OpenSplice DDS

Version 4.1

C Reference Guide

v PRISMTECH

OpenSplice DDS

C Reference Guide

& PRISMTECH

Part Number: OS-CREFG Doc Issue 21, 15 April 2009

Copyright Notice
© 2009 PrismTech Limited. All rights reserved.
This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and

is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.

ii
& PRISMTECH C Reference Guide

CONTENTS

Table of Contents

Preface

I ntroduction

List of Figures XiX
About theC Reference Guide. e XXi
CONtACES . . . e XXiii

About the C Reference Guide 3
Document SIrUCTUr e ..o e e 3
e aliONS . .ot e 4
API Reference
Chapter 1 DCPSAPI General Description 7
L1 Thread Safetyo 8
1.2 Signal Handling.o 8
1.3 Memory Managementt e 9
1.3.1 IDL Mapping Rulesfor Sequences.ovviieiin i, 9
1.3.1.1 Standard Defined TYpe. . ..o oo v it e e 10
1312 User Defined Type . .o oot e e e e 10
1.3.1.3 DataDistribution Service Defined Type ..., 10
1.3.2 Plain SEQUENCES. . . . oottt e e ettt e e 10
1.3.3 Sequences Embedded in QosPolicy Objects.ooou... 11
1.3.4 Sequences Embeddedin StatusObjects 12
1.3.5 Resourcesand operationsvv ittt e 12
1.3.5.1 Sequences DDS <SequeNCE-NaME>ot ii i 13
1.352 DDS sequence Set releaseo i 16
14 Listenersinterfacest 22
1.4.1 Struct DDS _<Entity>Listener.. ...t 24
1.4.2 DDS DomainParticipantListeneroviiiiiienan.n. 27
1.4.3 DDS TOpiCLIStENer. . ..ot 29
1.4.4 DDS PublisherListener.t 30
1.4.5 DDS DataWriterListener 31
1.4.6 DDS SubscriberListener. ... 32
1.4.7 DDS DataReaderListener 34
1.5 Inheritance of Abstract Operations, 35
Chapter 2 DCPSModules 37
21 Functionality 37
& PRISMTECH v

C Reference Guide

Table of Contents

vi
C Reference Guide

InfrastructureModule. 38
Domain Module. 39
Topic-DefinitionModule 40
Publication Module. 42
Subscription Module 44
DCPS Classes and Oper ations a7
InfrastructureModule. 48
ClassDDS Entity (abstract)o 48
DDS Entity enable 49
DDS Entity get instance handle................. 51
DDS Entity get listener (abstract) i, 52
DDS Entity get qos(abstract)o 52
DDS Entity get_status changes. 53
DDS Entity_get_statuscondition. 54
DDS Entity_set_listener (abstract) ... 54
DDS Entity set qos(abstract) ... 55
ClassDDS DomainEntity (abstract)., 55
Struct QOSPOlICYo 55
DDS DeadlineQosPoliCy v 63
DDS DesdtinationOrderQosPolicyoviiiii i 66

DDS DurabilityQosPolicy . ..o 67
DDS DurabilityServiceQosPolicy. oo i i 70
DDS EntityFactoryQosPolicy 73
DDS _GroupDataQosPoliCyovoe i 73
DDS HistoryQosPolicy 74
DDS LatencyBudgetQosPoliCyo 77
DDS LifespanQosPolicy 78
DDS LivelinessQosPolicy. ... 79
DDS OwnershipQosPolicyocv i 81
DDS _OwnershipStrengthQosPolicy 84

DDS PartitionQosPolicy 84

DDS PresentationQosPolicy 85
DDS ReaderDatal ifecycleQosPolicy 87
DDS RedliabilityQosPolicy.c i 88
DDS ResourceLimitsQosPalicy 90
DDS SchedulingQosPolicy i 92
DDS TimeBasedFilterQosPolicy. 93
DDS TopicDataQosPOoliCy.o oo 93

DDS TransportPriorityQosPolicy ..., 94
DDS UserDataQosPolicy 95
DDS WriterDataLifecycleQosPolicyt 95

& PRISMTECH

Table of Contents

DDS Listenerinterface. ... 96
SIrUCt DDS StatusS.o 98
DDS InconsistentTopicStatuso v v i e e e 101
DDS LivelinessChangedStatus 102
DDS LivelinessLostStatus. oo v oo e 104
DDS OfferedDeadlineMissedStatuso i i iinant. 105
DDS OfferedincompatibleQosStatus. 106
DDS PublicationMatchedStatuso 108
DDS_RequestedDeadlineMissedStatuso 109
DDS_RequestedincompatibleQosStatus L. 109
DDS _SampleLostStatuso v 111
DDS_SampleRgectedStatus.o 112
DDS SubscriptionMatchedStatus 113
ClassDDS WaitSet.o it e 114
DDS WaitSet_ aloCoo i 114
DDS WaitSet_attach condition., 115
DDS WaitSet_detach condition, 116
DDS WaitSet get conditionsco i 118
DDS WaitSet Wall.ot 119
ClassDDS Condition . ..ot e e e 121
DDS Condition_get_trigger_ value 122
ClassDDS GuardCondition ... 122
DDS_GuardCondition__alloc. 123
DDS GuardCondition_get_trigger_value (inherited) 124
DDS GuardCondition_set_trigger value. 124
ClassDDS StatusConditionov it it 125
DDS _StatusCondition_get_enabled statuses. 127
DDS StatusCondition_get_entity. 128
DDS _StatusCondition_get_trigger_value (inherited) 129
DDS StatusCondition_set enabled statuses. 129
Domain Module. 131
ClassDDS DomainParticipant, 131
DDS DomainParticipant_assert_liveliness 136
DDS _DomainParticipant_contains entity 137
DDS _DomainParticipant_create contentfilteredtopic............... 138
DDS DomainParticipant_create multitopic 139
DDS DomainParticipant_create publisher 141
DDS DomainParticipant_create subscriber 143
DDS DomainParticipant_create topic., 146
DDS _DomainParticipant_delete_contained entities. 149
DDS _DomainParticipant_delete_contentfilteredtopic............... 150
DDS DomainParticipant_delete multitopic 152

VII

& PRISMTECH C Reference Guide

Table of Contents

viii

C Reference Guide

DDS DomainParticipant_delete publisher 153
DDS DomainParticipant_delete subscriber 154
DDS DomainParticipant_delete topic 156
DDS _DomainParticipant_enable (inherited) 157
DDS DomainParticipant_find_topic.................. 158
DDS _DomainParticipant_get_builtin_subscriber 159
DDS DomainParticipant_get_current_time. 160
DDS DomainParticipant_get default publisher qos.............. 161
DDS DomainParticipant_get default subscriber qos............. 163
DDS _DomainParticipant_get_default_topic qos 164
DDS_DomainParticipant_get_discovered participants. 165
DDS _DomainParticipant_get_discovered_participant data 166
DDS DomainParticipant_get_discovered topics 166
DDS DomainParticipant_get discovered topic data.............. 166
DDS DomainParticipant_get domain_id 166
DDS DomainParticipant_get_listener.......................... 167
DDS DomainParticipant_get_ goS.covvviiininiiaan.. 168
DDS DomainParticipant_get_status changes (inherited) 169
DDS DomainParticipant_get_statuscondition (inherited). 169
DDS DomainParticipant_ignore participant. 169
DDS _DomainParticipant_ignore publication 169
DDS _DomainParticipant_ignore_subscription 170
DDS DomainParticipant_ignore topiccovviiin.... 170
DDS DomainParticipant_lookup_topicdescription................ 170
DDS DomainParticipant_set default_publisher qos.............. 171
DDS DomainParticipant_set_default subscriber qos 172
DDS _DomainParticipant_set_default_topic_ gos. 174
DDS DomainParticipant_set_listener 175
DDS DomainParticipant_set gOSo vv v i 178
Class DDS_DomainParticipantFactory, 179
DDS _DomainParticipantFactory _create participant................ 180
DDS _DomainParticipantFactory _delete participant................ 183
DDS_DomainParticipantFactory _get default_participant_qos. 184
DDS _DomainParticipantFactory _get_instance 186
DDS_DomainParticipantFactory get_goS.covvennn.. 186
DDS_DomainParticipantFactory |lookup participant. 187
DDS DomainParticipantFactory _set default_participant_qgos........ 188
DDS DomainParticipantFactory set qos..............covvivn... 190
DDS _DomainParticipantListener interface. 191
DDS DomainParticipantListener__aloc......................... 193
DDS _DomainParticipantListener_on_data_available
(inherited, abstract). 194
& PRISMTECH

Table of Contents

& PRISMTECH

DDS DomainParticipantListener_on data on_readers

(inherited, abstract) 194
DDS DomainParticipantListener_on_inconsistent_topic
(inherited, abstract) o 195
DDS DomainParticipantListener_on _liveliness_changed
(inherited, abstract). 195
DDS DomainParticipantListener_on _liveliness lost
(inherited, abstract) 195
DDS DomainParticipantListener_on_offered deadline_missed
(inherited, abstract)o 196
DDS _DomainParticipantListener_on_offered_incompatible_gos
(inherited, abstract). 196
DDS DomainParticipantListener_on_publication_matched
(inherited, abstract) 196
DDS DomainParticipantListener_on requested deadline missed
(inherited, abstract) 196
DDS DomainParticipantListener_on_requested incompatible_gos
(inherited, abstract) oo 197
DDS DomainParticipantListener_on_sample lost
(inherited, abstract) 197
DDS _DomainParticipantListener_on_sample_rejected
(inherited, abstract)o i 197
DDS _DomainParticipantListener_on_subscription_matched
(inherited, a@bstract) oo 198
Topic-Definition Module i 198
Class DDS TopicDescription (abstract)coviiiinin. .. 199
DDS TopicDescription get name.oiiieiinaan.. 200
DDS TopicDescription_get_participant 201
DDS TopicDescription get type namecovvvnnn.. 201
ClassDDS TOPIC ..o v ettt e e e 202
DDS Topic_enable (inherited). o 203
DDS Topic_get_inconsistent_topic status 204
DDS Topic_get listener ... 205
DDS Topic_get name(inherited) 205
DDS Topic_get participant (inherited) 205
DDS TOPIC GEL QOS. .« ot o e it et e et e 206
DDS Topic_get status changes (inherited) 207
DDS Topic_get_statuscondition (inherited) 207
DDS Topic_get_type name (inherited). 207
DDS Topic_set listener. 207
DDS TOPIC SBL gOS. « o v vt e ettt et et 209
Class DDS _ContentFilteredTopiC. ... 211
IX

C Reference Guide

Table of Contents

X
C Reference Guide

DDS ContentFilteredTopic_get_expression parameters 212
DDS ContentFilteredTopic_get filter expresson 213
DDS ContentFilteredTopic_get name (inherited) 214
DDS_ContentFilteredTopic_get_participant (inherited) 214
DDS ContentFilteredTopic_get related topic 214
DDS_ContentFilteredTopic_get_type name (inherited) 215
DDS ContentFilteredTopic_set_expression_parameters. 215
ClassDDS MUItITOPIC. ..o v it e et e e e e 217
DDS MultiTopic_get expression_parameters 218
DDS MultiTopic_get_name (inherited). 219
DDS MultiTopic_get_participant (inherited) 219
DDS MultiTopic_get_subscription_expression 220
DDS MultiTopic_get type name(inherited) 220
DDS MultiTopic_set_expression parameters.covn... 221
DDS TopicListenerInterface. 222
DDS TopicListener_alloc i 223
DDS TopicListener_on_inconsistent_topic (abstract). 223
Topic-Definition Type SpecificClassest 224
Class DDS TypeSupport (abstract) . ..o, 225
DDS TypeSupport__aloc (abstract), 226
DDS TypeSupport_get_type name (abstract). 226
DDS TypeSupport_register_type (abstract) 226
Class SPACE_FooTypeSupport. ovv e 226
SPACE_FooTypeSupport_aloc. ..., 227
SPACE_FooTypeSupport_ get type name ..o, 228
SPACE_FooTypeSupport_register type ..., 229
Publication Module. 231
ClassDDS Publisher ... e 232
DDS Publisher_begin_coherent_ changes........................ 234
DDS Publisher_copy from topic qoS. ..., 236
DDS Publisher_create datawriter................. ..., 237
DDS Publisher_delete contained_entities 240
DDS Publisher_delete datawriter............... 241
DDS Publisher_enable (inherited)., 242
DDS Publisher_end coherent changes. 243
DDS Publisher_get default_datawriter qos...................... 243
DDS Publisher get listenert 245
DDS Publisher_get participant................, 245
DDS Publisher get qos. 246
DDS Publisher_get_status changes (inherited) 247
DDS Publisher_get_statuscondition (inherited) 247
DDS Publisher_lookup_datawriter, 248

& PRISMTECH

Table of Contents

& PRISMTECH

DDS Publisher_resume publications 248
DDS Publisher_set default datawriter qos..................... 249
DDS Publisher set listener. 251
DDS Publisher_set goS.t 253
DDS Publisher_suspend publications. 255
DDS Publisher_wait_for_acknowledgments. 256
Publication Type SpecificClasses. 257
Class DDS DataWriter (abstract).t 257
DDS DataWriter_assert liveliness, 261
DDS DataWriter_dispose(abstract) ... 263
DDS DataWriter_dispose w_timestamp (abstract). 263
DDS_DataWriter_enable (inherited)t 263
DDS DataWriter_get_key value (abstract)....................... 264
DDS DataWriter get listener i 264
DDS DataWriter_get liveliness lost status. 264
DDS DataWriter_get_matched_subscription_data. 266
DDS DataWriter_get_matched_subscriptions. 266
DDS DataWriter_get_offered deadline missed status 266
DDS DataWriter_get_offered incompatible gos status 267
DDS DataWriter_get publication matched status. 269
DDS DataWriter_get_publisher. 269
DDS DataWriter_ get_ goSo i et 269
DDS_DataWriter_get_status changes (inherited) 270
DDS DataWriter_get_statuscondition (inherited) 271
DDS DataWriter get topiC.vvv it 271
DDS DataWriter_lookup instance (abstract) 272
DDS DataWriter_register_instance (abstract) 272
DDS DataWriter_register_instance_w_timestamp (abstract) 272
DDS DataWriter_set listener ... 273
DDS DataWriter Set g0S ..o v 275
DDS DataWriter_unregister_instance (abstract). 276
DDS DataWriter_unregister_instance w_timestamp (abstract) 277
DDS DataWriter_wait_for_acknowledgments 277
DDS DataWriter_write (abstract) o i 278
DDS DataWriter_write_ w_timestamp (abstract) 278
DDS DataWriter_writedispose (abstract) 279
DDS DataWriter_writedispose w_timestamp (abstract) 279
Class SPACE _FooDataWriter ... 279
SPACE_FooDataWriter_assert_liveliness (inherited) 283
SPACE_FooDataWriter dispose.covviiiiiiiiia. 284
SPACE_FooDataWriter_dispose w_timestamp 288
SPACE_FooDataWriter_enable (inherited) 289
Xl

C Reference Guide

Table of Contents

Xii

C Reference Guide

SPACE_FooDataWriter get key value 290
SPACE_FooDatawriter_get listener (inherited). 291
SPACE_FooDatawriter_get liveliness lost status (inherited). 291
SPACE_FooDataWriter_get_matched_subscription_data
(inherited) 291
SPACE_FooDataWriter_get_matched_subscriptions (inherited) 292
SPACE_FooDataWriter_get offered deadline_missed status
(inherited) 292
SPACE_FooDatawriter_get offered incompatible gos status
(inherited)o 292
SPACE_FooDataWriter_get_publication_matched_status
(inherited) 292
SPACE_FooDataWriter_get_publisher (inherited) 293
SPACE_FooDatawriter_get qos(inherited) 293
SPACE_FooDataWriter_get status changes (inherited). 293
SPACE_FooDataWriter_get_statuscondition (inherited). 293
SPACE_FooDataWriter_get_topic (inherited). 294
SPACE_FooDataWriter lookup_instance. 294
SPACE_FooDataWriter_register instance 295
SPACE_FooDataWriter_register_instance w_timestamp........... 298
SPACE_FooDataWriter_set_listener (inherited) 299
SPACE_FooDataWriter_set_qos(inherited) 299
SPACE_FooDataWriter_unregister_instance 299
SPACE_FooDataWriter_unregister_instance w_timestamp. 303
SPACE_FooDataWriter_wait_for_acknowledgments (inherited). 305
SPACE_FooDataWriter write. ..., 305
SPACE_FooDataWriter_write w_timestamp 308
SPACE_FooDataWriter_writedispose.ot 309
SPACE_FooDataWriter_writedispose w_timestamp 314
DDS PublisherListenerinterface, 315
DDS PublisherListener_aloc, 317
DDS PublisherListener_on _liveliness lost (inherited, abstract). 317
DDS PublisherListener_on offered deadline_ missed
(inherited, abstract). 318
DDS PublisherListener_on_offered_incompatible_qos
(inherited, abstract). 318
DDS PublisherListener_on_publication_matched
(inherited, abstract). o 318
DDS DataWriterListenerinterface. oo 319
DDS DataWriterListener _alloc............ 320
DDS DataWriterListener_on_liveliness lost (abstract) 321

DDS DataWriterListener_on_offered deadline_missed (abstract). 322

& PRISMTECH

Table of Contents

DDS DataWriterListener_on_offered incompatible_gos (abstract) 323

DDS DataWriterListener_on publication_matched (abstract) 324
SubscriptionModule e 325
ClassDDS Subscriber. 326
DDS Subscriber_begin access i 329
DDS Subscriber_copy _from topic oS ... 329
DDS Subscriber_create datareader. 330
DDS Subscriber_delete contained entities. 333
DDS Subscriber _delete datareader. 335
DDS _Subscriber_enable (inherited). L. 336
DDS Subscriber_end access. ... 336
DDS Subscriber_get datareaders i 336
DDS Subscriber_get default_datareader qos..................... 337
DDS Subscriber get listener. ... 338
DDS Subscriber get participant. i 339
DDS Subscriber_get gos. 339
DDS Subscriber_get_status changes (inherited) 340
DDS Subscriber_get_statuscondition (inherited) 341
DDS Subscriber_lookup datareader 341
DDS Subscriber_notify datareaders........................... 342
DDS Subscriber_set_default_datareader gqos.................... 343
DDS Subscriber set listener. ... 345
DDS Subscriber_set qoS.o 347
Subscription Type SpecificClasses. 349
ClassDDS DataReader (abstract)oviiii it 349
DDS DataReader create querycondition........................ 355
DDS DataReader create readcondition 356
DDS DataReader delete contained entities. 358
DDS DataReader_delete readcondition 359
DDS DataReader_enable (inherited). 360
DDS DataReader get key value(abstract) 360
DDS DataReader get listener., 361
DDS DataReader_get_liveliness changed_status. 361
DDS DataReader_get_matched publication data 362
DDS _DataReader_get_matched publications. 363
DDS DataReader get g0S.ovviiiiii it 363
DDS DataReader_get_requested deadline missed status.......... 364
DDS DataReader get requested _incompatible gos status......... 365
DDS DataReader_get sample lost status 366
DDS DataReader_get sample rejected status. 368
DDS_DataReader_get_status changes (inherited). 369
DDS DataReader_get_statuscondition (inherited) 369
X

& PRISMTECH C Reference Guide

Table of Contents

Xiv
C Reference Guide

DDS DataReader get subscriber ... i 369
DDS DataReader get subscription_matched status 370
DDS DataReader get topicdescription. 370
DDS DataReader_lookup_instance (abstract). 371
DDS DataReader read (abstract) ..., 371
DDS DataReader_read instance(abstract)...................... 372
DDS DataReader_read next_instance (abstract) 372
DDS DataReader read next_instance w_condition (abstract) 373
DDS DataReader read next sample(abstract) 373
DDS DataReader_read w_condition (abstract) 373
DDS DataReader_return_loan (abstract).t 374
DDS DataReader_set listener. ..., 374
DDS DataReader Set 0S.o vvi i i e 377
DDS DataReader_take (abstract). ..., 378
DDS DataReader take instance (abstract) 379
DDS DataReader_take next_instance (abstract). 379
DDS DataReader_take next_instance_w_condition (abstract). 380
DDS DataReader_take next sample(abstract) 380
DDS DataReader_take w_condition (abstract). 380
DDS DataReader wait for_historical data 381
ClassSPACE FooDataReader.coviiiiiiniinan. 383
SPACE_FooDataReader_create_guerycondition (inherited). 388
SPACE_FooDataReader_create readcondition (inherited).......... 389
SPACE_FooDataReader_delete contained_entities (inherited) 389
SPACE_FooDataReader_delete readcondition (inherited).......... 389
SPACE_FooDataReader_enable (inherited) 389
SPACE_FooDataReader_get key value........................ 390
SPACE_FooDataReader_get_listener (inherited) 390

SPACE_FooDataReader_get_liveliness changed_status (inherited) . . 390
SPACE_FooDataReader_get_matched publication_data (inherited) . . 390

SPACE_FooDataReader_get matched publications (inherited). 391
SPACE_FooDataReader_get_qos (inherited) 391
SPACE_FooDataReader_get_requested_deadline_missed_status
(inherited) 391
SPACE_FooDataReader_get_requested_incompatible_gos_status
(inherited) 391
SPACE_FooDataReader_get sample lost_status (inherited) 392
SPACE_FooDataReader_get sample rejected status (inherited). 392
SPACE_FooDataReader_get_status changes (inherited) 392
SPACE_FooDataReader_get_statuscondition (inherited) 392
SPACE_FooDataReader_get_subscriber (inherited) 393
& PRISMTECH

Table of Contents

& PRISMTECH

SPACE_FooDataReader_get subscription_matched status

(inherited) 393
SPACE_FooDataReader_get_topicdescription (inherited) 393
SPACE_FooDataReader_lookup_instance. 393
SPACE FooDataReader readccoviiiiinnnnn... 394
SPACE_FooDataReader read instance......................... 399
SPACE_FooDataReader_read next_instance 401
SPACE_FooDataReader_read next_instance w_condition 404
SPACE _FooDataReader read next sample..................... 406
SPACE_FooDataReader read w_condition 406
SPACE_FooDataReader return_loancou.... 408
SPACE_FooDataReader_set_listener (inherited). 410
SPACE_FooDataReader_set_qos (inherited). 410
SPACE FooDataReader take ..., 411
SPACE_FooDataReader take instance......................... 412
SPACE_FooDataReader_take next instance 414
SPACE_FooDataReader take next_instance w_condition 416
SPACE_FooDataReader_take next sample 418
SPACE_FooDataReader_take w_condition 419
SPACE_FooDataReader_wait_for_historical_data (inherited) 420

ClassDDS DataSample 421
Struct DDS Samplelnfo 421
DDS Samplelnfo 421
DDS SubscriberListenerInterface il 425
DDS SubscriberListener_alloc i 427
DDS SubscriberListener_on_data available (inherited, abstract). 427
DDS _SubscriberListener_on_data on_readers(abstract) 428
DDS_SubscriberListener_on_liveliness_changed
(inherited, abstract) 429
DDS SubscriberListener_on_requested deadline_missed
(inherited, abstract)o 429
DDS SubscriberListener_on_requested incompatible gos
(inherited, abstract) 429
DDS _SubscriberListener_on_sample lost (inherited, abstract). 430

DDS SubscriberListener_on_sample rejected (inherited, abstract)430
DDS SubscriberListener_on_subscription_matched

(inherited, abstract)o 430

DDS DataReaderListenerinterface oot 431
DDS DataReaderListener _aloc. ..., 432
DDS DataReaderListener_on_data_available (abstract) 433
DDS DataReaderListener_on_liveliness changed (abstract) 434
XV

C Reference Guide

Table of Contents

XVi
C Reference Guide

DDS DataReaderListener_on_requested deadline missed

(@bstract) e 435

DDS DataReaderListener_on_requested incompatible gos
(@bstract). 436
DDS DataReaderListener_on_sample lost (abstract). 437
DDS DataReaderListener_on_sample rejected (abstract) 437
DDS DataReaderListener_on_subscription_matched (abstract). 438
ClassDDS ReadCondition. ...t 439
DDS ReadCondition_get datareader 440
DDS _ReadCondition_get_instance state mask 440
DDS ReadCondition_get sample state mask 441
DDS_ReadCondition_get_trigger_value (inherited) 442
DDS ReadCondition_get view state mask 442
ClassDDS QueryCondition.t 443
DDS QueryCondition_get_datareader (inherited). 444
DDS_QueryCondition_get_instance_state mask (inherited). 444
DDS QueryCondition_get_query parameters. 445
DDS QueryCondition_get_query expression. 446
DDS QueryCondition_get sample_state mask (inherited) 446
DDS QueryCondition_get_trigger value (inherited) 447
DDS_QueryCondition_get_view_state mask (inherited) 447
DDS QueryCondition_set_query parameters. 447
Quality Of Service 451
Affected ENtitieso 451
BasiCUSage.o 451
DDS DataReaderQOS . . . oottt e e 453
DDS DataWriterQoS. . .. oo it e e 456
DDS DomainParticipantFactoryQoscooii i 458
DDS DomainParticipantQosS.ot e 459
DDS PublisherQOSottt e e 461
DDS SUBSCHibErQOSot e 462
DDS TOPICQOS . . v vttt ettt e 463
API Constantsand Types 467
Platform Specific IDL Interface 471
dds depsidl. e e 471
SampleStates, ViewStates and | nstanceStates 499
Samplelnfo Class.ot 499
sample State. e 499
INStANCE StalB. . . ottt i i e e 501
& PRISMTECH

Table of Contents

VI St Al . . oottt 502
State Maskso 504
Operations Concerning StateSo v it 505
ClassInheritance 509
Listeners, Conditions and Waitsets 511
Communication StatusSEvent i e 513
LIS BN S, . . ettt 516
Conditionsand Waitsetst e 517
DDS StatusCondition Trigger Stateot e e 521
DDS_ReadCondition and DDS_QueryCondition Trigger State. 521
DDS_GuardCondition Trigger State.o i v 522
DDS Topic Definitions 523
DDS Topic DefinitionExample. 523
CompleX TOPICS. . . ottt e e e 524
DL PrE-PrOCESSOr .« . v vt ittt e e e e 524
DCPS Queriesand Filters 529
SQL Grammar iNBNF. e 529
SQL TOKEN EXPreSSioN . .. oottt e ettt et i 530
SOL EXamples. . ..o e 531
Bibliography 535
Glossary 539
Index 543

Xvii

& PRISMTECH C Reference Guide

Table of Contents

XViii &
C Reference Guide PRISMTECH

List of Figures

&4 PRISMTECH

Figurel
Figure?2
Figure3
Figure4
Figure5
Figure6
Figure?7
Figure8
Figure9
Figure 10
Figurell
Figure12
Figure 13
Figure14
Figure 15
Figure 16
Figure 17

Figure 18
Figure 19

Figure 20:
Figure 21:
Figure 22:

Figure23

Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:

Figure 29

Figure 30:

C Reference Guide Document Structure 3
DCPSModule Compositionovuiiiiiiinenn 37
DCPSInfrastructureModule'sClassModel 38
DCPSDomain ModulesClassModdl 40
DCPS Topic-Definition Module'sClassModel 41
Data Type*“Foo” Typed Classes Pre-processor Generation 42
DCPS Publication Module sClassModel 43
DCPS Subscription Module sClassModel 44
DCPSInfrastructureModule'sClassModel 48
QosPalicy SEttingsot e 56
DCPS LiStenersS . ..ot 97
DCPSDDS StatusValuesoiiiiiii i, 100
DCPSDDS WaitSets . ..o oot 114
DCPSDDS Conditionsoviiiii i 121
DCPSDomain ModulesClassModel 131
DCPS Topic-Definition Module ClassModel 198
Pre-processor Generation of the Typed Classes for
Data Type“Fo0"o 199
The DCPS Publication Module sClassModel 231
The DCPS Subscription Module'sClassModel 325
State Chart of the sample_statefor aSingleSample 500
State Chart of theinstance_statefor aSinglelnstance 502
State Chart of theview_statefor a Singlelnstance 503
DCPSInheritance.......... . 509
Plain Communication StatusStateChart 514
Read Communication Status DDS DataReader Statecraft515
DDS Subscriber Statecraft for a Read Communication Status .516
DCPS LISteNers ..o 517
DCPSDDS WaitSetsii i 518
DCPSDDS Conditionscoviiiiiiiii i 520
Blocking Behaviour of a Waitset StateChart 521
Xix

C Reference Guide

List of Figures

XX k4 PRISMTECH
C Reference Guide

Preface
About the C Reference Guide

The C Reference Guide provides a detailed explanation of the OpenSplice DDS
(Subscription Paradigm for the Logical I nterconnection of Concurrent Engines)
Application Programming Interfaces for the C language.

Thisreference guide is based on the OMG'’s Data Distribution Service Specification
and C Language Mapping Specification.

The C Reference Guide focuses on the Data Centric Publish Subscribe (DCPS) layer
and does not cover the DLRL layer. The purpose of the DCPS is the distribution of
data (publish/subscribe). The structure of the DCPS is divided into five modules.
Each module consists of several classes, which in turn generally contain several
operations.

Intended Audience

The C Reference Guide is intended to be used by C programmers who are using
OpenSplice DDS to devel op applications.

Organisation

& PRISMTECH

The C Reference Guide is organised into the following topics.
The Introduction describes the details of the document structure.

Chapter 1, DCPS API General Description, is a general description of the DCPS
APl and its error codes.

Chapter 2, DCPS Modules, provides the detailed description of the DCPS modules.

Chapter 3, DCPS Classes and Operations, provides the detailed description of the
DCPS classes, structs and operations.

The following appendices are included, as well a Bibliography containing
references material and Glossary:

Appendix A, Quality Of Service

Appendix B, API Constants and Types

Appendix C, Platform Specific IDL Interface

Appendix D, SampleSates, ViewSates and InstanceSates
Appendix E, Class Inheritance

Appendix F, Listeners, Conditions and Waitsets
Appendix G, DDS Topic Definitions

Appendix H, DCPS Queries and Filters

XXi
C Reference Guide

Preface

Conventions

The conventions listed below are used to guide and assist the reader in
understanding the C Reference Guide.

& Item of special significance or where caution needs to be taken.
I Item contains helpful hint or special information.
Information applies to Windows (e.g. NT, 2000, XP) only.
Information appliesto Unix based systems (e.g. Solaris) only.
C C language specific
C++ C++language specific
Java Javalanguage specific
Hypertext links are shown as blue italic underlined.

On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page xxiii, are as hypertext links: click on the reference to go to the
item.

% Commands or input which the user enters on the
command line of their computer terminal

Courier fontsindicate programming code and file names.
Extended code fragments are shown in shaded boxes:

NameComponent newName[] = new NameComponent[1l];

// set i1d field to “example” and kind field to an empty string
newName [0] = new NameComponent (“example”, ““);

Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Arial Bold isused to indicate user related actions, e.g. File | Save from amenu.

Sep 1: Oneof several steps required to complete a task.

XXii
C Reference Guide & PRISMTECH

Preface

Contacts

PrismTech can be reached at the following contact points for information and

& PRISMTECH

technical support.

Corporate Headquarters European Head Office
PrismTech Corporation PrismTech Limited

6 Lincoln Knoll Lane PrismTech House

Suite 100 5th Avenue Business Park
Burlington, MA Gateshead

01803 NE11 ONG

USA UK

Tel: +1 781 270 1177 Tel: +44 (0)191 497 9900
Fax: +1 781 238 1700 Fax: +44 (0)191 497 9901
Web: http: //Amww.prismtech.com

Genera Enquiries: info@prismtech.com

XXiii
C Reference Guide

http://www.prismtech.com
mailto: info@prismtech.com

Preface

XXiV

C Reference Guide & PRISMTECH

INTRODUCTION

About the C Reference Guide

Document Structure

The C Reference Guide document structure is based on the structure of the DCPS
Platform Independent Model (DCPS PIM) of the Data Distribution Service
Specification. The detailed description is subdivided into the PIM Modules, which
are then subdivided into classes.

Some of the classes are implemented as structs in the DCPS Platform Specific
Model (DCPS PSM) of the Data Distribution Service Specification, asindicated in
the Interface Description Language (IDL) chapter of the PSM (see Appendix C,
Platform Specific IDL Interface). These structs are described in the respective
chapters.

* In the classes as described in the PIM, which are implemented as a class in the

PSM, the operations are described in detail.

In the classes as described in the PIM, which are implemented as a struct in the
PSM, the struct contents are described in detail .

The order of the modules and classes is conform the PIM part.
The order of the operations or struct contents is al phabetical.
 Each description of aclass or struct starts with the API description header file.

DDS-DCPS
detailed description

Modules . ..

Structs . .. Classes . ..

Operations . . .

Figurel C Reference Guide Document Sructure

3

& PRISMTECH C Reference Guide

Introduction

Operations

4
C Reference Guide

Several types of operations are described in this manual. The different types of
operations are: basic, inherited, abstract and abstract interface. All operations of any
type can be found in their respective class. The details of their description depends
on the type of operation.

Basic operations are described in detail in the class they are implemented in.

* Inherited operations only refer to the operation in the class they are inherited
from. The detailed description is not repeated.

» Abstract operations only refer to the type specific implementations in their
respective derived class. The detailed description is not repeated.

» Abstract operations which are implemented as an interface (Listeners), are
described in detail in their class. These operations must be implemented in the
application.

In the API description header file, the inherited and abstract operations are
commented out since they are not implemented in this class.

Inheritancein the C API isimplemented by prefixing the name of the operation with
DDS_ and the name of the class they arein. For example, the operation get_name
in the class Topic is hamed DDS_Topic_get_name. Since this operation is
actually inherited from the class Topicbescription the operation refers to the
TopicDescription class for more information. However, in the
TopicDescription class this operation is named
DDS_TopicDescripton_get_name.

& PRISMTECH

AP| REFERENCE

CHAPTER

1 DCPS API General Description

The structure of the DCPS is divided into modules, which are described in detail in
the next chapter. Each module consists of several classes, which in turn may contain

several operations.

Some of these operations have an operation return code of type
DDS_ReturnCode_t, which is defined in the next table:

Table 1 Return Codes

DDS ReturnCode t

Return Code Description

DDS_RETCODE_OK

Successful return

DDS_RETCODE_ERROR

Generic, unspecified error

DDS_RETCODE_BAD_PARAMETER

Illegal parameter value

DDS_RETCODE_UNSUPPORTED

Unsupported operation or DDS_QosPolicy setting. Can
only be returned by operations that are optional or
operations that uses an optional
DDS_<DDS_Entity>QoS asaparameter

DDS_RETCODE_ALREADY_ DELETED

The object target of this operation has already been deleted

DDS_RETCODE_OUT_OF_RESOURCES

Service ran out of the resources needed to complete the
operation

DDS_RETCODE_NOT_ENABLED

Operation invoked on an DDS_Entity that is not yet
enabled

DDS_RETCODE_IMMUTABLE_POLICY

Application attempted to modify an immutable
DDS_QosPolicy

DDS_RETCODE_INCONSISTENT_POLICY

Application specified aset of policiesthat are not consistent
with each other

DDS_RETCODE_PRECONDITION_NOT_MET

A pre-condition for the operation was not met

& PRISMTECH

7
API Reference

1 DCPS API General Description 1.1 Thread Safety

Table 1 Return Codes

DDS ReturnCode t Return Code Description
DDS_RETCODE_TIMEOUT The operation timed out
DDS_RETCODE_ILLEGAL_OPERATION An operation was invoked on an inappropriate object or at

an inappropriate time (as determined by QosPolicies that
control the behaviour of the object in question). There is no
precondition that could be changed to make the operation
succeed.

DDS_RETCODE_NO_DATA Indicates a situation where the operation did not return any

data

The name scope (name space) of these return codes is DDS. The operation return
codes DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_
ILLEGAL_OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED and DDS_RETCODE_ALREADY_DELETED are default for operations
that return an operation return code and are therefore not explicitly mentioned in the
DDS specification. However, in this manual they are mentioned along with each
operation.

Some operations are not implemented. These operations are mentioned including
their synopsis, but not described in this manual and return
DDS_RETCODE_UNSUPPORTED When called from the application. All constants and
types are given in Appendix B, APl Constants and Types.

Thread Safety

All operations are thread safe apart from the
DDS_DomainParticipantFactory_get_instance operation. It isthe
applications responsibility to call DDS_DomainParticipantFactory_
get_instance only from one application thread. This restriction only applies to
thefirst call of DDS_DomainParticipantFactory get_instance.

Signal Handling
The Data Distribution Service sets signal handlers in order to assure that resources

8
API Reference

are released when signals that terminate the application process are cached. These
signal handlers only call the exit function in order to force exit handlers to be
activated.

If the application needs to set signal handlers for its own use, two situations can
occur. In the first case the application sets a signal handler for a specific signal while
the Data Distribution Service has not set a handler yet. The Data Distribution
Service will not set it's own handler in this case, but expects the application signal
handler to call the exit function when the signal is meant to terminate the process. In

& PRISMTECH

1 DCPS API General Description 1.3 Memory Management

the second case the Data Distribution Service has already set asignal handler for a
specific signal and the application program redefines the signal handling by setting
itsown handler. In that case the application should either chain the Data Distribution
Service signal handler (to be executed aslast) or to call the exit function itself when
the cached signal is meant to terminate the application process.

The Data Distribution Service service will conditionally set the signal handlers
when creating the bomainParticipantFactory, Which is the first call to
DDS_DomainParticipantFactory get_instance for C.

The Data Distribution Service only sets signal handlers for signals that have the
default behaviour of terminating the process without dumping a core.

Memory M anagement

When objects are being created, they occupy memory space. To avoid memory leaks
when they are not used any more, these objects have to be deleted in order to release
the memory space. However, when using pointers, it is difficult to keep track of
which object has been released and which has not. When objects are not being
released, the memory leak finally uses up all the resources and the application fails.
On the other hand, when an object is being released twice because there were two
pointers to the same object, the application fails. This implementation is based on
the OMG C Language Mapping Specification. Accordingly, the CORBA ruleslisted
below apply.

IDL Mapping Rulesfor Sequences

&4 PRISMTECH

The names of the operations and types are given by the IDL mapping rules. For
sequences severd rules apply. The basic IDL definition of a sequence is defined by:

module name-space {
typedef sequence<<sequence-element-type>>
<sequence-name>;

3
In the C language, this results in the following type definition of the sequence:

typedef
DDS_sequence_<name-space-prefix><sequence-element-type>
<name-space>_<sequence-name>

In this type definition, the <sequence-element-type> isthe type of the objects
in the sequence. This <sequence-element-type> may be a standard type or a
Data Distribution Service defined type. The <name-space-prefix> represents
the name space in which the <sequence-element-type> is defined. The
standard types have an empty prefix. In the Data Distribution Service all the

9
API Reference

1 DCPS API General Description 1.3 Memory Management

typedefs are set within the module DDS block, therefore defined types have the
prefix DDS_. Finally, the <sequence-name> is name of the sequence and is
aways prefixed by DDS .

Sandard Defined Type
The standard defined types are the types as defined in the Data Distribution Service
specification. For example, for the standard defined <sequence-element-type>
of type string with a <sequence-name> of StringSeq, the following IDL
definition is given:
typedef sequence<string> StringSeq

In C, this results in the following type definition of the sequence:
typedef DDS_sequence_string DDS_StringSeq

User Defined Type

The user defined types are the types as defined in the application. For example, for
the user defined <sequence-element-type> Of type Foo with a
<sequence-name> Of Nname FooSeq in the module spack, the following IDL
definition is given:
module SPACE {
typedef sequence<Foo> FooSeq;

}
In C, this results in the following type definition of the sequence:
typedef DDS_sequence_SPACE_Foo SPACE_FooSeq

Data Distribution Service Defined Type

For example, for the Data Distribution Service defined
<sequence-element-type> Of type SampleInfo With a<sequence-name> of
name sampleInfoSeq, thefollowing IDL definitionis given:

typedef sequence<SampleInfo> SampleInfoSeqg
In C, this results in the following type definition of the sequence:
typedef DDS_sequence_DDS_SampleInfo DDS_SamplelInfoSeq

Plain Sequences
The following table shows the sequences for which the resources have to be
managed. In other words, for these sequences DDS_<sequence-name>__alloc
and DDS_<sequence-name>_allocbuf operations are available. For sequences,
which are only used as an out parameter, the application does not need to use these
allocation operations, since the Data Distribution Service allocates them. In this
case, the application may use these operations for its own sequences. Furthermore to
free the resources allocated with DDS_<sequence-name>__alloc and

10

API Reference & PRISMTECH

1 DCPS API General Description 1.3 Memory Management

DDS_<sequence-name>_allocbuf the application must use the bps_free
operation. It does not make any difference whether the application or the Data
Distribution Service does the allocation. When the application does not use the
DDS_ free operation, the application will fail. The DDS_free operation operates
recursively, in other words all embedded structures are rel eased.

Sequences and buffers can also be allocated on stack. However in case the
application allocates a sequence or buffer on stack, the bbs_free operation may
not be used on this object, otherwise the application will fail.

Table 2 Sequences
Sequence Name Parameter Type
In Out | Inout | Return

DDS_ConditionSeqg X
DDS_StringSeq X X
DDS_DataReaderSeq X
DDS_InstanceHandleSeq X
DDS_QosPolicyCountSeq |Used in status struct only.
DDS_SampleInfoSeqg ‘ ‘ X ‘
DDS_sequence_octet Used in QosPolicy struct only.

1.3.3 Sequences Embedded in QosPolicy Objects

The following table shows the QosPolicy objects for which the resources have to
be managed because they contain sequences. In other words, for these QosPolicy
objects DDS_<QosPolicy>__alloc operations are available. The buffers used in
these QospPolicy objects must be allocated wusing the
DDS_<sequence-name>_allocbuf operations. The bbs_free operation takes
care of the embedded sequences and the buffersin agospPolicy.

Table 3 QosPolicy Objects

QosPolicy Name Parameter Type Contains
In | Out |Inout | Return Sequence
DDS_DomainParticipantQos X X DDS_sequence_octet
DDS_TopicQos X X DDS_sequence_octet
DDS_PublisherQos X X DDS_sequence_octet
DDS_StringSeq
DDS_DataWriterQos X X DDS_sedquence_octet
& PRISMTECH 1

API Reference

1 DCPS API General Description 1.3 Memory Management

Table 3 QosPolicy Objects

QosPolicy Name Parameter Type Contains
In | Out |Inout | Return Sequence
DDS_SubscriberQos X X DDS_sequence_octet

DDS_StringSeqg

DDS_DataReaderQos X X DDS_sequence_octet

Sequences Embedded in Satus Objects

The following table shows the status objects for which the resources have to be
managed because they contain sequences. In other words, for these status objects
DDS_<Status>__alloc operations are available. The buffers used in these
Status oObjects must be allocated using the DDs_<sequence-name>_allocbuf
operations. The DDS_free operation takes care of the embedded sequences and the
buffersinastatus.

