomainParticipantQos qos,
 DomainParticipantListener a_listener,
 int mask);

public int
 delete_participant
 (DomainParticipant a_participant);
public DomainParticipant
 lookup_participant
 (String domainId);
public int
 set_default_participant_qos
 (DomainParticipantQos qos);
public int
 get_default_participant_qos
 (DomainParticipantQosHolder qos);
public int
 set_qos
 (DomainParticipantFactoryQos qos);
public int
 get_qos
 (DomainParticipantFactoryQosHolder qos);

};

The following paragraphs describe the usage of all DomainParticipantFactory
operations.

3.2.2.1 create_participant

Scope
DDS.DomainParticipantFactory

Synopsis
import DDS.*;
public DomainParticipant
 create_participant
 (String domainId,
 DomainParticipantQos qos,
 DomainParticipantListener a_listener,
 int mask);
155
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Description
This operation creates a new DomainParticipant which will join the domain
identified by domainId, with the desired DomainParticipantQos and attaches
the optionally specified DomainParticipantListener to it.

Parameters
in String domainId - t h e I D o f t h e Domain t o w h i c h t h e

DomainParticipant is joined. This should be a URI to the location of the
configuration file that identifies the configuration details of the Domain.

in DomainParticipantQos qos - a DomainParticipantQos for the new
DomainParticipant. When this set of QosPolicy settings is inconsistent,
no DomainParticipant is created.

in DomainParticipantListener a_listener - a reference to the
DomainParticipantListener instance which will be attached to the new
DomainParticipant. It is permitted to use null as the value of the listener:
this behaves as a DomainParticipantListener whose operations perform
no action.

in int mask - a bit-mask in which each bit enables the invocation of the
DomainParticipantListener for a certain status.

Return Value
DomainParticipant - Return value is a reference to the newly created

DomainParticipant. In case of an error, the null reference is returned.

Detailed Description
This operation creates a new DomainParticipant , with the desired
DomainParticipantQos a n d a t t a c h e s t h e o p t i o n a l l y s p e c i f i e d
DomainParticipantListener to it. The DomainParticipant signifies that
the calling application intends to join the Domain identified by the domainId
argument.
If the specified QosPolicy settings are not consistent, the operation will fail; no
DomainParticipant is created and the operation returns the null reference. To
delete the DomainParticipant the operation delete_participant must be
used.

Identifying the Domain
The DomainParticipant will attach to the Domain that is specified by the
domainId parameter. This parameter consists of a string that represents a URI to
t h e l o c a t i o n o f t h e c o n f i g u r a t i o n f i l e (e . g .
156
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

“file:///projects/DDS/ospl.xml”). This file specifies all configuration
details of the Domain to which it refers. See the Deployment Guide for further
details about the contents of this configuration file.
A null reference may be assigned to the DomainId: in that case the location of the
configuration file is extracted from the environment variable called OSPL_URI. This
variable will be initialized when you source the release.com script (on platforms
to which that applies) or, on the Windows platform, when you install the OpenSplice
product. Initially it will point to the default configuration file that comes with
OpenSplice, but of course you are free to change this to any configuration file that
you want.
It is recommended to use this OSPL_URI variable instead of hard-coding the URI
into your application, since this gives you much more flexibility in the deployment
phase of your product.

Default QoS
The constant PARTICIPANT_QOS_DEFAULT can be used as parameter qos to create
a DomainParticipant with the default DomainParticipantQos as set in the
DomainParticipantfactory. The e ff e c t o f u s ing
PARTICIPANT_QOS_DEFAULT i s the same as ca l l ing the opera t ion
get_default_participant_qos a n d u s i n g t h e r e s u l t i n g
DomainParticipantQos to create the DomainParticipant.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
false. It becomes true whenever that communication status changes. For each
commun ica t i on s t a t u s a c t i va t ed i n t he mask , t h e a s soc i a t e d
DomainParticipantListener operation is invoked and the communication
status is reset to false, as the listener implicitly accesses the status which is passed
as a parameter to that operation. The status is reset prior to calling the listener, so if
the application calls the get_<status_name>_status from inside the listener it
will see the status already reset.
The following statuses are applicable to the DomainParticipantListener:
• INCONSISTENT_TOPIC_STATUS (propagated)
• OFFERED_DEADLINE_MISSED_STATUS (propagated)
• REQUESTED_DEADLINE_MISSED_STATUS (propagated)
• OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
• REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
• SAMPLE_LOST_STATUS (propagated)
• SAMPLE_REJECTED_STATUS (propagated)
• DATA_ON_READERS_STATUS (propagated)
157
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

• DATA_AVAILABLE_STATUS (propagated)
• LIVELINESS_LOST_STATUS (propagated)
• LIVELINESS_CHANGED_STATUS (propagated)
• PUBLICATION_MATCHED_STATUS (propagated)
• SUBSCRIPTION_MATCHED_STATUS (propagated).
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the DomainParticipantListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the Listener of
a contained entity, the Listener on that contained entity is invoked instead of the
DomainParticipantListener. This means that a status change on a contained
entity only invokes the DomainParticipantListener if the contained entity
itself does not handle the trigger event generated by the status change.
The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with a get_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
D i s t r ib u t i o n Se r v i c e w i l l f i r s t l o o k i n a n a t t a c h e d a n d a c t i v a t e d
SubscriberListener or DomainParticipantListener (in that order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener or DomainParticipant
Listener for the DATA_AVAILABLE_STATUS (in that order).

3.2.2.2 delete_participant

Scope
DDS.DomainParticipantFactory

Synopsis
import DDS.*;
public int
 delete_participant
 (DomainParticipant a_participant);

Description
This operation deletes a DomainParticipant.
158
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Parameters
in DomainParticipant a_participant - a r e f e r e n c e t o t h e

DomainParticipant, which is to be deleted.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER, RETCODE_OUT_OF_RESOURCES or RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
This operation deletes a DomainParticipant. A DomainParticipant cannot
be deleted when it has any attached Entity objects. When the operation is called
on a DomainParticipant with existing Entity objects, the operation returns
RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns;
• RETCODE_OK - the DomainParticipant is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_participant is not a valid
DomainParticipant reference.

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• RETCODE_PRECONDITION_NOT_MET - the DomainParticipant contains one
or more Entity objects.

3.2.2.3 get_default_participant_qos

Scope
DDS.DomainParticipantFactory

Synopsis
import DDS.*;
public int
 get_default_participant_qos
 (DomainParticipantQosHolder qos);

Description
T h i s o p e r a t i o n g e t s t h e d e f a u l t DomainParticipantQos o f t h e
DomainParticipantFactory.
159
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Parameters
inout DomainParticipantQosHolder qos - a reference to the destination

DomainParticipantQosHolder ob jec t i n wh ich t he de fau l t
DomainParticipantQos for the DomainParticipantFactory is written.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR

or RETCODE_OUT_OF_RESOURCES.

Detailed Description
T h i s o p e r a t i o n g e t s t h e d e f a u l t DomainParticipantQos o f t h e
DomainParticipantFactory (that is the object with the QosPolicy settings)
which is used for newly created DomainParticipant objects, in case the constant
PARTICIPANT_QOS_DEFAULT is used. The default DomainParticipantQos is
only used when the constant is supplied as parameter qos to specify the
DomainParticipantQos in the create_participant operation. The
application must provide an object of the DomainParticipantQos class in which
the QosPolicy settings can be stored and provide a reference to the object. The
operation writes the default QosPolicy settings to the object referenced to by qos.
Any settings in the object are overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to set_default_participant_qos, or, if the call was never
made, the default QosPolicy values as defined in Table 2, DCPS Holder Classes,
on page 12.

Return Code
When the operation returns:
• RETCODE_OK - the default DomainParticipant QosPolicy settings of this
DomainParticipantFactory have successfully been copied into the specified
DomainParticipantQosHolder parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.2.4 get_instance

Scope
DDS.DomainParticipantFactory

Synopsis
import DDS.*;
160
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

public static DomainParticipantFactory
 get_instance
 (void);

Description
This operation returns the DomainParticipantFactory singleton.

Parameters
<none>

Return Value
DomainParticipantFactory - re turn va lue i s a re ference to the

DomainParticipantFactory.

Detailed Description
This operation returns the DomainParticipantFactory singleton. The operation
is idempotent, that is, it can be called multiple times without side-effects and it
returns the same DomainParticipantFactory instance.
T h e o p e r a t i o n i s s t a t i c a n d m u s t b e c a l l e d u p o n i t s c l a s s
(DomainParticipantFactory.get_instance).
The pre-defined value TheParticipantFactory can also be used as an alias for
the singleton factory returned by the operation get_instance.

3.2.2.5 get_qos

Scope
DDS.DomainParticipantFactory

Synopsis
import DDS.*;
public int
 get_qos
 (DomainParticipantFactoryQosHolder qos);

Description
This operation allows access to the existing set of QoS policies for a
DomainParticipantFactory.

Parameters
inout DomainParticipantFactoryQosHolder qos - a reference to the

destination DomainparticipantFactoryQosHolder object in which the
QosPolicy settings will be copied.
161
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR

or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation al lows access to the exist ing set of QoS policies of a
DomainParticipantFactory on which this operation is used. This
DomainparticipantFactoryQos is stored at the location pointed to by the qos
parameter.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QoS policy values applied to this
DomainParticipantFactory has successfully been copied into the specified
DomainParticipantFactoryQosHolder parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.2.6 lookup_participant

Scope
DDS.DomainParticipantFactory

Synopsis
import DDS.*;
public DomainParticipant
 lookup_participant
 (String domainId);

Description
This operation retrieves a previously created DomainParticipant belonging to
the specified domainId.

Parameters
in String domainId - the ID of the Domain for which a joining

DomainParticipant should be retrieved. This should be a URI to the location
of the configuration file that identifies the configuration details of the Domain.
162
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Value
DomainParticipant - Return value is a reference to the DomainParticipant

retrieved. When no such DomainParticipant is found, the null reference is
returned.

Detailed Description
This operation retrieves a previously created DomainParticipant belonging to
the specified domainId. If no such DomainParticipant exists, the operation will
return null.
The domainId used to search for a specific DomainParticipant must be
i d e n t i c a l t o t h e domainId t h a t w a s u s e d t o c r e a t e t h a t s p e c i f i c
DomainParticipant: a null reference will not be resolved on this level. That
means that a DomainParticipant that was created using a domainId set to null
will not be found if you try to look it up using a hard-coded URI that has the same
contents as the environment variable OSPL_URI.
If multiple DomainParticipant entities belonging to the specified domainId
exist, then the operation will return one of them. It is not specified which one.

3.2.2.7 set_default_participant_qos

Scope
DDS.DomainParticipantFactory

Synopsis
import DDS.*;

int
 set_default_participant_qos
 (DomainParticipantQos qos);

Description
T h i s o p e r a t i o n s e t s t h e d e f a u l t DomainParticipantQos o f t h e
DomainParticipantFactory.

Parameters
in DomainParticipantQos qos - an object of the DomainParticipantQos

class, which contains the new default DomainParticipantQos for the newly
created DomainParticipants.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR

or RETCODE_OUT_OF_RESOURCES.
163
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

Detailed Description
T h i s o p e r a t i o n s e t s t h e d e f a u l t DomainParticipantQos o f t h e
DomainParticipantFactory (that is the object with the QosPolicy settings)
which is used for newly created DomainParticipant objects, in case the constant
PARTICIPANT_QOS_DEFAULT is used. The default DomainParticipantQos is
only used when the constant is supplied as parameter qos to specify the
DomainParticipantQos in the create_participant operation. The
DomainParticipantQos is always self consistent, because its policies do not
depend on each o ther. This means th i s opera t ion never re turns the
RETCODE_INCONSISTENT_POLICY.
T h e v a l u e s s e t b y t h i s o p e r a t i o n a r e r e t u r n e d b y
get_default_participant_qos.

Return Code
When the operation returns:
• RETCODE_OK - the new default DomainParticipantQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.2.8 set_qos

Scope
DDS.DomainParticipantFactory

Synopsis
import DDS.*;
public int
 set_qos
 (DomainParticipantFactoryQos qos);

Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DomainParticipantFactory.

Parameters
in DomainParticipantFactoryQos qos - must contain the new set of

QosPolicy settings for the DomainParticipantFactory.
164
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR

or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation replaces the exist ing set of QosPolicy set t ings for a
DomainParticipantFactory. The parameter qos must contain the object with
the QosPolicy settings.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new DomainParticipantFactoryQos is set.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.2.3 DomainParticipantListener Interface
Since a DomainParticipant is an Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener should be of type
DomainParticipantListener. This interface must be implemented by the
application. A user defined class must be provided by the application which must
ex t e nd f ro m th e DomainParticipantListener c l a s s . A l l
DomainParticipantListener operations must be implemented in the user
defined class, it is up to the application whether an operation is empty or contains
some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DomainParticipantListener provides a generic mechanism (actually a
callback function) for the Data Distribution Service to notify the application of
relevant asynchronous status change events, such as a missed deadline, violation of
a QosPolicy setting, etc. The DomainParticipantListener is related to
changes in communication status StatusConditions.
The interface description of this class is as follows:
 public interface DomainParticipantListener

{

165
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

//
// extends interface TopicListener
//
// void
// on_inconsistent_topic
// (Topic the_topic,
// InconsistentTopicStatus status);
//
// extends interface PublisherListener
//
// void
// on_offered_deadline_missed
// (DataWriter writer,
// OfferedDeadlineMissedStatus status);

// void
// on_offered_incompatible_qos
// (DataWriter writer,
// OfferedIncompatibleQosStatus status);

// void
// on_liveliness_lost
// (DataWriter writer,
// LivelinessLostStatus status);

// void
// on_publication_matched
// (DataWriter writer,
// PublicationMatchedStatus status);
//
// extends interface SubscriberListener
//
// void
// on_data_on_readers
// (Subscriber subs);
// void
// on_requested_deadline_missed
// (DataReader reader,
// RequestedDeadlineMissedStatus status);

// void
// on_requested_incompatible_qos
// (DataReader reader,
// RequestedIncompatibleQosStatus status);

// void
// on_sample_rejected
// (DataReader reader,
// SampleRejectedStatus status);

166
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

// void
// on_liveliness_changed
// (DataReader reader,
// LivelinessChangedStatus status);

// void
// on_data_available
// (DataReader reader);

// void
// on_subscription_matched
// (DataReader reader,
// SubscriptionMatchedStatus status);

// void
// on_sample_lost
// (DataReader reader,
// SampleLostStatus status);
//
// implemented API operations
// <no operations>
//
};

The following paragraphs list all DomainParticipantListener operations.
Since these operations are all inherited, they are listed but not fully described
because they are not implemented in this class. The full description of these
operations is given in the classes from which they are inherited.

3.2.3.1 on_data_available (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
 on_data_available
 (DataReader reader);

3.2.3.2 on_data_on_readers (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
SubscriberListener for further explanation.

Synopsis
import DDS.*;
void
 on_data_on_readers
167
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

 (Subscriber subs);

3.2.3.3 on_inconsistent_topic (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
TopicListener for further explanation.

Synopsis
import DDS.*;
void
 on_inconsistent_topic
 (Topic the_topic,
 InconsistentTopicStatus status);

3.2.3.4 on_liveliness_changed (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
 on_liveliness_changed
 (DataReader reader,
 LivelinessChangedStatus status);

3.2.3.5 on_liveliness_lost (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
void
 on_liveliness_lost
 (DataWriter writer,
 LivelinessLostStatus status);

3.2.3.6 on_offered_deadline_missed (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
void
 on_offered_deadline_missed
 (DataWriter writer,
 OfferedDeadlineMissedStatus status);
168
API Reference

�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.3.7 on_offered_incompatible_qos (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
void
 on_offered_incompatible_qos
 (DataWriter writer,
 OfferedIncompatibleQosStatus status);

3.2.3.8 on_publication_matched (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
void
 on_publication_matched
 (DataWriter writer,
 PublicationMatchedStatus status);

Note: This operation is not yet supported. It is scheduled for a future release.

3.2.3.9 on_requested_deadline_missed (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
 on_requested_deadline_missed
 (DataReader reader,
 RequestedDeadlineMissedStatus status);

3.2.3.10 on_requested_incompatible_qos (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
 on_requested_incompatible_qos
 (DataReader reader,
 RequestedIncompatibleQosStatus status);
169
API Reference�������	

3 DCPS Classes and Operations 3.2 Domain Module

3.2.3.11 on_sample_lost (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
 on_sample_lost
 (DataReader reader,
 SampleLostStatus& status);

Note: This operation is not yet supported. It is scheduled for a future release.

on_sample_lost (inherited)
This operation is inherited and therefore not explained here. See the class
DataReaderListener for further explanation.

Synopsis
import DDS.*;

3.2.3.12 on_sample_rejected (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
 on_sample_rejected
 (DataReader reader,
 SampleRejectedStatus status);

3.2.3.13 on_subscription_match (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
void
 on_subscription_matched
 (DataReader reader,
 SubscriptionMatchedStatus status);

Note: This operation is not yet supported, but is scheduled for a future release.
170
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3 Topic-Definition Module

Figure 16 DCPS Topic-Definition Module’s Class Model
This module contains the following classes:
• TopicDescription (abstract)
• Topic

• ContentFilteredTopic

• MultiTopic

• TopicListener (interface)
• Topic-Definition type specific classes
“Topic-Definition type specific classes” contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<type>TypeSupport is generated (based on IDL) by calling the pre-processor

DomainEntity
(from Infrastructure Module)

DataReader
(from Subscription Module)

TypeSupport

get_type_name()
register_type()

<<Interface>>

TopicDescription

get_name()
get_participant()
get_type_name()

1

*

1

*

11

DomainParticipant
(from Domain Module)

TopicListener

on_inconsistent_topic()

<<Interface>>QosPolicy
(from Infrastructure Module)

DataWriter
(from Publication Module)

MultiTopic

get_expression_parameters()
get_subscription_expression()
set_expression_parameters()

ContentFilteredTopic

get_expression_parameters()
get_filter_expression()
get_related_topic()
set_expression_parameters()

Topic

get_inconsistent_topic_status()
get_listener()
get_qos()
set_listener()
set_qos()

0..10..1**

1* 1*

**

11

WaitSet
(from Infrastructure Module)

StatusCondition
(from Infrastructure Module)

*

1

*

1

** **

<<create>>

<<create>>

<<create>>
171
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Figure 17 Pre-processor Generation of the Typed Classes for Data Type “Foo”
For instance, for the fictional data type Foo (this also applies to other types);
“Topic-Definition type specific classes” contains the following classes:
• TypeSupport (abstract)
• FooTypeSupport

Topic objects conceptually fit between publications and subscriptions. Publications
must be known in such a way that subscriptions can refer to them unambiguously. A
Topic is meant to fulfil that purpose: it associates a name (unique in the Domain), a
data type, and TopicQos related to the data itself.

3.3.1 Interface TopicDescription
This is the interface for Topic, ContentFilteredTopic and MultiTopic.
The TopicDescription attribute type_name defines an unique data type that is
made available to the Data Distribution Service via the TypeSupport.
TopicDescription has also a name that allows it to be retrieved locally.
The interface description is as follows:
 public interface TopicDescription

{
//
// implemented API operations
//

public String
 get_type_name
 (void);

TypeSupport

get_type_name()
register_type()

<<Interface>> DataWriter
(from Publication Module)

DataReader
(from Subscription Module)

FooDataReader

get_key_value()
read()
read_instance()
read_next_instance()
read_next_instance_w_condition()
read_next_sample()
read_w_condition()
return_loan()
take()
take_instance()
take_next_instance()
take_next_instance_w_condition()
take_next_sample()
take_w_condition()

FooDataWriter

dispose()
dispose_w_timestamp()
get_key_value()
register()
register_w_timestamp()
unregister()
unregister_w_timestamp()
write()
write_w_timestamp()

Foo

FooTypeSupport

get_type_name()
register_type()
172
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

public String
 get_name
 (void);
public DomainParticipant
 get_participant
 (void);

};

The following paragraphs describe the usage of all TopicDescription
operations.

3.3.1.1 get_name

Scope
DDS.TopicDescription

Synopsis
import DDS.*;
public String
 get_name
 (void);

Description
This operation returns the name used to create the TopicDescription.

Parameters
<none>

Return Value
String - return value is the name of the TopicDescription.

Detailed Description
This operation returns the name used to create the TopicDescription.

3.3.1.2 get_participant

Scope
DDS.TopicDescription

Synopsis
import DDS.*;
public DomainParticipant
 get_participant
 (void);
173
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Description
This operation returns the DomainParticipant associated with the
TopicDescription or the null reference.

Parameters
<none>

Return Value
DomainParticipant - a reference to the DomainParticipant associated with

the TopicDescription or the null reference.

Detailed Description
This operation returns the DomainParticipant associated with the
TopicDescription. Note that there is exactly one DomainParticipant
associated with each TopicDescription. When the TopicDescription was
already deleted (there is no associated DomainParticipant any more), the null
reference is returned.

3.3.1.3 get_type_name

Scope
DDS.TopicDescription

Synopsis
import DDS.*;
public String
 get_type_name
 (void);

Description
This operation returns the registered name of the data type associated with the
TopicDescription.

Parameters
<none>

Return Value
String - return value is the name of the data type of the TopicDescription.

Detailed Description
This operation returns the registered name of the data type associated with the
TopicDescription.
174
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

3.3.2 Interface Topic
Topic is the most basic description of the data to be published and subscribed.
A Topic is identified by its name, which must be unique in the whole Domain. In
addition (by virtue of extending TopicDescription) it fully identifies the type of
data that can be communicated when publishing or subscribing to the Topic.
Topic is the only TopicDescription that can be used for publications and
therefore a specialized DataWriter is associated to the Topic.
The interface description is as follows:
 public interface Topic

{
//
// extends interface Entity
//
// public StatusCondition
// get_statuscondition
// (void);
// public int
// get_status_changes
// (void);
// public int
// enable
// (void);
//
// extends interface TopicDescription
//
// public String
// get_type_name
// (void);

// public String
// get_name
// (void);

// public DomainParticipant
// get_participant
// (void);
//
// implemented API operations
//

public int
 set_qos
 (TopicQos qos);
public int
 get_qos
 (TopicQosHolder qos);
public int
175
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

 set_listener
 (TopicListener a_listener,

 int mask);
public TopicListener
 get_listener
 (void);
public int
 get_inconsistent_topic_status
 (InconsistentTopicStatusHolder status);

};

The following paragraphs describe the usage of all Topic operations. The inherited
operations are listed but not fully described because they are not implemented in this
class. The full description of these operations is given in the classes from which they
are inherited.

3.3.2.1 enable (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS.*;
public int
 enable
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.3.2.2 get_inconsistent_topic_status

Scope
DDS.Topic

Synopsis
import DDS.*;
public int
 get_inconsistent_topic_status
 (InconsistentTopicStatusHolder status);

Description
This operation obtains the InconsistentTopicStatus of the Topic.

Parameters
inout InconsistentTopicStatusHolder status - the contents of the

InconsistentTopicStatus object of the Topic will be copied into the
InconsistentTopicStatusHolder specified by status.
176
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation obtains the InconsistentTopicStatus of the Topic. The
InconsistentTopicStatus can also be monitored using a TopicListener or
by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current InconsistentTopicStatus of this Topic has

successfully been copied into the specified status parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Topic has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.2.3 get_listener

Scope
DDS.Topic

Synopsis
import DDS.*;
public TopicListener
 get_listener
 (void);

Description
This operation allows access to a TopicListener.

Parameters
<none>

Return Value
TopicListener - result is a reference to the TopicListener attached to the

Topic.
177
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Detailed Description
This operation allows access to a TopicListener attached to the Topic. When no
TopicListener was attached to the Topic, the null reference is returned.

3.3.2.4 get_name (inherited)
This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;
public String
 get_name
 (void);

3.3.2.5 get_participant (inherited)
This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;
public DomainParticipant
 get_participant
 (void);

3.3.2.6 get_qos

Scope
DDS.Topic

Synopsis
import DDS.*;
public int
 get_qos
 (TopicQosHolder qos);

Description
This operation allows access to the existing set of QoS policies for a Topic.

Parameters
inout TopicQosHolder qos - a reference to the destination TopicQosHolder

object in which the QosPolicy settings will be copied.
178
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation allows access to the existing set of QoS policies of a Topic on which
this operation is used. This TopicQos is stored at the location referenced by the
qos parameter.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QoS policy values applied to this Topic has

successfully been copied into the specified TopicQosHolder parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Topic has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.2.7 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS.*;
public int
 get_status_changes
 (void);

3.3.2.8 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS.*;
public StatusCondition
 get_statuscondition
 (void);

3.3.2.9 get_type_name (inherited)
This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.
179
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Synopsis
import DDS.*;
public String
 get_type_name
 (void);

3.3.2.10 set_listener

Scope
DDS.Topic

Synopsis
import DDS.*;
public int
 set_listener
 (TopicListener a_listener,
 int mask);

Description
This operation attaches a TopicListener to the Topic.

Parameters
in TopicListener a_listener - a reference to the TopicListener instance,

which will be attached to the Topic.
in int mask - a bit mask in which each bit enables the invocation of the

TopicListener for a certain status.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This opera t ion a t taches a TopicListener to the Topic . Only one
TopicListener can be attached to each Topic. If a TopicListener was already
attached, the operation will replace it with the new one. When a_listener is the
null reference, it represents a listener that is treated as a NOOP1 for all statuses
activated in the bitmask.

1. Short for No-Operation, an instruction that peforms nothing at all.

180
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
false. It becomes true whenever that plain communication status changes. For
each plain communication status activated in the mask , the associated
TopicListener operation is invoked and the communication status is reset to
false, as the listener implicitly accesses the status which is passed as a parameter
to that operation. The status is reset prior to calling the listener, so if the application
calls the get_<status_name> from inside the listener it will see the status already
reset. An exception to this rule is the null listener, which does not reset the
communication statuses for which it is invoked.
The following statuses are applicable to the TopicListener:
• INCONSISTENT_TOPIC_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the TopicListener.

Status Propagation
In case a communication status is not activated in the mask of the TopicListener,
the DomainParticipantListener of the containing DomainParticipant is
invoked (if attached and activated for the status that occurred). This allows the
application to set a default behaviour in the DomainParticipantListener of the
containing DomainParticipant and a Topic specific behaviour when needed. In
case the DomainParticipantListener is a lso not at tached or the
communication status is not activated in its mask, the application is not notified of
the change.

Return Code
When the operation returns:
• RETCODE_OK - the TopicListener is attached
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the Topic has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.2.11 set_qos

Scope
DDS.Topic
181
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Synopsis
import DDS.*;
public int
 set_qos
 (TopicQos qos);

Description
This operation replaces the existing set of QosPolicy settings for a Topic.

Parameters
in TopicQos qos - contains the new set of QosPolicy settings for the Topic.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_UNSUPPORTED ,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES ,
RETCODE_IMMUTABLE_POLICY or RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation replaces the existing set of QosPolicy settings for a Topic. The
parameter qos contains the object with the QosPolicy settings which is checked
for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled Topic, which can only be set before the Topic
is enabled, the operation will fail and a RETCODE_IMMUTABLE_POLICY is returned.
In other words, the application must provide the currently set QosPolicy settings
in case of the immutable QosPolicy settings. Only the mutable QosPolicy
settings can be changed. When qos contains conflicting QosPolicy settings (not
self-consistent), the operation will fail and a RETCODE_INCONSISTENT_POLICY is
returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new TopicQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid TopicQos. It

contains a QosPolicy setting with an invalid Duration_t value.
182
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• RETCODE_ALREADY_DELETED - the Topic has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable
QosPolicy setting with a different value than set during enabling of the Topic.

• RETCODE_INCONSISTENT_POLICY - the parameter qos contains conflicting
QosPolicy settings, e.g. a history depth that is higher than the specified resource
limits.

3.3.3 Interface ContentFilteredTopic
ContentFilteredTopic is a specialization of TopicDescription that allows
for content based subscriptions.
ContentFilteredTopic describes a more sophisticated subscription that
indicates the Subscriber does not necessarily want to see all values of each
instance published under the Topic. Rather, it only wants to see the values whose
contents satisfy certain criteria. Therefore this interface must be used to request
content-based subscriptions.
The selection of the content is done using the SQL based filter with parameters to
adapt the filter clause.
The interface description is as follows:
 public interface ContentFilteredTopic

{
//
// extends interface TopicDescription
//
// public String
// get_type_name
// (void);

// public String
// get_name
// (void);

// public DomainParticipant
// get_participant
// (void);
//
// implemented API operations
//

public String
 get_filter_expression
183
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

 (void);

public int
 get_expression_parameters
 (StringSeqHolder expression_parameters);

public int
 set_expression_parameters
 (StringSeq expression_parameters);

public Topic
 get_related_topic
 (void);

};

The following paragraphs describe the usage of all ContentFilteredTopic
operations.

3.3.3.1 get_expression_parameters

Scope
DDS.ContentFilteredTopic

Synopsis
import DDS.*;
public int
 get_expression_parameters
 (StringSeqHolder expression_parameters);

Description
This operation obtains the expression parameters associated with the
ContentFilteredTopic.

Parameters
inout StringSeqHolder expression_parameters - a reference to the

destination StringSeqHolder object in which the the parameters used in the
SQL expression will be copied.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.
184
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Detailed Description
This operation obtains the expression parameters associated with the
ContentFilteredTopic. That is, the parameters specified on the last successful
call to set_expression_parameters, or if set_expression_parameters
was never called, the parameters specified when the ContentFilteredTopic was
created.
The resulting reference holds a sequence of strings with the parameters used in the
SQL expression (i.e., the %n tokens in the expression). The number of parameters in
the result sequence will exactly match the number of %n tokens in the filter
expression associated with the ContentFilteredTopic.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of expression parameters applied to this
ContentFilteredTopic has successfully been copied into the specified
expression_parameters parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the ContentFilteredTopic has already

been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.3.2 get_filter_expression

Scope
DDS.ContentFilteredTopic

Synopsis
import DDS.*;
public String
 get_filter_expression
 (void);

Description
This operation returns the filter_expression associated with the
ContentFilteredTopic.

Parameters
<none>
185
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
String - result is a handle to a string which holds the SQL filter expression.

Detailed Description
This operation returns the filter_expression associated with the
ContentFilteredTopic . That is, the expression specified when the
ContentFilteredTopic was created.
The filter expression result is a string that specifies the criteria to select the data
samples of interest. It is similar to the WHERE clause of an SQL expression.

3.3.3.3 get_name (inherited)
This operation is inherited and therefore not described here. See the class
TopicDescription for further explanation.

Synopsis
import DDS.*;
public String
 get_name
 (void);

3.3.3.4 get_participant (inherited)
This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;
public DomainParticipant
 get_participant
 (void);

3.3.3.5 get_related_topic

Scope
DDS.ContentFilteredTopic

Synopsis
import DDS.*;
public Topic
 get_related_topic
 (void);

Description
This operation returns the Topic associated with the ContentFilteredTopic.
186
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Parameters
<none>

Return Value
Topic - result is a reference to the base topic on which the filtering will be applied.

Detailed Description
This operation returns the Topic associated with the ContentFilteredTopic.
That is, the Topic specified when the ContentFilteredTopic was created. This
Topic is the base topic on which the filtering will be applied.

3.3.3.6 get_type_name (inherited)
This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;
public String
 get_type_name
 (void);

3.3.3.7 set_expression_parameters

Scope
DDS.ContentFilteredTopic

Synopsis
import DDS.*;
public int
 set_expression_parameters
 (String[] expression_parameters);

Description
This operation changes the expression parameters associated with the
ContentFilteredTopic.

Parameters
in String[] expression_parameters - a reference to a sequence of strings

with the parameters used in the SQL expression (i.e., the number of %n tokens
in the expression). The number of values in expression_parameters must
be equal or grea ter than the h ighes t referenced %n token in the
subscription_expression.
187
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED o r
RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation changes the expression parameters associated with the
ContentFilteredTopic. The parameter expression_parameters is a handle
to a sequence of strings with the parameters used in the SQL expression. The
number of values in expression_parameters must be equal or greater than the
highest referenced %n token in the filter_expression (e.g. if %1 and %8 are
used as parameter in the filter_expression, the expression_parameters
should at least contain n+1 = 9 values). This is the filter expression specified when
the ContentFilteredTopic was created.

Return Code
When the operation returns:
• RETCODE_OK - the new expression parameters are set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the number of parameters in
expression_parameters does not match the number of “%n” tokens in the
expression for this ContentFilteredTopic or one of the parameters is an
illegal parameter

• RETCODE_ALREADY_DELETED - the ContentFilteredTopic has already
been deleted.

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.3.4 Interface MultiTopic
MultiTopic is a specialization of TopicDescription that allows subscriptions
to combine, filter and/or rearrange data coming from several Topics.
MultiTopic allows a more sophisticated subscription that can select and combine
data received from multiple Topics into a single data type (specified by the
inherited type_name). The data will then be filtered (selection) and possibly
re-arranged (aggregation and/or projection) according to an SQL based expression
with parameters to adapt the filter clause.
The interface description is as follows:
 public interface MultiTopic

{

188
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

//
// extends interface TopicDescription
//
// public String
// get_type_name
// (void);

// public String
// get_name
// (void);

// public DomainParticipant
// get_participant
// (void);
//
// implemented API operations
//

public String
 get_subscription_expression
 (void);

public int
 get_expression_parameters
 (StringSeqHolder expression_parameters);

public int
 set_expression_parameters
 (String[] expression_parameters);

};

The following paragraphs describe the usage of all MultiTopic operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.
Note: MultiTopic operations have not been yet been implemented. Multitopic
functionality is scheduled for a future release.

3.3.4.1 get_expression_parameters

Scope
DDS.MultiTopic

Synopsis
import DDS.*;
public int
 get_expression_parameters
 (StringSeqHolder expression_parameters);
189
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation obtains the expression parameters associated with the MultiTopic.

Parameters
inout StringSeqHolder expression_parameters - a reference to the

destination StringSeqHolder object in which the the parameters used in the
SQL expression will be copied.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation obtains the expression parameters associated with the MultiTopic.
T h a t i s , t h e p a r a m e t e r s s p e c i f i e d o n t h e l a s t s u c c e s s f u l c a l l t o
set_expression_parameters, or if set_expression_parameters was
never called, the parameters specified when the MultiTopic was created.
The resulting reference holds a sequence of strings with the values of the parameters
used in the SQL expression (i.e., the %n tokens in the expression). The number of
parameters in the result sequence will exactly match the number of %n tokens in the
filter expression associated with the MultiTopic.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of expression parameters applied to this
MultiTopic has successfully been copied into the specified
expression_parameters parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the MultiTopic has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.4.2 get_name (inherited)
This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;
190
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

public String
 get_name
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.3.4.3 get_participant (inherited)
This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;
public DomainParticipant
 get_participant
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.3.4.4 get_subscription_expression

Scope
DDS.MultiTopic

Synopsis
import DDS.*;
public String
 get_subscription_expression
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation returns the subscription expression associated with the MultiTopic.

Parameters
<none>

Return Value
String - result is a handle to a string which holds the SQL subscription expression.

Detailed Description
This operation returns the subscription expression associated with the MultiTopic.
That is, the expression specified when the MultiTopic was created.
The subscription expression result is a string that specifies the criteria to select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated Topics. It is an SQL expression where the SELECT
191
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

clause provides the fields to be kept, the FROM part provides the names of the
Topics that are searched for those fields, and the WHERE clause gives the content
filter. The Topics combined may have different types but they are restricted in that
the type of the fields used for the NATURAL JOIN operation must be the same.

3.3.4.5 get_type_name (inherited)
This operation is inherited and therefore not described here. See the interface
TopicDescription for further explanation.

Synopsis
import DDS.*;
public String
 get_type_name
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.3.4.6 set_expression_parameters

Scope
DDS.MultiTopic

Synopsis
import DDS.*;
public int
 set_expression_parameters
 (String[] expression_parameters);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation changes the expression parameters associated with the MultiTopic.

Parameters
in String[] expression_parameters - the handle to a sequence of strings

with the parameters used in the SQL expression.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED o r
RETCODE_OUT_OF_RESOURCES.
192
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Detailed Description
This operation changes the expression parameters associated with the MultiTopic.
The parameter expression_parameters is a handle to a sequence of strings with
the parameters used in the SQL expression. The number of parameters in
expression_parameters must exactly match the number of %n tokens in the
subscription expression associated with the MultiTopic. This is the subscription
expression specified when the MultiTopic was created.

Return Code
When the operation returns:
• RETCODE_OK - the new expression parameters are set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the number of parameters in
expression_parameters does not match the number of “%n” tokens in the
expression for this MultiTopic or one of the parameters is an illegal parameter.

• RETCODE_ALREADY_DELETED - the MultiTopic has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.3.5 TopicListener interface
Since a Topic is an Entity, it has the ability to have a Listener associated with
it. In this case, the associated Listener should be of type TopicListener. This
interface must be implemented by the application. A user defined class must be
provided by the application which must extend to the TopicListener interface.
All TopicListener operations must be implemented in the user defined class, it
is up to the application whether an operation is empty or contains some
functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The TopicListener provides a generic mechanism (actually a callback function)
for the Data Distribution Service to notify the application of relevant asynchronous
status change events, such as an inconsistent Topic. The TopicListener is
related to changes in communication status.
The interface description is as follows:
 public interface TopicListener

{
//
// abstract external operations
//
193
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

public void
 on_inconsistent_topic
 (Topic the_topic,

 InconsistentTopicStatus status);
//
// implemented API operations
// <no operations>
//
};

The next paragraph describes the usage of the TopicListener operation. This
abstract operation is fully described since it must be implemented by the
application.

3.3.5.1 on_inconsistent_topic (abstract)

Scope
DDS.TopicListener

Synopsis
import DDS.*;
public void
 on_inconsistent_topic
 (Topic the_topic,
 InconsistentTopicStatus status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the InconsistentTopicStatus changes.

Parameters
in Topic the_topic - contain a reference to the Topic on which the conflict

occurred (this is an input to the application).
in InconsistentTopicStatus status - con t a in t he

InconsistentTopicStatus object (this is an input to the application).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
InconsistentTopicStatus changes. The implementation may be left empty
when this functionality is not needed. This operation will only be called when the
194
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

r e l eva n t TopicListener i s i n s t a l l e d a n d e n a b l e d f o r t h e
InconsistentTopicStatus. The InconsistentTopicStatus will change
when another Topic exists with the same topic_name but different
characteristics.
The Data Distribution Service will call the TopicListener operation with a
parameter the_topic, which will contain a reference to the Topic on which the
conflict occurred and a parameter status, which will contain the object of the class
InconsistentTopicStatus.

3.3.6 Topic-Definition type specific interfaces
This paragraph describes the generic TypeSupport interfaces and the derived
application type specific <type>TypeSupport classes which together implement
the application Topic interface. For each application type, used as Topic data type,
the pre-processor generates a <type>DataReader interface from an IDL type
description. The FooTypeSupport interface that would be generated by the
pre-processor for a fictional type Foo describes the <type>TypeSupport
interfaces.

3.3.6.1 Interface TypeSupport
The Topic, MultiTopic or ContentFilteredTopic is bound to a data type
described by the type name argument. Prior to creating a Topic, MultiTopic or
ContentFilteredTopic, the data type must have been registered with the Data
Distribution Service. This is done using the data type specific register_type
operation on a extended interface of the TypeSupport interface. A extended
interface is generated for each data type used by the application, by calling the
pre-processor.
The interface description is as follows:

public interface TypeSupport
{
//
// operations
//
// public int
// register_type
// (Domainparticipant domain,
// String type_name);
//
// public String
// get_type_name
// (void);
//
// implemented API operations
// <no operations>
195
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

//
};

The next paragraph list the TypeSupport operation. This abstract operation is
listed but not fully described since it is not implemented in this class. The full
description of this operation is given in the FooTypeSupport class (for the data
type example Foo), which contains the data type specific implementation of this
operation.

3.3.6.2 get_type_name
This operation is defined as a generic operation, which is implemented by the
<type>TypeSupport class. For further explanation see the description for the
fictional data type Foo inherited from the TypeSupport class.

Synopsis
import DDS.*;
public String
 get_type_name
 (void);

3.3.6.3 register_type
This operation is defined as a generic operation, which is implemented by the
<type>TypeSupport class. For further explanation see the description for the
fictional data type Foo inherited from the TypeSupport class.

Synopsis
import DDS.*;
public int
 register_type
 (Domainparticipant domain,
 String type_name);

3.3.6.4 Class FooTypeSupport
The pre-processor generates from IDL type descriptions the application
<type>TypeSupport classes. For each application data type that is used as Topic
data type, a typed class <type>TypeSupport which implements the
TypeSupport interface. In this paragraph, the class FooTypeSupport describes
the operations of these <type>TypeSupport interfaces as an example for the
fictional application type Foo (defined in the module SPACE).
The Topic, MultiTopic or ContentFilteredTopic is bound to a data type
described by the type_name argument. Prior to creating a Topic, MultiTopic or
ContentFilteredTopic, the data type must have been registered with the Data
196
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Distribution Service. This is done using the data type specific register_type
operation on the <type>TypeSupport class for each data type. A class is
generated for each data type used by the application, by calling the pre-processor.
The interface description of this class is as follows:

public class FooTypeSupport
{
//
// implemented API operations
//

public int
 register_type
 (DomainParticipant domain,
 String type_name);
public String
 get_type_name
 (void);

};

The next paragraph describes the usage of the FooTypeSupport operation.

3.3.6.5 get_type_name

Scope
SPACE.FooTypeSupport

Synopsis
import DDS.*;
public String
 get_type_name
 (void);

Description
This operation returns the default name of the data type associated with the
FooTypeSupport.

Parameters
<none>

Return Value
String - return value is the name of the data type of the FooTypeSupport.
197
API Reference�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Detailed Description
This operation returns the default name of the data type associated with the
FooTypeSupport. The default name is derived from the type name as specified in
the IDL definition. It is composed of the scope names and the type name, each
separated by “::”, in order of lower scope level to deeper scope level followed by
the type name.

3.3.6.6 register_type

Scope
SPACE.FooTypeSupport

Synopsis
import DDS.*;
public int
 register_type
 (DomainParticipant domain,
 String type_name);

Description
This operation registers a new data type name to a DomainParticipant.

Parameters
in Domainparticipant domain - a reference to a DomainParticipant

object to which the new data type is registered.
in String type_name - a local alias of the new data type to be registered.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_OUT_OF_RESOURCES or
RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation registers a new data type name to a DomainParticipant. This
operation informs the Data Distribution Service, in order to allow it to manage the
new registered data type. This operation also informs the Data Distribution Service
about the key definition, which allows the Data Distribution Service to distinguish
different instances of the same data type.
198
API Reference

�������	

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Precondition
A type_name cannot be registered with two different <type>TypeSupport
classes (this means of a different data type) with the same DomainParticipant.
When the operation is called on the same DomainParticipant with the same
type_name for a different <type>TypeSupport class, the operation returns
RETCODE_PRECONDITION_NOT_MET. However, it is possible to register the same
<type>TypeSupport classes with the same DomainParticipant and the same
or different type_name multiple times. All registrations return RETCODE_OK, but
any subsequent registrations with the same type_name are ignored.

Return Code
When the operation returns:
• RETCODE_OK - the FooTypeSupport class is registered with the new data type

name to the DomainParticipant or the FooTypeSupport class was already
registered.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the domain parameter is a null reference or the

parameter type_name has zero length.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - this type_name is already registered

with this DomainParticipant for a different <type>TypeSupport class.
199
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4 Publication Module

Figure 18 DCPS Publication Module’s Class Model
This module contains the following classes:
• Publisher

• Publication type specific classes
• PublisherListener (interface)
• DataWriterListener (interface)
The paragraph “Publication type specific classes” contains the interface and the
generated data type specific classes. For each data type, a data type specific class
<type>DataWriter is generated (based on IDL) by calling the pre-processor.
For instance, for the fictional data type Foo (this also applies to other types);
“Publication type specific classes” contains the following classes:
• DataWriter (abstract)
• FooDataWriter

A Publisher is an object responsible for data distribution. It may publish data of
different data types. A DataWriter acts as a typed accessor to a Publisher. The
DataWriter is the object the application must use to communicate the existence

WaitSet
(from Infrastructure Module)

PublisherListener

<<Interface>>

DomainParticipant
(from Domain Module)

DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>

StatusCondition
(from Infrastructure Module)

*

*

*

*

Publisher

begin_coherent_changes()
copy_from_topic_qos()
create_datawriter()
delete_contained_entities()
delete_datawriter()
end_coherent_changes()
get_default_datawriter_qos()
get_listener()
get_participant()
get_qos()
lookup_datawriter()
resume_publications()
set_default_datawriter_qos()
set_listener()
set_qos()
suspend_publications()

1

*

1

*

<<implicit>>

1

0..1

1

0..1 <<implicit>>

QosPolicy
(from Infrastructure Module)

**
qos

<<implicit>>

**

default_datawriter_qos

DataWriter

assert_liveliness()
<<abstract>> dispose()
<<abstract>> dispose_w_timestamp()
<<abstract>> get_key_value()
get_listener()
get_liveliness_lost_status()
get_matched_subscription_data()
get_matched_subscriptions()
get_offered_deadline_missed_status()
get_offered_incompatible_qos_status()
get_publication_match_status()
get_publisher()
get_qos()
get_topic()
<<abstract>> register()
<<abstract>> register_w_timestamp()
set_listener()
set_qos()
<<abstract>> unregister()
<<abstract>> unregister_w_timestamp()
<<abstract>> write()
<<abstract>> write_w_timestamp()

0..1

*

0..1

*

<<implicit>>

1

0..1

1

0..1

<<implicit>>

**

<<implicit>>

1

*

1

*

Topic
(from Topic-Definition Module)

**

* 1* 1

<<create>>

<<create>>
200
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

and value of data-objects of a given data type to a Publisher. When data-object
values have been communicated to the Publisher through the appropriate
DataWriter, it is the Publisher’s responsibility to perform the distribution. The
Publisher will do this according to its own PublisherQos , and the
DataWriterQos attached to the corresponding DataWriter. A publication is
defined by the association of a DataWriter to a Publisher. This association
expresses the intent of the application to publish the data described by the
DataWriter in the context provided by the Publisher.

3.4.1 Interface Publisher
The Publisher acts on behalf of one or more DataWriter objects that belong to
it. When it is informed of a change to the data associated with one of its
DataWriter objects, it decides when it is appropriate to actually process the
sample-update message. In making this decision, it considers the PublisherQos
and the DataWriterQos.
The interface description of this class is as follows:
 public interface Publisher

{
//
// extends interface Entity
//
// public StatusCondition
// get_statuscondition
// (void);
// public int
// get_status_changes
// (void);
// public int
// enable
// (void);
//
// implemented API operations
//

public DataWriter
 create_datawriter
 (Topic a_topic,

 DataWriterQos qos,
 DataWriterListener a_listener,
 int mask);

public int
 delete_datawriter
 (DataWriter a_datawriter);

public DataWriter
 lookup_datawriter
201
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

 (String topic_name);
public int
 delete_contained_entities
 (void);

public int
 set_qos
 (PublisherQos qos);
public int
 get_qos
 (PublisherQosHolder qos);
public int
 set_listener
 (PublisherListener a_listener,
 int mask);
public PublisherListener
 get_listener
 (void);
public int
 suspend_publications
 (void);

public int
 resume_publications
 (void);

public int
 begin_coherent_changes
 (void);

public int
 end_coherent_changes
 (void);

public int
 wait_for_acknowledgments
 (Duration_t max_wait);

public DomainParticipant
 get_participant
 (void);

public int
 set_default_datawriter_qos
 (DataWriterQos qos);

public int
 get_default_datawriter_qos
 (DataWriterQosHolder qos);

202
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

public int
 copy_from_topic_qos
 (DataWriterQosHolder a_datawriter_qos,

 TopicQos a_topic_qos);
};

The following paragraphs describe the usage of all Publisher operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
interfaces from which they are inherited.

