
OpenSplice DDS
Version 3.4

Migration Guide
�������	

OpenSplice DDS
MIGRATION GUIDE
Part Number: OS-MG Doc Issue 07, 27 May 08
PRISMTECH

Copyright Notice
© 2008 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
Migration Guide

�������	

Preface
About the Migration Guide

The Migration Guide is intended to help users migrate their existing code from
OpenSplice DDS version 2.x to OpenSplice DDS version 3.x.
OpenSplice DDS V3.x is compliant with the OMG’s Data Distribution Service for
Real-Time Systems Specification Version 1.2 (DDS V1.2), whereas OpenSplice
DDS V2.x is compliant with the OMG’s DDS V1.1 specification.
This migration guide is only indended for customers that are currently using
OpenSplice V2.x and want to migrate to OpenSplice V3.x. OpenSplice DDS V2.x
and earlier versions progressively introduced extensions and improvements,
nontheless their API and features (compliant with DDS V1.1) were not modified
and users did not need to migrate their code. However, OpenSplice DDS V3.x
contains changes in its API (compliant with DDS V1.2) which means that
OpenSplice DDS V2.x-based code must modified in order to be compatible with the
OpensSplice V3.x.
The Migration Guide covers the code in OpenSplice DDS V3.x that is incompatible
with the previous V2.x versions. The Migration Guide describes the
incompatibilities and provides realted solutions for the languages which OpenSplice
supports.
This guide does not cover all of the differences which exist between the OpenSplice
DDS V3.x and previous versions, only those which are needed for compatibility.
The C language binding is provided with a special legacy mode which enables
pre-version 3.x code to be used without modification.

Organisation
The Migration Guide is organised as follows:
1. Incompatibilities between Version 3.x and previous versions are listed by

category.
2. Solutions for resolving the incompatibilities are given under each language

supported by OpenSplice, namely C, C++ and Java. The solutions are grouped
by categories.

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the Migration Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.

i

i

iii

Migration Guide
�������	

Preface
Information applies to Windows (e.g. NT, 2000, XP) only.
Information applies to Unix based systems (e.g. Solaris) only.
C language specific
C++ language specific
Java language specific
Hypertext links are shown as blue italic underlined.
On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page iv, are as hypertext links: click on the reference to go to the item.

Courier fonts indicate programming code and file names.
Extended code fragments are shown in shaded boxes:

Italics and Italic Bold indicate new terms, or emphasise an item.
Arial Bold indicate Graphical User Interface (GUI) elements and commands, for
example, File | Save from a menu.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can be reached at the following contact points for information and
technical support.

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

WIN
UNIX

C
C++
Java

Corporate Headquarters European Head Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

Tel: +1 781 270 1177
Fax: +1 781 238 1700

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
iv
Migration Guide

�������	

Preface
Web: http://www.prismtech.com
General Enquiries: info@prismtech.com
v
Migration Guide

�������	

http://www.prismtech.com
mailto: info@prismtech.com

Preface
vi
Migration Guide

�������	

MIGRATION TO

VERSION 3.X

CHAPTER

1 Incompatibilities and Solutions
The incompatibilities between OpenSplice DDS’s DCPS API version 3.x and
previous 2.x versions, along with their solutions when migrating to version 3.x, are
given here.

1.1 API Incompatibilities Between Version 3.x and 2.x Versions
1. Name changes
The following table lists the names which have been changed in version 3.x.

2. Factory methods containing an additional mask parameter
DomainParticipantFactory.create_participant()

DomainParticipant.create_publisher()

DomainParticipant.create_subscriber()

Domainparticipant.create_topic()

Publisher.create_datareader()

Subscriber.create_datawriter()

Original 2.x Version Name Name Used in Version 3.x
DURATION_INFINITY DURATION_INFINITE

DURATION_INFINITY_SEC DURATION_INFINITE_SEC

DURATION_INFINITY_NSEC DURATION_INFINITE_NSEC

PublicationMatchStatus PublicationMatchedStatus

PUBLICATION_MATCH PUBLICATION_MATCHED

get_publication_match_status() get_ publication_matched_status()

on_publication_match() on_publication_matched()