Table 4 Status Objects

Status Name Parameter Type Contains

In | Out |Inout | Return Sequence
DDS_OfferedIncompatibleQosStatus X X DDS_QosPolicyCountSeqg
DDS_RequestedIncompatibleQosStatus| X X DDS_QosPolicyCountSeqg

Resources and oper ations
The interface description of the memory management operationsis as follows:

/* interface Memory management */
typedef struct {
DDS_unsigned_long _maximum;
DDS_unsigned_long _length;
DDS_<sequence-element-type> *_buffer;
DDS_boolean _release;
} DDS_sequence_<name-space-prefix><sequence-element-type>;
typedef
DDS_sequence_<name-space-prefix><sequence-element-type>
DDS_ <sequence-name>

/* implemented API operations */
void
DDS_sequence_set_release
(void *sequence,
DDS_boolean release) ;
DDS_boolean

12

API Reference & PRISMTECH

1 DCPS API General Description 1.3 Memory Management

DDS_sequence_get_release
(void *sequence) ;
DDS_<sequence-name> *
DDS_<sequence-name>__alloc
(void) ;
DDS_<sequence-element-type> *
DDS_<sequence-name>_allocbuf
(DDS_unsigned_long len);
DDS_<QosPolicy>
DDS_<QosPolicy>__alloc
(void) ;
DDS_<Status>
DDS_<Status>_ _alloc

(void) ;
void
DDS_free
(void *);

The following paragraphs describe the usage of all memory management
operations.

Sequences DDS_<sequence-name>

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
typedef struct {
DDS_unsigned_long _maximum;
DDS_unsigned_long _length;
DDS_<sequence-element-type> *_buffer;
DDS_boolean _release;
} DDS_sequence_<name-space-prefix>
<sequence-element-type>;
typedef DDS_sequence_<name-space-prefix>
<sequence-element-type> DDS_<sequence-name>

Description

The typedef DDS_<sequence-name> represents the sequence which contains the
objects of <sequence-element-type>.

Attributes

DDS_unsigned_long _maximum - the maximum number of elements that can be
contained in the sequence.

DDS_unsigned_long _length - the actual number of elementsin the sequence.
DDS_<sequence-element-type> *_buffer - apointer to the sequence buffer.

13
API Reference

1 DCPS API General Description 1.3 Memory Management

14
API Reference

DDS_boolean _release - indicates whether this sequence owns the memory of
_buffer.

Detailed Description

The typedef DDS_<sequence-name> represents the sequence struct that holds the
seguence attributes associated with the sequence buffer, which contains the objects
of <sequence-element-type>. This sequence is allocated by calling
DDS_<sequence-name>__alloc. The sequence buffer must be allocated
separately by calling DDS_<sequence-name>_allocbuf. In other words when
using a sequence, the memory space must be allocated for both the sequence struct
and the sequence buffer. Whether, the application must allocate the resources or the
Data Distribution Service alocates the resources, depends on the type of usage.

In or Inout Parameter

In case the sequence is passed as an in or inout parameter, both the sequence and the
buffer must be allocated by the application. The application must set the attributes
of the sequence according to the size and ownership of the buffer. Furthermore, for
an inout parameter the application can control whether the Data Distribution Service
must replace the elements in the sequence, the application can allow this by setting
the release dttribute.

* When set to TRUE the Data Distribution Service is allowed to free any pointer
types. The Data Distribution Service sets the _length attribute to the number of
returned elements. The number of elements never exceeds the number set by the
application in the _maximum attribute.

» When set to FALSE the Data Distribution Serviceis not alowed to free the pointer
types. In this case, the Data Distribution Service allocates exactly the amount of
elements and set the _length and the _maximum attributes of the sequence to
that amount.

* In either case, the sequence and the buffer must be released by the application by
calling pps_free on the sequence. In this case also the buffer is released, since
the DDS_free Operation is recursive.

Out or Return Parameter

In case the sequence is used as an out parameter or a sequence is returned by a
function, both the sequence and the buffer are allocated by the Data Distribution
Service. The attributes of the sequence are set by the Data Distribution Service
according to the size and ownership of the buffer. The sequence and the buffer must
be released by the application by calling bbs_free on the sequence. In this case
also the buffer isreleased, since the DDS_free operation is recursive.

& PRISMTECH

1 DCPS API General Description 1.3 Memory Management

&4 PRISMTECH

In case the Data Distribution Service has no data to return, it returns an empty
sequence with the _length and the _maximum attributes of the sequence set to
zero, the _buffer attribute set to bbs_oBJECT_NIL and the _release attribute
Set to FALSE.

Allocation on the Sack

In case the sequence is allocated by the application. The application may also
allocate the sequence on stack for performance reason instead of calling
DDS_<sequence-name>__alloc. When the buffer is allocated on the stack the
application must also set the _release attribute to FAL SE as described below. In case
the buffer is allocated using pDS_<sequence-name>_allocbuf then the
application must release the buffer separately by calling pps_free on _buffer of
the sequence.

Attributes

The attributes of the bDs_ <sequence-name> struct must be set after allocation. In
case of an out parameter or the sequence is returned by a function, the attributes are
set by the Data Distribution Service. In case of an in parameter or inout parameter,
the attributes must be set by the application.

The _length attribute of the sequence must be set to the current length of the
sequence. In other words equal to the number of valid sequence elements.

The _maximum attribute of the sequence must be set to the size of the allocated
sequence buffer. In other words equal to the 1en parameter used in the call to
DDS_<sequence-element-type>_allocbuf.

The _buffer attribute of the sequence must be set to the pointer to the allocated
sequence buffer. In other words equal to the returned pointer from the call to
DDS_ <sequence-element-type>_allocbuf. Or in case of alocation on stack,
the pointer to the variable.

The _release flag of the sequence may not be set directly. The _release flag of
the sequence must be set by using DDS_sequence_set_release and may only be
read by using DDS_sequence_get_release. DDS_sequence_set_release
may only be used by the creator of the sequence. If it is not called for a given
seguence instance, then the default value of the _release flag for that instance is
FALSE.

If the _release flag of the sequence is set to TRUE, the sequence effectively
“owns” the resource pointed to by _buffer; if the flag is set to FALSE, the
application is responsible for the resource. If, for example, a sequence is returned
from an operation with its release flag set to FALSE, calling DDS_free on the
returned sequence pointer does not deall ocate the memory pointed to by _buffer.

15
API Reference

1 DCPS API General Description 1.3 Memory Management

Before calling pps_free on the _buffer member of a sequence directly, the
application should check the _release flag using
DDS_sequence_get_release. If it returns FALSE, the application should not
invoke pDs_free on the _buffer member; doing so produces undefined
behaviour.

DDS sequence _set_release

Synopsis
#include <dds_dcps.h>
void
DDS_sequence_set_release
(void *sequence, DDS_boolean release) ;

Description
This operation sets the state of the _release flag of the sequence.

Parameters
in void *sequence - apointer to the bps_<sequence-name>.

in DDS_boolean release - the new state of the _release flag of the
sequence.

Return Value
<none>

Detailed Description

This operation sets the state of the _release flag of the sequence. If theflag is set
to TRUE, the sequence effectively “owns’ the resource pointed to by _buffer; if
the flag is set to FALSE, the application is responsible for the resource. If, for
example, asequence is returned from an operation with its release flag set to FALSE,
calling pDs_free on the returned sequence pointer does not deall ocate the memory
pointed to by _buffer. Passing a DbDS_OBJECT_NIL pointer or a pointer to
something other than a sequence type to DDS_sequence_set_release produces
undefined behaviour.

DDS_sequence_set_release should only be used by the creator of the sequence.
If it is not called for a given sequence instance, then the default value of the
_release flagfor that instance is FALSE. The _release flag of the sequence may
not be set directly. It may only be changed by this operation.

16

API Reference & PRISMTECH

1 DCPS API General Description 1.3 Memory Management

DDS sequence get release

Synopsis
#include <dds_dcps.h>
DDS_boolean
DDS_sequence_get_release
(void *sequence) ;

Description
This operation gets the state of the _release flag of the sequence.

Parameters
in void *sequence - apointer to the pps_<segquence-name>.

Return Value
DDS_boolean - thepresent state of the release flag of the sequence.

Detailed Description

This operation gets the present state of the _release flag of the sequence. If the
flag returned is TRUE, the sequence effectively “owns’ the resource pointed to by
_buffer; if the flag returned is FALSE, the application is responsible for the
resource. If, for example, a sequence is returned from an operation with its release
flag set to FALSE, calling DDs_free on the returned sequence pointer does not
deallocate the memory pointed to by _buffer. Before calling bps_free on the
_buffer member of a sequence directly, the application should check the
_release flag using DDS_sequence_get_release. If it returns FALSE, the
application should not invoke DDs_free on the _buffer member; doing so
produces undefined behaviour. Passing a bbs_OBJECT_NIL pointer or a pointer to
something other than a sequence type to DDS_sequence_get_release produces
undefined behaviour.

DDS <sequence-name>__dloc

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ <sequence-name>
DDS_<sequence-name>__alloc
(void) ;

Description
This operation alocates anew DDS_<sequence-name>.

17
API Reference

1 DCPS API General Description 1.3 Memory Management

18
API Reference

Parameters
<none>

Return Value

DDS_<sequence-name> - the pointer to the newly created empty
DDS_<Ssequence-name>. In case of an error, a DbS_OBJECT_NIL pointer is
returned.

Detailed Description

This operation allocates a new empty DDS_<sequence-name>. This operation
does not allocate the buffer and |eave the sequence empty by setting the _length
and _maximum attributes to zero and the _buf fer attribute to DDS_OBJECT_NIL.
The application may also allocate the bps_<sequence-name> as avariable on
stack. In this case the application may not use bDs_free on the sequence. In case
the DDS_<sequence-name> was allocated by this operation, and the application
wants to release the DDS_<sequence-name> it must be released using pps_free
on the sequence.

In case there are insufficient resources available to allocate the
DDS_<sequence-name>, aDDS_OBJECT_NIL pointer isreturned instead.

DDS <sequence-element-type>_dlocbuf

Synopsis
#include <dds_dcps.h>
DDS_<sequence-element-type> *
DDS_ <sequence-name>_allocbuf
(DDS_unsigned_long len) ;

Description
This operation allocates a new DDS_<sequence-element-type> buffer.

Parameters
<none>

Return Value

DDS_<sequence-element-type> - the pointer to the newly created buffer of
DDS_<sequence-element-type>. In case of an error, a DDS_OBJECT_NTIL
pointer is returned.

& PRISMTECH

1 DCPS API General Description 1.3 Memory Management

Detailed Description

This operation allocates a new buffer of DDS_<sequence-element-type>. The
application may also allocate the buffer of DDS_ <sequence-element-type>asa
variable on stack. In this case the application may not use bDS_free on the buffer.
Furthermore, the application may only use bbs_free on the sequence when the
_release flag of the sequenceis set to FALSE and/or the _buf fer pointer is set to
DDS_OBJECT_NIL to prevent the buffer from being released. In case the buffer of
DDS_<sequence-element-type> Was allocated by this operation, and the
application wants to release the buffer of bDs_<sequence-element-type> it
must be released using DDS_free.

In case there are insufficient resources available to allocate the buffer of
DDS_<sequence-element-type>, aDDS_OBJECT_NIL pointer is returned
instead.

DDS <QosPalicy>__aloc
Synopsis

#include <dds_dcps.h>
DDS_<QosPolicy>
DDS_<QosPolicy>__alloc
(void) ;

Description
This operation alocates anew DDS_<QosPolicy>.

Parameters
<none>

Return Value

DDS <QosPalicy> - the handle to the newly created bps_<QosPolicy>. In case of
an error, abbS_OBJECT_NIL pointer isreturned.

Detailed Description

This operation alocates a new bps_<QosPolicy>. The behaviour isidentical to
DDS_<sequence-name>__alloc except that it creates a QosPolicy Structure
including its embedded sequences. Further, the embedded buffers are not allocated.

DDS <Satus>__dloc

Synopsis
#include <dds_dcps.h>
DDS_<Status>

19

&4 PRISMTECH AP| Reference

1 DCPS API General Description 1.3 Memory Management

20
API Reference

DDS_<Status>__alloc
(void) ;
Description
This operation allocates anew DDS_<Status>.

Parameters
<none>

Return Value

DDS_<Status> - the handle to the newly created pps_<Satus>. In case of an
error, abDS_OBJECT_NIL pointer is returned.

Detailed Description

This operation allocates a new pps_<Status>. The behaviour isidentical to
DDS_<sequence-name>__alloc except that it creates a status structure
including its embedded sequences. Further, the embedded buffers are not allocated.

DDS dtring_dloc

Synopsis
#include <dds_dcps.h>
DDS_char *
DDS_string_alloc
(DDS_unsigned_long len) ;
Description

This operation dynamically allocates a string of a specified length.

Parameters

in DDS_unsigned_long len - thelength of the string to alocate. The allocated
string has length len+1 (1 character is allocated extra for the terminating NUL
character).

Return Value

DDS_char * - the pointer to the allocated string. If there are insufficient resources
available, aDDsS_OBJECT_NIL pointer isreturned.

& PRISMTECH

1 DCPS API General Description 1.3 Memory Management

Detailed Description

This operation dynamically allocates a string of a specified length. The allocated
string has length 1en+1 (1 character is allocated extra for the terminating * 0’
character). If there are insufficient resources available, aDDs_0OBJECT_NTIL pointer
is returned.

A string that isallocated viaDDS_string_alloc must befreed using the operation
DDS_free.

DDS free

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
void
DDS_free
(void *);

Description
This operation releases the allocated resources for the object in the parameter.

Parameters
in void * - contains the object which resources should be released.

Return Value
<none>

Detailed Description

This operation releases the allocated resources for the object in the parameter. The
parameter may be a sequence in which case both the sequence and the sequence
buffer are released since this operation operates recursively. Or the parameter may
be a sequence buffer in case only the buffer is released. In both cases, the
application is responsible to call this operation on the proper object in order to
release the resources.

This operation may only be used when the resource was allocated using one of the
_alloc operations. In case the object was declared as a variable on stack, the
application may not use bbs_ free 0n this object.

This means, there are four combinations of allocation possible:

Both the sequence and the buffer is allocated using the
DDS_<sequence-name>__alloc aujDDS_<sequence—name>_a1locbuf
operation. In this case the DDs_ free operation must be used on the sequence to
release both.

21
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

» The sequence is dlocated on stack and the buffer is allocated using the
DDS_<sequence-name>_allocbuf operation. In this case the sequence may
not be released using the pps_free operation but the buffer must be released
using the DDS_ free operation (operated on the buffer).

» The sequence is allocated using the DDS_<sequence-name>__alloc operation
and the buffer is allocated on stack. In this case the DDs_free operation must be
used on the sequence but the buffer may not be released using the DDS_free
operation. Since the Dps_ free operation works recursively, the application must
put the _release flag of the sequence to FALSE and/or the _buffer pointer to
DDS_OBJECT_NTL to prevent the buffer from being rel eased.

» Both the sequence and the buffer are allocated on stack. In this case the
DDS_free operation may not be used.

Lisenersinterfaces

22
API Reference

The Listener provides a generic mechanism (actually a callback function) for the
Data Distribution Service to notify the application of relevant asynchronous status
change events, such as a missed deadline, violation of a bbs_QosPolicy Setting,
etc. The Listener isrelated to changes in communication status.

TheListener interfaces are designed as an interface at PIM level. In other words,
such an interface is part of the application which must implement the interface
operations. These operations must be provided by the application. All Listener
operations must be implemented, it is up to the application whether an operation is
empty or contains some functionality.

Each DCPS pps_Entity supports its own specialized kind of Listener.
Therefore, the following Listeners are available:

* DDS_DomainParticipantListener
* DDS_TopicListener

* DDS_PublisherListener

* DDS_DataWriterListener

* DDS_SubscriberListener

* DDS_DataReaderListener

For example, since aDpDS_DataReader isakind of DDs_Entity, it has the ability
to have aListener associated with it. In this case, the associated 1.i stener must
be of type DDS_DataReaderListener. Thisinterface must be implemented by the
application. All DDS_DataReaderListener operations must be implemented, it is
up to the application whether an operation is empty or contains some functionality.

& PRISMTECH

1 DCPS API General Description 1.4 Listenersinterfaces

&4 PRISMTECH

As an example, one of the operationsin the bbs_bataReaderListener isthe
DDS_DataReaderListener_on_liveliness_changed. This operation
(implemented by the application) will be called by the Data Distribution Service
when the liveliness of the associated DDS_Datawriter has changed. In other
words, it serves as a callback function to the event of a change in liveliness. The
parameters of the operation are supplied by the Data Distribution Service. In this
example, the pointer to the bps_bpataReader and the status of the liveliness are
provided.

| mplementation
The struct DDS_<Entity>Listener represents the implementation of the
Listener for an <entity>. Since aListener isimplemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener isalocated using the appropriate DDS_<Entity>Listener__alloc
operation. Each pointer must point to the appropriate callback operation defined in
the application (when the status is enabled). It is up to the application whether an
operation is empty or contains some functionality. An example is presented of the
allocation and initialization of apbs_DataReaderListener which isonly
enabled for the on_liveliness_changed. The on_liveliness_changed
operation is provided by the application:
#include "dds_dcps.h"
static struct DDS_DataReaderListener msgListener;
DDS_FooDataReader FooDR;
/* at this point, it is not important how to create the FooDR
*/
DataWriterListenerData UserDefined_ListenerData;
/* at this point, it is not important how
UserDefined_ListenerData is implemented.
This parameter can be used for Listener identification.
If not used, the parameter may be NULL. */
/* Prepare a listener for the Foo DataReader. */
msgListener = DDS_DataReaderListener_ _alloc();
msgListener.listener_data = UserDefined_ListenerData;
msgListener.on_requested_deadline_missed = NULL;
msgListener.on_requested_incompatible_gos = NULL;
msgListener.on_sample_rejected = NULL;
msgListener.on_liveliness_changed =
(void (*) (void *, DDS_DataReader)) on_live_change;
msgListener.on_data_available = NULL;
msgListener.on_subscription_matched = NULL;
msgListener.on_sample_lost = NULL;

/* Set the Listener with a mask only

23
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

to trigger on on_liveliness_changed. */
status = DDS_DataReader_set_listener
(FooDR,
&msglListener,
DDS_LIVELINESS_CHANGED_STATUS) ;

1.4.1 Sruct DDS <Entity>Listener

The struct DDS_<Entity>Listener represents the implementation of a
Listener.

The interface description applies to the different types of <entity>, that isthe
DomainParticipant, Topic, Publisher, DataWriter, Subscriber Or
DataReader. The actual attributes depends on the <entity>. Only for the
DomainParticipant all the fields are applicable. the description of these structs
isasfollows:

typedef struct DDS_DomainParticipantListener
*DDS_DomainParticipantListener;
struct DDS_DomainParticipantListener
{
void *listener_data;
DDS_DomainParticipantListener_InconsistentTopicListener
on_inconsistent_topic;

DDS_DomainParticipantListener_ OfferedDeadlineMissedListener
on_offered deadline missed;

DDS_DomainParticipantListener_ OfferedIncompatibleQosListener
on_offered_incompatible_gos;
DDS_DomainParticipantListener_LivelinessLostListener
on_liveliness lost;
DDS_DomainParticipantListener_ PublicationMatchListener
on_publication_matched;

DDS_DomainParticipantListener_ RequestedDeadlineMissedListener
on_requested_deadline_missed;
DDS_DomainParticipantListener_
RequestedIncompatibleQosListener
on_requested_incompatible_gos;
DDS_DomainParticipantListener_SampleRejectedListener
on_sample_rejected;
DDS_DomainParticipantListener_LivelinessChangedListener
on_liveliness_changed;
DDS_DomainParticipantListener_DataAvailablelListener
on_data_availlable;
DDS_DomainParticipantListener_SubscriptionMatchListener

24

API Reference & PRISMTECH

1 DCPS API General Description 1.4 Listenersinterfaces

&4 PRISMTECH

on_subscription_matched;
DDS_DomainParticipantListener_ SampleLostListener
on_sample_lost;
DDS_DomainParticipantListener_ DataOnReadersListener
on_data_on_readers;
Y
typedef struct DDS_TopicListener
*DDS_TopicListener;
struct DDS_TopicListener
{
vold *listener_ data;
DDS_TopicListener_InconsistentTopicListener
on_inconsistent_topic;
Y
typedef struct DDS_PublisherListener
*DDS_PublisherListener;
struct DDS_PublisherListener
{
vold *listener data;
DDS_PublisherListener_ OfferedDeadlineMissedListener
on_offered deadline missed;
DDS_PublisherListener_ OfferedIncompatibleQosListener
on_offered_incompatible_gos;
DDS_PublisherListener_LivelinessLostListener
on_liveliness_ lost;
DDS_PublisherListener_ PublicationMatchListener
on_publication_matched;
Y
typedef struct DDS_DataWriterListener
*DDS_DataWriterListener;
struct DDS_DataWriterListener
{
volid *listener data;
DDS_DataWriterListener_ OfferedDeadlineMissedListener
on_offered deadline missed;
DDS_DataWriterListener_ OfferedIncompatibleQosListener
on_offered_incompatible_gos;
DDS_DataWriterListener_LivelinessLostListener
on_liveliness_lost;
DDS_DataWriterListener_PublicationMatchListener
on_publication_matched;
Y
typedef struct DDS_SubscriberListener
*DDS_SubscriberListener;
struct DDS_SubscriberListener

25
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

volid *listener data;
DDS_SubscriberListener_ RequestedDeadlineMissedListener
on_requested_deadline_missed;
DDS_SubscriberListener_RequestedIncompatibleQosListener
on_requested_incompatible_gos;
DDS_SubscriberListener_SampleRejectedListener
on_sample_rejected;
DDS_SubscriberListener_LivelinessChangedListener
on_liveliness_changed;
DDS_SubscriberListener_DataAvailablelListener
on_data_availlable;
DDS_SubscriberListener_SubscriptionMatchListener
on_subscription_matched;
DDS_SubscriberListener_SamplelLostListener
on_sample_lost;
DDS_SubscriberListener_DataOnReadersListener
on_data_on_readers;
Y
typedef struct DDS_DataReaderListener
*DDS_DataReaderListener;
struct DDS_DataReaderListener
{
vold *listener data;
DDS_DataReaderListener_ RequestedDeadlineMissedListener
on_requested_deadline_missed;
DDS_DataReaderListener_ RequestedIncompatibleQosListener
on_requested_incompatible_gos;
DDS_DataReaderListener_SampleRejectedListener
on_sample_rejected;
DDS_DataReaderListener_LivelinessChangedListener
on_liveliness_changed;
DDS_DataReaderListener_DataAvailablelListener
on_data_availlable;
DDS_DataReaderListener_SubscriptionMatchListener
on_subscription_matched;
DDS_DataReaderListener_SamplelLostListener
on_sample_lost;
Y
/* implemented API operations
* <no operations> */

The next paragraphs describes the usage of the DDS_<Entity> Listener structs.

26

API Reference & PRISMTECH

1 DCPS API General Description 1.4 Listenersinterfaces

1.4.2 DDS _DomainParticipantListener
Synopsis

#include <dds_dcps.h>
struct DDS_DomainParticipantListener

&4 PRISMTECH

{

Y

void *listener_data;
DDS_DomainParticipantListener_InconsistentTopicListener
on_inconsistent_topic;
DDS_DomainParticipantListener_OfferedDeadlineMissedListener
on_offered _deadline_missed;
DDS_DomainParticipantListener OfferedIncompatibleQosListener
on_offered_incompatible_gos;
DDS_DomainParticipantListener_LivelinessLostListener
on_liveliness_lost;
DDS_DomainParticipantListener_PublicationMatchListener
on_publication_matched;
DDS_DomainParticipantListener_ RequestedDeadlineMissedListener
on_requested_deadline_missed;
DDS_DomainParticipantListener_RequestedIncompatibleQosListener
on_requested_incompatible_gos;
DDS_DomainParticipantListener_SampleRejectedListener
on_sample_rejected;
DDS_DomainParticipantListener_LivelinessChangedListener
on_liveliness_changed;
DDS_DomainParticipantListener_DataAvailablelListener
on_data_available;
DDS_DomainParticipantListener_SubscriptionMatchListener
on_subscription_matched;
DDS_DomainParticipantListener_ SampleLostListener
on_sample_lost;
DDS_DomainParticipantListener_DataOnReadersListener
on_data_on_readers;

Description

The struct DDS_DomainParticipantListener represents the implementation of
the DomainParticipantListener.

Attributes
void *1istener_data - apointer to auser defined object, which may be used

for identification of the Listener.

DDS_DomainParticipantListener_InconsistentTopicListener

on_inconsistent_topic - a pointer to the cal back function
implemented by the application.

27
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

28
API Reference

DDS_DomainParticipantListener_ OfferedDeadlineMissedListener
on_offered _deadline missed - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener OfferedIncompatibleQosListener
on_offered_incompatible gos - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener LivelinessLostListener
on_liveliness_lost - apointer to the call back function implemented
by the application.
DDS_DomainParticipantListener_ PublicationMatchListener
on_publication_matched - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener. RequestedDeadlineMissedListener
on_requested_deadline_missed - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener_ RequestedIncompatible
QosListener on_requested_incompatible_gos -apointer to the call
back function implemented by the application.

DDS_DomainParticipantListener_SampleRejectedListener
on_sample_rejected - a pointer to the call back function implemented
by the application.
DDS_DomainParticipantListener LivelinessChangedListener
on_liveliness _changed - a pointer to the cal back function
implemented by the application.

DDS _DomainParticipantListener_DataAvailableListener
on_data_available - apointer to the call back function implemented by
the application.

DDS_DomainParticipantListener_SubscriptionMatchListener
on_subscription_matched - a pointer to the call back function
implemented by the application.

DDS_DomainParticipantListener. SampleLostListener
on_sample_lost - apointer to the call back function implemented by the
application.

DDS_DomainParticipantListener_DataOnReadersListener
on_data_on_readers - apointer to the call back function implemented
by the application.

& PRISMTECH

1 DCPS API General Description 1.4 Listenersinterfaces

Detailed Description

The struct DDS_DomainParticipantListener represents the implementation of
the Listener for the DomainParticipant. SinceaListener isimplemented as
a struct of pointers, the application must allocate this struct and initialise these
pointers. The Listener IS allocated using the
DDS_DomainParticipantListener__alloc operation. Each pointer must
point to the appropriate callback operation defined in the application. It is up to the
application whether an operation is empty or contains some functionality. The
listener_data attribute is a pointer to an application defined object. This
attribute can be used to supply the identity of the Listener, which has been called.
A description of the other attributes is given in the appropriate on_<status>
callback operationsin each Listener.

DDS TopicListener

&4 PRISMTECH

Synopsis

#include <dds_dcps.h>

struct DDS_TopicListener

{
vold *listener_ data;
DDS_TopicListener_InconsistentTopicListener

on_inconsistent_topic;
Y

Description

The struct DDS_TopicListener represents the implementation of the
TopicListener.

Attributes

void *listener_data - apointer to auser defined object, which may be used
for identification of the Listener.

DDS_TopicListener_InconsistentTopicListener
on_inconsistent_topic - a pointer to the cal back function
implemented by the application.

Detailed Description

The struct DDS_TopicListener represents the implementation of the Listener
for the Topic. Since aListener iSimplemented as a struct of pointers, the
application must allocate this struct and initialise these pointers. The Listener is
alocated using the DDS_TopicListener__alloc operation. Each pointer must
point to the appropriate callback operation defined in the application. It is up to the
application whether an operation is empty or contains some functionality. The

29
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

listener_data attribute is a pointer to an application defined object. This
attribute can be used to supply the identity of the Listener, which has been called.
A description of the other attributes is given in the appropriate on_<status>
callback operationsin each Listener.

DDS PublisherListener

30
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_publisherListener
{
volid *listener_data;
DDS_publisherListener_OfferedDeadlineMissedListener
on_offered _deadline_missed;
DDS_publisherListener_OfferedIncompatibleQosListener
on_offered_incompatible_gos;
DDS_publisherListener_LivelinessLostListener
on_liveliness_lost;
DDS_publisherListener_PublicationMatchListener
on_publication_matched;

Y

Description

The struct DDS_publisherListener represents the implementation of the
publisherListener.

Attributes

void *listener_data - apointer to auser defined object, which may be used
for identification of the Listener.

DDS _publisherListener_ OfferedDeadl ineMissedListener
on_offered deadline missed - a pointer to the call back function
implemented by the application.

DDS _publisherListener._OfferedIncompatibleQosListener
on_offered_incompatible_gos - a pointer to the call back function
implemented by the application.
DDS _publisherListener_LivelinessLostListener
on_liveliness_lost - apointer to the call back function implemented
by the application.
DDS _publisherListener_PublicationMatchListener
on_publication_matched - a pointer to the call back function
implemented by the application.

& PRISMTECH

1 DCPS API General Description 1.4 Listenersinterfaces

Detailed Description

The struct DbDs_publisherListener represents the implementation of the
Listener for the publisher. Since a Listener iSimplemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener isalocated using the Dbs_publisherListener__alloc operation.
Each pointer must point to the appropriate callback operation defined in the
application. It is up to the application whether an operation is empty or contains
some functionality. The 1istener_data attribute is a pointer to an application
defined object. This attribute can be used to supply the identity of the Listener,
which has been called. A description of the other attributes is given in the
appropriate on_<status> calback operationsin each Listener.

DDS DataWriterLListener

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_DataWriterListener

{
DDS_DataWriterListener OfferedDeadlineMissedListener
on_offered deadline_missed;
DDS_DataWriterListener_ OfferedIncompatibleQosListener
on_offered_incompatible_gos;
DDS_DataWriterListener LivelinessLostListener
on_liveliness_lost;
DDS_DataWriterListener PublicationMatchListener
on_publication_matched;
Y

Description

The struct DDS_DataWriterListener represents the implementation of the
DataWriterListener.

Attributes

void *listener_data - apointer to auser defined object, which may be used
for identification of the Listener.

DDS_DataWriterListener OfferedDeadlineMissedListener
on_offered deadline missed - a pointer to the cal back function
implemented by the application.

DDS_DataWriterListener OfferedIncompatibleQosListener
on_offered_incompatible_gos - a pointer to the call back function
implemented by the application.

31
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

DDS DataWriterListener LivelinessLostListener
on_liveliness_lost - apointer to the call back function implemented
by the application.

DDS _DataWriterListener PublicationMatchListener
on_publication _matched - a pointer to the cal back function
implemented by the application.

Detailed Description

The struct DDS_DataWriterListener represents the implementation of the
Listener for the DatawWriter. Since aListener isimplemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener isallocated using the DDS_DataWriterListener__alloc Operation.
Each pointer must point to the appropriate callback operation defined in the
application. It is up to the application whether an operation is empty or contains
some functionality. The 1istener_data attribute is a pointer to an application
defined object. This attribute can be used to supply the identity of the Listener,
which has been called. A description of the other attributes is given in the
appropriate on_<status> callback operationsin each L.i stener.

DDS SubscriberListener

32
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_SubscriberListener
{
volid *listener data;
DDS_SubscriberListener_ RequestedDeadlineMissedListener
on_requested_deadline_missed;
DDS_SubscriberListener_ RequestedIncompatibleQosListener
on_requested_incompatible_gos;
DDS_SubscriberListener_SampleRejectedListener
on_sample_rejected;
DDS_SubscriberListener_LivelinessChangedListener
on_liveliness_changed;
DDS_SubscriberListener_DataAvailablelListener
on_data_available;
DDS_SubscriberListener_SubscriptionMatchListener
on_subscription_matched;
DDS_SubscriberListener_SamplelLostListener
on_sample_lost;
DDS_SubscriberListener_DataOnReadersListener
on_data_on_readers;

& PRISMTECH

1 DCPS API General Description 1.4 Listenersinterfaces

&4 PRISMTECH

Description

The struct DDS_SubscriberListener represents the implementation of the
SubscriberListener.

Attributes

void *listener_data - apointer to auser defined object, which may be used
for identification of the Listener.

DDS_SubscriberListener RequestedDeadlineMissedListener
on_requested_deadline_missed - a pointer to the call back function
implemented by the application.

DDS_SubscriberListener_ RequestedIncompatibleQosListener
on_requested_incompatible gos - apointer to the call back function
implemented by the application.

DDS_SubscriberListener SampleRejectedListener
on_sample_rejected - a pointer to the call back function implemented
by the application.

DDS_SubscriberListener_LivelinessChangedListener
on_liveliness changed - a pointer to the call back function
implemented by the application.

DDS_SubscriberListener_DataAvailableListener
on_data_available - apointer to the call back function implemented by
the application.

DDS_SubscriberListener_SubscriptionMatchListener
on_subscription_matched - a pointer to the call back function
implemented by the application.

DDS_SubscriberListener_ SampleLostListener on_sample_lost-a

pointer to the call back function implemented by the application.

DDS _SubscriberListener DataOnReadersListener
on_data_on_readers - a pointer to the call back function implemented
by the application.

Detailed Description

The struct DDS_SubscriberListener represents the implementation of the
Listener for the subscriber. Since aListener isimplemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener isalocated using the DDS_sSubscriberListener__alloc operation.
Each pointer must point to the appropriate callback operation defined in the
application. It is up to the application whether an operation is empty or contains
some functionality. The 1istener_data attribute is a pointer to an application

33
API Reference

1 DCPS API General Description 1.4 Listenersinterfaces

defined object. This attribute can be used to supply the identity of the Listener,
which has been called. A description of the other attributes is given in the
appropriate on_<status> callback operationsin each Listener.

1.4.7 DDS DataReaderL istener

34
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_DataReaderListener
{
volid *listener_data;
DDS_DataReaderListener_ RequestedDeadlineMissedListener
on_requested_deadline_missed;
DDS_DataReaderListener_RequestedIncompatibleQosListener
on_requested_incompatible_gos;
DDS_DataReaderListener_SampleRejectedListener
on_sample_rejected;
DDS_DataReaderListener_LivelinessChangedListener
on_liveliness_changed;
DDS_DataReaderListener DataAvailablelListener
on_data_available;
DDS_DataReaderListener_SubscriptionMatchListener
on_subscription_matched;
DDS_DataReaderListener_SamplelLostListener
on_sample_lost;
Y

Description

The struct DDS_DataReaderListener represents the implementation of the
DataReaderListener

Attributes

void *listener_data - apointer to auser defined object, which may be used
for identification of the Listener.

DDS_DataReaderListener_ RequestedDeadlineMissedListener
on_requested_deadline missed - a pointer to the call back function
implemented by the application.

DDS_DataReaderListener RequestedIncompatibleQosListener
on_requested_incompatible_gos - apointer to the call back function
implemented by the application.

DDS _DataReaderListener SampleRejectedListener
on_sample_rejected - a pointer to the call back function implemented
by the application.

& PRISMTECH

1 DCPS API General Description 1.5 Inheritance of Abstract Operations

DDS_DataReaderListener_ LivelinessChangedListener
on_liveliness_changed - a pointer to the cal back function
implemented by the application.

DDS_DataReaderListener_DataAvailableListener
on_data_available - apointer to the call back function implemented by the
application.

DDS_DataReaderListener_SubscriptionMatchListener
on_subscription_matched - a pointer to the call back function
implemented by the application.

DDS_DataReaderListener SampleLostListener on_sample_lost-a

pointer to the call back function implemented by the application.

Detailed Description

The struct DDS_DataReaderListener represents the implementation of the
Listener for the DataReader. Since aListener iSimplemented as a struct of
pointers, the application must allocate this struct and initialise these pointers. The
Listener isalocated using the DDS_DataReaderListener__alloc operation.
Each pointer must point to the appropriate callback operation defined in the
application. It is up to the application whether an operation is empty or contains
some functionality. The 1istener_data attribute is a pointer to an application
defined object. This attribute can be used to supply the identity of the Listener,
which has been called. A description of the other attributes is given in the
appropriate on_<status> callback operationsin each Listener.

I nheritance of Abgtract Operations

&4 PRISMTECH

The information provided here conforms to the

e PIM part of the DDS-DCPS specification (for module descriptions)

* PSM part of the DDS-DCPS specification (for class and operation descriptions).
For detailed information refer to the OMG C Language Mapping Specification.

At PIM level, inheritance is used to define abstract classes and operations. The
OMG IDL PSM defines the interface for an application to interact with the Data
Distribution Service. The DCPS API for the C programming language conforms to
the IDL to C mapping as specified in the OMG C Language Mapping Specification.

Inheritance of operations is not implemented when different type parameters for the
same operation are used. In this case operations are implemented in their respective
derived class (e.g. DDS_<Entity>_get_gos and DDS_<Entity>_set_gos).
These operations are commented out in the IDL PSM.

35
API Reference

1 DCPS API General Description 1.5 Inheritance of Abstract Operations

36

API Reference & PRISMTECH

CHAPTER

DCPS Modules

DCPSis divided into five modules, which are described briefly in this chapter. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes as described in the PIM are implemented as a
struct in the PSM; these classes are treated as a class in this chapter according to
the PIM with a remark about their implementation (struct). In the next chapter their
actual implementations are described.

Each class contains several operations, which may be abstract. Those classes,
which are implemented as a struct do not have any operations. The modules and the
classes are ordered conform the DDS-DCPS specification. The classes, interfaces,
structs and operations are described in the next chapter.

Domain Module

N

e
- |]
Publication Subscription
Module ‘ Module
}
N ~
[Topic-Definition
Module
\
Infrastructure
Module

Figure2 DCPS Module Composition

Functionality

& PRISMTECH

The modules have the following function in the Data Distribution Service:

* Infrastructure Module: This module defines the abstract classes and interfaces,
which are refined by the other modules. It aso provides the support for the
interaction between the application and the Data Distribution Service (state-based
and event-based)

37
API Reference

2 DCPS Modules

2.2 InfrastructureModule

e Domain Module - This module contains the DDS_DomainParticipant class,

the
and

the
class

which is the entry point of
DDS_DomainParticipantFactory

DDS_DomainParticipantListener interface

» Topic-Definition Module - This module contains the bDDS_Topic,
DDS_ContentFilteredTopic and DDS_MultiTopic classes. It also contains
the DDS_TopicListener interface and all support to define bps_Topic objects
and assign QosPolicy settingsto them

e Publication Module - This module contains the DDS Publisher and
DDS_DataWriter classes. It also contains the bDS_PublisherListener and
DDS_DataWriterListener interfaces

* Subscription Module -
DDS_DataReader, DDS_ReadCondition
classes. It daso contains the DDS_SubscriberListener
DDS_DataReaderListener interfaces

application,

This module contains the DDS_Subscriber,
and DDS_QueryCondition
and

I nfrastructure M odule

38
API Reference

This modul e defines the abstract classes and interfaces, which, in the PIM
definition, are refined by the other modules. It also provides the support for the
interaction between the application and the Data Distribution Service (event-based
and state-based). The event-based interaction is supported by DDS_Listeners, the
state-based interaction is supported by DDS_waitSets and DDS_Conditions.

QosPolicy qos Entity listener <<Interface>>
name : string Listener
enable() * 0.1
<<abstract>> get_listener()
<<abstract>> get_qos() .
status get_status_changes() WaitSet
get_statuscondition() -
— 1| <<abstract>> set_listener() attach_condition()
<<abstract>> set_qos() detach_condition()
get_conditions()
wait()
Condition ReadCondition
—1 (from Subscription Module)
get_trigger_value()
statuscondition
DomainParticipant 1 . —‘7
(from Domain Module) ‘ DomainEntity ‘ StatusCondition —
I 1 GuardCondition QueryCondition
(from Subscription Module)
get_enabled_statuses() K
get_entity() set_trigger_value()
set_enabled_statuses()
H J
Figure3 DCPSInfrastructure Module's Class M odel
This module contains the following classes:
& PRISMTECH

2 DCPS Modules

2.3 DomainModule

e DDS_Entity (abstract)

* DDS_DomainEntity (abstract)

* DDS_QosPolicy (abstract, struct)
* DDS_Listener (interface)

* DDS_Status (abstract, struct)

* DDS_WaitSet

* DDS_Condition

* DDS_GuardCondition

* DDS_StatusCondition

Domain Module

&4 PRISMTECH

This module contains the class DDS_DomainParticipant, which acts as an entry
point of the Data Distribution Service and acts as a factory for many of the classes.
The DDS_DomainParticipant also acts as acontainer for the other objects that
make up the Data Distribution Service. It isolates applications within the same
Domain from other applications in a different bomain on the same set of
computers. A Domain is a “virtual network” and applications with the same
domainId areisolated from applications with a different domainzd. In this way,
several independent distributed applications can coexist in the same physical
network without interfering, or even being aware of each other.

39
API Reference

2 DCPS Modules

40

<<Interface>>
SubscriberListener
(from Subscription Module)

<<Interface>>
PublisherListener
(from Publication Module)

Entity

(from Infrastructure Module)

i

2.4 Topic-Definition Module

DomainParticipant

<<Interface>>

TopicListener

on_inconsistent_topic()

i

DomainParticipantListener

<<implicit>>

0.1

<<implicit>> qos

*

o
default_publisher_gos
* default_topic_gos
>

QosPolicy

(from Infrastructure Module)

default_participant_qos default_subscriber_gos

DomainParticipantFactory

create_participant()
delete_participant()
get_default_participant_gos()
get_instance()
lookup_participant()
set_default_participant_gos()

<<create>>

assert_liveliness()
contains_entity()
create_contentfilteredtopic()
create_multitopic()
create_publisher()
create_subscriber()
create_topic()
delete_contained_entities()
delete_contentfilteredtopic()
delete_multitopic()
delete_publisher()
delete_subscriber()
delete_topic()

find_topic()
get_builtin_subscriber()
get_current_time()
get_default_publisher_gos()
get_default_subscriber_gos()
get_default_topic_gos()
get_domain_id()
get_listener()

get_gos()
ignore_participant()
ignore_publication()
ignore_subscription()
ignore_topic()
lookup_topic_description()
set_default_publisher_gos()
set_default_subscriber_gos()
set_default_topic_qgos()
set_listener()

set_gos()

<<create>>
<<create>> Publisher Subscriber

(from Publication Module) (from Subscription Module)

/

/
/
g X
DomainEntity
(from Infrastructure Module)
*
1 T
<<create>> Topic

(from Topic-Definition Module)

i <<implicit>>

TopicDescription
(from Topic-Definition Module)

< /

MultiTopic

(from Topic-Definition Module)

ContentFilteredTopic
(from Topic-Definition Module)

<<create>>

<<create>>

Figure4 DCPSDomain Module's Class M odel

This module contains the following classes:

* DDS_DomainParticipant

* DDS_DomainParticipantFactory

* DDS_DomainParticipantListener (interface)

2.4 Topic-Definition Module

This module contains the DDS_Topic, DDS_ContentFilteredTopic and
DDS_MultiTopic classes. It dso containsthe Dbs_TopicListener interface and
all support to define bps_Topic objects and assign QosPol icy Settings to them.