3.4.1.1 begin_coherent_changes

Scope
DDS.Publisher

Synopsis
import DDS.*;
public int
 begin_coherent_changes
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation requests that the application will begin a ‘coherent set’ of
modifications using DataWriter objects attached to this Publisher. The
‘coherent set’ will be completed by a matching call to end_coherent_changes.

Parameters
<none>

Return Value
int - Possible return codes of the operation are: RETCODE_UNSUPPORTED.

Detailed Description
This operation requests that the application will begin a ‘coherent set’ of
modifications using DataWriter objects attached to this Publisher. The
‘coherent set’ will be completed by a matching call to end_coherent_changes.
A ‘coherent set’ is a set of modifications that must be propagated in such a way that
they are interpreted at the receivers’ side as a consistent set of modifications; that is,
the receiver will only be able to access the data after all the modifications in the set
are available at the receiver end.
203
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

A connectivity change may occur in the middle of a set of coherent changes; for
example, the set of partitions used by the Publisher or one of its connected
Subscribers may change, a late-joining DataReader may appear on the
network, or a communication failure may occur. In the event that such a change
prevents an entity from receiving the entire set of coherent changes, that entity must
behave as if it had received none of the set.
These calls can be nested. In that case, the coherent set terminates only with the last
call to end_coherent_changes.
The support for ‘coherent changes’ enables a publishing application to change the
value of several data-instances that could belong to the same or different topics and
have those changes be seen ‘atomically’ by the readers. This is useful in cases where
the values are inter-related (for example, if there are two data-instances representing
the ‘altitude’ and ‘velocity vector’ of the same aircraft and both are changed, it may
be useful to communicate those values in a way the reader can see both together;
otherwise, it may e.g., erroneously interpret that the aircraft is on a collision course).

Return Code
When the operation returns:
• RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled

for a future release.

3.4.1.2 copy_from_topic_qos

Scope
DDS.Publisher

Synopsis
import DDS.*;
public int
 copy_from_topic_qos
 (DataWriterQosHolder a_datawriter_qos,
 TopicQos a_topic_qos);

Description
This operation will copy policies in a_topic_qos to the corresponding policies in
a_datawriter_qos.

Parameters
inout DataWriterQosHolder a_datawriter_qos - the destination

DataWriterQos object to which the QosPolicy settings should be copied.
in TopicQos a_topic_qos - the source TopicQos object, which should be

copied.

204
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation will copy the QosPolicy settings in a_topic_qos to the
corresponding QosPolicy settings in a_datawriter_qos (replacing the values
in a_datawriter_qos, if present). This will only apply to the common
QosPolicy settings in each <Entity>Qos.
This is a “convenience” operation, useful in combination with the operations
get_default_datawriter_qos and Topic.get_qos. The operation
copy_from_topic_qos can be used to merge the DataWriter default
QosPolicy settings with the corresponding ones on the TopicQos. The resulting
DataWriterQos can then be used to create a new DataWriter, or set its
DataWriterQos.
This operation does not check the resulting a_datawriter_qos for consistency.
This is because the “merged” a_datawriter_qos may not be the final one, as the
application can still modify some QosPolicy settings prior to applying the
DataWriterQos to the DataWriter.

Return Code
When the operation returns:
• RETCODE_OK - the QosPolicy settings are copied from the Topic to the
DataWriter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.1.3 create_datawriter

Scope
DDS.Publisher

Synopsis
import DDS.*;
public DataWriter
 create_datawriter
 (Topic a_topic,
 DataWriterQos qos,
 DataWriterListener a_listener,
205
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

 int mask);

Description
This operation creates a DataWriter with the desired DataWriterQos, for the
desired Topic and attaches the optionally specified DataWriterListener to it.

Parameters
in Topic a_topic - a reference to the topic for which the DataWriter is

created.
in DataWriterQos qos - the DataWriterQos for the new DataWriter. In

case these settings are not self consistent, no DataWriter is created.
in DataWriterListener a_listener - a r e f e r e n c e t o t h e

DataWriterListener instance which will be attached to the new
DataWriter It is permitted to use null as the value of the listener: this
behaves as a DataWriterListener whose operations perform no action.

in int mask - a bit-mask in which each bit enables the invocation of the
DataWriterListener for a certain status.

Return Value
DataWriter - Return value is a reference to the newly created DataWriter. In

case of an error, the null reference is returned.

Detailed Description
This operation creates a DataWriter with the desired DataWriterQos, for the
desired Topic and attaches the optionally specified DataWriterListener to it.
The returned DataWriter is attached (and belongs) to the Publisher on which
this operation is being called. To delete the DataWriter the operation
delete_datawriter or delete_contained_entities must be used.

Application Data Type
The DataWriter returned by this operation is an object of a derived class, specific
to the data type associated with the Topic. For each application-defined data type
<type> there is a class <type>DataWriter generated by calling the
pre-processor. This data type specific class extends DataWriter and contains the
operations to write data of data type <type>.

QosPolicy
The possible application pattern to construct the DataWriterQos for the
DataWriter is to:
• Retrieve the QosPolicy settings on the associated Topic by means of the
get_qos operation on the Topic
206
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• Retrieve the default DataWriterQos by means of the
get_default_datawriter_qos operation on the Publisher

• Combine those two lists of QosPolicy settings and selectively modify
QosPolicy settings as desired

• Use the resulting DataWriterQos to construct the DataWriter
In case the specified QosPolicy settings are not consistent, no DataWriter is
created and the null reference is returned.

Default QoS
The constant DATAWRITER_QOS_DEFAULT can be used as parameter qos to create
a DataWriter with the default DataWriterQos as set in the Publisher. The
effect of using DATAWRITER_QOS_DEFAULT is the same as calling the operation
get_default_datawriter_qos and using the resulting DataWriterQos to
create the DataWriter.
The special DATAWRITER_QOS_USE_TOPIC_QOS can be used to create a
DataWriter with a combination of the default DataWriterQos and the
TopicQos. The effect of using DATAWRITER_QOS_USE_TOPIC_QOS is the same as
calling the operation get_default_datawriter_qos and retrieving the
TopicQos (by means of the operation Topic.get_qos) and then combining these
two QosPolicy settings using the operation copy_from_topic_qos, whereby
any common policy that is set on the TopicQos “overrides” the corresponding
policy on the default DataWriterQos. The resulting DataWriterQos is then
applied to create the DataWriter.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated DataWriterListener
operation is invoked and the communication status is reset to false, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset.
The following statuses are applicable to the DataWriterListener:
• OFFERED_DEADLINE_MISSED_STATUS

• OFFERED_INCOMPATIBLE_QOS_STATUS

• LIVELINESS_LOST_STATUS

• PUBLICATION_MATCHED_STATUS.
207
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the DataWriterListener.

Status Propagation
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DataWriterListener, the PublisherListener of the containing Publisher
is invoked (if attached and activated for the status that occurred). This allows the
application to set a default behaviour in the PublisherListener of the containing
Publisher and a DataWriter specific behaviour when needed. In case the
communication status is not activated in the mask of the PublisherListener as
w e l l , t h e c o m m u n i c a t i o n s t a t u s w i l l b e p r o p a g a t e d t o t h e
DomainParticipantListener of the containing DomainParticipant. In case
the DomainParticipantListener is also not attached or the communication
status is not activated in its mask, the application is not notified of the change.

3.4.1.4 delete_contained_entities

Scope
DDS.Publisher

Synopsis
import DDS.*;
public int
 delete_contained_entities
 (void);

Description
This operation deletes all the DataWriter objects that were created by means of
one of the create_datawriter operations on the Publisher.

Parameters
<none>

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes all the DataWriter objects that were created by means of
one of the create_datawriter operations on the Publisher. In other words, it
deletes all contained DataWriter objects.
208
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. In such cases, the
operation does not roll-back any entity deletions performed prior to the detection of
the problem.

Return Code
When the operation returns:
• RETCODE_OK - the contained Entity objects are deleted and the application may

delete the Publisher
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - one or more of the contained entities are

in a state where they cannot be deleted.

3.4.1.5 delete_datawriter

Scope
DDS.Publisher

Synopsis
import DDS.*;
public int
 delete_datawriter
 (DataWriter a_datawriter);

Description
This operation deletes a DataWriter that belongs to the Publisher.

Parameters
in DataWriter a_datawriter - a reference to the DataWriter, which is to be

deleted.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_NOT_MET.
209
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation deletes a DataWriter that belongs to the Publisher. When the
operation is called on a different Publisher, as used when the DataWriter was
c r e a t e d , t h e o p e r a t i o n h a s n o e ff e c t a n d r e t u r n s
RETCODE_PRECONDITION_NOT_MET. The deletion of the DataWriter will
automatical ly unregister a l l instances . Depending on the set t ings of
WriterDataLifecycleQosPolicy, the deletion of the DataWriter may also
dispose of all instances.

Return Code
When the operation returns:
• RETCODE_OK - the DataWriter is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_datawriter is not a valid
DataWriter reference.

• RETCODE_ALREADY_DELETED - the Publisher has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
Publisher, as used when the DataWriter was created.

3.4.1.6 enable (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public int
 enable
 (void);

3.4.1.7 end_coherent_changes

Scope
DDS.Publisher

Synopsis
import DDS.*;
public int
 end_coherent_changes
 (void);
210
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation terminates the ‘coherent set’ initiated by the matching call to
begin_coherent_changes.

Parameters
<none>

Return Value
ReturnCode_t - P o s s i b l e r e t u r n c od e s o f t h e o p e r a t i o n a r e :

RETCODE_UNSUPPORTED.

Detailed Description
This operation terminates the ‘coherent set’ initiated by the matching call to
Publisher_begin_coherent_changes. If there is no matching call to
Publisher_begin_coherent_changes, the operation will return the error
PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled

for a future release.

3.4.1.8 get_default_datawriter_qos

Scope
DDS.Publisher

Synopsis
import DDS.*;
public int
 get_default_datawriter_qos
 (DataWriterQosHolder qos);

Description
This operation gets the default DataWriterQos of the Publisher.

Parameters
inout DataWriterQosHolder qos - a reference to the destination

DataWriterQosHolder object in which the default DataWriterQos for the
Publisher is written.
211
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation gets the default DataWriterQos of the Publisher (that is the
object with the QosPolicy settings) which is used for newly created DataWriter
objects, in case the constant DATAWRITER_QOS_DEFAULT is used. The default
DataWriterQos is only used when the constant is supplied as parameter qos to
specify the DataWriterQos in the create_datawriter operation. The
application must provide the DataWriterQos object in which the QosPolicy
settings can be stored and pass the qos reference to the operation. The operation
writes the default DataWriterQos to the object referenced to by qos. Any settings
in the object are overwritten.
The values retrieved by this operation match the set of values specified on the last
successful call to set_default_datawriter_qos, or, if the call was never made,
the default values as specified for each QosPolicy setting.

Return Code
When the operation returns:
• RETCODE_OK - the default DataWriter QosPolicy settings of this Publisher

have successfully been copied into the specified DataWriterQosHolder
parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.1.9 get_listener

Scope
DDS.Publisher

Synopsis
import DDS.*;
public PublisherListener
 get_listener
 (void);

Description
This operation allows access to a PublisherListener.
212
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Parameters
<none>

Return Value
PublisherListener - result is a reference to the PublisherListener attached

to the Publisher.

Detailed Description
This operation allows access to a PublisherListener attached to the
Publisher. When no PublisherListener was attached to the Publisher, the
null reference is returned.

3.4.1.10 get_participant

Scope
DDS.Publisher

Synopsis
import DDS.*;
public DomainParticipant
 get_participant
 (void);

Description
This operation returns the DomainParticipant associated with the Publisher
or the null reference.

Parameters
<none>

Return Value
DomainParticipant - a reference to the DomainParticipant associated with

the Publisher or the null reference.

Detailed Description
This operation returns the DomainParticipant associated with the Publisher.
Note that there is exactly one DomainParticipant associated with each
Publisher. When the Publisher was already deleted (there is no associated
DomainParticipant any more), the null reference is returned.
213
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.1.11 get_qos

Scope
DDS.Publisher

Synopsis
import DDS.*;
public int
 get_qos
 (PublisherQosHolder qos);

Description
This operation allows access to the existing set of QoS policies for a Publisher.

Parameters
inout PublisherQosHolder qos - the destination PublisherQosHolder

object in which the QosPolicy settings will be copied.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation allows access to the existing set of QoS policies of a Publisher on
which this operation is used. This PublisherQos is stored in the qos parameter.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QoS policy values applied to this Publisher

has successfully been copied into the specified PublisherQosHolder
parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.1.12 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.
214
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
import DDS.*;
public int
 get_status_changes
 (void);

3.4.1.13 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public StatusCondition
 get_statuscondition
 (void);

3.4.1.14 lookup_datawriter

Scope
DDS.Publisher

Synopsis
import DDS.*;
public DataWriter
 lookup_datawriter
 (String topic_name);

Description
This operation returns a previously created DataWriter belonging to the
Publisher which is attached to a Topic with the matching topic_name.

Parameters
in String topic_name - the name of the Topic, which is attached to the

DataWriter to look for.

Return Value
DataWriter - Return value is a reference to the DataWriter found. When no

such DataWriter is found, the null reference is returned.
215
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation returns a previously created DataWriter belonging to the
Publisher which is attached to a Topic with the matching topic_name. When
multiple DataWriter objects (which satisfy the same condition) exist, this
operation will return one of them. It is not specified which one.

3.4.1.15 resume_publications

Scope
DDS.Publisher

Synopsis
import DDS.*;
public int
 resume_publications
 (void);

Description
This operation resumes a previously suspended publication.

Parameters
<none>

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES ,
RETCODE_NOT_ENABLED or RETCODE_PRECONDITION_NOT_MET.

Detailed Description
If the Publisher is suspended, this operation will resume the publication of all
DataWriter objects contained by this Publisher. All data held in the history
buffer of the DataWriter's is actively published to the consumers. When the
operation returns all DataWriter's have resumed the publication of suspended
updates.

Return Code
When the operation returns:
• RETCODE_OK - the Publisher has been suspended.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted.
216
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• RETCODE_NOT_ENABLED - the Publisher is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the Publisher is not suspended.

3.4.1.16 set_default_datawriter_qos

Scope
DDS.Publisher

Synopsis
import DDS.*;
public int
 set_default_datawriter_qos
 (DataWriterQos qos);

Description
This operation sets the default DataWriterQos of the Publisher.

Parameters
in DataWriterQos qos - an instance of the DataWriterQos class, which

contains the new defaul t DataWriterQos for the newly created
DataWriters.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_UNSUPPORTED ,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation sets the default DataWriterQos of the Publisher (that is the
compound class with the QosPolicy settings) which is used for newly created
DataWriter objects, in case the constant DATAWRITER_QOS_DEFAULT is used.
The default DataWriterQos is only used when the constant is supplied as
parameter qos to specify the DataWriterQos in the create_datawriter
operation. The set_default_datawriter_qos operation checks if the
DataWriterQos is self consistent. If it is not, the operation has no effect and
returns RETCODE_INCONSISTENT_POLICY.
The values set by this operation are returned by get_default_datawriter_qos.
217
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Code
When the operation returns:
• RETCODE_OK - the new default DataWriterQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid DataWriterQos.

It contains a QosPolicy setting with an invalid Duration_t value.
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted
• RETCODE_INCONSISTENT_POLICY - the parameter qos contains conflicting
QosPolicy settings, e.g. a history depth that is higher than the specified resource
limits.

3.4.1.17 set_listener

Scope
DDS.Publisher

Synopsis
import DDS.*;
public int
 set_listener
 (PublisherListener a_listener,
 int mask);

Description
This operation attaches a PublisherListener to the Publisher.

Parameters
in PublisherListener a_listener - a r e f e re n c e t o t h e

PublisherListener instance, which will be attached to the Publisher.
in int mask - a bit mask in which each bit enables the invocation of the

PublisherListener for a certain status.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.
218
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation attaches a PublisherListener to the Publisher. Only one
PublisherListener c an be a t t a ched t o e ac h Publisher. I f a
PublisherListener was already attached, the operation will replace it with the
new one. When a_listener is the null reference, it represents a listener that is
treated as a NOOP1 for all statuses activated in the bitmask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated PublisherListener
operation is invoked and the communication status is reset to false, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset. An exception to this rule is the null listener, which does not reset the
communication statuses for which it is invoked.
The following statuses are applicable to the PublisherListener:
• OFFERED_DEADLINE_MISSED_STATUS (propagated)
• OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
• LIVELINESS_LOST_STATUS (propagated)
• PUBLICATION_MATCHED_STATUS (propagated).
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the PublisherListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataWriterListener of a contained DataWriter, the DataWriterListener
on that contained DataWriter is invoked instead of the PublisherListener.
This means, that a status change on a contained DataWriter only invokes the
PublisherListener if the contained DataWriter itself does not handle the
trigger event generated by the status change.
In case a status is not activated in the mask of the PublisherListener, the
DomainParticipantListener of the containing DomainParticipant is
invoked (if attached and activated for the status that occurred). This allows the
application to set a default behaviour in the DomainParticipantListener of the

1. Short for No-Operation, an instruction that peforms nothing at all.

219

API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

containing DomainParticipant and a Publisher specific behaviour when
needed. In case the DomainParticipantListener is also not attached or the
communication status is not activated in its mask, the application is not notified of
the change.

Return Code
• RETCODE_OK - the PublisherListener is attached.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.1.18 set_qos

Scope
DDS.Publisher

Synopsis
import DDS.*;
public int
 set_qos
 (PublisherQos qos);

Description
This operation replaces the existing set of QosPolicy settings for a Publisher.

Parameters
in PublisherQos qos - the new set of QosPolicy settings for the Publisher.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_UNSUPPORTED ,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_IMMUTABLE_POLICY.

Detailed Description
This operation replaces the existing set of QosPolicy settings for a Publisher.
The parameter qos contains the QosPolicy settings which is checked for
self-consistency and mutability. When the application tries to change a QosPolicy
setting for an enabled Publisher, which can only be set before the Publisher is
enabled, the operation will fail and a RETCODE_IMMUTABLE_POLICY is returned. In
other words, the application must provide the currently set QosPolicy settings in
220
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

case of the immutable QosPolicy settings. Only the mutable QosPolicy settings
can be changed. When qos contains conflicting QosPolicy settings (not
self-consistent), the operation will fail and a RETCODE_INCONSISTENT_POLICY is
returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new PublisherQos is set.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid PublisherQos.
• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are

currently not supported by OpenSplice.
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable
QosPolicy setting with a different value than set during enabling of the
Publisher.

3.4.1.19 suspend_publications

Scope
DDS.Publisher

Synopsis
import DDS.*;
public int
 suspend_publications
 (void);

Description
This operation will suspend the dissemination of the publications by all contained
DataWriter objects.

Parameters
<none>
221
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_NOT_ENABLED.

Detailed Description
This operation suspends the publication of all DataWriter objects contained by
this Publisher. The data written or disposed by a DataWriter is stored in the
history buffer of the DataWriter and therefore, depending on its QoS settings, the
following operations may block (see the operation descriptions for more
information):
• DataWriter.dispose
• DataWriter.dispose_w_timestamp

• DataWriter.write
• DataWriter.write_w_timestamp
• DataWriter.writedispose
• DataWriter.writedispose_w_timestamp

• DataWriter.unregister_instance
• DataWriter.unregister_instance_w_timestamp
Subsequent calls to this operation have no effect. When the Publisher is deleted
before resume_publication is called, all suspended updates are discarded.

Return Code
When the operation returns:
• RETCODE_OK - the Publisher has been suspended
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the Publisher has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the Publisher is not enabled.

3.4.1.20 wait_for_acknowledgments

Scope
DDS.Publisher

Synopsis
import DDS.*;
222
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

public int
 wait_for_acknowledgments
 (Duration_t max_wait);

Note: This operation is not yet implemented. It is scheduled for a future release.

Description
This operation blocks the calling thread until either all data written by the contained
DataWriters is acknowledged by the matched DataReaders, or until the
duration specified by max_wait parameter elapses, whichever happens first.

Parameters
in Duration_t max_wait - the maximum duration to block for the

wait_for_acknowledgments, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value
int - Possible return codes of the operation are: RETCODE_UNSUPPORTED.

Detailed Description
This operation is intended to be used only if one or more of the contained
DataWriters h a s i t s ReliabilityQosPolicyKind s e t t o
RELIABLE_RELIABILITY_QOS. Otherwise the operation will return immediately
with RETCODE_OK.
It blocks the calling thread until either all data written by the contained reliable
DataWriters is acknowledged by all matched DataReader entities that have
their ReliabilityQosPolicyKind set to RELIABLE_RELIABILITY_QOS, or
else the duration specified by the max_wait parameter elapses, whichever happens
first. A return value of RETCODE_OK indicates that all the samples written have been
acknowledged by all reliable matched data readers; a return value of
RETCODE_TIMEOUT indicates that max_wait elapsed before all the data was
acknowledged.

Return Code
When the operation returns:
• RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled

for a future release.
223
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2 Publication Type Specific Classes
This paragraph describes the generic DataWriter class and the derived application
type specific <type>DataWriter classes which together implement the
application publication interface. For each application type, used as Topic data
type, the pre-processor generates a <type>DataWriter class from an IDL type
description. The FooDataWriter class that would be generated by the
pre-processor for a fictional type Foo describes the <type>DataWriter classes.

3.4.2.1 Interface DataWriter
DataWriter allows the application to set the value of the sample to be published
under a given Topic.
A DataWriter is attached to exactly one Publisher which acts as a factory for it.
A DataWriter is bound to exactly one Topic and therefore to exactly one data
type. The Topic must exist prior to the DataWriter's creation.
DataWriter is an interface. It must be extended for each particular application data
type. For a fictional application data type Foo (defined in the module SPACE) the
extended interface would be SPACE.FooDataWriter.
The interface description is as follows:
 public interface DataWriter

{
//
// extends interface Entity
//
// public StatusCondition
// get_statuscondition
// (void);
// public int
// get_status_changes
// (void);
// public int
// enable
// (void);
//
// abstract operations (implemented in the data type specific

 // DataWriter)
//
// public long
// register_instance
// (<data> instance_data);
//
// public long
// register_instance_w_timestamp
// (<data> instance_data,
// Time_t source_timestamp);
224
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

//
// public int
// unregister_instance
// (<data> instance_data,
// long handle);
//
// public int
// unregister_instance_w_timestamp
// (<data> instance_data,
// long handle,
// Time_t source_timestamp);
//
// public int
// write
// (<data> instance_data,
// long handle);
//
// public int
// write_w_timestamp
// (<data> instance_data,
// long handle,
// Time_t source_timestamp);
//
// public int
// dispose
// (<data> instance_data,
// long instance_handle);
//
// public int
// dispose_w_timestamp
// (<data> instance_data,
// long instance_handle,
// Time_t source_timestamp);
//
// public int
// writedispose
// (<data> instance_data,
// long instance_handle);
//
// public int
// writedispose_w_timestamp
// (<data> instance_data,
// long instance_handle,
// Time_t source_timestamp);
//
// public int
// get_key_value
// (<data>Holder key_holder,
// long handle);
//
225
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

// public long
// lookup_instance
// (<data> instance_data);
//
// implemented API operations
//

public int
 set_qos
 (DataWriterQos& qos);

public int
 get_qos
 (DataWriterQosHolder qos);

public int
 set_listener
 (DataWriterListener a_listener,

 int mask);

public DataWriterListener
 get_listener
 (void);

public Topic
 get_topic
 (void);

public Publisher
 get_publisher
 (void);

public int
 wait_for_acknowledgments
 (Duration_t max_wait);

public int
 get_liveliness_lost_status
 (LivelinessLostStatusHolder status);

public int
 get_offered_deadline_missed_status
 (OfferedDeadlineMissedStatusHolder status);

public int
 get_offered_incompatible_qos_status
 (PublicationMatchedStatusHolder status);

public int
 get_publication_matched_status
 (PublicationMatchedStatusHolder status);
226
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

public int
 assert_liveliness
 (void);

public int
 get_matched_subscriptions
 (InstanceHandleSeqHolder subscription_handles);

public int
 get_matched_subscription_data
 (SubscriptionBuiltinTopicDataHolder subscription_data,

 long subscription_handle);
};

The following paragraphs describe the usage of all DataWriter operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited. The abstract operations are listed but not fully
described because they are not implemented in this specific class. The full
description of these operations is located in the subclasses, which contain the data
type specific implementation of these operations.

3.4.2.2 assert_liveliness

Scope
DDS.DataWriter

Synopsis
import DDS.*;
public int
 assert_liveliness
 (void);

Description
This operation asserts the liveliness for the DataWriter.

Parameters
<none>

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_NOT_ENABLED.
227
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation will manually assert the liveliness for the DataWriter. This way,
the Data Distribution Service is informed that the corresponding DataWriter is
still alive. This operation is used in combination with the LivelinessQosPolicy
s e t t o MANUAL_BY_PARTICIPANT_LIVELINESS_QOS o r
MANUAL_BY_TOPIC_LIVELINESS_QOS , S e e Se c t io n 3 . 1 .3 .1 0 ,
LivelinessQosPolicy, on page 58 for more information on LivelinessQosPolicy.
Writing data via the write operation of a DataWriter will assert the liveliness on
the DataWriter itself and its containing DomainParticipant. Therefore,
assert_liveliness is only needed when not writing regularly.
The liveliness should be asserted by the application, depending on the
LivelinessQosPolicy. Asserting the liveliness for this DataWriter can also be
achieved by asserting the liveliness to the DomainParticipant.

Return Code
When the operation returns:
• RETCODE_OK - the liveliness of this DataWriter has successfully been asserted.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the DataWriter is not enabled.

3.4.2.3 dispose (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
import DDS.*;
public int
 dispose
 (<data> instance_data,
 long instance_handle);
228
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.4 dispose_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
import DDS.*;
public int
 dispose_w_timestamp
 (<data> instance_data,
 long instance_handle,
 Time_t source_timestamp);

3.4.2.5 enable (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public int
 enable
 (void);

3.4.2.6 get_key_value (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
import DDS.*;
public int
 get_key_value
 (<data>Holder key_holder,
 long handle);

3.4.2.7 get_listener

Scope
DDS.DataWriter
229
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
import DDS.*;
public DataWriterListener
 get_listener
 (void);

Description
This operation allows access to a DataWriterListener.

Parameters
<none>

Return Value
DataWriterListener - result is a reference to the DataWriterListener

attached to the DataWriter.

Detailed Description
This operation allows access to a DataWriterListener attached to the
DataWriter. When no DataWriterListener was attached to the DataWriter,
the null reference is returned.

3.4.2.8 get_liveliness_lost_status

Scope
DDS.DataWriter

Synopsis
import DDS.*;
public int
 get_liveliness_lost_status
 (LivelinessLostStatusHolder status);

Description
This operation obtains a LivelinessLostStatus object of the DataWriter.

Parameters
inout LivelinessLostStatusHolder status - the contents of the

LivelinessLostStatus object of the DataWriter will be copied into the
LivelinessLostStatusHolder specified by status.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.
230
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation obtains the LivelinessLostStatus object of the DataWriter.
This object contains the information whether the liveliness (that the DataWriter
has committed through its LivelinessQosPolicy) was respected.
This means, that the status represents whether the DataWriter failed to actively
signal its liveliness within the offered liveliness period. If the liveliness is lost, the
DataReader objects will consider the DataWriter as no longer “alive”.
The LivelinessLostStatus c a n a l s o b e m o n i t o r e d u s i n g a
DataWriterListener or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current LivelinessLostStatus of this DataWriter has

successfully been copied into the specified status parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.2.9 get_matched_subscription_data

Scope
DDS.DataWriter

Synopsis
import DDS.*;
public int
 get_matched_subscription_data
 (SubscriptionBuiltinTopicDataHolder subscription_data,
 long subscription_handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.10 get_matched_subscriptions

Scope
DDS.DataWriter

Synopsis
import DDS.*;
public int
 get_matched_subscriptions
 (InstanceHandleSeqHolder subscription_handles);
231
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.11 get_offered_deadline_missed_status

Scope
DDS.DataWriter

Synopsis
import DDS.*;
public int
 get_offered_deadline_missed_status
 (OfferedDeadlineMissedStatusHolder status);

Description
This operation obtains the OfferedDeadlineMissedStatus object of the
DataWriter.

Parameters
inout OfferedDeadlineMissedStatusHolder status - the contents of the

OfferedDeadlineMissedStatus object of the DataWriter will be copied
into the OfferedDeadlineMissedStatusHolder specified by status.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation obtains the OfferedDeadlineMissedStatus object of the
DataWriter. This object contains the information whether the deadline (that the
DataWriter has committed through its DeadlineQosPolicy) was respected for
each instance.
The OfferedDeadlineMissedStatus can also be monitored using a
DataWriterListener or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current LivelinessLostStatus of this DataWriter has

successfully been copied into the specified status parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted.
232
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

3.4.2.12 get_offered_incompatible_qos_status

Scope
DDS.DataWriter

Synopsis
import DDS.*;
public int
 get_offered_incompatible_qos_status
 (OfferedIncompatibleQosStatusHolder status);

Description
This operation obtains the OfferedIncompatibleQosStatus object.

Parameters
inout OfferedIncompatibleQosStatusHolder status - the contents of

the OfferedIncompatibleQosStatus object of the DataWriter will be
copied into the OfferedIncompatibleQosStatusHolder specified by
status.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation obtains the OfferedIncompatibleQosStatus object of the
DataWriter. This object contains the information whether a QosPolicy setting
was incompatible with the requested QosPolicy setting.
This means, that the status represents whether a DataReader object has been
discovered by the DataWriter with the same Topic and a requested
DataReaderQos that was incompatible with the one offered by the DataWriter.
The OfferedIncompatibleQosStatus can also be monitored using a
DataWriterListener or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current OfferedIncompatibleQosStatus of this
DataWriter has successfully been copied into the specified status parameter.
233
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.2.13 get_publication_matched_status

Scope
DDS.DataWriter

Synopsis
import DDS.*;
public int
 get_publication_match_status
 (PublicationMatchedStatusHolder status);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.14 get_publisher

Scope
DDS.DataWriter

Synopsis
import DDS.*;
public Publisher
 get_publisher
 (void);

Description
This operation returns the Publisher to which the DataWriter belongs.

Parameters
<none>

Return Value
Publisher - Return value is a reference to the Publisher object to which the

DataWriter belongs.

Detailed Description
This operation returns the Publisher to which the DataWriter belongs, thus the
Publisher that has created the DataWriter. If the DataWriter is already
deleted, the null reference is returned.
234
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.15 get_qos

Scope
DDS.DataWriter

Synopsis
import DDS.*;
public int
 get_qos
 (DataWriterQosHolder qos);

Description
This operation allows access to the existing list of QosPolicy settings for a
DataWriter.

Parameters
inout DataWriterQosHolder qos - the destination PublisherQosHolder

object in which the QosPolicy settings will be copied.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation allows access to the existing list of QosPolicy settings of a
DataWriter on which this operation is used. This DataWriterQos is stored at the
location referenced by the qos parameter.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QosPolicy values applied to this DataWriter

has successfully been copied into the specified DataWriterQosHolder
parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.2.16 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.
235
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
import DDS.*;
public int
 get_status_changes
 (void);

3.4.2.17 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public StatusCondition
 get_statuscondition
 (void);

3.4.2.18 get_topic

Scope
DDS.DataWriter

Synopsis
import DDS.*;
public Topic
 get_topic
 (void);

Description
This operation returns the Topic object which is associated with the DataWriter.

Parameters
<none>

Return Value
Topic - Return value is a reference to the Topic which is associated with the

DataWriter.

Detailed Description
This operation returns the Topic which is associated with the DataWriter, thus
the Topic with which the DataWriter is created. If the DataWriter is already
deleted, the null reference is returned.
236
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.19 lookup_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
import DDS.*;
public long
 lookup_instance
 (<data> instance_data);

3.4.2.20 register_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
import DDS.*;
public long
 register_instance
 (<data> instance_data);

3.4.2.21 register_instance_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
import DDS.*;
public long
 register_instance_w_timestamp
 (<data> instance_data,
 Time_t source_timestamp);

3.4.2.22 set_listener

Scope
DDS.DataWriter
237
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
import DDS.*;
public int
 set_listener
 (DataWriterListener a_listener,
 int mask);

Description
This operation attaches a DataWriterListener to the DataWriter.

Parameters
in DataWriterListener a_listener - a r e f e r e n c e t o t h e

DataWriterListener instance, which will be attached to the DataWriter.
in int mask - a bit mask in which each bit enables the invocation of the

DataWriterListener for a certain status.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation attaches a DataWriterListener to the DataWriter. Only one
DataWriterListener can be a t t ached to each DataWriter. I f a
DataWriterListener was already attached, the operation will replace it with the
new one. When a_listener is the null reference, it represents a listener that is
treated as a NOOP1 for all statuses activated in the bitmask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated DataWriterListener
operation is invoked and the communication status is reset to false, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset. An exception to this rule is the null listener, which does not reset the
communication statuses for which it is invoked.
The following statuses are applicable to the DataWriterListener:
• OFFERED_DEADLINE_MISSED_STATUS

1. Short for No-Operation, an instruction that peforms nothing at all.

238
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• OFFERED_INCOMPATIBLE_QOS_STATUS

• LIVELINESS_LOST_STATUS

• PUBLICATION_MATCHED_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the DataWriterListener.

Status Propagation
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DataWriterListener, the PublisherListener of the containing Publisher
is invoked (if attached and activated for the status that occurred). This allows the
application to set a default behaviour in the PublisherListener of the containing
Publisher and a DataWriter specific behaviour when needed. In case the
communication status is not activated in the mask of the PublisherListener as
w e l l , t h e c o m m u n i c a t i o n s t a t u s w i l l b e p r o p a g a t e d t o t h e
DomainParticipantListener of the containing DomainParticipant. In case
the DomainParticipantListener is also not attached or the communication
status is not activated in its mask, the application is not notified of the change.

Return Code
When the operation returns:
• RETCODE_OK - the DataWriterListener is attached
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.4.2.23 set_qos

Scope
DDS.DataWriter

Synopsis
import DDS.*;
public int
 set_qos
 (DataWriterQos qos);

Description
This operation replaces the existing set of QosPolicy settings for a DataWriter.
239
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Parameters
in DataWriterQos qos - the new set of QosPolicy settings for the

DataWriter.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_UNSUPPORTED ,
RETCODE_ALLREADY_DELETED , RETCODE_OUT_OF_RESOURCES ,
RETCODE_IMMUTABLE_POLICY or RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation replaces the existing set of QosPolicy settings for a DataWriter.
The parameter qos contains the object with the QosPolicy settings which is
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled DataWriter, which can only be set before the
DataWriter i s e n a b l e d , t h e o p e r a t io n w i l l f a i l a n d a
RETCODE_IMMUTABLE_POLICY is returned. In other words, the application must
provide the presently set QosPolicy settings in case of the immutable QosPolicy
settings. Only the mutable QosPolicy settings can be changed. When qos contains
conflicting QosPolicy setting (not self-consistent), the operation will fail and a
RETCODE_INCONSISTENT_POLICY is returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new default DataWriterQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid DataWriterQos.

It contains a QosPolicy setting with an invalid Duration_t value.
• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are

currently not supported by OpenSplice.
• RETCODE_ALREADY_DELETED - the DataWriter has already been deleted
• RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable
QosPolicy setting with a different value than set during enabling of the
DataWriter.
240
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_INCONSISTENT_POLICY - the parameter qos contains an
inconsistent QosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

3.4.2.24 unregister_instance (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
import DDS.*;
public int
 unregister_instance
 (<data> instance_data,
 long handle);

3.4.2.25 unregister_instance_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
import DDS.*;
public int
 unregister_instance_w_timestamp
 (<data> instance_data,
 long handle,
 Time_t source_timestamp);

3.4.2.26 wait_for_acknowledgments

Synopsis
import DDS.*;
public int
 wait_for_acknowledgments
 (Duration_t max_wait);

Note: This operation is not yet implemented. It is scheduled for a future release.
241
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Description
This operation blocks the calling thread until either all data written by the
DataWriter is acknowledged by the matched DataReaders, or until the duration
specified by max_wait parameter elapses, whichever happens first.

Parameters
in Duration_t max_wait - the maximum duration to block for the

wait_for_acknowledgments, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value
ReturnCode_t - P o s s i b l e r e t u r n c od e s o f t h e o p e r a t i o n a r e :

RETCODE_UNSUPPORTED.

Detailed Description
This operat ion is intended to be used only i f the DataWri ter has i ts
ReliabilityQosPolicyKind set to RELIABLE_RELIABILITY_QOS. Otherwise
the operation will return immediately with RETCODE_OK.
It blocks the calling thread until either all data written by the DataWriter is
acknowledged by a l l matched DataReader en t i t ies tha t have the i r
ReliabilityQosPolicyKind set to RELIABLE_RELIABILITY_QOS, or else the
duration specified by the max_wait parameter elapses, whichever happens first. A
return value of RETCODE_OK indicates that all the samples written have been
acknowledged by all reliable matched data readers; a return value of
RETCODE_TIMEOUT indicates that max_wait elapsed before all the data was
acknowledged.

Return Code
When the operation returns:
• RETCODE_UNSUPPORTED - the operation is not yet implemented. It is scheduled

for a future release.

3.4.2.27 write (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.
242
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
import DDS.*;
public int
 write
 (<data> instance_data,
 long handle);

3.4.2.28 write_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
import DDS.*;
public int
 write_w_timestamp
 (<data> instance_data,
 int handle,
 Time_t source_timestamp);

3.4.2.29 writedispose (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.

Synopsis
import DDS.*;
public int
 writedispose
 (<data> instance_data,
 long handle);

3.4.2.30 writedispose_w_timestamp (abstract)
This abstract operation is defined as a generic operation, which is implemented by
the <type>DataWriter class. Therefore, to use this operation, the data type
specific implementation of this operation in its respective derived class must be
used. For further explanation see the description for the fictional data type Foo
derived FooDataWriter class.
243
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
import DDS.*;
public int
 writedispose
 (<data> instance_data,
 long handle,
 Time_t source_timestamp);

3.4.2.31 Interface FooDataWriter
The pre-processor generates from IDL type descriptions the application
<type>DataWriter interfaces. For each application data type that is used as
Topic data type, a typed interface <type>DataWriter is extending the
DataWriter interface. In this paragraph, the interface FooDataWriter in the
package SPACE describes the operations of these extending <type>DataWriter
interface as an example for the fictional application type Foo (defined in the
module SPACE).
A FooDataWriter is attached to exactly one Publisher which acts as a factory
for it. The FooDataWriter is bound to exactly one Topic that has been registered
to use a data type Foo. The Topic must exist prior to the FooDataWriter
creation.
The interface description is as follows:
 public interface FooDataWriter

{
//
// extends interface Entity
//
// public StatusCondition
// get_statuscondition
// (void);
// public int
// get_status_changes
// (void);
// public int
// enable
// (void);
//
// inherited from class DataWriter
//
// public int
// set_qos
// (DataWriterQos qos);

// public int
// get_qos
// (DataWriterQosHolder qos);
244
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

// public int
// set_listener
// (DataWriterListener a_listener,
// int mask);

// public DataWriterListener
// get_listener
// (void);

// public Topic
// get_topic
// (void);

// public Publisher
// get_publisher
// (void);

// public int
// wait_for_acknowledgments
// (Duration_t max_wait);

// public int
// get_liveliness_lost_status
// (LivelinessLostStatusHolder status);

// public int
// get_offered_deadline_missed_status
// (OfferedDeadlineMissedStatusHolder status);

// public int
// get_offered_incompatible_qos_status
// (OfferedIncompatibleQosStatusHolder status);

// public int
// get_publication_matched_status
// (PublicationMatchedStatusHolder status);

// public int
// assert_liveliness
// (void);

// public int
// get_matched_subscriptions
// (InstanceHandleSeqHolder subscription_handles);

// public int
// get_matched_subscription_data
// (SubscriptionBuiltinTopicDataHolder subscription_data,
// long subscription_handle);
245
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

//
// implemented API operations
//

public long
 register_instance
 (Foo instance_data);
public long
 register_instance_w_timestamp
 (Foo instance_data,
 Time_t source_timestamp);
public int
 unregister_instance
 (Foo instance_data,
 long handle);
public int
 unregister_instance_w_timestamp
 (Foo instance_data,
 long handle,
 Time_t source_timestamp);
public int
 write
 (Foo instance_data,
 long handle);
public int
 write_w_timestamp
 (Foo instance_data,
 long handle,
 Time_t source_timestamp);
public int
 dispose
 (Foo instance_data,
 long instance_handle);
public int
 dispose_w_timestamp
 (Foo instance_data,
 long instance_handle,
 Time_t source_timestamp);
public int
 writedispose
 (Foo instance_data,
 long instance_handle);
public int
 writedispose_w_timestamp
 (Foo instance_data,
 long instance_handle,
 Time_t source_timestamp);
public int
 get_key_value
 (FooHolder key_holder,
 long handle);
246
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

public long
 lookup_instance
 (Foo instance_data);

};

The following paragraphs describe the usage of all FooDataWriter operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.4.2.32 assert_liveliness (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
public int
 assert_liveliness
 (void);

3.4.2.33 dispose

Scope
SPACE.FooDataWriter

Synopsis
public int
 dispose
 (Foo instance_data,
 long instance_handle);

Description
This operation requests the Data Distribution Service to mark the instance for
deletion.

Parameters
in Foo instance_data - the actual instance to be disposed of.
in long instance_handle - the handle to the instance to be disposed of.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.
247
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation requests the Data Distribution Service to mark the instance for
deletion. Copies of the instance and its corresponding samples, which are stored in
every connected DataReader and, dependent on the QoSPolicy settings, also in
the Transient and Persistent stores, will be marked for deletion by setting their
InstanceStateKind to NOT_ALIVE_DISPOSED_INSTANCE_ STATE.
When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.
As a side effect, this operation asserts liveliness on the DataWriter itself and on
the containing DomainParticipant.

Effects on DataReaders
Actual deletion of the instance administration in a connected DataReader will be
postponed until the following conditions have been met:
• the instance must be unregistered (either implicitly or explicitly) by all connected
DataWriters that have previously registered it.
 - A DataWriter can register an instance explicitly by using one of the special

operations register_instance or register_instance_w_timestamp.
 - A DataWriter can register an instance implicitly by using the special constant
HANDLE_NIL in any of the other DataWriter operations.

 - A DataWriter can unregister an instance explicitly by using one of the special
operations unregister_instance or unregister_instance_
w_timestamp.

 - A DataWriter will unregister all its contained instances implicitly when it is
deleted.

 - When a DataReader detects a loss of liveliness in one of its connected
DataWriters, it will consider all instances registered by that DataWriter as
being implicitly unregistered.

• and the application must have consumed all samples belonging to the instance,
either implicitly or explicitly.
 - An application can consume samples explicitly by invoking the take operation,

or one of its variants, on its DataReaders.
 - The DataReader can consume disposed samples implicitly when the
autopurge_disposed_samples_delay of the ReaderData
LifecycleQosPolicy has expired.
248
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

The DataReader may also remove instances that haven’t been disposed first: this
happens when the autopurge_nowriter_samples_delay o f the
ReaderDataLifecycleQosPolicy has expired after the instance is considered
u n r e g i s t e r e d b y a l l c o n n e c t e d DataWriters (i . e . whe n i t ha s a
InstanceStateKind of NOT_ALIVE_NO_WRITERS). See also Section 3.1.3.15,
ReaderDataLifecycleQosPolicy, on page 67.

Effects on Transient/Persistent Stores
Actual deletion of the instance administration in the connected Transient and
Persistent stores will be postponed until the following conditions have been met:
• the instance must be unregistered (either implicitly or explicitly) by all connected
DataWriters that have previously registered it. (See above.)

• and the period of time specified by the service_cleanup_delay attribute in
the DurabilityServiceQosPolicy on the Topic must have elapsed after the
instance is considered unregistered by all connected DataWriters.

See also Section 3.1.3.4, DurabilityServiceQosPolicy, on page 49.

Instance Handle
The HANDLE_NIL constant can be used for the parameter instance_handle.
This indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).
If instance_handle is any value other than HANDLE_NIL, it must correspond to
the value that was returned by either the register_instance operation or the
register_instance_w_timestamp operation, when the instance (identified by
its key) was registered. If there is no correspondence, the result of the operation is
unspecified.
The sample that is passed as instance_data is only used to check for consistency
between its key values and the supplied instance_handle: the sample itself will
not actually be delivered to the connected DataReaders. Use the writedispose
operation if the sample itself should be delivered together with the dispose request.

Blocking
If the HistoryQosPolicy is set to KEEP_ALL_HISTORY_QOS, the dispose
operation on the DataWriter may block if the modification would cause data to be
lost because one of the limits, specified in the ResourceLimitsQosPolicy, to be
exceeded. Under these circumstances, the max_blocking_time attribute of the
ReliabilityQosPolicy configures the maximum time the dispose operation
may block (waiting for space to become available). If max_blocking_time
249
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

elapses before the DataWriter is able to store the modification without exceeding
the limits, the SPACE_FooDataWriter_dispose operation will fail and returns
RETCODE_TIMEOUT.

Sample Validation
Since the sample that is passed as instance_data is merely used to check for
consistency between its key values and the supplied instance_handle, only
these keyfields will be validated against the restrictions imposed by the IDL to Java
language mapping, where:
• a string (bounded or unbounded) may not be null. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
If any of these restrictions is violated, the operation will fail and return a
RETCODE_BAD_PARAMETER. More specific information about the context of this
error will be written to the error log

Return Code
When the operation returns:
• RETCODE_OK - the Data Distribution Service is informed that the instance data

must be disposed of
• RETCODE_ERROR - an internal error has occurred
• RETCODE_BAD_PARAMETER - instance_handle is not a valid handle or
instance_data is not a valid sample.

• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the instance_handle has not been

registered with this FooDataWriter.
• RETCODE_TIMEOUT - the current action overflowed the available resources as

specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the dispose operation, which could not be resolved before
max_blocking_time of the ReliabilityQosPolicy elapsed.

3.4.2.34 dispose_w_timestamp

Scope
SPACE.FooDataWriter
250
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
import DDS.*;
public int
 dispose_w_timestamp
 (Foo instance_data,
 long instance_handle,
 Time_t source_timestamp);

Description
This operation requests the Data Distribution Service to mark the instance for
deletion and provides a value for the source_timestamp explicitly.

Parameters
in Foo instance_data - the actual instance to be disposed of.
in long instance_handle - the handle to the instance to be disposed of.
in Time_t source_timestamp - the timestamp which is provided for the

DataReader.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_ DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.

Detailed Description
This operation performs the same functions as dispose except that the application
provides the value for the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DDS_DestinationOrderQosPolicy.

Return Code
When the operation returns:
• RETCODE_OK - the Data Distribution Service is informed that the instance data

must be disposed of
• RETCODE_ERROR - an internal error has occurred
• RETCODE_BAD_PARAMETER - instance_handle is not a valid handle or
instance_data is not a valid sample.

• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
251
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the instance_handle has not been

registered with this FooDataWriter.
• RETCODE_TIMEOUT - the current action overflowed the available resources as

specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the dispose_w_timestamp operation, which could not be resolved before
max_blocking_time of the ReliabilityQosPolicy elapsed.