SubscriptionMatchStatus SubscriptionMatchedStatus

SUBSCRIPTION_MATCH SUBSCRIPTION_MATCHED

get_subscription_match_status get_subscription_matched_status()

on_subscription_match() on_subscription_matched()

QueryCondition.set_query_arguments() get_query_parameters()

QueryCondition.set_query_arguments() set_query_parameters()
3
 Migration to Version 3.x�������	

1 Incompatibilities and Solutions 1.2 Migration Solutions

3. Method arguments which have been changed from out to inout

WaitSet.wait()

WaitSet.get_conditions()

4. Methods which use inout parameters instead of a return value
get…status() - methods

ContentFilteredTopic.get_expression_parameters()

MultiTopic.get_expression_parameters()

5. WaitSet.wait() can now return RETCODE_TIME_OUT

1.2 Migration Solutions
1.2.1 C Language Binding

Legacy Mode
A legacy mode is provided for the C language binding which enables existing code
to be used, without changes, with OpenSplice’s version 3.x API.
Legacy mode can be used as a temporary solution which can time for developers to
progressively migrate their existing code base.
This legacy mode should be considered deprecated: it will not be available in future
versions. Also, the new features which are supported in version 3.x will not be
available when using this mode.
Legacy mode is activated by defining the OSPLV2_LEGACY_API compiler flag.
This can be done by adding the following line to your makefile:

Cc_flags += -DOSPLV2_LEGACY_API

An OpenSpliceV2 compatible API is provided when this flag is used, noting that
this API is not fully compliant with the V3.x DCPS API specification.

Name Changes
Perform a search and replace with your editor through all source files.

Factory methods have an added mask parameter
The V3.x API supports the setting of the listener mask when an entity is created. All
_create() methods now have a parameter for this setting the listener mask.
Existing code can be migrated to V3.x by adding the parameter to all _create()
methods using the following values:
• When a listener is used, set the mask parameter value to DDS_ANY_STATUS. For

example:
4
Migration to Version 3.x

�������	

1 Incompatibilities and Solutions 1.2 Migration Solutions

participant =
DDS_DomainParticipantFactory_create_participant(

factory, NULL, DDS_PARTICIPANT_QOS_DEFAULT,
participantListener, DDS_ANY_STATUS);

• When a listener is not used, set the mask parameter value to 0 (zero). For
example:
participant =

DDS_DomainParticipantFactory_create_participant (
factory, NULL, DDS_PARTICIPANT_QOS_DEFAULT, NULL, 0);

Method arguments changed from out to inout

Certain parameter have been changed from out to inout for several methods (see
list under Section 1.1). This significantly changes how these parameters are handled
whereby now a pointer to a properly allocated and initialized variable should be
supplied instead of the address of a pointer.

Example
DDS_ConditionSeq Conditions = {0,0,NULL,FALSE};
result = DDS_WaitSet_wait(w,&Conditions,&DURATION_ONE);

Methods using inout parameters instead of a return value
Several methods are now returning their results in an inout parameter instead of a
return value (refer to Section 1.1). A pointer to a properly allocated and initialized
variable should now be used to retrieve values for the affected methods.

Example
DDS_RequestedIncompatibleQosStatus requestedStatus;
memset(&requestedStatus, 0, sizeof(requestedStatus));
DDS_DataReader_get_requested_incompatible_qos_status(

reader, &requestedStatus);

This example demonstrates a status struct containing a sequence, noting that
sequences must be correctly initialized.

DDS_WaitSet_wait() can now return RETCODE_TIME_OUT

A waitset in DCPS API versions prior to V3.x returns RETCODE_OK and an empty
condition list when it fails to trigger within a given timeout time. A waitset in
version 3.x will return a RETCODE_TIME_OUT when it fails to trigger within a
timeout.
Code that checks the return value and only checks or accepts RETCODE_OK should
be changed to check or accept RETCODE_TIME_OUT.

i

5
Migration to Version 3.x�������	

1 Incompatibilities and Solutions 1.2 Migration Solutions

1.2.2 C+ Language Binding

Name Changes
Perform a search and replace with your editor through all source files.