API Reference

& PRISMTECH

2 DCPS Modules

DomainEntity
(from Infrastructure Module)

DataWriter

(from Publication Module)

*

2.4 Topic-Definition Module

(from Subscription Module)

DataReader

ContentFilteredTopic

get_expression_parameters()

DomainParticipant
(from Domain Module)

get_filter_expression()

<<create>> get_rEIated__topic()
/ set_expression_parameters()

*

1

TopicDescription

get_name()
get_participant()
get_type_name()

<<create>>

<<create>>

MultiTopic

Topic *

get_expression_parameters()
get_subscription_expression()
set_expression_parameters()

1 |get_inconsistent_topic_status()

*

QosPolicy

(from Infrastructure Module)

get_listener()
get_qos()
set_listener()
set_qos()

0.1 *

1

<<Interface>>
TypeSupport

get_type_name()
register_type()

<<Interface>>

L StatusCondition
TopicListener

(from Infrastructure Module)

WaitSet

>{ (from Infrastructure Module)

Figure5 DCPS Topic-Definition Module's Class M odel

on_inconsistent_topic()

This module contains the following classes:

* DDS_TopicDescription (abstract)

* DDS_Topic

* DDS_ContentFilteredTopic

* DDS_MultiTopic

* DDS_TopicListener (interface)
* Topic-Definition type specific classes

Topic-Definition type specific classes contain the generic class and the generated
data type specific classes. In case of the user defined data type Foo (thisalso applies
to other types), defined in the module spacEk; “Topic-Definition type specific
classes’ contains the following classes:

* DDS_TypeSupport (abstract)

* SPACE_FooTypeSupport

&4 PRISMTECH

41
API Reference

2 DCPS Modules

42
API Reference

<<Interface>>
TypeSupport

DataWriter
(from Publication Module)

get_type_name()
register_type()

7

FooTypeSupport

2.5 PublicationModule

DataReader
(from Subscription Module)

FooDataWriter

FooDataReader

get_type_name()
register_type()

dispose()
dispose_w_timestamp()
get_key_value()

register()
register_w_timestamp()
unregister()
unregister_w_timestamp()
write()
write_w_timestamp()

Foo

get_key_value()

read()

read_instance()
read_next_instance()
read_next_instance_w_condition()
read_next_sample()
read_w_condition()

return_loan()

take()

take_instance()
take_next_instance()
take_next_instance_w_condition()
take_next_sample()
take_w_condition()

Figure 6 Data Type“Foo” Typed Classes Pre-processor Generation

Publication Module

This module supports writing of the data, it contains the pps_publisher and
DDS_DataWriter classes. It also contains the DDS_PublisherListener and
DDS_DataWriterListener interfaces. Furthermore, it contains all support

needed for publication.

& PRISMTECH

2 DCPS Modules

&4 PRISMTECH

2.5 PublicationModule

DataWriter

assert_liveliness()

<<create>>
’77777777777777777777‘\
N\ |
QosPolicy <<implicit>> Publisher
(from Infrastructure Module)
- . gos

<<abstract>> dispose()

<<abstract>> dispose_w_timestamp()
<<abstract>> get_key_value()
get_listener()
get_liveliness_lost_status()
get_matched_subscription_data()
get_matched_subscriptions()
get_offered_deadline_missed_status()
get_offered_incompatible_qos_status()
get_publication_match_status()
get_publisher()

get_qgos()

get_topic()

<<abstract>> register()

<<abstract>> register_w_timestamp()
set_listener()

set_qgos()

<<abstract>> unregister()
<<abstract>> unregister_w_timestamp()
<<abstract>> write()

<<abstract>> write_w_timestamp()

<<implicit>>

Topic
(from Topic-Definition Module)

0.1

<<implicit>>

0.1

<<Interface>>
DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

<<implicit>>
1 >

0.1 <<implicit>>

StatusCondition
(from Infrastructure Module)

*

default_datawriter_qos

<<create>> /

begin_coherent_changes()
copy_from_topic_gos()
create_datawriter()
delete_contained_entities()
delete_datawriter()
end_coherent_changes()
get_default_datawriter_qos()
get_listener()
get_participant()

get qos()
lookup_datawriter()
resume_publications()
set_default_datawriter_qos()
set_listener()

set_qos()
suspend_publications()

-

/4 .

<<implicit>>

WaitSet

(from Infrastructure Module)

DomainParticipant
(from Domain Module)

1

<<Interface>>
PublisherListener

Figure7 DCPS Publication Modul€e's Class M odel
This module contains the following classes:

* DDS_Publisher

* DDS_PublisherListener (interface)

e DDS_DataWriterListener (interface)

* Publication type specific classes

Publication type specific classes contain the generic class and the generated data
type specific classes. In case of the user defined data type Foo (this also appliesto
other types), defined in the module spaAcE; “Publication type specific classes”
contains the following classes:

* DDS_DataWriter (abstract)

* SPACE_FooDataWriter

43
API Reference

2 DCPS Modules 2.6 Subscription Module

2.6 Subscription Module

This module supports access to the data, it contains the bDs_Subscriber,
DDS_DataReader, DDS_ReadCondition and DDS_QueryCondition classes.
It also contains the DDS_SubscriberListener and
DDS_DataReaderListener interfaces. Furthermore, it contains all support
needed for subscription.

Samplelnfo
DataSample sample_state
view state DomainParticipant
i (from Domain Module)
instance_state
* 1 |source_timestamp

instance_handle
disposed_generation_count

<<create>>

DataReader no_writers_generation_count <cimplicits>
sample_rank QosPolicy <implicit> Subscriber
create_querycondition() generation_rank qos

create_readcondition() absolute_generation_rank name : string
delete_contained_entities()

delete_readcondition()

begin_access()
copy_from_topic_qos()
create_datareader()

* * *

<<abstract>> get_key_value()
get_listener()

delete_contained_entities()
delete_datareader()

get_liveliness_changed_status() <<implicit>> default_datareader_qos™gng access()
get_matched_publication_data() get_datareaders()
get_matched_publications() ! get_default_datareader_qos()
get_gos() TopicDescription Toplc) ‘ get_listener()
get_requested_deadline_missed_status() (from Topic-Definition Module) —|___(from Topic-Definition Module) get_participant()
get_requested_incompatible_qos_status() get_qgos()

get_sample_lost_status() A
get_sample_rejected_status() 1 | * 1
get_subscriber()
get_subscription_match_status()
get_topicdescription()

<<abstract>> lookup_instance()

<<abstract>> read()

<<abstract>> read_instance()

<<abstract>> read_next_instance()
<<abstract>> read_next_instance_w_condition()
<<abstract>> read_next_sample()

<<abstract>> read_w_condition()

<<abstract>> return_loan()

set_listener()

set_qos()

<<abstract>> take()

<<abstract>> take_instance()

<<abstract>> take_next_instance()
<<abstract>> take_next_instance_w_condition()
<<abstract>> take_next_sample()

<<abstract>> take_w_condition()

lookup_datareader()
notify_datareaders()
set_default_datareader_gos()
set_listener()

set_qos()

<<implicit>> <<implicit>> <<implicit>>

WaitSet

(from Infrastructure Module)
1 * *

<<create>> * N
* <<implicit>>
*

ReadCondition

StatusCondition
(from Infrastructure Module)

<<implicit>>

0.1

<<Interface>>
SubscriberListener

QueryCondition

get_datareader()
get_instance_state_mask() < get_query_arguments()

get_query_expression()
get_sample_state_mask()
get_view_state_mask() set_query_arguments()

on_data_on_readers()

<<create>>

0.1

<<create>>

<<Interface>>
DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

Figure 8 DCPS Subscription Modul€e's Class M odel
This module contains the following classes:

* DDS_Subscriber
* DDS_DataSample
* DDS_SampleInfo (Struct)

44

API Reference & PRISMTECH

2 DCPS Modules

&4 PRISMTECH

* DDS_SubscriberListener (interface)
* DDS_DataReaderListener (interface)
* DDS_ReadCondition

* DDS_QueryCondition

* Subscription type specific classes

2.6 Subscription Module

Subscription type specific classes contain the generic class and the generated data
type specific classes. In case of the user defined data type Foo (this also applies to
other types), defined in the module spacE; “ Subscription type specific classes’

contains the following classes:
* DDS_DataReader (abstract)
* SPACE_FooDataReader

45
API Reference

2 DCPS Modules 2.6 Subscription Module

46

API Reference & PRISMTECH

CHAPTER

& PRISMTECH

DCPS Classes and Operations

This chapter describes, for each module, its classes and operations in detail. Each
module consists of several classes as defined at PIM level in the DDS-DCPS
specification. Some of the classes are implemented as a struct in the PSM. Some of
the other classes are abstract, which means they contain some abstract operations.

The Listener interfaces are designed as an interface at PIM level. In other words,
the application must implement the interface operations. Therefore, all Listener
classes are abstract. A user defined class for these operations must be provided by
the application which must extend from the specific Listener class. All Listener
operations must be implemented in the user defined class. It is up to the application
whether an operation is empty or contains some functionality.

The Listener interfaces in the C API are implemented as structs containing
function pointers. All the function pointer attributes within the struct must be
assigned to a function. It is up to the application whether a function is empty or
contains some functionality.

Each class contains several operations, which may be abstract (base class).
Abstract operations are not implemented in their base class, but in a type specific
class or an application defined class (in case of a Listener). Classes that are
implemented as a struct do not have any operations. Some operations are inherited,
which means they are implemented in their base class.

The abstract operations in a class are listed (including their synopsis), but not
implemented in that class. These operations are implemented in their respective
derived classes. The interfaces are fully described, since they must be implemented
by the application.

General note for type space: The name space. h is derived from the IDL file
Space.idl, that defines Foo.

47
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

3.1 Infrastructure M odule

QosPolicy qos Entity listener <<|n_terface>>
name : string Listener

enable() * 0..1
<<abstract>> get_listener()

<<abstract>> get_qos()

status get_status_changes() WaitSet

get_statuscondition() —
— Y 1 |<<abstract>> set_listener() attach_condition()
<<abstract>> set_qos() detach_condition()

get_conditions()
wait()

Condition ReadCondition
(from Subscription Module)
get_trigger_value()
statuscondition
DomainParticipant 1 . —‘7
(from Domain Module) | o ‘ DomainEntity ‘ StatusCondition — -
@ T 1 GuardCondition QueryCondition
1 (from Subscription Module)
get_enabled_statuses() K
get_entity() set_trigger_value()
set_enabled_statuses()

Figure9 DCPSInfrastructure Module's Class M odel
This module contains the following classes:
* DDS_Entity (abstract)
* DDS_DomainEntity (abstract)
* DDS_QosPolicy (abstract, struct)
* DDS_Listener (interface)
* DDS_Status (abstract, struct)
- DDS_WaitSet
e DDS_Condition
e DDS_GuardCondition
* DDS_StatusCondition.

3.1.1 ClassDDS Entity (abstract)

Thisclassisthe abstract base classfor all the DCPS objects. It acts as ageneric class
for DDS_Entity objects.

The interface description of this classis asfollows:

/* interface DDS_Entity */
/* abstract operations (implemented in class
DDS_DomainParticipant,
* DDS_Topic, DDS_Publisher, DDS_DataWriter, DDS_Subscriber and
* DDS_DataReader)
*/
/*
48
AP| Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

* % % % ok X %

*

~
* % % E O R

*

*

/*

DDS_ReturnCode_t
DDS_Entity_set_gos
(DDS_Entity _this,
const DDS_EntityQos *gos) ;

DDS_ReturnCode_t
DDS_Entity_get_gos
(DDS_Entity _this,
DDS_EntityQos *gos) ;

DDS_ReturnCode_t
DDS_Entity_set_listener
(DDS_Entity _this,
const struct DDS_EntityListener *a_listener,
const DDS_StatusMask mask) ;

struct DDS_EntityListener
DDS_Entity_get_listener
(DDS_Entity _this);

* implemented API operations

*/

DDS_ReturnCode_t
DDS_Entity_enable
(DDS_Entity _this);
DDS_StatusCondition
DDS_Entity_get_statuscondition
(DDS_Entity _this);
DDS_StatusMask
DDS_Entity_get_status_changes
(DDS_Entity _this);
DDS_InstanceHandle_t
DDS_Entity_get_instance_handle
(DDS_Entity _this);

The abstract operations are listed but not fully described because they are not
implemented in this specific class. The full description of these operationsis given
in the subclasses, which contain the type specific implementation of these
operations.

3.1.1.1 DDS Entity enable
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t

&4 PRISMTECH

49
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

50
API Reference

DDS_Entity_enable
(DDS_Entity _this);

Description

This operation enables the bps_gEntity on which it is being called when the
DDS_Entity was created with the DDs_EntityFactoryQosPolicy Set to
FALSE.

Parameters

in DDS_Entity _this -theDDS_Entity object on which the operation is
operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation enables the bbs_Eentity. Created DDS_Entity objects can start in
either an enabled or disabled state. This is controlled by the value of the
DDS_EntityFactoryQosPolicy on the corresponding factory for the
DDS_Entity. Enabled entities are immediately activated at creation time meaning
all their immutabl e QoS settings can no longer be changed. Disabled Entities are not
yet activated, so it isstill possible to change their immutable QoS settings. However,
once activated the immutable QoS settings can no longer be changed.

Creating disabled entities can make sense when the creator of the bps_Entity
does not yet know which QoS settings to apply, thus allowing another piece of code
to set the QoS later on. Thisis for example the case in the DLRL, where the
ObjectHomes create all underlying DCPS entities but do not know which QoS
settings to apply. The user can then apply the required QoS settings afterwards.

The default setting of DDS_EntityFactoryQosPolicy issuch that, by default,
entities are created in an enabled state so that it is not necessary to explicitly call
DDS_<Entity>_enable ON newly created entities.

The DDsS_<Entity>_enable operation produces the same results no matter how
many times it is performed. Calling bDS_<Entity>_enable 0On an already
enabled DDS_Entity returns DDS_RETCODE_OK and has no effect.

If abps_Entity has not yet been enabled, the only operations that can be invoked
on it are: the ones to set, get or copy the QosPalicy settings (including the default
QosPalicy settings on factories), the ones that set (or get) the listener, the ones that
get the DDS_StatusCondition, the DDS_Entity_get_status_changes

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

operation (although the status of a disabled entity never changes), and the ‘factory’
operations that create, delete or Iookup1 other pDs_Entities. Other operations
will return the error DDS_RETCODE_NOT_ENABLED.

Entities created from afactory that is disabled, are created disabled regardless of
the setting of the DDS_EntityFactoryQosPolicy.

Cdling DDS_<Entity>_enable ON an DDS_Entity Whose factory is not enabled
will fail and return DDS_RETCODE_PRECONDITION NOT MET.

If the DDS_EntityFactoryQosPolicy haSautoenable_created_entities
set to TRUE, the DDS_<Entity>_enable operation on the factory will
automatically enable all Entities created from the factory.

The Listeners associated with an DDs_Entity are not called until the
DDS_Entity isenabled. DDS_conditions associated with an DDs_Entity that
isnot enabled are "inactive", that is, have a trigger_value which iSFALSE.
Return Code

When the operation returns:

* DDS_RETCODE_OK - the application enabled the bps_Entity (or it was aready
enabled)

* DDS RETCODE_ERROR - an internal error has occurred

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation

* DDS_RETCODE_PRECONDITION_NOT_MET - the factory of the DDS_Entity is
not enabled

DDS Entity get_instance handle

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_InstanceHandle_t
DDS_Entity_get_instance_handle
(DDS_Entity _this);

Description

This operation returns the instance_handle of the builtin topic sample that
represents the specified bDS_Entity.

1. Thisincludesthe lookup_topicdescription, but notthe find_topic.

51
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Parameters
in DDS_Entity _this - object on which the operation is operated.

Return Value

DDS_InstanceHandle t - Result valueisthe instance_handle of the builtin
topic sample that represents the state of thispps_Entity.

Detailed Description

The relevant state of some DDS_Enti ty objects are distributed using builtin topics.
Each builtin topic sample represents the state of a specific bps_Entity and has a
unique instance_handle. This operation returnsthe instance_handle of the
builtin topic sample that represents the specified Dbs_Entity.

Some DDS_Entities (DDS_Publisher and DDS_Subscriber) do not have a
corresponding builtin topic sample, but they still have an instance_handle that
uniquely identifiesthe DDS_Entity.

The instance_handles obtained this way can also be used to check whether a
specific DDS_Entity islocated in a specific DDS_DomainParticipant. (See
Section 3.2.1.2, DDS _DomainParticipant_contains_entity, on page 137.)

DDS Entity_get_listener (abstract)

This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, bDS_DomainParticipant, DDS_Topic,
DDS_Publisher, DDS_Subscriber, DDS_DataWriter and DDS_DataReader
will provide a class specific implementation of this abstract operation.

Synopsis
#include <dds_dcps.h>
struct DDS_EntityListener
DDS_Entity_get_listener
(DDS_Entity _this);

DDS Entity_get_qos (abstract)

52
API Reference

This abstract operation is defined as a generic operation to access a struct with the
QosPolicy settings. Each subclass derived from this class,
DDS_DomainParticipant, DDS_Topic, DDS_Publisher, DDS_Subscriber,
DDS_DataWriter and DDS_DataReader Will provide a class specific
implementation of this abstract operation.

Synopsis

#include <dds_dcps.h>

DDS_ReturnCode_t
DDS_Entity_get_gos

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

(DDS_Entity _this,
DDS_EntityQos *gos) ;

DDS Entity_get_status _changes

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
DDS_Entity_get_status_changes
(DDS_Entity _this);

Description

This operation returns a mask with the communication statuses in the bbs_Entity
that are “triggered”.

Parameters
in DDS_Entity _this - object on which the operation is operated.

Return Value

DDS_StatusMask - Result is a bit-mask in which each bit shows which value has
changed.

Detailed Description

This operation returns a mask with the communication statuses in the bbs_Entity
that are “triggered”. That is the set of communication statuses whose value have
changed since the last time the application called this operation. This operation
shows whether a change has occurred even when the status seems unchanged
because the status changed back to the original status.

When the pps_Entity isfirst created or if the bbs_Entity isnot enabled, all
communication statuses are in the “un-triggered” state so the mask returned by the
operation is empty.

The result value is a bit-mask in which each bit shows which value has changed.
The relevant bits represent one of the following statuses:

« DDS_INCONSISTENT_TOPIC_STATUS

+ DDS_OFFERED_DEADLINE_MISSED_STATUS

« DDS_REQUESTED_DEADLINE_MISSED_STATUS

+ DDS_OFFERED_INCOMPATIBLE_QOS_STATUS

« DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS

+ DDS_SAMPLE_LOST_STATUS

« DDS_SAMPLE_REJECTED_STATUS

« DDS_DATA_ON_READERS_STATUS

53
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

e DDS_DATA_ AVAILABLE_STATUS

e DDS_LIVELINESS_LOST_STATUS

e DDS_LIVELINESS_CHANGED_STATUS

e DDS_PUBLICATION_MATCHED_STATUS
e DDS_SUBSCRIPTION_MATCHED_STATUS

Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the result of type bps_statusMask. Not al statuses are
relevant to all pps_Entity objects. See the respective Listener interfaces for
each DDS_Ent ity for more information.

DDS Entity get statuscondition

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
DDS_Entity_get_statuscondition
(DDS_Entity _this);
Description

This operation allows access to the DDS_StatusCondition associated with the
DDS_Entity.

Parameters

in DDS_Entity _this - object on which the operation is operated.

Return Value

DDS_StatusCondition - Result value isthe DDS_StatusCondition of the
DDS_Entity.

Detailed Description

Each pDs_Entity has a DDS_StatusCondition associated with it. This
operation allows access to the Dbs_statusCondition associated with the
DDS_Entity. Thereturned condition can then be added to a bbs_waitSet So that
the application can wait for specific status changes that affect the bps_Entity.

DDS Entity set_listener (abstract)

54
API Reference

This abstract operation is defined as a generic operation to access a Listener.
Each subclass derived from this class, bDS_DomainParticipant, DDS_Topic,
DDS_Publisher, DDS_Subscriber, DDS_DataWriter and DDS_DataReader
will provide a class specific implementation of this abstract operation.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Entity_set_listener
(DDS_Entity _this,
const struct DDS_Listener *a_listener,
const DDS_StatusMask mask) ;

DDS Entity_set_qos (abstract)

This abstract operation is defined as a generic operation to modify a struct with the
QosPolicy settings. Each subclass derived from this class,
DDS_DomainParticipant, DDS_Topic, DDS_Publisher, DDS_Subscriber,
DDS_DataWriter and DDS_DataReader Will provide a class specific
implementation of this abstract operation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Entity_set_gos
(DDS_Entity _this,
const DDS_EntityQos *gos) ;

ClassDDS DomainEntity (abstract)

This class is the abstract base class for the all entities except
DDS_DomainParticipant. The main purpose is to express that
DDS_DomainParticipant isaspecia kind of bps_Entity, which acts as a
container of all other bpps_Entity objects, but cannot contain another
DDS_DomainParticipant withinitself. Therefore, thisclassisnot part of the IDL
interface in the DCPS PSM description.

The class bbs_DomainEntity doesnot contain any operations.

Sruct QosPolicy

&4 PRISMTECH

Each DDS_Entity provides a <DDS_Entity>Qos Structure that implements the
basic mechanism for an application to specify Quality of Service attributes. This
structure consists of DDS_Ent ity specific QosPolicy attributes. QospPolicy
attributes are structured types where each type specifies the information that
controls an DDS_Enti ty related (configurable) property of the Data Distribution
Service.

All gosPolicies applicableto apps_Entity are aggregated in a corresponding
<DDS_Entity>Qos, which isacompound structure that is set atomically so that it
represents a coherent set of QosPolicy attributes.

55
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Compound types are used whenever multiple attributes must be set coherently to
define a consistent attribute for agospPolicy.

See Appendix A, Quality Of Service for details of the <pDs_Entity>Qos, aong
with acomplete list of individual QosPolicy settings and their meanings.

QosPolicy
name : string
HistoryQosPolicy UserDataQosPolicy PartitionQosPolicy
kind : HistoryQosPolicyKind value [*] : octet] namef[*] : string —
depth : long

TopicDataQosPolic ReliabilityQosPolicy
P Y kind : ReliabilityQosPolicyKind

value [*] : octet max_blocking_time : Duration_t

LifespanQosPolicy
—duration : Duration_t

OwnershipQosPolicy GroupDataQosPolicy LivelinessQosPolicy

—kind : OwnershipQosPolicyKind value [*] : octet — kind : LivelinessQosPolicyKind
lease_duration : Duration_t

OwnershipStrengthQosPolicy

LatencyBudgetQosPolicy
duration : Duration_t —

DurabilityQosPolicy
kind : DurabilityQosPolicyKind —

—value : long

WriterDataLifecycleQosPolicy DeadlineQosPolicy
—autodispose_unregistered_instances : boolean period : Duration_t ResourceLimitsQosPolicy

max_samples : long
max_instances : long —
1\ max_samples_per_instance : long

ReaderDataLifecycleQosPolicy

autopurge_nowriter_samples_delay : Duration_t
autopurge_disposed_samples_delay : Duration_t

TimeBasedFilterQosPolicy
minimum_separation : Duration_t —

DestinationOrderQosPolicy
kind : DestinationOrderQosPolicyKind +——

EntityFactoryQosPolicy
PresentationQosPolicy autoenable_created_entities : boolean ——
access_scope : PresentationQosPolicyAccessScopeKind TransportPriorityQosPolicy
L——coherent_access : boolean value : long —

ordered_access : boolean

DurabilityServiceQosPolicy

service_cleanup_delay : Duration_t
history_kind : HistoryQosPolicyKind
history_depth : long

max_samples : long
max_instances : long
max_samples_per_instance : long

Figure 10 QosPoalicy Settings
Requested/Offered

In several cases, for communications to occur properly (or efficiently), a
QosPolicy on the requesting side must be compatible with a corresponding
QosPolicy on the offering side. For example, if a DDS_DataReader requeststo

56

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

receive data reliably while the corresponding pps_patawriter defines a
best-effort gospPolicy, communication will not happen as requested. This means,
the specification for gosPo1licy follows the requested/offered (RxO) pattern while
trying to maintain the desirable decoupling of publication and subscription as much
as possible. In this pattern:

* the requesting side can specify a“requested” attribute for aparticular gospPolicy
« the offering side specifies an “offered” attribute for that gospPolicy.

The Data Distribution Service will then determine whether the attribute requested
by the requesting side is compatible with what is offered by the offering side. Only
when the two QosPo1icy Settings are compatible, communication is established. If
the two QosPolicy Settings are not compatible, the Data Distribution Service will
not establish communication between the two DDS_Entity objects and notify this
fact by means of the bbs_OFFERED_INCOMPATIBLE_QOS status on the offering
side and the DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side.

The application can detect this fact by means of aListener Or DDS_Condition.
The interface description of these gosPolicysare asfollows:
/ *
* struct DDS_<DDS_Entity>Qos
* see appendix
*x/
/ *
* struct DDS_<name>QosPolicy
*/
struct DDS_UserDataQosPolicy
{ DDS_sequence_octet wvalue; };
struct DDS_TopicDataQosPolicy
{ DDS_sequence_octet wvalue; };
struct DDS_GroupDataQosPolicy
{ DDS_sequence_octet wvalue; };
struct DDS_TransportPriorityQosPolicy
{ DDS_long value; };
struct DDS_LifespanQosPolicy
{ DDS_Duration_t duration; };
enum DDS_DurabilityQosPolicyKind
{ DDS_VOLATILE_DURABILITY_ QOS,
DDS_TRANSIENT LOCAL_DURABILITY_QOS,
DDS_TRANSIENT DURABILITY QOS,
DDS_PERSISTENT_DURABILITY_QOS };
struct DDS_DurabilityQosPolicy
{ DDS_DurabilityQosPolicyKind kind; };
enum DDS_PresentationQosPolicyAccessScopeKind
{ DDS_INSTANCE_PRESENTATION_QOS,
DDS_TOPIC_PRESENTATION_QOS,
DDS_GROUP_PRESENTATION_QOS };
struct DDS_PresentationQosPolicy

57
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

58
API Reference

{ DDS_PresentationQosPolicyAccessScopeKind
access_scope;
DDS_boolean coherent_access;
DDS_boolean ordered_access; };
struct DDS_DeadlineQosPolicy
{ DDS_Duration_t period; };
struct DDS_LatencyBudgetQosPolicy
{ DDS_Duration_t duration; };
enum DDS_OwnershipQosPolicyKind
{ DDS_SHARED_OWNERSHIP_QOS,
DDS_EXCLUSIVE_OWNERSHIP_QOS 1};
struct DDS_OwnershipQosPolicy
{ DDS_OwnershipQosPolicyKind kind; };
struct DDS_OwnershipStrengthQosPolicy
{ DDS_long value; };
enum DDS_LivelinessQosPolicyKind
{ DDS_AUTOMATIC_LIVELINESS_QOS,
DDS_MANUAL_BY_ PARTICIPANT_ LIVELINESS_QOS,
DDS_MANUAL_BY_ TOPIC_LIVELINESS_QOS };
struct DDS_LivelinessQosPolicy
{ DDS_LivelinessQosPolicyKind kind;
DDS_Duration_t lease_duration; };
struct DDS_TimeBasedFilterQosPolicy
{ DDS_Duration_t minimum_separation; };
struct DDS_PartitionQosPolicy
{ DDS_StringSeq name; };
enum DDS_ReliabilityQosPolicyKind
{ DDS_BEST_EFFORT_RELIABILITY_ QOS,
DDS_RELIABLE_RELIABILITY QOS };
struct DDS_ReliabilityQosPolicy
{ DDS_ReliabilityQosPolicyKind kind;
DDS_Duration_t max_blocking time; };
enum DDS_DestinationOrderQosPolicyKind
{ DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
DDS_BY_ SOURCE_TIMESTAMP_DESTINATIONORDER_QOS 1};
struct DDS_DestinationOrderQosPolicy
{ DDS_DestinationOrderQosPolicyKind kind; };
enum DDS_HistoryQosPolicyKind
{ DDS_KEEP_LAST HISTORY_QOS,
DDS_KEEP_ALL_HISTORY_QOS };
struct DDS_HistoryQosPolicy
{ DDS_HistoryQosPolicyKind kind;
DDS_long depth; };
struct DDS_ResourceLimitsQosPolicy
{ DDS_long max_samples;
DDS_long max_instances;
DDS_long max_samples_per_instance; };
struct DDS_EntityFactoryQosPolicy
{ DDS_boolean autoenable_created_entities; };
struct DDS_WriterDataLifecycleQosPolicy

& PRISMTECH

3 DCPS Classes and Operations

enum

{ DDS_boolean autodispose_unregistered_instances;
struct DDS_ReaderDatalifecycleQosPolicy

3.1 InfrastructureModule

Y

{ DDS_Duration_t autopurge_nowriter_samples_delay;
DDS_Duration_t autopurge_disposed_samples_delay; };
struct DurabilityServiceQosPolicy

{ DDS_Duration_t service_cleanup_delay;
DDS_HistoryQosPolicyKind history_kind;
history_depth;
max_samples;
max_instances;
max_samples_per_instance;
DDS_SchedulingClassQosPolicyKind
{ DDS_SCHEDULE_DEFAULT,

DDS_long
DDS_long
DDS_long
DDS_long

DDS_SCHEDULE_TIMESHARING,

DDS_SCHEDULE_REALTIME };

struct DDS_SchedulingClassQosPolicy

{ DDS_SchedulingClassQosPolicyKind kind;

enum DDS_SchedulingPriorityQosPolicyKind

{ DDS_PRIORITY_RELATIVE,
DDS_PRIORITY_ABSOLUTE };

struct DDS_SchedulingPriorityQosPolicy

{ DDS_SchedulingPriorityQosPolicyKind kind;

struct DDS_SchedulingQosPolicy

* implemented API operations

*/

{ DDS_SchedulingClassQosPolicy scheduling class;

Y

Y

DDS_SchedulingPriorityQosPolicy scheduling_priority_kind;
DDS_long scheduling_priority;

<no operations>

Default attributes

The default attributes of each QospPolicy arelisted in the next table:
Table 5 QosPolicy Default Attributes

QosPolicy Attribute Value

user_data value.length 0

topic_data value.length 0

group_data value.length 0

transport_priority value 0

lifespan duration DDS_DURATION_INFINITE

durability kind DDS_VOLATILE_DURABILITY_QOS

presentation access_scope DDS_INSTANCE_PRESENTATION_QOS
coherent_access FALSE
ordered_access FALSE

& PRISMTECH 59

API Reference

3 DCPS Classes and Operations

3.1 InfrastructureModule

Table 5 QosPolicy Default Attributes (Continued)

QosPalicy Attribute Value
deadline period DDS_DURATION_INFINITE
latency_ budget duration 0
ownership_strength value 0
ownership kind DDS_SHARED_OWNERSHIP_QOS
liveliness kind DDS_AUTOMATIC_LIVELINESS_QOS

lease_duration

DDS_DURATION_INFINITE

time_based_filter

minimum_separation

0

partition

name.length

0

reliability

kind

DDS_BEST_EFFORT_RELIABILITY_QOS

max_blocking time

100 ms

destination_order kind DDS_BY_RECEPTION_
TIMESTAMP_DESTINATIONORDER_QOS
history kind DDS_KEEP_LAST_HISTORY_QOS
depth 1

resource_limits

max_samples

DDS_LENGTH_UNLIMITED

max_instances

DDS_LENGTH_UNLIMITED

max_samples_ per_instance

DDS_LENGTH_UNLIMITED

instances

entity_factory autoenable_ TRUE
created_entities
writer_data_lifecycle |autodispose_unregistered_ | TRUE

reader_data_lifecycle

autopurge_
nowriter_samples_delay

DDS_DURATION_INFINITE

autopurge_
disposed_samples_delay

DDS_DURATION_INFINITE

durability_service

history kind

KEEP_LAST

history depth

1

max_samples

LENGTH_UNLIMITED

max_instances

LENGTH_UNLIMITED

max_samples_ per_instance

LENGTH_UNLIMITED

service_cleanup_delay

0

watchdog_scheduling,
listener_scheduling

scheduling_class.kind

DDS_SCHEDULE_DEFAULT

scheduling priority_ kind.
kind

DDS_PRIORITY_RELATIVE

scheduling priority

60
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

RxO

The gosPolicy settings that need to be set in a compatible manner between the
publisher and subscriber ends are indicated by the setting of the “RxO”
(Requested/Offered) property. The “RxQO” property of each QospPolicy islistedin
Table 6 on page 62

* A "RxO” setting of “Yes’ indicates that the gosPolicy can be set at both ends
(publishing and subscribing) and the attributes must be set in a compatible
manner. In this case the compatible attributes are explicitly defined

¢ A “RxO” setting of “No” indicates that the gosPolicy can be set at both ends
(publishing and subscribing) but the two settings are independent. That is, all
combinations of attributes are compatible

* A “RxO" setting of “Not applicable” indicates that the gosPolicy can only be
specified at either the publishing or the subscribing end, but not at both ends. So
compatibility does not apply.

Changeable

The “changeable” property determines whether the gosPolicy can be changed
after the pDs_Entity isenabled. In other words, a QosPol1cy with “changeable”
setting of “No” is considered “immutable” and can only be specified either at
DDS_Entity creation time or prior to calling the bDS_Entity_ enable Operation
ontheDbps_Entity.

When the application tries to change a gosPo1licy with “changeable” setting of
“No”, the Data Distribution Service will notify this by returning a
DDS_RETCODE_IMMUTABLE_POLICY.

The basic way to modify or set the <DDs_Entity>Qos iS by using a
DDS_<Entity>_get_gos and DDS_<Entity>_set_gos operation to get all
QosPolicy settings from this DDS_Entity (that isthe <DDS_Entity>Qos),
modify several specific QosPolicy Settings and put them back using an user
operation to set all gosPolicy settings on this bbs_Entity (that isthe
<DDS_Entity>Qos). An example of these operations for the bps_Datawriter
are DDS_DataWriter_get_gos and DDS_DataWriter_ set_gos, Which take
the DatawriterQos asaparameter.

The “Rx0O” setting and the “changeable” setting of each gospPolicy arelisted in
the next table:

61
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Table 6 QosPolicy Basics

QosPalicy ConcernsDDS_Entity RxO Changeable
After
Enabling
user_data DDS_DomainParticipant No Yes
DDS_DataReader
DDS_DataWriter
topic_data DDS_Topic No Yes
group_data DDS_Publisher No Yes

DDS_Subscriber

transport_priority DDS_Topic

DDS_DataWriter

Not applicable | Yes

lifespan DDS_Topic Not applicable Yes
DDS_DataWriter

durability DDS_Topic Yes No
DDS_DataReader
DDS_DataWriter

presentation DDS_Publisher Yes No
DDS_Subscriber

deadline DDS_Topic Yes Yes

DDS_DataReader
DDS_DataWriter

DDS_Topic Yes Yes
DDS_DataReader
DDS_DataWriter

DDS_Topic Yes No
DDS_DataReader
DDS_DataWriter

latency_budget

ownership

ownership_strength DDS_Datalriter Not applicable | Yes
liveliness DDS_Topic Yes No
DDS_DataReader
DDS_DataWriter
time_based filter DDS_DataReader Notappﬁcdje Yes
partition DDS_Publisher No Yes
DDS_Subscriber
reliability DDS_Topic Yes No
DDS_DataReader
DDS_DataWriter
62 & PRISMTECH

API Reference

3 DCPS Classes and Operations

3.1 InfrastructureModule

Table 6 QosPolicy Basics (Continued)

QosPalicy Concerns DDS Entity RxO Changeable
After
Enabling
destination_order DDS_Topic Yes No
DDS_DataReader
DDS_DataWriter
history DDS_Topic No No
DDS_DataReader
DDS_DataWriter
resource_limits DDS_Topic No No
DDS_DataReader
DDS_DataWriter
entity_factory DDS_DomainParticipantFactory No Yes
DDS_DomainParticipant
DDS_Publisher
DDS_Subscriber
writer_data_lifecycle|DDS_DataWriter Not applicable | Yes
reader_data_lifecycle|DDS_DataReader Notappﬁcdﬂe Yes
durability_ service DDS_Topic No No
scheduling DDS_DomainParticipant Not applicable No

The next paragraphs describe the usage of each gosPolicy struct.

3.1.3.1 DDS DeadlineQosPolicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_DeadlineQosPolicy
{ DDS_Duration_t period; };

Description

This QosPolicy defines the period within which a new sample is expected by the
DataReader Or to be written by the batawriter.

Attributes

DDS_Duration_t period - Specifiesthe period within which a new sample is

expected or to be written.

63
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

64
API Reference

Detailed Description

This gosPolicy will set the period within which a DDS_DataReader expects a
new sample or, in case of a DDS_DataWriter, the period in which it expects
applications to write the sample. The default value of the period is
DDS_DURATION_INFINITE, indicating that there is no deadline. The QosPolicy
may be used to monitor the real-time behaviour, a Dbs_Listener Or a
DDS_StatusCondition may be used to catch the event that is generated when a
deadline is missed.

DDS_DeadlineQosPolicy isinstance oriented (i.e. the period is monitored for
each individual instance).

The exact consequences of a missed deadline depend on the Dbs_Entity in which
it occured, and the DDS_OwnershipQosPolicy value of that DDS_Entity:

* In case a DDS_DataWriter Misses an instance deadline (regardless of its
DDS_OwnershipQosPolicy setting), an
offered_deadline_missed_status IS raised, which can be detected by
either a DDS_Listener OF a DDS_StatusCondition. There are no further
conseguences.

eIn case a DDS_DataReader mMisses an instance deadline, a
requested_deadline_missed_status iS raised, which can be detected by
either a DDS_Listener OF a DDS_StatusCondition. In case the
DDS_OwnershipQosPolicy IS set to SHARED, there are no further
consequences. In case the DDS_OwnershipQosPolicy iS Set t0 EXCLUSIVE, the
ownership of that instance on that particular bDS_DataReader iS transferred to
the next available highest strength DDS_Datawriter, but this will have no
impact on the instance_state whatsoever. So even when a deadline is missed
for an instance that has no other (lower-strength) bbs_bpatawriters to transfer
ownership to, the instance_state remains unchanged. See also Section
3.1.3.11, DDS OwnershipQosPolicy.

This QosPolicy isapplicable to abps_DataReader, aDDS_DataWriter and a
DDS_Topic. After enabling of the concerning bps_Entity, thisQosPolicy may
be changed by using the Dbs_<DDs_Entity>_set_qgos operation.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Requested/Offered

In case the Requested/Offered QosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS Status on the requesting sideis raised.

Table 7 DDS_DeadlineQosPoalicy

Period Compatibility
offered period < requested period compatible
offered period = requested period compatible
offered period > requested period INcompatible

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of thebDs_Datawriter
and ppS_DataReader. In other words, the communication between any
DDS_DataWriter and DDS_DataReader depends on what is expected by the
DDS_DataReader. AS a consequence, a DDS_DataWriter that has an
incompatible gos with respect to what a DDs_DataReader specifiesisnot allowed
to send its data to that specific DDS_DataReader. A DDS_DataReader that hasan
incompatible Qos with respect to what a DDS_Datawriter Specifies does not get
any data from that particular DDS_Datawriter.

Changing an existing deadline period using the set_qgos operation on either the
DDS_DataWriter Or DDS_DataReader may have consequences for the
connectivity between readers and writers, depending on their rx0 values. (See dso
in Section 3.1.3, Sruct QosPolicy, the paragraph entitled Requested/Offered.)
Consider a writer with deadline period pw and a reader with deadline period pr,
where pw <= Pr. In this case a connection between that reader and that writer is
established. Now suppose pw is changed so that pw > Pr, then the existing
connection between reader and writer will be lost, and the reader will behave as if
the writer unregistered all its instances, transferring the ownership of these instances
when appropriate. See also Section 3.1.3.11, DDS Owner shipQosPolicy.

DDS TopicQos

This QosPolicy can be set on apps_Topic. The bbs_Datawriter and/or
DDS_DataReader can copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

65
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS DestinationOrder QosPolicy

66
API Reference

Synopsis
#include <dds_dcps.h>
enum DDS_DestinationOrderQosPolicyKind
{ DDS_BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
DDS_BY_ SOURCE_TIMESTAMP_DESTINATIONORDER_QOS };
struct DDS_DestinationOrderQosPolicy
{ DDS_DestinationOrderQosPolicyKind kind; };

Description
This QosPolicy controlsthe order in which the DDS_DataReader stores the data.

Attributes

DDS_DestinationOrderQosPolicyKind kind - controls the order in which
the DDS_DataReader storesthe data.

Detailed Description

ThisQosPolicy controlsthe order in which the DDs_DataReader stores the data
The order of storage is controlled by the timestamp. However a choice can be made
to use the timestamp of the bps_DataReader (time of reception) or the timestamp
of the DDS_Datalriter (Sourcetimestamp).

ThisQosPolicy isapplicableto abbs_bDatawWriter, DDS_DataReader and a
DDS_Topic. After enabling of the concerning DDS_Entity, this QosPolicy cannot
be changed any more.

Attribute

The gosPolicy iscontrolled by the attribute kind which may be:

« DDS BY_ RECEFTION_TIMESTAMP_DESTINATIONORDER QOS
» DDS BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

When set to DDS_BY_ RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS, the
order is based on the timestamp, at the moment the sample was received by the
DDS_DataReader.

When set to DDS_BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS, the order
is based on the timestamp, which was set by the DDs_batawriter. This meansthat
the system needs some time synchronisation.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Requested/Offered

In case the Requested/Offered QosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS Status on the requesting sideis raised.

Table 8 Requested/Offered DDS_DestinationOr der QosPolicy

\g@ted BY RECEPTION_ | BY _SOURCE_TIM
Offer TIMESTAMP ESTAMP
BY_RECEPTION_TIMESTAMP compati ble | Ncompati ble
BY_SOURCE_TIMESTAMP CompaIi ble CompaIi ble

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered gosPolicy of thebps_bpatawriter
and pps_DataReader. In other words, the communication between any
DDS_DataWriter and DDS_DataReader depends on what is expected by the
DDS_DataReader. AS a consequence, a DDS_DataWriter that has an
incompatible gos with respect to what a DDS_DataReader Specified, is not
allowed to send its data to that specific DDS_DataReader. A DDS_DataReader
that has an incompatible gos with respect to what a bDS_Datawriter specified,
does not get any data from that particular bDS_DatawWriter.

DDS TopicQos

This QosPolicy can be set on apps_Topic. The bbsS_Datawriter and/or
DDS_DataReader can copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

DDS DurabilityQosPalicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
enum DDS_DurabilityQosPolicyKind
{ DDS_VOLATILE_DURABILITY_ QOS,
DDS_TRANSTIENT_ LOCAL_DURABILITY_ QOS,
DDS_TRANSIENT DURABILITY QOS,
DDS_ PERSISTENT DURABILITY QOS };
struct DDS_DurabilityQosPolicy
{ DDS_DurabilityQosPolicyKind kind; };

Description

This QosPolicy controls whether the data should be stored for late joining readers.
67
APl Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

68
API Reference

Attributes

DDS_DurabilityQosPolicyKind kind - specifiesthe type of durability from
DDS_VOLATILE_DURABILITY_QOS (short life) to
DDS_PERSISTENT_DURABILITY_QOS (long life).

Detailed Description

The decoupling between pbs_bpataReader and DDS_DataWriter offered by the
Data Distribution Service allows an application to write data even if there are no
current readers on the network. Moreover, a DDS_DataReader that joins the
network after some data have been written could potentially be interested in
accessing the most current values of the data as well as some history. This
QosPolicy controls whether the Data Distribution Service will actually make data
availableto late-joining DDS_DataReaders.