3.4.2.35 enable (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
int
 enable
 (void);

3.4.2.36 get_key_value

Scope
SPACE.FooDataWriter

Synopsis
int
 get_key_value
 (FooHolder key_holder,
 long handle);

Description
This operation retrieves the key value of a specific instance.

Parameters
inout FooHolder key_holder - a reference to the sample in which the key

values are stored.
in long handle - the handle to the instance from which to get the key value.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED o r
RETCODE_PRECONDITION_NOT_MET.
252
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation retrieves the key value of the instance referenced to by
instance_handle. When the operation is called with an HANDLE_NIL
constant a s an instance_handle , t h e o p e r a t i o n w i l l r e t u r n
RETCODE_BAD_PARAMETER. The operation will only fill the fields that form the key
inside the key_holder instance. This means, the non-key fields are not applicable
and may contain garbage.
The operation must only be called on registered instances. Otherwise the operation
returns the error RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - the key_holder instance contains the key values of the instance;
• RETCODE_ERROR - an internal error has occurred
• RETCODE_BAD_PARAMETER - handle is not a valid handle
• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - this instance is not registered.

3.4.2.37 get_listener (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public DataWriterListener
 get_listener
 (void);

3.4.2.38 get_liveliness_lost_status (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
 get_liveliness_lost_status
 (LivelinessLostStatusHolder status);
253
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.39 get_matched_subscription_data (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
 get_matched_subscription_data
 (SubscriptionBuiltinTopicData subscription_data,
 long subscription_handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.40 get_matched_subscriptions (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
 get_matched_subscriptions
 (InstanceHandleSeqHolder subscription_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.41 get_offered_deadline_missed_status (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
 get_offered_deadline_missed_status
 (OfferedDeadlineMissedStatusHolder status);

3.4.2.42 get_offered_incompatible_qos_status (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
 get_offered_incompatible_qos_status
 (OfferedIncompatibleQosStatusHolder status);
254
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.2.43 get_publication_matched_status (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
 get_publication_matched_status
 (PublicationMatchedStatusHolder status);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.4.2.44 get_publisher (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public Publisher
 get_publisher
 (void);

3.4.2.45 get_qos (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
 get_qos
 (DataWriterQosHolder qos);

3.4.2.46 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS.*;
public int
 get_status_changes
 (void);

3.4.2.47 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.
255
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Synopsis
import DDS.*;
public StatusCondition
 get_statuscondition
 (void);

3.4.2.48 get_topic (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public Topic
 get_topic
 (void);

3.4.2.49 lookup_instance

Scope
SPACE.FooDataWriter

Synopsis
import DDS.*;
public long
 lookup_instance
 (Foo instance_data);

Description
This operation returns the value of the instance handle which corresponds to the
instance_data.

Parameters
in Foo instance_data - a reference to the instance for which the corresponding

instance handle needs to be looked up.

Return Value
long - Result value is the instance handle which corresponds to the

instance_data.

Detailed Description
This operation returns the value of the instance handle which corresponds to the
instance_data. The instance_data parameter is only used for the purpose of
examining the fields that define the key. The instance handle can be used in any
256
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

write, dispose or unregister operations (or their timestamped variants) that
operate on a specific instance. Note that DataWriter instance handles are local,
and are not interchangeable with DataReader instance handles nor with instance
handles of an other DataWriter.
This operation does not register the instance in question. If the instance has not been
previously registered, if the DataWriter is already deleted or if for any other
reason the Service is unable to provide an instance handle, the Service will return
the special value HANDLE_NIL.

Sample Validation
Since the sample that is passed as instance_data is merely used to determine the
identity based on the uniqueness of its key values, only the keyfields will be
validated against the restrictions imposed by the IDL to Java language mapping,
where:
• a string (bounded or unbounded) may not be null. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
If any of these restrictions is violated, the operation will fail and return a
HANDLE_NIL. More specific information about the context of this error will be
written to the error log.

3.4.2.50 register_instance

Scope
SPACE.FooDataWriter

Synopsis
long
 register_instance
 (Foo instance_data);

Description
This operation informs the Data Distribution Service that the application will be
modifying a particular instance.

Parameters
in Foo instance_data - the instance, which the application writes to or

disposes of.
257
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
long - Result value is the handle to the Instance, which may be used for writing and

disposing of. In case of an error, a HANDLE_NIL constant is returned.

Detailed Description
This operation informs the Data Distribution Service that the application will be
modifying a particular instance. This operation may be invoked prior to calling any
operation that modifies the instance, such as write, write_w_timestamp,
unregister_instance, unregister_instance_w_timestamp, dispose,
dispose_w_timestamp, writedispose and writedispose_w_timestamp.
When the application does register the instance before modifying, the Data
Distribution Service will handle the instance more efficiently. It takes as a parameter
(instance_data) an instance (to get the key value) and returns a handle that can
be used in successive DataWriter operations. In case of an error, a HANDLE_NIL
is returned.
The explicit use of this operation is optional as the application can directly call the
write , write_w_timestamp , unregister_instance,
unregister_instance_w_timestamp, dispose, dispose_w_timestamp,
writedispose and writedispose_w_timestamp operations and specify a
HANDLE_NIL value to indicate that the sample should be examined to identify the
instance.
When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

Blocking
I f the HistoryQosPolicy i s se t to KEEP_ALL_HISTORY_QOS , the
register_instance operation on the DataWriter may block if the
modification would cause data to be lost because one of the limits, specified in the
ResourceLimitsQosPolicy, to be exceeded. Under these circumstances, the
max_blocking_time attribute of the ReliabilityQosPolicy configures the
maximum time the register_instance operation may block (waiting for space
to become available). If max_blocking_time elapses before the DataWriter is
a b l e t o s t o r e t h e m o d i f i c a t io n w i t h o u t e x c e e d i n g th e l i m i t s , t h e
register_instance operation will fail and returns HANDLE_NIL.
258
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Sample Validation
Since the sample that is passed as instance_data is merely used to determine the
identity based on the uniqueness of its key values, only the keyfields will be
validated against the restrictions imposed by the IDL to Java language mapping,
where:
• a string (bounded or unbounded) may not be null. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
If any of these restrictions is violated, the operation will fail and return a
HANDLE_NIL. More specific information about the context of this error will be
written to the error log.

Multiple Calls
If this operation is called for an already registered instance, it just returns the already
allocated instance handle. This may be used to look up and retrieve the handle
allocated to a given instance.

3.4.2.51 register_instance_w_timestamp

Scope
SPACE.FooDataWriter

Synopsis
import DDS.*;
public long
 register_instance_w_timestamp
 (Foo instance_data,
 Time_t source_timestamp);

Description
This operation will inform the Data Distribution Service that the application will be
modifying a particular instance and provides a value for the source_timestamp
explicitly.

Parameters
in Foo instance_data - the instance, which the application will write to or

dispose of.
in Time_t source_timestamp - the timestamp used.
259
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
long - Result value is the handle to the Instance, which must be used for writing

and disposing. In case of an error, a HANDLE_NIL reference is returned.

Detailed Description
This operation performs the same functions as register_instance except that
the application provides the value for the source_timestamp that is made
available to connected DataReader objects. This timestamp is important for the
interpretation of the DestinationOrderQosPolicy.

Multiple Calls
If this operation is called for an already registered instance, it just returns the already
allocated instance handle. The source_timestamp is ignored in that case.

3.4.2.52 set_listener (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
 set_listener
 (DataWriterListener a_listener,
 int mask);

3.4.2.53 set_qos (inherited)
This operation is inherited and therefore not described here. See the interface
DataWriter for further explanation.

Synopsis
import DDS.*;
public int
 set_qos
 (DataWriterQos qos);

3.4.2.54 unregister_instance

Scope
SPACE.FooDataWriter

Synopsis
import DDS.*;
public int
260
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 unregister_instance
 (Foo instance_data,
 long handle);

Description
This operation informs the Data Distribution Service that the application will not be
modifying a particular instance any more.

Parameters
in Foo instance_data - the instance to which the application was writing or

disposing.
in long handle - the handle to the Instance, which has been used for writing

and disposing.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.

Detailed Description
This operation informs the Data Distribution Service that the application will not be
modifying a particular instance any more. Therefore, this operation reverses the
action of register_instance or register_instance_w_timestamp. It
should only be called on an instance that is currently registered. This operation
should be called just once per instance, regardless of how many times
register_instance was called for that instance. This operation also indicates
that the Data Distribution Service can locally remove all information regarding that
instance. The application should not attempt to use the handle, previously
allocated to that instance, after calling this operation.
When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

Effects
If, after unregistering, the application wants to modify (write or dispose) the
instance, it has to register the instance again, or it has to use the special
constant HANDLE_NIL.
261
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

This operation does not indicate that the instance should be deleted (that is the
purpose of dispose). This operation just indicates that the DataWriter no longer
has “anything to say” about the instance. If there is no other DataWriter that
has registered the instance as well, then the InstanceStateKind in all connected
DataReaders will be changed to NOT_ALIVE_NO_WRITERS_ INSTANCE_STATE,
p r o v i d e d t h i s InstanceStateKind w a s n o t a l r e a dy s e t t o
NOT_ALIVE_DISPOSED_INSTANCE_STATE . I n t h e l a s t c a s e t h e
InstanceStateKind will not be effected by the unregister_instance call,
see also Figure 21:, State Chart of the instance_state for a Single Instance, on page
454.
This operation can affect the ownership of the data instance. If the
DataWriter was the exclusive owner of the instance, calling this operation will
release that ownership, meaning ownership may be transferred to another,
possibly lower strength, DataWriter.
The operation must be called only on registered instances. Otherwise the operation
returns the error RETCODE_PRECONDITION_NOT_MET.

Instance Handle
The special constant HANDLE_NIL can be used for the parameter handle. This
indicates that the identity of the instance is automatically deduced from the
instance_data (by means of the key).
If handle is any value other than the special constant HANDLE_NIL, then it must
c o r r e s p o n d t o t h e v a l u e r e t u r n e d b y register_instance o r
register_instance_w_timestamp when the instance (identified by its key)
was registered. If there is no correspondence , the result of the operation is
unspecified.
The sample that is passed as instance_data is only used to check for consistency
between its key values and the supplied instance_handle: the sample itself will
not actually be delivered to the connected DataReaders.

Blocking
I f the HistoryQosPolicy i s se t to KEEP_ALL_HISTORY_QOS , the
unregister_instance operation on the DataWriter may block if the
modification would cause data to be lost because one of the limits, specified in the
ResourceLimitsQosPolicy, to be exceeded. Under these circumstances, the
max_blocking_time attribute of the ReliabilityQosPolicy configures the
maximum time the unregister_instance operation may block (waiting for
space to become available). If max_blocking_time elapses before the
DataWriter is able to store the modification without exceeding the limits, the
unregister_instance operation will fail and returns RETCODE_TIMEOUT.
262
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Sample Validation
Since the sample that is passed as instance_data is merely used to check for
consistency between its key values and the supplied instance_handle, only
these keyfields will be validated against the restrictions imposed by the IDL to Java
language mapping, where:
• a string (bounded or unbounded) may not be null. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
If any of these restrictions is violated, the operation will fail and return a
RETCODE_BAD_PARAMETER. More specific information about the context of this
error will be written to the error log.

Return Code
When the operation returns:
• RETCODE_OK - the Data Distribution Service is informed that the instance will not

be modified any more
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - handle is not a valid handle or instance_data

is not a valid sample.
• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with

this FooDataWriter.

3.4.2.55 unregister_instance_w_timestamp

Scope
SPACE.FooDataWriter

Synopsis
import DDS.*;
public int
 unregister_instance_w_timestamp
 (Foo instance_data,
 long handle,
 Time_t source_timestamp);
263
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Description
This operation will inform the Data Distribution Service that the application will not
be modifying a particular instance any more and provides a value for the
source_timestamp explicitly.

Parameters
in Foo instance_data - the instance to which the application was writing or

disposing.
in long handle - the handle to the Instance, which has been used for writing

and disposing.
in Time_t source_timestamp - the timestamp used.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.

Detailed Description
This operation performs the same functions as unregister_instance except that
the application provides the value for the source_timestamp that is made
available to connected DataReader objects. This timestamp is important for the
interpretation of the DestinationOrderQosPolicy.

Return Code
When the operation returns:
• RETCODE_OK - the Data Distribution Service is informed that the instance will not

be modified any more
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - handle is not a valid handle or instance_data

is not a valid sample.
• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with

this FooDataWriter.
264
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_TIMEOUT - the current action overflowed the available resources as
specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the unregister_instance_w_timestamp operation, which could not be
resolved before max_blocking_time of the ReliabilityQosPolicy
elapsed.

3.4.2.56 write

Scope
SPACE.FooDataWriter

Synopsis
import DDS.*;
public int
 write
 (Foo instance_data,
 long handle);

Description
This operation modifies the value of a data instance.

Parameters
in Foo instance_data - the data to be written.
in long handle - t h e h a n d l e t o t h e i n s t a n c e a s s u p p l i e d b y

register_instance.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.

Detailed Description
This operation modifies the value of a data instance. When this operation is used,
the Data Distribution Service will automatically supply the value of the
source_timestamp that is made available to connected DataReader objects.
T h i s t i m e s t a m p i s i m p o r t a n t f o r t h e i n t e r p re t a t i o n o f t h e
DestinationOrderQosPolicy.
As a side effect, this operation asserts liveliness on the DataWriter itself and on
the containing DomainParticipant.
265
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Before writing data to an instance, the instance may be registered with the
register_instance or register_instance_w_timestamp operation. The
handle returned by one of the register_instance operations can be supplied to
the parameter handle of the write operation. However, it is also possible to
supply the special constant HANDLE_NIL, which means, that the identity of the
instance is automatically deduced from the instance_data (identified by the
key).

Instance Handle
The special constant HANDLE_NIL can be used for the parameter handle. This
indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).
If handle is any value other than the special constant HANDLE_NIL, it must
c o r r e s p o n d t o t h e v a l u e r e t u r n e d b y register_instance o r
register_instance_w_timestamp when the instance (identified by its key)
was registered. Passing such a registered handle helps the Data Distribution
Service to process the sample more efficiently. If there is no correspondence
between handle and sample, the result of the operation is unspecified.

Blocking
If the HistoryQosPolicy is set to KEEP_ALL_HISTORY_QOS, the write
operation on the DataWriter may block if the modification would cause data to be
lost because one of the limits, specified in the ResourceLimitsQosPolicy, is
exceeded. Under these circumstances, the max_blocking_time attribute of the
ReliabilityQosPolicy configures the maximum time the write operation may
block (waiting for space to become available). If max_blocking_time elapses
before the DataWriter is able to store the modification without exceeding the
limits, the write operation will fail and returns RETCODE_TIMEOUT.

Sample Validation
Before the sample is accepted by the DataWriter, it will be validated against the
restrictions imposed by the IDL to Java language mapping, where:
• a string (bounded or unbounded) may not be null. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
• the length of a bounded sequence may not exceed the limit specified in IDL
• the length of an array must exactly match the size specified in IDL
If any of these restrictions is violated, the operation will fail and return a
RETCODE_BAD_PARAMETER. More specific information about the context of this
error will be written to the error log.
266
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Code
When the operation returns:
• RETCODE_OK - the value of a data instance is modified
• RETCODE_ERROR - an internal error has occurred
• RETCODE_BAD_PARAMETER - handle is not a valid handle or instance_data

is not a valid sample.
• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with

this FooDataWriter.
• RETCODE_TIMEOUT - the current action overflowed the available resources as

specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the write operation, which could not be resolved before
max_blocking_time of the ReliabilityQosPolicy elapsed.

3.4.2.57 write_w_timestamp

Scope
SPACE.FooDataWriter

Synopsis
import DDS.*;
public int
 write_w_timestamp
 (Foo instance_data,
 long handle,
 Time_t source_timestamp);

Description
This operation modifies the value of a data instance and provides a value for the
source_timestamp explicitly.

Parameters
in Foo instance_data - the data to be written.
in long handle - t h e h a n d l e t o t h e i n s t a n c e a s s u p p l i e d b y

register_instance.
in Time_t source_timestamp - the timestamp used.
267
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.

Detailed Description
This operation performs the same functions as write except that the application
provides the value for the parameter source_timestamp that is made available to
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.

Return Code
When the operation returns:
• RETCODE_OK - the value of a data instance is modified
• RETCODE_ERROR - an internal error has occurred
• RETCODE_BAD_PARAMETER - handle is not a valid handle or instance_data

is not a valid sample.
• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with

this FooDataWriter.
• RETCODE_TIMEOUT - the current action overflowed the available resources as

specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the write_w_timestamp operation, which could not be resolved before
max_blocking_time of the ReliabilityQosPolicy elapsed.

3.4.2.58 writedispose

Scope
SPACE.FooDataWriter

Synopsis
import DDS.*;
public int
 writedispose
 (Foo instance_data,
268
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 long handle);

Description
This operation modifies and disposes a data instance.

Parameters
in Foo instance_data - the data to be written and disposed.
in long handle - t h e h a n d l e t o t h e i n s t a n c e a s s u p p l i e d b y

register_instance.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.

Detailed Description
This operation requests the Data Distribution Service to modify the instance and
mark it for deletion. Copies of the instance and its corresponding samples, which are
stored in every connected DataReader and, dependent on the QoSPolicy settings,
also in the Transient and Persistent stores, will be modified and marked for deletion
by se t t ing the i r InstanceStateKind to NOT_ALIVE_DISPOSED_
INSTANCE_STATE.
When this operation is used, the Data Distribution Service will automatically supply
the value of the source_timestamp that is made available to connected
DataReader objects. This timestamp is important for the interpretation of the
DestinationOrderQosPolicy.
As a side effect, this operation asserts liveliness on the DataWriter itself and on
the containing DomainParticipant.

Effects on DataReaders
Actual deletion of the instance administration in a connected DataReader will be
postponed until the following conditions have been met:
• the instance must be unregistered (either implicitly or explicitly) by all connected
DataWriters that have previously registered it.
 - A DataWriter can register an instance explicitly by using one of the special

operations register_instance or register_instance_w_timestamp.
 - A DataWriter can register an instance implicitly by using the special constant
HANDLE_NIL in any of the other DataWriter operations.
269
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

 - A DataWriter can unregister an instance explicitly by using one of the special
operations unregister_instance or unregister_instance_
w_timestamp.

 - A DataWriter will unregister all its contained instances implicitly when it is
deleted.

 - When a DataReader detects a loss of liveliness in one of its connected
DataWriters, it will consider all instances registered by that DataWriter as
being implicitly unregistered.

• and the application must have consumed all samples belonging to the instance,
either implicitly or explicitly.
 - An application can consume samples explicitly by invoking the take operation,

or one of its variants, on its DataReaders.
 - The DataReader can consume disposed samples implicitly when the
autopurge_disposed_samples_delay of the ReaderData
LifecycleQosPolicy has expired.

The DataReader may also remove instances that haven’t been disposed first: this
happens when the autopurge_nowriter_samples_delay o f the
ReaderDataLifecycleQosPolicy has expired after the instance is considered
u n r e g i s t e r e d b y a l l c o n n e c t e d DataWriters (i . e . whe n i t ha s a
InstanceStateKind of NOT_ALIVE_NO_WRITERS). See also Section 3.1.3.15,
ReaderDataLifecycleQosPolicy, on page 67.

Effects on Transient/Persistent Stores
Actual deletion of the instance administration in the connected Transient and
Persistent stores will be postponed until the following conditions have been met:
• the instance must be unregistered (either implicitly or explicitly) by all connected
DataWriters that have previously registered it. (See above.)

• and the period of time specified by the service_cleanup_delay attribute in
the DurabilityServiceQosPolicy on the Topic must have elapsed after the
instance is considered unregistered by all connected DataWriters.

See also Section 3.1.3.4, DurabilityServiceQosPolicy, on page 49.

Instance Handle
The HANDLE_NIL handle value can be used for the parameter handle. This
indicates the identity of the instance is automatically deduced from the
instance_data (by means of the key).
270
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

If handle is any value other than HANDLE_NIL, it must correspond to the value that
was re tu rned by e i the r the register_instance ope ra t ion o r the
register_instance_w_timestamp operation, when the instance (identified by
its key) was registered. If there is no correspondence, the result of the operation is
unspecified.
The sample that is passed as instance_data will actually be delivered to the
connected DataReaders, but will immediately be marked for deletion.

Blocking
I f the HistoryQosPolicy i s se t to KEEP_ALL_HISTORY_QOS , the
writedispose operation on the DataWriter may block if the modification
would cause data to be lost because one of the limits, specified in the
ResourceLimitsQosPolicy, to be exceeded. Under these circumstances, the
max_blocking_time attribute of the ReliabilityQosPolicy configures the
maximum time the SPACE_FooDataWriter_writedispose operation may
block (waiting for space to become available). If max_blocking_time elapses
before the DataWriter is able to store the modification without exceeding the
limits, the writedispose operation will fail and returns RETCODE_TIMEOUT.

Sample Validation
Before the sample is accepted by the DataWriter, it is validated against the
restrictions imposed by the IDL to Java language mapping, where:
• a string (bounded or unbounded) may not be null. (Use “” for an empty string

instead)
• the length of a bounded string may not exceed the limit specified in IDL
• the length of a bounded sequence may not exceed the limit specified in IDL
• the length of an array must exactly match the size specified in IDL
If any of these restrictions is violated, the operation will fail and return a
RETCODE_BAD_PARAMETER. More specific information about the context of this
error will be written to the error log.

Return Code
When the operation returns:
• RETCODE_OK - the Data Distribution Service has modified the instance and

marked it for deletion.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - handle is not a valid handle or instance_data

is not a valid sample.
• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted.
271
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with

this SPACE_FooDataWriter.
• RETCODE_TIMEOUT - the current action overflowed the available resources as

specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the writedispose operation, which could not be resolved before
max_blocking_time of the ReliabilityQosPolicy elapsed.

3.4.2.59 writedispose_w_timestamp

Scope
SPACE.FooDataWriter

Synopsis
import DDS.*;
public int
 writedispose_w_timestamp
 (Foo instance_data,
 long handle,
 Time_t source_timestamp);

Description
This operation requests the Data Distribution Service to modify the instance and
mark it for deletion, and provides a value for the source_timestamp explicitly.

Parameters
in Foo instance_data - the data to be written and disposed.
in long handle - t h e h a n d l e t o t h e i n s t a n c e a s s u p p l i e d b y

register_instance.
in Time_t source_timestamp - the timestamp used.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_TIMEOUT.
272
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

Detailed Description
This operation performs the same functions as writedispose except that the
application provides the value for the source_timestamp that is made available
to connected DataReader objects. This timestamp is important for the
interpretation of the DestinationOrderQosPolicy.

Return Code
When the operation returns:
• RETCODE_OK - the Data Distribution Service has modified the instance and

marked it for deletion.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - handle is not a valid handle or instance_data

is not a valid sample.
• RETCODE_ALREADY_DELETED - the FooDataWriter has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataWriter is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the handle has not been registered with

this SPACE_FooDataWriter.
• RETCODE_TIMEOUT - the current action overflowed the available resources as

specified by the combination of the ReliabilityQosPolicy,
HistoryQosPolicy and ResourceLimitsQosPolicy. This caused blocking
of the writedispose_w_timestamp operation, which could not be resolved
before max_blocking_time of the ReliabilityQosPolicy elapsed.

3.4.3 PublisherListener interface
Since a Publisher is an Entity, it has the ability to have a Listener associated
wi th i t . I n t h i s c a s e , t he a s soc i a t ed Listener s h ou ld be o f t yp e
PublisherListener. This interface must be implemented by the application. A
user defined class must be provided by the application which must extend from the
PublisherListener class. All PublisherListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.
273
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

The PublisherListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The PublisherListener is related to changes in
communication status.
The interface description is as follows:
 public interface PublisherListener {

//
// extends interface DataWriterListener
//
// public void
// on_offered_deadline_missed
// (DataWriter writer,
// OfferedDeadlineMissedStatus status);

// public void
// on_offered_incompatible_qos
// (DataWriter writer,
// OfferedIncompatibleQosStatus status);

// public void
// on_liveliness_lost
// (DataWriter writer,
// LivelinessLostStatus status);

// public void
// on_publication_matched
// (DataWriter writer,
// PublicationMatchedStatus status);
//
// implemented API operations
// <no operations>
//
};

The following paragraphs list all PublisherListener operations. Since these
operations are all inherited, they are listed but not fully described because they are
not implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.4.3.1 on_liveliness_lost (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
public void
274
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

 on_liveliness_lost
 (DataWriter writer,
 LivelinessLostStatus status);

3.4.3.2 on_offered_deadline_missed (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
public void
 on_offered_deadline_missed
 (DataWriter writer,
 OfferedDeadlineMissedStatus status);

3.4.3.3 on_offered_incompatible_qos (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
public void
 on_offered_incompatible_qos
 (DataWriter writer,
 OfferedIncompatibleQosStatus status);

3.4.3.4 on_publication_matched (inherited, abstract)
This operation is inherited and therefore not described here. See the interface
DataWriterListener for further explanation.

Synopsis
import DDS.*;
public void
 on_publication_matched
 (DataWriter writer,
 PublicationMatchedStatus status);

Note: This operation is not yet supported. It is scheduled for a future release.

3.4.4 DataWriterListener interface
Since a DataWriter is an Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener should be of type
DataWriterListener. This interface must be implemented by the application. A
user defined class must be provided by the application which must implement the
275
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

DataWriterListener interface. All DataWriterListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DataWriterListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The DataWriterListener is related to changes in
communication status.
The interface description is as follows:
 public interface DataWriterListener

{
//
// operations
//

public void
 on_offered_deadline_missed
 (DataWriter writer,

 OfferedDeadlineMissedStatus status);

public void
 on_offered_incompatible_qos
 (DataWriter writer,

 OfferedIncompatibleQosStatus status);

public void
 on_liveliness_lost
 (DataWriter writer,

 LivelinessLostStatus status);

public void
 on_publication_matched
 (DataWriter writer,

 PublicationMatchedStatus status);
//
// implemented API operations
// <no operations>
//
};

The DataWriterListener abstract operations are fully described because they
must be implemented by the application.
276
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.4.1 on_liveliness_lost

Scope
DDS.DataWriterListener

Synopsis
import DDS.*;
public void
 on_liveliness_lost
 (DataWriter writer,
 LivelinessLostStatus status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the LivelinessLostStatus changes.

Parameters
in DataWriter writer - contains a reference to the DataWriter on which the

LivelinessLostStatus has changed (this is an input to the application).
in LivelinessLostStatus status - contain the LivelinessLostStatus

object (this is an input to the application).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
LivelinessLostStatus changes. The implementation may be left empty when
this functionality is not needed. This operation will only be called when the relevant
DataWriterListener is installed and enabled for the liveliness lost status. The
liveliness lost status will change when the liveliness that the DataWriter has
committed through its LivelinessQosPolicy was not respected. In other words,
the DataWriter failed to actively signal its liveliness within the offered liveliness
period. As a result, the DataReader objects will consider the DataWriter as no
longer “alive”.
The Data Distribution Service will call the DataWriterListener operation with a
parameter writer, which will contain a reference to the DataWriter on which the
conf l ic t occur red and a parameter status , which wi l l conta in the
LivelinessLostStatus object.
277
API Reference�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.4.2 on_offered_deadline_missed

Scope
DDS.DataWriterListener

Synopsis
import DDS.*;
public void
 on_offered_deadline_missed
 (DataWriter writer,
 OfferedDeadlineMissedStatus& status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the OfferedDeadlineMissedStatus changes.

Parameters
in DataWriter writer - contain a reference to the DataWriter on which the

OfferedDeadlineMissedStatus has changed (this is an input to the
application).

in OfferedDeadlineMissedStatus status - c on ta in t h e
OfferedDeadlineMissedStatus object (this is an input to the application).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
OfferedDeadlineMissedStatus changes. The implementation may be left
empty when this functionality is not needed. This operation will only be called when
the relevant DataWriterListener is installed and enabled for the offered
deadline missed status. The offered deadline missed status will change when the
deadline that the DataWriter has committed through its DeadlineQosPolicy
was not respected for a specific instance.
The Data Distribution Service will call the DataWriterListener operation with a
parameter writer, which will contain a reference to the DataWriter on which the
conf l ic t occur red and a parameter status , which wi l l conta in the
OfferedDeadlineMissedStatus object.
278
API Reference

�������	

3 DCPS Classes and Operations 3.4 Publication Module

3.4.4.3 on_offered_incompatible_qos

Scope
DDS.DataWriterListener

Synopsis
import DDS.*;
public void
 on_offered_incompatible_qos
 (DataWriter writer,
 OfferedIncompatibleQosStatus status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the OFFERED_INCOMPATIBLE_QOS_STATUS changes.

Parameters
in DataWriter writer - contain a reference to the DataWriter on which the

OFFERED_INCOMPATIBLE_QOS_STATUS has changed (this is an input to the
application).

in OfferedIncompatibleQosStatus status - c o n t a i n t h e
OfferedIncompatibleQosStatus object (this is an input to the
application).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
OFFERED_INCOMPATIBLE_QOS_STATUS changes. The implementation may be left
empty when this functionality is not needed. This operation will only be called when
the relevant DataWriterListener is instal led and enabled for the
OFFERED_INCOMPATIBLE_QOS_STATUS. The incompatible Qos status will
change when a DataReader object has been discovered by the DataWriter with
the same Topic and a requested DataReaderQos that was incompatible with the
one offered by the DataWriter.
The Data Distribution Service will call the DataWriterListener operation with a
parameter writer, which will contain a reference to the DataWriter on which the
conf l ic t occur red and a parameter status , which wi l l conta in the
OfferedIncompatibleQosStatus object.
279
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.4.4.4 on_publication_matched

Scope
DDS.DataWriterListener

Synopsis
import DDS.*;
public void
 on_publication_matched
 (DataWriter writer,
 PublicationMatchedStatus status);

Note: This operation is not yet supported. It is scheduled for a future release.

3.5 Subscription Module

Figure 19 DCPS Subscription Module’s Class Model

QueryCondition

get_query_arguments()
get_query_expression()
set_query_arguments()

DomainParticipant
(from Domain Module)

SampleInfo

sample_state
view_state
instance_state
source_timestamp
instance_handle
disposed_generation_count
no_writers_generation_count
sample_rank
generation_rank
absolute_generation_rank

WaitSet
(from Infrastructure Module)

Topic
(from Topic-Definition Module)

SubscriberListener

on_data_on_readers()

<<Interface>>

TopicDescription
(from Topic-Definition Module)

**

<<implicit>>

DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>

DataSample

11

ReadCondition

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

*

*

*

*
<<implicit>>

StatusCondition
(from Infrastructure Module)

** **

QosPolicy

name : string

**

Subscriber

begin_access()
copy_from_topic_qos()
create_datareader()
delete_contained_entities()
delete_datareader()
end_access()
get_datareaders()
get_default_datareader_qos()
get_listener()
get_participant()
get_qos()
lookup_datareader()
notify_datareaders()
set_default_datareader_qos()
set_listener()
set_qos()

0..10..1

<<implicit>>

1

0..1

1

0..1

<<implicit>>

**

qos

<<implicit>>

**

default_datareader_qos

DataReader

create_querycondition()
create_readcondition()
delete_contained_entities()
delete_readcondition()
<<abstract>> get_key_value()
get_listener()
get_liveliness_changed_status()
get_matched_publication_data()
get_matched_publications()
get_qos()
get_requested_deadline_missed_status()
get_requested_incompatible_qos_status()
get_sample_lost_status()
get_sample_rejected_status()
get_subscriber()
get_subscription_match_status()
get_topicdescription()
<<abstract>> read()
<<abstract>> read_instance()
<<abstract>> read_next_instance()
<<abstract>> read_next_instance_w_condition()
<<abstract>> read_next_sample()
<<abstract>> read_w_condition()
<<abstract>> return_loan()
set_listener()
set_qos()
<<abstract>> take()
<<abstract>> take_instance()
<<abstract>> take_next_instance()
<<abstract>> take_next_instance_w_condition()
<<abstract>> take_next_sample()
<<abstract>> take_w_condition()

*
1

*
1

0..10..1

**

*

1

*

1

0..10..1

<<implicit>>

**

<<implicit>>

1

*

1

*

<<create>>

<<create>>

<<create>>

<<create>>
280
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

This module contains the following classes:
• Subscriber

• Subscription type specific classes
• DataSample

• SampleInfo (class)
• SubscriberListener (interface)
• DataReaderListener (interface)
• ReadCondition

• QueryCondition

“Subscription type specific classes” contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<type>DataReader is generated (based on IDL) by calling the pre-processor.
For instance, for the fictional data type Foo (this also applies to other types);
“Subscription type specific classes” contains the following classes:
• DataReader (abstract)
• FooDataReader

A Subscriber is an object responsible for receiving published data and making it
available (according to the SubscriberQos) to the application. It may receive and
dispatch Topic with data of different specified data types. To access the received
data, the application must use a typed DataReader attached to the Subscriber.
Thus, a subscription is defined by the association of a DataReader with a
Subscriber. This association expresses the intent of the application to subscribe to
the data described by the DataReader in the context provided by the Subscriber.

3.5.1 Interface Subscriber
A Subscriber is the object responsible for the actual reception of the data
resulting from its subscriptions.
A Subscriber acts on behalf of one or more DataReader objects that are related
to it. When it receives data (from the other parts of the system), it indicates to the
application that data is available through its DataReaderListener and by
enabling related Conditions. The application can access the list of concerned
DataReader objects through the operation get_datareaders and then access the
data available through operations on the DataReader.
The interface description of this class is as follows:
 public interface Subscriber

{
//
// extends interface Entity
//
281
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// public StatusCondition
// get_statuscondition
// (void);
// public int
// get_status_changes
// (void);
// public int
// enable
// (void);
//
// implemented API operations
//

public DataReader
 create_datareader
 (TopicDescription a_topic,

 DataReaderQos qos,
 DataReaderListener a_listener,
 int mask);

public int
 delete_datareader
 (DataReader a_datareader);

public int
 delete_contained_entities
 (void);

public DataReader
 lookup_datareader
 (String topic_name);

public int
 get_datareaders
 (DataReaderSeqHolder readers,

 int sample_states,
 int view_states,
 int instance_states);

public int
 notify_datareaders
 (void);

public int
 set_qos
 (SubscriberQos qos);

public int
 get_qos
 (SubscriberQosHolder qos);
public int
282
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 set_listener
 (SubscriberListener a_listener,
 int mask);

public SubscriberListener
 get_listener
 (void);

public int
 begin_access
 (void);

public int
 end_access
 (void);

public DomainParticipant
 get_participant
 (void);

public int
 set_default_datareader_qos
 (DataReaderQos qos);

public int
 get_default_datareader_qos
 (DataReaderQosHolder qos);

public int
 copy_from_topic_qos
 (DataReaderQosHolder a_datareader_qos,

 TopicQos a_topic_qos);
};

The following paragraphs describe how all of the Subscriber operations are used.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.5.1.1 begin_access

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public int
 begin_access
 (void);
283
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.1.2 copy_from_topic_qos

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public int
 copy_from_topic_qos
 (DataReaderQosHolder a_datareader_qos,
 TopicQos a_topic_qos);

Description
This operation will copy the policies in a_topic_qos to the corresponding policies
in a_datareader_qos.

Parameters
inout DataReaderQosHolder a_datareader_qos - the destination

DataReaderQos object to which the QosPolicy settings will be copied.
in TopicQos a_topic_qos - the source TopicQos, which will be copied.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation will copy the QosPolicy settings in a_topic_qos to the
corresponding QosPolicy settings in a_datareader_qos (replacing the values
in a_datareader_qos, if present).
This is a “convenience” operation, useful in combination with the operations
get_default_datawriter_qos and Topic.get_qos. The operation
copy_from_topic_qos can be used to merge the DataReader default
QosPolicy settings with the corresponding ones on the Topic. The resulting
DataReaderQos can then be used to create a new DataReader, or set its
DataReaderQos.
This operation does not check the resulting a_datareader_qos for self
consistency. This is because the “merged” a_datareader_qos may not be the
final one, as the application can still modify some QosPolicy settings prior to
applying the DataReaderQos to the DataReader.
284
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:
• RETCODE_OK - the QosPolicy settings have successfully been copied from the
TopicQos to the DataReaderQos

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.1.3 create_datareader

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public DataReader
 create_datareader
 (TopicDescription a_topic,
 DataReaderQos qos,
 DataReaderListener a_listener,
 int mask);

Description
This operation creates a DataReader with the desired QosPolicy settings, for the
des i red TopicDescription and a t taches the op t iona l ly spec i f ied
DataWriterListener to it.

Parameters
in TopicDescription a_topic - a reference to the TopicDescription for

which the DataReader is created. This may be a Topic, MultiTopic or
ContentFilteredTopic.

in DataReaderQos qos - the object with the QosPolicy settings for the new
DataReader, when these QosPolicy settings are not self consistent, no
DataReader is created.

in DataReaderListener a_listener - a r e f e r e n c e t o t h e
DataReaderListener instance which will be attached to the new
DataReader It is permitted to use null as the value of the listener: this
behaves as a DataWriterListener whose operations perform no action.

in int mask - a bit-mask in which each bit enables the invocation of the
DataReaderListener for a certain status.
285
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
DataReader - Return value is a reference to the newly created DataReader. In

case of an error, the null reference is returned.

Detailed Description
This operation creates a DataReader with the desired QosPolicy settings, for the
des i red TopicDescription and a t taches the op t iona l ly spec i f ied
DataReaderListener to it. The TopicDescription may be a Topic,
MultiTopic or ContentFilteredTopic. The returned DataReader is attached
(and belongs) to the Subscriber. To delete the DataReader the operation
delete_datareader or delete_contained_entities must be used.

Application Data Type
The DataReader returned by this operation is an object of a derived class, specific
to the data type associa ted wi th the TopicDescription . For each
application-defined data type <type> there is a class <type>DataReader
generated by calling the pre-processor. This data type specific class extends
DataReader and contains the operations to read data of data type <type>.
Because the DataReader may read a Topic, ContentFilteredTopic or
MultiTopic, the DataReader is associated with the TopicDescription. The
DataWriter can only write a Topic, not a ContentFilteredTopic or
MultiTopic, because these two are constructed at the Subscriber side.

QosPolicy
The common application pattern to construct the QosPolicy settings for the
DataReader is to:
• Retrieve the QosPolicy settings on the associated TopicDescription by

means of the get_qos operation on the TopicDescription
• Retrieve the default DataReaderQos by means of the
get_default_datareader_qos operation on the Subscriber

• Combine those two QosPolicy settings and selectively modify policies as
desired (copy_from_topic_qos)

• Use the resulting QosPolicy settings to construct the DataReader
• In case the specified QosPolicy settings are not self consistent, no DataReader

is created and the null reference is returned
286
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Default QoS
The constant DATAREADER_QOS_DEFAULT can be used as parameter qos to create
a DataReader with the default DataReaderQos as set in the Subscriber. The
effect of using DATAREADER_QOS_DEFAULT is the same as calling the operation
get_default_datareader_qos and using the resulting DataReaderQos to
create the DataReader.
The special DATAREADER_QOS_USE_TOPIC_QOS can be used to create a
DataReader with a combination of the default DataReaderQos and the
TopicQos. The effect of using DATAREADER_QOS_USE_TOPIC_QOS is the same as
calling the operation get_default_datareader_qos and retrieving the
TopicQos (by means of the operation Topic.get_qos) and then combining these
two QosPolicy settings using the operation copy_from_topic_qos, whereby
any common policy that is set on the TopicQos “overrides” the corresponding
policy on the default DataReaderQos. The resulting DataReaderQos is then
applied to create the DataReader.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated DataReaderListener
operation is invoked and the communication status is reset to false, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset.
The following statuses are applicable to the DataReaderListener:
• REQUESTED_DEADLINE_MISSED_STATUS

• REQUESTED_INCOMPATIBLE_QOS_STATUS

• SAMPLE_LOST_STATUS

• SAMPLE_REJECTED_STATUS

• DATA_AVAILABLE_STATUS

• LIVELINESS_CHANGED_STATUS

• SUBSCRIPTION_MATCHED_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the DataReaderListener.
287
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Status Propagation
In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
DataReaderListener, the SubscriberListener of the containing
Subscriber is invoked (if attached and activated for the status that occurred). This
allows the application to set a default behaviour in the SubscriberListener of
the containing Subscriber and a DataReader specific behaviour when needed.
In case the communication status is not act ivated in the mask of the
SubscriberListener as well, the communication status will be propagated to the
DomainParticipantListener of the containing DomainParticipant. In case
the DomainParticipantListener is also not attached or the communication
status is not activated in its mask, the application is not notified of the change.

3.5.1.4 delete_contained_entities

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public int
 delete_contained_entities
 (void);

Description
This operation deletes all the DataReader objects that were created by means of
the create_datareader operation on the Subscriber.

Parameters
<none>

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes all the DataReader objects that were created by means of
the create_datareader operation on the Subscriber. In other words, it deletes
all contained DataReader objects. Prior to deleting each DataReader, this
operation recursively calls the corresponding delete_contained_entities
288
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

operation on each DataReader. In other words, all DataReader objects in the
Subscriber are deleted, including the QueryCondition and ReadCondition
objects contained by the DataReader.

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if a contained DataReader cannot be deleted because the application has
called a read or take operation and has not called the corresponding
return_loan operation to return the loaned samples. In such cases, the operation
does not roll-back any entity deletions performed prior to the detection of the
problem.

Return Code
When the operation returns:
• RETCODE_OK - the contained Entity objects are deleted and the application may

delete the Subscriber;
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - one or more of the contained entities are

in a state where they cannot be deleted.

3.5.1.5 delete_datareader

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public int
 delete_datareader
 (DataReader a_datareader);

Description
This operation deletes a DataReader that belongs to the Subscriber.

Parameters
in DataReader a_datareader - a reference to the DataReader, which is to be

deleted.
289
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes a DataReader that belongs to the Subscriber. When the
operation is called on a different Subscriber, as used when the DataReader was
c r e a t e d , t h e o p e r a t i o n h a s n o e ff e c t a n d r e t u r n s
RETCODE_PRECONDITION_NOT_MET. The deletion of the DataReader is not
allowed if there are any ReadCondition or QueryCondition objects that are
a t t a c h e d t o t h e DataReader. I n t h a t c a s e t h e o p e ra t i o n r e t u r n s
RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - the DataReader is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_datareader is not a valid
DataReader_ptr

• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
Subscriber, as used when the DataReader was created, or the DataReader
contains one or more ReadCondition or QueryCondition objects.

3.5.1.6 enable (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public int
 enable
 (void);

3.5.1.7 end_access

Scope
DDS.Subscriber
290
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
 end_access
 (void);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.1.8 get_datareaders

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public int
 get_datareaders
 (DataReaderSeqHolder readers,
 int sample_states,
 int view_states,
 int instance_states);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.1.9 get_default_datareader_qos

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public void
 get_default_datareader_qos
 (DataReaderQosHolder qos);

Description
This operation gets the default QosPolicy settings of the DataReader.

Parameters
inout DataReaderQosHolder qos - a reference to the destination

DataReaderQosHolder object in which the default DataReaderQos for the
Subscriber is written..

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.
291
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation gets the default QosPolicy settings of the DataReader (that is the
DataReaderQos) which is used for newly created DataReader objects, in case
the constant DATAREADER_QOS_DEFAULT is used. The default DataReaderQos
is only used when the constant is supplied as parameter qos to specify the
DataReaderQos in the create_datareader operation. The application must
provide the DataReaderQos object in which the QosPolicy settings can be stored
and pass the qos reference to the operation. The operation writes the default
QosPolicy settings to the object referenced to by qos. Any settings in the object
are overwritten.
The values retrieved by this operation match the values specified on the last
successful call to set_default_datareader_qos, or, if the call was never made,
the default values as specified for each QosPolicy setting as defined in Table 3,
QosPolicy Default Attributes, on page 38.

Return Code
When the operation returns:
• RETCODE_OK - the default DataReader QosPolicy settings of this
Subscriber have successfully been copied into the specified
DataReaderQosHolder parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.1.10 get_listener

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public SubscriberListener
 get_listener
 (void);

Description
This operation allows access to a SubscriberListener.

Parameters
<none>
292
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
SubscriberListener - result is a reference to the SubscriberListener

attached to the Subscriber.

Detailed Description
This operation allows access to a SubscriberListener attached to the
Subscriber. When no SubscriberListener was attached to the Subscriber,
the null reference is returned.

3.5.1.11 get_participant

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public DomainParticipant
 get_participant
 (void);

Description
This operation returns the DomainParticipant associated with the Subscriber
or the null pointer.

Parameters
<none>

Return Value
DomainParticipant - a reference to the DomainParticipant associated with

the Subscriber or the null pointer.

Detailed Description
This operation returns the DomainParticipant associated with the Subscriber.
Note that there is exactly one DomainParticipant associated with each
Subscriber. When the Subscriber was already deleted (there is no associated
DomainParticipant any more), the null pointer is returned.

3.5.1.12 get_qos

Scope
DDS.Subscriber
293
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
 get_qos
 (SubscriberQosHolder qos);

Description
This operation allows access to the existing set of QoS policies for a Subscriber.

Parameters
inout SubscriberQosHolder qos - the destination SubscriberQosHolder

object in which the QosPolicy settings will be copied.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation allows access to the existing set of QoS policies of a Subscriber
on which this operation is used. This SubscriberQos is stored at the location
referenced by the qos parameter.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QoS policy values applied to this Subscriber

has successfully been copied into the specified SubscriberQosHolder
parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.1.13 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS.*;
public int
 get_status_changes
 (void);
294
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.1.14 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public StatusCondition
 get_statuscondition
 (void);

3.5.1.15 lookup_datareader

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public DataReader
 lookup_datareader
 (String topic_name);

Description
This operation returns a previously created DataReader belonging to the
Subscriber which is attached to a Topic with the matching topic_name.

Parameters
in String topic_name - the name of the Topic, which is attached to the

DataReader to look for.

Return Value
DataReader - Return value is a reference to the DataReader found. When no

such DataReader is found, the null reference is returned.

Detailed Description
This operation returns a previously created DataReader belonging to the
Subscriber which is attached to a Topic with the matching topic_name. When
multiple DataReader objects (which satisfy the same condition) exist, this
operation will return one of them. It is not specified which one.
This operation may be used on the built-in Subscriber, which returns the built-in
DataReader objects for the built-in Topics.
295
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.1.16 notify_datareaders

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public int
 notify_datareaders

 (void);

Description
T h i s o p e ra t i o n in v o k e s t h e on_data_available op e r a t i on o n
DataReaderListener objects which are attached to contained DataReader
entities and which have new, available data.

Parameters
<none>

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

DDS_RETCODE_ALREADY_DELETED or DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description
T h i s o p e r a t i o n i n v o k e s t h e on_data_available o pe ra t io n f o r
DataReaderListener objects that are attached to contained DataReader entities
which have received information that has not yet been processed by those
DataReaders.
The notify_datareaders operation ignores the bit mask value of the individual
DataReaderListener objects, even when the DATA_AVAILABLE_STATUS bit
has not been set on a DataReader that has new data avai lable. The
on_data_available o p e r a t io n w i l l s t i l l b e i n v o k e d , w h e n t h e
DATA_AVAILABLE_STATUS bit has not been set, but will not propagate to the
DomainParticipantListener.
When the DataReader has attached a NULL listener, the event will be consumed
and will not propagate to the DomainParticipantListener. (Remember that a
NULL listener is regarded as a listener that handles all its events as a NOOP).