Factory methods have an added mask parameter
The V3.x API supports the setting of the listener mask when an entity is created. All
_create() methods now have a parameter for this setting the listener mask.
Existing code can be migrated to V3.x by adding the parameter to all _create()
methods using the following values:
• When a listener is used, set the mask parameter value to DDS::ANY_STATUS. For

example:
participant = factory->create_participant(myDomain,

PARTICIPANT_QOS_DEFAULT, participantListener,
DDS::ANY_STATUS);

• When a listener is not used, set the mask parameter value to 0 (zero). For
example:
participant = factory->create_participant(myDomain,

PARTICIPANT_QOS_DEFAULT, NULL, 0);

Method arguments changed from out to inout

This does not affect existing code in C++ and accordingly no changes are needed.

Methods use inout parameters instead of a return value
Several methods are now returning their results in an inout parameter instead of a
return value (see list under Section 1.1).
An object should be passed as a parameter to hold the method’s result instead of
assigning the method’s return value.

Example
OfferedIncompatibleQosStatus info;
 writer->get_offered_incompatible_qos_status(info);

WaitSet.wait() can now return RETCODE_TIME_OUT

A waitset in DCPS API versions prior to V3.x returns DDS::RETCODE_OK and an
empty condition list when the waitset fails to trigger within a given timeout time. A
waitset in version 3.x will return a RETCODE_TIME_OUT when it fails to trigger
within a timeout.
Code that checks the return value and only checks or accepts RETCODE_OK should
be changed to check or accept DDS::RETCODE_TIME_OUT.
6
Migration to Version 3.x

�������	

1 Incompatibilities and Solutions 1.2 Migration Solutions

1.2.3 Java Language Binding

Name Changes
Perform a search and replace with your editor through all source files.

Factory methods have an added mask parameter
The V3.x API supports the setting of the listener mask when an entity is created. All
_create() methods now have a parameter for this setting the listener mask.
Existing code can be migrated to V3.x by adding the parameter to all _create()
methods using the following values:
• When a listener is used, set the mask parameter value to DDS.ANY_STATUS. For

example:
participant = factory.create_participant (myDomain,

PARTICIPANT_QOS_DEFAULT.value,
participantListener, DDS.ANY_STATUS.value);

• When a listener is not used, set the mask parameter value to 0 (zero). For
example:
participant= factory.create_participant (myDomain,

PARTICIPANT_QOS_DEFAULT.value, null, 0);

Method arguments changed from out to inout

This does not affect existing code in Java and accordingly no changes are needed.

Methods use inout parameters instead of a return value
Several methods are now returning their results in an inout parameter instead of a
return value (see list under Section 1.1).
An object should be passed as a parameter to hold the method’s result instead of
assigning the method’s return value.

Example
OfferedIncompatibleQosStatusHolder infoHolder;
OfferedIncompatibleQosStatus info;
int retcode;

infoHolder = new OfferedIncompatibleQosStatusHolder();
retcode =

writer.get_offered_incompatible_qos_status(infoHolder);
info = infoHolder.value;
7
Migration to Version 3.x�������	

1 Incompatibilities and Solutions 1.2 Migration Solutions

WaitSet.wait() can now return RETCODE_TIME_OUT

A waitset in DCPS API versions prior to V3.x returns DDS.RETCODE_OK and an
empty condition list when the waitset fails to trigger within a given timeout time. A
waitset in version 3.x will return a RETCODE_TIME_OUT when it fails to trigger
within a timeout.
Code that checks the return value and only checks or accepts RETCODE_OK should
be changed to check or accept DDS.RETCODE_TIME_OUT.
8
Migration to Version 3.x

�������	

	OpenSplice DDS
	Preface
	About the Migration Guide
	Contacts

	Migration to Version 3.x
	1 Incompatibilities and Solutions
	1.1 API Incompatibilities Between Version 3.x and 2.x Versions
	1.2 Migration Solutions
	1.2.1 C Language Binding
	1.2.2 C+ Language Binding
	1.2.3 Java Language Binding