This QosPolicy isapplicable to a DDS_DataReader, DDS_DataWriter and
DDS_Topic. After enabling of the concerning pbs_Entity, thisQosPolicy
cannot be changed any more.

Attributes
The gosPolicy iscontrolled by the attribute kind which may be:

* DDS_VOLATILE_DURABILITY_Q0S - the samples are not available to
late-joining DDS_DataReaders. In other words, only DDS_DataReaders,
which were present at the time of the writing and have subscribed to this
DDS_Topic, Will receive the sample. When a DpDS_DataReader subscribes
afterwards (late-joining), it will only be able to read the next written sample. This
setting is typically used for data, which is updated quickly;

* DDS_TRANSIENT LOCAL_DURABILITY_Q0S - the functionality behind this
setting is not yet implemented. It is scheduled for afuture release;

* DDS_TRANSIENT_DURABILITY_QOS - SOme samplesare availableto late-joining
DDS_DataReaders (stored in memory). This means that the late-joining
DDS_DataReaders are able to read these previously written samples. The
DDS_DataReader does not necessarily have to exist at the time of writing. Not
al samples are stored (depending on QosPolicy History and QosPolicy
resource_limits). The storage does not depend on the bbs_Datawriter and
will outlivethe bbs_Datawriter. Thismay be used to implement reallocation of
applications because the datais saved in the Data Distribution Service (not in the
DDS_DataWriter). Thissetting istypically used for state related information of
an application. In this case also the burabilityServiceQosPolicy Settings
are relevant for the behaviour of the Data Distribution Service;

& PRISMTECH

3 DCPS Classes and Operations

&4 PRISMTECH

3.1 InfrastructureModule

DDS_PERSISTENT _DURABILITY_QOS - the datais stored in permanent storage
(e.g. hard disk). This means that the samples are also available after a system
restart. The samples not only outlives the bbs_batavwriters, but even the Data
Distribution Service and the system. This setting is typically used for attributes
and settings for an application or the system. In this case adso the
DurabilityServiceQosPolicy Settings are relevant for the behaviour of the
Data Distribution Service.

Requested/Offered

n case the Requested/Offered gosPolicy are incompatible, the notification

DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting sideis raised.

Table 9 Requested/Offered DDS DurabilityQosPolicy

Requestec|| VOLATILE TRANSIENT PERSISTENT
%@1\
VOLATILE compatible INcompatible INcompatible
TRANSIENT compatible compatible INcompatible
PERSISTENT compatible compatible compatible

This means that the Request/Offering mechanism is applicable between:

the DDS_DatawWriter and the DDS_DataReader: if the QosPolicy settings
between DDS DataWriter and DDS DataReader are inconsistent, no
communication between them is established. In addition the DDs_Datawriter
will be informed viaa bbs_REQUESTED_INCOMPATIBLE_QOS status change and
the DDS_DataReader will be informed via an
DDS_OFFERED_INCOMPATIBLE_QOS status change

the DDs_bpatawriter and the Data Distribution Service (as a built-in
DDS_DataReader): if the QosPolicy Settings between ppbs_bpatawriter and
the Data Distribution Service are inconsistent, no communication between them is
established. In that case data published by the pps_Datawriter will not be
maintained by the service and as a consequence will not be available for late
joining bDS_DataReaders. The QosPolicy of the Data Distribution Service in
the role of DDS_DataReader is specified by the DDS_Topic QosPolicy

the Data Distribution Service (as a built-in DDS_DatawWriter) and the
DDS_DataReader: if the QosPolicy settings between the Data Distribution
Service and the bDs_DataReader are inconsistent, no communication between
them is established. In that case the Data Distribution Service will not publish
historical data to late joining DDS_DataReaders. The QospPolicy of the Data
Didtribution Service in the role of pps_patawriter is specified by the
DDS_Topic QosPolicy.
69
APl Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Cleanu

The DDS_DurabilityQosPolicy kind setting DDS_TRANSIENT_
DURABILITY_QOS and DDS_PERSISTENT_ DURABILITY_QOS determine that the
DDS_DurabilityServiceQosPolicy appliesfor the bDs_Topic. It controls
amongst others at which time the durability service is allowed to remove all
information regarding a data-instance. Information on a data-instance is maintained
until the following conditions are met:

* the instance has been explicitly disposed of (instance_state =
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE),

 and the system detects that there are no more “live” DDS_Dataliriter oObjects
writing the instance, that is, @&l DDS_Datawriter either
unregister_instance the instance (call
DDS_DataWriter_unregister_instance operation) or lose ther
liveliness,

» and atimeinterval longer than service_cleanup_delay has elapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met.

The use of the DDS_DurabilityServiceQosPolicy attribute
service_cleanup_delay IS apparent in the situation where an application
disposes of an instance and it crashes before having a chance to complete
additional tasks related to the disposition. Upon re-start the application may ask for
initial data to regain its state and the delay introduced by the
service_cleanup_delay allows the re-started application to receive the
information on the disposed of instance and complete the interrupted tasks.

DDS TopicQos

This QosPolicy can be set on abbs_Topic. The DDS_DataWriter and/or
DDS_DataReader can copy this qos by using the operations
DDS_<DDS_Entity>_ copy_from_topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

DDS DurabilityServiceQosPolicy

70
API Reference

Scope
DDS

Synopsis
#include <dds_dcps.h>
struct DDS_DurabilityServiceQosPolicy

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

{ DDS_Duration_t service_cleanup_delay;
DDS_HistoryQosPolicyKind history_kind;
DDS_long history_depth;

DDS_long max_samples;
DDS_long max_instances;
DDS_long max_samples_per_instance; };

Description

ThisQosPolicy controlsthe behaviour of the durability service regarding transient
and persistent data.

Attributes

DDS_Duration_t service_cleanup_delay - Specifies how long the durability
service must wait before it is alowed to remove the information on the transient
or persistent topic data-instances as a result of incoming dispose messages.

DDS_HistoryQosPolicyKind history_ kind - Specifies the type of history,
which may be DDS_KEEP_LAST_HISTORY_QOS, or
DDS_KEEP_ALL_HISTORY_QOS the durability service must apply for the
transient or persistent topic data-instances.

DDS_long history._depth - specifies the number of samples of each instance of
data (identified by its key) that is managed by the durability service for the
transient or persistent topic data-instances. If history_kind is
KEEP_LAST_HTISTORY_QOS, history_depth must be smaller than or equal to
max_samples_per_instance for thisQosPolicy to be consistent.

DDS_long max_samples - Specifies the maximum number of data samples for all
instances the durability service will manage for the transient or persistent topic
data-instances.

DDS_long max_instances - specifies the maximum number of instances the
durability service will manage for the transient or persistent topic
data-instances.

DDS_long max_samples_per_instance - specifies the maximum number of
samples of any single instance the durability service will manage for the
transient or persistent topic data-instances. If history_kind isbps_KEEP_LAST_
HISTORY_QOS, max_samples_per_instance must be greater than or equal
tohistory_depth for thisQosPolicy to be consistent.

Detailed Description

This gosPolicy controlsthe behaviour of the durability service regarding transient
and persistent data. It controls for the transient or persistent topic; the time at which
information regarding the topic may be discarded, the history policy it must set and
the resource limitsit must apply.

71
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

72
API Reference

Cleanu

The setting of the DDS_DurabilityServiceQosPolicy only applieswhen kind
of the DDS_DurabilityQosPolicy iS either DDS_TRANSIENT_
DURABILITY_QOS OF DDS_PERSISTENT_DURABILITY_QOS. The
service_cleanup_delay Setting controls at which time the durability serviceis
allowed to remove all information regarding a data-instance. Information on a
data-instance is maintained until the following conditions are met:

* the instance has been explicitly disposed of (instance_state =
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE)

+ and the system detects that there are no more “live” Datawriter objectswriting
the instance, that is, al Datawriter either unregister_instance the
instance (call unregister_instance operation) or losetheir 1iveliness

» and atime interval longer than service_cleanup_delay haselapsed since the
moment the Data Distribution Service detected that the previous two conditions
were met

The use of the attribute service_cleanup_delay IS apparent in the situation
where an application disposes an instance and it crashes before having a chance
to complete additional tasks related to the disposal of the instance. Upon re-start
the application may ask for initial datato regain its state and the delay introduced by
the service_cleanup_delay allows the re-started application to receive the
information of the disposed instance and complete the interrupted tasks.

History

Theattributeshistory_kind and history_ depth apply to the history settings of
the durability service’s internal DDS_DataWriter and DDS_DataReader
managing the topic. The DDS_HistoryQosPolicy behaviour, as described in
Section 3.1.3.7, DDS _HistoryQosPolicy, applies to these attributes.

Resource Limits

The attributes max_samples, max_instances and max_samples_
per_instance apply to the resource limits of the durability service's internal
DDS_DataWriter and DDS_DataReader managing the topic. The
DDS_ResourceLimitsQosPolicy behaviour, as described in paragraph 3.1.3.17
(DDS_ResourcelimitsQosPolicy) appliesto these attributes.

TopicQos

ThisQosPolicy canbeset onapps_Topic only. After enabling of the concerning
DDS_Topic, thisQosPolicy can not be changed any more.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS_EntityFactoryQosPalicy
Synopsis

#include <dds_dcps.h>

struct DDS_EntityFactoryQosPolicy
{ DDS_boolean autoenable_created_entities; };

Description

This gosPolicy controls the behaviour of the Entity as afactory for other
entities.

Attributes

DDS_boolean autoenable_ created _entities - Specifies whether the entity
acting as a factory automatically enables the instances it creates. If
autoenable created entities is TRUE the factory will automatically enable each
created Entity, otherwiseit will not.

Detailed Description

This gosPolicy controls the behaviour of the Entity as afactory for other
entities. It concerns only bDS_DomainParticipantFactory (as factory for
DDS_DomainParticipant), DDS_DomainParticipant (as factory for
DDS_Publisher, DDS_Subscriber, and DDS_Topic), DDS_Publisher (as
factory for DDS_DataWriter), and DDS_Subscriber (as factory for
DDS_DataReader).

This policy is mutable. A change in the policy affects only the entities created after
the change; not the previously created entities.

The setting of autoenable_created_entities to TRUE indicates that the
factory create_<entity> operation will automatically invoke the enable
operation each time a new DDS_Entity is created. Therefore, the bps_Entity
returned by create_<entity> will already be enabled. A setting of FALSE
indicates that the pps_Entity will not be automatically enabled: the application
will need to enable it explicitly by means of the enable operation. See Section
3.1.1.1, DDS Entity_enable for a detailed description about the differences between
enabled and disabled entities.

The default setting of autoenable _created_entities iSTRUE meaning that by
default it is not necessary to explicitly call enable on newly created entities.

DDS_GroupDataQosPolicy
Synopsis

#include <dds_dcps.h>
struct DDS_GroupDataQosPolicy
73

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

{ DDS_sequence_octet value; };

Description

This gospPolicy allows the application to attach additional information to a
DDS_Publisher Or DDS_Subscriber DDS_Entity. Thisinformationis
distributed with the bps_BuiltinTopics.

Attributes

DDS_sequence_octet value - asequence of octets that holds the application
group data. By default, the sequence has length 0.

Detailed Description

This gosPolicy allows the application to attach additional information to a
DDS_Publisher Or DDS_Subscriber DDS_Entity. Thisinformationis
distributed with the DDS_BuiltinTopic. An application that discovers a new
DDS_Entity of the listed kind, can use this information to add additional
functionality. The bbs_cGroupbataQosPolicy is changeable and updates of the
DDS_BuiltinTopic instance must be expected. Note that the Data Distribution
Service is not aware of the real structure of the group data (the Data Distribution
System handles it as an opaque type) and that the application is responsible for
correct mapping on structural types for the specific platform.

DDS HistoryQosPolicy

74
API Reference

Synopsis
#include <dds_dcps.h>
enum DDS_HistoryQosPolicyKind
{ DDS_KEEP_LAST HISTORY_QOS,
DDS_KEEP_ALIL_HISTORY_QOS };
struct DDS_HistoryQosPolicy
{ DDS_HistoryQosPolicyKind kind;
DDS_long depth; 1};

Description

This QosPolicy controls which samples will be stored when the value of an
instance changes (one or more times) before it is finally communicated.

Attributes

DDS_HistoryQosPolicyKind kind - specifiesthetype of history, which may be
DDS_KEEP_LAST_HISTORY_QOS Of DDS_KEEP_ALL_HISTORY_QOS.

DDS_long depth - specifies the number of samples of each instance of data
(identified by its key) managed by thisDDS_Entity.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Detailed Description

ThisQosPolicy controlswhether the Data Distribution Service should deliver only
the most recent sample, attempt to deliver al samples, or do something in between.
In other words, how the bDs_DatawWriter Or DDS_DataReader should store
samples. Normally, only the most recent sample is available but some history can be
stored.

DDS DataWriter

On the publishing side this gosPolicy controls the samples that should be
maintained by the DDs_batawriter on behalf of existing Dbs_DataReader
objects. The behaviour with respect to aDDS_DataReader Objects discovered after
asampleiswritten is controlled by the bps_burabilityQosPolicy.

DDS DataReader

On the subscribing side it controls the samples that should be maintained until the
application “takes’ them from the Data Distribution Service.

This gosPolicy is applicable to a DDS_DataReader, DDS_DataWriter and
DDS_Topic. After enabling of the concerning bDS_Entity, thisQosPolicy
cannot be changed any more.

Attributes
The QosPolicy iscontrolled by the attribute kind which can be:

* DDS_KEEP_LAST_HISTORY_0Q0S - the Data Distribution Service will only
attempt to keep the latest values of the instance and discard the older ones. The
attribute “depth” determines how many samples in history will be stored. In
other words, only the most recent samplesin history are stored. On the publishing
side, the Data Distribution Service will only keep the most recent “depth”
samples of each instance of data (identified by its key) managed by the
DDS_DataWriter. On the subscribing side, the pps_bpataReader will only
keep the most recent “depth” samples received for each instance (identified by
its kxey) until the application “takes’ them via the DDS_DataReader_take
operation. DDS_KEEP_LAST_HISTORY_QOS is the default kind. The default
value of depth is 1, indicating that only the most recent value should be
delivered. If a depth other than 1 is specified, it should be compatible with the
settings of the DDS_ResourceLimitsQosPolicy max_samples_
per_instance. For these two QosPolicy Settings to be compatible, they must
verify that depth <= max_samples per instance, Otherwise a
DDS_RETCODE_INCONSISTENT POLICY iSgenerated on relevant operations;

e DDS_KEEP_ALL_HISTORY_QO0S - al samples are stored, provided, the resources
are available. On the publishing side, the Data Distribution Service will attempt to
keep all samples (representing each value written) of each instance of data

75
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

76
API Reference

(identified by its key) managed by the pps_batawriter until they can be
delivered to all subscribers. On the subscribing side, the Data Distribution
Service will attempt to keep all samples of each instance of data (identified by its
key) managed by the DDS_DataReader. These samples are kept until the
application “takes” them from the Data Distribution Service via the
DDS_DataReader_take operation. The setting of depth has no effect. Its
implied value is DDS_LENGTH_UNLIMITED. The resources that the Data
Distribution Service can use to keep this history are limited by the settings of the
DDS_ResourceLimitsQosPolicy. If the limit is reached, the behaviour of the
Data Distribution Service will depend on the bDs_ReliabilityQosPolicy. If
the DDS_ReliabilityQosPolicy IS DDS_BEST EFFORT_RELIABILITY_
Qos, the old vaues are discarded. If DDS_ReliabilityQosPolicy IS
DDS_RELIABLE_RELIABILITY_QOS, the Data Distribution Service will block
the DDS_DataWriter until it can deliver the necessary old values to all
subscribers.

On the subscribing side it controls the samples that should be maintained until the
application “takes’” them from the Data Distribution Service. On the publishing side
this gospPolicy controls the samples that should be maintained by the
DDS_DataWriter on behalf of DDS_DataReader objects. The behaviour with
respect to a Dbs_DataReader Objects discovered after a sample is written is
controlled by the bbs_burabilityQosPolicy. In more detail, this QosPolicy
specifies the behaviour of the Data Distribution Service in case the value of a
sample changes (one or more times) before it can be successfully communicated to
one or more DDS_Subscribers.

Requested/Offered

The setting of the gosPolicy offered isindependent of the one requested, in other
words they are never considered incompatible. The communication will not be
rejected on account of this QosPolicy. The notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side or
DDS_REQUESTED_INCOMPATIBLE_QOS Status on the requesting side will not be
raised.

DDS TopicQos

This QosPolicy can be set on apps_Topic. The bDS_bDatawriter and/or
DDS_DataReader cCan copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS L atencyBudgetQosPoalicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>

struct DDS_LatencyBudgetQosPolicy
{ DDS_Duration_t duration; };

Description

Specifies the maximum acceptable additional delay to the typical transport delay
from the time the data is written until the data is delivered at the DDS DataReader
and the application is notified of thisfact.

Attributes

DDS_Duration_t duration - pecifiesthe maximum acceptable additional delay
from the time the data is written until the datais delivered.

Detailed Description

This gosPolicy specifies the maximum acceptable additional delay to the typical
transport delay from the time the data is written until the data is delivered at the
DDS_DataReader and the application is notified of this fact. ThisQospPolicy
provides a means for the application to indicate to the Data Distribution Service the
“urgency” of the data-communication. By having a non-zero duration the Data
Distribution Service can optimise its internal operation. The default value of the
duration iSzero, indicating that the delay should be minimized.

This QosPolicy isapplicable to a bDS_DataReader, DDS_DataWriter and
DDS_Topic. After enabling of the concerning pbs_Entity, thiSQosPolicy may
be changed by using the DDS_<DDS_Entity>_set_qgos operation.

Requested/Offered

ThisgosPolicy isconsidered a hint to the Data Distribution Service, which will
automatically adapt its behaviour to meet the requirements of the shortest delay if
possible. In case the Requested/Offered gospPolicy are incompatible, the
notification bbs_OFFERED_INCOMPATIBLE_QOS Status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS Status on the requesting sideis raised.

Table 10 DDS L atencyBudgetQosPoalicy

Duration Compatibility
offered duration < requested duration compatible
offered duration = requested duration compatible
offered duration > requested duration INcompatible

77
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Note that even when the offered duration is considered compatible to the requested
duration, this duration is not enforced in any way: there will be no notification on
any violations of the requested duration.

Changing an existing latency budget using the set_qos operation on either the
DDS_DataWriter OF DDS_DataReader may have consequences for the
connectivity between readers and writers, depending on their rxo values. (See aso
in Section 3.1.3, Sruct QosPolicy the paragraph entitled Requested/Offered.)
Consider awriter with budget Bw and a reader with budget Br, where Bw <= Br. In
this case a connection between that reader and that writer is established. Now
suppose Bw is changed so that Bw > Br, then the existing connection between
reader and writer will be lost, and the reader will behave asif the writer unregistered
al itsinstances, transferring the ownership of these instances when appropriate. See
also Section 3.1.3.11, DDS _OwnershipQosPolicy.

DDS TopicQos

This QosPolicy can be set on abbs_Topic. The DDS_DataWriter and/or
DDS_DataReader cCan copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

DDS LifespanQosPolicy

78
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_LifespanQosPolicy
{ DDS_Duration_t duration; };

Description

This QosPolicy specifies the duration of the validity of the data written by the

DDS_DataWriter.

Attributes

DDS_Duration_t duration - Specifiesthe length in time of the validity of the
data.

Detailed Description

This gosPolicy specifies the duration of the validity of the data written by the
DDS_DataWriter. When thistime has expired, the datawill be removed or if it has
not been delivered yet, it will not be delivered at all. In other words, the duration
is the time in which the data is still valid. This means that during this period a

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS_DataReader can access the data or if the data has not been delivered yet, it
still will be delivered. The default value of the duration is
DDS_DURATION_INFINITE, indicating that the data does not expire.

ThisQosPolicy isapplicable to aDpDs_DataWriter and a DDS_Topic. After
enabling of the concerning DDS_Entity, thisQosPolicy may be changed by using
the DDS_<DDS_Entity>_set_gos operation.

Requested/Offered

The setting of this gosPolicy isonly applicable to the publishing side, in other
words the Requested/Offered constraints are not applicable. The communication
will not be rejected on account of this gosPolicy. The notification
DDS_OFFERED_TNCOMPATIBLE_QOS status on the offering side will not be raised.

DDS TopicQos

This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader can copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_qgos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_Dataliriter are consistent.

DDS LivelinessQosPolicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
enum DDS_LivelinessQosPolicyKind
{ DDS_AUTOMATIC_LIVELINESS_QOS,
DDS_MANUAL_BY PARTICIPANT LIVELINESS_QOS,
DDS_MANUAL_BY_ TOPIC_LIVELINESS_QOS };
struct DDS_LivelinessQosPolicy
{ DDS_LivelinessQosPolicyKind kind;
DDS_Duration_t lease_duration; };

Description

This QosPolicy controls the way the liveliness of an DbDs_Entity is being
reported.

Attributes

DDS_LivelinessQosPolicyKind kind - controlsthe way the liveliness of an
DDS_Entity iSreported.

DDS_Duration_t lease_duration - specifiesthe duration of the interval
within which the liveliness must be reported.

79
API Reference

3 DCPS Classes and Operations

3.1 InfrastructureModule

Detailed Description

This gosPolicy controls the way the liveliness of an pbs_Entity is being
determined. The liveliness must be reported periodically before the
lease_duration expires.

ThisQosPolicy isapplicableto aDpDS_DataReader, aDDS_DataWriter and a
DDS_Topic. After enabling of the concerning bDs_Entity, thiSQosPolicy
cannot be changed any more.

Attributes
The gosPolicy iscontrolled by the attribute kind which can be:

* DDS_AUTOMATIC_LIVELINESS_QO0S - the Data Distribution Service will take
care of reporting the Liveliness automatically with a rate determined by the
lease_duration

* DDS_MANUAL_BY_PARTICIPANT LIVELINESS_QOS - the application must take
care of reporting the liveliness before the lease_duration expires. If a
DDS_Entity reports its liveliness, al DDS_Entities within the same
DDS_DomainParticipant that have their liveliness kind set to
DDS_MANUAL_BY_ PARTICIPANT LIVELINESS_QOS, can be considered alive
by the Data Distribution Service. Liveliness can reported explicitly by calling the
operation DDS_DomainParticipant_assert_liveliness or implicitly by
writing some data

* DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS - the application must take care of
reporting the liveliness before the 1ease_duration expires. This can explicitly
be done by calling the operation DDS_DataWriter_ assert_liveliness Of
implicitly by writing some data

The lease_duration specifies the duration of the interval within which the

liveliness should be reported.

Requested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side is raised.

Table 11 DDS LivelinessQosPalicy

80
API Reference

Requestec AUTOMATIC | MANUAL_BY_ | MANUAL_BY_
m PARTICIPANT TOPIC
AUTOMATIC compatible INcompatible INcompatible
MANUAL_BY_PARTICIPANT | compatible compatible INcompatible
MANUAL_BY_TOPIC compatible compatible compatible
& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of thebDs_Datalriter
and pDS_DataReader. In other words, the communication between any
DDS_DatalWriter and DDS_DataReader depends on what is expected by the
DDS_DataReader. AS a consequence, a DDS_DataWriter that has an
incompatible gos with respect to what a Dbs_DataReader Specified is not allowed
to send its data to that specific Dbs_DataReader. A DDS_DataReader that hasan
incompatible gos with respect to what a DDS_Datatwriter Specified does not get
any datafrom that particular pDs_DataWriter.

DDS TopicQos

This QosPolicy can be set on a DDS_Topic. The DDS_DataWriter and/or
DDS_DataReader can copy this qos by using the operations
DDS <DDS_Entity> copy_ from topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DatalWriter are consistent.

DDS_Owner shipQosPalicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
enum DDS_OwnershipQosPolicyKind
{ DDS_SHARED OWNERSHIP_QOS,
DDS_EXCLUSIVE_OWNERSHIP_QOS };
struct DDS_OwnershipQosPolicy
{ DDS_OwnershipQosPolicyKind kind; };

Description

This QosPolicy specifies whether a DDs_DataWriter exclusively owns an

instance.

Attributes

DDS_OwnershipQosPolicyKind kind - specifieswhether aDDS_DataWriter
exclusively owns an instance.

Detailed Description

This QosPolicy specifies whether aDDs_Datawriter exclusively may own an
instance. In other words, whether multiple DDS_Datawriter oObjects can write the
same instance at the same time. The DDS_DataReader objects will only read the
modifications on an instance from the bps_patawriter owning the instance.

81
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

82
API Reference

Exclusive ownership is on an instance-by-instance basis. That is, a
DDS_Subscriber can receive values written by a lower strength
DDS_DataWriter aslong as they affect instances whose values have not been
written or registered by a higher-strength bps_bpatawriter.

ThisQosPolicy isapplicableto abpDS_DataReader, aDDS_DataWriter and a
DDS_Topic. After enabling of the concerning bDs_Entity, thisQosPolicy
cannot be changed any more.

Attribute
The QosPolicy iscontrolled by the attribute kind which can be:

* DDS_SHARED_OWNERSHIP_QO0S (default) - the same instance can be written by
multiple DDs_batawriter objects. All updates will be made available to the
DDS_DataReader Objects. In other words it does not have a specific owner

* DDS_EXCLUSIVE_OWNERSHIP_QOS - theinstance will only be accepted from one
DDS_DataWriter which is the only one whose modifications will be visible to
the DDS_DataReader Objects

Requested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification
OFFERED_INCOMPATIBLE_QOS status on the offering side and
REQUESTED_TINCOMPATIBLE_QOS status on the requesting side is raised.

Table 12 Requested/Offered DDS_Owner shipQosPalicy

\ig@ted SHARED EXCLUSIVE
Offer

SHARED compatible INcompatible
EXCLUSIVE INcompatible compatible

Whether communication is established, is controlled by the Data Distribution
Service, depending on the Requested/Offered QosPolicy of theDbs_bpatawriter
and pbs_DataReader. The value of the owNERsHIP Kind offered must exactly
match the one requested or else they are considered incompatible. As a
consequence, a DDS_DataWriter that has an incompatible gos with respect to
what a DDS_DataReader specified is not allowed to send its data to that specific
DDS_DataReader. A DDS_DataReader that has an incompatible gos with respect
to what apps_batawWriter specified does not get any data from that particular
DDS_DataWriter.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Exclusive Ownership

The DDS_Datawriter with the highest bbs_oOwnershipStrengthQosPolicy
value and being alive (depending on the bbs_LivelinessQosPolicy) and
which has not violated its DDS_DeadlineQosPolicy contract with respect to the
instance, will be considered the owner of the instance. Consequently, the ownership
can change as aresult of:

e a DDS_DataWriter in the system with a higher value of the
DDS_OwnershipStrengthQosPolicy modifiesthe instance

e achangeinthe bbs_oOwnershipStrengthQosPolicy value (becomesless) of
the DDS_Datawriter owning the instance

 achange in the liveliness (becomes not alive) of the DDs_Datawriter owning
the instance

« a deadline with respect to the instance that is missed by the bbs_batawriter
that owns the instance.

Time-line

Each pps_pataReader may detect the change of ownership at a different time. In
other words, at a particular point in time, the DDS_DataReader objects do not have
a consistent picture of who owns each instance for that DDS_Topic. Outside this
grey area in time all bDS_DataReader Objects will consider the same
DDS_DataWriter to bethe owner.

If multiple DDS_DatawWriter oObjects with the same
DDS_OwnershipStrengthQosPolicy modify the same instance, all
DDS_DataReader Objects will make the same choice of the particular
DDS_DataWriter that isthe owner. The DDS_DataReader IS aso notified of this
via a status change that is accessible by means of the Listener or
DDS_Condi tion mechanisms.

Owner ship of an Instance

DDS_DataWriter Objects are not aware whether they own a particular instance.
There is no error or notification given to abps_batawWriter that modifies an
instance it does not currently own.

TopicQos

This QosPolicy can be set on a pps_Topic. The bps_bDatawriter and/or
DDS_DataReader can copy this gos by using the operations
DDS_Publisher/Subscriber_copy_from_topic_gos and then
DDS_DataWriter/DataReader_set_gos. That way the application can
relatively easily ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent

83
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_Owner shipStrengthQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_OwnershipStrengthQosPolicy
{ DDS_long value; };

Description

This QosPolicy specifies the value of the ownership strength of a
DDS_DataWriter used to determine the ownership of an instance.

Attributes
DDS_long value - Specifiesthe ownership strength of the DDS_Datawriter.

Detailed Description

This gosPolicy specifies the value of the ownership strength of a
DDS_DataWriter used to determine the ownership of an instance. This ownership
is used to arbitrate among multiple bDS_Datawriter Objects that attempt to
modify the same instance. This QosPolicy only applies if the
DDS_OwnershipQosPolicy iSOf kind DDS_EXCLUSIVE_OWNERSHIP_QOS. For
more information, see DDS_OwnershipQosPolicy.

ThisQosPolicy isapplicable to apps_bpatawriter only. After enabling of the
concerning pbs_Entity, thisgosPolicy may be changed by using the
DDS_DataWriter_set_gos operation. When changed, the ownership of the
instances may change with it.

DDS_PartitionQosPolicy

84
API Reference

Synopsis
#include <dds_dcps.h>

struct DDS_PartitionQosPolicy
{ DDS_StringSeq name; };

Description

This QosPolicy specifies the logical partitions in which the
DDS_Subscribers and DDS_Publishers are active.

Attributes

DDS_StringSeqg name - holds the sequence of strings, which specifies the
partitions

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Detailed Description

This gosPolicy specifiesthelogical partitions inside the domain in which the
DDS_Subscribers and DDS_Publishers are active. This QosPolicy iS
particularly used to create a separate subspace, like areal domain versus a
simulation domain. A DDS_Publisher and/or DDS_Subscriber can participate
in more than one partition. Each string in the sequence of strings name defines a
partition name. A partition name may contain wildcards. Sharing a
partition means that at least one of the partition names in the sequence
matches. When none of the partition names match, it is not considered an
“incompatible” QoS and does not trigger any 1isteners Of conditions. It only
means, no communication is established. The default value of the attribute is an
empty (zero-sized) sequence. Thisis treated as a special value that matches the
partition.

ThisQosPolicy isapplicableto abps_publisher and DDS_Subscriber. After
enabling of the concerning DDS_Entity, thisQosPolicy may bechanged by using
the DDsS_<DDS_Entity>_set_gos operation. When changed, it modifies the
association of DDS_DataReader and DDS_DataWriter objects. It may establish
new associations or break existing associations. By default, DDS_Datawriter and
DDS_DataReader Objects belonging to a DDS_Publisher Of DDS_Subscriber
that do not specify aDDS_PartitionQosPolicy, will participate in the default

partition. Inthiscase the partition name is“”.

Requested/Offered

The offered setting of this QosPolicy isindependent of the one requested, in other
words they are never considered incompatible. The communication will not be
rejected on account of this QosPolicy. The notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side or
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be
raised

DDS_PresentationQosPolicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
enum DDS_PresentationQosPolicyAccessScopeKind
{ DDS_INSTANCE_PRESENTATION_QOS,
DDS_TOPIC_PRESENTATION_QOS,
DDS_GROUP_PRESENTATION_QOS };
struct DDS_PresentationQosPolicy
{ DDS_PresentationQosPolicyAccessScopeKind access_scope;
DDS_boolean coherent_access;
DDS_boolean ordered_access; };

Note: ThisQospPolicy isnot yet implemented. It is scheduled for afuture release.

85
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

86
API Reference

Description

This gosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application.

Attributes

DDS_PresentationQosPolicyAccessScopeKind access_scope - Specifies
the samples controlled by this policy.

DDS_boolean coherent_access - thefunctionality behind this setting is not yet
implemented. It is scheduled for afuture release.

DDS_boolean ordered_access - the functionality behind this setting is not yet
implemented. It is scheduled for afuture release.

Detailed Description

This QosPolicy controls how the samples representing changes to data instances
are presented to the subscribing application. In other words, how changes to
data-instances can be made dependent on each other and also the kind of
dependencies that can be propagated and maintained by the Data Distribution
Service. It affects the application’s ability to group a set of changes and to preserve
the order in which they were sent. It also specifies the largest scope spanning the
DDS_Entity objects for which the order and coherency of changes can be
preserved.

ThisQospPolicy isapplicableto abps_publisher and DDS_Subscriber. After
enabling of the concerning pps_Entity, this QosPolicy cannot be changed any
more.

Attributes

The two booleans control whether coherent access and ordered access are supported
within the scope access_scope. Since only DDS_INSTANCE_
PRESENTATION_QOS (the lowest level) is implemented, coherent access and
ordered access are not applicable.

The changes to each instance are considered un-ordered relative to changes to any
other instance. That means that changes (creations, deletions, modifications) made
to two instances are not necessarily seen in the order they occur, the ordering applies
to each instance separately. Thisis the case even if the same application thread
makes the changes using the same DDS_DataWriter. Thisis the default
access__scope.

Note that this gosPolicy controls the ordering at which related changes are made
available to the pps_subscriber. In other words the pbs_subscriber can
access the changes in the proper order. However, it does not necessarily imply that

& PRISMTECH

3 DCPS Classes and Operations

3.1 InfrastructureModule

the pps_subscriber will indeed access the changes in the correct order. For that
to occur, the application at the DDs_subscriber end must use the proper logic in
reading the bbs_DataReader.

Requested/Offered

In case the Requested/Offered QosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting sideis raised.

Table 13 Requested/Offered DDS_PresentationQosPolicy

Requested INSTANCE Topic Group
M
instance compatible INcompatible INcompatible
topic compatible compatible INcompatible
group compatible compatible compatible

Only the default settings for this policy are currently supported. Deviations from the
default will beignored by the Publisher and/or Subscriber.

DDS _ReaderDatalL ifecycleQosPalicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_ReaderDatalLifecycleQosPolicy
{ DDS_Duration_t autopurge_nowriter_samples_delay;
DDS_Duration_t autopurge_disposed_samples_delay; 1};

Description

This QosPolicy specifies the maximum duration for which the bDs_bataReader
will maintain information regarding a data instance for which the instance_state
becomes either bbDsS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Of
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE.

Attributes

DDS_Duration_t autopurge_nowriter_samples_delay - Specifiesthe
duration for which the bps_bataReader Will maintain information regarding a
data instance for which the instance_state becomes
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE. By default the duration
valueisDDS_DURATION_INFINITE. When the delay time has expired, the data
instance is marked so that it can be purged in the next garbage collection sweep.

87
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_Duration_t autopurge_disposed_samples_delay - Specifies the
duration for which the DDs_DataReader Will maintain information regarding a
data instance for which the instance_state becomes
DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE. By default the duration
valueis DDS_DURATION_INFINITE. When the delay time has expired, the data
instance is marked so that it can be purged in the next garbage collection sweep.

Detailed Description

This QosPolicy specifies the maximum duration for which the bps_bpataReader
will maintain information regarding a data instance for which the
instance_state becomes either pDs_NOT_ALIVE_NO_WRITERS_
INSTANCE_STATE or DDS_NOT_ALIVE_DISPOSED_INSTANCE_STATE. The
DDS_DataReader manages resources for instances and samples of those instances.
The amount of resources managed depends on other gosPolicies like the
DDS_HistoryQosPolicy and the DDS_ResourceLimitsQosPolicy. The
DDS_DataReader can only release resources for data instances for which all
samples have been taken and the instance_state has become
DDS_NOT_ALIVE_NO_WRITERS_INSTANCE_STATE Of DDS_NOT_ALIVE_
DISPOSED_INSTANCE_STATE. If an application does not take the samples
belonging to a data instance with such an instance_state, the
DDS_DataReader Will never be able to rel ease the maintained resources. By means
of this QosPolicy the application can instruct the bDs_DataReader to release al
resources related to the concerning data instance after a specified duration.

ThisgosPolicy isapplicable to aDpDS_DataReader only. After enabling of the
concerning bbs_DataReader, thiSQosPolicy can be changed using the set_qgos
operation.

DDS RdliabilityQosPolicy

88
API Reference

Synopsis
#include <dds_dcps.h>
enum DDS_ReliabilityQosPolicyKind
{ DDS_BEST_EFFORT_RELIABILITY_ QOS,
DDS_RELIABLE_RELIABILITY QOS };
struct DDS_ReliabilityQosPolicy
{ DDS_ReliabilityQosPolicyKind kind;
DDS_Duration_t max_blocking time; };

Description

This gosPolicy controlsthe level of reliability of the data distribution offered or
reguested by the bDs_DataWriters and DDS_DataReaders.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

Attributes

DDS_ReliabilityQosPolicyKind kind - specifiesthetype of reliability which
may be DDS_BEST_EFFORT_RELIABILITY_QOS Of
DDS_RELIABLE_RELIABILITY_QOS.

DDS_Duration_t max_blocking time - specifies the maximum time the
DDS_DataWriter_write operation may block when the DDs_batawriter
does not have space to store the value written.

Detailed Description

This gosPolicy controlsthe level of reliability of the data distribution requested
by aDbs_DataReader or offered by abps_bpatawriter. In other words, it
controls whether datais allowed to get lost in transmission or not.

This gosPolicy is applicable to a DDS_DataReader, DDS_DataWriter and
DDS_Topic. After enabling of the concerning DDS_Entity, thisQosPolicy
cannot be changed any more.

Attributes
The gosPolicy iscontrolled by the attribute kind which can be:

* DDS_RELIABLE_RELIABILITY_QOS - the DataDistribution Service will attempt
to deliver all samples in the pps_patawriters history; arrival-checks are
performed and data may get re-transmitted in case of lost data. In the steady-state
(no modifications communicated via the DDS_Datawriter) the Data
Distribution Service guarantees that all samplesin the bbs_batawriter history
will eventualy be delivered to the all bps_bpataReader objects. Outside the
steady-state the DDS_HistoryQosPolicy and
DDS_ResourceLimitsQosPolicy determine how samples become part of the
history and whether samples can be discarded from it. In this case also the
max_blocking_ time must be set

* DDS _BEST EFFORT_RELIABILITY QoS - the Data Distribution Service will
only attempt to deliver the data; no arrival-checks are being performed and any
lost data is not re-transmitted (non-reliable). Presumably new values for the
samples are generated often enough by the application so that it is not necessary to
resent or acknowledge any samples.

The setting of the attribute max_blocking_time depends on the setting of the
DDS_HistoryQosPolicy and DDS_ResourceLimitsQosPolicy. In case the
DDS_HistoryQosPolicy kind iS Set to DDS_KEEP_ALL_HISTORY_QOS, the
DDS_Dataliriter_write operation on the DDS_DatawWriter may block if the
modification would cause one of the limits, specified in the
DDS_ResourceLimitsQosPolicy, to be exceeded. Under these circumstances,

89
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

the max_blocking_time attribute of the bDS_ReliabilityQosPolicy
configures the maximum duration the DDS_Datalriter_write operation may
block.

Reguested/Offered

In case the Requested/Offered gosPolicy are incompatible, the notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side and
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting sideis raised.

Table 14 Requested/Offered DDS_ReliabilityQosPolicy

\\\\\\\ggffffed BEST EFFORT | RELIABLE
Offer

BEST_EFFORT compatible INcompatible
RELIABLE compatible compatible
DDS TopicQos

This QosPolicy can be set on abbs_Topic. The DDS_DataWriter and/or
DDS_DataReader cCan copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_gos and then
DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

DDS Resourcel imitsQosPalicy

90
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_ResourceLimitsQosPolicy
{ DDS_long max_samples;

DDS_long max_instances;

DDS_long max_samples_per_instance; };
Note: This gosPolicy isnot yet fully implemented. Missing features are
scheduled for afuture rel ease.

Description
ThisQosPolicy will specify the maximum amount of resources, which can be used
byaDDS_DataWriterOrDDS_DataReadeL

Attributes

DDS_long max_samples - Specifies the maximum number of data samples for all
instances for any single DDS_DataWriter (Or DDS_DataReader). By default,
DDS_LENGTH_UNLIMITED.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

DDS_long max_instances - $pecifiesthe maximum number of instances for any
single pDs_DataWriter (Or DDS_DataReader). By default,
DDS_LENGTH_UNLIMITED. Any other value than bbs_LENGTH_UNLIMITED
will currently be ignored.

DDS_long max_samples_per instance - Specifies the maximum number of
samples of any single instance for any single DbS_DataWriter (Or
DDS_DataReader). By default, DDS_LENGTH_UNLIMITED.

Detailed Description

This gosPolicy controls the maximum amount of resources that the Data
Distribution Service can use in order to meet the requirements imposed by the
application and other QosPolicy settings.

ThisQosPolicy is applicableto aDDS_DataReader, aDDS_DataWriter and a
DDS_Topic. After enabling of the concerning pps_Entity, thisSQosPolicy
cannot be changed any more.

Requested/Offered

The value of the QosPolicy offered is independent of the one requested, in other
words they are never considered incompatible. The communication will not be
rejected on account of this QosPolicy. The notification
DDS_OFFERED_INCOMPATIBLE_QOS status on the offering side or
DDS_REQUESTED_INCOMPATIBLE_QOS status on the requesting side will not be
raised.

Resource limits

If the DDS_pDatawriter objects are publishing samples faster than they are taken
by the DDS_DataReader objects, the Data Distribution Service will eventually hit
against some of the QosPolicy-imposed resource limits. Note that this may occur
when just a single bDs_DataReader cannot keep up with its corresponding
DDS_DataWriter.

In case the DDS_HistoryQosPolicy iSDDS_KEEP_LAST_HISTORY_QOS, the
setting of DDS_ResourcelLimitsQosPolicy max_samples_per_instance
must be compatible with the bps_HistoryQosPolicy depth. For these two
QosPolicy settings to be compatible, they must verify that depth <=
max_samples_per_instance.

DDS TopicQos

This QosPolicy can be set on a pps_Topic. The bbs_bDatawriter and/or
DDS_DataReader can copy this qos by using the operations
DDS_<DDS_Entity>_copy_from_topic_gos and then

91
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_<DDS_Entity>_set_gos. That way the application can relatively easily
ensure the QosPolicy for the DDS_Topic, DDS_DataReader and
DDS_DataWriter are consistent.

DDS SchedulingQosPoalicy
Scope

DDS

Synopsis
#include <dds_dcps.h>
enum DDS_SchedulingClassQosPolicyKind
{ DDS_SCHEDULE_DEFAULT,
DDS_SCHEDULE_TIMESHARING,
DDS_SCHEDULE_REALTIME };
struct DDS_SchedulingClassQosPolicy
{ DDS_SchedulingClassQosPolicyKind kind; };
enum DDS_SchedulingPriorityQosPolicyKind
{ DDS_PRIORITY_RELATIVE,
DDS_PRIORITY_ABSOLUTE };
struct DDS_SchedulingPriorityQosPolicy
{ DDS_SchedulingPriorityQosPolicyKind kind; };
struct DDS_SchedulingQosPolicy
{ DDS_SchedulingClassQosPolicy scheduling class;
DDS_SchedulingPriorityQosPolicy scheduling_priority_kind;
DDS_long scheduling priority; 1};

Description

This gosPolicy specifies the scheduling parameters that will be used for a thread
that is spawned by the bbs_DomainParticipant

& Note that some scheduling parameters may not be supported by the underlying
Operating System or that you may need special privileges to select particular
settings.