Return Code
When the operation returns:
• RETCODE_OK - all appropriate listeners have been invoked.
296
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.1.17 set_default_datareader_qos

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public int
 set_default_datareader_qos
 (DataReaderQos qos);

Description
This operation sets the default DataReaderQos of the DataReader.

Parameters
in DataReaderQos qos - the DataReaderQos object, which contains the new

default QosPolicy settings for the newly created DataReaders.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_UNSUPPORTED ,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation sets the default DataReaderQos of the DataReader (that is the
struct with the QosPolicy settings). This QosPolicy is used for newly created
DataReader objects in case the constant DATAREADER_QOS_DEFAULT is used as
parameter qos to specify the DataReaderQos in the create_datareader
operation. This operation checks if the DataReaderQos is self consistent. If it is
not, the operation has no effect and returns RETCODE_INCONSISTENT_POLICY.
The values set by this operation are returned by get_default_datareader_qos.

Return Code
When the operation returns:
• RETCODE_OK - the new default DataReaderQos is set
297
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid DataReaderQos.

It contains a QosPolicy setting with an invalid Duration_t value or an enum
value that is outside its legal boundaries.

• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_INCONSISTENT_POLICY - the parameter qos contains conflicting
QosPolicy settings, e.g. a history depth that is higher than the specified resource
limits.

3.5.1.18 set_listener

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public int
 set_listener
 (SubscriberListener a_listener,
 int mask);

Description
This operation attaches a SubscriberListener to the Subscriber.

Parameters
in SubscriberListener a_listener - a r e f e r e n c e t o t h e

SubscriberListener instance, which will be attached to the Subscriber.
in int mask - a bit mask in which each bit enables the invocation of the

SubscriberListener for a certain status.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.
298
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation attaches a SubscriberListener to the Subscriber. Only one
SubscriberListener can be a t t ached to each Subscriber. I f a
SubscriberListener was already attached, the operation will replace it with the
new one. When a_listener is the null reference, it represents a listener that is
treated as a NOOP1 for all statuses activated in the bitmask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated SubscriberListener
operation is invoked and the communication status is reset to false, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset. An exception to this rule is the null listener, which does not reset the
communication statuses for which it is invoked.
The following statuses are applicable to the SubscriberListener:
• REQUESTED_DEADLINE_MISSED_STATUS (propagated)
• REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
• SAMPLE_LOST_STATUS (propagated)
• SAMPLE_REJECTED_STATUS (propagated)
• DATA_AVAILABLE_STATUS (propagated)
• LIVELINESS_CHANGED_STATUS (propagated)
• SUBSCRIPTION_MATCHED_STATUS (propagated).
• DATA_ON_READERS_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the SubscriberListener.

Status Propagation
The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DataReaderListener of a contained DataReader, the DataReaderListener
on that contained DataReader is invoked instead of the SubscriberListener.
This means, that a status change on a contained DataReader only invokes the
SubscriberListener if the contained DataReader itself does not handle the
trigger event generated by the status change.

1. Short for No-Operation, an instruction that peforms nothing at all.

299

API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

In case a communica t ion s ta tus i s not ac t iva ted in the mask o f the
SubscriberListener, the DomainParticipantListener of the containing
DomainParticipant is invoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DomainParticipantListener of the containing DomainParticipant and a
Subscriber s p e c i f i c b e h a v i o u r w he n n e e d e d . I n c a s e t h e
DomainParticipantListener is also not attached or the communication status
is not activated in its mask, the application is not notified of the change.
The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with a get_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
D i s t r ib u t i o n Se r v i c e w i l l f i r s t l o o k i n a n a t t a c h e d a n d a c t i v a t e d
SubscriberListener or DomainParticipantListener (in that order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener or DomainParticipant
Listener for the DATA_AVAILABLE_STATUS (in that order).

Return Code
When the operation returns:
• RETCODE_OK - the SubscriberListener is attached
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.1.19 set_qos

Scope
DDS.Subscriber

Synopsis
import DDS.*;
public int
 set_qos
 (SubscriberQos qos);

Description
This operation replaces the existing set of QosPolicy settings for a Subscriber.
300
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Parameters
in SubscriberQos qos - the new set of QosPolicy settings for the

Subscriber.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_UNSUPPORTED ,
RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_IMMUTABLE_POLICY.

Detailed Description
This operation replaces the existing set of QosPolicy settings for a Subscriber.
The parameter qos contains the object with the QosPolicy settings which is
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled Subscriber, which can only be set before the
Subscriber i s e n a b l e d , t h e o p e r a t io n w i l l f a i l a n d a
RETCODE_IMMUTABLE_POLICY is returned. In other words, the application must
provide the presently set QosPolicy settings in case of the immutable QosPolicy
settings. Only the mutable QosPolicy settings can be changed. When qos contains
conflicting QosPolicy settings (not self-consistent), the operation will fail and a
RETCODE_INCONSISTENT_POLICY is returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new SubscriberQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid SubscriberQos.
• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are

currently not supported by OpenSplice.
• RETCODE_ALREADY_DELETED - the Subscriber has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable
QosPolicy setting with a different value than set during enabling of the
Subscriber.
301
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2 Subscription Type Specific Classes
“Subscription type specific classes” contains the generic class and the generated
data type specific classes. For each data type, a data type specific class
<type>DataReader is generated (based on IDL) by calling the pre-processor. In
case of data type Foo (this also applies to other types); “Subscription type specific
classes” contains the following classes:
This paragraph describes the generic DataReader class and the derived application
type specific <type>DataReader classes which together implement the
application subscription interface. For each application type, used as Topic data
type, the pre-processor generates a <type>DataReader class from an IDL type
description. The FooDataReader class that would be generated by the
pre-processor for a fictional type Foo describes the <type>DataReader class.

3.5.2.1 Interface DataReader
A DataReader allows the application:
• to declare data it wishes to receive (i.e., make a subscription);
• to access data received by the associated Subscriber.
• A DataReader refers to exactly one TopicDescription (either a Topic, a
ContentFilteredTopic or a MultiTopic) that identifies the samples to be
read. The DataReader may give access to several instances of the data type,
which are distinguished from each other by their key.

DataReader is an interface. It is specialized for each particular application data
type. For a fictional application data type “Foo” (defined in the module SPACE) the
specialized class would be SPACE.FooDataReader.
The interface description is as follows:
 public interface DataReader

{
//
// extends interface class Entity
//
// public StatusCondition
// get_statuscondition
// (void);
// public int
// get_status_changes
// (void);
// public int
// enable
// (void);
//
// operations (implemented in the data type specific DataReader)
//
302
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// public int
// read
// (<type>SeqHolder data_values,
// SampleInfoSeqHolder info_seq,
// int max_samples,
// int sample_states,
// int view_states,
// int instance_states);
// public int
// take
// (<type>SeqHolder data_values,
// SampleInfoSeqHolder info_seq,
// int max_samples,
// int sample_states,
// int view_states,
// int instance_states);
// public int
// read_w_condition
// (<type>SeqHolder data_values,
// SampleInfoSeqHolder info_seq,
// int max_samples,
// ReadCondition a_condition);
// public int
// take_w_condition
// (<type>SeqHolder data_values,
// SampleInfoSeqHolder info_seq,
// int max_samples,
// ReadCondition a_condition);
// public int
// read_next_sample
// (<type>Holder data_value,
// SampleInfoHolder sample_info);
// public int
// take_next_sample
// (<type>Holder data_value,
// SampleInfoHolder sample_info);
// public int
// read_instance
// (<type>SeqHolder data_values,
// SampleInfoSeqHolder info_seq
// int max_samples,
// long a_handle,
// int sample_states,
// int view_states,
// int instance_states);
// public int
// take_instance
// (<type>SeqHolder data_values,
// SampleInfoSeqHolder info_seq
// int max_samples,
303
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// long a_handle,
// int sample_states,
// int view_states,
// int instance_states);
// public int
// read_next_instance
// (<type>SeqHolder data_values,
// SampleInfoSeqHolder info_seq
// int max_samples,
// long a_handle,
// int sample_states,
// int view_states,
// int instance_states);
// public int
// take_next_instance
// (<type>SeqHolder data_values,
// SampleInfoSeqHolder info_seq
// int max_samples,
// long a_handle,
// int sample_states,
// int view_states,
// int instance_states);
// public int
// read_next_instance_w_condition
// (<type>SeqHolder data_values,
// SampleInfoSeqHolder info_seq
// int max_samples,
// long a_handle,
// ReadCondition a_condition);
// public int
// take_next_instance_w_condition
// (<type>SeqHolder data_values,
// SampleInfoSeqHolder info_seq
// int max_samples,
// long a_handle,
// ReadCondition a_condition);
// public int
// return_loan
// (<type>SeqHolder data_values,
// SampleInfoSeqHolder info_seq);
// public int
// get_key_value
// (<type>SeqHolder key_holder,
// long handle);
// public long
// lookup_instance
// (<type> instance_data);
//
// implemented API operations
//
304
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

public ReadCondition
 create_readcondition
 (int sample_states,

 int view_states,
 int instance_states);

public QueryCondition
 create_querycondition
 (int sample_states,

 int view_states,
 int instance_states,
 String query_expression,
 String[] query_parameters);

public int
 delete_readcondition
 (ReadCondition a_condition);

public int
 delete_contained_entities
 (void);

public int
 set_qos
 (DataReaderQos qos);

public int
 get_qos
 (DataReaderQosHolder qos);

public int
 set_listener
 (DataReaderListener a_listener,
 int mask);

public DataReaderListener
 get_listener
 (void);

public TopicDescription
 get_topicdescription
 (void);

public Subscriber
 get_subscriber
 (void);

public int
 get_sample_rejected_status
 (SampleRejectedStatusHolder status);
305
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

public int
 get_liveliness_changed_status
 (LivelinessChangedStatusHolder status);

public int
 get_requested_deadline_missed_status
 (RequestedDeadlineMissedStatusHolder status);

public int
 get_requested_incompatible_qos_status
 (RequestedIncompatibleQosStatusHolder status);

public int
 get_subscription_matched_status
 (SubscriptionMatchedStatusHolder status);

public int
 get_sample_lost_status
 (SampleLostStatusHolder status);

public int
 wait_for_historical_data
 (Duration_t max_wait);

public int
 get_matched_publications
 (InstanceHandleSeqHolder publication_handles);

public int
 get_matched_publication_data
 (PublicationBuiltinTopicDataHolder publication_data,

 long publication_handle);
};

The following paragraphs describe the usage of all DataReader operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited. The abstract operations are listed but not fully
described because they are not implemented in this specific class. The full
description of these operations is located in the subclasses that contain the data type
specific implementation of these operations.

3.5.2.2 create_querycondition

Scope
DDS.DataReader
306
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public QueryCondition
 create_querycondition
 (int sample_states,
 int view_states,
 int instance_states,
 String query_expression,
 String[] query_parameters);

Description
This operation creates a new QueryCondition for the DataReader.

Parameters
in int sample_states - a mask, which selects only those samples with the

desired sample states.
in int view_states - a mask, which selects only those samples with the desired

view states.
in int instance_states - a mask, which selects only those samples with the

desired instance states.
in String query_expression - the query string, which must be a subset of the

SQL query language.
in String[] query_parameters - a sequence of strings which are the

parameter values used in the SQL query string (i.e., the “%n” tokens in the
expression). The number of values in query_parameters must be equal or
greater than the highest referenced %n token in the query_expression (e.g. if %1
and %8 a r e u sed a s pa rame t e r i n t he query_expression , t he
query_parameters should at least contain n+1 = 9 values).

Return Value
QueryCondition - Result value is a reference to the QueryCondition. When the

operation fails, the null reference is returned.

Detailed Description
This operation creates a new QueryCondition for the DataReader. The returned
QueryCondition is attached (and belongs) to the DataReader. When the
operation fails, the null reference is returned. To delete the QueryCondition the
operation delete_readcondition or delete_contained_entities must be
used.
307
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

State Masks
The result of the QueryCondition also depends on the selection of samples
determined by three masks:
• sample_states is the mask, which selects only those samples with the desired

sample states READ_SAMPLE_STATE, NOT_READ_SAMPLE_STATE or both
• view_states is the mask, which selects only those samples with the desired

view states NEW_VIEW_STATE, NOT_NEW_VIEW_STATE or both
• instance_states is the mask, which selects only those samples with the

desired instance states ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE_STATE, NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or a
combination of these.

SQL Expression
The SQL query string is set by query_expression which must be a subset of the
SQL query language. In this query expression, parameters may be used, which must
be set in the sequence of strings defined by the parameter query_parameters. A
parameter is a string which can define an integer, float, string or enumeration. The
number of values in query_parameters must be equal or greater than the highest
referenced %n token in the query_expression (e.g. if %1 and %8 are used as
parameter in the query_expression, the query_parameters should at least
contain n+1 = 9 values).

3.5.2.3 create_readcondition

Scope
DDS.DataReader

Synopsis
import DDS.*;
public ReadCondition
 create_readcondition
 (int sample_states,
 int view_states,
 int instance_states);

Description
This operation creates a new ReadCondition for the DataReader.

Parameters
in int sample_states - a mask, which selects only those samples with the

desired sample states.
308
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

in int view_states - a mask, which selects only those samples with the desired
view states.

in int instance_states - a mask, which selects only those samples with the
desired instance states.

Return Value
ReadCondition - Result value is a reference to the ReadCondition. When the

operation fails, the null reference is returned.

Detailed Description
This operation creates a new ReadCondition for the DataReader. The returned
ReadCondition is attached (and belongs) to the DataReader. When the
operation fails, the null reference is returned. To delete the ReadCondition the
operation delete_readcondition or delete_contained_entities must be
used.

State Masks
The result of the ReadCondition depends on the selection of samples determined
by three masks:
• sample_states is the mask, which selects only those samples with the desired

sample states READ_SAMPLE_STATE, NOT_READ_SAMPLE_STATE or both
• view_states is the mask, which selects only those samples with the desired

view states NEW_VIEW_STATE, NOT_NEW_VIEW_STATE or both
• instance_states is the mask, which selects only those samples with the

desired instance states ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE_STATE, NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or a
combination of these.

3.5.2.4 delete_contained_entities

Scope
DDS.DataReader

Synopsis
import DDS.*;
public int
 delete_contained_entities
 (void);
309
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation deletes all the Entity objects that were created by means of one of
the “create_” operations on the DataReader.

Parameters
<none>

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES or
RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes all the Entity objects that were created by means of one of
the “create_” operations on the DataReader. In other words, it deletes all
QueryCondition and ReadCondition objects contained by the DataReader.

Note: The operation will return PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. In such cases, the
operation does not roll-back any entity deletions performed prior to the detection of
the problem.

Return Code
When the operation returns:
• RETCODE_OK - the contained Entity objects are deleted and the application may

delete the DataReader
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - one or more of the contained entities are

in a state where they cannot be deleted.

3.5.2.5 delete_readcondition

Scope
DDS.DataReader

Synopsis
import DDS.*;
310
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

public int
 delete_readcondition
 (ReadCondition a_condition);

Description
This operation deletes a ReadCondition or QueryCondition which is attached
to the DataReader.

Parameters
in ReadCondition a_condition - a reference to the ReadCondition or

QueryCondition which is to be deleted.

Return Value
 int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES or RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation deletes a ReadCondition or QueryCondition which is attached
to the DataReader. Since a QueryCondition is a specialized ReadCondition,
the operation can also be used to delete a QueryCondition. A ReadCondition
or QueryCondition cannot be deleted when it is not attached to this DataReader.
When the operation is called on a ReadCondition or QueryCondition which
was no t a t t a ched t o t h i s DataReader , t h e o p e r a t i o n r e t u r n s
RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - the ReadCondition or QueryCondition is deleted
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter a_condition is not a valid
ReadCondition_ptr

• RETCODE_ALREADY_DELETED - the DataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DataReader, as used when the ReadCondition or QueryCondition was
created.
311
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.6 enable (inherited)
This operation is inherited and therefore not described here. See the class Entity
for further explanation.

Synopsis
import DDS.*;
public int

enable
 (void);

3.5.2.7 get_key_value (abstract)
This operation is defined as a generic operation, which is implemented by the
<type>DataReader class. Therefore, to use this operation, the data type specific
implementation of this operation in its respective derived class must be used. For
further explanation see the description for the fictional data type Foo derived
FooDataReader class.

Synopsis
import DDS.*;
public int

get_key_value
 (<type>Holder key_holder,

 long handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.8 get_listener

Scope
DDS.DataReader

Synopsis
import DDS.*;
public DataReaderListener
 get_listener
 (void);

Description
This operation allows access to a DataReaderListener.

Parameters
<none>
312
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
DataReaderListener - result is a reference to the DataReaderListener

attached to the DataReader.

Detailed Description
This operation allows access to a DataReaderListener attached to the
DataReader. When no DataReaderListener was attached to the DataReader,
the null reference is returned.

3.5.2.9 get_liveliness_changed_status

Scope
DDS.DataReader

Synopsis
import DDS.*;
public int
 get_liveliness_changed_status
 (LivelinessChangedStatusHolder status);

Description
This operation obtains the LivelinessChangedStatus object of the
DataReader.

Parameters
inout LivelinessChangedStatusHolder status - the contents of the

LivelinessChangedStatus object of the DataReader will be copied into
the LivelinessChangedStatusHolder specified by status.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation obtains the LivelinessChangedStatus object of the
DataReader. This object contains the information whether the liveliness of one or
more DataWriter objects that were writing instances read by the DataReader has
changed. In other words, some DataWriter have become “alive” or “not alive”.
The LivelinessChangedStatus c an a l so be mon i to r ed u s ing a
DataReaderListener or by using the associated StatusCondition.
313
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:
• RETCODE_OK - the current LivelinessChangedStatus of this DataReader

has successfully been copied into the specified status parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.10 get_matched_publication_data

Scope
DDS.DataReader

Synopsis
import DDS.*;
public int
 get_matched_publication_data
 (PublicationBuiltinTopicDataHolder publication_data,
 long publication_handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.11 get_matched_publications

Scope
DDS.DataReader

Synopsis
import DDS.*;
public int
 get_matched_publications
 (InstanceHandleSeqHolder publication_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.12 get_qos

Scope
DDS.DataReader

Synopsis
import DDS.*;
public int
 get_qos
314
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 (DataReaderQosHolder qos);

Description
This operation allows access to the existing set of QoS policies for a DataReader.

Parameters
inout DataReaderQosHolder qos - the destination DataReaderQosHolder

object in which the QosPolicy settings will be copied.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation allows access to the existing set of QoS policies of a DataReader
on which this operation is used. This DataReaderQos is stored at the location
referenced by the qos parameter.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of QoSPolicy values applied to this DataReader

has successfully been copied into the specified DataReaderQosHolder
parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.13 get_requested_deadline_missed_status

Scope
DDS.DataReader

Synopsis
import DDS.*;
public int
 get_requested_deadline_missed_status
 (RequestedDeadlineMissedStatusHolder status);
315
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation obtains the RequestedDeadlineMissedStatus object of the
DataReader.

Parameters
inout RequestedDeadlineMissedStatusHolder status - the contents of

the RequestedDeadlineMissedStatus object of the DataReader will be
copied into the RequestedDeadlineMissedStatusHolder specified by
status.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation obtains the RequestedDeadlineMissedStatus object of the
DataReader. This object contains the information whether the deadline that the
DataReader was expecting through its DeadlineQosPolicy was not respected
for a specific instance.
The RequestedDeadlineMissedStatus can also be monitored using a
DataReaderListener or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current RequestedDeadlineMissedStatus of this
DataReader has successfully been copied into the specified status parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.14 get_requested_incompatible_qos_status

Scope
DDS.DataReader

Synopsis
import DDS.*;
public int
 get_requested_incompatible_qos_status
 (RequestedIncompatibleQosStatusHolder status);
316
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation obtains the RequestedIncompatibleQosStatus object of the
DataReader.

Parameters
inout RequestedIncompatibleQosStatusHolder status - the contents of

the RequestedIncompatibleQosStatus object of the DataReader will be
copied into the RequestedIncompatibleQosStatusHolder specified by
status.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation obtains the RequestedIncompatibleQosStatus object of the
DataReader. This object contains the information whether a QosPolicy setting
was incompatible with the offered QosPolicy setting.
The Request/Offering mechanism is applicable between the DataWriter and the
DataReader. If the QosPolicy settings between DataWriter and DataReader
are inconsistent, no communication between them is established. In addition the
DataWriter will be informed via a REQUESTED_INCOMPATIBLE_QOS status
c h a n g e a n d t h e DataReader w i l l b e i n f o r m e d v i a a n
OFFERED_INCOMPATIBLE_QOS status change.
The RequestedIncompatibleQosStatus can also be monitored using a
DataReaderListener or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current RequestedIncompatibleQosStatus of this
DataReader has successfully been copied into the specified status parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.15 get_sample_lost_status

Scope
DDS.DataReader
317
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
 get_sample_lost_status
 (SampleLostStatusHolder status);

Description
This operation obtains the SampleLostStatus object of the DataReader.

Parameters
inout SampleLostStatusHolder status - the contents of the

SampleLostStatus object of the DataReader will be copied into the
SampleLostStatusHolder specified by status.

Note: This status is not yet implemented. It is scheduled for a future release. Until it
is implemented all returned attribute values will be initialized to 0.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation obtains the SampleLostStatus object of the DataReader. This
object contains information whether samples have been lost. This only applies when
the ReliabilityQosPolicy i s s e t t o RELIABLE . I f t h e
ReliabilityQosPolicy is set to BEST_EFFORT the Data Distribution Service
will not report the loss of samples.
The SampleLostStatus can also be monitored using a DataReaderListener
or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current SampleLostStatus of this DataReader has

successfully been copied into the specified status parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
318
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.16 get_sample_rejected_status

Scope
DDS.DataReader

Synopsis
import DDS.*;
public int
 get_sample_rejected_status
 (SampleRejectedStatusHolder status);

Detailed Description
This operation obtains the SampleRejectedStatus object of the DataReader.

Parameters
inout SampleRejectedStatusHolder status - the contents of the

SampleRejectedStatus object of the DataReader will be copied into the
SampleRejectedStatusHolder specified by status.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,
RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation obtains the SampleRejectedStatus object of the DataReader.
This object contains the information whether a received sample has been rejected.
The SampleRejectedStatus c a n a l s o b e m o n i t o r e d u s i n g a
DataReaderListener or by using the associated StatusCondition.

Return Code
When the operation returns:
• RETCODE_OK - the current SampleRejectedStatus of this DataReader has

successfully been copied into the specified status parameter.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.17 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.
319
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
 get_status_changes
 (void);

3.5.2.18 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS.*;
public StatusCondition
 get_statuscondition
 (void);

3.5.2.19 get_subscriber

Scope
DDS.DataReader

Synopsis
import DDS.*;
public Subscriber
 get_subscriber
 (void);

Description
This operation returns the Subscriber to which the DataReader belongs.

Parameters
<none>

Return Value
Subscriber - Return value is a reference to the Subscriber object to which the

DataReader belongs.

Detailed Description
This operation returns the Subscriber to which the DataReader belongs, thus
the Subscriber that has created the DataReader. If the DataReader is already
deleted, the null reference is returned.
320
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.20 get_subscription_matched_status

Scope
DDS.DataReader

Synopsis
import DDS.*;
public int
 get_subscription_match_status
 (SubscriptionMatchedStatusHolder status);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.21 get_topicdescription

Scope
DDS.DataReader

Synopsis
import DDS.*;
public TopicDescription
 get_topicdescription
 (void);

Description
This operation returns the TopicDescription which is associated with the
DataReader.

Parameters
<none>

Return Value
TopicDescription - Return value is a reference to the TopicDescription

object which is associated with the DataReader.

Detailed Description
This operation returns the TopicDescription which is associated with the
DataReader, thus the TopicDescription with which the DataReader is
created. If the DataReader is already deleted, the null reference is returned.

3.5.2.22 lookup_instance (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.
321
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public long
 lookup_instance
 (<type> instance_data);

3.5.2.23 read (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.

Synopsis
import DDS.*;
public int
 read
 (<type>SeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 int sample_states,
 int view_states,
 int instance_states);

3.5.2.24 read_instance (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.

Synopsis
import DDS.*;
public int
 read_instance
 (<type>SeqHolder data_values,
 SampleInfoSeqHolder info_seq
 int max_samples,
 long a_handle,
 int sample_states,
 int view_states,
 int instance_states);

3.5.2.25 read_next_instance (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.
322
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
 read_next_instance
 (<type>SeqHolder data_values,
 SampleInfoSeqHolder info_seq
 int max_samples,
 long a_handle,
 int sample_states,
 int view_states,
 int instance_states);

3.5.2.26 read_next_instance_w_condition (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.

Synopsis
import DDS.*;
public int
 read_next_instance_w_condition
 (<type>SeqHolder data_values,
 SampleInfoSeqHolder info_seq
 int max_samples,
 long a_handle,
 ReadCondition a_condition);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.27 read_next_sample (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.

Synopsis
import DDS.*;
public int
 read_next_sample
 (<type>Holder data_value,
 SampleInfoHolder sample_info);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.28 read_w_condition (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.
323
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
 read_w_condition
 (<type>SeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 ReadCondition a_condition);

3.5.2.29 return_loan (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.

Synopsis
import DDS.*;
public int
 return_loan
 (<type>SeqHolder data_values,
 SampleInfoSeqHolder info_seq);

3.5.2.30 set_listener

Scope
DDS.DataReader

Synopsis
import DDS.*;
public int
 set_listener
 (DataReaderListener a_listener,
 int mask);

Description
This operation attaches a DataReaderListener to the DataReader.

Parameters
in DataReaderListener a_listener - a r e f e r e n c e t o t h e

DataReaderListener instance, which will be attached to the DataReader.
in int mask - a bit mask in which each bit enables the invocation of the

DataReaderListener for a certain status.
324
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operation attaches a DataReaderListener to the DataReader. Only one
DataReaderListener can be a t t ached to each DataReader. I f a
DataReaderListener was already attached, the operation will replace it with the
new one. When a_listener is the null reference, it represents a listener that is
treated as a NOOP1 for all statuses activated in the bitmask.

Communication Status
For each communication status, the StatusChangedFlag flag is initially set to
false. It becomes true whenever that communication status changes. For each
communication status activated in the mask, the associated DataReaderListener
operation is invoked and the communication status is reset to false, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
status is reset prior to calling the listener, so if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset. An exception to this rule is the null listener, which does not reset the
communication statuses for which it is invoked.
The following statuses are applicable to the DataReaderListener:
• REQUESTED_DEADLINE_MISSED_STATUS

• REQUESTED_INCOMPATIBLE_QOS_STATUS

• SAMPLE_LOST_STATUS

• SAMPLE_REJECTED_STATUS

• DATA_AVAILABLE_STATUS

• LIVELINESS_CHANGED_STATUS

• SUBSCRIPTION_MATCHED_STATUS.
Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant ANY_STATUS can be used
to select all statuses applicable to the DataReaderListener.

Status Propagation
In ca s e a commun ica t i on s t a t u s i s no t ac t i va t ed i n t he mask , t h e
SubscriberListener of the DataReaderListener is invoked (if attached and
activated for the status that occurred). This allows the application to set a default
behaviour in the SubscriberListener of the containing Subscriber and a

1. Short for No-Operation, an instruction that peforms nothing at all.

325

API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

DataReader specific behaviour when needed. In case the communication status is
not act ivated in the mask of the SubscriberListener as well , the
communication status will be propagated to the DomainParticipantListener
of t he c on ta in i ng DomainParticipant . I n c a s e t h e
DomainParticipantListener is also not attached or the communication status
is not activated in its mask, the application is not notified of the change.
The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS are
“Read Communication Statuses” and are an exception to all other plain
communication statuses: they have no corresponding status structure that can be
obtained with a get_<status_name>_status operation and they are mutually
exclusive. When new information becomes available to a DataReader, the Data
D i s t r ib u t i o n Se r v i c e w i l l f i r s t l o o k i n a n a t t a c h e d a n d a c t i v a t e d
SubscriberListener or DomainParticipantListener (in that order) for the
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look in an attached and activated
DataReaderListener, SubscriberListener or DomainParticipant
Listener for the DATA_AVAILABLE_STATUS (in that order).

Return Code
When the operation returns:
• RETCODE_OK - the DataReaderListener is attached
• RETCODE_ERROR - an internal error has occurred
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.2.31 set_qos

Scope
DDS.DataReader

Synopsis
import DDS.*;
public int
 set_qos
 (DataReaderQos qos);

Description
This operation replaces the existing set of QosPolicy settings for a DataReader.
326
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Parameters
in DataReaderQos qos - the new set of QosPolicy settings for the

DataReader.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER, RETCODE_UNSUPPORTED, RETCODE_ALREADY_
DELETED, RETCODE_OUT_OF_RESOURCES, RETCODE_IMMUTABLE_POLICY
or RETCODE_INCONSISTENT_POLICY.

Detailed Description
This operation replaces the existing set of QosPolicy settings for a DataReader.
The parameter qos contains the QosPolicy settings which is checked for
self-consistency and mutability. When the application tries to change a QosPolicy
setting for an enabled DataReader, which can only be set before the DataReader
is enabled, the operation will fail and a RETCODE_IMMUTABLE_POLICY is returned.
In other words, the application must provide the presently set QosPolicy settings
in case of the immutable QosPolicy settings. Only the mutable QosPolicy
settings can be changed. When qos contains conflicting QosPolicy setting (not
self-consistent), the operation will fail and a RETCODE_INCONSISTENT_POLICY is
returned.
The set of QosPolicy settings specified by the qos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned RETCODE_OK).

Return Code
When the operation returns:
• RETCODE_OK - the new DataReaderQos is set
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the parameter qos is not a valid DataReaderQos.

It contains a QosPolicy setting with an invalid Duration_t value.
• RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are

currently not supported by OpenSplice.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_IMMUTABLE_POLICY - the parameter qos contains an immutable
QosPolicy setting with a different value than set during enabling of the
DataReader
327
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_INCONSISTENT_POLICY - the parameter qos contains conflicting
QosPolicy settings, e.g. a history depth that is higher than the specified resource
limits.

3.5.2.32 take (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.

Synopsis
import DDS.*;
public int
 take
 (<type>SeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 int sample_states,
 int view_states,
 int instance_states);

3.5.2.33 take_instance (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.

Synopsis
import DDS.*;
public int
 take_instance
 (<type>SeqHolder data_values,
 SampleInfoSeqHolder info_seq
 int max_samples,
 long a_handle,
 int sample_states,
 int view_states,
 int instance_states);

3.5.2.34 take_next_instance (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.

Synopsis
import DDS.*;
public int
328
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 take_next_instance
 (<type>SeqHolder data_values,
 SampleInfoSeqHolder info_seq
 int max_samples,
 long a_handle,
 int sample_states,
 int view_states,
 int instance_states);

3.5.2.35 take_next_instance_w_condition (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.

Synopsis
import DDS.*;
public int
 take_next_instance_w_condition
 (<type>SeqHolder data_values,
 SampleInfoSeqHolder info_seq
 int max_samples,
 long a_handle,
 ReadCondition a_condition);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.36 take_next_sample (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.

Synopsis
import DDS.*;
public int
 take_next_sample
 (<type>Holder data_value,
 SampleInfoHolder sample_info);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.37 take_w_condition (abstract)
To use this operation, a datatype specific interface <type>DataReader must be
used. For further explanation see the description for the fictional data type Foo
interface FooDataReader.

Synopsis
import DDS.*;
329
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

public int
 take_w_condition
 (<type>SeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 ReadCondition a_condition);

3.5.2.38 wait_for_historical_data

Scope
DDS.DataReader

Synopsis
import DDS.*;
public int
 wait_for_historical_data
 (Duration_t max_wait);

Description
This operation will block the application thread until all “historical” data is
received.

Parameters
in Duration_t max_wait - the maximum duration to block for the

wait_for_historical_data, after which the application thread is
unblocked. The special constant DURATION_INFINITE can be used when the
maximum waiting time does not need to be bounded.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED , RETCODE_OUT_OF_RESOURCES ,
RETCODE_NOT_ENABLED or RETCODE_TIMEOUT.

Detailed Description
This operation behaves differently for DataReader objects which have a
non-VOLATILE_DURABILITY_QOS DurabilityQosPolicy and for
DataReader ob j ec t s wh ich have a VOLATILE_DURABILITY_QOS
DurabilityQosPolicy.
As soon as an application enables a non-VOLATILE_DURABILITY_QOS
DataReader it will start receiving both “historical” data, i.e. the data that was
written prior to the time the DataReader joined the domain, as well as any new
330
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

data written by the DataWriter objects. There are situations where the application
logic may require the application to wait until all “historical” data is received. This
is the purpose of the wait_for_historical_data operation.
As soon as an application enables a VOLATILE_DURABILITY_QOS DataReader it
will not start receiving “historical” data but only new data written by the
DataWriter objects. By calling wait_for_historical_data the DataReader
explicitly requests the Data Distribution Service to start receiving also the
“historical” data and to wait until either all “historical” data is received, or the
duration specified by the max_wait parameter has elapsed, whichever happens
first.

Thread Blocking
The operation wait_for_historical_data blocks the calling thread until either
all “historical” data is received, or the duration specified by the max_wait
parameter elapses, whichever happens first. A return value of RETCODE_OK
indicates that all the “historical” data was received; a return value of
RETCODE_TIMEOUT indicates that max_wait elapsed before all the data was
received.

Return Code
When the operation returns:
• RETCODE_OK - the “historical” data is received
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the DataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the DataReader is not enabled.
• RETCODE_TIMEOUT - not all data is received before max_wait elapsed.

3.5.2.39 Interface FooDataReader
The pre-processor generates from IDL type descriptions the application
<type>DataReader interfaces. For each application data type that is used as
Topic data type, a typed interface <type>DataReader extends the DataReader
interface. In this paragraph, the interface FooDataReader in the package SPACE
describes the operations of these extending <type>DataReader interfaces as an
example for the fictional application type Foo (defined in the module SPACE).
331
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

State Masks
A FooDataReader refers to exactly one TopicDescription (either a Topic, a
ContentFilteredTopic or a MultiTopic) that identifies the data to be read.
Therefore it refers to exactly one data type. The Topic must exist prior to the
FooDataReader creation. The FooDataReader may give access to several
instances of the data type, which are distinguished from each other by their key. The
FooDataReader is attached to exactly one Subscriber which acts as a factory
for it.
The interface description is as follows:
 public interface FooDataReader

{
//
// extends interface Entity
//
// public StatusCondition
// get_statuscondition
// (void);
// public int
// get_status_changes
// (void);
// public int
// enable
// (void);
//
// extended to interface DataReader
//
// public ReadCondition
// create_readcondition
// (int sample_states,
// int view_states,
// int instance_states);

// public QueryCondition
// create_querycondition
// (int sample_states,
// int view_states,
// int instance_states,
// String query_expression,
// String[] query_parameters);

// public int
// delete_readcondition
// (ReadCondition a_condition);

// public int
// delete_contained_entities
// (void);
332
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// public int
// set_qos
// (DataReaderQos qos);

// public int
// get_qos
// (DataReaderQosHolder qos);

// public int
// set_listener
// (DataReaderListener a_listener,
// int mask);

// public DataReaderListener
// get_listener
// (void);

// public TopicDescription
// get_topicdescription
// (void);

// public Subscriber
// get_subscriber
// (void);

// public int
// get_sample_rejected_status
// (SampleRejectedStatusHolder status);

// public int
// get_liveliness_changed_status
// (LivelinessChangedStatusHolder status);

// public int
// get_requested_deadline_missed_status
// (RequestedDeadlineMissedStatusHolder status);

// public int
// get_requested_incompatible_qos_status
// (RequestedIncompatibleQosStatusHolder status);

// public int
// get_subscription_matched_status
// (SubscriptionMatchedStatusHolder status);

// public int
// get_sample_lost_status
// (SampleLostStatusHolder status);

333
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// public int
// wait_for_historical_data
// (Duration_t max_wait);

// public int
// get_matched_publications
// (InstanceHandleSeqHolder publication_handles);

// public int
// get_matched_publication_data
// (PublicationBuiltinTopicDataHolder publication_data,
// long publication_handle);
//
// implemented API operations
//

public int
 read
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 int sample_states,
 int view_states,
 int instance_states);
public int
 take
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 int sample_states,
 int view_states,
 int instance_states);
public int
 read_w_condition
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 ReadCondition a_condition);
public int
 take_w_condition
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 ReadCondition a_condition);
public int
 read_next_sample
 (FooHolder data_value,

 SampleInfoHolder sample_info);
public int
 take_next_sample
 (FooHolder data_value,
334
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 SampleInfoHolder sample_info);
public int
 read_instance
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 long a_handle,
 int sample_states,
 int view_states,
 int instance_states);
public int
 take_instance
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 long a_handle,
 int sample_states,
 int view_states,
 int instance_states);
public int
 read_next_instance
 (FooSeqHolder data_values,
 SampleInfoSeqHolder sample_info,
 int max_samples,
 long a_handle,
 int sample_states,
 int view_states,
 int instance_states);
public int
 take_next_instance
 (FooSeqHolder data_values,
 SampleInfoSeqHolder sample_info,
 int max_samples,
 long a_handle,
 int sample_states,
 int view_states,
 int instance_states);
public int
 read_next_instance_w_condition
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 long a_handle,
 ReadCondition a_condition);
public int
 take_next_instance_w_condition
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 long a_handle,
335
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 ReadCondition a_condition);
public int
 return_loan
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq);
public int
 get_key_value

 (FooHolder key_holder
 long handle);
long
 lookup_instance
 (Foo instance_data);

};

The following paragraphs describe the usage of all FooDataReader operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.5.2.40 create_querycondition (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
QueryCondition
 create_querycondition
 (int sample_states,
 int view_states,
 int instance_states,
 String query_expression,
 String[] query_parameters);

3.5.2.41 create_readcondition (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
ReadCondition
 create_readcondition
 (int sample_states,
 int view_states,
 int instance_states);

3.5.2.42 delete_contained_entities (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.
336
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
int
 delete_contained_entities
 (void);

3.5.2.43 delete_readcondition (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
 delete_readcondition
 (ReadCondition a_condition);

3.5.2.44 enable (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
public int

enable
 (void);

3.5.2.45 get_key_value

Scope
SPACE.FooDataReader

Synopsis
public int
 get_key_value
 (FooHolder key_holder,
 long handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.46 get_listener (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public DataReaderListener
 get_listener
337
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 (void);

3.5.2.47 get_liveliness_changed_status (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
 get_liveliness_changed_status
 (LivelinessChangedStatusHolder status);

3.5.2.48 get_matched_publication_data (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
 get_matched_publication_data
 (PublicationBuiltinTopicDataHolder publication_data,
 long publication_handle);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.49 get_matched_publications (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
 get_matched_publications
 (InstanceHandleSeqHolder publication_handles);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.50 get_qos (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public void
 get_qos
 (DataReaderQosHolder qos);
338
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.51 get_requested_deadline_missed_status (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
 get_requested_deadline_missed_status
 (RequestedDeadlineMissedStatusHolder status);

3.5.2.52 get_requested_incompatible_qos_status (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
 get_requested_incompatible_qos_status
 (RequestedIncompatibleQosStatusHolder status);

3.5.2.53 get_sample_lost_status (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
 get_sample_lost_status
 (SampleLostStatusHolder status);

3.5.2.54 get_sample_rejected_status (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
 get_sample_rejected_status
 (SampleRejectedStatusHolder status);

3.5.2.55 get_status_changes (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.
339
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
public int
 get_status_changes
 (void);

3.5.2.56 get_statuscondition (inherited)
This operation is inherited and therefore not described here. See the interface
Entity for further explanation.

Synopsis
import DDS.*;
public StatusCondition
 get_statuscondition
 (void);

3.5.2.57 get_subscriber (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public Subscriber
 get_subscriber
 (void);

3.5.2.58 get_subscription_match_status (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
 get_subscription_matched_status
 (SubscriptionMatchedStatusHolder status);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.59 get_topicdescription (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public TopicDescription
 get_topicdescription
340
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 (void);

3.5.2.60 lookup_instance

Scope
SPACE.FooDataReader

Synopsis
import DDS.*;
public long
 lookup_instance
 (Foo instance_data);

Description
This operation returns the value of the instance handle which corresponds to the
instance_data.

Parameters
in Foo instance_data - the instance for which the corresponding instance

handle needs to be looked up.

Return Value
long - Result value is the instance handle which corresponds to the

instance_data.

Detailed Description
This operation returns the value of the instance handle which corresponds to the
instance_data. The instance handle can be used in read operations that operate
on a specific instance. Note that DataReader instance handles are local, and are
not interchangeable with DataWriter instance handles nor with instance handles
of an other DataReader. If the DataReader is already deleted, the handle value
HANDLE_NIL is returned.

3.5.2.61 read

Scope
SPACE.FooDataReader

Synopsis
import DDS.*;
public int
 read
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
341
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 int max_samples,
 int sample_states,
 int view_states,
 int instance_states);

Description
This operation reads a sequence of Foo samples from the FooDataReader.

Parameters
inout FooSeqHolder data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqHolder info_seq - the returned SampleInfo object
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samples that is returned.
in int sample_states - a mask, which selects only those samples with the

desired sample states.
in int view_states - a mask, which selects only those samples with the desired

view states.
in int instance_states - a mask, which selects only those samples with the

desired instance states.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples from the FooDataReader. The
data is returned by the parameters data_values and info_seq. The number of
samples that is returned is limited by the parameter max_samples. This operation
is part of the specialized interface which is generated for the particular application
data type (in this case type Foo) that is being read. If the FooDataReader has no
samples that meet the constraints, the return value is RETCODE_NO_DATA.

State Masks
The read operation depends on a selection of the samples by using three masks:
342
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• sample_states is the mask, which selects only those samples with the desired
sample states READ_SAMPLE_STATE, NOT_READ_SAMPLE_STATE or both

• view_states is the mask, which selects only those samples with the desired
view states NEW_VIEW_STATE, NOT_NEW_VIEW_STATE or both

• instance_states is the mask, which selects only those samples with the
desired instance states ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE_STATE, NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or a
combination of these

Destination Order
In any case, the relative order between the samples of one instance is consistent with
the DestinationOrderQosPolicy of the Subscriber.
W h e n t h e DestinationOrderQosPolicy kind i s
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS, the samples belonging
to the same instances will appear in the relative order in which they were received
(FIFO);
W h e n t h e DestinationOrderQosPolicy kind i s
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS, the samples belonging to
the same ins tances wi l l appear in the re la t ive order impl ied by the
source_timestamp.

Data Sample
In addition to the sample sequence (data_values parameter), the operation also
returns a sequence of SampleInfo objects with the parameter info_seq. The
info_seq objects and data_values also determine the behaviour of this
operation.

Resource Control
The in i t i a l l eng th o f t he data_values and info_seq s equences
(received_data.value.length and info_seq.value.length) determine
the precise behaviour of the read operation. The behaviour of the read operation is
as specified by the following rules:
• On successful output, the sequence holders contain arrays whose length is equal

to the number of returned samples. These arrays may be different from the ones
originally passed in the sequence holders.

• If the Holder objects have value == null, or if their value fields point to
arrays that have length == 0, the received_data and info_seq sequence
are filled with elements that are “loaned” by the FooDataReader. On output, the
343
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

sequence holders contain arrays whose length is equal to the number of returned
samples. In this case the application will need to “return the loan” to the Data
Distribution Service using the return_loan operation.

• If the Holder objects have value fields that point to arrays that have length > 0,
the read operation will copy the Foo samples and info_seq values into the
elements already allocated inside the sequences (effectively overwriting the
current state of these elements). On output the sequence holders contain arrays
whose length is equal to the number of returned samples. The application can
pre-allocate the elements of the array and does not need to “return the loan”. The
number of samples copied depends on the relative values of length and
max_samples:
 - If max_samples == LENGTH_UNLIMITED, at most length values are copied.

The use of this variant lets the application limit the number of samples returned
to what the sequence can accommodate;

 - If max_samples <= length, at most max_samples values are copied. The
use of this variant lets the application limit the number of samples returned to
fewer than what the sequence can accommodate;

 - If max_samples > length the read operation will fail and returns
RETCODE_PRECONDITION_NOT_MET. This avoids the potential confusion
where the application expects to be able to access up to max_samples, but that
number can never be returned, even if they are available in the
FooDataReader, because the output sequence can not accommodate them.

Buffer Loan
As described above, upon return the data_values and info_seq sequences may
contain elements “loaned” from the Data Distribution Service. If this is the case, the
application will need to use the return_loan operation to return the “loan” once it
is no longer using the data in the sequence. Upon return from return_loan, the
Holder objects have their value set to null.
The application must remember if it is necessary to “return the loan” or not.
However, in many cases it may be simpler to always call return_loan, as this
operation is harmless if the sequence does not hold a loan.

Data Sequence
On output, the sequence of data values and the sequence of SampleInfo objects are
of the same length and are in an one-to-one correspondence. Each SampleInfo
object provides information, such as the source_timestamp, the sample_state,
view_state, and instance_state, etc., about the matching sample.
344
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Some elements in the returned sequence may not have valid data:the valid_data
field in the SampleInfo indicates whether the corresponding data value contains
any meaningful data. If not, the data value is just a ‘dummy’ sample for which only
the keyfields have been assigned. It is used to accompany the SampleInfo that
communicates a change in the instance_state of an instance for which there is
no ‘real’ sample available.
For example, when an application always ‘takes’ all available samples of a
particular instance, there is no sample available to report the disposal of that
instance. In such a case the DataReader will insert a dummy sample into the
data_values sequence to accompany the SampleInfo element in the info_seq
sequence that communicates the disposal of the instance.
The act of reading a sample sets its sample_state to READ_SAMPLE_STATE. If the
sample belongs to the most recent generation of the instance, it also sets the
view_state of the instance to NOT_NEW_VIEW_STATE. It does not affect the
instance_state of the instance.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - one or more of the received_data and
info_seq parameters is an invalid reference.

• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the max_samples > length and
max_samples is not LENGTH_UNLIMITED

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.62 read_instance

Scope
SPACE.FooDataReader

Synopsis
import DDS.*;
public int
 read_instance
 (FooSeqHolder data_values,
345
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 SampleInfoSeqHolder info_seq,
 int max_samples,
 long a_handle,
 int sample_states,
 int view_states,
 int instance_states);

Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader.

Parameters
inout FooSeqHolder data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqHolder info_seq - the returned SampleInfo object
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samples that is returned.
in long a_handle - the single instance, the samples belong to.
in int sample_states - a mask, which selects only those samples with the

desired sample states.
in int view_states - a mask, which selects only those samples with the desired

view states.
in int instance_states - a mask, which selects only those samples with the

desired instance states.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader. The behaviour is identical to read except for that all samples
returned belong to the single specified instance whose handle is a_handle. Upon
successful return, the data collection will contain samples all belonging to the same
instance. The data is returned by the parameters data_values and info_seq. The
corresponding SampleInfo.instance_handle in info_seq will have the value
346
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

of a_handle. The DataReader will check that each sample belongs to the
specified instance (indicated by a_handle) otherwise it will not place the sample in
the returned collection.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - one or more of the received_data and
info_seq parameters is an invalid reference or a_handle is not a valid handle.

• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the max_samples > length and
max_samples is not LENGTH_UNLIMITED

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.63 read_next_instance

Scope
SPACE.FooDataReader

Synopsis
import DDS.*;
public int
 read_next_instance
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 long a_handle,
 int sample_states,
 int view_states,
 int instance_states);

Description
This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader.
347
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Parameters
inout FooSeqHolder data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqHolder info_seq - the returned SampleInfo object
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samples that is returned.
in long a_handle - the current single instance, the returned samples belong to

the next single instance.
in int sample_states - a mask, which selects only those samples with the

desired sample states.
in int view_states - a mask, which selects only those samples with the desired

view states.
in int instance_states - a mask, which selects only those samples with the

desired instance states.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader. The behaviour is similar to read_instance (all samples
returned belong to a single instance) except that the actual instance is not directly
specified. Rather the samples will all belong to the ‘next’ instance with
instance_handle ‘greater’ (according to some internal-defined order) than
a_handle, that has available samples. The data is returned by the parameters
data_values and info_seq . T h e c o r r e s p o n d i n g
SampleInfo.instance_handle in info_seq will has the value of the next
instance with respect to a_handle.

Instance Order
The internal-defined order is not important and is implementation specific. The
important thing is that, according to the Data Distribution Service, all instances are
ordered relative to each other. This ordering is between the instances, that is, it does
not depend on the actual samples received. For the purposes of this explanation it is
‘as if ’ each instance handle was represented as a unique integer.
348
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

The behaviour of read_next_instance is ‘as if ’ the DataReader invoked
read_instance passing the smallest instance_handle among all the ones that:
• are greater than a_handle
• have available samples (i.e. samples that meet the constraints imposed by the

specified states)
The special value HANDLE_NIL is guaranteed to be ‘less than’ any valid
instance_handle . S o th e u s e o f t h e p a r a m e t e r v a l u e
a_handle==HANDLE_NIL.value will return the samples for the instance which
has the smallest instance_handle among all the instances that contains available
samples.

Typical Use
The opera t ion read_next_instance i s in tended to be used in an
appl icat ion-dr iven i tera t ion where the appl icat ion s tar ts by pass ing
a_handle==HANDLE_NIL.value, examines the samples returned, and then uses
the instance_handle returned in the SampleInfo as the value of a_handle
argument to the next call to read_next_instance. The iteration continues until
read_next_instance returns the return value RETCODE_NO_DATA.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - one or more of the received_data and
info_seq parameters is an invalid reference or a_handle is not a valid handle.

• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the max_samples > length and
max_samples is not LENGTH_UNLIMITED

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.64 read_next_instance_w_condition

Scope
SPACE.FooDataReader
349
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
 read_next_instance_w_condition
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 long a_handle,
 ReadCondition a_condition);

Description
This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader.

Parameters
inout FooSeqHolder data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqHolder info_seq - the returned SampleInfo object
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samples that is returned.
in long a_handle - the current single instance, the returned samples belong to

the next single instance.
in ReadCondition a_condition - a reference to a ReadCondition object or

QueryCondition object which filters the data before it is returned by the read
operation.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader, filtered by a ReadCondition or QueryCondition.
The behaviour is identical to FooDataReader_read_next_instance except for
that the samples are filtered by a ReadCondition or QueryCondition. When
us in g a ReadCondition , t h e r e s u l t i s t h e s a m e a s t h e
FooDataReader_read_next_instance operation with the same state
350
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

parameters filled in as for the create_readcondition. In this way, the
application can avoid repeating the same parameters, specified when creating the
ReadCondition. When using a QueryCondition, a content based filtering can
be done. When either using a ReadCondition or QueryCondition, the condition
must be created by this FooDataReader. Otherwise the operation will fail and
returns RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - one or more of the received_data, info_seq

and a_condition parameters is an invalid reference or a_handle is not a valid
handle.

• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the max_samples > length and
max_samples is not LENGTH_UNLIMITED

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.65 read_next_sample

Scope
SPACE.FooDataReader

Synopsis
import DDS.*;
public int
 read_next_sample
 (FooHolder data_value,
 SampleInfoHolder sample_info);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.66 read_w_condition

Scope
SPACE.FooDataReader
351
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
 read_w_condition
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 ReadCondition a_condition);

Description
This operation reads a sequence of Foo samples from the FooDataReader, filtered
by a ReadCondition or QueryCondition.

Parameters
inout FooSeqHolder data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqHolder info_seq - the returned SampleInfo object
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samples that is returned.
in ReadCondition a_condition - a reference to a ReadCondition or

QueryCondition which filters the data before it is returned by the read
operation.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples from the FooDataReader, filtered
by a ReadCondition or QueryCondition. The condition reference from both
create_readcondition or create_querycondition may be used. The
behaviour is identical to read except for that the samples are filtered by a
ReadCondition or QueryCondition. When using a ReadCondition, the result
is the same as the read operation with the same state parameters filled in as for the
create_readcondition. In this way, the application can avoid repeating the
same parameters, specified when creating the ReadCondition. When using a
QueryCondition, a content based filtering can be done. When either using a
352
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

ReadCondition or QueryCondition, the condition must be created by this
FooDataReader. O t h e r w i s e t h e o p e r a t i o n w i l l f a i l a n d r e t u r n s
RETCODE_PRECONDITION_NOT_MET.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - one or more of the received_data, info_seq

and a_condition parameters is an invalid reference.
• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the max_samples > length and
max_samples is not LENGTH_UNLIMITED

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.67 return_loan

Scope
SPACE.FooDataReader

Synopsis
import DDS.*;
public int
 return_loan
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq);

Description
This operation indicates to the DataReader that the application is done accessing
the sequence of data_values and info_seq.

Parameters
inout FooSeqHolder data_values - the sample data sequence which was

loaned from the DataReader.
inout SampleInfoSeqHolder info_seq - the SampleInfo object sequence

which was loaned from the DataReader.
353
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED o r
RETCODE_PRECONDITION_NOT_MET.

Detailed Description
This operation indicates to the DataReader that the application is done accessing
the sequence of data_values and info_seq obtained by some earlier invocation
of the operation read or take (or any of the similar operations) on the
DataReader.
The data_values and info_seq must belong to a single related pair; that is, they
should correspond to a pair returned from a single call to the operation read or
take. The data_values and info_seq must also have been obtained from the
same DataReader to which they are returned. If either of these conditions is not
met the operation will fail and returns RETCODE_PRECONDITION_NOT_MET.

Buffer Loan
The operation return_loan allows implementations of the read and take
operations to “loan” buffers from the Data Distribution Service to the application
and in this manner provide “zero-copy” access to the data. During the loan, the Data
Distribution Service will guarantee that the data_values and info_seq are not
modified.
It is not necessary for an application to return the loans immediately after calling the
operation read or take. However, as these buffers correspond to internal resources
inside the DataReader, the application should not retain them indefinitely.

Calling return_loan
The use of the return_loan operation is only necessary if the call to the operation
read or take “loaned” buffers to the application. This only occurs if the
data_values and info_seq sequences had length=0 at the time the operation
read or take was called. The application must remember if it is necessary to
“return the loan” or not. However, calling the operation return_loan on a pair of
sequences that does not have a loan is safe and has no side effects.
If the pair of sequences had a loan, upon return from the operation return_loan
their Holder objects will have their value set to null.

Return Code
When the operation returns:
354
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_OK - the DataReader is informed that the sequences will not be used
any more

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - either or both of received_data or info_seq is

an invalid reference
• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - one of the following is true

 - the received_data and info_seq does not belong to a single related pair
 - the received_data and info_seq was not obtained from this
FooDataReader

3.5.2.68 set_listener (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
 set_listener
 (DataReaderListener a_listener,
 int mask);

3.5.2.69 set_qos (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
 set_qos
 (DataReaderQos qos);

3.5.2.70 take

Scope
SPACE.FooDataReader
355
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public int
 take
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 int sample_states,
 int view_states,
 int instance_states);

Description
This operation reads a sequence of Foo samples from the FooDataReader and by
doing so, removes the data from the FooDataReader.

Parameters
inout FooSeqHolder data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqHolder info_seq - the returned SampleInfo object
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samples that is returned.
in int sample_states - a mask, which selects only those samples with the

desired sample states.
in int view_states - a mask, which selects only those samples with the desired

view states.
in int instance_states - a mask, which selects only those samples with the

desired instance states.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples from the FooDataReader and by
doing so, removes the data from the FooDataReader, so it can not be read or taken
again. The behaviour is identical to read except for that the samples are removed
from the FooDataReader.
356
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - either or both of received_data or info_seq is

an invalid reference
• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the max_samples > length and
max_samples is not LENGTH_UNLIMITED

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.71 take_instance

Scope
SPACE.FooDataReader

Synopsis
import DDS.*;
public int
 take_instance
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 long a_handle,
 int sample_states,
 int view_states,
 int instance_states);

Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader and by doing so, removes the data from the FooDataReader.

Parameters
inout FooSeqHolder data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.
357
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

inout SampleInfoSeqHolder info_seq - the returned SampleInfo object
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samples that is returned.
in long a_handle - the single instance, the samples belong to.
in int sample_states - a mask, which selects only those samples with the

desired sample states.
in int view_states - a mask, which selects only those samples with the desired

view states.
in int instance_states - a mask, which selects only those samples with the

desired instance states.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader and by doing so, removes the data from the FooDataReader, so
it can not be read or taken again. The behaviour is identical to read_instance
except for that the samples are removed from the FooDataReader.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - either or both of received_data or info_seq is

an invalid reference or a_handle is not a valid handle.
• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the max_samples > length and
max_samples is not LENGTH_UNLIMITED

• RETCODE_NO_DATA - no samples that meet the constraints are available.

358
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.2.72 take_next_instance

Scope
SPACE.FooDataReader

Synopsis
import DDS.*;
public int
 take_next_instance
 (FooSeqHolder data_values,
 SampleInfoSeqHolder sample_info,
 int max_samples,
 long a_handle,
 int sample_states,
 int view_states,
 int instance_states);

Description
This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader and by doing so, removes the data from the FooDataReader.

Parameters
inout FooSeqHolder data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqHolder info_seq - the returned SampleInfo object
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samples that is returned.
in long a_handle - the current single instance, the returned samples belong to

the next single instance.
in int sample_states - a mask, which selects only those samples with the

desired sample states.
in int view_states - a mask, which selects only those samples with the desired

view states.
in int instance_states - a mask, which selects only those samples with the

desired instance states.
359
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader and by doing so, removes the data from the FooDataReader, so
i t c a n n o t b e r e a d o r t a k e n a ga i n . Th e b e h a v i o u r i s i d e n t i c a l t o
read_next_instance except for that the samples are removed from the
FooDataReader.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - either or both of received_data or info_seq is

an invalid reference or a_handle is not a valid handle.
• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the max_samples > length and
max_samples is not LENGTH_UNLIMITED

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.73 take_next_instance_w_condition

Scope
SPACE.FooDataReader

Synopsis
import DDS.*;
public int
 take_next_instance_w_condition
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
360
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 long a_handle,
 ReadCondition a_condition);

Description
This operation reads a sequence of Foo samples of the next single instance from the
FooDataReader and by doing so, removes the data from the FooDataReader.

Parameters
inout FooSeqHolder data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqHolder info_seq - the returned SampleInfo object
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samples that is returned.
in long a_handle - the current single instance, the returned samples belong to

the next single instance.
in ReadCondition a_condition - a reference to a ReadCondition or

QueryCondition which filters the data before it is returned by the read
operation.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples of a single instance from the
FooDataReader, filtered by a ReadCondition or QueryCondition
and by doing so, removes the data from the FooDataReader, so it can not be read
o r t a ke n a ga in . T h e b e h a v i o u r i s i de n t i c a l t o
read_next_instance_w_condition except for that the samples are removed
from the FooDataReader.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader.

• RETCODE_ERROR - an internal error has occurred.
361
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_BAD_PARAMETER - one or more of the received_data, info_seq
and a_condition parameters is an invalid reference or a_handle is not a valid
handle.

• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the max_samples > length and
max_samples is not LENGTH_UNLIMITED

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.74 take_next_sample

Scope
SPACE.FooDataReader

Synopsis
import DDS.*;
public int
 take_next_sample
 (FooHolder data_value,
 SampleInfoHolder sample_info);

Note: This operation is not yet implemented. It is scheduled for a future release.

3.5.2.75 take_w_condition

Scope
SPACE.FooDataReader

Synopsis
import DDS.*;
public int
 take_w_condition
 (FooSeqHolder data_values,
 SampleInfoSeqHolder info_seq,
 int max_samples,
 ReadCondition a_condition);

Description
This operation reads a sequence of Foo samples from the FooDataReader, filtered
by a ReadCondition or QueryCondition and by doing so, removes the data
from the FooDataReader.
362
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Parameters
inout FooSeqHolder data_values - the returned sample data sequence.

data_values is also used as an input to control the behaviour of this
operation.

inout SampleInfoSeqHolder info_seq - the returned SampleInfo object
sequence. info_seq is also used as an input to control the behaviour of this
operation.

in int max_samples - the maximum number of samples that is returned.
in ReadCondition a_condition - a reference to a ReadCondition or

QueryCondition which filters the data before it is returned by the read
operation.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED ,
RETCODE_OUT_OF_RESOURCES , RETCODE_NOT_ENABLED ,
RETCODE_PRECONDITION_NOT_MET or RETCODE_NO_DATA.

Detailed Description
This operation reads a sequence of Foo samples from the FooDataReader, filtered
by a ReadCondition or QueryCondition and by doing so, removes the data
from the FooDataReader, so it can not be read or taken again. The behaviour is
identical to read_w_condition except for that the samples are removed from the
FooDataReader.

Return Code
When the operation returns:
• RETCODE_OK - a sequence of data values is available and removed from the
FooDataReader.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - one or more of the received_data, info_seq

and a_condition parameters is an invalid reference.
• RETCODE_ALREADY_DELETED - the FooDataReader has already been deleted
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.
• RETCODE_NOT_ENABLED - the FooDataReader is not enabled.
• RETCODE_PRECONDITION_NOT_MET - the max_samples > length and
max_samples is not LENGTH_UNLIMITED.
363
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• RETCODE_NO_DATA - no samples that meet the constraints are available.

3.5.2.76 wait_for_historical_data (inherited)
This operation is inherited and therefore not described here. See the interface
DataReader for further explanation.

Synopsis
import DDS.*;
public int
 wait_for_historical_data
 (Duration_t max_wait);

3.5.3 Class DataSample
A DataSample represents an atom of data information (i.e. one value for an
instance) as returned by the DataReader’s read/take operations. It consists of
two parts: A SampleInfo and the Data itself. The Data part is the data as
produced by a Publisher. The SampleInfo part contains additional information
related to the data provided by the Data Distribution Service.

3.5.4 Class SampleInfo
The class SampleInfo represents the additional information that accompanies the
data in each sample that is read or taken.
The interface description of this class is as follows:

public class SampleInfo
{

public int sample_state;
public int view_state;
public int instance_state;
public Time_t source_timestamp;
public long instance_handle;
public BuiltinTopicKey_t publication_handle;
public int disposed_generation_count;
public int no_writers_generation_count;
public int sample_rank;
public int generation_rank;
public int absolute_generation_rank;
public boolean valid_data;

};

The next paragraph describes the usage of the SampleInfo struct.

3.5.4.1 SampleInfo

Scope
DDS
364
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public class SampleInfo
 {
 public int sample_state;
 public int view_state;
 public int instance_state;
 public Time_t source_timestamp;
 public long instance_handle;
 public BuiltinTopicKey_t publication_handle;
 public int disposed_generation_count;
 public int no_writers_generation_count;
 public int sample_rank;
 public int generation_rank;
 public int absolute_generation_rank;
 public boolean valid_data;
 };

Description
The class SampleInfo represents the additional information that accompanies the
data in each sample that is read or taken.

Attributes
int sample_state - whether or not the corresponding data sample has already

been read.
int view_state - whether the DataReader has already seen samples of the

most-current generation of the related instance.
int instance_state - whether the instance is alive, has no writers or is disposed

of.
Time_t source_timestamp - the time provided by the DataWriter when the

sample was written.
long instance_handle - the handle that identifies locally the corresponding

instance.
long publication_handle - the handle that identifies locally the DataWriter

that modified the instance. In fact it is the instance_handle of the built-in
DCPSPublication sample that describes this DataWriter. It can be used as a
parameter to the DataReader operation get_matched_publication_data
to obtain this built-in DCPSPublication sample.

int disposed_generation_count - the number of times the instance has
become alive after it was disposed of explicitly by a DataWriter.
365
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

int no_writers_generation_count - the number of times the instance has
become alive after it was disposed of because there were no DataWriter
objects.

int sample_rank - the number of samples related to the same instance that are
found in the collection returned by a read or take operation.

int generation_rank - the generation difference between the time the sample
was received and the time the most recent sample in the collection was received.

int absolute_generation_rank - the generation difference between the time
the sample was received and the time the most recent sample was received.

boolean valid_data - whether the DataSample contains any meaningful data. If
not, the sample is only used to communicate a change in the instance_state
of the instance.

Detailed Description
The class SampleInfo represents the additional information that accompanies the
data in each sample that is read or taken.

Generations
A generation is defined as: ‘the number of times an instance has become alive (with
instance_state==ALIVE_INSTANCE_STATE) at the time the sample was
received’. Note that the generation counters are initialized to zero when a
DataReader first detects a never-seen-before instance.
Two types of generations are distinguished: disposed_generation_count and
no_writers_generation_count.
After a DataWriter disposes an instance, the disposed_generation_count
for all DataReaders that already knew that instance will be incremented the next
time the instance is written again.
If the DataReader detects that there are no live DataWriter entities, the
instance_state o f t he sample_info w i l l c h a n g e f r o m
ALIVE_INSTANCE_STATE to NOT_ALIVE_NO_WRITERS_INSTANCE_STATE. The
next time the instance is written, no_writers_generation_count will be
incremented.

Sample Information
SampleInfo is the additional information that accompanies the data in each sample
that is ‘read’ or ‘taken’. It contains the following information:
• sample_state (READ_SAMPLE_STATE or NOT_READ_SAMPLE_STATE)

indicates whether or not the corresponding data sample has already been read.
366
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• view_state (NEW_VIEW_STATE or NOT_NEW_VIEW_STATE) indicates whether
the DataReader has already seen samples of the most-current generation of the
related instance.

• instance_state (ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_
INSTANCE_STATE, or NOT_ALIVE_NO_WRITERS_INSTANCE_STATE) indicates
whether the instance is alive, has no writers or if it has been disposed of:
 - ALIVE_INSTANCE_STATE if this instance is currently in existence.
 - NOT_ALIVE_DISPOSED_INSTANCE_STATE if this instance was disposed of by

a DataWriter.
 - NOT_ALIVE_NO_WRITERS_INSTANCE_STATE none of the DataWriter

objects currently “alive” (according to the LivelinessQosPolicy) are
writing the instance.

• source_timestamp indicates the time provided by the DataWriter when the
sample was written.

• instance_handle indicates locally the corresponding instance.
• publication_handle indicates system wide the publisher of the sample, the

local publication handle can be found with the DataReader operation
lookup_instance for the publication_handle.

• disposed_generation_count indicates the number of times the instance has
become alive after it was disposed of explicitly by a DataWriter, at the time the
sample was received.

• no_writers_generation_count indicates the number of times the instance
has become alive after its instance_state has been
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, at the time the sample was
received.

• sample_rank indicates the number of samples related to the same instance that
follow in the collection returned by a read or take operation.

• generation_rank indicates the generation difference (number of times the
instance was disposed of and become alive again) between the time the sample
was received and the time the most recent sample in the collection (related to the
same instance) was received.

• absolute_generation_rank indicates the generation difference (number of
times the instance was disposed of and become alive again) between the time the
sample was received and the time the most recent sample (which may not be in the
returned collection), related to the same instance, was received.
367
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

• valid_data indicates whether the corresponding data value contains any
meaningful data. If not, the data value is just a ‘dummy’ sample for which only
the keyfields have been assigned. It is used to accompany the SampleInfo that
communicates a change in the instance_state of an instance for which there is
no ‘real’ sample available.

3.5.5 SubscriberListener Interface
Since a Subscriber is an Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener should be of type
SubscriberListener. This interface must be implemented by the application. A
user defined class must be provided by the application which must implement the
SubscriberListener interface.

All SubscriberListener operations must be implemented in the user defined
class, it is up to the application whether an operation is empty or contains some
functionality.

The SubscriberListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The SubscriberListener is related to changes in
communication status.
The interface description is as follows:
 public interface SubscriberListener

{
//
// extends interface DataReaderListener
//
// public void
// on_requested_deadline_missed
// (DataReader reader,
// RequestedDeadlineMissedStatus status);

// public void
// on_requested_incompatible_qos
// (DataReader reader,
// RequestedIncompatibleQosStatus status);

// public void
// on_sample_rejected
// (DataReader reader,
// SampleRejectedStatus status);

// public void
// on_liveliness_changed
368
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// (DataReader reader,
// LivelinessChangedStatus& status);

// public void
// on_data_available
// (DataReader reader);

// public void
// on_subscription_matched
// (DataReader reader,
// SubscriptionMatchedStatus status);

// public void
// on_sample_lost
// (DataReader reader,
// SampleLostStatus status);
//
// external operations
//

public void
 on_data_on_readers
 (Subscriber subs);

//
// implemented API operations
// <no operations>
//
};

The following paragraphs list all SubscriberListener operations. The inherited
operations are listed but not fully described because they are not implemented in this
class. The full description of these operations is given in the classes from which they
are inherited. The abstract operation is fully described since it must be implemented
by the application.

3.5.5.1 on_data_available (inherited)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void
 on_data_available
 (DataReader reader);

3.5.5.2 on_data_on_readers

Scope
DDS.SubscriberListener
369
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public void
 on_data_on_readers
 (Subscriber subs);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when new data is available.

Parameters
in Subscriber subs - contain a reference to the Subscriber for which data is

available (this is an input to the application provided by the Data Distribution
Service).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when new data is
available for this Subscriber. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
SubscriberListener i s i n s t a l l e d a n d e n a b l e d f o r t h e
DATA_ON_READERS_STATUS.
The Data Distribution Service will provide a reference to the Subscriber in the
parameter subs for use by the application.
The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS will
occur together. In case these status changes occur, the Data Distribution Service will
l o o k f o r a n a t t a c h e d a n d a c t i v a t e d SubscriberListener o r
DomainParticipantListener (i n t h a t o r d e r) fo r t h e
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look for an attached and activated
DataReaderListener , SubscriberListener o r
DomainParticipantListener for the DATA_AVAILABLE_STATUS (in that
order).
Note that if on_data_on_readers is called, then the Data Distribution Service
will not try to call on_data_available, however, the application can force a call
to the callback function on_data_available of DataReaderListener objects
that have data by means of the notify_datareaders operation.
370
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.5.3 on_liveliness_changed (inherited)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void
 on_liveliness_changed
 (DataReader reader,
 LivelinessChangedStatus status);

3.5.5.4 on_requested_deadline_missed (inherited)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void
 on_requested_deadline_missed
 (DataReader reader,
 RequestedDeadlineMissedStatus status);

3.5.5.5 on_requested_incompatible_qos (inherited)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void]
 on_requested_incompatible_qos
 (DataReader reader,
 RequestedIncompatibleQosStatus status);

3.5.5.6 on_sample_lost (inherited)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void
 on_sample_lost
 (DataReader reader,
 SampleLostStatus status);

Note: This operation is not yet supported. It is scheduled for a future release.
371
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.5.7 on_sample_rejected (inherited)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void
 on_sample_rejected
 (DataReader reader,
 SampleRejectedStatus status);

3.5.5.8 on_subscription_matched (inherited,)
This operation is inherited and therefore not described here. See the interface
DataReaderListener for further explanation.

Synopsis
import DDS.*;
public void
 on_subscription_matched
 (DataReader reader,
 SubscriptionMatchedStatus status);

Note: This operation is not yet supported. It is scheduled for a future release.

3.5.6 DataReaderListener interface
Since a DataReader is an Entity, it has the ability to have a Listener
associated with it. In this case, the associated Listener should be of type
DataReaderListener. This interface must be implemented by the application. A
user defined class must be provided by the application which must implement the
DataReaderListener interface. All DataReaderListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DataReaderListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as a missed deadline, violation of a
QosPolicy setting, etc. The DataReaderListener is related to changes in
communication status.
The interface description of this class is as follows:
 public interface DataReaderListener

{

372
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

//
// external operations
//

public void
 on_requested_deadline_missed
 (DataReader reader,

 RequestedDeadlineMissedStatus status);
public void
 on_requested_incompatible_qos
 (DataReader reader,

 RequestedIncompatibleQosStatus status);

public void
 on_sample_rejected
 (DataReader reader,

 SampleRejectedStatus status);

public void
 on_liveliness_changed
 (DataReader reader,

 LivelinessChangedStatus status);

public void
 on_data_available
 (DataReader reader);

public public void
 on_subscription_matched
 (DataReader reader,

 SubscriptionMatchedStatus status);

public void
 on_sample_lost
 (DataReader reader,

 SampleLostStatus status);
//
// implemented API operations
// <no operations>
//
};

The following paragraphs describe the usage of all DataReaderListener
operations. These abstract operations are fully described because they must be
implemented by the application.

3.5.6.1 on_data_available

Scope
DDS.DataReaderListener
373
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Synopsis
import DDS.*;
public void
 on_data_available
 (DataReader reader);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when new data is available.

Parameters
in DataReader reader - contain a reference to the DataReader for which data

is available (this is an input to the application provided by the Data Distribution
Service).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when new data is
available for this DataReader. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener i s i n s t a l l e d a n d e n a b l e d f o r t h e
DATA_AVAILABLE_STATUS.
The Data Distribution Service will provide a reference to the DataReader in the
parameter reader for use by the application.
The statuses DATA_ON_READERS_STATUS and DATA_AVAILABLE_STATUS will
occur together. In case these status changes occur, the Data Distribution Service will
l o o k f o r a n a t t a c h e d a n d a c t i v a t e d SubscriberListener o r
DomainParticipantListener (i n t h a t o r d e r) fo r t h e
DATA_ON_READERS_STATUS. In case the DATA_ON_READERS_STATUS can not be
handled, the Data Distribution Service will look for an attached and activated
DataReaderListener , SubscriberListener o r
DomainParticipantListener for the DATA_AVAILABLE_STATUS (in that
order).
Note that if on_data_on_readers is called, then the Data Distribution Service
will not try to call on_data_available, however, the application can force a call
to the DataReader objects that have data by means of the notify_datareaders
operation.
374
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.6.2 on_liveliness_changed

Scope
DDS.DataReaderListener

Synopsis
import DDS.*;
public void
 on_liveliness_changed
 (DataReader reader,
 LivelinessChangedStatus status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the liveliness of one or more DataWriter objects that
were writing instances read through this DataReader has changed.

Parameters
in DataReader reader - contain a reference to the DataReader for which the

liveliness of one or more DataWriter objects has changed (this is an input to
the application provided by the Data Distribution Service).

in LivelinessChangedStatus status - con t a in t he
LivelinessChangedStatus object (this is an input to the application
provided by the Data Distribution Service).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the liveliness of
one or more DataWriter objects that were writing instances read through this
DataReader has changed. In other words, some DataWriter have become
“alive” or “not alive”. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener i s i n s t a l l e d a n d e n a b l e d f o r t h e
LIVELINESS_CHANGED_STATUS.
The Data Distribution Service will provide a reference to the DataReader in the
parameter reader and the LivelinessChangedStatus object for use by the
application.
375
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.6.3 on_requested_deadline_missed

Scope
DDS.DataReaderListener

Synopsis
import DDS.*;
public void
 on_requested_deadline_missed
 (DataReader reader,
 RequestedDeadlineMissedStatus status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the deadline that the DataReader was expecting
through its DeadlineQosPolicy was not respected.

Parameters
in DataReader reader - contain a reference to the DataReader for which the

deadline was missed (this is an input to the application provided by the Data
Distribution Service).

in RequestedDeadlineMissedStatus status - c o n t a i n t h e
RequestedDeadlineMissedStatus object (this is an input to the
application provided by the Data Distribution Service).

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the deadline
that the DataReader was expecting through its DeadlineQosPolicy was not
respected for a specific instance. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener i s i n s t a l l e d a n d e n a b l e d f o r t h e
REQUESTED_DEADLINE_MISSED_STATUS.
The Data Distribution Service will provide a reference to the DataReader in the
parameter reader and the RequestedDeadlineMissedStatus object in the
parameter status for use by the application.
376
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

3.5.6.4 on_requested_incompatible_qos

Scope
DDS.DataReaderListener

Synopsis
import DDS.*;
public void
 on_requested_incompatible_qos
 (DataReader reader,
 RequestedIncompatibleQosStatus status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when the REQUESTED_INCOMPATIBLE_QOS_STATUS
changes.

Parameters
in DataReader reader - a reference to the DataReader provided by the Data

Distribution Service.
in RequestedIncompatibleQosStatus status - t h e

RequestedIncompatibleQosStatus object provided by the Data
Distribution Service.

Return Value
<none>

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
REQUESTED_INCOMPATIBLE_QOS_STATUS changes. The implementation may be
left empty when this functionality is not needed. This operation will only be called
when the relevant DataReaderListener is installed and enabled for the
REQUESTED_INCOMPATIBLE_QOS_STATUS.
The Data Distribution Service will provide a reference to the DataReader in the
parameter reader and the RequestedIncompatibleQosStatus object in the
parameter status, for use by the application.
The application can use this operation as a callback function implementing a proper
response to the status change. This operation is enabled by setting the
REQUESTED_INCOMPATIBLE_QOS_STATUS in the mask in the call to
DataReader.set_listener. When the DataReaderListener on the
377
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

DataReader is not enabled for the REQUESTED_INCOMPATIBLE_QOS_STATUS,
the status change will propagate to the SubscriberListener of the Subscriber
(i f e n a b l e d) o r t o t h e DomainParticipantListener o f t h e
DomainParticipant (if enabled).

3.5.6.5 on_sample_lost

Scope
DDS.DataReaderListener

Synopsis
import DDS.*;
public void
 on_sample_lost
 (DataReader reader,
 SampleLostStatus status);

Note: This operation is not yet supported. It is scheduled for a future release.

3.5.6.6 on_sample_rejected

Scope
DDS.DataReaderListener

Synopsis
import DDS.*;
public void
 on_sample_rejected
 (DataReader reader,
 SampleRejectedStatus status);

Description
This operation must be implemented by the application and is called by the Data
Distribution Service when a sample has been rejected.

Parameters
in DataReader reader - contain a reference to the DataReader for which a

sample has been rejected (this is an input to the application provided by the Data
Distribution Service).

in SampleRejectedStatus status - contain the SampleRejectedStatus
object (this is an input to the application provided by the Data Distribution
Service).

Return Value
<none>
378
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when a (received)
sample has been rejected. The implementation may be left empty when this
functionality is not needed. This operation will only be called when the relevant
DataReaderListener i s i n s t a l l e d a n d e n a b l e d f o r t h e
SAMPLE_REJECTED_STATUS.
The Data Distribution Service will provide a reference to the DataReader in the
parameter reader and the SampleRejectedStatus object in the parameter
status for use by the application.

3.5.6.7 on_subscription_matched (abstract)

Scope
DDS.DataReaderListener

Synopsis
import DDS.*;
public void
 on_subscription_matched
 (DataReader reader,
 SubscriptionMatchedStatus status);

Note: This operation is not yet supported. It is scheduled for a future release.

3.5.7 Interface ReadCondition
The DataReader objec ts can crea te a se t of ReadCondition (and
StatusCondition) objects which provide support (in conjunction with WaitSet
objects) for an alternative communication style between the Data Distribution
Service and the application (i.e., state-based rather than event-based).
ReadCondition objects allow an DataReader to specify the data samples it is
interested in (by specifying the desired sample-states, view-states, and
ins tance-s ta tes) ; see the parameter def in i t ions for DataReader's
create_readcondition operation. This allows the Data Distribution Service to
trigger the condition only when suitable information is available. ReadCondition
objects are to be used in conjunction with a WaitSet . More than one
ReadCondition may be attached to the same DataReader.
The interface description of this class is as follows:
 public interface ReadCondition

{
//
// extends to interface Condition
//
379
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// boolean
// get_trigger_value
// (void);
//
// implemented API operations
//

int
 get_sample_state_mask
 (void);

int
 get_view_state_mask
 (void);

int
 get_instance_state_mask
 (void);

DataReader
 get_datareader
 (void);

};

The following paragraphs describe the usage of all ReadCondition operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.5.7.1 get_datareader

Scope
DDS.ReadCondition

Synopsis
import DDS.*;
public DataReader
 get_datareader
 (void);

Description
This operation returns the DataReader associated with the ReadCondition.

Parameters
<none>

Return Value
DataReader - Result value is a reference to the DataReader.
380
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation returns the DataReader associated with the ReadCondition. Note
that there is exactly one DataReader associated with each ReadCondition (i.e.
the DataReader that created the ReadCondition object).

3.5.7.2 get_instance_state_mask

Scope
DDS.ReadCondition

Synopsis
import DDS.*;
public int
 get_instance_state_mask
 (void);

Description
This operation returns the set of instance_states that are taken into account to
determine the trigger_value of the ReadCondition.

Parameters
<none>

Return Value
int - Resu l t va lue a re the instance_states spec i f ied when the

ReadCondition was created.

Detailed Description
This operation returns the set of instance_states that are taken into account to
determine the trigger_value of the ReadCondition.
The instance_states returned are the instance_states specified when the
ReadCondition was c r ea t ed . instance_states c an b e
ALIVE_INSTANCE_STATE, NOT_ALIVE_DISPOSED_INSTANCE_STATE,
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE or a combination of these.

3.5.7.3 get_sample_state_mask

Scope
DDS.ReadCondition

Synopsis
import DDS.*;
381
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

public int
 get_sample_state_mask
 (void);

Description
This operation returns the set of sample_states that are taken into account to
determine the trigger_value of the ReadCondition.

Parameters
<none>

Return Value
SampleStateMask - Result value are the sample_states specified when the

ReadCondition was created.

Detailed Description
This operation returns the set of sample_states that are taken into account to
determine the trigger_value of the ReadCondition.
The sample_states returned are the sample_states specified when the
ReadCondition was created. sample_states can be READ_SAMPLE_STATE,
NOT_READ_SAMPLE_STATE or both.

3.5.7.4 get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the interface
Condition for further explanation.

Synopsis
import DDS.*;
public boolean
 get_trigger_value
 (void);

3.5.7.5 get_view_state_mask

Scope
DDS.ReadCondition

Synopsis
import DDS.*;
public int
 get_view_state_mask
 (void);
382
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Description
This operation returns the set of view_states that are taken into account to
determine the trigger_value of the ReadCondition.

Parameters
<none>

Return Value
ViewStateMask - Result value are the view_states specified when the

ReadCondition was created.

Detailed Description
This operation returns the set of view_states that are taken into account to
determine the trigger_value of the ReadCondition.
The view_states returned are the view_states specified when the
ReadCondition was created. view_states can be NEW_VIEW_STATE,
NOT_NEW_VIEW_STATE or both.

3.5.8 Interface QueryCondition
QueryCondition objects are specialized ReadCondition objects that allow the
application to specify a filter on the locally available data. The DataReader objects
accept a set of QueryCondition objects for the DataReader and provide support
(in conjunction with WaitSet objects) for an alternative communication style
between the Data Distribution Service and the application (i.e., state-based rather
than event-based).

Query Function
QueryCondition objects allow an application to specify the data samples it is
interested in (by specifying the desired sample-states, view-states, instance-states
and query expression); see the parameter definitions for DataReader's
read/take operations. This allows the Data Distribution Service to trigger the
condition only when suitable information is available. QueryCondition objects
are to be used in conjunction with a WaitSet. More than one QueryCondition
may be attached to the same DataReader.
The query (query_expression) is similar to an SQL WHERE clause and can be
parameterised by arguments that are dynamically changeable with the
set_query_parameters operation.
The interface description is as follows:
 public interface QueryCondition

{
//
383
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

// extends interface ReadCondition
//
// public int
// get_sample_state_mask
// (void);

// public int
// get_view_state_mask
// (void);

// public int
// get_instance_state_mask
// (void);

// public DataReader
// get_datareader
// (void);
// public boolean
// get_trigger_value
// (void);
//
// implemented API operations
//

public String
 get_query_expression
 (void);

public int
 get_query_parameters
 (StringSeqHolder query_parameters);

public int
 set_query_parameters
 (String[] query_parameters);

};

The following paragraphs describe the usage of all QueryCondition operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

3.5.8.1 get_datareader (inherited)
This operation is inherited and therefore not described here. See the interface
ReadCondition for further explanation.

Synopsis
import DDS.*;
public DataReader
384
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

 get_datareader
 (void);

3.5.8.2 get_instance_state_mask (inherited)
This operation is inherited and therefore not described here. See the interface
ReadCondition for further explanation.

Synopsis
import DDS.*;
public int
 get_instance_state_mask
 (void);

3.5.8.3 get_query_parameters

Scope
DDS.QueryCondition

Synopsis
import DDS.*;
public int
 get_query_parameters
 (StringSeqHolder query_parameters);

Description
This operat ion obtains the query_parameters associated with the
QueryCondition.

Parameters
inout StringSeqHolder query_parameters - a reference to the destination

StringSeqHolder object in which the the parameters used in the SQL
expression will be copied.

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_ALREADY_DELETED or RETCODE_OUT_OF_RESOURCES.

Detailed Description
This operat ion obtains the query_parameters associated with the
QueryCondition. That is, the parameters specified on the last successful call to
set_query_arguments or, if set_query_arguments was never called, the
arguments specified when the QueryCondition were created.
385
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

The resulting Holder contains a sequence of strings with the parameters used in the
SQL expression (i.e., the %n tokens in the expression). The number of parameters in
the result sequence will exactly match the number of %n tokens in the query
expression associated with the QueryCondition.

Return Code
When the operation returns:
• RETCODE_OK - the existing set of query parameters applied to this
QueryCondition has successfully been copied into the specified
query_parameters parameter.

• RETCODE_ERROR - an internal error has occurred.
• RETCODE_ALREADY_DELETED - the QueryCondition has already been deleted.
• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

3.5.8.4 get_query_expression

Scope
DDS.QueryCondition

Synopsis
import DDS.*;
public String
 get_query_expression
 (void);

Description
This operation returns the query expression associated with the QueryCondition.

Parameters
<none>

Return Value
String - Result value is a reference to the query expression associated with the

QueryCondition.
386
API Reference

�������	

3 DCPS Classes and Operations 3.5 Subscription Module

Detailed Description
This operation returns the query expression associated with the QueryCondition.
That is, the expression specified when the QueryCondition was created. The
operation will return null when there was an internal error or when the
QueryCondition was already deleted. If there were no parameters, an empty
sequence is returned.

3.5.8.5 get_sample_state_mask (inherited)
This operation is inherited and therefore not described here. See the interface
ReadCondition for further explanation.

Synopsis
import DDS.*;
public int
 get_sample_state_mask
 (void);

3.5.8.6 get_trigger_value (inherited)
This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
import DDS.*;
public boolean
 get_trigger_value
 (void);

3.5.8.7 get_view_state_mask (inherited)
This operation is inherited and therefore not described here. See the class
ReadCondition for further explanation.

Synopsis
import DDS.*;
public int
 get_view_state_mask
 (void);

3.5.8.8 set_query_parameters

Scope
DDS.QueryCondition

Synopsis
import DDS.*;
387
API Reference�������	

3 DCPS Classes and Operations 3.5 Subscription Module

public int
 set_query_arguments
 (String[] parameters);

Description
This operation changes the query parameters associated with the QueryCondition.

Parameters
in String[] query_parameters - a sequence of strings which are the

parameters used in the SQL query string (i.e., the “%n” tokens in the
expression).

Return Value
int - Possible return codes of the operation are: RETCODE_OK, RETCODE_ERROR,

RETCODE_BAD_PARAMETER , RETCODE_ALREADY_DELETED o r
RETCODE_OUT_OF_RESOURCES.

Detailed Description
Thi s ope ra t i on changes t he que ry pa ramete r s a s soc i a t ed w i th t he
QueryCondition. The parameter query_parameters is a sequence of strings
which are the parameters used in the SQL query string (i.e., the “%n” tokens in the
expression). The number of values in query_parameters must be equal or
greater than the highest referenced %n token in the query_expression (e.g. if %1 and
%8 are used as parameter in the query_expression, the query_parameters
should at least contain n+1 = 9 values).

Return Code
When the operation returns:
• RETCODE_OK - the query parameters associated with the QueryCondition are

changed.
• RETCODE_ERROR - an internal error has occurred.
• RETCODE_BAD_PARAMETER - the number of parameters in query_parameters

does not match the number of “%n” tokens in the expression for this
QueryCondition or one of the parameters is an illegal parameter.

• RETCODE_ALREADY_DELETED - the QueryCondition has already been
deleted.

• RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.
388
API Reference

�������	

APPENDICES

Appendix

A Quality Of Service
Each Entity is accompanied by an <Entity>Qos class that implements the basic
mechanism for an application to specify Quality of Service attributes. This class
consists of Entity specific QosPolicy attributes. QosPolicy attributes are
classes where each class specifies the information that controls an Entity related
(configurable) attribute of the Data Distribution Service. A QosPolicy attribute
class is identified as <name>QosPolicy.

Affected Entities
Each Entity can be configured with a set of QosPolicy settings. However, any
Entity cannot support any QosPolicy. For instance, a DomainParticipant
supports different QosPolicy settings than a Topic or a Publisher. The set of
QosPolicy settings is implemented as a class of QosPolicy classes, identified as
<Entity>Qos. Each <Entity>Qos class only contains those QosPolicy classes
relevant to the specific Entity. The <Entity>Qos class serves as the parameter to
operations which require a Qos. <Entity>Qos class is the API implementation of
the QoS. Depending on the specific <Entity>Qos, it controls the behaviour of a
Topic , DataWriter , DataReader , Publisher , Subscriber ,
DomainParticipant or DomainParticipantFactory1.

Basic Usage
The basic way to modify or set the <Entity>Qos is by using an get_qos
operation to get all QosPolicy settings from this Entity (that is the
<Entity>Qos), modify several specific QosPolicy settings and put them back
using an set_qos operation to set all QosPolicy settings on this Entity (that is
the <Entity>Qos). An example of these operations for the DataWriterQos are
get_default_datawriter_qos and set_default_datawriter_qos, which
take the DataWriterQos as a parameter.
The interface description of this class is as shown below.
//public class <name>QosPolicy
// see appendix
//

1. Note that the DomainParticipantFactory is a special kind of entity: it does not
inherit from Entity, nor does it have a Listener or StatusCondition, but its
behaviour can be controlled by its own set of QosPolicies.
391
Java Reference Guide�������	

 Appendices
//
//public class <Entity>Qos
//
public class DomainParticipantFactoryQos
{

public EntityFactoryQosPolicy entity_factory;
};

public class DomainParticipantQos
{

public UserDataQosPolicy user_data;
public EntityFactoryQosPolicy entity_factory;
public SchedulingQosPolicy watchdog_scheduling;
public SchedulingQosPolicy listener_scheduling;

};

public class TopicQos
{

public TopicDataQosPolicy topic_data;
 public DurabilityQosPolicy durability;
 public DurabilityServiceQosPolicy durability_service;
 public DeadlineQosPolicy deadline;
 public LatencyBudgetQosPolicy latency_budget;
 public LivelinessQosPolicy liveliness;
 public ReliabilityQosPolicy reliability;
 public DestinationOrderQosPolicy destination_order;
 public HistoryQosPolicy history;
 public ResourceLimitsQosPolicy resource_limits;
 public TransportPriorityQosPolicy transport_priority;
 public LifespanQosPolicy lifespan;
 public OwnershipQosPolicy ownership;

};

public class DataWriterQos
{

public DurabilityQosPolicy durability;
 public DeadlineQosPolicy deadline;
 public LatencyBudgetQosPolicy latency_budget;
 public LivelinessQosPolicy liveliness;
 public ReliabilityQosPolicy reliability;
 public DestinationOrderQosPolicy destination_order;
 public HistoryQosPolicy history;
 public ResourceLimitsQosPolicy resource_limits;
 public TransportPriorityQosPolicy transport_priority;
 public LifespanQosPolicy lifespan;
 public UserDataQosPolicy user_data;
 public OwnershipQosPolicy ownership;
 public OwnershipStrengthQosPolicy ownership_strength;
 public WriterDataLifecycleQosPolicy

writer_data_lifecycle;
392
Java Reference Guide �������	

Appendices
};

public class PublisherQos
{

 public PresentationQosPolicy presentation;
 public PartitionQosPolicy partition;
 public GroupDataQosPolicy group_data;
 public EntityFactoryQosPolicy entity_factory; };

public class DataReaderQos
{

public DurabilityQosPolicy durability;
 public DeadlineQosPolicy deadline;
 public LatencyBudgetQosPolicy latency_budget;
 public LivelinessQosPolicy liveliness;
 public ReliabilityQosPolicy reliability;
 public DestinationOrderQosPolicy destination_order;
 public HistoryQosPolicy history;
 public ResourceLimitsQosPolicy resource_limits;
 public UserDataQosPolicy user_data;
 public OwnershipQosPolicy ownership;
 public TimeBasedFilterQosPolicy time_based_filter;
 public ReaderDataLifecycleQosPolicy

reader_data_lifecycle;
};

public class SubscriberQos
{

public PresentationQosPolicy presentation;
 public PartitionQosPolicy partition;
 public GroupDataQosPolicy group_data;
 public EntityFactoryQosPolicy entity_factory; };

//
// implemented API operations
// <no operations>

The following paragraphs describe the usage of each <Entity>Qos class.

DataReaderQos
Scope

DDS

Synopsis
import DDS.*;
public class DataReaderQos
{

public DurabilityQosPolicy durability;
public DeadlineQosPolicy deadline;
393
Java Reference Guide�������	

 Appendices
public LatencyBudgetQosPolicy latency_budget;
public LivelinessQosPolicy liveliness;
public ReliabilityQosPolicy reliability;
public DestinationOrderQosPolicy destination_order;
public HistoryQosPolicy history;
public ResourceLimitsQosPolicy resource_limits;
public UserDataQosPolicy user_data;
public OwnershipQosPolicy ownership;
public TimeBasedFilterQosPolicy time_based_filter;
public ReaderDataLifecycleQosPolicy

reader_data_lifecycle;
};

Description
This class provides the basic mechanism for an application to specify Quality of
Service attributes for a DataReader.