Attributes

DDS_SchedulingClassQosPolicyKind scheduling class.kind - Specifies
the scheduling class used by the Operating System, which may be
DDS_SCHEDULE_DEFAULT, DDS_SCHEDULE_TIMESHARING Of
DDS_SCHEDULE_REALTIME. Threads can only be spawned within the
scheduling classes that are supported by the underlying Operating System.

DDS_SchedulingPriorityQosPolicyKind scheduling priority kind.kind -
specifies the priority type, which may be either DDS_PRIORITY RELATIVE Of
DDS_PRIORITY_ABSOLUTE.

92
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS_long scheduling priority - Specifiesthe priority that will be assigned to
threads spawned by the bbDs_DomainParticipant. Threads can only be
spawned with priorities that are supported by the underlying Operating System.

Detailed Description

This QosPolicy specifies the scheduling parameters that will be used for threads
spawned by the DDS_DomainParticipant. Notethat some scheduling parameters
may not be supported by the underlying Operating System or that you may need
special privileges to select particular settings. Refer to the documentation of your
OS for more details on this subject.

Although the behaviour of the scheduling class is highly dependent on the
underlying OS, in general when running in a Timesharing class your thread will
need to regularly yield execution to other threads of equal priority. In a Realtime
class, your thread normally runs until completion and can only be pre-empted by
higher priority threads. Often, the highest range of priorities is not accessible
through aTimesharing Class.

The scheduling_priority_kind determines whether the specified
scheduling priority should beinterpreted as an absolute priority or whether it
should be interpreted relative to the priority of its creator, in this case the priority of
the thread that created the DDS_DomainParticipant.

DDS TimeBasedFilter QosPolicy

Synopsis
#include <dds_dcps.h>
struct DDS_TimeBasedFilterQosPolicy
{ DDS_Duration_t minimum_separation; };

Note: ThisgosPolicy isnot yet implemented. It is scheduled for afuture release.

DDS _TopicDataQosPolicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_TopicDataQosPolicy
{ DDS_sequence_octet wvalue; };

Description

This gosPolicy allows the application to attach additional information to a
DDS_Topic DDS_Entity. Thisinformation is distributed with the
DDS_BuiltinTopics.

93
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Attributes

DDS_sequence_octet value - asequence of octets that holds the application
topic data. By default, the sequence has length 0.

Detailed Description

This QosPolicy allows the application to attach additional information to a
DDS_Topic Entity. Thisinformation is distributed with the BuiltinTopic. An
application that discovers a new DDS_Topic entity, can use this information to add
additional functionality. The bbs_TopicDataQosPolicy IS changeable and
updates of the BuiltinTopic instance must be expected. Note that the Data
Distribution Service is not aware of the real structure of the topic data (the Data
Distribution System handles it as an opaque type) and that the application is
responsible for correct mapping on structural types for the specific platform.

DDS TransportPriorityQosPolicy

94
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_TransportPriorityQosPolicy
{ DDS_long value; };

Description

ThisQosPolicy specifiesthe priority with which the Data Distribution System can
handle the data produced by the DDS_Datawriter.

Attributes

DDS_long value - Specifiesthe priority with which the Data Distribution System
can handle the data produced by the bDS_Datawriter.

Detailed Description

This gosPolicy specifiesthe priority with which the Data Distribution System can
handle the data produced by abps_batatiriter. ThiSQospPolicy isconsidered to
be a hint to the Data Distribution Service to control the priorities of the underlying
transport means. A higher value represents a higher priority and the full range of the
typeis supported. By default the transport priority is set to O.

The DDS_TransportPriorityQosPolicy isapplicable to both pbs_Topic and
DDS_DataWriter entities. After enabling of the concerning pps_Entities, this
QosPolicy may be changed by using the set_qos operation.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

TopicQos

Note that changing this QosPolicy for the bbs_Topic does not influence the
behaviour of the Data Distribution System for existing DDs_batawWriter entities
because this gosPolicy isonly used by the operation copy_from_topic_gos
and when specifying DDS_DATAWRITER_QOS_USE_TOPIC_QOS when creating the
DataWriter.

DDS _User DataQosPolicy

Synopsis
#include <dds_dcps.h>

struct DDS_UserDataQosPolicy
{ DDS_sequence_octet value; };

Description

This gosPolicy allows the application to attach additional information to a
DDS_DomainParticipant, DDS_DataReader Or DDS_DataWriter
DDS_Entity. Thisinformation is distributed with the Builtin Topics.

Attributes

DDS_sequence_octet value - iSasequence of octets that holds the application
user data. By default, the sequence has length O.

Detailed Description

This QosPolicy allows the application to attach additional information to a
DDS_DomainParticipant, DDS_DataReader Of DDS_DataWriter entity. This
information is distributed with the Builtin Topics. An application that discovers a
new pDS_Entity oOf the listed kind, can use this information to add additional
functionality. The DDS_UserDataQosPolicy iS changeable and updates of the
Builtin Topic instance must be expected. Note that the Data Distribution Serviceis
not aware of thereal structure of the user data (the Data Distribution System handles
it as an opaque type) and that the application is responsible for correct mapping on
structural types for the specific platform.

DDS Writer Datal ifecycleQosPolicy

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_WriterDataLifecycleQosPolicy
{ DDS_boolean autodispose_unregistered_instances; };
Note: The functionality behind this gosPolicy isnot yet fully implemented.
Missing features are scheduled for afuture release.

95
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Description

This QosPolicy specifies whether the Data Distribution Service should
automatically dispose instances that are unregistered by the bbs_Datawriter.

Attributes

DDS_boolean autodispose_unregistered_instances - Specifies whether
the Data Distribution Service should automatically dispose instances that are
unregistered by thispps_batawriter.

Detailed Description

This QosPolicy controls the behaviour of the bps_bpatawriter with regardsto
the lifecycle of the data-instances it manages, that is, the data-instances that have
been registered either explicitly using one of the register operations or implicitly
by directly writing the data using the special DDS_HANDLE_NIL parameter. (See
also Section 3.4.2.50, SPACE_FooDataWriter_register_instance, on page 295).

The autodispose_unregistered_instances flag controls what happens
when an instance gets unregistered by the DDS_Datawriter:

* If the DDsS_Datawriter unregisters the instance explicitly using either
SPACE_FooDataWriter_unregister_instance or
SPACE_FooDataWriter_unregister_ instance_w_timestamp, then the
autodispose_unregistered_instances flag is currently ignored and the
instance is never disposed automatically.

* If the DDS_Datawriter unregisters its instances implicitly because it is deleted
or if a DDs_bDataReader detects a loss of liveliness of a connected
DDS_DataWriter, then the auto_dispose_unregistered_instances flag
determines whether the concerned instances are automatically disposed (TRUE) or
not (FALSE).

The default value for the autodispose_unregistered_instances flagis
TRUE. FOr TRANSIENT and PERSISTENT topics this means that all instances that
are not explicitly unregistered by the application will by default be removed from
the Transient and Persistent stores when the DataWriter is deleted or when aloss of
itslivelinessis detected.

DDS Ligtener interface

96
API Reference

This interface is the abstract base interface for all .istener interfaces.
Listeners provide a generic mechanism for the Data Distribution Service to
notify the application of relevant asynchronous status change events, such as a
missed deadline, violation of aQosPolicy setting, etc. Each DCPS DDS_Entity
supports its own specialized kind of Listener. Listeners are related to changes

& PRISMTECH

3 DCPS Classes and Operations

3.1 InfrastructureModule

in communication status. For each DDs_Entity type, one specific Listener is
derived from this interface. In the following modules, the following Listeners are
derived from this interface:

« DDS DomainParticipantListener

DDS TopicListener
DDS PublisherListener

DDS DatawriterListener

DDS_SubscriberListener

DDS_DataReaderListener.

The DDS_Entity type specific Listener interfaces are part of the application
which must implement the interface operations. A user defined class for these
operations must be provided by the application which must extend from the specific
Listener class. All Listener operations must be implemented in the user
defined class, it is up to the application whether an operation is empty or contains
some functionality.

&4 PRISMTECH

<<Interface>>
Listener
(from Infrastructure Module)

<<Interface>>
DataWriterListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_gos()
on_publication_match()

<<Interface>>
PublisherListener

<<Interface>>
DataReaderListener

on_data_available()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_qos()
on_sample_lost()
on_sample_rejected()
on_subscription_match()

<<Interface>>
TopicListener

on_inconsistent_topic()

DomainParticipantListener

<<Interface>>
SubscriberListener

on_data_on_readers()

Figure 11 DCPSListeners
The base class DDS_Listener does not contain any operations.

97
API Reference

3 DCPS Classes and Operations

3.1.5 Sruct DDS Satus
Each concrete bps_Entity class has a set of Dbs_Status attributes and for each
attribute the pps_Ent ity class provides an operation to read the value. Changes to
DDS_Status attributes will affect associated Dbs_StatusCondition and
(invoked and associated) Listener Objects.

The communi cation statuses whose changes can be communicated to the application
depend on the ppbs_gntity. The following table shows the relevant statuses for
each DDS_Entity.

Table 15 Satus Description Per DDS _Entity

3.1 InfrastructureModule

DDS _Entity

Satus Name

M eaning

DDS_Topic

DDS_INCONSISTENT__
TOPIC_STATUS

Another DDS_Topic exists with the same name
but with different characteristics.

DDS_Subscriber

DDS_DATA_ON_
READERS_ STATUS

New information is available.

DDS_DataReader

DDS_SAMPLE_
REJECTED_STATUS

A (received) sample has been rejected.

DDS_LIVELINESS_
CHANGED_STATUS

The liveliness of one or more
DDS_DataWriter objects that were writing
instances read through the DDS_DataReader
has changed. Some DDS_DataWriter have
become “alive’ or “not alive’.

DDS_REQUESTED_
DEADLINE_MISSED_STATUS

The deadline that the DDS_DataReader was
expecting through its
DDS_DeadlineQosPolicy was not
respected for a specific instance.

DDS_REQUESTED_
INCOMPATIBLE_QOS_STATUS

A QosPolicy setting was incompatible with
what is offered.

DDS_DATA_AVAILABLE_STATUS

New information is available.

DDS_SAMPLE_LOST_STATUS

A sample has been lost (never received).

DDS_SUBSCRIPTION_
MATCHED_STATUS

The DDS_DataReader has found a
DDS_DataWriter that matches the
DDS_Topic and has compatible Qos.

98
API Reference

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Table 15 Satus Description Per DDS _Entity (Continued)

DDS Entity Satus Name Meaning
DDS_DataWriter DDS_LIVELINESS_ Theliveliness that the DDS_DataWriter
LOST_STATUS has committed through its

DDS_LivelinessQosPolicy Was not
respected; thus DDS_DataReader Objects
will consider the DDS_DataWriter asno
longer “alive’.

DDS_OFFERED_ Thedeadlinethat thepps_Datawriter has
DEADLINE_MI SSED_STATUS Commltted through ItS
DDS_DeadlineQosPolicy Was not
respected for a specific instance.

DDS_OFFERED_ A QosPolicy setting was incompatible
INCOMPATIBLE_QOS_STATUS | jth what was requested.
DDS_PUBLICATION_ Thepps_bpatawriter hasfound a
MATCHED_STATUS DDS_DataReader that matches the

DDS_Topic and has compatible Qos.

&4 PRISMTECH

A DDS_status attribute can be retrieved with the operation
get_<status_name>_status. For example, to get the
DDS_TInconsistentTopicStatus value, the application must call the operation
DDS_Topic_get_inconsistent_topic_status.

Conceptually associated with each DDS_Entity communication statusis alogical
StatusChangedFlag. This flag indicates whether that particular communication
status has changed. The statusChangedFlag is only conceptual, therefore, it is
not important whether this flag actually exists.

For the plain communication DDS_Status, the StatusChangedrFlag isinitialy
set to FALSE. It becomes TRUE whenever the plain communication DDS_Status
changes and it is reset to FALSE each time the application accesses the plain
communication DDS_Status Viathe proper get_<status_name>_status
operation on the bDS_Entity.

A flag set means that a change has occurred since the last time the application has
read its value.

99
API Reference

3 DCPS Classes and Operations

SampleLostStatus

total_count : long
total_count_change : long

InconsistentTopicStatus

total_count : long
total_count_change : long

SampleRejectedStatus

o Status <
—

LivelinessChangedStatus

active_count : long
inactive_count : long
active_count_change : long
inactive_count_change : long

OfferedDeadlineMissedStatus

total_count : long
total_count_change : long
last_instance_handle : InstanceHandle_t

total_count : long

total_count_change : long

last_reason : SampleRejectedStatusKind
last_instance_handle : InstanceHandle_t

RequestedDeadlineMissedStatus

total_count : long
total_count_change : long
last_instance_handle : InstanceHandle_t

PublicationMatchStatus

SubscriptionMatchStatus

3.1 InfrastructureModule

LivelinessLostStatus

[[total_count
total_count_change

RequestedincompatibeQosStatus

total_count

last_policy_id
policies [*]

total_count_change L

OfferedincompatibleQosStatus

total_count

last_policy_id
policies [*]

total_count_change

total_count : long

total_count : long

QosPolicyCount

total_count_change : long policy_id

—|total_count_change : long L
last_publication_handle : InstanceHandle_t count

last_subscription_handle : InstanceHandle_t

Figure12 DCPSDDS Status Values

Each pps_status attribute is implemented as a struct and therefore does not

provide any operations. The interface description of these structsis as follows:
/ *
* struct DDS_<name>Status
*/
struct DDS_InconsistentTopicStatus
{ DDS_long total_count;
DDS_long total_count_change; };
struct DDS_SampleLostStatus
{ DDS_long total_count;
DDS_long total_count_change; };
enum DDS_SampleRejectedStatusKind
{ DDS_NOT_REJECTED,
DDS_REJECTED_BY_INSTANCES_LIMIT,
DDS_REJECTED_BY_SAMPLES_LIMIT,
DDS_REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT };
struct DDS_SampleRejectedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_SampleRejectedStatusKind last_reason;
DDS_InstanceHandle_t last_instance_handle; };
struct DDS_LivelinessLostStatus
{ DDS_long total_count;

100

API Reference & PRISMTECH

3 DCPS Classes and Operations

/~k
*

*

*/

DDS_long total_count_change; };
struct DDS_LivelinessChangedStatus
{ DDS_long alive_count;
DDS_long not_alive_count;
DDS_long alive_count_change;
DDS_long not_alive_count_change;
DDS_InstanceHandle_t last_publication_handle;
struct DDS_OfferedDeadlineMissedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_InstanceHandle_t last_instance_handle; };
struct DDS_RequestedDeadlineMissedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_InstanceHandle_t last_instance_handle; };
struct DDS_OfferedIncompatibleQosStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_QosPolicyId_t last_policy_id;
DDS_QosPolicyCountSeq policies; };
struct DDS_RequestedIncompatibleQosStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_QosPolicyId_t last_policy_ id;
DDS_QosPolicyCountSeq policies; };
struct DDS_PublicationMatchedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_long current_count;
DDS_long current_count_change;
DDS_InstanceHandle_t last_subscription_handle;
struct DDS_SubscriptionMatchedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_long current_count;
DDS_long current_count_change;
DDS_InstanceHandle_t last_publication_handle;

implemented API operations
<no operations>

The sections describe the usage of each DDS_<name>Status struct.

3.1.5.1 DDS InconsistentTopicSatus
Synopsis

#include <dds_dcps.h>
struct DDS_InconsistentTopicStatus

&4 PRISMTECH

{ DDS_long total_count;

3.1 InfrastructureModule

Y

Y

Y

101
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_long total_count_change; };

Description

This struct contains the statistics about attempts to create other bDs_Topics with
the same name but with different characteristics.

Attributes

DDS_long total_count - the total detected cumulative count of DDS_Topic
creations, whose name matches the pps_Topic to which thispps_status is
attached and whose characteristics are inconsi stent.

DDS_long total_count_change - the changein total_count since the last
timethe Listener was caled or the DDS_Status wasread.

Detailed Description

This struct contains the statistics about attempts to create other bDs_Topics with
the same name but with different characteristics.

The attribute total_count holds the total cumulative count of bDS_Topic
creations, whose name matches the pps_Topic to which thisDbDs_Status is
attached and whose characteristics are inconsistent .

The attribute total_count_change holds the incremental number of inconsistent
DDS_Topics, Sincethelast timethe Listener was called or the bDS_status was
read.

DDS LivelinessChangedStatus

102
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_LivelinessChangedStatus
{ DDS_long alive_count;
DDS_long not_alive_count;
DDS_long alive_count_change;
DDS_long not_alive_count_change;
DDS_InstanceHandle_t last_publication_handle; };

Description

This struct contains the statistics about whether the liveliness of one or more
connected DDS_Datalriter objects has changed.

Attributes

DDS_long alive_count - thetotal count of currently alive DDS_DataWriter
objects that write the topic read by the bDs_DataReader to which this
DDS_Status is attached.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

DDS_long not_alive_count - the total count of currently not alive
DDS_DataWriter objects that wrote the topic read by the bDs_DpataReader
to which thispps_status is attached.

DDS_long alive count_change - the changein alive_count since the last
timethe Listener wascaled or the bDs_status was read.

DDS_long not_alive_count_change - the change in not_alive_count
since the last timethe Listener wascalled or the bbs_status was read.

DDS _InstanceHandle t last publication_handle - handle to the last
DDS_DataWriter whose changein liveliness caused this status to change.

Detailed Description

This struct contains the statistics about whether the liveliness of one or more
connected DDS_DataWriter objects that were writing instances read through the
DDS_DataReader has changed. In other words, some DDS_DataWriters have
become “alive” or “not alive”.

The attribute alive_count holds the total number of currently alive
DDS_DataWriter oObjects that write the topic read by the bDS_DataReader to
which this pps_status is attached. This count increases when a newly matched
DDS_DataWriter assertsits liveliness for the first time or when a
DDS_DataWriter previously considered to be not alive reassertsits liveliness. The
count decreases when a DDS_DataWriter considered alive fails to assert its
liveliness and becomes not alive, whether because it was deleted normally or for
some other reason.

The attribute not_alive_count holds the total count of currently not alive
DDS_DataWriters that wrote the topic read by the bbs_DataReader to which
this DDS_Status is attached, and that are no longer asserting their liveliness. This
count increases when a bDS_DataWriter considered alive fails to assert its
liveliness and becomes not alive for some reason other than the normal deletion of
that DDS_DataWriter. It decreases when a previously not alive DDS_DataWriter
either reassertsits liveliness or is deleted normally.

The attribute a1ive_count_change holdsthe changein alive count sincethe
last timethe Listener was called or the DDS_Status was read.

The attribute not_alive_count_change holds the change in
not_alive count Since the last time the Listener was called or the
DDS_Status wasread.

The attribute 1ast_publication_handle contains the instance handle to the
DDS_PublicationBuiltinTopicData instance that represents the last
datawriter whose change in liveliness caused this status to change. Be aware that
this handle belongs to another datareader, the

103
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

A

DDS_PublicationBuiltinTopicDataDataReader in the builtin-subscriber,
and has no meaning in the context of the datareader from which the
DDS_LivelinessChangedStatus was obtained. If the builtin-subscriber has not
explicitly been obtained using
DDS_DomainParticipant_get_builtin_subscriber, then thereis no
DDS_PublicationBuiltinTopicDataDataReader aswell, in which case the
last_publication_handle will be set to DDS_HANDLE NIL.

DDS LivelinessL ostSatus

104
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_LivelinessLostStatus
{ DDS_long total_count;
DDS_long total_count_change; };

Description

This struct contains the statistics about whether the liveliness of the
DDS_DataWriter to which thispDDs Status is attached has been committed
through its DDS_TLivelinessQosPolicy.

Attributes

DDS_long total_count - the total cumulative count of times the
DDS_DataWriter to which this DDS_status is attached failed to actively
signal its liveliness within the offered liveliness period.

DDS_long total_count_change - the changein total_count Since the last
timethe Listener wascaled or the bDS_status wasread.

Detailed Description

This struct contains the statistics about whether the liveliness of the
DDS_DataWriter to which this DDs_status is attached has been committed
through its DDS_LivelinessQosPolicy. In other words, whether the
DDS_DataWriter failed to actively signal its liveliness within the offered
liveliness period. In such a case, the connected pbs_DataReader objects will
consider the DDS_DataWriter asno longer “aive’.

The attribute total_count holds the total cumulative number of times that the
previously-alive bps_bDatawriter became not alive due to a failure to actively
signdl its liveliness within its offered liveliness period. This count does not change
when an already not alive bDS_Datawriter Simply remains not alive for another
liveliness period.

The attribute total_count_change holds the changein total_count since the
last timethe Listener was called or the DDS_Status was read.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS OfferedDeadlineMissedSatus

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_OfferedDeadlineMissedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_InstanceHandle_t last_instance_handle; };

Description

This struct contains the statistics about whether the deadline that the
DDS_DataWriter to which thisbDs_Status is attached has committed through
itsDDS_DeadlineQosPolicy, Was not respected for a specific instance.

Attributes

DDS_long total_count - the total cumulative count of times the
DDS_DataWriter to which thisDDsS_sStatus is attached failed to write within
its offered deadline.

DDS_long total_count_change - the changein total_count Since the last
timethe Listener wascalled or the bDS_status wasread.

DDS_InstanceHandle t last_instance_handle - the handle to the last
instance in the DDS_Datawriter to which thisbps_Status is attached, for
which an offered deadline was missed.

Detailed Description

This struct contains the statistics about whether the deadline that the
DDS_DataWriter to which thisbps_Status is attached has committed through
its DDS_DeadlineQosPolicy, Was not respected for a specific instance.

The attribute total_count holds the total cumulative number of offered deadline
periods elapsed during which the bps_batawriter to which thisbps_status is
attached failed to provide data. Missed deadlines accumulate; that is, each deadline
period the total_count will beincremented by one.

The attribute total_count_change holdsthe changein total_count sincethe
last timethe Listener wascaled or the bDs_status was read.

The attribute last_instance_handle holds the handle to the last instance in the
DDS_DataWriter to which this bDs_status is attached, for which an offered
deadline was missed.

105
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS_OfferedlncompatibleQosStatus

106
API Reference

Synopsis
#include <dds_dcps.h>
struct DDS_OfferedIncompatibleQosStatus
{ DDS_long total_count;
DDS_long total_count_change;
QosPolicyId_t last_policy id;
QosPolicyCountSeq policies; };

Description

This struct contains the statistics about whether an offered gosPolicy setting was
incompatible with the requested QosPolicy Setting.

Attributes

DDS_long total_count - the total cumulative count of DDS_DataReader
objects discovered by the bbs_batawriter with the same DDS_Topic and
Partition and with areguested DDS_DataReaderQos that wasincompatible
with the one offered by the DDS_Dataviriter.

DDS_long total_count_change - the changein total_count Since the last
timethe Listener wascaled or the bDS_status wasread.

QosPolicyId_t last_policy_id -theid of one of the QosPolicy settings
that was found to be incompatible with what was offered, the last time an
incompatibility was detected.

QosPolicyCountSeq policies - alist containing for each QosPolicy the total
number of times that the concerned bbs_DataWriter discovered a
DDS_DataReader for the same pDs_Topic and a requested
DDS_DataReaderQos that is incompatible with the one offered by the
DDS_DataWriter.

Detailed Description

This struct contains the statistics about whether an offered gosPolicy setting was
incompatible with the requested gosPolicy Setting.

The Request/Offering mechanism is applicable between:

* the DDS_Datawriter and the DDS_DataReader. If the QosPolicy Settings
between DDS_bDatawriter and DDS_DataReader are incompatible, no
communication between them is established. In addition the DDS_Datawriter
will beinformed viaaDbbs_REQUESTED_INCOMPATIBLE_QOS status change and
the DDS_DataReader will be informed via an
DDS_OFFERED_INCOMPATIBLE_QOS Status change.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

e the DDS_Datawriter and the Durability Service (as a built-in
DDS_DataReader). If the QosPolicy settings between pps_batawriter and
the Durability Service are inconsistent, no communication between them is
established. In that case data published by the pps_Datawriter will not be
maintained by the service and as a consequence will not be available for late
joining DDS_DataReaders. The QosPolicy of the Durability Servicein therole
of DDs_DataReader isspecified by the Dbs_DurabilityServiceQosPolicy
inthe bbs_Topic.

e the Durability Service (as a built-in DDS_bDatawriter) and the
DDS_DataReader. If the QosPolicy settings between the Durability Service
and the DDsS_DataReader are inconsistent, no communication between them is
established. In that case the Durability Service will not publish historical data to
latejoining DDS_DataReaders. The QosPolicy of the Durability Servicein the
role of DDS_DataWriter is specified by the
DDS_DurabilityServiceQosPolicy inthe DDS_Topic.

The attribute total_count holdsthe total cumulative count of DDS_DataReader
objects discovered by the pps_batawriter with the same bps_Topic and a
requested DDS_DataReaderQos that was incompatible with the one offered by the
DDS_DataWriter.

The attribute total_count_change holdsthe changein total_count since the
last timethe Listener was called or the DDS_Status was read.

The attribute 1ast_policy_id holdstheid of one of the QosPolicy settings that
was found to be incompatible with what was offered, the last time an
incompatibility was detected.

The attribute policies holds alist containing for each QosPo1licy the total
number of times that the concerned DDS_Datawriter discovered an incompatible
DDS_DataReader for the same DDS_Topic. Each element in the list represents a
counter for a different gospPolicy, identified by a corresponding unique index
number. A named list of all index numbers is expressed as a set of constantsin the
API. See, for an overview of all these constants.

Table 16 Overview of All Named QosPolicy | ndexes

Index Name Index Value
DDS_INVALID_ QOS_POLICY_ID 0

DDS_USERDATA_QOS_POLICY_ID

DDS_DURABILITY_ QOS_POLICY_ID

1
2
DDS_PRESENTATION_QOS_POLICY_ID 3
DDS_DEADLINE_QOS_POLICY_ID 4

107
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Table 16 Overview of All Named QaosPolicy | ndexes

Index Name Index Value
DDS_LATENCYBUDGET QOS_POLICY_ ID 5
DDS_OWNERSHIP_QOS_POLICY_ID 6
DDS_OWNERSHIPSTRENGTH_QOS_POLICY_ID 7
DDS_LIVELINESS_QOS_POLICY ID 8
DDS_TIMEBASEDFILTER_QOS_POLICY_ID 9
DDS_PARTITION_QOS_POLICY_ ID 10
DDS_RELIABILITY QOS_POLICY_ ID 11
DDS_DESTINATIONORDER_QOS_POLICY_ID 12
DDS_HISTORY_QOS_POLICY_ ID 13
DDS_RESOURCELIMITS_QOS_POLICY_ ID 14
DDS_ENTITYFACTORY_QOS_POLICY_ID 15
DDS_WRITERDATALIFECYCLE_QOS_POLICY_ ID 16
DDS_READERDATALIFECYCLE_QOS_POLICY_ ID 17
DDS_TOPICDATA_QOS_POLICY_ID 18
DDS_GROUPDATA_QOS_POLICY_ID 19
DDS_TRANSPORTPRIORITY_ QOS_POLICY ID 20
DDS_LIFESPAN_QOS_POLICY_ID 21
DDS_DURABILITYSERVICE_QOS_POLICY_ ID 22

3.1.5.6 DDS PublicationM atchedStatus
Synopsis

#include <dds_dcps.h>
struct DDS_PublicationMatchedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_long current_count;
DDS_long current_count_change;
DDS_InstanceHandle_t last_subscription_handle; };

Description

The functionality behind the bDs_pPublicationMatchedStatus iS not yet
implemented. It is scheduled for afuture release.

108

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS _RequestedDeadlineMissedStatus
Synopsis

#include <dds_dcps.h>
struct DDS_RequestedDeadlineMissedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_InstanceHandle_t last_instance_handle; };

Description
This struct contains the statistics about whether the deadline that the

DDS_DataReader to which thisDDS_Status isattached was expecting through its
DDS_DeadlineQosPolicy, Was not respected for a specific instance.

Attributes

DDS_long total_count - the total cumulative count of the missed deadlines
detected for any instance read by the bDs_DataReader to which this
DDS_Status isattached.

DDS_long total_count_change - the changein total_count Since the last
timethe Listener wascalled or the bDS_status wasread.

DDS_InstanceHandle t last_instance_handle - the handle to the last
instance in the bDs_DataReader to which thisDDs_Status is attached for
which a missed deadline was detected.

Detailed Description

This struct contains the statistics about whether the deadline that the
DDS_DataReader to Which thispps_status isattached was expecting through its
DDS_DeadlineQosPolicy, Was not respected for a specific instance. Missed
deadlines accumulate, that is, each deadline period the total_count will be
incremented by one for each instance for which data was not received.

The attribute total_count holds the total cumulative count of the missed
deadlines detected for any instance read by the bDs_DataReader.

The attribute total_count_change holdsthe changein total_count sincethe
last timethe Listener wascaled or the bDs_status was read.

The attribute last_instance_handle holds the handle to the last instance in the
DDS_DataReader for which a missed deadline was detected.

DDS_Requestedl ncompatibleQosSatus
Synopsis
#include <dds_dcps.h>

109

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

110
API Reference

struct DDS_RequestedIncompatibleQosStatus
{ DDS_long total_count;
DDS_long total_count_change;
QosPolicyId_t last_policy_id;
QosPolicyCountSeq policies; 1};

Description

This struct contains the statistics about whether a requested QosPo1licy Setting was
incompatible with the offered gosPo1licy setting.

Attributes

DDS_long total_count - holdsthe total cumulative count of DDS_DatawWriter
objects, discovered by the pDs_pataReader to which thispps_status is
attached, with the same bbs_Topic and an offered DDS_DatawWriterQos that
was incompatible with the one requested by the bbs_DataReader.

DDS_long total_count_change - holdsthe changein total_count since the
last timethe Listener was caled or the DDS_Status was read.

QosPolicyId t last_policy_ id - holdsthe DDS_<name> Q0S_POLICY ID
of one of the gosPolicies that was found to be incompatible with what was
requested, the last time an incompatibility was detected.

QosPolicyCountSeq policies - alist containing (for each gospPolicy) the
total number of times that the concerned pDs_DbDataReader discovered a
DDS_DataWriter with the same pbps_Topic and an offered
DDS_DataWriterQos that isincompatible with the one requested by the
DDS_DataReader.

Detailed Description

This struct contains the statistics about whether a requested QosPolicy Setting was
incompatible with the offered gosPolicy Setting.

The Request/Offering mechanism is applicable between:

* the DDS_DataWriter and the DDS_DataReader. If the QosPolicy settings
between DDS_Datawriter and DDS_DataReader are incompatible, no
communication between them is established. In addition the DDs_Datawriter
will be informed viaa bps_REQUESTED_INCOMPATIBLE_QOS status change and
the DDS_DataReader will be informed via an
DDS_OFFERED_INCOMPATIBLE_QOS Status change.

» the DDs_patawriter and the Durability Service (as a built-in
DDS_DataReader). If the QosPolicy settings between pps_batawriter and
the Durability Service are inconsistent, no communication between them is
established. In that case data published by the pps_Datawriter will not be
maintained by the service and as a consequence will not be available for late

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

joining DDS_DataReaders. The QosPolicy of the Durability Servicein therole
of DDS_DataReader is specified by the DDS_DurabilityServiceQosPolicy
inthe bbs_Topic.

e the Durability Service (as a built-in DDS_DatawWriter) and the
DDS_DataReader. If the QosPolicy settings between the Durability Service
and the DDS_DataReader are inconsistent, no communication between them is
established. In that case the Durability Service will not publish historical data to
latejoining DDS_DataReaders. The QosPolicy of the Durability Servicein the
role of DDS_DataWriter is specified by the
DDS_DurabilityServiceQosPolicy inthe DDS_Topic.

The attribute total_count holdsthe total cumulative count of DDS_Datawriter
objects discovered by the DDS_DataReader with the same DDs_Topic and an
offered DDS_DatawriterQos that was incompatible with the one requested by the
DDS_DataReader.

The attribute total_count_change holdsthe changein total_count sincethe
last timethe Listener was called or the DDS_Status was read.

The attribute 1ast_policy_ id holdsthe pps_<name>_Qos_PoLICy_ID of one
of the QosPolicies that was found to be incompatible with what was requested,
the last time an incompatibility was detected.

The attribute policies holds alist containing for each QosPolicy: the total
number of times that the concerned pps_bataReader discovered an incompatible
DDS_DataWriter for the same DDS_Topic. Each element in the list represents a
counter for a different gospPolicy, identified by a corresponding unique index
number. A named list of all index numbers is expressed as a set of constantsin the
API. See Table 16, Overview of All Named QosPolicy Indexes, on page 107 for an
overview of all these constants.

DDS _Samplel ostSatus

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_SamplelLostStatus
{ DDS_long total_count;
DDS_long total_count_change; };

Description

This struct contains the statistics about whether a sample has been lost (never
received).

111
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Attributes

DDS_long total_count - holds the total cumulative count of all samples lost
across al instances of data published under the bbs_Topic.

DDS_long total_count_change - holdsthe changein total_count since the
last timethe Listener was caled or the DDs_status was read.

Detailed Description

This struct contains the statistics about whether a sample has been lost (never
received). The statusis independent of the differencesin instances, in other words, it
includes all samples lost across all instances of data published under the
DDS_Topic.

total_count holds the total cumulative count of all samples lost across all
instances of data published under the bps_Topic.

total_count_change holdsthe changein total_count since the last time the
Listener wascaled or thepps_ status wasread.

DDS _SampleRe ectedSatus

112
API Reference

Synopsis
#include <dds_dcps.h>
enum DDS_SampleRejectedStatusKind
{ DDS_NOT_REJECTED,
DDS_REJECTED_BY INSTANCES LIMIT,

DDS_REJECTED_BY SAMPLES_LIMIT,
DDS_REJECTED_BY_ SAMPLES_PER_INSTANCE LIMIT };

struct DDS_SampleRejectedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_SampleRejectedStatusKind last_reason;
DDS_InstanceHandle_t last_instance_handle; };

Description
This struct contains the statistics about samples that have been rejected.

Attributes

DDS_long total_ count - holdsthetotal cumulative count of samples rejected by
the DDS_DataReader to which thisDDS_status is attached.

DDS_long total_count_change - holds the changein total_count since the
|ast timethe Listener was cdled or the DDS_Status was read.

DDS_SampleRejectedStatusKind last_reason - holds the reason for
rejecting the last sample.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS_InstanceHandle t last_instance_handle - holds the handle to the
instance which would have updated by the last sample that was rejected.

Detailed Description
This struct contains the statistics about whether a received sample has been rejected.

The attribute total_count holdsthe total cumulative count of samples rejected by
the DDS_DataReader to Which thispps_status is attached.

The attribute total_count_change holdsthe changein total_count sincethe
last timethe Listener wascaled or the bDS_status was read.

The attribute 1ast_reason holds the reason for rejecting the last sample. The
attribute can have the following values:

* DDS_NOT_REJECTED - N0 sample has been rejected yet.

* DDS_REJECTED_BY_ INSTANCES_LIMIT - the sample was rejected because it
would exceed the maximum number of instances set by the
DDS_ResourceLimitsQosPolicy.

* DDS_REJECTED_BY_SAMPLES_LIMIT - the sample was rejected because it
would exceed the maximum number of samples set by the
DDS_ResourceLimitsQosPolicy.

* DDS_REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT - the sample was
rejected because it would exceed the maximum number of samples per instance
set by the DDS_ResourceLimitsQosPolicy

The attribute 1ast_instance_handle holds the handle to the instance which
would have updated by the last sample that was rejected.

DDS_SubscriptionM atchedStatus

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_SubscriptionMatchedStatus
{ DDS_long total_count;
DDS_long total_count_change;
DDS_long current_count;
DDS_long current_count_change;
DDS_InstanceHandle_t last_publication_handle; };

Description

The functionality behind the pps_subscriptionMatchedStatus IS not yet
implemented. It is scheduled for afuture release.

113
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

ClassDDS WaitSet

A DDs_waitSet object allows an application to wait until one or more of the
attached DDs_Condi tion objects evaluates to TRUE or until the timeout expires.

The pps_waitSet has no factory and must be created by the application. It is
directly created as an object by using bbs_waitSet constructors.

WaitSet
Condition n
attach_condition()
. . .| detach_condition()
get_trigger_value() get_conditions()

wait()

Figure 13 DCPSDDS WaitSets
The interface description of this classis asfollows:
/ *
* interface DDS_WaitSet
*/
/ *
* implemented API operations
*/
DDS_WaitSet
DDS_WaitSet_ _alloc
(void) ;
DDS_ReturnCode_t
DDS_WaitSet_wait
(DDS_WaitSet _this,
DDS_ConditionSeqg *active_conditions,
const DDS_Duration_t *timeout) ;
DDS_ReturnCode_t
DDS_WaitSet_attach_condition
(DDS_WaitSet _this,
const DDS_Condition cond) ;
DDS_ReturnCode_t
DDS_WaitSet_detach_condition
(DDS_WaitSet _this,
const DDS_Condition cond) ;
DDS_ReturnCode_t
DDS_WaitSet_get_conditions
(DDS_WaitSet _this,
DDS_ConditionSeq *attached_conditions) ;

The following sections describe the usage of all bpbs_waitSet operations.
DDS WaitSet _ alloc

Synopsis

#include <dds_dcps.h>

114

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

DDS_WaitSet
DDS_WaitSet__alloc
(void) ;

Description
This operation creates anew DDS_WaitsSet.

Parameters
<none>

Return Value

DDS_waitSet - handle to the newly created DDS_waitSet. In case of an error, a
DDS_OBJECT_NIL pointer isreturned.

Detailed Description

This operation creates a new DDS_WaitSet. The Dbs_waitSet must be created
using this operation. In other words, the application is not allowed to declare an
object of type pps_waitset. When the application wants to release the
DDS_WaitSet it must bereleased using bps_free.

In case there are insufficient resources available to allocate the bps_waitset, a
DDS_OBJECT_NIL pointer isreturned instead.

DDS WaitSet_attach_condition

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_WaitSet_attach_condition
(DDS_WaitSet _this,
const DDS_Condition cond) ;

Description
This operation attachesabDS_Condition tothe DDS_waitSet.

Parameters

in DDS_WaitSet _this-theDDS_WaitSet object on which the operation is
operated.

in const DDS_Condition cond - apointerto apps_Condition.

115
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER Of DDS_RETCODE_OUT_OF_
RESOURCES.

Detailed Description

This operation attaches a DDS_Condition to the bbs_waitset. The parameter
cond must be either a bbs_ReadCondition, DDS_QueryCondition,
DDS_StatusCondition Of DDS_GuardCondition. TO get this parameter see:

* DDS_ReadCondition created by
DDS_DataReader_create_readcondition

* DDS_QueryCondition created by
DDS_DataReader_create_qguerycondition

* DDS_StatusCondition retrieved by
DDS_<Entity>_get_statuscondition ONanN DDS_<Entity>

* DDS_GuardCondition created by the C operation
DDS_GuardCondition__alloc.

When apDs_Guardcondition isinitially created, the trigger_value iSFALSE.
When aDbs_condition, Whose trigger_value evaluates to TRUE, is attached
to a DDsS_wWaitSet that is currently being waited on (using the
DDS_WaitSet_wait operation), the DDs_waitSet will unblock immediately.
Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_Condition is attached to the bps_waitset.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - the parameter cond is not a valid
DDS_Condition.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS WaitSet_detach_condition
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
116

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

&4 PRISMTECH

DDS_WaitSet_detach_condition
(DDS_WaitSet _this,
const DDS_Condition cond)

Description
This operation detaches aDpDS_Condition fromthe bbs_waitset.

Parameters

in DDS_WaitSet _this -theDDS_WaitSet object on which the operationis
operated.

in const DDS_Condition cond - apointer to apps_condition inthe
DDS_WaitSet.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation detaches a DDS_Condition from the DbDs_waitset. If the
DDS_Condition Was hot attached to this pps_waitset, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_Condition is detached from the bbs_waitsSet.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter cond is not a valid
DDS_Condition.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_PRECONDITION NOT MET - the DDS_Condition was not
attached to thispbs_waitSet.

117
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

DDS WaitSet_get_conditions

118
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_WaitSet_get_conditions
(DDS_WaitSet _this,
DDS_ConditionSeq *attached_conditions) ;

Description
This operation retrieves the list of attached conditions.

Parameters

in DDS_WwaitSet _this-theDDS_WaitSet object on which the operationis
operated.

inout DDS_ConditionSeq *attached_conditions - theinout parameter
attached_conditions is a Sequence, which is used to pass the list of
attached conditions.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation retrieves the list of attached conditions in the bps_waitset. The
parameter attached_conditions iSapointer to a sequence which afterwards
will point to the sequence of attached conditions. The attached_conditions
sequence and its buffer may be pre-allocated by the application and therefore must
either be re-used in a subsequent invocation of the
DDS_WaitSet_get_conditions operation or be released by calling bps_free
on the returned attached_conditions. If the pre-allocated sequence is not big
enough to hold the number of attached pps_conditions, the sequence will
automatically be (re-)allocated to fit the required size. The resulting sequence will
either be an empty sequence, meaning there were no conditions attached, or will
contain a list of bbDS_ReadCondition, DDS_QueryCondition,
DDS_StatusCondition and DDS_GuardCondition. These conditions
previously have been attached by DDS_waitSet_attach_condition and were
created by there respective create operation:

* DDS_ReadCondition created by
DDS_DataReader_create_readcondition

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

* DDS_QueryCondition created by
DDS_DataReader_create_querycondition

e DDS_StatusCondition retrieved by
DDS_<Entity>_get_statuscondition ONan DDS_<Entity>

* DDS_GuardCondition created by the C operation
DDS_GuardCondition__alloc.

Return Code

When the operation returns:

e DDS_RETCODE_OK - thelist of attached conditions is returned

e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS RETCODE OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS WaitSet_wait

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_WaitSet_wait
(DDS_WaitSet _this,
DDS_ConditionSeqg *active_conditions,
const DDS_Duration_t *timeout)

Description

This operation allows an application thread to wait for the occurrence of at least one
of the conditions that is attached to the bps_waitset.

Parameters

in DDS_WaitSet _this-theDDS_WaitSet object on which the operationis
operated.

inout DDS_ConditionSeq *active_conditions - asegquencewhichisused
to pass the list of all the attached conditions that have a trigger_value of
TRUE.

in const DDS_Duration_t *timeout - themaximum duration to block for
the DDS_waitSet_wait, after which the application thread is unblocked. The
special constant DDS_DURATION_INFINITE can be used when the maximum
waiting time does not need to be bounded.

119
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

120
API Reference

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_OUT_OF_RESOURCES, DDS_RETCODE_TIMEOUT
Or DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation allows an application thread to wait for the occurrence of at least one
of the conditions to evaluate to TRUE that is attached to the bDs_waitset. If al
of the conditions attached to the DDs_waitSet have atrigger_value Of FALSE,
the DDS_waitSet_wait operation will block the calling thread. The result of the
operation is the continuation of the application thread after which the result isleft in
active_conditions. Thisis asequence, which will contain the list of all the
attached conditions that have a trigger_value of TRUE. The
active_conditions sequence and its buffer may be pre-allocated by the
application and therefore must either be re-used in a subsequent invocation of the
DDS_WaitSet_wait operation or be released by calling bps_free on the returned
active_conditions. If the pre-allocated sequence is not big enough to hold the
number of triggered pps_conditions, the sequence will automatically be
(re-)allocated to fit the required size. The parameter timeout specifies the
maximum duration for the bDs_waitSet_wait to block the calling application
thread (when none of the attached conditions has a trigger_value Of TRUE). In
that case the return value is DDS_RETCODE_TIMEOUT and the
active_conditions sequenceisleft empty. Sinceit is not allowed for more than
one application thread to be waiting on the same pps_waitSet, the operation
returns immediately with the value bDS_RETCODE_PRECONDITION_NOT_MET
when the DDS_waitSet_wait operation isinvoked on a bps_waitSet which
already has an application thread blocking on it.

Return Code

When the operation returns:

* DDS RETCODE OK - a least one of the aftached conditions has a
trigger_value Of TRUE.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_TIMEOUT - the timeout has elapsed without any of the attached
conditions becoming TRUE.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

* DDS_RETCODE_PRECONDITION_NOT_MET - the pDs_waitset aready has an
application thread blocking onit.

ClassDDS_Condition

This class is the base class for all the conditions that may be attached to a
DDS_WaitSet. This base class is specialized in three classes by the Data
Distribution Service: DDS_GuardCondition, DDS_StatusCondition and
DDS_ReadCondition (also thereis a DDS_QueryCondition Whichis a
specialized DDS_ReadCondition).

Each DDS_condition hasatrigger_value that can be TRUE or FALSE and is
set by the Data Distribution Service (except a DDS_GuardCondition) depending
on the evaluation of the bbs_condition.

Condition

get_trigger_value()

StatusCondition GuardCondition
get_enabled_statuses() set_trigger_value()
ReadCondition get_entity() DomainParticipant
set_enabled_statuses()
statuscondition

get_datareader()
get_instance_state_mask()

get_sample_state_mask() .
get_view_state_mask() entity
1
/ QueryCondition Entity
<<create>> ‘ enable()
get_query_arguments() <<abstract>> get_listener()
L get_query_expression() <<abstract>> get_qos()
set_query_arguments() get_status_changes()
1 ~ get_statuscondition()
DataReader <<abstract>> set_listener() -
- <<create>J <<abstract>> set_qos() DataWriter
Subscriber \ % - Publisher
- DomainEntity
Topic

Figure 14 DCPSDDS Conditions
The interface description of this classis asfollows:
/*

121
API Reference

&4 PRISMTECH

3 DCPS Classes and Operations 3.1 Infrastructure Module

* interface DDS_Condition

*/

/~k

* implemented API operations

*/

DDS_boolean
DDS_Condition_get_trigger_value
(DDS_Condition _this);

The next paragraph describes the usage of the bDS_Condition operation.

DDS Condition_get_trigger value

Synopsis
#include <dds_dcps.h>
DDS_boolean
DDS_Condition_get_trigger_value
(DDS_Condition _this);

Description
This operation returnsthe trigger_value of the DDS_Condition.

Parameters

in DDS_Condition _this -the DDS_Condition object on which the
operation is operated.

Return Value

DDS_boolean - thetrigger value.

Detailed Description

A DDS_Condition hasatrigger_wvalue that can be TRUE or FALSE and is set
by the Data Distribution Service (except a pDS_GuardCondition). Thisoperation
returnsthe trigger value Of the DDS_Condition.

ClassDDS GuardCondition

122
API Reference

A DDS_GuardCondition oObject is a specific DDS_Condition whose
trigger_value is completely under the control of the application. The
DDS_GuardCondition has no factory and must be created by the application. The
DDS_GuardCondition is directly created as an object by using the
DDS_GuardCondition constructor. When a bDS_GuardCondition isinitially
created, the trigger_value IS FALSE. The purpose of the
DDS_GuardCondition iSto provide the means for an application to manually

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

wake up a pps_waitSet. This is accomplished by attaching the
DDS_GuardCondition to the waitset and setting the trigger_value by
means of the DDS_GuardCondition_set_trigger_value operation.
The interface description of this classis asfollows:
/*
* interface DDS_GuardCondition
*/
/*
* inherited from DDS_Condition
*/
/* DDS_boolean
* DDS_GuardCondition_get_trigger_value

* (DDS_GuardCondition _this);
*/
/*

* implemented API operations

*/

DDS_GuardCondition
DDS_GuardCondition__alloc
(void) ;
DDS_ReturnCode_t
DDS_GuardCondition_set_trigger_value
(DDS_GuardCondition _this,
const DDS_boolean value) ;
The following sections describe the usage of all bDS_GuardCondition
operations.

The inherited operation is listed but not fully described since it is not implemented
inthis class. The full description of this operation is given in the class from which it
isinherited. Thisis described in their respective paragraph.

DDS GuardCondition__alloc
Synopsis

#include <dds_dcps.h>
DDS_GuardCondition
DDS_GuardCondition__alloc
(void) ;

Description
This operation creates a new bbs_GuardCondition.

Parameters
<none>

123
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

Return Value

DDS_GuardCondition - Return value is the handle to the newly created
DDS_GuardCondition. In case of an error, a DDS_OBJECT_NIL pointer is
returned.

Detailed Description

This operation creates anew DDS_GuardCondition. The DDS_GuardCondition
must be created using this operation. In other words, the application is not allowed
to declare an object of type DDS_GuardcCondi tion. When the application wantsto
release the bDS_GuardCondition it must bereleased using Dps_free.

In case there are insufficient resources available to allocate the
DDS_GuardCondition, aDDS_OBJECT_NIL pointer isreturned instead.

DDS _GuardCondition_get_trigger _value (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Condition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_boolean
DDS_GuardCondition_get_trigger_value
(DDS_GuardCondition _this);

DDS GuardCondition_set_trigger _value

124
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_GuardCondition_set_trigger_value
(DDS_GuardCondition _this,
const DDS_boolean value) ;

Description
This operation setsthe trigger_value Of the DDS_GuardCondition.

Parameters

in DDS_GuardCondition _this -theDDS_GuardCondition object on
which the operation is operated.

in const DDS_boolean value - the boolean value to which the
DDS_GuardCondition iS Set.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR Of DDS_RETCODE_
ILLEGAL_OPERATION.

Detailed Description

A DDS_GuardCondition Object is a specific bbs_condition which
trigger_value iscompletely under the control of the application. This operation
must be used by the application to manually wake-up a bps_waitSet. This
operation setsthe trigger_value Of the DDS_GuardCondi tion to the parameter
value. The DDS_GuardCondition is directly created using the
DDS_GuardCondition constructor. When aDpDS_GuardCondition isinitialy
created, the trigger_valueisFALSE.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the specified trigger_value hassuccessfully been applied
* DDS_RETCODE_ERROR - an internal error has occurred

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object

ClassDDS SatusCondition

&4 PRISMTECH

DDS_Entity Objects that have status attributes also have a
DDS_StatusCondition, access is provided to the application by the
DDS_<Entity>_get_statuscondition operaIi on.

The communication statuses whose changes can be communicated to the application
depend on the pps_Eentity. The following table shows the relevant statuses for
each DDS_Entity.

Table 17 Status Per DDS_Entity

DDS Entity Satus Name
DDS_Topic DDS_INCONSISTENT TOPIC_STATUS
DDS_Subscriber DDS_DATA_ON_READERS_STATUS

125
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

126
API Reference

Table 17 Satus Per DDS _Entity
DDS Entity Satus Name

DDS_DataReader DDS_SAMPLE_REJECTED_STATUS

DDS_LIVELINESS_CHANGED_STATUS

DDS_REQUESTED_DEADLINE_MISSED_STATUS

DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS

DDS_DATA_AVAILABLE_STATUS

DDS_SAMPLE_LOST_STATUS

DDS_SUBSCRIPTION_MATCHED_STATUS

DDS_DataWriter DDS_LIVELINESS_LOST_STATUS

DDS_OFFERED_DEADLINE_MISSED_STATUS

DDS_OFFERED_INCOMPATIBLE_QOS_STATUS

DDS_PUBLICATION_MATCHED_STATUS

The trigger_value oOf the DDS_StatusCondition depends on the
communication statuses of that bpDs_Entity (e.g., missed deadline) and also
depends on the value of the bDS_StatusCondition attribute mask
(enabled_statuses mask). A DDS_StatusCondition can be attached to a
DDS_WaitSet in order to allow an application to suspend until the
trigger_value hasbecome TRUE.

The trigger_value Of aDDS_StatusCondition Will be TRUE if one of the
enabled statusChangedFlags isset. That is, trigger_value==FALSE only if
al the values of the statusChangedFlags are FALSE.

The sensitivity of the bbs_statusCondition to a particular communication
status is controlled by the list of enabled_statuses Set on the condition by
means of the DDS_StatusCondition_set_enabled_statuses operation.

When the enabled_statuses are not changed by the
DDS_StatusCondition_set_enabled_statuses operation, all statuses are
enabled by default.

The interface description of this classis asfollows:

/*

* interface DDS_StatusCondition

*/

/*

* inherited from DDS_Condition

*/

/* DDS_boolean

* DDS_StatusCondition_get_trigger_value
* (DDS_StatusCondition _this);

*/

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

/ *
* implemented API operations
*/
DDS_StatusMask
DDS_StatusCondition_get_enabled_statuses
(DDS_StatusCondition _this);
DDS_ReturnCode_t
DDS_StatusCondition_set_enabled_statuses
(DDS_StatusCondition _this,
const DDS_StatusMask mask) ;
DDS_Entity
DDS_StatusCondition_get_entity
(DDS_StatusCondition _this) ;

The next paragraphs describe the usage of al DDS_StatusCondition Operations.
The inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

DDS SatusCondition_get_enabled_statuses

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
DDS_StatusCondition_get_enabled_statuses
(DDS_StatusCondition _this);

Description

This operation returns the list of enabled communication statuses of the

DDS_StatusCondition.

Parameters

in DDS_StatusCondition _this-theDDS_StatusCondition object on
which the operation is operated.

Return Value

DDS_StatusMask - Result isa bit-mask in which each bit shows which statusis
taken into account for the bps_StatusCondition.

Detailed Description

The trigger_value Of the DDS_StatusCondition depends on the
communication status of that pps_Eentity (e.g., missed deadline, loss of
information, etc.), ‘filtered’ by the set of enabled_statuses on the
DDS_StatusCondition.

127
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

This operation returns the list of communication statuses that are taken into account
to determine the trigger_value Of the DDS_StatusCondition. Thisoperation
returns the statuses that were explicitly set on the last call to
DDS_StatusCondition_set_enabled_statuses or, if
DDS_StatusCondition_set enabled statuses Was never caled, the default
list.

The result value is a bit-mask in which each bit shows which status is taken into
account for the DDS_StatusCondition. The relevant bits represents one of the
following statuses:

DDS_INCONSISTENT_TOPIC_STATUS
DDS_OFFERED_DEADLINE_MISSED_STATUS
DDS_REQUESTED_DEADLINE_MISSED_STATUS
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
DDS_SAMPLE_LOST_STATUS
DDS_SAMPLE_REJECTED_STATUS
DDS_DATA_ON_READERS_STATUS
DDS_DATA_AVAILABLE_STATUS
DDS_LIVELINESS_LOST_STATUS
DDS_LIVELINESS_CHANGED_STATUS
DDS_PUBLICATION_MATCHED_STATUS
DDS_SUBSCRIPTION_MATCHED_STATUS.

Each status bit is declared as a constant and can be used in an AND operation to
check the status bit against the result of type Dps_statusMask. Not al statuses are
relevant to all Dps_Entity objects. See the respective Listener objects for each
DDS_Entity for moreinformation.

DDS SatusCondition_get_entity

128
API Reference

Synopsis
#include <dds_dcps.h>
DDS_Entity
DDS_StatusCondition_get_entity
(DDS_StatusCondition _this);

Description

This operation returns the bppDs_Entity associated with the
DDS_StatusCondition Or the DDS_OBJECT NIL pointer.

Parameters

in DDS_StatusCondition _this -theDDS_StatusCondition object on
which the operation is operated.

& PRISMTECH

3 DCPS Classes and Operations 3.1 InfrastructureModule

Return Value

DDS_Entity - a pointer to the pps_Entity associated with the
DDS_StatusCondition Or the DDS_OBJECT_NIL pointer.

Detailed Description

This operation returns the DDS_Entity associated with the
DDS_StatusCondition. Note that there is exactly one pps_Ent ity associated
with each DDs_StatusCondition. When the DDs_Entity was already deleted
(there is no associated DDS_Entity any more), the DDS_OBJECT_NIL pointer is
returned.

DDS_SatusCondition_get_trigger_value (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Condition for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_boolean
DDS_StatusCondition_get_trigger_value
(DDS_StatusCondition _this);

DDS SatusCondition_set_enabled_statuses

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_StatusCondition_set_enabled_statuses
(DDS_StatusCondition _this,
const DDS_StatusMask mask) ;

Description

This operation sets the list of communication statuses that are taken into account to
determinethe trigger value Of theDDS_StatusCondition.

Parameters

in DDS_StatusCondition _this-theDDS_StatusCondition object on
which the operation is operated.

in const DDS_StatusMask mask - abit-mask inwhich each bit setsthe status
which istaken into account for the DDS_StatusCondition.

129
API Reference

3 DCPS Classes and Operations 3.1 Infrastructure Module

130
API Reference

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION Of DDS_RETCODE_ALREADY_DELETED.

Detailed Description

The trigger_value Of the DDS_sStatusCondition depends on the
communication status of that bbs_Entity (e.g., missed deadline, loss of
information, etc.), ‘filtered’ by the set of enabled_statuses on the
DDS_StatusCondition.

This operation sets the list of communication statuses that are taken into account to
determine the trigger_value Of the DDS_StatusCondition. This operation
may changethe trigger_value Of the DDS_StatusCondition.

DDS_WaitSet objects behaviour depend on the changes of the trigger_value of
their attached DDS_Conditions. Therefore, any bps_waitSet to which the
DDS_StatusCondition isattached is potentially affected by this operation.

If this function is not invoked, the default list of enabled statuses includes all
the statuses.

The parameter mask is abit-mask in which each bit shows which statusis taken into
account for the bbs_statusCondition. The relevant bits represents one of the
following statuses:

DDS_INCONSISTENT_TOPIC_STATUS
DDS_OFFERED_DEADLINE_MISSED_STATUS
DDS_REQUESTED_DEADLINE_MISSED_STATUS
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS
DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS
DDS_SAMPLE_LOST_STATUS
DDS_SAMPLE_REJECTED_STATUS
DDS_DATA_ON_READERS_STATUS
DDS_DATA_AVAILABLE_STATUS
DDS_LIVELINESS_LOST_STATUS
DDS_LIVELINESS_CHANGED_STATUS
DDS_PUBLICATION_MATCHED_STATUS
DDS_SUBSCRIPTION_MATCHED_STATUS

Each status hit is declared as a constant and can be used in an OR operation to set
the status bit in the parameter mask of type DDS_StatusMask. Not all statuses are
relevant to all pps_Entity objects. See the respective Listener objects for each
DDS_Entity for moreinformation.

Return Code

When the operation returns:

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* DDS RETCODE_OK - thelist of communication statuses is set.
e DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_StatusCondition has aready
been deleted.

3.2 Domain Module

Entity

<<Interface>> <<Interface>> (rom Infrastruciure Module) <<create>>
SubscriberListener PublisherListener {rom fnfrastruetare Modue
(from Subscription Module) (from Publication Module)
<<create>> Publisher Subscriber
(from Publication Module) (from Subscription Module)

DomainParticipant

<<Interface>>
TopicListener

assert_liveliness() };r: X
contains_entity() S z
on_inconsistent_topic() create_contentfilteredtopic() DomainEntity

create_multitopic() (from Infrastructure Module)
Z% create:publisher() *
create_subscriber()
DomainParticipantListener <<implicit>> create_topic() —"

delete_contained_entities() 1
0.1 delete_contentfilteredtopic()

delete_multitopic() <<create>> Topic
<<implicit>> gos delete_publisher() > (from Topic-Definition Module)
— delete_subscriber() *
delete_topic()
* find_topic| < >>
QosPolicy mos get}uﬁtir?_subscriber() v/ <<implicit>>
get_current_time()
*\dew/ get_default_publisher_gos() TopicDescription
* - - get_default_subscriber_qos() (from Topic-Definition Module)
* get_default_topic_qos()

default_subscriber_gos |9€t-domain_id()
get_listener()

*

(from Infrastructure Module)

default_participant_qos

get_gos()
ignore_participant() ~
" - ignore_publication() ContentFilteredTopic MultiTopic
DomainParticipantFactory ignore_subscription() (from Topic-Definition Module) (from Topic-Definition Module)

ignore_topic()

create_participant() <<create>> lookup_topic_description()

delete_participant() set_default_publisher_gos() <<create>>

get_default_participant_qgos() set_default_subscriber_gos()

get_instance() set_default_topic_qos() <<create>>

lookup_participant() set_listener()

set_default_participant_gos() set_gos()

Figure 15 DCPS Domain Modul€e's Class M odéel
This module contains the following classes:
DDS_DomainParticipant
DDS_DomainParticipantFactory

DDS_DomainParticipantListener (interface).

3.2.1 ClassDDS DomainParticipant
All the DCPS DDs_Entity objects are attached to aDDS_DomainParticipant.

A DDS_DomainParticipant representsthe local membership of the application
in abomain.

131

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

132
API Reference

A pomain isadistributed concept that links all the applications that must be able to
communicate with each other. It represents a communication plane: only the
DDS_Publishers and the DDS_Subscribers attached to the same bomain can
interact.

This class implements several functions:
* |t actsasacontainer for all other bbs_Entity objects

* It acts as a factory for the DDS_Publisher, DDS_Subscriber, DDS_Topic,
DDS_ContentFilteredTopic and DDS_MultiTopic Objects

* It provides access to the built-in bbs_Topic objects
* It provides information about DDS_Topic objects

* It isolates applications within the same Domain (sharing the same domainId)
from other applications in a different Domain on the same set of computers. In
this way, several independent distributed applications can coexist in the same
physical network without interfering, or even being aware of each other

* It provides administration services in the pomain, offering operations, which
alow the application to ignore localy any information about a given
Participant, Publication, Subscription OF Topic.

The interface description of this classis as follows:

/*

* interface DDS_DomainParticipant

*/

/*

* inherited from class DDS_Entity

*/

/* DDS_StatusCondition

* DDS_DomainParticipant_get_statuscondition
* (DDS_DomainParticipant _this);
*/

/* DDS_StatusMask

* DDS_DomainParticipant_get_status_changes
* (DDS_DomainParticipant _this);
*/

/* DDS_ReturnCode_t

* DDS_DomainParticipant_enable

* (DDS_DomainParticipant _this);
*/

/*

* implemented API operations

*/

DDS_Publisher
DDS_DomainParticipant_create_publisher
(DDS_DomainParticipant _this,
const DDS_PublisherQos *gos,

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

const struct DDS_PublisherListener *a_listener,
const DDS_StatusMask mask) ;
DDS_ReturnCode_t
DDS_DomainParticipant_delete_publisher
(DDS_DomainParticipant _this,
const DDS_Publisher p);
DDS_Subscriber
DDS_DomainParticipant_create_subscriber
(DDS_DomainParticipant _this,
const DDS_SubscriberQos *qgos,
const struct DDS_SubscriberListener *a_listener,
const DDS_StatusMask mask) ;
DDS_ReturnCode_t
DDS_DomainParticipant_delete_subscriber
(DDS_DomainParticipant _this,
const DDS_Subscriber s);
DDS_Subscriber
DDS_DomainParticipant_get_builtin_subscriber
(DDS_DomainParticipant _this);
DDS_Topic
DDS_DomainParticipant_create_topic
(DDS_DomainParticipant _this,
const DDS_char *topic_name,
const DDS_char *type_name,
const DDS_TopicQos *gos,
const struct DDS_TopicListener *a_listener,
const DDS_StatusMask mask) ;
DDS_ReturnCode_t
DDS_DomainParticipant_delete_topic
(DDS_DomainParticipant _this,
const DDS_Topic a_topic);
DDS_Topic
DDS_DomainParticipant_find_ topic
(DDS_DomainParticipant _this,
const DDS_char *topic_name,
const DDS_Duration_t *timeout) ;
DDS_TopicDescription
DDS_DomainParticipant_lookup_topicdescription
(DDS_DomainParticipant _this,
const DDS_char *name) ;
DDS_ContentFilteredTopic
DDS_DomainParticipant_create_contentfilteredtopic
(DDS_DomainParticipant _this,
const DDS_char *name,
const DDS_Topic related_topic,
const DDS_char *filter_expression,
const DDS_StringSeq *expression_parameters) ;
DDS_ReturnCode_t
DDS_DomainParticipant_delete_contentfilteredtopic
(DDS_DomainParticipant _this,

133
&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

const DDS_ContentFilteredTopic
a_contentfilteredtopic) ;
DDS_MultiTopic
DDS_DomainParticipant_create_multitopic
(DDS_DomainParticipant _this,
const DDS_char *name,
const DDS_char *type_name,
const DDS_char *subscription_expression,
const DDS_StringSeq *expression_parameters) ;
DDS_ReturnCode_t
DDS_DomainParticipant_delete_multitopic
(DDS_DomainParticipant _this,
const DDS_MultiTopic a_multitopic);
DDS_ReturnCode_t
DDS_DomainParticipant_delete_contained_entities
(DDS_DomainParticipant _this);
DDS_ReturnCode_t
DDS_DomainParticipant_set_gos
(DDS_DomainParticipant _this,
const DDS_DomainParticipantQos *qos) ;
DDS_ReturnCode_t
DDS_DomainParticipant_get_gos
(DDS_DomainParticipant _this,
DDS_DomainParticipantQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipant_set_listener
(DDS_DomainParticipant _this,
const struct DDS_DomainParticipantListener *a_listener,
const DDS_StatusMask mask) ;
struct DDS_DomainParticipantListener
DDS_DomainParticipant_get_listener
(DDS_DomainParticipant _this);
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_participant
(DDS_DomainParticipant _this,
const DDS_InstanceHandle_t handle) ;
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_topic
(DDS_DomainParticipant _this,
const DDS_InstanceHandle_t handle) ;
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_publication
(DDS_DomainParticipant _this,
const DDS_InstanceHandle_t handle) ;
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_subscription
(DDS_DomainParticipant _this,
const DDS_InstanceHandle_t handle) ;
DomainId_t
DDS_DomainParticipant_get_domain_id

134

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

(DDS_DomainParticipant _this);
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_participants
(DDS_DomainParticipant _this,
DDS_InstanceHandleSeq *participant_handles) ;
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_participant_data
(DDS_DomainParticipant _this,
DDS_ParticipantBuiltinTopicData *participant_data,
DDS_InstanceHandle_t handle);
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_topics
(DDS_DomainParticipant _this,
DDS_InstanceHandleSeq *topic_handles) ;
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_topic_data
(DDS_DomainParticipant _this,
DDS_TopicBuiltinTopicData *topic_data,
DDS_InstanceHandle_t handle) ;
DDS_ReturnCode_t
DDS_DomainParticipant_assert_liveliness
(DDS_DomainParticipant _this);
DDS_ReturnCode_t
DDS_DomainParticipant_set_default_publisher_gos
(DDS_DomainParticipant _this,
const DDS_PublisherQos *gos);
DDS_ReturnCode_t
DDS_DomainParticipant_get_default_publisher_gos
(DDS_DomainParticipant _this,
DDS_PublisherQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipant_set_default_subscriber_gos
(DDS_DomainParticipant _this,
const DDS_SubscriberQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipant_get_default_subscriber_gos
(DDS_DomainParticipant _this,
DDS_SubscriberQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipant_set_default_topic_gos
(DDS_DomainParticipant _this,
const DDS_TopicQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipant_get_default_topic_gos
(DDS_DomainParticipant _this,
DDS_TopicQos *gos) ;
DDS_boolean
contains_entity
(DDS_InstanceHandle_t a_handle) ;
DDS_ReturnCode_t

135
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

get_current_time
(DDS_Time_t *current_time);
The following sections describe the usage of all bDS_DomainParticipant
operations. The inherited operations are listed but not fully described because they
are not implemented in this class. The full description of these operationsisgivenin
the classes from which they are inherited.

DDS DomainParticipant_assert_liveliness

136
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_assert_liveliness
(DDS_DomainParticipant _this);

Description
This operation asserts the liveliness for the bDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this - the DDS_DomainParticipant object
on which the operation is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_NOT_ENABLED.

Detailed Description

This operation will manually assert the liveliness for the
DDS_DomainParticipant. Thisway, the Data Distribution Service is informed
that the Dbs_DomainParticipant is still alive. This operation only needs to be
used when the DDS_DomainParticipant contains bDS_DataWriters with the
DDS_LivelinessQosPolicy set to
DDS_MANUAL_BY_ PARTICIPANT LIVELINESS_QOS, and it will only affect the
liveliness of those bDS_DatawWriters.

Writing data viathe DDS_DataWriter_write Operation of aDDS_DataWriter
will assert the liveliness on the pbs_patawriter itself and its
DDS_DomainParticipant. DDS_DomainParticipant_assert_liveliness
subseguently is only needed when datais not written regularly.

The liveliness should be asserted by the application, depending on the
DDS_LivelinessQosPolicy

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Return Code
When the operation returns:

e DDS _RETCODE_OK - the liveliness of this DDS_DomainParticipant has
successfully been asserted.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
already been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_NOT_ ENABLED - the DDS_DomainParticipant iSnot enabled.
DDS DomainParticipant_contains_entity
Synopsis

#include <dds_dcps.h>
DDS_boolean
contains_entity
(DDS_DomainParticipant _this,
DDS_InstanceHandle_t a_handle);

Description

This operation checks whether or not the given Entity represented by a_handle
is created by the Dps_DomainParticipant or any of its contained entities.
Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in DDS_InstanceHandle_t a_handle - representsapDS_Entity inthe Data
Distribution System.

Return Value

DDS_boolean - Returnvalueis TRUE if a_handle representsaDDS_Entity
that is created by the DDS_DomainParticipant Or any of its contained
DDS_Entites. Otherwise the return valueis FALSE.

137

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation checks whether or not the given Entity represented by a_handle
is created by the DDS_DomainParticipant itself (DDS_TopicDescription,
DDS_Publisher Or DDS_Subscriber) or created by any of its contained entities
(DDS_DataReader, DDS_ReadCondition, DDS_QueryCondition,
DDS_DataWriter, €tC.).

Return value is TRUE if a_handle representsabDS_Entity that is created by the
DDS_DomainParticipant Or any of its contained DDS_Entites. Otherwise the
return value iSFALSE.

DDS DomainParticipant_create contentfilteredtopic

138
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ContentFilteredTopic
DDS_DomainParticipant_create_contentfilteredtopic
(DDS_DomainParticipant _this,
const DDS_char *name,
const DDS_Topic related_topic,
const DDS_char *filter_ expression,
const DDS_StringSeq *expression_parameters) ;

Description
This operation creates a DDS_ContentFilteredTopic for a

DDS_DomainParticipant inorder to allow DDS_DataReaders to subscribeto a
subset of the topic content.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_char *name - contains the name of the
DDS_ContentFilteredTopic.

in const DDS_Topic related_topic - thehandleto the base bDs_Topic
on which the filtering will be applied. Therefore, afiltered topic is based on an
existing DDS_Topic.

in const DDS_char *filter_expression - holdsthe SQL expression
(subset of SQL), which defines the filtering.

in const DDS_StringSeqg *expression_parameters - thehandletoa
sequence of strings with the parameter value used in the SQL expression (i.e.,
the number of %n tokens in the expression). The number of valuesin
expression_parameters must be equal or greater than the highest

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

referenced %ontokeninthe filter_expression (eg.if $1 and ¢8 are used as
parameter inthe filter_expression, the expression_parameters
should at least containn+1 = 9 values).

Return Value

DDS_ContentFilteredTopic - Returnvaueisthe handleto the newly created
DDS_ContentFilteredTopic. In caseof an error, anil pointer isreturned.

Detailed Description

This operation creates a DDS_ContentFilteredTopic for a
DDS_DomainParticipant in order to allow DDS_DataReaders to subscribeto a
subset of the topic content. The base topic, which is being filtered is defined by the
parameter related_topic. Theresulting DDS_ContentFilteredTopic only
relates to the samples published under the related_topic, which have been
filtered according to their content. The resulting DDS_ContentFilteredTopic
only exists at the bbs_bpataReader Side and will never be published. The samples
of the related_topic are filtered according to the SQL expression, which is a
subset of SQL as defined in the parameter filter_expression (See Appendix H,
DCPS Queries and Filters).

The filter_expression may also contain parameters, which appear as %n
tokens in the expression which must be set by the sequence of strings defined by the
parameter expression_parameters. The number of values in
expression_parameters Must be equal or greater than the highest referenced
%n token inthe filter_expression (e.g. if %1 and %8 are used as parameter in
thefilter_expression, the expression_parameters should at least containn+1 =
9 values).

The filter_expression isastring that specifies the criteria to select the data
samples of interest. In other words, it identifies the selection of data from the
associated DDS_Topics. Itisan SQL expression where the wHERE clause gives the
content filter.

DDS _DomainParticipant_create_multitopic

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_MultiTopic
DDS_DomainParticipant_create_multitopic
(DDS_DomainParticipant _this,
const DDS_char *name,
const DDS_char *type_name,
const DDS_char *subscription_expression,
const DDS_StringSeq *expression_parameters) ;
Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

139
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

140
API Reference

Description

This operation creates a bDS_MultiTopic for abDbs_DomainParticipant in
order to allow DDS_DataReaders to subscribe to a filtered/re-arranged
combination and/or subset of the content of several topics.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_char *name - containsthename of theDDS_MultiTopic.

in const DDS_char *type_name - containsthe name of the type of the
DDS_MultiTopic. This type_name must have been registered using
DDS_TypeSupport_register_type prior to calling this operation.

in const DDS_char *subscription_expression -the SQL expression
(subset of SQL), which defines the selection, filtering, combining and
re-arranging of the sample data.

in const DDS_StringSeq *expression_parameters - the handleto a
sequence of strings with the parameter value used in the SQL expression (i.e.,
the number of %n tokens in the expression). The number of valuesin
expression_parameters mMmust be equal or greater than the highest
referenced %n token in the subscription_expression (e.g.if $1 and %8
are used as parameter in the subscription_expression, the
expression_parameters should at least containn+1 = 9 values).

Return Value

DDS_MultiTopic - Return value is the handle to the newly created
DDS_MultiTopic. In case of an error, anil pointer is returned.

Detailed Description

This operation creates a bDS_MultiTopic for aDbDDsS_DomainParticipant in
order to allow DDS_DataReaders to subscribe to a filtered/re-arranged
combination and/or subset of the content of several topics. Before the
DDS_MultiTopic Can be created, the type_name of the DDS_MultiTopic must
have been registered prior to calling this operation. Registering is done, using the
DDS_TypeSupport_register_type operation from bbs_TypeSupport. The
list of topics and the logic, which defines the selection, filtering, combining and
re-arranging of the sample data, is defined by the SQL expression, a subset of SQL
defined in subsciption_expression. The subscription_expression may
also contain parameters, which appear as %n tokens in the expression. These
parameters are defined in expression_parameters. The number of valuesin
expression_parameters mMmust be equal or greater than the highest referenced

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

%n token in the subscription_expression (€.g. if $1 and ¢8 are used as
parameter in the subscription_expression, the expression_parameters
should at least containn+1 = 9 values).

The subscription_expression isastring that specifiesthe criteriato select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated DDS_Topics. It isan SQL expression where the
SELECT clause provides the fields to be kept, the FroM part provides the names of
the Dbs_Topics that are searched for those fields, and the wHERE clause gives the
content filter. The bDs_Topics combined may have different types but they are
restricted in that the type of the fields used for the NATURAL JOIN operation must
be the same.

The pps_DataReader, Which is associated with a bbs_MultiTopic only
accesses information which exist locally in the bbs_DataReader, based on the
DDS_Topics used in the subscription_expression. The actual
DDS_MultiTopic will never be produced, only the individual pps_Topics.

DDS DomainParticipant_create publisher

&4 PRISMTECH

Synopsis

#include <dds_dcps.h>

DDS_Publisher

DDS_DomainParticipant_create_publisher
(DDS_DomainParticipant _this,

const DDS_PublisherQos *qgos,
const struct DDS_PublisherListener *a_listener,
const DDS_StatusMask mask) ;

Description

This operation creates aDDS_Publisher with the desired QosPolicy Settings and
if applicable, attaches the optionally specified DDS_PublisherListener tOit.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant
object on which the operation is operated.

in const DDS_PublisherQos *gos - acollection of QosPolicy settingsfor
the new pDS_Publisher. In case these settings are not self consistent, no
DDS_Publisher iScreated.

in const struct DDS_PublisherListener *a_listener - apointertothe
DDS_PublisherListener instance which will be attached to the new
DDS_Publisher. It is permitted to use DDS_OBJECT_NIL as the value of the
listener: this behaves as a DDs_PublisherListener Whose operations
perform no action.

141
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

142
API Reference

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_PublisherListener for acertain status.

Return Value

DDS_Publisher - Return valueis a pointer to the newly created DDS_Publisher.
In case of an error, the DDs_OBJECT_NIL pointer is returned.

Detailed Description

This operation creates abps_Publ isher With the desired QosPolicy Settings and
if applicable, attaches the optionally specified DDS_PublisherListener toit.
When the bbs_PublisherListener isnot applicable, the bDs_OBJECT_NIL
pointer must be supplied instead. To delete the DDs_pPublisher the operation
DDS_DomainParticipant_delete_publisher or DDS_
DomainParticipant_delete_contained_entities must be used.

In case the specified QosPolicy Settings are not consistent, N0 bbs_Publisher IS
created and the bDS_OBJECT_NIL pointer is returned.

Default QoS

The constant DDS_PUBLISHER_QOS_DEFAULT can be used as parameter gos to
create a bDS_Publisher with the default bDs_PublisherQos as set in the
DDS_DomainParticipant. The effect of using bbs_PUBLISHER_QOS_DEFAULT
is the same as calling the operation
DDS_DomainParticipant_get_default_publisher_gos and using the
resulting bps_PublisherQos to create the bbs_Publisher.

Communication Satus

For each communication status, the statusChangedFlag flagisinitialy set to
FALSE. |t becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_PublisherListener operation isinvoked and the communication status is
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The fact that the status is reset prior to calling the
listener means that if the application callsthe get_<status_name>_status from
inside the listener it will see the status already reset.

The following statuses are applicable to the DDS_PublisherListener:

* DDS_OFFERED_DEADLINE MISSED_STATUS (propagated)
* DDS_OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_LIVELINESS_LOST_STATUS (propagated)
* DDS_PUBLICATION_MATCHED_STATUS (propagated).
&4 PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bDs_ANY_STATUS can be
used to select all statuses applicable to the bDs_PublisherListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DDS_DataWriterListener of a contained bpbs_batawriter, the
DDS_DataWriterListener on that contained DDS_Datawriter iSinvoked
instead of the DDS_PublisherListener. This means that a status change on a
contained DDS_DatawWriter only invokes the DDS_PublisherListener if the
contained DDS_Datawriter itself does not handle the trigger event generated by
the status change.

In case a communication status is not activated in the mask of the
DDS_PublisherListener, the DDS_DomainParticipantListener Of the
containing DDS_DomainParticipant isinvoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant and a bbs_Publisher specific behaviour when
needed. In case the DDS_DomainParticipantListener iSaso not attached or
the communication status is not activated in itsmask, the application is not notified
of the change.

DDS DomainParticipant_create subscriber

&4 PRISMTECH

Synopsis

#include <dds_dcps.h>

DDS_Subscriber

DDS_DomainParticipant_create_subscriber
(DDS_DomainParticipant _this,

const DDS_SubscriberQos *gos,
const struct DDS_SubscriberListener *a_listener,
const DDS_StatusMask mask) ;

Description

This operation creates a DDS_Subscriber with the desired QosPolicy settings
and if applicable, attaches the optionally specified DDS_SubscriberListener to
it.

Parameters

in DDS_DomainParticipant _this -the DDS_DomainParticipant
object on which the operation is operated.

143
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

144
API Reference

in const DDS_SubscriberQos *gos - acollection of QosPolicy settings
for the new DDS_Subscriber. In case these settings are not self consistent, no
DDS_Subscriber IS created.

in const struct DDS_SubscriberListener *a_listener - apointerto
the DDS_SubscriberListener instance which will be attached to the new
DDS_Subscriber. It ispermitted to use DDS_OBJECT_NIL as the value of the
listener: this behaves as a DDS_SubscriberListener Whose operations
perform no action.

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_ SubscriberListener for acertain status.

Return Value

DDS_Subscriber - Return value is a pointer to the newly created
DDS_Subscriber. In case of an error, the bbs_0OBJECT_NIL pointer is
returned.

Detailed Description

This operation creates a bbS_Subscriber with the desired QospPolicy Settings
and if applicable, attaches the optionally specified DDS_SubscriberListener t0O
it. When the bDs_SubscriberListener isnot applicable, the bbs_0OBJECT _NIL
pointer must be supplied instead. To delete the bbs_subscriber the operation
DDS_DomainParticipant_delete_subscriber or DDS_
DomainParticipant_delete_contained_entities must be used.

In case the specified QosPolicy Settings are not consistent, no bbs_Subscriber
is created and the DDS_OBJECT_NIL pointer isreturned.

Default QoS

The constant bDS_SUBSCRIBER_QOS_DEFAULT can be used as parameter gos to
create aDDS_Subscriber with the default DDS_SubscriberQos as set in the
Domainparticipant. The effect of using bbDs_SUBSCRIBER_QOS_DEFAULT iS
the same as calling the operation
DDS_DomainParticipant_get_default_subscriber_gos and using the
resulting pps_SubscriberQos to create the bDS_Subscriber.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_SubscriberListener operation isinvoked and the communication statusis
reset to FALSE, as the listener implicitly accesses the status which is passed as a

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

parameter to that operation. The fact that the statusis reset prior to calling the
listener meansthat if the application callsthe get_<status_name>_status from
inside the listener it will see the status already reset.

The following statuses are applicable to the DDS_SubscriberListener:

* DDS_REQUESTED_DEADLINE_MISSED_STATUS (propagated)
* DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_SAMPLE_LOST_STATUS (propagated)
* DDS_SAMPLE_REJECTED_STATUS (propagated)
* DDS_DATA_AVAILABLE_STATUS (propagated)
* DDS_LIVELINESS_CHANGED_STATUS (propagated)
* DDS_SUBSCRIPTION_MATCHED_STATUS (propagated)

* DDS_DATA_ON_READERS_STATUS

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bbs_ANY_STATUS can be
used to select all statuses applicable to the bDs_SubscriberListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DDS_DataReaderListener Of a contained pDs_DataReader, the
DDS_DataReaderListener on that contained bDs_DataReader iSinvoked
instead of the DDS_SubscriberListener. This means that a status change on a
contained DDS_DataReader only invokes the bDS_SubscriberListener if the
contained DDS_DataReader itself does not handle the trigger event generated by
the status change.

In case a communication status is not activated in the mask of the
DDS_SubscriberListener, the DDS_DomainParticipantListener oOf the
containing bbS_DomainParticipant isinvoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant and a DDS_Subscriber specific behaviour when
needed. In case the DDS_DomainParticipantListener iSalso not attached or
the communication status is not activated in itsmask, the application is not notified
of the change.

The statuses DDS_DATA_ON_READERS_STATUS and DDS_DATA_
AVAILABLE_STATUS are “Read Communication Statuses’” and are an exception to
al other plain communication statuses: they have no corresponding status structure
that can be obtained with aget_<status_name>_status operation and they are

145
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

mutually exclusive. When new information becomes available to a DataReader, the
Data Distribution Service will first look in an attached and activated
DDS_SubscriberListener Of DDS_DomainParticipantListener (in that
order) for the DDS_DATA_ON_READERS_STATUS. In case the
DDS_DATA_ON_READERS_ STATUS can not be handled, the Data Distribution
Service will look in an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener OF DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).

DDS DomainParticipant_create topic

146
API Reference

Synopsis

#include <dds_dcps.h>

DDS_Topic

DDS_DomainParticipant_create_topic
(DDS_DomainParticipant _this,

const DDS_char *topic_name,
const DDS_char *type_name,
const DDS_TopicQos *gos,
const struct DDS_TopicListener *a_listener,
const DDS_StatusMask mask) ;

Description

This operation creates a pointer to a new or existing bDS_Topic under the given
name, for a specific type, with the desired QosPolicy settings and if applicable,
attaches the optionally specified bDS_TopicListener toit.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant
object on which the operation is operated.

in const DDS_char *topic_name - the name of the DDsS_Topic to be created
A new DDS_Topic Will only be created, when no pps_Topic, with the same
name, is found within the bbDS_DomainParticipant.

in const DDS_char *type_name - alocal aias of the data type, which must
have been registered before creating the bps_Topic.

in const DDS_TopicQos *gos - acollection of QosPolicy settingsfor the
new DDS_Topic. In case these settings are not self consistent, no bbs_Topic
is created.

in const struct DDS_TopicListener *a_listener - apointer tothe
DDS_TopicListener instance which will be attached to the new DDs_Topic.
It is permitted to use DDS_OBJECT_NTIL as the value of the listener: this
behaves asaDDS_TopicListener Whose operations perform no action.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the bbs_TopicListener for acertain status.

Return Value

DDS_Topic - Returnvalueisapointer to the new or existing pps_Topic. In case
of an error, the bbs_OBJECT_NIL pointer isreturned.

Detailed Description

This operation creates a pointer to a new or existing bbs_Topic under the given
name, for a specific type, with the desired gosPolicy settings and if applicable,
attaches the optionally specified bpDs_TopicListener to it. When the
DDS_TopicListener is not applicable, the bbDs_0OBJECT_NIL pointer must be
supplied instead. In case the specified QosPolicy Settings are not consistent, no
DDS_Topic iscreated and the DDS_OBJECT NIL pointer is returned. To delete the
DDS_Topic the operation DDS_DomainParticipant_delete_topic Or
DDS_DomainParticipant_delete contained_entities must be used.

Default QoS

The constant DDS_TOPTC_QOS_DEFAULT can be used as parameter gos to create a
DDS_Topic with the default pDDS_TopicQos as set in the
DDS_DomainParticipant. The effect of using bps_ToPIC_Q0S_DEFAULT iSthe
same as calling the operation
DDS_DomainParticipant_get_default_topic_gos and using the resulting
DDS_TopicQos to create the DDS_Topic.

The pps_Topic is bound to the type type_name. Prior to creating the
DDS_Topic, the type_name must have been registered with the Data Distribution
Service. Registering the type_name IS done using the data type specific
DDS_TypeSupport_register_type operation.

Existing DDS Topic name

Before creating a new bpbps_Topic, this operation performs a
DDS_DomainParticipant_lookup_topicdescription for the specified
topic_name. When aDpbps_Topic isfound with the same name in the current
domain, the QoS and type_name of the found DDS_Topic are matched against the
parameters gos and type_name. When they are the same, no bps_Topic is
created but a new proxy of the existing pps_Topic isreturned. When they are not
exactly the same, no bps_Topic is created and the DDS_OBJECT_NIL pointer is
returned.