Attributes
public DurabilityQosPolicy durability - whether the data should be

stored for late joining readers.
public DeadlineQosPolicy deadline - the period within which a new

sample is expected.
public LatencyBudgetQosPolicy latency_budget - used by the Data

Distribution Service for optimization.
public LivelinessQosPolicy liveliness - the way the liveliness of the

DataReader is asserted to the Data Distribution Service.
public ReliabilityQosPolicy reliability - the reliability of the data

distribution.
public DestinationOrderQosPolicy destination_order - the order in

which the DataReader timely orders the data.
public HistoryQosPolicy history - how samples should be stored.
public ResourceLimitsQosPolicy resource_limits - the maximum

amount of resources to be used.
public UserDataQosPolicy user_data - used to attach additional

information to the DataReader.
public OwnershipQosPolicy ownership - whether a DataWriter

exclusively owns an instance.
public TimeBasedFilterQosPolicy time_based_filter - the maximum

data rate at which the DataReader will receive changes.
394
Java Reference Guide �������	

Appendices
public ReaderDataLifecycleQosPolicy reader_data_lifecycle - the
minimum time after which a data instance is disposed of when the
instance_state has become NOT_ALIVE_NO_WRITERS_INSTANCE_STATE
or NOT_ALIVE_DISPOSED_INSTANCE_STATE

Detailed Description
A QosPolicy can be set when the DataReader i s created with the
create_datareader operation (or modified with the set_qos operation). Both
operations take the DataReaderQos object as a parameter. There may be cases
where several policies are in conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, via the set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DataReader creation time or prior to calling the enable
operation on the DataReader.
See Section 3.1.3, Class QosPolicy, on page 33 for a list of all <name>QosPolicy
settings, their meaning, characteristics, possible values and applicability to
DataReaders.
The initial value of the default DataReaderQos in the Subscriber are given in
the following table:

Table 16 DATAREADER_QOS_DEFAULT

QosPolicy Attribute Value
durability kind VOLATILE_DURABILITY_QOS

service_cleanup_delay 0

deadline period DURATION_INFINITY

latency_budget duration 0

liveliness kind AUTOMATIC_LIVELINESS_QOS

lease_duration DURATION_INFINITY

reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_time 100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

history kind KEEP_LAST_HISTORY_QOS

depth 1

resource_limits max_samples LENGTH_UNLIMITED

max_instances LENGTH_UNLIMITED

max_samples_per_instance LENGTH_UNLIMITED
395
Java Reference Guide�������	

 Appendices
DataWriterQos
Scope

DDS

Synopsis
import DDS.*;

public class DataReaderQos

{

 public DurabilityQosPolicy durability;

 public DeadlineQosPolicy deadline;

 public LatencyBudgetQosPolicy latency_budget;

 public LivelinessQosPolicy liveliness;

 public ReliabilityQosPolicy reliability;

 public DestinationOrderQosPolicy destination_order;

 public HistoryQosPolicy history;

 public ResourceLimitsQosPolicy resource_limits;

 public TransportPriorityQosPolicy transport_priority;

 public LifespanQosPolicy lifespan;

 public UserDataQosPolicy user_data;

 public OwnershipQosPolicy ownership;

 public OwnershipStrengthQosPolicy ownership_strength;

 public WriterDataLifecycleQosPolicy
writer_data_lifecycle;

};

user_data value.length 0

ownership kind SHARED_OWNERSHIP_QOS

time_based_filter minimum_separation 0

reader_data_
lifecycle

autopurge_
nowriter_samples_delay

DURATION_INFINITE

autopurge_
disposed_samples_delay

DURATION_INFINITE

Table 16 DATAREADER_QOS_DEFAULT (Continued)

QosPolicy Attribute Value
396
Java Reference Guide �������	

Appendices
Description
This class provides the basic mechanism for an application to specify Quality of
Service attributes for a DataWriter.

Attributes
public DurabilityQosPolicy durability - whether the data should be

stored for late joining readers.
public DeadlineQosPolicy deadline - the period within which a new

sample is written.
public LatencyBudgetQosPolicy latency_budget - used by the Data

Distribution Service for optimization.
public LivelinessQosPolicy liveliness - the way the liveliness of the

DataWriter is asserted to the Data Distribution Service.
public ReliabilityQosPolicy reliability - the reliability of the data

distribution.
public DestinationOrderQosPolicy destination_order - the order in

which the DataReader timely orders the data.
public HistoryQosPolicy history - how samples should be stored.
public ResourceLimitsQosPolicy resource_limits - the maximum

amount of resources to be used.
public TransportPriorityQosPolicy transport_priority - a priority

hint for the underlying transport layer.
public LifespanQosPolicy lifespan - the maximum duration of validity of

the data written by the DataWriter.
public UserDataQosPolicy user_data - used to attach additional

information to the DataWriter.
public OwnershipQosPolicy ownership - whether a DataWriter

exclusively owns an instance.
public OwnershipStrengthQosPolicy ownership_strength - the

strength to determine the ownership.
public WriterDataLifecycleQosPolicy writer_data_lifecycle -

whether unregistered instances are disposed of automatically or not

Detailed Description
A QosPolicy can be set when the DataWriter i s created with the
create_datawriter operation (or modified with the set_qos operation). Both
operations take the DataWriterQos object as a parameter. There may be cases
397
Java Reference Guide�������	

 Appendices
where several policies are in conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, via the set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DataWriter creation time or prior to calling the enable
operation on the DataWriter.
The initial value of the default DataWriterQos in the Publisher are given in the
following table:

DomainParticipantFactoryQos
Scope

DDS

Table 17 DATAWRITER_QOS_DEFAULT

QosPolicy Attribute Value
durability kind VOLATILE_DURABILITY_QOS

service_cleanup_delay 0

deadline period DURATION_INFINITE

latency_budget duration 0

liveliness kind AUTOMATIC_LIVELINESS_QOS

lease_duration DURATION_INFINITY

reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_time 100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

history kind KEEP_LAST_HISTORY_QOS

depth 1

resource_limits max_samples LENGTH_UNLIMITED

max_instances LENGTH_UNLIMITED

max_samples_per_instance LENGTH_UNLIMITED

transport_priority value 0

lifespan duration DURATION_INFINITE

user_data value.length 0

ownership kind SHARED_OWNERSHIP_QOS

ownership_strength value 0

writer_data_lifecycle autodispose_
unregistered_instances

true
398
Java Reference Guide �������	

Appendices
Synopsis
import DDS.*;
public class DomainParticipantFactoryQos
{ public EntityFactoryQosPolicy entity_factory; };

Description
This class provides the basic mechanism for an application to specify Quality of
Service attributes for a DomainParticipantFactory.

Attributes
EntityFactoryQosPolicy entity_factory - whether a just created

DomainParticipant should be enabled.

Detailed Description
The QosPolicy c a n n o t b e s e t a t c r e a t i o n t im e , s i n c e t h e
DomainParticipantFactory is a pre-existing object that can only be obtained
with the DomainParticipantFactory.get_instance operation or its alias
TheParticipantFactory. Therefore its QosPolicy is initialized to a default
value according to the following table:

After creation the QosPolicy can be modified with the set_qos operation on the
DomainParticipantFactory, w h i c h t a k e s t h e
DomainParticipantFactoryQos class as a parameter.

DomainParticipantQos
Scope

DDS

Synopsis
import DDS.*;
public class DomainParticipantQos
{ public UserDataQosPolicy user_data;

public EntityFactoryQosPolicy entity_factory;
public SchedulingQosPolicy watchdog_scheduling;
public SchedulingQosPolicy listener_scheduling; };

Table 18 Default Values for DomainParticipantFactoryQos

QosPolicy Attribute Value
entity_factory autoenable_created_entities TRUE
399
Java Reference Guide�������	

 Appendices
Description
This class provides the basic mechanism for an application to specify Quality of
Service attributes for a DomainParticipant.

Attributes
public UserDataQosPolicy user_data - used to attach additional

information to the DomainParticipant.
public EntityFactoryQosPolicy entity_factory - whether a just created

Entity should be enabled.
SchedulingQosPolicy watchdog_scheduling - the scheduling parameters

used to create the watchdog thread.
SchedulingQosPolicy listener_scheduling - the scheduling parameters

used to create the listener thread.

Detailed Description
A DomainParticipant will spawn different threads for different purposes:
• A listener thread is spawned to perform the callbacks to all Listener objects

attached to the various Entities contained in the DomainParticipant. The
scheduling parameters for this thread can be specified in the
listener_scheduling field of the DomainParticipantQos.

• A watchdog thread is spawned to report the the Liveliness of all Entities
contained in the DomainParticipant whose LivelinessQosPolicyKind in
their LivelinessQosPolicy is set to AUTOMATIC_LIVELINESS_QOS. The
scheduling parameters for this thread can be specified in the
watchdog_scheduling field of the DomainParticipantQos.

A QosPolicy can be set when the DomainParticipant is created with the
create_participant operation (or modified with the set_qos operation). Both
operations take the DomainParticipantQos object as a parameter. There may be
cases where several policies are in conflict. Consistency checking is performed each
time the policies are modified when they are being created and, in case they are
already enabled, via the set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at DomainParticipant creation time or prior to calling the enable
operation on the DomainParticipant.
400
Java Reference Guide �������	

Appendices
T h e i n i t i a l v a lu e o f t h e d e f a u l t DomainParticipantQos i n t h e
DomainParticipantFactory are given in the following table:

PublisherQos
Scope

DDS

Synopsis
import DDS.*;
public class PublisherQos
{

 public PresentationQosPolicy presentation;
 public PartitionQosPolicy partition;
 public GroupDataQosPolicy group_data;
 public EntityFactoryQosPolicy entity_factory; };

Description
This class provides the basic mechanism for an application to specify Quality of
Service attributes for a Publisher.

Attributes
public PresentationQosPolicy presentation - the dependency of

changes to data-instances.
public PartitionQosPolicy partition - the partitions in which the

Publisher is active.
public GroupDataQosPolicy group_data - used to attach additional

information to the Publisher.

Table 19 PARTICIPANT_QOS_DEFAULT

QosPolicy Attribute Value
user_data value.length 0

entity_factory autoenable_created_entities true

watchdog_scheduling scheduling_class.kind SCHEDULE_DEFAULT

scheduling_priority_kind.kind PRIORITY_RELATIVE

scheduling_priority 0

listener_scheduling scheduling_class.kind SCHEDULE_DEFAULT

scheduling_priority_kind.kind PRIORITY_RELATIVE

scheduling_priority 0
401
Java Reference Guide�������	

 Appendices
public EntityFactoryQosPolicy entity_factory - whether a just created
DataWriter should be enabled

Detailed Description
A QosPolicy can be se t when the Publisher i s c rea ted wi th the
create_publisher operation (or modified with the set_qos operation). Both
operations take the PublisherQos object as a parameter. There may be cases
where several policies are in conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, via the set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at Publisher creation time or prior to calling the enable operation
on the Publisher.
The initial value of the default PublisherQos in the DomainParticipant are
given in the following table:

SubscriberQos
Scope

DDS

Synopsis
import DDS.*;
public class SubscriberQos
{

public PresentationQosPolicy presentation;
public PartitionQosPolicy partition;
public GroupDataQosPolicy group_data;
public EntityFactoryQosPolicy entity_factory; };

Table 20 PUBLISHER_QOS_DEFAULT

QosPolicy Attribute Value
presentation access_scope INSTANCE_PRESENTATION_QOS

coherent_access false

ordered_access false

partition name.length 0

group_data value.length 0

entity_factory autoenable_created_entities true
402
Java Reference Guide �������	

Appendices
Description
This class provides the basic mechanism for an application to specify Quality of
Service attributes for a Subscriber.

Attributes
public PresentationQosPolicy presentation - the dependency of

changes to data-instances.
public PartitionQosPolicy partition - the partitions in which the

Subscriber is active.
public GroupDataQosPolicy group_data - used to attach additional

information to the Subscriber.
public EntityFactoryQosPolicy entity_factory - whether a just created

DataReader should be enabled

Detailed Description
A QosPolicy can be set when the Subscriber i s created with the
create_subscriber operation (or modified with the set_qos operation). Both
operations take the SubscriberQos object as a parameter. There may be cases
where several policies are in conflict. Consistency checking is performed each time
the policies are modified when they are being created and, in case they are already
enabled, via the set_qos operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at Subscriber creation time or prior to calling the enable
operation on the Subscriber.
The initial value of the default SubscriberQos in the DomainParticipant are
given in the following table:

Table 21 SUBSCRIBER_QOS_DEFAULT

QosPolicy Attribute Value
presentation access_scope INSTANCE_PRESENTATION_QOS

coherent_access false
ordered_access false

partition name.length 0
group_data value.length 0
entity_factory autoenable_created_entities true
403
Java Reference Guide�������	

 Appendices
TopicQos
Scope

DDS

Synopsis
import DDS.*;
public class TopicQos
 {

 public TopicDataQosPolicy topic_data;
 public DurabilityQosPolicy durability;
 public DurabilityServiceQosPolicy durability_service;

 public DeadlineQosPolicy deadline;
 public LatencyBudgetQosPolicy latency_budget;
 public LivelinessQosPolicy liveliness;
 public ReliabilityQosPolicy reliability;
 public DestinationOrderQosPolicy destination_order;
 public HistoryQosPolicy history;
 public ResourceLimitsQosPolicy resource_limits;
 public TransportPriorityQosPolicy transport_priority;
 public LifespanQosPolicy lifespan;
 public OwnershipQosPolicy ownership; };

Description
This class provides the basic mechanism for an application to specify Quality of
Service attributes for a Topic.

Attributes
public TopicDataQosPolicy topic_data - used to attach additional

information to the Topic.
public DurabilityQosPolicy durability - whether the data should be

stored for late joining readers.
public DurabilityServiceQosPolicy durability_service - the

behaviour of the “transient/persistent service” of the Data Distribution System
regarding Transient and Persistent Topic instances.

public DeadlineQosPolicy deadline - the period within which a new
sample is expected or written.

public LatencyBudgetQosPolicy latency_budget - used by the Data
Distribution Service for optimization.

public LivelinessQosPolicy liveliness - the way the liveliness of the
Topic is asserted to the Data Distribution Service.
404
Java Reference Guide �������	

Appendices
public ReliabilityQosPolicy reliability - the reliability of the data
distribution.

public DestinationOrderQosPolicy destination_order - the order in
which the DataReader timely orders the data.

public HistoryQosPolicy history - how samples should be stored.
public ResourceLimitsQosPolicy resource_limits - the maximum

amount of resources to be used.
public TransportPriorityQosPolicy transport_priority - a priority

hint for the underlying transport layer.
public LifespanQosPolicy lifespan - the maximum duration of validity of

the data written by a DataWriter.
public OwnershipQosPolicy ownership - whether a DataWriter

exclusively owns an instance

Detailed Description
A QosPolicy can be set when the Topic is created with the create_topic
operation (or modified with the set_qos operation). Both operations take the
TopicQos object as a parameter. There may be cases where several policies are in
conflict. Consistency checking is performed each time the policies are modified
when they are being created and, in case they are already enabled, via the set_qos
operation.
Some QosPolicy have “immutable” semantics meaning that they can only be
specified either at Topic creation time or prior to calling the enable operation on
the Topic.
The initial value of the default TopicQos in the DomainParticipant are given in
the following table:

Table 22 TOPIC_QOS_DEFAULT

QosPolicy Attribute Value
topic_data value.length 0

durability kind VOLATILE_DURABILITY_QOS

service_cleanup_delay 0
405
Java Reference Guide�������	

 Appendices
durability_service service_cleanup_delay 0

history_kind KEEP_LAST_HISTORY_QOS

history_depth 1

max_samples LENGTH_UNLIMITED

max_instances LENGTH_UNLIMITED

max_samples_per_instance LENGTH_UNLIMITED

deadline period DURATION_INFINITE

latency_budget duration 0

liveliness kind AUTOMATIC_LIVELINESS_QOS

lease_duration DURATION_INFINITE

reliability kind BEST_EFFORT_RELIABILITY_QOS

max_blocking_time 100 ms

destination_order kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

history kind KEEP_LAST_HISTORY_QOS

depth 1

resource_limits max_samples LENGTH_UNLIMITED

max_instances LENGTH_UNLIMITED

max_samples_per_instance LENGTH_UNLIMITED

transport_priority value 0

lifespan duration DURATION_INFINITE

ownership kind SHARED_OWNERSHIP_QOS

Table 22 TOPIC_QOS_DEFAULT (Continued)

QosPolicy Attribute Value
406
Java Reference Guide �������	

Appendix

B API Constants and Types
Duration and Time

package DDS;
public final class Duration_t
{

public int sec = (int)0;
public int nanosec = (int)0;
public Duration_t ()
{
}

 public Duration_t (int _sec, int _nanosec)
 {
 sec = _sec;
 nanosec = _nanosec;
 }
} // class Duration_t
public interface DURATION_INFINITE_SEC
{
 public static final int value = (int)(0x7fffffff);
}
public interface DURATION_INFINITE_NSEC
{
 public static final int value = (int)(0x7fffffffL);
}
public interface DURATION_ZERO_SEC
{
 public static final int value = (int)(0);
}
public interface DURATION_ZERO_NSEC
{
 public static final int value = (int)(0L);
}
public final class Time_t
{
 public int sec = (int)0;
 public int nanosec = (int)0;
 public Time_t ()
 {
 }
 public Time_t (int _sec, int _nanosec)
 {
 sec = _sec;
407
Java Reference Guide�������	

 Appendices
 nanosec = _nanosec;
 }
} // class Time_t

Pre-defined Values
public interface HANDLE_NIL
{
 public static final long value = (long)(0L);
}
public interface LENGTH_UNLIMITED
{
 public static final int value = (int)((int)-1);
}
public interface TIMESTAMP_INVALID_SEC
{
 public static final int value = (int)((int)-1);
}
public interface TIMESTAMP_INVALID_NSEC
{
 public static final int value = (int)(0xffffffffL);
}

Return Codes
public interface RETCODE_OK
{
 public static final int value = (int)(0);
}
public interface RETCODE_ERROR
{
 public static final int value = (int)(1);
}
public interface RETCODE_UNSUPPORTED
{
 public static final int value = (int)(2);
}
public interface RETCODE_BAD_PARAMETER
{
 public static final int value = (int)(3);
}
public interface RETCODE_PRECONDITION_NOT_MET
{
 public static final int value = (int)(4);
}
public interface RETCODE_OUT_OF_RESOURCES
{
 public static final int value = (int)(5);
}
public interface RETCODE_NOT_ENABLED
{

408
Java Reference Guide �������	

Appendices
 public static final int value = (int)(6);
}
public interface RETCODE_IMMUTABLE_POLICY
{
 public static final int value = (int)(7);
}
public interface RETCODE_INCONSISTENT_POLICY
{
 public static final int value = (int)(8);
}
public interface RETCODE_ALREADY_DELETED
{
 public static final int value = (int)(9);
}
public interface RETCODE_TIMEOUT
{
 public static final int value = (int)(10);
}
public interface RETCODE_NO_DATA
{
 public static final int value = (int)(11);
}
public interface RETCODE_ILLEGAL_OPERATION
{
 public static final int value = (int)(12);
}

Status to Support Listeners and Conditions
public interface INCONSISTENT_TOPIC_STATUS
{
 public static final int value = (int)((int)(0x0001L << 0L));
}
public interface OFFERED_DEADLINE_MISSED_STATUS
{
 public static final int value = (int)((int)(0x0001L << 1L));
}
public interface REQUESTED_DEADLINE_MISSED_STATUS
{
 public static final int value = (int)((int)(0x0001L << 2L));
}
public interface OFFERED_INCOMPATIBLE_QOS_STATUS
{
 public static final int value = (int)((int)(0x0001L << 5L));
}
public interface REQUESTED_INCOMPATIBLE_QOS_STATUS
{
 public static final int value = (int)((int)(0x0001L << 6L));
}
public interface SAMPLE_LOST_STATUS
409
Java Reference Guide�������	

 Appendices
{
 public static final int value = (int)((int)(0x0001L << 7L));
}
public interface SAMPLE_REJECTED_STATUS
{
 public static final int value = (int)((int)(0x0001L << 8L));
}
public interface DATA_ON_READERS_STATUS
{
 public static final int value = (int)((int)(0x0001L << 9L));
}
public interface DATA_AVAILABLE_STATUS
{
 public static final int value = (int)((int)(0x0001L << 10L));
}
public interface LIVELINESS_LOST_STATUS
{
 public static final int value = (int)((int)(0x0001L << 11L));
}
public interface LIVELINESS_CHANGED_STATUS
{
 public static final int value = (int)((int)(0x0001L << 12L));
}
public interface PUBLICATION_MATCH_STATUS
{
 public static final int value = (int)((int)(0x0001L << 13L));
}
public interface SUBSCRIPTION_MATCH_STATUS
{
 public static final int value = (int)((int)(0x0001L << 14L));
}

States
Sample States to Support Reads
public interface READ_SAMPLE_STATE
{
 public static final int value = (int)((int)(0x0001L << 0L));
}
public interface NOT_READ_SAMPLE_STATE
{
 public static final int value = (int)((int)(0x0001L << 1L));
}
// This is a bit mask SampleStateKind
public interface ANY_SAMPLE_STATE
{
 public static final int value = (int)(0xffffL);
}

410
Java Reference Guide �������	

Appendices
View States to Support Reads
public interface NEW_VIEW_STATE
{
 public static final int value = (int)((int)(0x0001L << 0L));
}
public interface NOT_NEW_VIEW_STATE
{
 public static final int value = (int)((int)(0x0001L << 1L));
}
// This is a bit mask ViewStateKind
public interface ANY_VIEW_STATE
{
 public static final int value = (int)(0xffffL);
}

Instance States to Support Reads
public interface ALIVE_INSTANCE_STATE
{
 public static final int value = (int)((int)(0x0001L << 0L));
}
public interface NOT_ALIVE_DISPOSED_INSTANCE_STATE
{
 public static final int value = (int)((int)(0x0001L << 1L));
}
public interface NOT_ALIVE_NO_WRITERS_INSTANCE_STATE
{
 public static final int value = (int)((int)(0x0001L << 2L));
}
// This is a bit mask InstanceStateKind
public interface ANY_INSTANCE_STATE
{
 public static final int value = (int)(0xffffL);
}
public interface NOT_ALIVE_INSTANCE_STATE
{
 public static final int value = (int)(0x006L);
}

QosPolicy
Names
public interface USERDATA_QOS_POLICY_NAME
{
 public static final String value = "UserData";
}
public interface DURABILITY_QOS_POLICY_NAME
{
 public static final String value = "Durability";
411
Java Reference Guide�������	

 Appendices
}
public interface PRESENTATION_QOS_POLICY_NAME
{
 public static final String value = "Presentation";
}
public interface DEADLINE_QOS_POLICY_NAME
{
 public static final String value = "Deadline";
}
public interface LATENCYBUDGET_QOS_POLICY_NAME
{
 public static final String value = "LatencyBudget";
}
public interface OWNERSHIP_QOS_POLICY_NAME
{
 public static final String value = "Ownership";
}
public interface OWNERSHIPSTRENGTH_QOS_POLICY_NAME
{
 public static final String value = "OwnershipStrength";
}
public interface LIVELINESS_QOS_POLICY_NAME
{
 public static final String value = "Liveliness";
}
public interface TIMEBASEDFILTER_QOS_POLICY_NAME
{
 public static final String value = "TimeBasedFilter";
}
public interface PARTITION_QOS_POLICY_NAME
{
 public static final String value = "Partition";
}
public interface RELIABILITY_QOS_POLICY_NAME
{
 public static final String value = "Reliability";
}
public interface DESTINATIONORDER_QOS_POLICY_NAME
{
 public static final String value = "DestinationOrder";
}
public interface HISTORY_QOS_POLICY_NAME
{
 public static final String value = "History";
}
public interface RESOURCELIMITS_QOS_POLICY_NAME
{
 public static final String value = "ResourceLimits";
}
public interface ENTITYFACTORY_QOS_POLICY_NAME
412
Java Reference Guide �������	

Appendices
{
 public static final String value = "EntityFactory";
}
public interface WRITERDATALIFECYCLE_QOS_POLICY_NAME
{
 public static final String value =

 "WriterDataLifecycle";
}
public interface READERDATALIFECYCLE_QOS_POLICY_NAME
{
 public static final String value = "ReaderDataLifecycle";
}
public interface TOPICDATA_QOS_POLICY_NAME
{
 public static final String value = "TopicData";
}
public interface GROUPDATA_QOS_POLICY_NAME
{
 public static final String value = "GroupData";
}
public interface TRANSPORTPRIORITY_QOS_POLICY_NAME
{
 public static final String value = "TransportPriority";
}
public interface LIFESPAN_QOS_POLICY_NAME
{
 public static final String value = "Lifespan";
}
public interface DURABILITYSERVICE_QOS_POLICY_NAME
{
 public static final String value = "DurabilityService";
}

Identifications
public interface INVALID_QOS_POLICY_ID
{
 public static final int value = (int)(0);
}
public interface USERDATA_QOS_POLICY_ID
{
 public static final int value = (int)(1);
}
public interface DURABILITY_QOS_POLICY_ID
{
 public static final int value = (int)(2);
}
public interface PRESENTATION_QOS_POLICY_ID
{
 public static final int value = (int)(3);
413
Java Reference Guide�������	

 Appendices
}
public interface DEADLINE_QOS_POLICY_ID
{
 public static final int value = (int)(4);
}
public interface LATENCYBUDGET_QOS_POLICY_ID
{
 public static final int value = (int)(5);
}
public interface OWNERSHIP_QOS_POLICY_ID
{
 public static final int value = (int)(6);
}
public interface OWNERSHIPSTRENGTH_QOS_POLICY_ID
{
 public static final int value = (int)(7);
}
public interface LIVELINESS_QOS_POLICY_ID
{
 public static final int value = (int)(8);
}
public interface TIMEBASEDFILTER_QOS_POLICY_ID
{
 public static final int value = (int)(9);
}
public interface PARTITION_QOS_POLICY_ID
{
 public static final int value = (int)(10);
}
public interface RELIABILITY_QOS_POLICY_ID
{
 public static final int value = (int)(11);
}
public interface DESTINATIONORDER_QOS_POLICY_ID
{
 public static final int value = (int)(12);
}
public interface HISTORY_QOS_POLICY_ID
{
 public static final int value = (int)(13);
}
public interface RESOURCELIMITS_QOS_POLICY_ID
{
 public static final int value = (int)(14);
}
public interface ENTITYFACTORY_QOS_POLICY_ID
{
 public static final int value = (int)(15);
}
public interface WRITERDATALIFECYCLE_QOS_POLICY_ID
414
Java Reference Guide �������	

Appendices
{
 public static final int value = (int)(16);
}
public interface READERDATALIFECYCLE_QOS_POLICY_ID
{
 public static final int value = (int)(17);
}
public interface TOPICDATA_QOS_POLICY_ID
{
 public static final int value = (int)(18);
}
public interface GROUPDATA_QOS_POLICY_ID
{
 public static final int value = (int)(19);
}
public interface TRANSPORTPRIORITY_QOS_POLICY_ID
{
 public static final int value = (int)(20);
}
public interface LIFESPAN_QOS_POLICY_ID
{
 public static final int value = (int)(21);
}
public interface DURABILITYSERVICE_QOS_POLICY_ID
{
 public static final int value = (int)(22);
}

415
Java Reference Guide�������	

 Appendices
416
Java Reference Guide �������	

Appendix

C Platform Specific Model IDL
Interface

dds_dcps.idl
#define DOMAINID_TYPE_NATIVE string
#define HANDLE_TYPE_NATIVE long long
#define HANDLE_NIL_NATIVE 0
#define BUILTIN_TOPIC_KEY_TYPE_NATIVE long
#define TheParticipantFactory
#define PARTICIPANT_QOS_DEFAULT
#define TOPIC_QOS_DEFAULT
#define PUBLISHER_QOS_DEFAULT
#define SUBSCRIBER_QOS_DEFAULT
#define DATAWRITER_QOS_DEFAULT
#define DATAREADER_QOS_DEFAULT
#define DATAWRITER_QOS_USE_TOPIC_QOS
#define DATAREADER_QOS_USE_TOPIC_QOS

module DDS {
 typedef DOMAINID_TYPE_NATIVE DomainId_t;
 typedef HANDLE_TYPE_NATIVE InstanceHandle_t;
 typedef BUILTIN_TOPIC_KEY_TYPE_NATIVE

BuiltinTopicKey_t[3];
 typedef sequence<InstanceHandle_t> InstanceHandleSeq;
 typedef long ReturnCode_t;
 typedef long QosPolicyId_t;
 typedef sequence<string> StringSeq;
 struct Duration_t {

long sec;
unsigned long nanosec;

 };
 struct Time_t {

long sec;
unsigned long nanosec;

 };

 Pre-defined Values
 const InstanceHandle_t HANDLE_NIL= HANDLE_NIL_NATIVE;
 const long LENGTH_UNLIMITED= -1;
 const long DURATION_INFINITE_SEC= 0x7fffffff;
 const unsigned long DURATION_INFINITE_NSEC= 0x7fffffff;
417
Java Reference Guide�������	

 Appendices
 const long DURATION_ZERO_SEC= 0;
 const unsigned long DURATION_ZERO_NSEC= 0;
 const long TIMESTAMP_INVALID_SEC= -1;
 const unsigned long TIMESTAMP_INVALID_NSEC= 0xffffffff;

Return Codes
 const ReturnCode_t RETCODE_OK = 0;
 const ReturnCode_t RETCODE_ERROR = 1;
 const ReturnCode_t RETCODE_UNSUPPORTED = 2;
 const ReturnCode_t RETCODE_BAD_PARAMETER = 3;
 const ReturnCode_t RETCODE_PRECONDITION_NOT_MET = 4;
 const ReturnCode_t RETCODE_OUT_OF_RESOURCES = 5;
 const ReturnCode_t RETCODE_NOT_ENABLED = 6;
 const ReturnCode_t RETCODE_IMMUTABLE_POLICY = 7;
 const ReturnCode_t RETCODE_INCONSISTENT_POLICY = 8;
 const ReturnCode_t RETCODE_ALREADY_DELETED = 9;
 const ReturnCode_t RETCODE_TIMEOUT = 10;
 const ReturnCode_t RETCODE_NO_DATA = 11;
 const ReturnCode_t RETCODE_ILLEGAL_OPERATION = 12;

Status to Support Listeners and Conditions
 typedef unsigned long StatusKind;
 typedef unsigned long StatusMask;

// bit mask StatusKind
 const StatusKind INCONSISTENT_TOPIC_STATUS = 0x0001 << 0;
 const StatusKind OFFERED_DEADLINE_MISSED_STATUS = 0x0001 << 1;
 const StatusKind REQUESTED_DEADLINE_MISSED_STATUS = 0x0001 << 2;
 const StatusKind OFFERED_INCOMPATIBLE_QOS_STATUS = 0x0001 << 5;
 const StatusKind REQUESTED_INCOMPATIBLE_QOS_STATUS= 0x0001 << 6;
 const StatusKind SAMPLE_LOST_STATUS = 0x0001 << 7;
 const StatusKind SAMPLE_REJECTED_STATUS = 0x0001 << 8;
 const StatusKind DATA_ON_READERS_STATUS = 0x0001 << 9;
 const StatusKind DATA_AVAILABLE_STATUS = 0x0001 << 10;
 const StatusKind LIVELINESS_LOST_STATUS = 0x0001 << 11;
 const StatusKind LIVELINESS_CHANGED_STATUS = 0x0001 << 12;
 const StatusKind PUBLICATION_MATCHED_STATUS = 0x0001 << 13;
 const StatusKind SUBSCRIPTION_MATCHED_STATUS = 0x0001 << 14;

 struct InconsistentTopicStatus {
long total_count;
long total_count_change;

 };

 struct SampleLostStatus {
long total_count;
long total_count_change;

 };

 enum SampleRejectedStatusKind {
418
Java Reference Guide �������	

Appendices
NOT_REJECTED,
REJECTED_BY_INSTANCES_LIMIT,
REJECTED_BY_SAMPLES_LIMIT,
REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT

 };

 struct SampleRejectedStatus {
long total_count;
long total_count_change;
SampleRejectedStatusKind last_reason;
InstanceHandle_t last_instance_handle;

 };

 struct LivelinessChangedStatus {
long alive_count;
long not_alive_count;
long alive_count_change;
long not_alive_count_change;
InstanceHandle_t last_publication_handle;

 };

 struct LivelinessChangedStatus {

long active_count;
long inactive_count;
long active_count_change;
long inactive_count_change;

 };

 struct OfferedDeadlineMissedStatus {

long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

 };

 struct RequestedDeadlineMissedStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

 };

 struct QosPolicyCount {
QosPolicyId_t policy_id;
long count;

 };

 typedef sequence<QosPolicyCount> QosPolicyCountSeq;

 struct OfferedIncompatibleQosStatus {
long total_count;
long total_count_change;
419
Java Reference Guide�������	

 Appendices
QosPolicyId_t last_policy_id;
QosPolicyCountSeq policies;

 };

 struct RequestedIncompatibleQosStatus {
long total_count;
long total_count_change;
QosPolicyId_t last_policy_id;
QosPolicyCountSeq policies;

 };

 struct PublicationMatchedStatus {
long total_count;
long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_subscription_handle;

 struct SubscriptionMatchedStatus {
long total_count;
long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_publication_handle;

 };

Listeners
 interface Listener;
 interface Entity;
 interface TopicDescription;
 interface Topic;
 interface ContentFilteredTopic;
 interface MultiTopic;
 interface DataWriter;
 interface DataReader;
 interface Subscriber;
 interface Publisher;
 typedef sequence<Topic> TopicSeq;

 typedef sequence<DataReader> DataReaderSeq;
 interface Listener {
 };

 interface TopicListener : Listener {
void
on_inconsistent_topic(
 in Topic the_topic,
 in InconsistentTopicStatus status);

 };
420
Java Reference Guide �������	

Appendices
 interface DataWriterListener : Listener {

void
on_offered_deadline_missed(
 in DataWriter writer,
 in OfferedDeadlineMissedStatus status);

void
on_offered_incompatible_qos(
 in DataWriter writer,
 in OfferedIncompatibleQosStatus status);

void
on_liveliness_lost(
 in DataWriter writer,
 in LivelinessLostStatus status);

void
on_publication_matched(
 in DataWriter writer,
 in PublicationMatchedStatus status);

 };

 interface PublisherListener : DataWriterListener {
 };

 interface DataReaderListener : Listener {

void
on_requested_deadline_missed(
 in DataReader reader,
 in RequestedDeadlineMissedStatus status);

void
on_requested_incompatible_qos(
 in DataReader reader,
 in RequestedIncompatibleQosStatus status);

void
on_sample_rejected(
 in DataReader reader,
 in SampleRejectedStatus status);

void
on_liveliness_changed(
 in DataReader reader,
 in LivelinessChangedStatus status);
421
Java Reference Guide�������	

 Appendices
void
on_data_available(
 in DataReader reader);

void
on_subscription_matched(
 in DataReader reader,
 in SubscriptionMatchedStatus status);

void
on_sample_lost(
 in DataReader reader,
 in SampleLostStatus status);

 };

 interface SubscriberListener : DataReaderListener {

void
on_data_on_readers(
 in Subscriber subs);

 };

 interface DomainParticipantListener : TopicListener,
 PublisherListener,
 SubscriberListener {

 };

Conditions
 interface Condition {

boolean
get_trigger_value();

 };

 typedef sequence<Condition> ConditionSeq;
 interface WaitSet {

ReturnCode_t
wait(
 inout ConditionSeq active_conditions,
 in Duration_t timeout);

ReturnCode_t
attach_condition(
 in Condition cond);

ReturnCode_t
detach_condition(
 in Condition cond);
422
Java Reference Guide �������	

Appendices
ReturnCode_t
get_conditions(
 inout ConditionSeq attached_conditions);

 };

 interface GuardCondition : Condition {

ReturnCode_t
set_trigger_value(
 in boolean value);

 };

 interface StatusCondition : Condition {

StatusMask
get_enabled_statuses();

ReturnCode_t
set_enabled_statuses(
 in StatusMask mask);
Entity
get_entity();

 };

 // Sample states to support reads
 typedef unsigned long SampleStateKind;
 typedef sequence <SampleStateKind> SampleStateSeq;
 const SampleStateKind READ_SAMPLE_STATE= 0x0001 << 0;
 const SampleStateKind NOT_READ_SAMPLE_STATE= 0x0001 << 1;

 // This is a bit mask SampleStateKind
 typedef unsigned long SampleStateMask;
 const SampleStateMask ANY_SAMPLE_STATE= 0xffff;

 // View states to support reads
 typedef unsigned long ViewStateKind;
 typedef sequence<ViewStateKind> ViewStateSeq;
 const ViewStateKind NEW_VIEW_STATE= 0x0001 << 0;
 const ViewStateKind NOT_NEW_VIEW_STATE= 0x0001 << 1;

 // This is a bit mask ViewStateKind
 typedef unsigned long ViewStateMask;
 const ViewStateMask ANY_VIEW_STATE= 0xffff;

 // Instance states to support reads
 typedef unsigned long InstanceStateKind;
 typedef sequence<InstanceStateKind> InstanceStateSeq;
 const InstanceStateKind ALIVE_INSTANCE_STATE = 0x0001

 << 0;
423
Java Reference Guide�������	

 Appendices
 const InstanceStateKind NOT_ALIVE_DISPOSED_INSTANCE_STATE
= 0x0001 << 1;

 const InstanceStateKind
‘NOT_ALIVE_NO_WRITERS_INSTANCE_STATE = 0x0001 << 2;

 // This is a bit mask InstanceStateKind
 typedef unsigned long InstanceStateMask;
 const InstanceStateMask ANY_INSTANCE_STATE= 0xffff;
 const InstanceStateMask NOT_ALIVE_INSTANCE_STATE= 0x006;

 interface ReadCondition : Condition {
SampleStateMask
get_sample_state_mask();

ViewStateMask
get_view_state_mask();

InstanceStateMask
get_instance_state_mask();

DataReader
get_datareader();

 };

 interface QueryCondition : ReadCondition {
string
get_query_expression();

ReturnCode_t
get_query_parameters(
 inout StringSeq query_parameters);

ReturnCode_t
set_query_parameters(
 in StringSeq query_parameters);

 };

QoS
 const string USERDATA_QOS_POLICY_NAME= "UserData";
 const string DURABILITY_QOS_POLICY_NAME= "Durability";
 const string PRESENTATION_QOS_POLICY_NAME =

 "Presentation";
 const string DEADLINE_QOS_POLICY_NAME= "Deadline";
 const string LATENCYBUDGET_QOS_POLICY_NAME =

 "LatencyBudget";
 const string OWNERSHIP_QOS_POLICY_NAME= "Ownership";
 const string OWNERSHIPSTRENGTH_QOS_POLICY_NAME=

 "OwnershipStrength";
 const string LIVELINESS_QOS_POLICY_NAME= "Liveliness";
424
Java Reference Guide �������	

Appendices
 const string TIMEBASEDFILTER_QOS_POLICY_NAME=
 "TimeBasedFilter";

 const string PARTITION_QOS_POLICY_NAME= "Partition";
 const string RELIABILITY_QOS_POLICY_NAME= "Reliability";
 const string DESTINATIONORDER_QOS_POLICY_NAME=

 "DestinationOrder";
 const string HISTORY_QOS_POLICY_NAME= "History";
 const string RESOURCELIMITS_QOS_POLICY_NAME=

 "ResourceLimits";
 const string ENTITYFACTORY_QOS_POLICY_NAME=

‘ "EntityFactory";
 const string WRITERDATALIFECYCLE_QOS_POLICY_NAME=

 "WriterDataLifecycle";
 const string READERDATALIFECYCLE_QOS_POLICY_NAME=

 "ReaderDataLifecycle";
 const string TOPICDATA_QOS_POLICY_NAME= "TopicData";
 const string GROUPDATA_QOS_POLICY_NAME= "GroupData";
 const string TRANSPORTPRIORITY_QOS_POLICY_NAME=

 "TransportPriority";
 const string LIFESPAN_QOS_POLICY_NAME= "Lifespan";
 const string DURABILITYSERVICE_QOS_POLICY_NAME=

 "DurabilityService";
 const QosPolicyId_t INVALID_QOS_POLICY_ID = 0;
 const QosPolicyId_t USERDATA_QOS_POLICY_ID = 1;
 const QosPolicyId_t DURABILITY_QOS_POLICY_ID = 2;
 const QosPolicyId_t PRESENTATION_QOS_POLICY_ID = 3;
 const QosPolicyId_t DEADLINE_QOS_POLICY_ID = 4;
 const QosPolicyId_t LATENCYBUDGET_QOS_POLICY_ID = 5;
 const QosPolicyId_t OWNERSHIP_QOS_POLICY_ID = 6;
 const QosPolicyId_t OWNERSHIPSTRENGTH_QOS_POLICY_ID = 7;
 const QosPolicyId_t LIVELINESS_QOS_POLICY_ID = 8;
 const QosPolicyId_t TIMEBASEDFILTER_QOS_POLICY_ID = 9;
 const QosPolicyId_t PARTITION_QOS_POLICY_ID = 10;
 const QosPolicyId_t RELIABILITY_QOS_POLICY_ID = 11;
 const QosPolicyId_t DESTINATIONORDER_QOS_POLICY_ID = 12;
 const QosPolicyId_t HISTORY_QOS_POLICY_ID = 13;
 const QosPolicyId_t RESOURCELIMITS_QOS_POLICY_ID = 14;
 const QosPolicyId_t ENTITYFACTORY_QOS_POLICY_ID = 15;
 const QosPolicyId_t WRITERDATALIFECYCLE_QOS_POLICY_ID= 16;
 const QosPolicyId_t READERDATALIFECYCLE_QOS_POLICY_ID= 17;
 const QosPolicyId_t TOPICDATA_QOS_POLICY_ID = 18;
 const QosPolicyId_t GROUPDATA_QOS_POLICY_ID = 19;
 const QosPolicyId_t TRANSPORTPRIORITY_QOS_POLICY_ID = 20;
 const QosPolicyId_t LIFESPAN_QOS_POLICY_ID = 21;
 const QosPolicyId_t DURABILITYSERVICE_QOS_POLICY_ID = 22;

 struct UserDataQosPolicy {
sequence<octet> value;

 };
425
Java Reference Guide�������	

 Appendices
 struct TopicDataQosPolicy {
sequence<octet> value;

 };

 struct GroupDataQosPolicy {
sequence<octet> value;

 };

 struct TransportPriorityQosPolicy {
long value;

 };

 struct LifespanQosPolicy {
Duration_t duration;

 };

 enum DurabilityQosPolicyKind {
VOLATILE_DURABILITY_QOS,
TRANSIENT_LOCAL_DURABILITY_QOS,
TRANSIENT_DURABILITY_QOS,
PERSISTENT_DURABILITY_QOS

 };

 struct DurabilityQosPolicy {
DurabilityQosPolicyKind kind;

 };

 enum PresentationQosPolicyAccessScopeKind {
INSTANCE_PRESENTATION_QOS,
TOPIC_PRESENTATION_QOS,
GROUP_PRESENTATION_QOS

 };

 struct PresentationQosPolicy {
PresentationQosPolicyAccessScopeKind access_scope;
boolean coherent_access;
boolean ordered_access;

 };

 struct DeadlineQosPolicy {
Duration_t period;

 };

 struct LatencyBudgetQosPolicy {
Duration_t duration;

 };

 enum OwnershipQosPolicyKind {
SHARED_OWNERSHIP_QOS,
EXCLUSIVE_OWNERSHIP_QOS
426
Java Reference Guide �������	

Appendices
 };

 struct OwnershipQosPolicy {
OwnershipQosPolicyKind kind;

 };

 struct OwnershipStrengthQosPolicy {
long value;

 };

 enum LivelinessQosPolicyKind {
AUTOMATIC_LIVELINESS_QOS,
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
MANUAL_BY_TOPIC_LIVELINESS_QOS

 };

 struct LivelinessQosPolicy {
LivelinessQosPolicyKind kind;
Duration_t lease_duration;

 };

 struct TimeBasedFilterQosPolicy {
Duration_t minimum_separation;

 };

 struct PartitionQosPolicy {
StringSeq name;

 };

 enum ReliabilityQosPolicyKind {
BEST_EFFORT_RELIABILITY_QOS,
RELIABLE_RELIABILITY_QOS

 };

 struct ReliabilityQosPolicy {
ReliabilityQosPolicyKind kind;
Duration_t max_blocking_time;

 };

 enum DestinationOrderQosPolicyKind {
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

 };

 struct DestinationOrderQosPolicy {
DestinationOrderQosPolicyKind kind;

 };

 enum HistoryQosPolicyKind {
KEEP_LAST_HISTORY_QOS,
427
Java Reference Guide�������	

 Appendices
KEEP_ALL_HISTORY_QOS
 };

 struct HistoryQosPolicy {
HistoryQosPolicyKind kind;
long depth;

 };

 struct ResourceLimitsQosPolicy {
long max_samples;
long max_instances;
long max_samples_per_instance;

 };

 struct EntityFactoryQosPolicy {
boolean autoenable_created_entities;

 };

 struct WriterDataLifecycleQosPolicy {
boolean autodispose_unregistered_instances;

 };

 struct ReaderDataLifecycleQosPolicy {
Duration_t autopurge_nowriter_samples_delay;
Duration_t autopurge_disposed_samples_delay;

 };

 struct DurabilityServiceQosPolicy {
 Duration_t service_cleanup_delay;
 HistoryQosPolicyKind history_kind;
 long history_depth;
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
 };

 struct DomainParticipantFactoryQos {
 EntityFactoryQosPolicy entity_factory;
 };

 struct DomainParticipantQos {
UserDataQosPolicy user_data;
EntityFactoryQosPolicy entity_factory;

 };

 struct TopicQos {
TopicDataQosPolicy topic_data;
DurabilityQosPolicy durability;
DurabilityServiceQosPolicy durability_service;
DeadlineQosPolicy deadline;
428
Java Reference Guide �������	

Appendices
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
OwnershipQosPolicy ownership;

 };

 struct DataWriterQos {
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
UserDataQosPolicy user_data;
OwnershipQosPolicy ownership;
OwnershipStrengthQosPolicy ownership_strength;
WriterDataLifecycleQosPolicy writer_data_lifecycle;

 };

 struct PublisherQos {
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_factory;

 };

 struct DataReaderQos {
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
UserDataQosPolicy user_data;
OwnershipQosPolicy ownership;
TimeBasedFilterQosPolicy time_based_filter;
ReaderDataLifecycleQosPolicy reader_data_lifecycle;

 };
429
Java Reference Guide�������	

 Appendices
 struct SubscriberQos {
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_factory;

 };

 // --
 struct ParticipantBuiltinTopicData {

BuiltinTopicKey_t key;
UserDataQosPolicy user_data;

 };

 struct TopicBuiltinTopicData {
BuiltinTopicKey_t key;
string name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
OwnershipQosPolicy ownership;
TopicDataQosPolicy topic_data;

 };

 struct PublicationBuiltinTopicData {
BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
string topic_name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
LifespanQosPolicy lifespan;
UserDataQosPolicy user_data;
OwnershipStrengthQosPolicy ownership_strength;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

 };
430
Java Reference Guide �������	

Appendices
 struct SubscriptionBuiltinTopicData {
BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
string topic_name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
UserDataQosPolicy user_data;
TimeBasedFilterQosPolicy time_based_filter;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

 };

 // ---
 interface Entity {
 // ReturnCode_t
 // set_qos(
 // in EntityQos qos);
 //
 // ReturnCode_t
 // get_qos(
 // inout EntityQos qos);
 //
 // ReturnCode_t
 // set_listener(
 // in Listener l,
 // in StatusMask mask);
 //
 // Listener
 // get_listener();

ReturnCode_t
enable();
StatusCondition
get_statuscondition();
StatusMask
get_status_changes();

 };

 // ---
 interface DomainParticipant : Entity {

 // Factory interfaces
Publisher
create_publisher(
431
Java Reference Guide�������	

 Appendices
 in PublisherQos qos,
 in PublisherListener a_listener,
 in StatusMask mask);

ReturnCode_t
delete_publisher(
 in Publisher p);

Subscriber
create_subscriber(
 in SubscriberQos qos,
 in SubscriberListener a_listener,
 in StatusMask mask);

ReturnCode_t
delete_subscriber(
 in Subscriber s);

Subscriber
get_builtin_subscriber();

Topic
create_topic(
 in string topic_name,
 in string type_name,
 in TopicQos qos,
 in TopicListener a_listener,
 in StatusMask mask);

ReturnCode_t
delete_topic(
 in Topic a_topic);

Topic
find_topic(
 in string topic_name,
 in Duration_t timeout);

TopicDescription
lookup_topicdescription(
 in string name);

ContentFilteredTopic
create_contentfilteredtopic(
 in string name,
 in Topic related_topic,
 in string filter_expression,
 in StringSeq expression_parameters);

ReturnCode_t
432
Java Reference Guide �������	

Appendices
delete_contentfilteredtopic(
 in ContentFilteredTopic a_contentfilteredtopic);

MultiTopic
create_multitopic(
 in string name,
 in string type_name,
 in string subscription_expression,
 in StringSeq expression_parameters);