147
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

148
API Reference

When aDbDs_Topic is obtained multiple times, it must also be deleted that same
number of times using DDS_DomainParticipant_delete_topic oOr caling
DDS_DomainParticipant delete contained _entities once to delete all
the proxies.

Local proxy

Since apps_Topic isaglobal concept in the system, accessis provided through a
local proxy. In other words, the pointer returned is actually not a pointer to a
DDS_Topic but to alocally created proxy. The Data Distribution Service
propagates DDS_Topics and makes remotely created pDs_Topics locally
available through this proxy. For each create, a new proxy is created. Therefore the
DDS_Topic must be deleted the same number of times, as the bbs_Topic was
created with the same topic_name per Domain. In other words, each pointer (local
proxy) must be deleted separately.

Communication Satus

For each communication status, the statusChangedFlag flag isinitially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated DDS_TopicListener
operation is invoked and the communication status is reset to FALSE, as the listener
implicitly accesses the status which is passed as a parameter to that operation. The
fact that the status is reset prior to calling the listener means that if the application
calsthe get_<status_name>_status from inside the listener it will see the
status already reset.

The following statuses are applicable to the bbs_TopicListener:
* DDS_INCONSISTENT TOPIC_STATUS

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bDs_aNY_STATUS can be
used to select al statuses applicable to the DDS_TopicListener.

Satus Propagation

In case a communication status is not activated in the mask of the
DDS_TopicListener, the DDS_DomainParticipantListener Of the
containing DDS_DomainParticipant iSinvoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant and aDbbs_Topic specific behaviour when needed. In
case the DDS_DomainParticipantListener iS also not attached or the
communication status is not activated in itsmask, the application is not notified of
the change.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipant_delete contained_entities

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_delete_contained_entities
(DDS_DomainParticipant _this);

Description

This operation deletes all the bps_Entity objects that were created on the
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant
object on which the operation is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAT_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation deletes all the bps_Entity objects that were created on the
DDS_DomainParticipant. In other words, it deletes all bDs_Publisher,
DDS_Subscriber, DDS_Topic, DDS_ContentFilteredTopic and
DDS_MultiTopic objects. Prior to deleting each contained bps_Entity, this
operation regressively calls the corresponding
DDS_<Entity>_delete_contained_entities Operation on each
DDS_Entity (if applicable). In other words, all bpDs_Entity objectsin the
DDS_Publisher and DDS_Subscriber are deleted, including the
DDS_DataWriter and DDS_DataReader. Also the DDS_QueryCondition and
DDS_ReadCondi tion objects contained by the DDS_DataReader are deleted.

DDS Topic

Since aDDS_Topic isagloba concept in the system, access is provided through a
local proxy. The Data Distribution Service propagates bbs_Topics and makes
remotely created DDS_Topics locally available through this proxy. Such aproxy is
created by the DDS_DomainParticipant_create_topic Or
DDS_DomainParticipant_find_topic operation. When a pointer to the same
DDS_Topic was created multiple times (either by

149
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS_DomainParticipant_create_topic or
DDS_DomainParticipant_find_topic), al pointers(local proxies) are deleted.
With the last proxy, the bbs_Topic itself is aso removed from the system.

Note: The operation will return DDS_PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if a contained DDS_DataReader cannot be deleted because the
application has called a read or take operation and has not called the
corresponding return_1loan operation to return the loaned samples. In such cases,
the operation does not roll-back any entity deletions performed prior to the detection
of the problem.

Return Code
When the operation returns:

* DDS_RETCODE_OK - the contained pps_entity oObjects are deleted and the
application may delete the bDS_DomainParticipant.

* DDS RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

e DDS_RETCODE_PRECONDITION_NOT_ MET - oneor more of the contained entities
arein a state where they cannot be deleted.

DDS DomainParticipant_delete_contentfilteredtopic

150
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_delete_contentfilteredtopic
(DDS_DomainParticipant _this,
const DDS_ContentFilteredTopic
a_contentfilteredtopic);

Description
This operation deletesabDs_ContentFilteredTopic.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

Parameters

in DDS_DomainParticipant _this -the DDS_DomainParticipant
object on which the operation is operated.

in const DDS ContentFilteredTopic a_contentfilteredtopic - a
pointer to the DDS_ContentFilteredTopic, Which isto be deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED, DDS_RETCODE_OUT_OF_RESOURCES Or DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
This operation deletesaDDS_ContentFilteredTopic.

The deletion of abps_ContentFilteredTopic isnot allowed if there are any
existing DDS_DataReader Objects that are wusing the
DDS_ContentFilteredTopic.

If the DDS_DomainParticipant_delete_contentfilteredtopic operation
iscalled on aDpps_ContentFilteredTopic With existing bDDS_bDataReader
objects attached to it, it will return PRECONDITTON_NOT_MET.

The DDS_DomainParticipant_delete_contentfilteredtopic operation
must be called on the same bDS_DomainParticipant object used to create the
DDS_ContentFilteredTopic.

If DDS_DomainParticipant_delete_contentfilteredtopic iscaled ona
different bDs_DomainParticipant the operation will have no effect and it will
return PRECONDITION_NOT_ MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_ContentFilteredTopic iSdeleted.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter a_contentfilteredtopic
isnot avalid DDS_ContentFilteredTopic.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

151
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_DomainParticipant, as used when the bDS_ContentFilteredTopic
was created, or the DDS_ContentFilteredTopic iSbeng used by one or more
DDS_DataReader Objects.

DDS DomainParticipant_delete multitopic

152
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_delete_multitopic
(DDS_DomainParticipant _this,
const DDS_MultiTopic a_multitopic);

Note: This operation is not yet implemented. It is scheduled for afuture release.

Description
This operation deletesapps_MultiTopic.

Parameters

in DDS_DomainParticipant _this -the DDS_DomainParticipant
object on which the operation is operated.

in const DDS_MultiTopic a_multitopic - a pointer to the
DDS_MultiTopic, which isto be deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description
This operation deletesapps_MultiTopic.

The deletion of abpps_MultiTopic is not allowed if there are any existing
DDS_DataReader Objects that are using the pps_MultiTopic. If the
DDS_DomainParticipant_delete multitopic operationiscalled on a
DDS_MultiTopic With existing DDS_DataReader Objects attached to it, it will
return DDS_RETCODE_PRECONDITION_NOT_MET.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

The DDS_DomainParticipant_delete_multitopic operation must be called
on the same pbs_DomainParticipant Object used to create the
DDS_MultiTopic. If DDS_DomainParticipant delete multitopic iS
called on a different DDS_DomainParticipant the operation will have no effect
and it will return DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_MultiTopic is deleted.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter a_multitopic isnot avalid
DDS_MultiTopic.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_DomainParticipant, asused whenthe bbs_MultiTopic was created, or
the DDsS_MultiTopic isbeing used by one or more bDS_DataReader Objects.

DDS DomainParticipant_delete publisher

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_delete_publisher
(DDS_DomainParticipant _this,
const DDS_Publisher p);

Description
This operation deletes apps_Publisher.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant
object on which the operation is operated.

in const DDS_Publisher p - apointer tothe pbs_publisher, whichisto
be del eted.

153
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description

This operation deletes a Dbs_Publisher. A DDS_Publisher cannot be deleted
when it has any attached pDs_Datawriter objects. When the operation is called
on apbS_Publisher With DDS_DatawWriter objects, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET. When the operation is called on a
different DDS_DomainParticipant, as used when the bDsS_Publisher was
created, the operation has no effect and returns
DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_Publisher iSdeleted.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - the parameter p is not a valid
DDS_Publisher.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_PRECONDITION_NOT MET - the operation is called on adifferent
DDS_DomainParticipant, as used when the bDs_Publisher was created, or
the DDS_Publisher cONtains one Or More DDS_DataWriter Objects.

DDS DomainParticipant_delete subscriber

154
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_delete_subscriber
(DDS_DomainParticipant _this,
const DDS_Subscriber s);

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

Description
This operation deletes apps_subscriber.

Parameters

in DDS_DomainParticipant _this-theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_Subscriber s - apointer tothe pps_subscriber, whichis
to be deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description

This operation deletesapps_Subscriber. A DDS_Subscriber cannot be deleted
when it has any attached bps_DataReader objects. When the operation is called
0on aDDS_Subscriber With DDS_DataReader oObjects, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET. When the operation is called on a
different DDS_DomainParticipant, as used when the DbDs_subscriber was
created, the operation has no effect and returns
DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_Subscriber is deleted.
e DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAIL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter s is not a valid
DDS_Subscriber.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
already been deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

155
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_DomainParticipant, asused whenthe Dbs_Subscriber was created, or
the DDS_Subscriber contains one or more bDS_DataReader Objects.

DDS DomainParticipant_delete topic

156
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_delete_topic
(DDS_DomainParticipant _this,
const DDS_Topic a_topic);

Description
This operation deletes a DDS_Topic.

Parameters

in DDS_DomainParticipant _this -the DDS_DomainParticipant
object on which the operation is operated.

in const DDS_Topic a_topic - apointer tothe pbs_Topic, whichisto be
deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description

This operation deletes a bps_Topic. A DDS_Topic cannot be deleted when there
areany DDS_DataReader, DDS_DataWriter, DDS_ContentFilteredTopic Or
DDS_MultiTopic objects, which are using the bDs_Topic. When the operation is
called on apps_Topic pointed to by any of these objects, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET. When the operation is called on a
different DDS_DomainParticipant, as used when the bDS_Topic was created,
the operation has no effect and returns DDS_RETCODE_PRECONDITION_NOT_MET.

Local Proxy

Since apps_Topic isaglobal concept in the system, accessis provided through a
local proxy. In other words, the pointer is actually not a pointer to abps_Topic but
to the local proxy. The Data Distribution Service propagates bbs_Topics and

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

makes remotely created DDs_Topics locally available through this proxy. Such a
proxy is created by the Dbs_DomainParticipant_create_topic Of
DDS_DomainParticipant_find_topic operation. Thisoperation will delete the
local proxy. When a pointer to the same pDS_Topic was created multiple times
(either by DDS_DomainParticipant_create_topic or
DDS_DomainParticipant_find_topic), each pointer (local proxy) must be
deleted separately. When this proxy is the last proxy for this bps_Topic, the
DDS_Topic itself is aso removed from the system. As mentioned, a proxy may
only be deleted when there are no other entities attached to it. However, it is
possible to delete a proxy while there are entities attached to a different proxy.

Return Code

When the operation returns:

* DDS _RETCODE_OK - the DDS_Topic is deleted.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - the parameter a_topic is not a valid
DDS_Topic.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_PRECONDITION_NOT MET - the operation is called on adifferent
DDS_DomainParticipant, as used when the pbs_Topic was created, or the
DDS_Topic isstill pointed to by other abjects.

DDS DomainParticipant_enable (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_enable
(DDS_DomainParticipant _this);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

157
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipant_find_topic

158
API Reference

Synopsis
#include <dds_dcps.h>
DDS_Topic
DDS_DomainParticipant_find_topic
(DDS_DomainParticipant _this,
const DDS_char *topic_name,
const DDS_Duration_t *timeout) ;

Description

This operation gives access to an existing (or ready to exist) enabled pps_Topic,
based on its topic_name.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_char *topic_name - thename of the DDS_Topic that the
application wants access to.

iNn const DDS Duration_t *timeout - the maximum duration to block for
the DDS_DomainParticipant_find_topic, after which the application
thread is unblocked. The special constant DDS_DURATION_INFINITE can be
used when the maximum waiting time does not need to be bounded.

Return Value
DDS_Topic - Returnvalueisapointer to the bbs_Topic found.

Detailed Description

This operation gives access to an existing DDS_Topic, based on its topic_name.
The operation takes as arguments the topic_name of the DDS_Topic and a
timeout.

If abps_Topic of the same topic_name already exists, it gives access to this
DDS_Topic. Otherwise it waits (blocks the caller) until another mechanism creates
it. This other mechanism can be another thread, a configuration tool, or some other
Data Distribution Service utility. If after the specified t imeout the DDS_Topic can
still not be found, the caller gets unblocked and DDS_HANDLE_NTL is returned.

A DDS_Topic obtained by means of DDS_DomainParticipant_find_topic,
must also be deleted by means of DDS_DomainParticipant_delete_topic SO
that the local resources can be released. If abps_Topic is obtained multiple times
it must also be deleted that same number of times using

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

DDS_DomainParticipant_delete_topic or calling
DDS_DomainParticipant delete contained entities once to delete all
the proxies.

A DDS_Topic that is obtained by means of
DDS_DomainParticipant_find_topic in a specific

DDS_DomainParticipant can only be used to create DDS_DataReaders and
DDS_DataWriters in that DDS_DomainParticipant if its corresponding
DDS_TypeSupport has been registered to that same DDS_DomainParticipant.

Local Proxy

Since apps_Topic isaglobal concept in the system, accessis provided through a
local proxy. In other words, the pointer returned is actually not a pointer to a
DDS_Topic but to alocally created proxy. The Data Distribution Service
propagates bps_Topics and makes remotely created pps_Topics locally
available through this proxy. For each time this operation is called, a new proxy is
created. Thereforethe bbs_Topic must be deleted the same number of times, asthe
DDS_Topic was created with the same topic_name per Domain. In other words,
each pointer (local proxy) must be deleted separately.

DDS DomainParticipant_get_builtin_subscriber
Synopsis

#include <dds_dcps.h>
DDS_Subscriber
DDS_DomainParticipant_get_builtin_subscriber
(DDS_DomainParticipant _this);
Description

This operation returns the built-in DDS_subscriber associated with the

DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant
object on which the operation is operated.

Return Value

DDS_Subscriber - Result valueisapointer to the built-in DDS_Subscriber
associated with the bDS_DomainParticipant.

159

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation returns the built-in bbs_subscriber associated with the
DDS_DomainParticipant. Each DDS_DomainParticipant contains several
built-in bDS_Topic objects. The built-in bDS_Subscriber contains the
corresponding DDS_DataReader Objects to access them. All these
DDS_DataReader Objects belong to asingle built-in bps_subscriber. Note that
there is exactly one built-in DDS_subscriber associated with each
DDS_DomainParticipant.

DDS DomainParticipant_get_current_time

160
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
get_current_time
(DDS_DomainParticipant _this,
DDS_Time_t *current_time) ;

Description

This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well asreceived datain current_time.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

inout DDS_Time_t *current_time - the value of the current time as used by
the Data Distribution System. The input value of current_time iSignored.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of
DDS_RETCODE_NOT_ENABLED.

Detailed Description

This operation returns the value of the current time that the Data Distribution
Service uses to time-stamp written data as well as received datain current_time.
Theinput value of current_time isignored by the operation.

Return Code
When the operation returns:

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_OK - the value of the current timeisreturned in current_time.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

e DDS_RETCODE_BAD_PARAMETER - the parameter current_time isnot avalid
reference.

* DDS_RETCODE_ALREADY_DELETED - the DomainParticipant has aready
been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_NOT_ENABLED - the DDS_DomainParticipant iSnotenabled.
DDS DomainParticipant_get_default_publisher _gos
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_default_publisher_gos
(DDS_DomainParticipant _this,
DDS_PublisherQos *gos) ;

Description

This operation gets the struct with the default bDS_Publisher QosPolicy
settings of the DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

inout DDS_PublisherQos *gos - apointertothebps_publisherQos struct
(provided by the application) in which the default QosPolicy settings for the
DDS_ Publisher arewritten.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_ DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT MET.

161

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

162
API Reference

Detailed Description

This operation gets the struct with the default bbs_pPublisher QosPolicy
settings of the DDS_DomainParticipant (that isthe bps_pPublisherQos)
which is used for newly created bps_pPublisher objects, in case the constant
DDS_PUBLISHER_QOS_DEFAULT isused. The default DDS_PublisherQos isonly
used when the constant is supplied as parameter gos to specify the
DDS_PublisherQos inthe DDS_DomainParticipant_create_publisher
operation. The application must provide the bps_pPublisherQos struct in which
the QosPolicy settings can be stored and pass the gos pointer to the operation.
The operation writes the default gosPolicy settingsto the struct pointed to by gos.
Any settings in the struct are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to DDS_DomainParticipant_set_default_publisher_gos,
or, if the call was never made, the default values as specified for each QosPolicy
setting as defined in Table 5 on page 59.

Note: The operation will return bbDs_PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. This will occur, for
example, if a contained bDs_DataReader cannot be deleted because the
application has called a read or take operation and has not called the
corresponding return_loan operation to return the loaned samples. In such cases,
the operation does not roll-back any entity deletions performed prior to the detection
of the problem.

Return Code
When the operation returns:

* DDS_RETCODE_OK - the default DDS_Publisher QosPolicy Settings of this
DDS_DomainParticipant have successfully been copied into the specified
DDS_PublisherQos parameter.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
aready been deleted.

e DDS RETCODE_OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

e DDS RETCODE_PRECONDITION NOT MET - oneor more of the contained entities
arein a state where they cannot be deleted.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipant_get_default_subscriber _gos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_default_subscriber_gos
(DDS_DomainParticipant _this,
DDS_SubscriberQos *gos) ;

Description

This operation gets the struct with the default DDS_Subscriber QosPolicy
settings of the DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this-theDDS_DomainParticipant object
on which the operation is operated.

inout DDS_SubscriberQos *gos - apointer tothe QospPolicy struct
(provided by the application) in which the default QosPolicy settings for the
DDS_Subscriber iswritten.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAT_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation gets the struct with the default DDS_Subscriber QosPolicy
settings of the DDS_DomainParticipant (that isthe DDS_SubscriberQos)
which is used for newly created DDS_Subscriber objects, in case the constant
DDS_SUBSCRIBER_QOS_DEFAULT is used. The default DDS_SubscriberQos is
only used when the constant is supplied as parameter gos to specify the
DDS_SubscriberQos inthe DDS_DomainParticipant create subscriber
operation. The application must provide the QoS struct in which the policy can be
stored and pass the gos pointer to the operation. The operation writes the default
QosPolicy to the struct pointed to by gos. Any settings in the struct are
overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to DDS_DomainParticipant_set_default_subscriber gos,
or, if the call was never made, the default values as specified for each QospPolicy
defined in Table 5 on page 59.

163
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Return Code
When the operation returns:

* DDS_RETCODE_OK - the default DDs_Subscriber QosPolicy Settings of this
DDS_DomainParticipant have successfully been copied into the specified
DDS_SubscriberQos parameter.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS DomainParticipant_get_default_topic_qos

164
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_default_topic_gos
(DDS_DomainParticipant _this,
DDS_TopicQos *gos) ;

Description

This operation gets the struct with the default bbs_Topic QosPolicy settings of
the DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

inout DDS_TopicQos *gos - apointertothe QospPolicy struct (provided by
the application) in which the default gosPolicy settings for the bps_Topic is
written.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation gets the struct with the default DDS_Topic QosPolicy Settings of
the DDS_DomainParticipant (that isthe bDS_TopicQos) which is used for
newly created DDS_Topic oObjects, in case the constant
DDS_TOPIC_QOS_DEFAULT isused. The default bDs_TopicQos isonly used when
the constant is supplied as parameter gos to specify the pps_TopicQos in the
DDS_DomainParticipant_create_topic operation. The application must
provide the QoS struct in which the policy can be stored and pass the gos pointer to
the operation. The operation writes the default gosPolicy to the struct pointed to
by qgos. Any settings in the struct are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to DDS_DomainParticipant set default topic_gos, Of, if
the call was never made, the default values as specified for each QosPolicy
defined in Table 5 on page 59.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the default DDS_Topic QosPolicy settings of this
DDS_DomainParticipant have successfully been copied into the specified
DDS_TopicQos parameter.

* DDS RETCODE _ERROR - aninterna error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipant_get_discovered_participants

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_participants
(DDS_DomainParticipant _this,
DDS_InstanceHandleSeq *participant_handles);

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

165
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipant_get_discovered_participant_data
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_participant_data
(DDS_DomainParticipant _this,
DDS_ParticipantBuiltinTopicData *participant_data,
DDS_InstanceHandle_t handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
DDS DomainParticipant_get_discovered_topics
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_topics
(DDS_DomainParticipant _this,
DDS_InstanceHandleSeq *topic_handles) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.
DDS DomainParticipant_get_discovered_topic_data
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_discovered_topic_data
(DDS_DomainParticipant _this,
DDS_TopicBuiltinTopicData *topic_data,
DDS_InstanceHandle_t handle) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.
DDS DomainParticipant_get_domain_id
Synopsis

#include <dds_dcps.h>
DomainId_t
DDS_DomainParticipant_get_domain_id
(DDS_DomainParticipant _this);

Description

This operation returns the bomainId of the Domain to which this
DDS_DomainParticipant iSattached.

166

PRISMTECH
API Reference 4 Pris

3 DCPS Classes and Operations 3.2 DomainModule

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

Return Value

DomainId t - resultisthe DomainId.

Detailed Description

This operation returns the bomainId of the Domain to which this
DDS_DomainParticipant iS attached. A bomainId consists of a string that
represents a URI to the location of the configuration file (e.g.
“file:///projects/DDS/ospl.xml”). This file specifies all configuration
details of the Domain to which it refers.

A DomainId may contain the NULL pointer: in that case the location of the
configuration file is extracted from the environment variable called osp1._URT.

DDS DomainParticipant_get_listener

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
struct DDS_DomainParticipantListener
DDS_DomainParticipant_get_listener
(DDS_DomainParticipant _this);

Description
This operation allows accessto aDDS_DomainParticipantListener.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

Return Value

struct DDS_DomainParticipantListener - a pointer to the
DDS_DomainParticipantListener attached to the
DDS_DomainParticipant.

Detailed Description

This operation allows access to a DDS_DomainParticipantListener attached
to the DDS_DomainParticipant. When no
DDS DomainParticipantListener was attached to the
DDS_DomainParticipant, the DDS_OBJECT_NTL pointer is returned.

167
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipant_get _gos

168
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_get_gos
(DDS_DomainParticipant _this,
DDS_DomainParticipantQos *gos) ;

Description

This operation allows access to the existing set of QoS policies for a
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant Object
on which the operation is operated.

inout DDS_DomainParticipantQos *gos - apointer to the destination
DDS_DomainParticipantQos struct in which the QosPolicy settings will
be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of a
DDS_DomainParticipant on which this operation is used. This
DDS_DomainparticipantQos is stored at the location pointed to by the gos
parameter.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_DomainParticipant has successfully been copied into the specified
DDS_DomainParticipantQos parameter.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_ALREADY _DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS _RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipant_get_status _changes (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusMask

DDS_DomainParticipant_get_status_changes
(DDS_DomainParticipant _this);

DDS DomainParticipant_get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition

DDS_DomainParticipant_get_statuscondition
(DDS_DomainParticipant _this);

DDS _DomainParticipant_ignore_participant
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_participant
(DDS_DomainParticipant _this,
const DDS_InstanceHandle_t handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
DDS _DomainParticipant_ignore_publication
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_publication
(DDS_DomainParticipant _this,
const DDS_TInstanceHandle_t handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

169
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipant_ignore_subscription
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_subscription
(DDS_DomainParticipant _this,
const DDS_TInstanceHandle_t handle);

Note: This operation is not yet implemented. It is scheduled for afuture release.
DDS _DomainParticipant_ignore_topic
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_ignore_topic
(DDS_DomainParticipant _this,
const DDS_InstanceHandle_t handle) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.
DDS DomainParticipant_lookup_topicdescription
Synopsis

#include <dds_dcps.h>
DDS_TopicDescription
DDS_DomainParticipant_lookup_topicdescription
(DDS_DomainParticipant _this,
const DDS_char *name) ;

Description

This operation gives access to alocally-created bDS_TopicDescription, with a
matching name.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_char *name - the name of the DDS_TopicDescription to
look for.

Return Value

DDS_TopicDescription - Return value is a pointer to the
DDS_TopicDescription found. When no such bbs_TopicbDescription is
found, the pps_OBJECT_NIL pointer is returned.

170

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

The operation bbS_DomainParticipant_lookup_topicdescription gives
access to a locally-created DDS_TopicDescription, based on its name. The
operation takes as argument the name of the bbS_Topicbhescription.

If one or more local DDS_TopicDescription proxies (also see Section 3.2.1.15,
DDS DomainParticipant_find_topic, on page 158) of the same name already exist,
a pointer to one of the already existing local proxies is returned:
DDS_DomainParticipant_lookup_topicdescription will never create a
new local proxy. That means that the proxy that is returned does not need to be
deleted separately from its original. When no local proxy exists, it returns the
DDS_OBJECT_NTIL pointer. The operation never blocks.

The operation DDS_DomainParticipant_lookup_topicdescription may be
used to locate any locally-created bDS_Topic, DDS_ContentFilteredTopic
and DDS_MultiTopic object.

DDS DomainParticipant_set default_publisher _gos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_set_default_publisher_gos
(DDS_DomainParticipant _this,
const DDS_PublisherQos *gos);

Description

This operation sets the default pps_pPublisherQos of the
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this-theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_PublisherQos *gos - acollection of QosPolicy settings,
which contains the new default gosPolicy settings for the newly created
DDS_Publishers.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAT_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

171
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Detailed Description

This operation sets the default pps_pPublisherQos of the
DDS_DomainParticipant (that isthe struct with the QosPolicy settings) which
is used for newly created bps_pPublisher objects, in case the constant
DDS_PUBLISHER_QOS_DEFAULT isused. The default DDS_PublisherQos isonly
used when the constant is supplied as parameter gos to specify the
DDS_PublisherQos inthe DDS_DomainParticipant_create_publisher
operation. The pps_PublisherQos isaways self consistent, because its policies
do not depend on each other. This means this operation never returns the
DDS_RETCODE_INCONSISTENT_POLICY. The values set by this operation are
returned by DDS_DomainParticipant_get_default_publisher_gos

Return Code

When the operation returns:

* DDS_RETCODE_OK - the new default bDS_PublisherQos iS Set.
* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - the parameter qos is not a valid
DDS_PublisherQos. It containsaQosPolicy Setting with an enum valuethat is
outside its legal boundaries, or a sequence that has inconsistent memory settings.

* DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values
are currently not supported by OpenSplice.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipant_set default_subscriber _gos

172
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_set_default_subscriber_gos
(DDS_DomainParticipant _this,
const DDS_SubscriberQos *gos) ;

Description

This operation sets the default pDDS_SubscriberQos of the
DDS_DomainParticipant.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_SubscriberQos *gos - acollection of QosPolicy settings,
which contains the new default gosPolicy settings for the newly created
DDS_Subscribers.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation sets the default Dps_subscriberQos of the
DDS_DomainParticipant (that isthe struct with the QosPolicy settings) which
is used for newly created DDS_Subscriber objects, in case the constant
DDS_SUBSCRIBER_QOS_DEFAULT is used. The default DDS_SubscriberQos is
only used when the constant is supplied as parameter gos to specify the
DDS_SubscriberQos inthe DDS DomainParticipant create_ subscriber
operation. The bbs_SubscriberQos isaways self consistent, because its policies
do not depend on each other. This means this operation never returns the
DDS_RETCODE_INCONSISTENT_POLICY. The values set by this operation are
returned by DDS_DomainParticipant_get_default_subscriber_gos.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the new default DDS_SubscriberQos is Set.
e DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.
* DDS_RETCODE_BAD_PARAMETER - the parameter gos is not a valid

DDS_PublisherQos. It containsagosPolicy Setting with an enum valuethat is
outside its legal boundaries, or a sequence that has inconsistent memory settings.

* DDS RETCODE_UNSUPPORTED - one or more of the selected gosPolicy values
are currently not supported by OpenSplice.

* DDS_RETCODE_ALREADY _DELETED - the DDS_DomainParticipant has
aready been deleted.

173
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipant_set_default_topic_qos

174
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_set_default_topic_gos
(DDS_DomainParticipant _this,
const DDS_TopicQos *gos) ;

Description
This operation sets the default DDS_TopicQos Of the DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const DDS_TopicQos *gos - acollection of gosPolicy settings, which
contains the new default gospPolicy settings for the newly created
DDS_Topics.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_ INCONSISTENT_POLICY.

Detailed Description

This operation sets the default DDS_TopicQos of the DDS_DomainParticipant
(that is the struct with the QosPolicy settings) which is used for newly created
DDS_Topic objects, in case the constant pps_ToPIC_QO0S_DEFAULT is used. The
default bps_TopicQos isonly used when the constant is supplied as parameter gos
to specify the bbs_TopicQos inthe DDS_DomainParticipant_create_topic
operation. This operation checksif the DDs_TopicQos isself consistent. If itisnot,
the operation has no effect and returns bps_RETCODE_INCONSISTENT_POLICY.
The values set by this operation are returned by
DDS_DomainParticipant_get_default_topic_gos.

Return Code
When the operation returns:

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* DDS RETCODE_OK - the new default DDS_TopicQos iS Set.
* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter gos is not a valid
DDS_TopicQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t value, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

* DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
aready been deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_INCONSISTENT POLICY - the parameter qos contains
conflicting gosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

DDS DomainParticipant_set listener

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_set_listener
(DDS_DomainParticipant _this,
const struct DDS_DomainParticipantListener
*a_listener,
const DDS_StatusMask mask) ;

Description

This operation attaches a DDS_DomainParticipantListener to the
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this -theDDS_DomainParticipant object
on which the operation is operated.

in const struct DDS_DomainParticipantListener *a_listener-a
pointer to the DDS_DomainParticipantListener instance, which will be
attached to the bDS_DomainParticipant.

175
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

176
API Reference

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_DomainParticipantListener for acertain status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation attaches a DDS_DomainParticipantListener to the
DDS_DomainParticipant. OnIy Oone DDS_DomainParticipantListener Can
be attached to each DDS DomainParticipant. | f a
DDS_DomainParticipantListener was already attached, the operation will
replace it with the new one. When a_1listener iSthe DDS_OBJECT_NIL pointer, it
represents a listener that is treated as a NOOP! for all statuses activated in the
bitmask.

Communication Satus

For each communication status, the statusChangedFlag flagisinitialy set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_DomainParticipantListener operation isinvoked and the
communication status isreset to FALSE, as the listener implicitly accesses the status
which is passed as a parameter to that operation. The status is reset prior to calling
the listener, so if the application calls the get_<status_name>_status from
inside the listener it will see the status already reset. An exception to thisruleisthe
DDS_OBJECT_NIL listener, which does not reset the communication statuses for
which it isinvoked.

Thefollowing statuses are applicable to the bbs_DomainParticipantListener:

* DDS_INCONSISTENT_TOPIC_STATUS (propagated)
* DDS_OFFERED_DEADLINE MISSED_STATUS (propagated)
* DDS_REQUESTED_DEADLINE MISSED_STATUS (propagated)
* DDS_OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_SAMPLE_LOST_STATUS (propagated)
* DDS_SAMPLE_REJECTED_STATUS (propagated)

1. Short for No-Operation, an instruction that peforms nothing at all.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

e DDS_DATA_ON_READERS_STATUS (propagated)
* DDS_DATA_AVAILABLE_STATUS (propagated)
* DDS_LIVELINESS_LOST_STATUS (propagated)
* DDS_LIVELINESS_ CHANGED_STATUS (propagated)
* DDS_PUBLICATION_MATCHED_STATUS (propagated)
* DDS_SUBSCRIPTION_MATCHED_STATUS (propagated).

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bDs_ANY_STATUS can be
used to select all statuses applicable to the DDS_DomainParticipantListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case acommunication status is also activated onthe Listener of
a contained entity, the Listener on that contained entity isinvoked instead of the
DDS_DomainParticipantListener. This means that a status change on a
contained entity only invokes the DDS_DomainParticipantListener if the
contained entity itself does not handle the trigger event generated by the status
change.

The statuses DDS_DATA_ON_READERS_STATUS and DDS_DATA_
AVAILABLE_STATUS are “Read Communication Statuses’ and are an exception to
al other plain communication statuses: they have no corresponding status structure
that can be obtained with aget_<status_name>_status operation and they are
mutually exclusive. When new information becomes available to a DataReader, the
Data Distribution Service will first look in an attached and activated
DDS_SubscriberListener Of DDS_DomainParticipantListener (in that
order) for the DDS_DATA_ON_READERS_STATUS. In case the
DDS_DATA_ON_READERS_STATUS can not be handled, the Data Distribution
Service will look in an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener OF DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (inthat order).

Return Code

When the operation returns:

* DDS RETCODE_OK - the DDS_DomainParticipantListener iS attached.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has
aready been deleted.

177
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipant_set gos

178
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipant_set_gos
(DDS_DomainParticipant _this,
const DDS_DomainParticipantQos *gos) ;

Description

This operation replaces the existing set of gospPolicy settings for a
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipant _this-iStheDDS_DomainParticipant object
on which the operation is operated.

in const DDS_DomainParticipantQos *gos - must contain the new set of
QosPolicy settingsfor the DDS_DomainParticipant.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation replaces the existing set of gospPolicy settings for a
DDS_DomainParticipant. The parameter gos must contain the struct with the
QosPolicy settings which is checked for self-consistency.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

Return Code

When the operation returns:

* DDS_RETCODE_OK - the new DDS_DomainParticipantQos iS Set.

* DDS_RETCODE_ERROR - aninternal error has occurred.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an

inappropriate object.

* DDS_RETCODE_BAD_ PARAMETER - the parameter gos is not a valid

DDS_DomainParticipantQos. It contains a QosPolicy Setting with a
sequence that has inconsistent memory settings.

* DDS_RETCODE_ALREADY DELETED - the DDS_DomainParticipant has

aready been deleted.

* DDS RETCODE OUT OF_ RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

ClassDDS_DomainParticipantFactory

&4 PRISMTECH

The purpose of this class is to allow the creation and destruction of
DDS_DomainParticipant ObjeCcts. DDS_DomainParticipantFactory itself

has no factory. It is a pre-existing singleton object that can be accessed by means of

the DDS_DomainParticipantFactory_get_instance operation on the
DDS_DomainParticipantFactory class.

The pre-defined value bDS_TheParticipantFactory can also be used as an
alias for the singleton factory returned by the operation
DDS_DomainParticipantFactory_get_instance.

The interface description of this classis asfollows:

/*
* interface DDS_DomainParticipantFactory
*/
/~k
* implemented API operations
*x/
DDS_DomainParticipantFactory
DDS_DomainParticipantFactory get_instance
(void) ;
DDS_DomainParticipant
DDS_DomainParticipantFactory_ create_participant
(DDS_DomainParticipantFactory _this,
const DomainId_t domainId,
const DDS_DomainParticipantQos *gos,
const struct DDS_DomainParticipantListener *a_listener,
const DDS_StatusMask mask) ;
DDS_ReturnCode_t
DDS_DomainParticipantFactory_delete_participant
(DDS_DomainParticipantFactory _this,
const DDS_DomainParticipant a_participant);
DDS_DomainParticipant
DDS_DomainParticipantFactory_ lookup_participant
(DDS_DomainParticipantFactory _this,
const DomainId_t domainId) ;

179
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS_ReturnCode_t
DDS_DomainParticipantFactory_ set_default_participant_gos
(DDS_DomainParticipantFactory _this,
const DDS_DomainParticipantQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipantFactory get_default_participant_gos
(DDS_DomainParticipantFactory _this,
DDS_DomainParticipantQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipantFactory_set_gos
(DDS_DomainParticipantFactory _this,
const DDS_DomainParticipantFactoryQos *gos) ;
DDS_ReturnCode_t
DDS_DomainParticipantFactory get_gos
(DDS_DomainParticipantFactory _this,
DDS_DomainParticipantFactoryQos *gos) ;

The next paragraphs describe the usage of all DDS_DomainParticipantFactory

operations.

3.2.2.1 DDS DomainParticipantFactory_create participant

180
API Reference

Synopsis

#include <dds_dcps.h>

DDS_DomainParticipant

DDS_DomainParticipantFactory create_participant
(DDS_DomainParticipantFactory _this,

const DomainId_t domainId,
const DDS_DomainParticipantQos *gos,
const struct DDS_DomainParticipantListener *a_listener,
const DDS_StatusMask mask) ;

Description

This operation creates a new DDS_DomainParticipant which will join the
domain identified by domainId, with the desired DDS_DomainParticipantQos
and attaches the optionally specified DDS_DomainParticipantListener toit.

Parameters

in DDS_DomainParticipantFactory _this - the
DDS_DomainParticipantFactory object on which the operation is
operated.

in const DomainId_t domainId - thelD of the bomain to which the
DDS_DomainParticipant isjoined. This should be a URI to the location of
the configuration file that identifies the configuration details of the Domain.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

in const DDS_DomainParticipantQos *gos - a
DDS_DomainParticipantQos for the new DDS_DomainParticipant.
When this set of gosPolicy settings is inconsistent, no
DDS_DomainParticipant iScreated.

in const struct DDS_DomainParticipantListener *a_listener -a
pointer to the DDS_DomainParticipantListener instance which will be
attached to the new pDs_DomainParticipant. It is permitted to use
DDS_OBJECT_NIL as the value of the listener: this behaves as a
DDS_DomainParticipantListener Whose operations perform no action.

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_DomainParticipantListener for acertain status.

Return Value

DDS_DomainParticipant -Return valueis a pointer to the newly created
DDS_DomainParticipant. In case of an error, the bbs_OBJECT_NIL pointer
is returned.

Detailed Description

This operation creates a new DDS_DomainParticipant, With the desired
DDS_DomainParticipantQos and attaches the optionally specified
DDS_DomainParticipantListener toit. The DDS_DomainParticipant
signifies that the calling application intends to join the Domain identified by the
domainId argument.

If the specified QosPolicy settings are not consistent, the operation will fail; no
DDS_DomainParticipant iS created and the operation returns the
DDS_OBJECT_NIL pointer. To delete the bbs_DomainParticipant the operation
DDS_DomainParticipantFactory delete_participant must be used.

| dentifying the Domain

The DDS_DomainParticipant will attach to the bomain that is specified by the
domainId parameter. This parameter consists of a string that represents a URI to
the location of the configuration file (e.g.
“file:///projects/DDS/ospl.xml”). Thisfile specifies all configuration
details of the bomain to which it refers. See the Deployment Guide for further
details about the contents of this configuration file.

A NULL pointer may be assigned to the bomainId: in that case the location of the
configuration fileis extracted from the environment variable called ospr._urz. This
variable will be initialized when you source the release. com script (on platforms
to which that applies) or, on the Windows platform, when you install the OpenSplice

181
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

182
API Reference

product. Initially it will point to the default configuration file that comes with
OpenSplice, but of course you are free to change this to any configuration file that
you want.

It is recommended to use this osp1,_ur1 variable instead of hard-coding the URI
into your application, since this gives you much more flexibility in the deployment
phase of your product.

Default QoS

The constant DDS_PARTICIPANT_QOS_DEFAULT Can be used as parameter gos to
create a DDS_DomainParticipant with the default
DDS_DomainParticipantQos as set in the
DDS_DomainParticipantfactory. The effect of using
DDS_PARTICIPANT_QOS_DEFAULT is the same as calling the operation
DDS_DomainParticipantFactory get_default_participant_gos and
using the resulting DbS_DomainParticipantQos to create the
DDS_DomainParticipant.

Communication Satus

For each communication status, the statusChangedFlag flag isinitially set to
FALSE. It becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_DomainParticipantListener operation is invoked and the
communication status is reset to FALSE, asthe listener implicitly accesses the status
which is passed as a parameter to that operation. The fact that the statusis reset prior
to calling the listener means that if the application calls the
get_<status_name>_status from inside the listener it will see the status
already reset.

Thefollowing statuses are applicable to the Dbs_DomainParticipantListener:

* DDS_INCONSISTENT_TOPIC_STATUS (propagated)
* DDS_OFFERED_DEADLINE MISSED_STATUS (propagated)
* DDS_REQUESTED_DEADLINE MISSED_STATUS (propagated)
* DDS_OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_REQUESTED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_SAMPLE_LOST_STATUS (propagated)
* DDS_SAMPLE_REJECTED_STATUS (propagated)
* DDS_DATA_ON_READERS_STATUS (propagated)
* DDS_DATA_AVAILABLE_STATUS (propagated)
* DDS_LIVELINESS_LOST_STATUS (propagated)
& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_LIVELINESS_CHANGED_STATUS (propagated)
* DDS_PUBLICATION_MATCHED_STATUS (propagated)
* DDS_SUBSCRIPTION_MATCHED_STATUS (propagated).

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bps_ANY_STATUS can be
used to select all statuses applicable to the bDS_DomainParticipantListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case acommunication statusis also activated on the Listener of
acontained entity, the Listener on that contained entity is invoked instead of the
DDS_DomainParticipantListener. This means that a status change on a
contained entity only invokes the bbS_DomainParticipantListener if the
contained entity itself does not handle the trigger event generated by the status
change.

The statuses DDS_DATA_ON_READERS_STATUS and DDS_DATA_
AVAILABLE_STATUS are “Read Communication Statuses’ and are an exception to
al other plain communication statuses: they have no corresponding status structure
that can be obtained with aget_<status_name>_status operation and they are
mutually exclusive. When new information becomes available to a DataReader, the
Data Distribution Service will first look in an attached and activated
DDS_SubscriberListener OF DDS_DomainParticipantListener (in that
order) for the DDS_DATA_ON_READERS_STATUS. In case the
DDS_DATA_ON_READERS_STATUS can not be handled, the Data Distribution
Service will look in an attached and activated DDS_DataReaderListener,
DDS_SubscriberListener OF DDS_DomainParticipantListener for the
DDS_DATA_AVAILABLE_STATUS (in that order).

DDS DomainParticipantFactory _delete participant

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipantFactory_delete_participant
(DDS_DomainParticipantFactory _this,
const DDS_DomainParticipant a_participant) ;

Description
This operation deletes apps_DomainParticipant.

183
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

Parameters

in DDS_DomainParticipantFactory _this - the
DDS_DomainParticipantFactory Object on which the operation is
operated.

in const DDS_DomainParticipant a_participant - apointer tothe
DDS_DomainParticipant, whichisto be deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_ PRECONDITION_NOT_MET.

Detailed Description

This operation deletes a DDS_DomainParticipant. A
DDS_DomainParticipant cannot be deleted when it has any attached
DDS_Entity objects. When the operation is called on a
DDS_DomainParticipant With existing DDs_Entity objects, the operation
returns DDS_RETCODE_PRECONDITION_NOT_MET.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_DomainParticipant isdeleted.
* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.
* DDS_RETCODE_BAD_PARAMETER - the parameter a_participant isnot avalid

DDS_DomainParticipant.

* DDS _RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_PRECONDITION_NOT MET - the DDS_DomainParticipant
contains one or more DDS_Ent ity objects.