ReturnCode_t
delete_multitopic(
 in MultiTopic a_multitopic);

ReturnCode_t
delete_contained_entities();

ReturnCode_t
set_qos(
 in DomainParticipantQos qos);

ReturnCode_t
get_qos(
 inout DomainParticipantQos qos);

ReturnCode_t
set_listener(
 in DomainParticipantListener a_listener,
 in StatusMask mask);
DomainParticipantListener
get_listener();

ReturnCode_t
ignore_participant(
 in InstanceHandle_t handle);

ReturnCode_t
ignore_topic(
 in InstanceHandle_t handle);

ReturnCode_t
ignore_publication(
 in InstanceHandle_t handle);

ReturnCode_t
ignore_subscription(
 in InstanceHandle_t handle);

DomainId_t
get_domain_id();
433
Java Reference Guide�������	

 Appendices
ReturnCode_t
assert_liveliness();
ReturnCode_t
set_default_publisher_qos(
 in PublisherQos qos);

ReturnCode_t
get_default_publisher_qos(
 inout PublisherQos qos);

ReturnCode_t
set_default_subscriber_qos(
 in SubscriberQos qos);

ReturnCode_t
get_default_subscriber_qos(
 inout SubscriberQos qos);

ReturnCode_t
set_default_topic_qos(
 in TopicQos qos);

ReturnCode_t
get_default_topic_qos(
 inout TopicQos qos);

 boolean

contains_entity(
 in InstanceHandle_t a_handle);

ReturnCode_t
get_current_time(
 inout Time_t current_time);

 };

 interface DomainParticipantFactory {
 //
 // DomainParticipantFactory
 // get_instance();
 //

DomainParticipant
create_participant(
 in DomainId_t domainId,
 in DomainParticipantQos qos,
 in DomainParticipantListener a_listener,
 in StatusMask mask);

ReturnCode_t
434
Java Reference Guide �������	

Appendices
delete_participant(
 in DomainParticipant a_participant);

DomainParticipant
lookup_participant(
 in DomainId_t domainId);

ReturnCode_t
set_default_participant_qos(
 in DomainParticipantQos qos);

ReturnCode_t
get_default_participant_qos(
 inout DomainParticipantQos qos);

ReturnCode_t
set_qos(
 in DomainParticipantFactoryQos qos);

ReturnCode_t
get_qos(
 inout DomainParticipantFactoryQos qos);

 };

 interface TypeSupport {
 // ReturnCode_t
 // register_type(
 // in DomainParticipant domain,
 // in string type_name);
 //
 // string
 // get_type_name();
 };

 // ---
 interface TopicDescription {

string
get_type_name();
string
get_name();
DomainParticipant

get_participant();
 };

 interface Topic : Entity, TopicDescription {
ReturnCode_t
set_qos(
 in TopicQos qos);
435
Java Reference Guide�������	

 Appendices
ReturnCode_t
get_qos(
 inout TopicQos qos);

ReturnCode_t
set_listener(
 in TopicListener a_listener,
 in StatusMask mask);

TopicListener_ptr
get_listener();

// Access the status
ReturnCode_t
get_inconsistent_topic_status(
 inout InconsistentTopicStatus a_status);

 };

 interface ContentFilteredTopic : TopicDescription {
string
get_filter_expression();

ReturnCode_t
get_expression_parameters(
 inout StringSeq expression_parameters);

ReturnCode_t
set_expression_parameters(
 in StringSeq expression_parameters);

Topic
get_related_topic();

 };

 interface MultiTopic : TopicDescription {

stringget_subscription_expression();

ReturnCode_t
get_expression_parameters(
 inout StringSeq expression_parameters);

ReturnCode_t
set_expression_parameters(
 in StringSeq expression_parameters);

 };

 // ---
 interface Publisher : Entity {
436
Java Reference Guide �������	

Appendices
DataWriter
create_datawriter(
 in Topic a_topic,
 in DataWriterQos qos,
 in DataWriterListener a_listener,
 in StatusMask mask);

ReturnCode_t
delete_datawriter(
 in DataWriter a_datawriter);

DataWriter
lookup_datawriter(
 in string topic_name);

ReturnCode_t
delete_contained_entities();

ReturnCode_t
set_qos(
 in PublisherQos qos);

ReturnCode_t
get_qos(
 inout PublisherQos qos);

ReturnCode_t
set_listener(
 in PublisherListener a_listener,
 in StatusKindMask mask);

PublisherListener
get_listener();

ReturnCode_t
suspend_publications();

ReturnCode_t
resume_publications();

ReturnCode_t
begin_coherent_changes();

ReturnCode_t
end_coherent_changes();

ReturnCode_t
wait_for_acknowledgments(
 in Duration_t max_wait);
437
Java Reference Guide�������	

 Appendices
DomainParticipant
get_participant();

ReturnCode_t
set_default_datawriter_qos(
 in DataWriterQos qos);

ReturnCode_t
get_default_datawriter_qos(
 inout DataWriterQos qos);

ReturnCode_t
copy_from_topic_qos(
 inout DataWriterQos a_datawriter_qos,
 in TopicQos a_topic_qos);

 };

 interface DataWriter : Entity {
 // InstanceHandle_t
 // register_instance(
 // in Data instance_data);
 //
 // InstanceHandle_t
 // register_instance_w_timestamp(
 // in Data instance_data,
 // in Time_t source_timestamp);
 //
 // ReturnCode_t
 // unregister_instance(
 // in Data instance_data,
 // in InstanceHandle_t handle);
 //
 // ReturnCode_t
 // unregister_instance_w_timestamp(
 // in Data instance_data,
 // in InstanceHandle_t handle,
 // in Time_t source_timestamp);
 //
 // ReturnCode_t
 // write(
 // in Data instance_data,
 // in InstanceHandle_t handle);
 //
 // ReturnCode_t
 // write_w_timestamp(
 // in Data instance_data,
 // in InstanceHandle_t handle,
 // in Time_t source_timestamp);
 //
 // ReturnCode_t
438
Java Reference Guide �������	

Appendices
 // dispose(
 // in Data instance_data,
 // in InstanceHandle_t instance_handle);
 //
 // ReturnCode_t
 // dispose_w_timestamp(
 // in Data instance_data,
 // in InstanceHandle_t instance_handle,
 // in Time_t source_timestamp);
 //
 // ReturnCode_t
 // get_key_value(
 // inout Data key_holder,
 // in InstanceHandle_t handle);
 //
 // InstanceHandle_t
 // lookup_instance(
 // in Data instance);

ReturnCode_t
set_qos(
 in DataWriterQos qos);

ReturnCode_t
get_qos(
 inout DataWriterQos qos);

ReturnCode_t
set_listener(
 in DataWriterListener a_listener,
 in StatusMask mask);

DataWriterListener
get_listener();

Topic
get_topic();

Publisher
get_publisher();

ReturnCode_t
wait_for_acknowledgments(
 in Duration_t max_wait);

// Access the status

ReturnCode_t
get_liveliness_lost_status(
 inout LivelinessLostStatus status);
439
Java Reference Guide�������	

 Appendices
ReturnCode_t
get_offered_deadline_missed_status(
 inout OfferedDeadlineMissedStatus status);

ReturnCode_t
get_offered_incompatible_qos_status(
 inout OfferedIncompatibleQosStatus status);

ReturnCode_t
get_publication_matched_status(
 inout PublicationMatchedStatus status);

ReturnCode_t
assert_liveliness();

ReturnCode_t
get_matched_subscriptions(
 inout InstanceHandleSeq subscription_handles);

ReturnCode_t
get_matched_subscription_data(
 inout SubscriptionBuiltinTopicData subscription_data,
 in InstanceHandle_t subscription_handle);

 };

 // ---

 interface Subscriber : Entity {

DataReader
create_datareader(
 in TopicDescription a_topic,
 in DataReaderQos qos,
 in DataReaderListener a_listener,
 in StatusMask mask);

ReturnCode_t
delete_datareader(
 in DataReader a_datareader);

ReturnCode_t
delete_contained_entities();

DataReader
lookup_datareader(
 in string topic_name);

ReturnCode_t
get_datareaders(
440
Java Reference Guide �������	

Appendices
 inout DataReaderSeq readers,
 in SampleStateMask sample_states,
 in ViewStateMask view_states,
 in InstanceStateMask instance_states);

ReturnCode_t
notify_datareaders();

ReturnCode_t
set_qos(
 in SubscriberQos qos);

ReturnCode_t
get_qos(
 inout SubscriberQos qos);

ReturnCode_t
set_listener(
 in SubscriberListener a_listener,
 in StatusMask mask);

SubscriberListener
get_listener();

ReturnCode_t
begin_access();

ReturnCode_t
end_access();

DomainParticipant
get_participant();

ReturnCode_t
set_default_datareader_qos(
 in DataReaderQos qos);

ReturnCode_t
get_default_datareader_qos(
 inout DataReaderQos qos);

ReturnCode_t
copy_from_topic_qos(
 inout DataReaderQos a_datareader_qos,
 in TopicQos a_topic_qos);

 };

 interface DataReader : Entity {
 // ReturnCode_t
 // read(
441
Java Reference Guide�������	

 Appendices
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // take(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // read_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in ReadCondition a_condition);
 //
 // ReturnCode_t
 // take_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in ReadCondition a_condition);
 //
 // ReturnCode_t
 // read_next_sample(
 // inout Data data_value,
 // inout SampleInfo sample_info);
 //
 // ReturnCode_t
 // take_next_sample(
 // inout Data data_value,
 // inout SampleInfo sample_info);
 //
 // ReturnCode_t
 // read_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
442
Java Reference Guide �������	

Appendices
 // ReturnCode_t
 // take_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // read_next_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // take_next_instance(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in SampleStateMask sample_states,
 // in ViewStateMask view_states,
 // in InstanceStateMask instance_states);
 //
 // ReturnCode_t
 // read_next_instance_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in ReadCondition a_condition);
 //
 // ReturnCode_t
 // take_next_instance_w_condition(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq,
 // in long max_samples,
 // in InstanceHandle_t a_handle,
 // in ReadCondition a_condition);
 //
 // ReturnCode_t
 // return_loan(
 // inout DataSeq data_values,
 // inout SampleInfoSeq info_seq);
443
Java Reference Guide�������	

 Appendices
 //
 // ReturnCode_t
 // get_key_value(
 // inout Data key_holder,
 // in InstanceHandle_t handle);

ReadCondition
create_readcondition(
 in SampleStateMask sample_states,
 in ViewStateMask view_states,
 in InstanceStateMask instance_states);

QueryCondition
create_querycondition(
 in SampleStateMask sample_states,
 in ViewStateMask view_states,
 in InstanceStateMask instance_states,
 in string query_expression,
 in StringSeq query_parameters);

ReturnCode_t
delete_readcondition(
 in ReadCondition a_condition);

ReturnCode_t
delete_contained_entities();

ReturnCode_t
set_qos(
 in DataReaderQos qos);

ReturnCode_t
get_qos(
 inout DataReaderQos qos);

ReturnCode_t
set_listener(
 in DataReaderListener a_listener,
 in StatusMask mask);

DataReaderListener
get_listener();

TopicDescription
get_topicdescription();

Subscriber
get_subscriber();

ReturnCode_t
444
Java Reference Guide �������	

Appendices
get_sample_rejected_status(
 inout SampleRejectedStatus status);

ReturnCode_t
get_liveliness_changed_status(
 inout LivelinessChangedStatus status);

ReturnCode_t
get_requested_deadline_missed_status(
 inout RequestedDeadlineMissedStatus status);

ReturnCode_t
get_requested_incompatible_qos_status(
 inout RequestedIncompatibleQosStatus status);

ReturnCode_t
get_subscription_matched_status(
 inout SubscriptionMatchedStatus status);

ReturnCode_t
get_sample_lost_status(
 inout SampleLostStatus status);

ReturnCode_t
wait_for_historical_data(
 in Duration_t max_wait);

ReturnCode_t
get_matched_publications(
 inout InstanceHandleSeq publication_handles);

ReturnCode_t
get_matched_publication_data(
 inout PublicationBuiltinTopicData publication_data,
 in InstanceHandle_t publication_handle);

 };

 struct SampleInfo {
SampleStateKind sample_state;
ViewStateKind view_state;
InstanceStateKind instance_state;
Time_t source_timestamp;
InstanceHandle_t instance_handle;
BuiltinTopicKey_t publication_handle;
long disposed_generation_count;
long no_writers_generation_count;
long sample_rank;
long generation_rank;
long absolute_generation_rank;
boolean valid_data;
445
Java Reference Guide�������	

 Appendices
 };
 typedef sequence<SampleInfo> SampleInfoSeq;
};

Foo.idl
 // Implied IDL for type "Foo"
 // Example user defined structure

 struct Foo {
long dummy;

 };

 typedef sequence<Foo> FooSeq;

 #include "dds_dcps.idl"

 interface FooTypeSupport : DDS::TypeSupport {
DDS::ReturnCode_t
register_type(
 in DDS::DomainParticipant participant,
 in string type_name);

 string
get_type_name();

 };

 interface FooDataWriter : DDS::DataWriter {
DDS::InstanceHandle_t
register_instance(
 in Foo instance_data);

DDS::InstanceHandle_t
register_instance_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle,
 in DDS::Time_t source_timestamp);

DDS::ReturnCode_t
unregister_instance(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle);

DDS::ReturnCode_t
unregister_instance_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle,
 in DDS::Time_t source_timestamp);

DDS::ReturnCode_t
446
Java Reference Guide �������	

Appendices
write(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle);

DDS::ReturnCode_t
write_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t handle,
 in DDS::Time_t source_timestamp);

DDS::ReturnCode_t
dispose(
 in Foo instance_data,
 in DDS::InstanceHandle_t instance_handle);

DDS::ReturnCode_t
dispose_w_timestamp(
 in Foo instance_data,
 in DDS::InstanceHandle_t instance_handle,
 in DDS::Time_t source_timestamp);

DDS::ReturnCode_t
get_key_value(
 inout Foo key_holder,
 in DDS::InstanceHandle_t handle);

DDS::InstanceHandle_t
lookup_instance(
 in Foo instance_data);

 };
 interface FooDataReader : DDS::DataReader {

DDS::ReturnCode_t
read(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);

DDS::ReturnCode_t
take(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);
447
Java Reference Guide�������	

 Appendices
DDS::ReturnCode_t
read_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::ReadCondition a_condition);

DDS::ReturnCode_t
take_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::ReadCondition a_condition);

DDS::ReturnCode_t
read_next_sample(
 inout Foo data_value,
 inout DDS::SampleInfo sample_info);

DDS::ReturnCode_t
take_next_sample(
 inout Foo data_value,
 inout DDS::SampleInfo sample_info);

DDS::ReturnCode_t
read_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);

DDS::ReturnCode_t
take_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);

DDS::ReturnCode_t
read_next_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
448
Java Reference Guide �������	

Appendices
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);

DDS::ReturnCode_t
take_next_instance(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::SampleStateMask sample_states,
 in DDS::ViewStateMask view_states,
 in DDS::InstanceStateMask instance_states);

DDS::ReturnCode_t
read_next_instance_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::ReadCondition a_condition);

DDS::ReturnCode_t
take_next_instance_w_condition(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq,
 in long max_samples,
 in DDS::InstanceHandle_t a_handle,
 in DDS::ReadCondition a_condition);

DDS::ReturnCode_t
return_loan(
 inout FooSeq data_values,
 inout DDS::SampleInfoSeq info_seq);

DDS::ReturnCode_t
get_key_value(
 inout Foo key_holder,
 in DDS::InstanceHandle_t handle);

DDS::InstanceHandle_t
lookup_instance(
 in Foo instance);

 };
449
Java Reference Guide�������	

 Appendices
450
Java Reference Guide �������	

Appendix

D SampleStates, ViewStates and
InstanceStates

Data is made available to the application by the following operations on
DataReader objects: read and take operations. The general semantics of the
read operations is that the application only gets access to the matching data; the
data remain available in the Data Distribution Services and can be read again. The
semantics of the take operations is that the data is not available in the Data
Distribution Service; that data will no longer be accessible to the DataReader.
Consequently, it is possible for a DataReader to access the same sample multiple
times but only if all previous accesses were read operations.
Each of these operations returns an ordered collection of Data values and
associated SampleInfo objects. Each data value represents an atom of data
information (i.e., a value for one instance). This collection may contain samples
related to the same or different instances (identified by the key). Multiple samples
can refer to the same instance if the settings of the HistoryQosPolicy allow for
it.

SampleInfo Class
SampleInfo is the information that accompanies each sample that is ‘read’ or
‘taken’. It contains, among others, the following information:
• The sample_state (READ_SAMPLE_STATE or NOT_READ_SAMPLE_STATE)
• The view_state, (NEW_VIEW_STATE or NOT_NEW_VIEW_STATE)
• The instance_state (ALIVE_INSTANCE_STATE,
NOT_ALIVE_DISPOSED_INSTANCE_STATE or
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE)

sample_state
For each sample, the Data Distribution Service internally maintains a
sample_state specific to each DataReader. The sample_state can either be
READ_SAMPLE_STATE or NOT_READ_SAMPLE_STATE.
READ_SAMPLE_STATE indicates that the DataReader has already accessed that
sample by means of read. Had the sample been accessed by take it would no
longer be available to the DataReader;
451
Java Reference Guide�������	

 Appendices
• NOT_READ_SAMPLE_STATE indicates that the DataReader has not accessed that
sample before.

Figure 20: sample_state for a Single Sample State Chart

State per Sample
The sample_state available in the SampleInfo reflect the sample_state of
each sample. The sample_state can be: different for all samples in the returned
collection that refer to the same instance.

instance_state
For each instance the Data Distribution Service internally maintains an
instance_state. The instance_state can be:
• ALIVE_INSTANCE_STATE indicates that

 - samples have been received for the instance
 - and there are live DataWriter objects writing the instance

new sample received

take /

read

read

READ_SAMPLE_STATE

take /

(first time seen)

NOT_READ_SAMPLE_STATE

sample is “overwritten”

sample is “overwritten”
452
Java Reference Guide �������	

Appendices
 - and the instance has not been explicitly disposed of (or else samples have been
received after it was disposed of).

• NOT_ALIVE_DISPOSED_INSTANCE_STATE indicates the instance was disposed
of by a DataWriter, either explicitly by means of the dispose operation or
implicitly in case the autodispose_unregistered_instances field of the
WriterDataLyfecycleQosPolicy equals TRUE when the instance gets
unregistered (see Section 3.1.3.23, WriterDataLifecycleQosPolicy), and no new
samples for that instance have been written afterwards

• NOT_ALIVE_NO_WRITERS_INSTANCE_STATE indicates the instance has been
declared as not-alive by the DataReader because it detected that there are no live
DataWriter objects writing that instance.

OwnershipQosPolicy
The precise events that cause the instance_state to change depends on the
setting of the OwnershipQosPolicy:
• If OwnershipQosPolicy is set to EXCLUSIVE_OWNERSHIP_QOS, then the
instance_state becomes NOT_ALIVE_DISPOSED_INSTANCE_STATE only if
the DataWriter that “owns” the instance explicitly disposes of it. The
instance_state becomes ALIVE_INSTANCE_STATE again only if the
DataWriter that owns the instance writes it;

• If OwnershipQosPolicy is set to SHARED_OWNERSHIP_QOS, then the
instance_state becomes NOT_ALIVE_DISPOSED_INSTANCE_STATE if any
DataWriter explicitly disposes of the instance. The instance_state becomes
ALIVE_INSTANCE_STATE as soon as any DataWriter writes the instance again.
453
Java Reference Guide�������	

 Appendices
Figure 21: State Chart of the instance_state for a Single Instance

Snapshot
The instance_state available in the SampleInfo is a snapshot of the
instance_state of the instance at the time the collection was obtained (i.e. at the
time read or take was called). The instance_state is therefore the same for all
samples in the returned collection that refer to the same instance.

view_state
For each instance (identified by the key), the Data Distribution Service internally
maintains a view_state relative to each DataReader. The view_state can
either be NEW_VIEW_STATE or NOT_NEW_VIEW_STATE.

NOT_ALIVE_NO_WRITERS_INSTANCE_STATE

ALIVE_INSTANCE_STATE

NOT_ALIVE_DISPOSED_INSTANCE_STATE

sample received

sample for 'never seen'

no "live"instance disposed

sample received/

[no samples in the DataReader [no samples in

"live" DataWriter detected/

DataWritersof by DataWriter

the DataReader] && no "live" DataWriters]

instance received/
454
Java Reference Guide �������	

Appendices
• NEW_VIEW_STATE indicates that either this is the first time that the DataReader
has ever accessed samples of that instance, or else that the DataReader has
accessed previous samples of the instance, but the instance has since been reborn
(i.e. becomes not-alive and then alive again)

• NOT_NEW_VIEW_STATE indicates that the DataReader has already accessed
samples of the same instance and that the instance has not been reborn since

Figure 22: view_state for a Single Instance State Chart

Snapshot
The view_state available in the SampleInfo is a snapshot of view_state of
the instance relative to the DataReader used to access the samples at the time the
collection was obtained (i.e. at the time read or take was called). The
view_state is therefore the same for all samples in the returned collection that
refer to the same instance.

sample for 'never seen'
instance received/

NEW_VIEW_STATE

[instance_state == ALIVE_INSTANCE_STATE] [instance_state == NOT_ALIVE_INSTANCE_STATE]

sample received

read/take

read/take

NOT_NEW_VIEW_STATE
455
Java Reference Guide�������	

 Appendices
State Masks
State Definitions
All states are available as a constant. These convenience constants can be used to
create a bit mask (e.g. to be used as operation parameters) by performing an AND or
OR operation. They can also be used for testing whether a state is set.
The sample state definitions indicates whether or not the matching data sample has
already been read:
• READ_SAMPLE_STATE: sample has already been read
• NOT_READ_SAMPLE_STATE: sample has not been read
The view state definitions indicates whether the DataReader has already seen
samples for the most-current generation of the related instance
• NEW_VIEW_STATE: all samples of this instance are new
• NOT_NEW_VIEW_STATE: some or all samples of this instance are not new
The instance state definitions indicates whether the instance is currently in existence
or, if it has been disposed of, the reason why it was disposed of:
• ALIVE_INSTANCE_STATE: this instance is currently in existence
• NOT_ALIVE_DISPOSED_INSTANCE_STATE: this instance was disposed of by a
DataWriter

• NOT_ALIVE_NO_WRITERS_INSTANCE_STATE: the instance has been disposed
of by the DataReader because none of the DataWriter objects currently
“alive” (according to the LivelinessQosPolicy) are writing the instance.

Pre-defined Bit Mask Definitions
For convenience, some pre-defined bit masks are available as a constant definition.
These bit mask constants can be used where a state bit mask is required. They can
also be used for testing whether certain bits are set.
The sample state bit mask definition selects both sample states
• ANY_SAMPLE_STATE: either the sample has already been read or not read
The view state bit mask definition selects both view states
• ANY_VIEW_STATE: either the sample has already been seen or not seen
The instance state bit mask definitions selects a combination of instance states
• NOT_ALIVE_INSTANCE_STATE: this instance was disposed of by a DataWriter

or the DataReader
• ANY_INSTANCE_STATE: this instance is either in existence or not in existence
456
Java Reference Guide �������	

Appendices
Operations Concerning States
The application accesses data by means of the operations read or take on the
DataReader. These operations return an ordered collection of DataSamples
consisting of a SampleInfo part and a Data part. The way the Data Distribution
Service builds this collection (i.e., the data-samples that are parts of the list as well
as their order) depends on QosPolicy settings set on the DataReader and the
Subscriber, as well as the source timestamp of the samples and the parameters
passed to the read/take operations, namely:
• the desired sample states (i.e., READ_SAMPLE_STATE,
NOT_READ_SAMPLE_STATE, or ANY_SAMPLE_STATE)

• the desired view states (i.e., NEW_VIEW_STATE, NOT_NEW_VIEW_STATE, or
ANY_VIEW_STATE)

• the desired instance states (ALIVE_INSTANCE_STATE,
NOT_ALIVE_DISPOSED_INSTANCE_STATE,
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE,
NOT_ALIVE_INSTANCE_STATE, or ANY_INSTANCE_STATE)

The read and take operations are non-blocking and just deliver what is currently
available that matches the specified states.
On output, the collection of Data values and the collection of SampleInfo objects
are of the same length and are in a one-to-one correspondence. Each SampleInfo
provides information, such as the source_timestamp, the sample_state,
view_state, and instance_state, etc., about the matching sample.
Some elements in the returned collection may not have valid data. If the
instance_state in the SampleInfo is
NOT_ALIVE_DISPOSED_INSTANCE_STATE or
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, then the last sample for that
ins tance in the co l lec t ion , tha t i s , the one whose SampleInfo has
sample_rank==0 does not contain valid data. Samples that contain no data do not
count towards the limits imposed by the ResourceLimitsQosPolicy.

read
The act of reading a sample sets its sample_state to READ_SAMPLE_STATE. If
the sample belongs to the most recent generation of the instance, it will also set the
view_state of the instance to NOT_NEW_VIEW_STATE. It will not affect the
instance_state of the instance.
457
Java Reference Guide�������	

 Appendices
take
The act of taking a sample removes it from the DataReader so it cannot be ‘read’
or ‘taken’ again. If the sample belongs to the most recent generation of the instance,
it will also set the view_state of the instance to NOT_NEW_VIEW_STATE. It will
not affect the instance_state of the instance.
read_w_condition
In case the ReadCondition is a ‘plain’ ReadCondition and not the specialized
QueryCondition, the operation is equivalent to calling read and passing as
sample_states, view_states and instance_states the value of the
corresponding attributes in the ReadCondition. Using this operation the
application can avoid repeating the same parameters specified when creating the
ReadCondition.

take_w_condition
The act of taking a sample removes it from the DataReader so it cannot be ‘read’
or ‘taken’ again. If the sample belongs to the most recent generation of the instance,
it will also set the view_state of the instance to NOT_NEW_VIEW_STATE. It will
not affect the instance_state of the instance.
In case the ReadCondition is a ‘plain’ ReadCondition and not the specialized
QueryCondition, the operation is equivalent to calling take and passing as
sample_states, view_states and instance_states the value of the
corresponding attributes in the ReadCondition. Using this operation the
application can avoid repeating the same parameters specified when creating the
ReadCondition.

read_next_sample
The read_next_sample operation is semantically equivalent to the read
o p e r a t i o n w h e r e t h e i n p u t Data se quence ha s max_len=1 , t h e
sample_states=NOT_READ_SAMPLE_STATE, the
view_states=ANY_VIEW_STATE, and the
instance_states=ANY_INSTANCE_STATE.

take_next_sample
The take_next_sample operation is semantically equivalent to the take
ope ra t i on whe re t he i npu t s equenc e ha s max_len=1 , t h e
sample_states=NOT_READ_SAMPLE_STATE, the
view_states=ANY_VIEW_STATE, and the
instance_states=ANY_INSTANCE_STATE.
458
Java Reference Guide �������	

Appendices
read_instance
The act of reading a sample sets its sample_state to READ_SAMPLE_STATE. If
the sample belongs to the most recent generation of the instance, it will also set the
view_state of the instance to NOT_NEW_VIEW_STATE. It will not affect the
instance_state of the instance.

take_instance
The act of taking a sample removes it from the DataReader so it cannot be ‘read’
or ‘taken’ again. If the sample belongs to the most recent generation of the instance,
it will also set the view_state of the instance to NOT_NEW_VIEW_STATE. It will
not affect the instance_state of the instance.
459
Java Reference Guide�������	

 Appendices
460
Java Reference Guide �������	

Appendix

E Interface Inheritance
This appendix gives an overview of the inheritance relations of the DCPS interfaces.

Figure 23 DCPS Inheritance

FooDataReader
(from Topic-Definition Module)

FooDataWriter
(from Topic-Definition Module)

FooTypeSupport
(from Topic-Definition Module)

TopicListener

<<Interface>>

TypeSupport
(from Topic-Definition Module)

<<Interface>>

TopicDescription
(from Topic-Definition Module)

DataReaderListener
(from Subscription Module)

<<Interface>> QueryCondition
(from Subscription Module)

SampleInfo
(from Subscription Module)

SubscriberListener
(from Subscription Module)

<<Interface>>

DataWriterListener
(from Publication Module)

<<Interface>>

PublisherListener
(from Publication Module)

<<Interface>>

GuardCondition
(from Infrastructure Module)

Listener
(from Infrastructure Module)

<<Interface>>

Status
(from Infrastructure Module)

DataWriter
(from Publication Module)

Entity
(from Infrastructure Module)

DataReader
(from Subscription Module)

StatusCondition
(from Infrastructure Module)

Condition
(from Infrastructure Module)

ReadCondition
(from Subscription Module)

WaitSet
(from Infrastructure Module)

Publisher
(from Publication Module)

Subscriber
(from Subscription Module)

Topic
(from Topic-Definition Module)

ContentFilteredTopic
(from Topic-Definition Module)

MultiTopic
(from Topic-Definition Module)

DomainEntity
(from Infrastructure Module)

QosPolicy
(from Infrastructure Module)

DomainParticipantFactory
(from Domain Module)

DomainParticipantListener
(from Domain Module)

DomainParticipant
(from Domain Module)
461
Java Reference Guide�������	

 Appendices
462
Java Reference Guide �������	

Appendix

F Listeners, Conditions and
Waitsets

Listeners and Conditions (Conditions in conjunction with WaitSets) are
two mechanisms that allow the application to be made aware of changes in the
communication status. Listeners provide an event-based mechanism for the Data
Distribution Service to asynchronously alert the application of the occurrence of
relevant status changes. Conditions in conjunction with WaitSets provide a
state-based mechanism for the Data Distribution Service to synchronously
communicate the relevant status changes to the application.
Both mechanisms are based on the communication statuses associated with an
Entity object. Not all statuses are applicable to all Entity objects. Which status is
applicable to which Entity object is listed in the next table:
463
Java Reference Guide�������	

 Appendices
Table 23 Communication Statuses

Entity Status Name Description
Topic INCONSISTENT_TOPIC_STATUS Another Topic exists with the same name but

with different characteristics.
Subscriber DATA_ON_READERS_STATUS New information is available.
DataReader SAMPLE_REJECTED_STATUS A (received) sample has been rejected.

LIVELINESS_CHANGED_STATUS The liveliness of one or more DataWriter
objects, that were writing instances read through
the DataReader objects has changed. Some
DataWriter object have become “active” or
“inactive”.

REQUESTED_
DEADLINE_MISSED_STATUS

The deadline that the DataReader was
expecting through its DeadlineQosPolicy
was not respected for a specific instance.

REQUESTED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with what
is offered.

DATA_AVAILABLE_STATUS New information is available.
SAMPLE_LOST_STATUS A sample has been lost (never received).
SUBSCRIPTION_MATCH_STATUS The DataReader has found a DataWriter that

matches the Topic and has compatible QoS.
DataWriter LIVELINESS_LOST_STATUS The liveliness that the DataWriter has

committed through its LivelinessQosPolicy
was not respected; thus DataReader objects
will consider the DataWriter as no longer
“active”.

OFFERED_
DEADLINE_MISSED_STATUS

The deadline that the DataWriter has
committed through its DeadlineQosPolicy
was not respected for a specific instance.

OFFERED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with what
was requested.

PUBLICATION_MATCH_STATUS The DataWriter has found DataReader that
matches the Topic and has compatible QoS.
464
Java Reference Guide �������	

Appendices
The statuses may be classified in:
• read communication statuses: i.e., those that are related to arrival of data, namely
DATA_ON_READERS and DATA_AVAILABLE;

• plain communication statuses: i.e., all the others.
For each plain communication status, there is a corresponding status class. The
information from in instance of this class can be retrieved with the operations
get_<status_name>_status. For example, to get the INCONSISTENT_TOPIC
status (which information is stored in the InconsistentTopicStatus object),
the application must call the operation get_inconsistent_topic_status. A
plain communication status can only be read from the Entity on which it is
applicable. For the read communication statuses there is no object available to the
application.

Communication Status Event
Conceptually associated with each Entity communication status is a logical
StatusChangedFlag. This flag indicates whether that particular communication
status has changed since the last time the status was ‘read’ by the application (there
is no actual read-operat ion to read the StatusChangedFlag) . The
StatusChangedFlag is only conceptually needed to explain the behaviour of a
Listener, therefore, it is not important whether this flag actually exists. A
Listener will only be activated when the StatusChangedFlag changes from
false to true (provided the Listener is attached and enabled for this particular
status). The conditions which cause the StatusChangedFlag to change is slightly
different for the plain communication status and the read communication status.
For the plain communication status, the StatusChangedFlag flag is initially set to
false. It becomes true whenever the plain communication status changes and it is
reset to false each time the application accesses the plain communication status
via the proper get_<status_name>_status operation on the Entity.
The communication status is also reset to false whenever the associated
Listener operation is called as the Listener implicitly accesses the status which
is passed as a parameter to the operation. The fact that the status is reset prior to
c a l l i n g t h e l i s t e n e r m e a n s t h a t i f t h e a p p l i c a t i o n c a l l s t h e
get_<status_name>_status from inside the listener it will see the status
already reset.
An exception to this rule is when the associated Listener is the 'nil' listener, i.e. a
listener with value null. Such a listener is treated as a NOOP1 for all statuses
activated in its bitmask and the act of calling this 'nil' listener does not reset the
corresponding communication statuses.

1. Short for No-Operation, an instruction that peforms nothing at all.

465

Java Reference Guide�������	

 Appendices
Figure 24: Plain Communication Status State Chart

For example, the value of the StatusChangedFlag associated with the
RequestedDeadlineMissedStatus will become true each time a new deadline
p a s s e s (w h i c h i n c r e a s e s t h e t o t a l _ c o u n t f i e l d w i t h i n
RequestedDeadlineMissedStatus). The value changes to false when the
a p p l i c a t i o n a c c e s s e s t h e s t a t u s v i a t h e c o r r e s p o n d i n g
get_requested_deadline_missed_status operation on the proper Entity,
or when the the on_requested_deadline_missed operation on the Listener
attached to this Entity or one its containing entities is invoked.
For the read communication status, the StatusChangedFlag flag is initially set to
false. It becomes true when data arrives, or when the InstanceState of a
contained instance changes. This can be caused by either:
• The arrival of the notification that an instance has been disposed by:

 - the DataWriter that owns it if its OwnershipQosPolicyKind =
EXCLUSIVE_OWNERSHIP_QOS

 - or by any DataWriter if its OwnershipQosPolicyKind =
SHARED_OWNERSHIP_QOS.

• The loss of liveliness of the DataWriter of an instance for which there is no
other DataWriter.

• The arrival of the notification that an instance has been unregistered by the only
DataWriter that is known to be writing the instance.

StatusChangedFlag = true

StatusChangedFlag = false

CurrentStatus != SavedStatus
get_<status_name>_status
OR invocation of corres-

event which can cause
the activation of a Listener

ponding Listener operation
466
Java Reference Guide �������	

Appendices
Figure 25: Read Communication Status DataReader Statecraft

Figure 26: Subscriber Statecraft for a Read Communication Status

• The status flag of the DATA_ON_READERS_STATUS becomes FALSE when any of
the following events occurs:
 - The corresponding listener operation (on_data_on_readers) is called on the

corresponding Subscriber.
 - The on_data_available listener operation is called on any DataReader

belonging to the Subscriber.
 - The read or take operation (or any of its variants) is called on any
DataReader belonging to the Subscriber.

StatusChangedFlag = true

StatusChangedFlag = false

Data arrives OR
on_data_available OR
read/take or any of its
variants

event which can cause
the activation of a Listener

 change in InstanceState of a contained instance

StatusChangedFlag = true

StatusChangedFlag = false

Data arrives OR change in InstanceState
on_data_on_readers OR
on_data_available OR
read/take or any of its

event which can cause
the activation of a Listener

 of any contained DataReader
variants
467
Java Reference Guide�������	

 Appendices
Listeners
The Listeners provide for an event-based mechanism to asynchronous inform the
application of a status change event. Listeners are applicable for both the read
communication statuses and the plain communication statuses. When one of these
status change events occur, the associated Listener is activated, provided some
pre-conditions are satisfied. When the Listener is activated, it will call the
corresponding on_<status_name> operation of that Listener. Each
on_<status_name> operation available in the Listener of an Entity is also
available in the Listener of the factory of the Entity.
For both the read communication statuses and the plain communication statuses a
Listener is only activated when a Listener is attached to this particular Entity
and enabled for this particular status. Statuses are enabled according the to the
StatusMask parameter that was passed at creation time of the Entity, or that was
passed to the set_listener operation.
When an event occurs for a particular Entity and for a particular status, but the
applicable Listener is not activated for this status, the status is propagated up to
the factory of this Entity. For this factory, the same propagation rules apply. When
even the DomainParticipantListener is not attached or enabled for this status,
the application will not be notified about this event. This means, that a status change
on a contained Entity only invokes the Listener of its factory if the Listener
of the contained Entity itself does not handle the trigger event generated by the
status change.
468
Java Reference Guide �������	

Appendices
Figure 27: DCPS Listeners

The event propagation is also applicable to the read communication statuses.
However, since the event here is the arrival of data, both the DATA_ON_READERS
and DATA_AVAILABLE status are true. The Data Distribution Service will first
attempt to handle the DATA_ON_READERS status and try to activate the
SubscriberListener. When this Listener is not activated for this status the
event will propagate to the DomainParticipantListener. Only when the
DATA_ON_READERS status can not be handled, the Data Distribution Service will
attempt to handle the DATA_AVAILABLE status and try to activate the
DataReaderListener. In case this Listener is not activated for this status the
event will follow the propagation rules as described above.

Listener
(from Infrastructure Module)

<<Interface>>

DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<Interface>>
DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>

SubscriberListener

on_data_on_readers()

<<Interface>>

PublisherListener
<<Interface>>

TopicListener

on_inconsistent_topic()

<<Interface>>

DomainParticipantListener
469
Java Reference Guide�������	

 Appendices
Conditions and Waitsets
The Conditions in conjunction with WaitSets provide for a state-based
mechanism to synchronously inform the application of status changes. A
Condition c an be e i t he r a ReadCondition , QueryCondition ,
StatusCondition or GuardCondition. To create a Condition one of the
following operations can be used:
• ReadCondition created by create_readcondition;
• QueryCondition created by create_querycondition;
• StatusCondition retrieved by get_statuscondition on an Entity;
• GuardCondition created by the Java operation new.
• Note that the QueryCondition is a specialized ReadCondition. The
GuardCondition is a different kind of Condition since it is not controlled by a
status but directly by the application (when a GuardCondition is initially
created, the trigger_value is false). The StatusCondition is present by
default with each Entity, therefore, it does not have to be created.

Figure 28: DCPS WaitSets

A WaitSet may have one or several Conditions attached to it. An application
thread may block execution (blocking may be limited by a timeout) by waiting on a
WaitSet until the trigger_value of one or more of the Conditions become
true. When a Condition, whose trigger_value evaluates to true, is attached
to a WaitSet that is currently being waited on (using the wait operation), the
WaitSet will unblock immediately.
This (state-based) mechanism is generally used as follows:
• The application creates a WaitSet.
• The application indicates which relevant information it wants to be notified of, by

creating or retrieving Condition objects (StatusCondition,
ReadCondition, QueryCondition or GuardCondition) and attach them to a
WaitSet.

• It then waits on that WaitSet (using WaitSet.wait) until the trigger_value
of one or several Condition objects (in the WaitSet) become true.

• When the thread is unblocked, the application uses the result of the wait (i.e., the
list of Condition objects with trigger_value==true) to actually get the
information:

Condition

get_trigger_value()

WaitSet

attach_condition()
detach_condition()
get_conditions()
wait()

** **
470
Java Reference Guide �������	

Appendices
 - if the condition is a StatusCondition and the status changes refer to a plain
communication status, by calling get_status_changes and then
get_<communication_status> on the relevant Entity;

 - if the condition is a StatusCondition and the status changes refer to the read
communication status:

 - DATA_ON_READERS, by calling get_status_changes and then
get_datareaders on the relevant Subscriber and then read/take on the
returned DataReader objects;

 - DATA_AVAILABLE, by calling get_status_changes and then read/take on
the relevant DataReader.

 - if it is a ReadCondition or a QueryCondition, by calling directly
read_w_condition/take_w_condition on the DataReader with the
Condition as a parameter.

Figure 29 DCPS Conditions

Condition

get_trigger_value()

QueryCondition

get_query_arguments()
get_query_expression()
set_query_arguments()

DataReader

ReadCondition

get_datareader()
get_instance_state_mask()
get_sample_state_mask()
get_view_state_mask()

1

*

1

*

GuardCondition

set_trigger_value()

Entity

enable()
<<abstract>> get_listener()
<<abstract>> get_qos()
get_status_changes()
get_statuscondition()
<<abstract>> set_listener()
<<abstract>> set_qos()

StatusCondition

get_enabled_statuses()
get_entity()
set_enabled_statuses()

11

entity

0..10..1

statuscondition

DataWriter

PublisherSubscriber

Topic

DomainParticipant

DomainEntity

<<create>>

<<create>>
471
Java Reference Guide�������	

 Appendices
No extra information is passed from the Data Distribution Service to the application
when a wait returns only the list of triggered Condition objects. Therefore, it is
the application responsibility to investigate which Condition objects have
triggered the WaitSet.

Blocking Behaviour
The result of a wait operation depends on the state of the WaitSet, which in turn
depends on whether at least one attached Condition has a trigger_value of
true. If the wait operation is called on WaitSet with state BLOCKED it will
block the calling thread. If wait is called on a WaitSet with state UNBLOCKED it
will return immediately. In addition, when the WaitSet transitions from state
BLOCKED to state UNBLOCKED it wakes up the thread (if any) that had called
wait on it. Note that there can only be one thread waiting on a single WaitSet.

Figure 30: Blocking Behaviour of a Waitset State Chart

StatusCondition Trigger State
The trigger_value of a StatusCondition is the boolean OR of the
StatusChangedFlag of all the communication statuses to which it is sensitive.
T h a t i s , trigger_value==false o n l y i f a l l t h e v a lu e s o f t h e
StatusChangedFlags are false.
The sensitivity of the StatusCondition to a particular communication status is
controlled by the bit mask of enabled_statuses set on the Condition by means
of the set_enabled_statuses operation.

UNBLOCKED

BLOCKED

[at least one attached condition has
trigger_value == true]

[all attached conditions have
trigger_value == false]

WaitSet::wait
Block calling thread

WaitSet::wait
Do not block. Return immediately

Wakeup waiting threads
472
Java Reference Guide �������	

Appendices
ReadCondition and QueryCondition Trigger State
Similar to the StatusCondition, a ReadCondition also has a trigger_value
that determines whether the attached WaitSet is BLOCKED or UNBLOCKED.
However, unlike the StatusCondition , the trigger_value of the
ReadCondition is tied to the presence of at least one sample managed by the Data
Distribution Service with SampleState, ViewState, and InstanceState
matching those of the ReadCondition. Additionally, for the QueryCondition,
the data associated with the sample, must be such that the query_expression
evaluates to true.
The fact that the trigger_value of a ReadCondition is dependent on the presence
of samples on the associated DataReader implies that a single take operation can
potentially change the trigger_value of several ReadCondition or
QueryCondition objects.
For example, if all samples are taken, any ReadCondition or QueryCondition
objects associated with the DataReader that had their trigger_value==true
before will see the trigger_value change to false. Note that this does not
guarantee that WaitSet objects, that had those Condition objects separately
attached to, will not be woken up. Once we have trigger_value==true on a
Condition it may wake up the WaitSet it was attached to, the condition
transitions to trigger_value==false does not 'un-wake up' the WaitSet as
'un-wakening' is not possible. The consequence is that an application blocked on a
WaitSet may return from the wait with a list of Condition objects some of which
are no longer “active”.
This is unavoidable if multiple threads are concurrently waiting on separate
WaitSet objects and taking data associated with the same DataReader Entity.
In other words, a wait may return with a list of Condition objects which all have
a trigger_value==false. This only means, that at some point one or more of
the Condition objects have had a trigger_value==true but no longer do.

GuardCondition Trigger State
The trigger_value of a GuardCondition is completely controlled by the
application via the operation set_trigger_value. This Condition can be used
to implement an application defined wake-up of the blocked thread.
473
Java Reference Guide�������	

 Appendices
474
Java Reference Guide �������	

Appendix

G Topic Definitions
The Data Distribution Service distributes its data in structured data types, called
topics. The first step when using the Data Distribution Service consists of defining
these topics. Since the Data Distribution Service supports using several
programming languages, OMG IDL is used for this purpose. This appendix
describes how to define the topics.

Topic Definition Example
All data distributed using the Data Distribution Service has to be defined as a topic.
A topic is a structured data type, like a class with several data members. Whenever
the application needs to read or write data, it will be reading or writing topics. The
definition of each topic it will be using has to be written in (a subset of) OMG IDL.
For example:

module SPACE {
struct Foo {

long userID; // owner of message
long long index; // message index per owner
string content; // message body

};
#pragma keylist Foo
};

This is the definition of a topic called Foo, used for sending and receiving messages
(as an example). Even though the topic is defined using IDL, the Data Distribution
Service will be using an equivalent Java object which is accessed by the application
using the type specific operations. Generation of the typed classes is achieved by
invoking the Data Distribution Service IDL preprocessor, idlpp -l java -S
<idl_filename>.idl, a tool which translates the IDL topic definition into an
equivalent Java-definition. The -l java option indicates that Java code has to be
generated. The -S option indicates that this Java-code should be StandAlone
Java-code, i.e. it must not have any dependency on external ORB libraries. (It is also
possible to use libraries from an existing ORB, so that your DDS application can
also manage information coming from an external ORB. In that case you should use
the CORBA-cohabitation mode, by replacing the -S flag witg a -C flag.) In this
example, the pre-processor will generate the classes FooTypeSupport,
FooDataWriter and FooDataReader which contain the type specific operations.
475
Java Reference Guide�������	

 Appendices
Complex Topics
The Foo topic is relatively simple, but the Data Distribution Service is capable of
distributing more complex topics as well. In fact, any definition following the
OpenSplice IDL subset is allowed. It is important to know that the pre-processor
accepts all IDL constructs but only the subset is being processed.
Apart from the trivial data types, the Data Distribution Service is capable of
handling fixed-length arrays, bounded and unbounded sequences, union types and
enumerations. Types can be nested, e.g. a struct can contain a struct field or an array
of structs, or a sequence of strings or an array of sequences containing structs.

IDL Preprocessor
The subset of OMG IDL that can be used to define the topics are described below.

IDL to Host Language Mapping
The Data Distribution Service IDL pre-processor translates the IDL-definition of the
topics into language specific code. This translation is executed according to the
OMG IDL mappings. Since the Data Distribution Service uses data-structures only,
not all IDL-features are implemented by the pre-processor. Usually, the IDL
definition consists of a module defining several structs and typedefs.

Data Distribution Service IDL Keywords
The identifiers listed in this appendix are reserved for use as keywords in IDL and
may not be used otherwise, unless escaped with a leading underscore.

abstract exception inout provides truncatable

any emits interface public typedef

attribute enum local publishes typeid

boolean eventtype long raises typeprefix

case factory module readonly unsigned

char false multiple setraises union

component finder native sequence uses

const fixed Object short ValueBase

consumes float octet string valuetype

context getraises oneway struct void

custom home out supports wchar

default import primarykey switch wstring

double in private true
476
Java Reference Guide �������	

Appendices
Keywords must be written exactly as shown in the above list. Identifiers that collide
with keywords are illegal. For example, boolean is a valid keyword; Boolean and
BOOLEAN are illegal identifiers.

Data Distribution Service IDL Pragma Keylist
To define a topic, the content must either be a struct or a union. The pre-processor
will only generate the type specific classes when topic definition is accompanied by
a <pragmakeylist>. When the <pragmakeylist> has no <field_id>, the topic is
available but no key is set. To define the keylist the definition, written in
BNF-notation, is as follows:

<pragmakeylist>::= “#pragma keylist” <type_id> <field_id>*
<type_id>::= <struct_type_identifier>

 | <union_type_identifier>
<field_id>::= <member_declarator>

 | <element_spec_declarator>

In case of a struct, <type_id> is a <struct_type_identifier>. In case of a union,
<type_id> is a <union_type_identifier>. The <struct_type_identifier> is
the identifier used in the struct declaration. The <union_type_identifier> is the
identifier used in the union declaration. The <field_id> is the identifier of a field in
the struct or union identified by <type_id>. In case of a struct, <field_id> is a
<member_declarator> which is one of the declarators used in the struct member. In
case of a union, <field_id> is a <element_spec_declarator> which is one of the
declarators used in the element specification in a case of the union.
For example, for the Foo example the next pragma must be used to have the
pre-processor generate the typed classes (FooTypeSupport, FooDataWriter and
FooDataReader).

#pragma keylist Foo userID index

Note that in this example the userID and the index are used as a key.

Data Distribution Service IDL Subset in BNF-notation
Only a subset of IDL is used by the pre-processor. A description of the Data
Distribution Service IDL subset, written in BNF-notation, is as follows:
<definition> ::= <type_dcl> “;”

 | <const_dcl> “;”
 | <module> “;”

<module>::= “module” <identifier> “{“ <definition>+ “}”
<scoped_name>::= <identifier>

 | “::” <identifier>
 | <scoped_name> “::” <identifier>

<const_dcl>::= “const” <const_type>
 <identifier> “=” <const_exp>

<const_type>::= <integer_type>
 | <char_type>
477
Java Reference Guide�������	

 Appendices
 | <boolean_type>
 | <floating_pt_type>
 | <string_type>
 | <scoped_name>
 | <octet_type>

<const_exp>::= <or_expr>
<or_expr>::= <xor_expr>

 | <or_expr> “|” <xor_expr>
<xor_expr>::= <and_expr>

 | <xor_expr> “^” <and_expr>
<and_expr>::= <shift_expr>

 | <and_expr> “&” <shift_expr>
<shift_expr>::= <add_expr>

 | <shift_expr> “>>” <add_expr>
 | <shift_expr> “<<” <add_expr>

<add_expr>::= <mult_expr>
 | <add_expr> “+” <mult_expr>
 | <add_expr> “-” <mult_expr>

<mult_expr>::= <unary_expr>
 | <mult_expr> “*” <unary_expr>
 | <mult_expr> “/” <unary_expr>
 | <mult_expr> “%” <unary_expr>

<unary_expr>::= <unary_operator> <primary_expr>
 | <primary_expr>

<unary_operator>::= “-”
 | “+”
 | “~”

<primary_expr>::= <scoped_name>
 | <literal>
 | “(” <const_exp> “)”

<literal>::= <integer_literal>
 | <string_literal>
 | <character_literal>
 | <floating_pt_literal>
 | <boolean_literal>

<boolean_literal>::= “TRUE”
 | “FALSE”

<positive_int_const>::= <const_exp>
<type_dcl>::= “typedef” <type_declarator>

 | <struct_type>
 | <union_type>
 | <enum_type>

<type_declarator>::= <type_spec> <declarators>
<type_spec>::= <simple_type_spec>

 | <constr_type_spec>
<simple_type_spec>::= <base_type_spec>

 | <template_type_spec>
 | <scoped_name>

<base_type_spec>::= <floating_pt_type>
 | <integer_type>
478
Java Reference Guide �������	

Appendices
 | <char_type>
 | <boolean_type>
 | <octet_type>

<template_type_spec>::= <sequence_type>
 | <string_type>

<constr_type_spec>::= <struct_type>
 | <union_type>
 | <enum_type>

<declarators>::= <declarator> { “,” <declarator> }*
<declarator>::= <simple_declarator>

 | <complex_declarator>
<simple_declarator>::= <identifier>
<complex_declarator>::= <array_declarator>
<floating_pt_type>::= “float”

 | “double”
<integer_type>::= <signed_int>

 | <unsigned_int>
<signed_int>::= <signed_short_int>

 | <signed_long_int>
 | <signed_longlong_int>

<signed_short_int>::= “short”
<signed_long_int>::= “long”
<signed_longlong_int>::= “long” “long”
<unsigned_int>::= <unsigned_short_int>

 | <unsigned_long_int>
 | <unsigned_longlong_int>

<unsigned_short_int>::= “unsigned” “short”
<unsigned_long_int>::= “unsigned” “long”
<unsigned_longlong_int>::= “unsigned” “long” “long”
<char_type>::= “char”
<boolean_type>::= “boolean”
<octet_type>::= “octet”
<struct_type>::= “struct” <identifier> “{” <member_list> “}”
<member_list>::= <member>+
<member>::= <type_spec> <declarators> “;”
<union_type>::= “union” <identifier> “switch”

 “(” <switch_type_spec> “)”
 “{” <switch_body> “}”

<switch_type_spec>::= <integer_type>
 | <char_type>
 | <boolean_type>
 | <enum_type>
 | <scoped_name>

<switch_body>::= <case>+
<case>::= <case_label>+ <element_spec> “;”
<case_label>::= “case” <const_exp> “:”

 | “default” “:”
<element_spec>::= <type_spec> <declarator>
<enum_type>::= “enum” <identifier>

 “{” <enumerator> { “,” <enumerator> }* “}”
479
Java Reference Guide�������	

 Appendices
<enumerator>::= <identifier>
<sequence_type>::= “sequence” “<” <simple_type_spec> “,”

 <positive_int_const> “>”
 | “sequence” “<” <simple_type_spec> “>”

<string_type>::= “string” “<” <positive_int_const> “>”
 | “string”

<array_declarator>::= <identifier> <fixed_array_size>+
<fixed_array_size>::= “[” <positive_int_const> “]”
480
Java Reference Guide �������	

Appendix

H DCPS Queries and Filters
A subset of SQL syntax is used in several parts of OpenSplice:
• the filter_expression in the ContentFilteredTopic
• the topic_expression in the MultiTopic
• the query_expression in the QueryReadCondition
Those expressions may use a subset of SQL, extended with the possibility to use
program variables in the SQL expression. The allowed SQL expressions are defined
with the BNF-grammar below. The following notational conventions are made:
• the NonTerminals are typeset in italics
• the ‘Terminals’ are quoted and typeset in a fixed width font
• the TOKENS are typeset in small caps
• the notation (element // ‘,’) represents a non-empty comma-separated list of

elements

SQL Grammar in BNF
Expression::= FilterExpression

 | TopicExpression
 | QueryExpression

FilterExpression::= Condition
TopicExpression::= SelectFrom {Where } ‘;’
QueryExpression::= {Condition}
SelectFrom::= ‘SELECT’ Aggregation ‘FROM’ Selection
Aggregation::= ‘*’

 | (SubjectFieldSpec // ‘,’)
SubjectFieldSpec::= FIELDNAME

 | FIELDNAME ‘AS’ FIELDNAME
 | FIELDNAME FIELDNAME

Selection::= TOPICNAME
 | TOPICTNAME NaturalJoin JoinItem

JoinItem::= TOPICNAME
 | TOPICNAME NaturalJoin JoinItem
 | ‘(’ TOPICNAME NaturalJoin JoinItem ‘)’

NaturalJoin::= ‘INNER NATURAL JOIN’
 | ‘NATURAL JOIN’
 | ‘NATURAL INNER JOIN’

Where::= ‘WHERE’ Condition
Condition::= Predicate

 | Condition ‘AND’ Condition
481
Java Reference Guide�������	

 Appendices
 | Condition ‘OR’ Condition
 | ‘NOT’ Condition
 | ‘(’ Condition ‘)’

Predicate::= ComparisonPredicate
 | BetweenPredicate

ComparisonPredicate::= FIELDNAME RelOp Parameter
 | Parameter RelOp FIELDNAME

BetweenPredicate::= FIELDNAME ‘BETWEEN’ Range
 | FIELDNAME ‘NOT BETWEEN’ Range

RelOp::= ‘=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘<>’ | like
Range::= Parameter ‘AND’ Parameter
Parameter::= INTEGERVALUE

 | FLOATVALUE
 | STRING
 | ENUMERATEDVALUE
 | PARAMETER

Note: INNER NATURAL JOIN, NATURAL JOIN, and NATURAL INNER JOIN are
all aliases, in the sense that they have the same semantics. The aliases are all
supported because they all are part of the SQL standard.

SQL Token Expression
The syntax and meaning of the tokens used in the SQL grammar is described as
follows:
FIELDNAME - A fieldname is a reference to a field in the data-structure. The dot

‘.’ is used to navigate through nested structures. The number of dots that may
be used in a fieldname is unlimited. The field-name can refer to fields at any
depth in the data structure. The names of the field are those specified in the IDL
definition of the corresponding structure, which may or may not match the
fieldnames that appear on the Java mapping of the structure

TOPICNAME - A topic name is an identifier for a topic, and is defined as any series
of characters ‘a’, ..., ‘z’, ‘A’, ..., ‘Z’, ‘0’, ..., ‘9’, ‘-’, ‘_’ but may not
start with a digit

INTEGERVALUE - Any series of digits, optionally preceded by a plus or minus sign,
representing a decimal integer value within the range of the system. A
hexadecimal number is preceded by 0x and must be a valid hexadecimal
expression

FLOATVALUE - Any series of digits, optionally preceded by a plus or minus sign and
optionally including a floating point (‘.’). A power-of-ten expression may be
post-fixed, which has the syntax en, where n is a number, optionally preceded
by a plus or minus sign
482
Java Reference Guide �������	

Appendices
STRING - Any series of characters encapsulated in single quotes, except a new-line
character or a right quote. A string starts with a left or right quote, but ends with
a right quote

ENUMERATEDVALUE - An enumerated value is a reference to a value declared within
an enumeration. The name of the value must correspond to the names specified
in the IDL definition of the enumeration, and must be encapsulated in single
quotes. An enum value starts with a left or right quote, but ends with a right
quote

PARAMETER - A parameter is of the form %n, where n represents a natural number
(zero included) smaller than 100. It refers to the n + 1th argument in the given
context

Note: when RelOp is ‘like’, Unix filename wildcards must be used for strings
instead of the normal SQL wildcards. This means any one character is ‘?’, any zero
or more characters is ‘*’.

SQL Examples
Assuming Topic “Location” has as an associated type a structure with fields
“flight_name, x, y, z”, and Topic “FlightPlan” has as fields “flight_id, source,
destination”. The following are examples of using these expressions.
Example 1 topic_expression

“SELECT flight_name, x, y, z AS height FROM ‘Location’
NATURAL JOIN ‘FlightPlan’ WHERE height < 1000 AND x <23”

Example 2 query_expression or a filter_expression
“height < 1000 AND x <23”
483
Java Reference Guide�������	

 Appendices
484
Java Reference Guide �������	

BIBLIOGRAPHY

Bibl iography
[1] OMG Data Distribution Service Revised Final Adopted Specification ptc/04-03-07, Object

Management Group
[2] OMG Java Language Mapping Specification formal/02-08-05, Object Management Group

(OMG)
[3] OMG The Common Object Request Broker: Architecture and Specification, Version 3.0,

formal/02-06-01, Object Management Group
487
Java Reference Guide�������	

Bibliography
488
Java Reference Guide �������	

GLOSSARY

Glossary
Acronyms
Acronym Meaning
CORBA Common Object Request Broker Architecture
DCPS Data Centric Publish/Subscribe
DDS Data Distribution Service
DLRL Data Local Reconstruction Layer
IDL Interface Definition Language

OMG Object Management Group
ORB Object Request Broker
QoS Quality of Service
SPLICE Subscription Paradigm for the Logical Interconnection of Concurrent Engines
491
Java Reference Guide�������	

Glossary
492
Java Reference Guide �������	

INDEX

Index

A
Affected Entities .391
assert_liveliness . 115, 227

assert_liveliness (inherited) 247
Attributes 394, 397, 400, 401, 403, 404

B
Basic Usage . 391
begin_access . 283
begin_coherent_changes. 203

Bibliography. 487
Blocking Behavior of a Waitset State Chart . . 472
Blocking Behaviour . 472

C
Casting of Objects . 13
Class Condition . 101
Class DataSample. 364
Class DomainEntity . 33
Class DomainParticipant 111
Class DomainParticipantFactory 154
Class FooTypeSupport 196
Class GuardCondition 103
Class QosPolicy . 33
Class SampleInfo . 364
Class Status. 79
Class StatusCondition. 105
Class WaitSet . 96
Communication Status Event 465
Communication Statuses 464
Complex Topics . 476

Conditions . 422
Conditions and Waitsets. 470
contains_entity . 116
copy_from_topic_qos. 204, 284
create_contentfilteredtopic 117
create_datareader . 285
create_datawriter . 205
create_multitopic . 118
create_participant . 155
create_publisher . 120
create_querycondition 306, 336
create_readcondition . 308
create_readcondition (inherited) 336
create_subscriber . 122
create_topic . 124

D
Data Distribution Service IDL Keywords 476
Data Distribution Service IDL Pragma Keylist 477
Data Distribution Service IDL Subset in

BNF-notation. 477
DataReader Statecraft for a Read Communication

Status . 467
DATAREADER_QOS_DEFAULT 395
DataReaderListener interface 372
DataReaderQos. 393
DATAWRITER_QOS_DEFAULT 398

DataWriterListener interface 275
DataWriterQos . 396
DCPS Conditions 102, 471
DCPS Domain Module’s Class Model . . . 19, 111
DCPS Holder Classes . 12
DCPS Infrastructure Module’s Class Model 18, 26
DCPS Inheritance. 461
DCPS Listeners . 78, 469
DCPS Module Composition. 17
DCPS Publication Module Class Model 22
495
Java Reference Guide�������	

 Index
DCPS Publication Module’s Class Model . . . 200
DCPS Status Values . 81
DCPS Subscription Module’s Class Model23, 280
DCPS Topic-Definition Module’s Class Model 20,

 . 171
DCPS WaitSets . 96, 470
dds_dcps.idl. 417
DDS_DeadlineQosPolicy 57
DDS_PARTICIPANT_QOS_DEFAULT. . . . 399
DDS_PublisherListener interface 272
DeadlineQosPolicy 42, 44
delete_contained_entities 127, 208, 288, 309
delete_contained_entities (inherited) 336
delete_contentfilteredtopic 128
delete_datareader. 289
delete_datawriter . 209
delete_multitopic . 130
delete_participant . 158
delete_publisher . 131

delete_readcondition . 310
delete_readcondition (inherited) 337
delete_subscriber. 132
delete_topic . 133
Description 394, 397, 400, 401, 403, 404
DestinationOrderQosPolicy 44
detach_condition . 98
Detailed Description 395, 397, 400, 402, 403, 405
dispose. 247
dispose (abstract). 228
dispose_w_timestamp 250
dispose_w_timestamp (abstract) 229
Document Structure . 3
Domain Module . 19, 111
DomainParticipantListener Interface 165
DomainParticipantQos 399
DurabilityQosPolicy . 46
DurabilityServiceQosPolicy 49
Duration and Time . 407

E
enable . 27
enable (inherited). . . 134, 176, 210, 229, 252, 290,

312, . 337

end_access. 290
end_coherent_changes 210
EntityFactoryQosPolicy 52

F
find_topic . 135
Foo.idl . 446

Functionality . 17

G
get_builtin_subscriber 136
get_conditions . 99
get_current_time . 137
get_datareader . 380
get_datareader (inherited) 384
get_datareaders . 291
get_default_datareader_qos. 291
get_default_datawriter_qos 211
get_default_participant_qos 159
get_default_publisher_qos 138
get_default_subscriber_qos. 139
get_default_topic_qos 140

get_discovered_participant_data. 142
get_discovered_participants 142
get_discovered_topic_data 142
get_discovered_topics. 142
get_domain_id. 143
get_enabled_statuses. 106
get_entity. 108
get_expression_parameters 184, 189
get_filter_expression. 185
get_inconsistent_topic_status 176
get_instance. 160
get_instance_handle . 29
496
Java Reference Guide

�������	

 Index
get_instance_state_mask 381
get_instance_state_mask (inherited) 385
get_key_value. 252, 312, 337
get_key_value (abstract). 229
get_listener 143, 177, 212, 229, 292, 312
get_listener (abstract) . 30
get_listener (inherited) 253, 337
get_liveliness_changed_status 313
get_liveliness_changed_status (inherited) 338
get_liveliness_lost_status 230
get_liveliness_lost_status (inherited) 253
get_matched_publication_data 314
get_matched_publication_data (inherited) 338
get_matched_publications 314
get_matched_publications (inherited) 338
get_matched_subscription_data 231
get_matched_subscription_data (inherited) . . . 254
get_matched_subscriptions. 231
get_matched_subscriptions (inherited). 254
get_name. 173
get_name (inherited). 178, 186, 190
get_offered_deadline_missed_status 232
get_offered_deadline_missed_status (inherited) . .

254
get_offered_incompatible_qos_status 233
get_offered_incompatible_qos_status (inherited) .

254
get_participant 173, 213, 293
get_participant (inherited) 178, 186, 191
get_publication_match_status 234
get_publication_match_status (inherited) 255
get_publisher . 234
get_publisher (inherited) 255
get_qos 144, 178, 214, 235, 293, 314
get_qos (abstract) . 30
get_qos (inherited) 255, 338
get_query_arguments . 385

get_query_expression. 386
get_related_topic . 186
get_requested_deadline_missed_status 315
get_requested_deadline_missed_status (inherited)

339
get_requested_incompatible_qos_status 316
get_requested_incompatible_qos_status

(inherited) . 339
get_sample_lost_status. 317
get_sample_lost_status (inherited). 339
get_sample_rejected_status 319
get_sample_rejected_status (inherited) 339
get_sample_state_mask 381
get_sample_state_mask (inherited) 387
get_status_changes . 30
get_status_changes (inherited) 145, 179, 214, 235,

255, . 294, 319, 339
get_statuscondition. 32
get_statuscondition (inherited) 145, 179, 215, 236,

255, . 295, 320, 340
get_subscriber. 320
get_subscriber (inherited). 340
get_subscription_expression 191
get_subscription_match_status. 321
get_subscription_match_status (inherited). . . . 340
get_topic . 236
get_topic (inherited) . 256
get_topicdescription . 321
get_topicdescription (inherited) 340
get_trigger_value . 102
get_trigger_value (inherited) . . 104, 108, 382, 387
get_type_name 174, 196, 197
get_type_name (inherited) 179, 187, 192
get_view_state_mask . 382
get_view_state_mask (inherited) 387
GroupDataQosPolicy . 53
GuardCondition Trigger State 473

H
HistoryQosPolicy . 53

I
Identifications . 413 IDL Mapping to Java . 8
497
Java Reference Guide�������	

 Index
IDL Preprocessor. 476
IDL to Host Language Mapping 476
IDL-Constant Mapping . 8
IDL-Sequence Mapping 9
ignore_participant . 145
ignore_publication. 146
ignore_subscription . 146
ignore_topic. 146
Infrastructure Module 18, 26
Inheritance of Abstract Operations 15
Instance States to Support Reads 411
instance_state . 452
instance_state for a Single Instance State Chart . .

454

Interface ContentFilteredTopic 183
Interface DataReader. 302
Interface DataWriter . 224
Interface Entity . 26
Interface FooDataReader 331
Interface FooDataWriter 244
Interface MultiTopic . 188
Interface Publisher . 201
Interface QueryCondition 383
Interface ReadCondition 379
Interface Subscriber . 281
Interface Topic . 175
Interface TopicDescription 172
Interface TypeSupport. 195

J
Java Reference Guide Document Structure 3

L
LatencyBudgetQosPolicy 56
LifespanQosPolicy . 57
Listener Interface. 77
Listeners . 420, 468
Listeners Interfaces . 14
LivelinessChangedStatus 84
LivelinessLostStatus . 85

LivelinessQosPolicy 58, 60
lookup_datareader. 295
lookup_datawriter . 215
lookup_instance . 341
lookup_instance (abstract) 321
lookup_participant . 162
lookup_topicdescription 147

M
Memory Management . 11

N
Names . 411 notify_datareaders. 296

O
OfferedDeadlineMissedStatus. 86
OfferedIncompatibleQosStatus 87
on_data_available . 373
on_data_available (inherited) 369
on_data_available (inherited, abstract) 167
on_data_on_readers. 369

on_data_on_readers (inherited, abstract) 167
on_inconsistent_topic (abstract) 194
on_inconsistent_topic (inherited, abstract) . . . 168
on_liveliness_changed 375
on_liveliness_changed (inherited) 371
on_liveliness_changed (inherited, abstract) . . 168
498
Java Reference Guide

�������	

 Index
on_liveliness_lost . 277
on_liveliness_lost (inherited, abstract) . . . 168, 274
on_offered_deadline_missed 278
on_offered_deadline_missed (inherited, abstract) .

168, . 275
on_offered_incompatible_qos 279
on_offered_incompatible_qos (inherited, abstract)

169, . 275
on_publication_match 280
on_publication_match (inherited, abstract) . . 169,

275
on_requested_deadline_missed 376
on_requested_deadline_missed (inherited) . . . 371
on_requested_deadline_missed (inherited,

abstract) . 169
on_requested_incompatible_qos 377

on_requested_incompatible_qos (inherited) . . 371
on_requested_incompatible_qos (inherited,

abstract) . 169
on_sample_lost. 378
on_sample_lost (inherited). 371
on_sample_lost (inherited, abstract) 170
on_sample_rejected . 378
on_sample_rejected (inherited) 372
on_sample_rejected (inherited, abstract) 170
on_subscription_match (abstract) 379
on_subscription_match (inherited, abstract) . . 170
on_subscription_match (inherited,) 372
Operations . 4
Operations Concerning States 457
OwnershipQosPolicy 60, 453
OwnershipStrengthQosPolicy 63

P
Parameter Passing. 11
PARTICIPANT_QOS_DEFAULT 401
PartitionQosPolicy . 64
Plain Communication Status State Chart 466
Pre-defined Bit Mask Definitions. 456
Pre-defined Values 408, 417
Pre-processor Generation of the Typed Classes for

Data Type “Foo” . 172

PresentationQosPolicy . 65
Publication Module 21, 200
Publication Type Specific Classes 224
PublicationMatchStatus 90
PUBLISHER_QOS_DEFAULT 402
PublisherListener interface. 273
PublisherQos . 401

Q
QoS. 424
QosPolicy . 411
QosPolicy Basics . 41

QosPolicy Default Attributes 38
QosPolicy Settings . 34

R
read . 322, 341, 457
read_instance 322, 345, 459
read_next_instance 322, 347
read_next_instance_w_condition 349
read_next_instance_w_condition (abstract) . . . 323
read_next_sample 323, 351, 458
read_w_condition 323, 351
ReadCondition and QueryCondition Trigger State

473

ReaderDataLifecycleQosPolicy 67
register_instance. 257
register_instance (abstract). 237
register_instance_w_timestamp 259
register_instance_w_timestamp (abstract) 237
register_type . 196, 198
ReliabilityQosPolicy . 69
Requested Offered DestinationOrderQosPolicy 46
Requested Offered DurabilityQosPolicy 48
499
Java Reference Guide�������	

 Index
Requested Offered PresentationQosPolicy 67
Requested Offered ReliabilityQosPolicy . . 62, 70
RequestedDeadlineMissedStatus 90
RequestedIncompatibleQosStatus 91

ResourceLimitsQosPolicy. 70
resume_publications . 216
Return Codes. 7, 408, 418
return_loan . 324, 353

S
Sample States to Support Reads 410
sample_state . 451
sample_state for a Single Sample State Chart. 452
SampleInfo . 364
SampleInfo Class. 451
SampleLostStatus . 93
SampleRejectedStatus . 94
Scope 393, 396, 398, 399, 401, 402, 404
set_default_datareader_qos 297
set_default_datawriter_qos 217
set_default_participant_qos. 163
set_default_publisher_qos. 147
set_default_subscriber_qos 149
set_default_topic_qos 150
set_enabled_statuses . 109
set_expression_parameters 187, 192
set_listener. 151, 180, 218, 237, 298, 324
set_listener (abstract). 32
set_listener (inherited). 260, 355
set_qos. 153, 181, 220, 239, 300, 326
set_qos (abstract). 33
set_qos (inherited) 260, 355
set_query_arguments. 387
set_trigger_value . 104
Signal Handling. 10

Snapshot . 454, 455
SPACE_FooDataWriter_dispose_w_timestamp .

272
SQL Examples . 483
SQL Grammar in BNF 481
SQL Token Expression 482
State Definitions . 456
State Masks . 456
State per Sample . 452
States . 410
Status Description Per Entity 79
Status per Entity . 105
Status to Support Listeners and Conditions . . 409,

418
StatusCondition Trigger State. 472
Subscriber Statecraft for a Read Communication

Status . 467
SUBSCRIBER_QOS_DEFAULT 403
SubscriberListener Interface 368
SubscriberQos . 402
Subscription Module 22, 280
Subscription Type Specific Classes 302
SubscriptionMatchStatus 95
suspend_publications 221
Synopsis 393, 396, 399, 401, 402, 404

T
take . 328, 355, 458
take_instance 328, 357, 459
take_next_instance 328, 359
take_next_instance_w_condition 329, 360
take_next_sample 329, 362, 458
take_w_condition 329, 362, 458
Thread Safety . 9
TimeBasedFilterQosPolicy 74
Topic Definition Example. 475

TOPIC_QOS_DEFAULT 405
TopicDataQosPolicy . 74
Topic-Definition Module 20, 171
Topic-Definition type specific interfaces 195
TopicListener interface 193
TopicQos. 404
TransportPriorityQosPolicy 75
Typed Classes for Data Type “Foo” Pre-processor

Generation . 21
500
Java Reference Guide

�������	

 Index
U
unregister_instance . 260
unregister_instance (abstract) 241
unregister_instance_w_timestamp 263

unregister_instance_w_timestamp (abstract) . . 241
UserDataQosPolicy . 76

V
View States to Support Reads 411
view_state . 454

view_state for a Single Instance State Chart . . 455

W
wait . 100
wait_for_historical_data 330
wait_for_historical_data (inherited) 364
write . 265

write (abstract) . 242
write_w_timestamp . 267
write_w_timestamp (abstract) 243
WriterDataLifecycleQosPolicy 76
501
Java Reference Guide�������	

 Index
502
Java Reference Guide

�������	

	Java Reference Guide
	Table of Contents
	List of Figures
	Preface
	About the Java Reference Guide
	Contacts

	Introduction
	About the Java Reference Guide
	Document Structure
	Operations

	API Reference
	1 DCPS API General Description
	1.1 IDL Mapping to Java
	1.1.1 IDL-Constant Mapping
	1.1.2 IDL-Sequence Mapping

	1.2 Thread Safety
	1.3 Signal Handling
	1.4 Memory Management
	1.5 Parameter Passing
	1.6 Casting of Objects
	1.7 Listeners Interfaces
	1.8 Inheritance of Abstract Operations

	2 DCPS Modules
	2.1 Functionality
	2.2 Infrastructure Module
	2.3 Domain Module
	2.4 Topic-Definition Module
	2.5 Publication Module
	2.6 Subscription Module

	3 DCPS Classes and Operations
	3.1 Infrastructure Module
	3.1.1 Interface Entity
	3.1.1.1 enable
	3.1.1.2 get_instance_handle
	3.1.1.3 get_listener (abstract)
	3.1.1.4 get_qos (abstract)
	3.1.1.5 get_status_changes
	3.1.1.6 get_statuscondition
	3.1.1.7 set_listener (abstract)
	3.1.1.8 set_qos (abstract)

	3.1.2 Class DomainEntity
	3.1.3 Class QosPolicy
	3.1.3.1 DeadlineQosPolicy
	3.1.3.2 DestinationOrderQosPolicy
	3.1.3.3 DurabilityQosPolicy
	3.1.3.4 DurabilityServiceQosPolicy
	3.1.3.5 EntityFactoryQosPolicy
	3.1.3.6 GroupDataQosPolicy
	3.1.3.7 HistoryQosPolicy
	3.1.3.8 LatencyBudgetQosPolicy
	3.1.3.9 LifespanQosPolicy
	3.1.3.10 LivelinessQosPolicy
	3.1.3.11 OwnershipQosPolicy
	3.1.3.12 OwnershipStrengthQosPolicy
	3.1.3.13 PartitionQosPolicy
	3.1.3.14 PresentationQosPolicy
	3.1.3.15 ReaderDataLifecycleQosPolicy
	3.1.3.16 ReliabilityQosPolicy
	3.1.3.17 ResourceLimitsQosPolicy
	3.1.3.18 SchedulingQosPolicy
	3.1.3.19 TimeBasedFilterQosPolicy
	3.1.3.20 TopicDataQosPolicy
	3.1.3.21 TransportPriorityQosPolicy
	3.1.3.22 UserDataQosPolicy
	3.1.3.23 WriterDataLifecycleQosPolicy

	3.1.4 Listener Interface
	3.1.5 Class Status
	3.1.5.1 InconsistentTopicStatus
	3.1.5.2 LivelinessChangedStatus
	3.1.5.3 LivelinessLostStatus
	3.1.5.4 OfferedDeadlineMissedStatus
	3.1.5.5 OfferedIncompatibleQosStatus
	3.1.5.6 PublicationMatchedStatus
	3.1.5.7 RequestedDeadlineMissedStatus
	3.1.5.8 RequestedIncompatibleQosStatus
	3.1.5.9 SampleLostStatus
	3.1.5.10 SampleRejectedStatus
	3.1.5.11 SubscriptionMatchedStatus

	3.1.6 Class WaitSet
	3.1.6.1 attach_condition
	3.1.6.2 detach_condition
	3.1.6.3 get_conditions
	3.1.6.4 wait

	3.1.7 Class Condition
	3.1.7.1 get_trigger_value

	3.1.8 Class GuardCondition
	3.1.8.1 get_trigger_value (inherited)
	3.1.8.2 set_trigger_value

	3.1.9 Class StatusCondition
	3.1.9.1 get_enabled_statuses
	3.1.9.2 get_entity
	3.1.9.3 get_trigger_value (inherited)
	3.1.9.4 set_enabled_statuses

	3.2 Domain Module
	3.2.1 Class DomainParticipant
	3.2.1.1 assert_liveliness
	3.2.1.2 contains_entity
	3.2.1.3 create_contentfilteredtopic
	3.2.1.4 create_multitopic
	3.2.1.5 create_publisher
	3.2.1.6 create_subscriber
	3.2.1.7 create_topic
	3.2.1.8 delete_contained_entities
	3.2.1.9 delete_contentfilteredtopic
	3.2.1.10 delete_multitopic
	3.2.1.11 delete_publisher
	3.2.1.12 delete_subscriber
	3.2.1.13 delete_topic
	3.2.1.14 enable (inherited)
	3.2.1.15 find_topic
	3.2.1.16 get_builtin_subscriber
	3.2.1.17 get_current_time
	3.2.1.18 get_default_publisher_qos
	3.2.1.19 get_default_subscriber_qos
	3.2.1.20 get_default_topic_qos
	3.2.1.21 get_discovered_participants
	3.2.1.22 get_discovered_participant_data
	3.2.1.23 get_discovered_topics
	3.2.1.24 get_discovered_topic_data
	3.2.1.25 get_domain_id
	3.2.1.26 get_listener
	3.2.1.27 get_qos
	3.2.1.28 get_status_changes (inherited)
	3.2.1.29 get_statuscondition (inherited)
	3.2.1.30 ignore_participant
	3.2.1.31 ignore_publication
	3.2.1.32 ignore_subscription
	3.2.1.33 ignore_topic
	3.2.1.34 lookup_topicdescription
	3.2.1.35 set_default_publisher_qos
	3.2.1.36 set_default_subscriber_qos
	3.2.1.37 set_default_topic_qos
	3.2.1.38 set_listener
	3.2.1.39 set_qos

	3.2.2 Class DomainParticipantFactory
	3.2.2.1 create_participant
	3.2.2.2 delete_participant
	3.2.2.3 get_default_participant_qos
	3.2.2.4 get_instance
	3.2.2.5 get_qos
	3.2.2.6 lookup_participant
	3.2.2.7 set_default_participant_qos
	3.2.2.8 set_qos

	3.2.3 DomainParticipantListener Interface
	3.2.3.1 on_data_available (inherited, abstract)
	3.2.3.2 on_data_on_readers (inherited, abstract)
	3.2.3.3 on_inconsistent_topic (inherited, abstract)
	3.2.3.4 on_liveliness_changed (inherited, abstract)
	3.2.3.5 on_liveliness_lost (inherited, abstract)
	3.2.3.6 on_offered_deadline_missed (inherited, abstract)
	3.2.3.7 on_offered_incompatible_qos (inherited, abstract)
	3.2.3.8 on_publication_matched (inherited, abstract)
	3.2.3.9 on_requested_deadline_missed (inherited, abstract)
	3.2.3.10 on_requested_incompatible_qos (inherited, abstract)
	3.2.3.11 on_sample_lost (inherited, abstract)
	3.2.3.12 on_sample_rejected (inherited, abstract)
	3.2.3.13 on_subscription_match (inherited, abstract)

	3.3 Topic-Definition Module
	3.3.1 Interface TopicDescription
	3.3.1.1 get_name
	3.3.1.2 get_participant
	3.3.1.3 get_type_name

	3.3.2 Interface Topic
	3.3.2.1 enable (inherited)
	3.3.2.2 get_inconsistent_topic_status
	3.3.2.3 get_listener
	3.3.2.4 get_name (inherited)
	3.3.2.5 get_participant (inherited)
	3.3.2.6 get_qos
	3.3.2.7 get_status_changes (inherited)
	3.3.2.8 get_statuscondition (inherited)
	3.3.2.9 get_type_name (inherited)
	3.3.2.10 set_listener
	3.3.2.11 set_qos

	3.3.3 Interface ContentFilteredTopic
	3.3.3.1 get_expression_parameters
	3.3.3.2 get_filter_expression
	3.3.3.3 get_name (inherited)
	3.3.3.4 get_participant (inherited)
	3.3.3.5 get_related_topic
	3.3.3.6 get_type_name (inherited)
	3.3.3.7 set_expression_parameters

	3.3.4 Interface MultiTopic
	3.3.4.1 get_expression_parameters
	3.3.4.2 get_name (inherited)
	3.3.4.3 get_participant (inherited)
	3.3.4.4 get_subscription_expression
	3.3.4.5 get_type_name (inherited)
	3.3.4.6 set_expression_parameters

	3.3.5 TopicListener interface
	3.3.5.1 on_inconsistent_topic (abstract)

	3.3.6 Topic-Definition type specific interfaces
	3.3.6.1 Interface TypeSupport
	3.3.6.2 get_type_name
	3.3.6.3 register_type
	3.3.6.4 Class FooTypeSupport
	3.3.6.5 get_type_name
	3.3.6.6 register_type

	3.4 Publication Module
	3.4.1 Interface Publisher
	3.4.1.1 begin_coherent_changes
	3.4.1.2 copy_from_topic_qos
	3.4.1.3 create_datawriter
	3.4.1.4 delete_contained_entities
	3.4.1.5 delete_datawriter
	3.4.1.6 enable (inherited)
	3.4.1.7 end_coherent_changes
	3.4.1.8 get_default_datawriter_qos
	3.4.1.9 get_listener
	3.4.1.10 get_participant
	3.4.1.11 get_qos
	3.4.1.12 get_status_changes (inherited)
	3.4.1.13 get_statuscondition (inherited)
	3.4.1.14 lookup_datawriter
	3.4.1.15 resume_publications
	3.4.1.16 set_default_datawriter_qos
	3.4.1.17 set_listener
	3.4.1.18 set_qos
	3.4.1.19 suspend_publications
	3.4.1.20 wait_for_acknowledgments

	3.4.2 Publication Type Specific Classes
	3.4.2.1 Interface DataWriter
	3.4.2.2 assert_liveliness
	3.4.2.3 dispose (abstract)
	3.4.2.4 dispose_w_timestamp (abstract)
	3.4.2.5 enable (inherited)
	3.4.2.6 get_key_value (abstract)
	3.4.2.7 get_listener
	3.4.2.8 get_liveliness_lost_status
	3.4.2.9 get_matched_subscription_data
	3.4.2.10 get_matched_subscriptions
	3.4.2.11 get_offered_deadline_missed_status
	3.4.2.12 get_offered_incompatible_qos_status
	3.4.2.13 get_publication_matched_status
	3.4.2.14 get_publisher
	3.4.2.15 get_qos
	3.4.2.16 get_status_changes (inherited)
	3.4.2.17 get_statuscondition (inherited)
	3.4.2.18 get_topic
	3.4.2.19 lookup_instance (abstract)
	3.4.2.20 register_instance (abstract)
	3.4.2.21 register_instance_w_timestamp (abstract)
	3.4.2.22 set_listener
	3.4.2.23 set_qos
	3.4.2.24 unregister_instance (abstract)
	3.4.2.25 unregister_instance_w_timestamp (abstract)
	3.4.2.26 wait_for_acknowledgments
	3.4.2.27 write (abstract)
	3.4.2.28 write_w_timestamp (abstract)
	3.4.2.29 writedispose (abstract)
	3.4.2.30 writedispose_w_timestamp (abstract)
	3.4.2.31 Interface FooDataWriter
	3.4.2.32 assert_liveliness (inherited)
	3.4.2.33 dispose
	3.4.2.34 dispose_w_timestamp
	3.4.2.35 enable (inherited)
	3.4.2.36 get_key_value
	3.4.2.37 get_listener (inherited)
	3.4.2.38 get_liveliness_lost_status (inherited)
	3.4.2.39 get_matched_subscription_data (inherited)
	3.4.2.40 get_matched_subscriptions (inherited)
	3.4.2.41 get_offered_deadline_missed_status (inherited)
	3.4.2.42 get_offered_incompatible_qos_status (inherited)
	3.4.2.43 get_publication_matched_status (inherited)
	3.4.2.44 get_publisher (inherited)
	3.4.2.45 get_qos (inherited)
	3.4.2.46 get_status_changes (inherited)
	3.4.2.47 get_statuscondition (inherited)
	3.4.2.48 get_topic (inherited)
	3.4.2.49 lookup_instance
	3.4.2.50 register_instance
	3.4.2.51 register_instance_w_timestamp
	3.4.2.52 set_listener (inherited)
	3.4.2.53 set_qos (inherited)
	3.4.2.54 unregister_instance
	3.4.2.55 unregister_instance_w_timestamp
	3.4.2.56 write
	3.4.2.57 write_w_timestamp
	3.4.2.58 writedispose
	3.4.2.59 writedispose_w_timestamp

	3.4.3 PublisherListener interface
	3.4.3.1 on_liveliness_lost (inherited, abstract)
	3.4.3.2 on_offered_deadline_missed (inherited, abstract)
	3.4.3.3 on_offered_incompatible_qos (inherited, abstract)
	3.4.3.4 on_publication_matched (inherited, abstract)

	3.4.4 DataWriterListener interface
	3.4.4.1 on_liveliness_lost
	3.4.4.2 on_offered_deadline_missed
	3.4.4.3 on_offered_incompatible_qos
	3.4.4.4 on_publication_matched

	3.5 Subscription Module
	3.5.1 Interface Subscriber
	3.5.1.1 begin_access
	3.5.1.2 copy_from_topic_qos
	3.5.1.3 create_datareader
	3.5.1.4 delete_contained_entities
	3.5.1.5 delete_datareader
	3.5.1.6 enable (inherited)
	3.5.1.7 end_access
	3.5.1.8 get_datareaders
	3.5.1.9 get_default_datareader_qos
	3.5.1.10 get_listener
	3.5.1.11 get_participant
	3.5.1.12 get_qos
	3.5.1.13 get_status_changes (inherited)
	3.5.1.14 get_statuscondition (inherited)
	3.5.1.15 lookup_datareader
	3.5.1.16 notify_datareaders
	3.5.1.17 set_default_datareader_qos
	3.5.1.18 set_listener
	3.5.1.19 set_qos

	3.5.2 Subscription Type Specific Classes
	3.5.2.1 Interface DataReader
	3.5.2.2 create_querycondition
	3.5.2.3 create_readcondition
	3.5.2.4 delete_contained_entities
	3.5.2.5 delete_readcondition
	3.5.2.6 enable (inherited)
	3.5.2.7 get_key_value (abstract)
	3.5.2.8 get_listener
	3.5.2.9 get_liveliness_changed_status
	3.5.2.10 get_matched_publication_data
	3.5.2.11 get_matched_publications
	3.5.2.12 get_qos
	3.5.2.13 get_requested_deadline_missed_status
	3.5.2.14 get_requested_incompatible_qos_status
	3.5.2.15 get_sample_lost_status
	3.5.2.16 get_sample_rejected_status
	3.5.2.17 get_status_changes (inherited)
	3.5.2.18 get_statuscondition (inherited)
	3.5.2.19 get_subscriber
	3.5.2.20 get_subscription_matched_status
	3.5.2.21 get_topicdescription
	3.5.2.22 lookup_instance (abstract)
	3.5.2.23 read (abstract)
	3.5.2.24 read_instance (abstract)
	3.5.2.25 read_next_instance (abstract)
	3.5.2.26 read_next_instance_w_condition (abstract)
	3.5.2.27 read_next_sample (abstract)
	3.5.2.28 read_w_condition (abstract)
	3.5.2.29 return_loan (abstract)
	3.5.2.30 set_listener
	3.5.2.31 set_qos
	3.5.2.32 take (abstract)
	3.5.2.33 take_instance (abstract)
	3.5.2.34 take_next_instance (abstract)
	3.5.2.35 take_next_instance_w_condition (abstract)
	3.5.2.36 take_next_sample (abstract)
	3.5.2.37 take_w_condition (abstract)
	3.5.2.38 wait_for_historical_data
	3.5.2.39 Interface FooDataReader
	3.5.2.40 create_querycondition (inherited)
	3.5.2.41 create_readcondition (inherited)
	3.5.2.42 delete_contained_entities (inherited)
	3.5.2.43 delete_readcondition (inherited)
	3.5.2.44 enable (inherited)
	3.5.2.45 get_key_value
	3.5.2.46 get_listener (inherited)
	3.5.2.47 get_liveliness_changed_status (inherited)
	3.5.2.48 get_matched_publication_data (inherited)
	3.5.2.49 get_matched_publications (inherited)
	3.5.2.50 get_qos (inherited)
	3.5.2.51 get_requested_deadline_missed_status (inherited)
	3.5.2.52 get_requested_incompatible_qos_status (inherited)
	3.5.2.53 get_sample_lost_status (inherited)
	3.5.2.54 get_sample_rejected_status (inherited)
	3.5.2.55 get_status_changes (inherited)
	3.5.2.56 get_statuscondition (inherited)
	3.5.2.57 get_subscriber (inherited)
	3.5.2.58 get_subscription_match_status (inherited)
	3.5.2.59 get_topicdescription (inherited)
	3.5.2.60 lookup_instance
	3.5.2.61 read
	3.5.2.62 read_instance
	3.5.2.63 read_next_instance
	3.5.2.64 read_next_instance_w_condition
	3.5.2.65 read_next_sample
	3.5.2.66 read_w_condition
	3.5.2.67 return_loan
	3.5.2.68 set_listener (inherited)
	3.5.2.69 set_qos (inherited)
	3.5.2.70 take
	3.5.2.71 take_instance
	3.5.2.72 take_next_instance
	3.5.2.73 take_next_instance_w_condition
	3.5.2.74 take_next_sample
	3.5.2.75 take_w_condition
	3.5.2.76 wait_for_historical_data (inherited)

	3.5.3 Class DataSample
	3.5.4 Class SampleInfo
	3.5.4.1 SampleInfo

	3.5.5 SubscriberListener Interface
	3.5.5.1 on_data_available (inherited)
	3.5.5.2 on_data_on_readers
	3.5.5.3 on_liveliness_changed (inherited)
	3.5.5.4 on_requested_deadline_missed (inherited)
	3.5.5.5 on_requested_incompatible_qos (inherited)
	3.5.5.6 on_sample_lost (inherited)
	3.5.5.7 on_sample_rejected (inherited)
	3.5.5.8 on_subscription_matched (inherited,)

	3.5.6 DataReaderListener interface
	3.5.6.1 on_data_available
	3.5.6.2 on_liveliness_changed
	3.5.6.3 on_requested_deadline_missed
	3.5.6.4 on_requested_incompatible_qos
	3.5.6.5 on_sample_lost
	3.5.6.6 on_sample_rejected
	3.5.6.7 on_subscription_matched (abstract)

	3.5.7 Interface ReadCondition
	3.5.7.1 get_datareader
	3.5.7.2 get_instance_state_mask
	3.5.7.3 get_sample_state_mask
	3.5.7.4 get_trigger_value (inherited)
	3.5.7.5 get_view_state_mask

	3.5.8 Interface QueryCondition
	3.5.8.1 get_datareader (inherited)
	3.5.8.2 get_instance_state_mask (inherited)
	3.5.8.3 get_query_parameters
	3.5.8.4 get_query_expression
	3.5.8.5 get_sample_state_mask (inherited)
	3.5.8.6 get_trigger_value (inherited)
	3.5.8.7 get_view_state_mask (inherited)
	3.5.8.8 set_query_parameters

	Appendices
	A Quality Of Service
	Affected Entities
	Basic Usage
	DataReaderQos
	Scope
	Synopsis
	Description
	Attributes
	Detailed Description

	DataWriterQos
	Scope
	Synopsis
	Description
	Attributes
	Detailed Description

	DomainParticipantFactoryQos
	Scope

	DomainParticipantQos
	Scope
	Synopsis
	Description
	Attributes
	Detailed Description

	PublisherQos
	Scope
	Synopsis
	Description
	Attributes
	Detailed Description

	SubscriberQos
	Scope
	Synopsis
	Description
	Attributes
	Detailed Description

	TopicQos
	Scope
	Synopsis
	Description
	Attributes
	Detailed Description

	B API Constants and Types
	Duration and Time
	Pre-defined Values
	Return Codes

	Status to Support Listeners and Conditions
	States
	Sample States to Support Reads
	View States to Support Reads
	Instance States to Support Reads

	QosPolicy
	Names
	Identifications

	C Platform Specific Model IDL Interface
	dds_dcps.idl
	Pre-defined Values
	Return Codes
	Status to Support Listeners and Conditions
	Listeners
	Conditions
	QoS

	Foo.idl

	D SampleStates, ViewStates and InstanceStates
	SampleInfo Class
	sample_state
	State per Sample

	instance_state
	OwnershipQosPolicy
	Snapshot

	view_state
	Snapshot

	State Masks
	State Definitions
	Pre-defined Bit Mask Definitions

	Operations Concerning States
	read
	take
	take_w_condition
	read_next_sample
	take_next_sample
	read_instance
	take_instance

	E Interface Inheritance
	F Listeners, Conditions and Waitsets
	Communication Status Event
	Listeners
	Conditions and Waitsets
	Blocking Behaviour

	StatusCondition Trigger State
	ReadCondition and QueryCondition Trigger State
	GuardCondition Trigger State

	G Topic Definitions
	Topic Definition Example
	Complex Topics
	IDL Preprocessor
	IDL to Host Language Mapping
	Data Distribution Service IDL Keywords
	Data Distribution Service IDL Pragma Keylist
	Data Distribution Service IDL Subset in BNF-notation

	H DCPS Queries and Filters
	SQL Grammar in BNF
	SQL Token Expression
	SQL Examples

	Bibliography
	Glossary
	Index