DDS DomainParticipantFactory get default_participant_qos

184
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipantFactory_get_default_participant_gos
(DDS_DomainParticipantFactory _this,

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

DDS_DomainParticipantQos *gos) ;

Description

This operation gets the default bDS_DomainParticipantQos of the
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipantFactory _this - the
DDS_DomainParticipantFactory Object on which the operation is
operated.

inout DDS_DomainParticipantQos *gos - a pointer to the
DDS_DomainParticipantQos struct (provided by the application) in which
the default DDS_DomainParticipantQos for the
DDS_DomainParticipant iSwritten.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation gets the default DDS_DomainParticipantQos Of the
DDS_DomainParticipant (that isthe struct with the QosPolicy settings) which
is used for newly created DDS_DomainParticipant Objects, in case the constant
DDS_PARTICIPANT_QOS_DEFAULT is used. The default
DDS_DomainParticipantQos isonly used when the constant is supplied as
parameter gos to specify the DDS_DomainParticipantQos in the
DDS_DomainParticipantFactory_create_participant operation. The
application must provide the bDS_DomainParticipantQos struct in which the
QosPolicy Settings can be stored and provide a pointer to the struct. The operation
writes the default gosPolicy settings to the struct pointed to by gos. Any settings
in the struct are overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to DDS_DomainParticipantFactory set default_
participant_gos, of, if the call was never made, the default values as specified
for each QosPolicy Setting as defined in Table 5 on page 59.

Return Code
When the operation returns:

185
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_OK - the default DDS_DomainParticipant QosPolicy Settings
of this bbS_DomainParticipantFactory have successfully been copied into
the specified DDS_DomainParticipantQos parameter.

e DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS DomainParticipantFactory get_instance

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipantFactory
DDS_DomainParticipantFactory_get_instance
(void) ;

Description
This operation returns the DDS_DomainParticipantFactory Singleton.

Parameters
<none>

Return Value

DDS_DomainParticipantFactory - return value is a pointer to the
DDS_DomainParticipantFactory.

Detailed Description

This operation returns the bbs_DomainParticipantFactory Singleton. The
operation can be called multiple times without side-effects and it returns the same
DDS_DomainParticipantFactory instance.

The pre-defined value DDS_TheParticipantFactory can also be used as an
alias for the singleton factory returned by the operation
DDS_DomainParticipantFactory_get_instance.

DDS DomainParticipantFactory get qos

186
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipantFactory get_gos
(DDS_DomainParticipantFactory _this,

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

DDS_DomainParticipantFactoryQos *gos) ;

Description

This operation allows access to the existing set of QoS policies for a
DDS_DomainParticipantFactory.

Parameters

in DDS_DomainParticipantFactory _this - the
DDS_DomainParticipantFactory Object on which the operation is
operated.

inout DDS_DomainParticipantFactoryQos *gos - apointer to the
destination pDS_DomainparticipantFactoryQos Struct in which the
QosPolicy settingswill be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION Of DDS_RETCODE_ OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing set of QoS policies of a
DDS_DomainParticipantFactory on which this operation is used. This
DDS_DomainparticipantFactoryQos isstored at the location pointed to by the
gos parameter.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_DomainParticipantFactory has successfully been copied into the
specified DDS_DomainParticipantFactoryQos parameter.

* DDS RETCODE ERROR - aninterna error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipantFactory_lookup_participant

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant

187
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS_DomainParticipantFactory_lookup_participant
(DDS_DomainParticipantFactory _this,
const DomainId_t domainId) ;

Description

This operation retrieves a previously created DDS_DomainParticipant
belonging to the specified domainId.

Parameters

in DDS_DomainParticipantFactory _this - the
DDS_DomainParticipantFactory object on which the operation is
operated.

in const DomainId_t domainId - thelD of the bomain for which ajoining
DDS_DomainParticipant should be retrieved. This should be a URI to the
location of the configuration file that identifies the configuration details of the
Domain.

Return Value

DDS_DomainParticipant - Return value is a pointer to the
DDS_DomainParticipant retrieved. When no such
DDS_DomainParticipant isfound, the DDs_OBJECT_NIL pointer is
returned.

Detailed Description

This operation retrieves a previously created DDS_DomainParticipant
belonging to the specified domain1d. If no such bDS_DomainParticipant
exists, the operation will return DDS_OBJECT_NTL.

The domainTd used to search for a specific DDS_DomainParticipant must be
identical to the domain1d that was used to create that specific
DDS_DomainParticipant: aNULL pointer will not be resolved on thislevel. That
means that abbs_DomainParticipant that was created using a domainId set to
NULL will not be found if you try to look it up using a hard-coded URI that has the
same contents as the environment variable 0SPL._URI.

If multiple bDS_DomainParticipant entities belonging to the specified
domainId exist, then the operation will return one of them. It is not specified which
one.

DDS DomainParticipantFactory_set_default_participant_qos

188
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

&4 PRISMTECH

DDS_DomainParticipantFactory_ set_default_participant_gos
(DDS_DomainParticipantFactory _this,
const DDS_DomainParticipantQos *qgos) ;

Description

This operation sets the default bbs_DomainParticipantQos Of the
DDS_DomainParticipant.

Parameters

in DDS_DomainParticipantFactory _this - the
DDS_DomainParticipantFactory object on which the operation is
operated.

in const DDS_DomainParticipantQos *gos - the
DDS_DomainParticipantQos Struct, which contains the new default
DDS_DomainParticipantQos for the newly created
DDS_DomainParticipants.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAT_
OPERATION, DDS_RETCODE_BAD_PARAMETER Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation sets the default bbs_DomainParticipantQos Of the
DDS_DomainParticipant (that isthe struct with the QosPolicy settings) which
is used for newly created bDS_DomainParticipant Objects, in case the constant
DDS_PARTICIPANT_QOS_DEFAULT is used. The default
DDS_DomainParticipantQos isonly used when the constant is supplied as
parameter gos to specify the DDS_DomainParticipantQos in the
DDS_DomainParticipantFactory_create_participant operation. The
DDS_DomainParticipantQos isaways self consistent, because its policies do
not depend on each other. This means this operation never returns the
DDS_RETCODE_INCONSISTENT_POLICY.

The values set by this operation are returned by
DDS_DomainParticipantFactory_get_default_participant_gos.
Return Code

When the operation returns:

* DDS_RETCODE_OK - the new default DDS_DomainParticipantQos iS Set.

e DDS_RETCODE_ERROR - an internal error has occurred.

189
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.
* DDS_RETCODE_BAD_PARAMETER - the parameter gos is not a vaid

DDS_DomainParticipantQos. It contains a QosPolicy Setting with a
sequence that has inconsistent memory settings.

e DDS RETCODE_OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS DomainParticipantFactory set qos

190
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DomainParticipantFactory_set_gos
(DDS_DomainParticipantFactory _this,
const DDS_DomainParticipantFactoryQos *gos) ;

Description

This operation replaces the existing set of QosPolicy settings for a
DDS_DomainParticipantFactory.

Parameters

in DDS_DomainParticipantFactory _this - is the
DDS_DomainParticipantFactory object on which the operation is
operated.

in const DDS_DomainParticipantFactoryQos *gos - must containthe
new set of QosPolicy settingsfor the DDS_DomainParticipantFactory.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAL_
OPERATION Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation replaces the existing set of gospPolicy settings for a
DDS_DomainParticipantFactory. The parameter gos must contain the struct
with the QosPolicy Settings.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Return Code

When the operation returns:

* DDS_RETCODE_OK - the new DDS_DomainParticipantFactoryQos iS Set.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS RETCODE OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DomainParticipantListener interface

&4 PRISMTECH

Since aDpDs_DomainParticipant iS@aDDS_Entity, it hasthe ability to have a
Listener associated with it. In this case, the associated 1.i stener should be of
type DDS_DomainParticipantListener. Thisinterface must be implemented
by the application. A user defined class must be provided by the application which
must extend from the DDs_DomainParticipantListener class. All
DDS_DomainParticipantListener operations must beimplemented in the user
defined class, it is up to the application whether an operation is empty or contains
some functionality.

All operations for this interface must be implemented in the user defined class, it is
up to the application whether an operation is empty or contains some functionality.

The DDS_DomainParticipantListener provides a generic mechanism
(actually a callback function) for the Data Distribution Service to notify the
application of relevant asynchronous status change events, such as a missed
deadline, violation of a QosPolicy setting, etc. The
DDS_DomainParticipantListener isrelated to changesin communication
status DDS_StatusConditions.

The interface description of this class is as follows:

/~k

* interface DDS_DomainParticipantListener

*/
/*

* inherited from DDS_TopicListener

*/
/* wvoid

* DDS_DomainParticipantListener_on_inconsistent_topic
* (void *listener_data,

* DDS_Topic the_topic,

* const DDS_InconsistentTopicStatus *status);
*/

/~k

* inherited from DDS_PublisherListener

191
API Reference

3 DCPS Classes and Operations 3.2 DomainModule

192
API Reference

*/

/* wvoid

* DDS_DomainParticipantListener_on_offered deadline_missed
* (void *listener_data,

* DDS_DataWriter writer,

* const DDS_OfferedDeadlineMissedStatus *status) ;
*/

/* wvoid

* DDS_DomainParticipantListener_on_offered_incompatible_gos
* (void *listener_data,

* DDS_DataWriter writer,

* const DDS_OfferedIncompatibleQosStatus *status) ;
*/

/* wvoid

* DDS_DomainParticipantListener_on_liveliness_lost

* (void *listener_data,

* DDS_DataWriter writer,

* const DDS_LivelinessLostStatus *status);

*/

/* void

* DDS_DomainParticipantListener_on_publication_matched
* (void *listener_data,

* DDS_DataWriter writer,

* const DDS_PublicationMatchedStatus *status);

*/

/*

* inherited from DDS_SubscriberListener

*/

/* wvoid

* DDS_DomainParticipantListener_on_data_on_readers

* (void *listener_data,

* DDS_Subscriber subs) ;

*/

/* void

DDS_DomainParticipantListener_on_requested_deadline_missed
* (void *listener_data,

* DDS_DataReader reader,

* const DDS_RequestedDeadlineMissedStatus *status);

*/

/* wvoid

* DDS_DomainParticipantListener_on_requested_incompatible_gos
* (void *listener_data,

* DDS_DataReader reader,

* const DDS_RequestedIncompatibleQosStatus *status);

*/

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

/* void

* DDS_DomainParticipantListener_on_sample_rejected
* (void *listener_data,

DDS_DataReader reader,

* const DDS_SampleRejectedStatus *status);

*/

/* void

* DDS_DomainParticipantListener_on_liveliness_changed
* (void *listener_data,

* DDS_DataReader reader,

* const DDS_LivelinessChangedStatus *status) ;
*/

/* wvoid

* DDS_DomainParticipantListener_on_data_available
* (void *listener_data,

* DDS_DataReader reader) ;

*/

/* void

* DDS_DomainParticipantListener_on_subscription_matched
* (void *listener_data,

* DDS_DataReader reader,

* const DDS_SubscriptionMatchedStatus *status) ;
*/
/* void

* DDS_DomainParticipantListener_on_sample_lost

* (void *listener_data,

* DDS_DataReader reader,

* const DDS_SampleLostStatus *status);

*/
/*

* implemented API operations

*/

DDS_DomainParticipantListener
DDS_DomainParticipantListener_ _alloc
(void) ;
The next paragraphs list all DDS_DomainParticipantListener operations.
Since these operations are all inherited, they are listed but not fully described
because they are not implemented in this class. The full description of these
operationsis given in the classes from which they are inherited.

3.2.3.1 DDS DomainParticipantListener__alloc
Synopsis
#include <dds_dcps.h>

193

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS_DomainParticipantListener
DDS_DomainParticipantListener_ _alloc
(void) ;

Description
This operation creates anew DDS_DomainParticipantListener.

Parameters
<none>

Return Value

DDS_DomainParticipantListener - Return value is the handle to the newly
created DDS_DomainParticipantListener. In case of an error, a
DDS_OBJECT_NTIL pointer is returned.

Detailed Description

This operation creates a new DDS_DomainParticipantListener. The
DDS_DomainParticipantListener must be created using this operation. In
other words, the application is not allowed to declare an object of type
DDS_DomainParticipantListener. When the application wants to release the
DDS_DomainParticipantListener it must bereleased using pps_free.

In case there are insufficient resources available to allocate the
DDS_DomainParticipantListener, 8 DDS_OBJECT_NIL pointer is returned
instead.

DDS DomainParticipantListener_on_data available (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_data_available
(void *listener_data,
DDS_DataReader reader) ;

DDS DomainParticipantListener_on_data_on_readers (inherited,
abstract)

194
API Reference

This operation is inherited and therefore not described here. See the class
DDS_SubscriberListener for further explanation.

& PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_data_on_readers
(void *listener_data,
DDS_Subscriber subs) ;

DDS DomainParticipantListener_on_inconsistent_topic (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_TopicListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_inconsistent_topic
(void *listener_data,
DDS_Topic the_topic,
const DDS_InconsistentTopicStatus *status);

DDS _DomainParticipantListener_on_liveliness changed (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_liveliness_changed
(void *listener_data,
DDS_DataReader reader,
const DDS_LivelinessChangedStatus *status);

DDS DomainParticipantListener_on_liveliness lost (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_liveliness_lost
(void *listener_data,
DDS_DataWriter writer,
const DDS_LivelinessLostStatus *status);

195
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.2 DomainModule

DDS DomainParticipantListener_on_offered_deadline missed
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.
Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_offered_deadline_missed
(void *listener_data,
DDS_DataWriter writer,
const DDS_OfferedDeadlineMissedStatus *status);

DDS DomainParticipantListener_on_offered_incompatible qos
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_offered_incompatible_gos
(void *listener_data,
DDS_DataWriter writer,
const DDS_OfferedIncompatibleQosStatus *status);

DDS DomainParticipantListener_on_publication_matched (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataWriterListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_publication_matched
(void *listener_data,
DDS_DataWriter writer,
const DDS_PublicationMatchedStatus *status);

Note: This operation is not yet supported. It is scheduled for a future release.
DDS DomainParticipantListener_on_requested deadline missed
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

196
API Reference & PRISMTECH

3 DCPS Classes and Operations 3.2 DomainModule

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_requested_deadline_missed
(void *listener_data,
DDS_DataReader reader,
const DDS_RequestedDeadlineMissedStatus *status) ;

DDS DomainParticipantListener_on_requested_incompatible_gos
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantlListener_on_requested_incompatible_gos
(void *listener_data,
DDS_DataReader reader,
const DDS_RequestedIncompatibleQosStatus *status);

DDS DomainParticipantListener_on_sample lost (inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_sample_lost
(void *1listener_data,
DDS_DataReader reader,
const DDS_SampleLostStatus *status);

Note: Thisoperation is not yet supported. It is scheduled for a future release.

DDS DomainParticipantListener_on_sample reected (inherited,
abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_sample_rejected
(void *listener_data,
DDS_DataReader reader,

197
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

const DDS_SampleRejectedStatus *status);

3.2.3.14 DDS DomainParticipantListener _on_subscription_matched
(inherited, abstract)

This operation is inherited and therefore not described here. See the class
DDS_DataReaderListener for further explanation.

Synopsis
#include <dds_dcps.h>
void
DDS_DomainParticipantListener_on_subscription_matched
(void *listener_data,
DDS_DataReader reader,
const DDS_SubscriptionMatchedStatus *status);

Note: Thisoperation is not yet supported. It is scheduled for a future release.
3.3 Topic-Definition Module

DataReader
(from Subscription Module)

*

ContentFilteredTopic

get_expression_parameters()
get_filter_expression()

<<create>> get_related_topic() 1
/ set_expression_parameters()
TopicDescription

DomainParticipant
DomainEntity (from Domain Module)
(from Infrastructure Module) get_name()
<<create>> get_participant()
get_type_name()
<<create>> MultiTopic
1
get_expression_parameters()
- get_subscription_expression()
Topic * set_expression_parameters()
DataWriter * 1 |get_inconsistent_topic_status()
(from Publication Module) get_listener() 1
get_gos()
set_listener() fr<ln;(esrLace()>rt>
set_qgos() ypesupp
1 get__type_name()
register_type()
* 0.1 *
QosPolicy <<In.ter.face>> StatusCondition * * WaitSet
(from Infrastructure Module) TopicListener (from Infrastructure Module) = (from Infrastructure Module)

on_inconsistent_topic()

Figure 16 DCPS Topic-Definition Module Class M odel
This module contains the following classes:

* DDS_TopicDescription (abstract)

« DDS_Topic

198

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

« DDS_ContentFilteredTopic

e DDS_MultiTopic

* DDS_TopicListener (interface)

Topic-Definition type specific classes.

“Topic-Definition type specific classes’ contains the generic class and the generated

data type specific classes. For each data type, a data type specific class
<NameSpace>_<type>TypeSupport IS generated (based on IDL) by calling the

[pre-processor.
<<Interface>> DataWriter DataReader
TypeSupport (from Publication Module) (from Subscription Module)

get_type_name()
register_type()

i

FooTypeSupport FooDataWriter FooDataReader
gel_ﬁtypefname() dispose() get_key_value()
register_type() dispose_w_timestamp() read()

read_instance()

get_key_value()
register()
register_w_timestamp()
unregister()

read_next_instance()
read_next_instance_w_condition()
read_next_sample()

unregister_w_timestamp() read_w_condition()
write() return_loan()

write_w_timestamp() take()

take_instance()
take_next_instance()
take_next_instance_w_condition()
take_next_sample()
take_w_condition()

Foo

Figure 17 Pre-processor Generation of the Typed Classesfor Data Type “ Foo”

For instance, for the user defined data type Foo (this also applies to other types),
defined in the module spacE; “ Topic-Definition type specific classes’ contains the
following classes:

* DDS_TypeSupport (abstract)
* SPACE_FooTypeSupport.

DDS_Topic objects conceptually fit between publications and subscriptions.
Publications must be known in such a way that subscriptions can refer to them
unambiguously. A DDS_Topic is meant to fulfil that purpose: it associates a name
(uniquein the Domain), adatatype, and DDS_TopicQos related to the data itself.

ClassDDS TopicDescription (abstract)

This class is an abstract class. It is the base class for bbs_Topic,
DDS_ContentFilteredTopic and DDS_MultiTopic.

199
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

The DDS_TopicDescription attribute type_name defines an unique data type
that is made available to the Data Distribution Service viathe bbs_TypeSupport.
DDS_TopicDescription hasalso aname that allowsit to be retrieved locally.

The interface description of this classis as follows:

/*
* interface DDS_TopicDescription
*/
/*
* implemented API operations
*/
DDS_string
DDS_TopicDescription_get_type_name
(DDS_TopicDescription _this);

DDS_string
DDS_TopicDescription_get_name
(DDS_TopicDescription _this);

DDS_DomainParticipant
DDS_TopicDescription_get_participant
(DDS_TopicDescription _this);

The next paragraphs describe the usage of all DDS_Topicbescription
operations.

DDS TopicDescription_get_name
Synopsis

#include <dds_dcps.h>
DDS_string
DDS_TopicDescription_get_name
(DDS_TopicDescription _this);

Description
This operation returns the name used to create the Dbs_Topicbescription.

Parameters

in DDS_TopicDescription _this -theDDS_TopicDescription object on
which the operation is operated.

Return Value

DDS_string - the name of the DDS_TopicDescription.

Detailed Description

This operation returns the name used to create the Dps_Topicbescription.

200

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

DDS TopicDescription_get_participant

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
DDS_TopicDescription_get_participant
(DDS_TopicDescription _this);

Description

This operation returns the DDS_DomainParticipant associated with the
DDS_TopicDescription Of the DDS_OBJECT_NIL pointer.

Parameters

in DDS_TopicDescription _this -theDDS_TopicDescription object on
which the operation is operated.

Return Value

DDS_DomainParticipant - apointer to the bbDsS_DomainParticipant
associated with the Dbs_TopicDescription Or the DDS_OBJECT_NIL
pointer.

Detailed Description

This operation returns the pps_DbDomainParticipant associated with the
DDS_TopicDescription. Note that there is exactly one
DDS_DomainParticipant associated with each bDS_TopicDescription.
When the DDS_TopicDescription was already deleted (there is no associated
DDS_DomainParticipant any more), the bbs_OBJECT_NIL pointer is returned.

DDS TopicDescription_get_type name

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_TopicDescription_get_type_name
(DDS_TopicDescription _this);
Description

This operation returns the registered name of the data type associated with the
DDS_TopicDescription.

Parameters

in DDS_TopicDescription _this -theDDS_TopicDescription object on
which the operation is operated.

201
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value

DDS_string - return value is the name of the data type of the
DDS_TopicDescription.

Detailed Description

This operation returns the registered name of the data type associated with the
DDS_TopicDescription.

ClassDDS Topic

202
API Reference

DDS_Topic iSthe most basic description of the data to be published and subscribed.

A DDS_Topic isidentified by its name, which must be unique in the whole
Domain. In addition (by virtue of extending DDS_TopicDescription) it fully
identifies the type of data that can be communicated when publishing or subscribing
to the DDS_Topic.

DDS_Topic istheonly Dbs_Topicbhescription that can be used for publications
and therefore a specialized DDS_Datawriter iSassociated to the bps_Topic.

The interface description of this classis asfollows:

/*

* interface DDS_Topic

*/

/*

* inherited from class DDS_Entity
*/

/* DDS_StatusCondition

* DDS_Topic_get_statuscondition
* (DDS_Topic _this);

*/

/* DDS_StatusMask

* DDS_Topic_get_status_changes
* (DDS_Topic _this);

*/

/* DDS_ReturnCode_t

* DDS_Topic_enable

* (DDS_Topic _this);

*/

/*

* inherited from class DDS_TopicDescription
*/

/* DDS_string

* DDS_Topic_get_type_name

* (DDS_Topic _this);

*/

/* DDS_string
* DDS_Topic_get_name

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

* (DDS_Topic _this);

/* DDS_DomainParticipant
* DDS_Topic_get_participant

* (DDS_Topic _this);
*/
/~k

* implemented API operations
*/

DDS_ReturnCode_t
DDS_Topic_set_gos
(DDS_Topic _this,
const DDS_TopicQos *gos) ;
DDS_ReturnCode_t
DDS_Topic_get_gos
(DDS_Topic _this,
DDS_TopicQos *gos) ;
DDS_ReturnCode_t
DDS_Topic_set_listener
(DDS_Topic _this,
const struct DDS_TopicListener *a_listener,
const DDS_StatusMask mask) ;
struct DDS_TopicListener
DDS_Topic_get_listener
(DDS_Topic _this);
DDS_ReturnCode_t
DDS_Topic_get_inconsistent_topic_status
(DDS_Topic _this,
DDS_InconsistentTopicStatus *a_status);

The next paragraphs describe the usage of all bbs_Topic operations. The inherited
operations are listed but not fully described because they are not implemented in this

class. Thefull description of these operationsis given in the classes from which they
are inherited.

DDS Topic_enable (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Topic_enable
(DDS_Topic _this);

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

203
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

DDS Topic_get_inconsistent_topic_status

204
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Topic_get_inconsistent_topic_status
(DDS_Topic _this,
DDS_InconsistentTopicStatus *a_status);

Description
This operation obtainsthe bbs_InconsistentTopicStatus Of the DDS_Topic.

Parameters

in DDS_Topic _this - theDDS_Topic object on which the operation is
operated.

inout DDS_InconsistentTopicStatus *a_status - the contents of the
DDS_InconsistentTopicStatus struct of the bbs_Topic will be copied
into the location specified by a_status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the bDS_InconsistentTopicStatus Of the DDS_Topic.
The DDS_InconsistentTopicStatus can also be monitored using a
DDS_TopicListener Or by using the associated DDS_StatusCondition.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the current DDS_InconsistentTopicStatus Of this
DDS_Topic has successfully been copied into the specified a_status parameter.

* DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_Topic has already been deleted.

e DDS RETCODE_OUT OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

DDS Topic_get_listener

Synopsis
#include <dds_dcps.h>
struct DDS_TopicListener
DDS_Topic_get_listener
(DDS_Topic _this);

Description
This operation allows accessto abDDS_TopicListener.

Parameters

in DDS_Topic _this - theDDS_Topic object on which the operation is
operated.

Return Value

struct DDS_TopicListener - t0otheDDS_TopicListener attached to the
DDS_Topic.

Detailed Description

This operation allows access to a bDS_TopicListener attached to the
DDS_Topic. When no bDS_TopicListener Was attached to the bps_Topic, the
DDS_OBJECT_NTIL pointer is returned.

DDS Topic_get_name (inherited)

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_Topic_get_name
(DDS_Topic _this);

DDS Topic_get_participant (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
DDS_Topic_get_participant
(DDS_Topic _this);

205
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

DDS Topic_get_qos

206
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Topic_get_gos
(DDS_Topic _this,
DDS_TopicQos *gos) ;
Description

This operation allows access to the existing set of QoS policiesfor abbs_Topic.

Parameters

in DDS_Topic _this -the DDS_Topic object on which the operation is
operated.

inout DDS_TopicQos *gos - apointer to the destination bDS_TopicQos struct
in which the gosPolicy settingswill be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.
Detailed Description

This operation allows access to the existing set of QoS policies of apps_Topic on
which this operation is used. This DDS_TopicQos is stored at the location pointed
to by the gos parameter.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_Topic has successfully been copied into the specified pps_TopicQos
parameter.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Topic has aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

DDS Topic_get_status changes (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusMask

DDS_Topic_get_status_changes
(DDS_Topic _this);

DDS Topic_get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
DDS_Topic_get_statuscondition
(DDS_Topic _this);

DDS Topic_get_type name (inherited)

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_Topic_get_type_name
(DDS_Topic _this);

DDS Topic_set_listener

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Topic_set_listener
(DDS_Topic _this,
const struct DDS_TopicListener *a_listener,
const DDS_StatusMask mask) ;

Description

This operation attaches a bbs_TopicListener tothe DDS_Topic.

207
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

208
API Reference

Parameters

in DDS_Topic _this - the DDS_Topic object on which the operation is
operated.

in const struct DDS_TopicListener *a_listener - apointer tothe
DDS_TopicListener instance, which will be attached to the bpbs_Topic.

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the bbs_TopicListener for acertain status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation attaches a DDS_TopicListener to the DDS_Topic. Only one
DDS_TopicListener can be attached to each pbs_Topic. If a
DDS_TopicListener was aready attached, the operation will replace it with the
new one. When a_listener iSthe DDS_OBJECT_NIL pointer, it represents a
listener that is treated as a NOOP! for all statuses activated in the bitmask.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
FALSE. |t becomes TRUE whenever that plain communication status changes. For
each plain communication status activated in the mask, the associated
DDS_TopicListener operation isinvoked and the communication status is reset
to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The status is reset prior to calling the listener, so if the
application callsthe get_<status_name> from inside the listener it will see the
status already reset. An exception to thisrule is the bDs_0BJECT_NIL listener,
which does not reset the communication statuses for which it isinvoked.

The following statuses are applicable to the DDS_TopicListener:
* DDS_INCONSISTENT TOPIC_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bDs_aNY_STATUS can be
used to select all statuses applicable to the DDS_TopicListener.

1. Short for No-Operation, an instruction that peforms nothing at all.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Satus Propagation

In case a communication status is not activated in the mask of the
DDS_TopicListener, the DDS_DomainParticipantListener Of the
containing DDS_DomainParticipant isinvoked (if attached and activated for the
status that occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant and aDpbs_Topic specific behaviour when needed. In
case the DDS_DomainParticipantListener iS also not attached or the
communication status is not activated in itsmask, the application is not notified of
the change.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_TopicListener isattached.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_ DELETED - the DDS_Topic has aready been deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS Topic_set_qos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Topic_set_gos
(DDS_Topic _this,
const DDS_TopicQos *gos) ;

Description
This operation replaces the existing set of QosPolicy Settingsfor abpbs_Topic.

Parameters

in DDS_Topic _this - the DDS_Topic object on which the operation is
operated.

in const DDS_TopicQos *gos - New set of QosPolicy settings for the
DDS_Topic.

209
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

210
API Reference

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES, DDS_RETCODE_IMMUTABLE_POLICY Of
DDS_RETCODE_INCONSISTENT_POLICY.

Detailed Description

This replaces the existing set of gosPolicy settings for a DDS_Topic. The
parameter gos must contain the struct with the gospPolicy settings which is
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled pps_Topic, which can only be set before the
DDS_Topic is enabled, the operation will fail and a
DDS_RETCODE_IMMUTABLE_POLICY isreturned. In other words, the application
must provide the currently set gosPolicy settings in case of the immutable
QosPolicy settings. Only the mutable QosPolicy settings can be changed. When
gos contains conflicting gosPolicy settings (not self-consistent), the operation
will fail and abDS_RETCODE_INCONSISTENT POLICY iSreturned.

The set of gosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

Return Code

When the operation returns:

e DDS_RETCODE_OK - the new DDS_TopicQos iS Set.

* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_ PARAMETER - the parameler gos is not a valid
DDS_TopicQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t value, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

* DDS_RETCODE_UNSUPPORTED - One or more of the selected QosPolicy values are
currently not supported by OpenSplice.

* DDS_RETCODE_ALREADY DELETED - theDDS_Topic has already been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

* DDS_RETCODE_IMMUTABLE_POLICY - the parameter gos contains an
immutable gosPolicy setting with a different value than set during enabling of
the bDs_Topic.

* DDS_RETCODE_INCONSISTENT POLICY - the parameter qos contains
conflicting gosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

ClassDDS_ContentFilteredTopic

&4 PRISMTECH

DDS_ContentFilteredTopic isaspecialization of DDS_TopicDescription
that allows for content based subscriptions.

DDS_ContentFilteredTopic describes a more sophisticated subscription that
indicates the DDS_Ssubscriber does not necessarily want to see all values of each
instance published under the bps_Topic. Rather, it only wants to see the values
whose contents satisfy certain criteria. Therefore this class must be used to request
content-based subscriptions.

The selection of the content is done using the SQL based filter with parameters to
adapt the filter clause.

Appendix H, DCPS Queries and Filters describes the syntax of the SQL based filter
and the parameters.

The interface description of this classis asfollows:

/*

* interface DDS_ContentFilteredTopic

*/
/~k

* inherited from class DDS_TopicDescription
*x/
/* DDS_string

* DDS_ContentFilteredTopic_get_type_name
* (DDS_ContentFilteredTopic _this);

*/
/* DDS_string

* DDS_ContentFilteredTopic_get_name

* (DDS_ContentFilteredTopic _this);
*/

/* DDS_DomainParticipant

* DDS_ContentFilteredTopic_get_participant
* (DDS_ContentFilteredTopic _this);

*/

/*

* implemented API operations

*/

DDS_string
DDS_ContentFilteredTopic_get_filter_expression
211
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

(DDS_ContentFilteredTopic _this);

DDS_ReturnCode_t
DDS_ContentFilteredTopic_get_expression_parameters
(DDS_ContentFilteredTopic _this,
DDS_StringSeq *expression_parameters) ;

DDS_ReturnCode_t
DDS_ContentFilteredTopic_set_expression_parameters
(DDS_ContentFilteredTopic _this,
const DDS_StringSeq *expression_parameters) ;

DDS_Topic
DDS_ContentFilteredTopic_get_related_topic
(DDS_ContentFilteredTopic _this);
/*
The next paragraphs describe the usage of all DDS_ContentFilteredTopic
operations.

3.3.3.1 DDS ContentFilteredTopic_get_expression_parameters
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_ContentFilteredTopic_get_expression_parameters
(DDS_ContentFilteredTopic _this,
DDS_StringSeq *expression_parameters) ;

Description

This operation obtains the expression parameters associated with the
DDS_ContentFilteredTopic.

Parameters

in DDS_ContentFilteredTopic _this - the
DDS_ContentFilteredTopic object on which the operation is operated.

inout DDS_StringSeq *expression_parameters - ahandleto asequence of
strings that will be used to store the parameters used in the SQL expression.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

212

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Detailed Description

This operation obtains the expression parameters associated with the
DDS_ContentFilteredTopic. That is, the parameters specified on the last
successful call to DDS_ContentFilteredTopic _set expression_
parameters, Of if DDS_ContentFilteredTopic_set_expression_
parameters was never called, the parameters specified when the
DDS_ContentFilteredTopic was created.

The resulting handle contains a sequence of strings with the parameters used in the
SQL expression (i.e., the %n tokens in the expression). The number of parametersin
the result sequence will exactly match the number of %n tokens in the filter
expression associated with the DDS_ContentFilteredTopic.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of expression parameters applied to this
DDS_ContentFilteredTopic has successfully been copied into the specified
expression_parameters parameter.

e DDS RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_ContentFilteredTopic has
aready been deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS ContentFilteredTopic_get_filter_expression

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_ContentFilteredTopic_get_filter_expression
(DDS_ContentFilteredTopic _this);
Description

This operation returns the filter_expression associated with the

DDS_ContentFilteredTopic.

Parameters

in DDS_ContentFilteredTopic _this-theDDsS_ContentFilteredTopic
object on which the operation is operated.

213
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Return Value
DDS_string - result isahandle to a string which holds the SQL filter expression.

Detailed Description

This operation returns the filter_expression associated with the
DDS_ContentFilteredTopic. That is, the expression specified when the
DDS_ContentFilteredTopic Was created.

The filter expression result is a string that specifies the criteria to select the data
samples of interest. It is similar to the WHERE clause of an SQL expression.

DDS ContentFilteredTopic_get name (inherited)

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_ContentFilteredTopic_get_name
(DDS_ContentFilteredTopic _this);

DDS ContentFilteredTopic_get_participant (inherited)

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
DDS_ContentFilteredTopic_get_participant
(DDS_ContentFilteredTopic _this);

DDS ContentFilteredTopic_get related topic

214
API Reference

Synopsis
#include <dds_dcps.h>
DDS_Topic
DDS_ContentFilteredTopic_get_related_ topic
(DDS_ContentFilteredTopic _this);

Description

This operation returns the DDS_Topic associated with the
DDS_ContentFilteredTopic.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Parameters

in DDS_ContentFilteredTopic _this-theDDS_ContentFilteredTopic
object on which the operation is operated.

Return Value

DDS_Topic - resultisahandle to the base topic on which the filtering will be
applied.

Detailed Description

This operation returns the DDS_Topic associated with the
DDS_ContentFilteredTopic. That is, the bps_Topic specified when the
DDS_ContentFilteredTopic was created. This DDs_Topic isthe base topic on
which the filtering will be applied.

DDS ContentFilteredTopic_get_type name (inherited)

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_ContentFilteredTopic_get_type_name
(DDS_ContentFilteredTopic _this);

DDS ContentFilteredTopic_set_expression_parameters

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_ContentFilteredTopic_set_expression_parameters
(DDS_ContentFilteredTopic _this,
const DDS_StringSeq *expression_parameters) ;

Description

This operation changes the expression parameters associated with the
DDS_ContentFilteredTopic.

Parameters

in DDS_ContentFilteredTopic _this - the DDS_ContentFilteredTopic
object on which the operation is operated.

215
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

216
API Reference

in const DDS_StringSeq *expression_parameters - the handleto a
sequence of strings with the parameters used in the SQL expression (i.e., the
number of %n tokens in the expression). The number of values in
expression_parameters must be equal or greater than the highest
referenced %n token in the subscription_expression.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation changes the expression parameters associated with the
DDS_ContentFilteredTopic. The parameter expression_parameters isa
handle to a sequence of strings with the parameters used in the SQL expression. The
number of valuesin expression_parameters must be equal or greater than the
highest referenced %n token inthe filter_expression (e.g.if $1 and ¢8 are
used as parameter inthe filter_expression, the expression_parameters
should at least containn+1 = 9 values). Thisisthe filter expression specified when
the DDS_ContentFilteredTopic Was created.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the new expression parameters are set.
* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD PARAMETER - the number of parameters in
expression_parameters does not match the number of “%n” tokens in the
expression for thisbps_contentFilteredTopic or one of the parametersisan
illegal parameter.

* DDS_RETCODE_ALREADY_DELETED - the DDS_ContentFilteredTopic has
already been deleted.

* DDS _RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

ClassDDS MultiTopic

&4 PRISMTECH

DDS_MultiTopic isaspecialization of DDS_TopicDescription that allows
subscriptions to combine, filter and/or rearrange data coming from several
DDS_Topics.

DDS_MultiTopic allows a more sophisticated subscription that can select and
combine data received from multiple bbs_Topics into asingle data type (specified
by the inherited type_name). The datawill then be filtered (selection) and possibly
re-arranged (aggregation and/or projection) according to an SQL expression with
parameters to adapt the filter clause.

The interface description of this classis asfollows:

/*

* interface DDS_MultiTopic

*/

/~k

* inherited from class DDS_TopicDescription
*x/

/* DDS_string

* DDS_MultiTopic_get_type_name
* (DDS_MultiTopic _this);
*/

/* DDS_string

* DDS_MultiTopic_get_name

* (DDS_MultiTopic _this);
*/

/* DDS_DomainParticipant

* DDS_MultiTopic_get_participant
* (DDS_MultiTopic _this);

*/

/*

* implemented API operations

*/

DDS_string
DDS_MultiTopic_get_subscription_expression
(DDS_MultiTopic _this);

DDS_ReturnCode_t
DDS_MultiTopic_get_expression_parameters
(DDS_MultiTopic _this,
DDS_StringSeq *expression_parameters) ;

DDS_ReturnCode_t
DDS_MultiTopic_set_expression_parameters
(DDS_MultiTopic _this,
const DDS_StringSeq *expression_parameters) ;

217
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

The next paragraphs describe the usage of al pps_MultiTopic operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

Note: pps_MultiTopic operations have not been yet been implemented.
Multitopic functionality is scheduled for a future release.

DDS MultiTopic_get_expression_parameters

218
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_MultiTopic_get_expression_parameters
(DDS_MultiTopic _this,
DDS_StringSeq *expression_parameters) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.

Description

This operation returns the expression parameters associated with the
DDS_MultiTopic.

Parameters

in DDS _MultiTopic _this- the DDsS_MultiTopic object on which the
operation is operated.

inout DDS_StringSeqg *expression_parameters - ahandleto asequence of
strings that will be used to store the parameters used in the SQL expression.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the expression parameters associated with the
DDS_MultiTopic. That is, the parameters specified on the last successful call to
DDS_MultiTopic_set_expression_parameters, or if
DDS_MultiTopic_set_expression_parameters was never called, the
parameters specified when the bbs_MultiTopic was created.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Theresulting handle contains a sequence of strings with the values of the parameters
used in the SQL expression (i.e., the %n tokens in the expression). The number of
parametersin the result sequence will exactly match the number of %n tokensin the
filter expression associated with the bbs_MultiTopic.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of expression parameters applied to this
DDS_MultiTopic has successfully been copied into the specified
expression_parameters parameter.

* DDS RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the bDS_MultiTopic has already been
deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS MultiTopic_get_name (inherited)

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_MultiTopic_get_name
(DDS_MultiTopic _this);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

DDS MultiTopic_get_participant (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_DomainParticipant
DDS_MultiTopic_get_participant
(DDS_MultiTopic _this);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

219
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

DDS MultiTopic_get_subscription_expression

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_MultiTopic_get_subscription_expression
(DDS_MultiTopic _this);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

Description

This operation returns the subscription expression associated with the
DDS_MultiTopic.

Parameters

in DDS_MultiTopic _this - istheDDS_MultiTopic object on which the
operation is operated.

Return Value
DDS_string - ahandleto astring which holds the SQL subscription expression.

Detailed Description

This operation returns the subscription expression associated with the
DDS_MultiTopic. That is, the expression specified when the bps_MultiTopic
was created.

The subscription expression result is a string that specifies the criteria to select the
data samples of interest. In other words, it identifies the selection and rearrangement
of data from the associated pps_Topics. It isan SQL expression where the
SELECT clause provides the fields to be kept, the FroM part provides the names of
the bDs_Topics that are searched for those fields, and the wHERE clause gives the
content filter. The bDs_Topics combined may have different types but they are
restricted in that the type of the fields used for the NATURAL JOIN Operation must
be the same.

DDS MultiTopic_get_type name (inherited)

220
API Reference

This operation is inherited and therefore not described here. See the class
DDS_TopicDescription for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_MultiTopic_get_type_name
(DDS_MultiTopic _this);

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

DDS MultiTopic_set_expression_parameters

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_MultiTopic_set_expression_parameters
(DDS_MultiTopic _this,
const DDS_StringSeq *expression_parameters) ;

Note: Thisoperation is not yet implemented. It is scheduled for afuture release.

Description

This operation changes the expression parameters associated with the
DDS_MultiTopic.

Parameters

in DDS_MultiTopic _this - the DDS_MultiTopic object on which the
operation is operated.

in const DDS_StringSeq *expression_parameters - the handleto a
sequence of strings with the parameters used in the SQL expression.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
ALREADY_DELETED Of DDS_RETCODE_OUT_OF_RESOURCES.

Detailed Description

This operation changes the expression parameters associated with the
DDS_MultiTopic. The parameter expression_parameters isahandleto a
sequence of strings with the parameters used in the SQL expression. The number of
parameters in expression_parameters Must exactly match the number of %n
tokens in the subscription expression associated with the Dbs_MultiTopic. Thisis
the subscription expression specified when the DDS_MultiTopic was created.

Return Code
When the operation returns:

* DDS_RETCODE_OK - the new expression parameters are set.
* DDS RETCODE ERROR - aninterna error has occurred.

221
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the number of parameters in
expression parameters does not match the number of “%n” tokens in the
expression for this bps_MultiTopic or one of the parameters is an illegal
parameter.

* DDS_RETCODE_ALREADY_DELETED - the DDS_MultiTopic has aready been
deleted.

e DDS RETCODE_OUT OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS TopicListener Interface

222
API Reference

Since aDDS_Topic isaDDS_Entity, it hasthe ability to have aListener
associated with it. In this case, the associated Listener should be of type
DDS_TopicListener. Thisinterface must be implemented by the application. A
user defined class must be provided by the application which must extend from the
DDS_TopicListener class. All DDS_TopicListener operations must be
implemented in the user defined class, it is up to the application whether an
operation is empty or contains some functionality.

All operations for this interface must be implemented in the user defined class, itis
up to the application whether an operation is empty or contains some functionality.

The DDS_TopicListener provides a generic mechanism (actually a callback
function) for the Data Distribution Service to notify the application of relevant
asynchronous status change events, such as an inconsistent bbs_Topic. The
DDS_TopicListener isrelated to changesin communication status.

The interface description of this classis asfollows:

/*
* interface DDS_TopicListener
*/
/*
* abstract external operations
*/
void
DDS_TopicListener_on_inconsistent_topic
(void *listener_data,
DDS_Topic the_topic,
const DDS_InconsistentTopicStatus *status);
/*
* implemented API operations
*/

DDS_TopicListener

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

DDS_TopicListener__alloc
(void) ;
The next paragraph describes the usage of the DDS_TopicListener operation.
This abstract operation is fully described since it must be implemented by the
application.

DDS TopicListener__alloc
Synopsis

#include <dds_dcps.h>
DDS_TopicListener
DDS_TopicListener__alloc
(void) ;

Description
This operation creates anew bDDS_TopicListener.

Parameters
<none>

Return Value

DDS_TopicListener - the handle to the newly created DDS_TopicListener. INn
case of an error, abDDS_OBJECT_NTL pointer is returned.

Detailed Description

This operation creates a new DDS_TopicListener. The DDS_TopicListener
must be created using this operation. In other words, the application is not allowed
to declare an object of type bDS_TopicListener. When the application wants to
release the DDS_TopicListener it must be released using DDS_free.

In case there are insufficient resources available to allocate the
DDS_TopicListener, aDDS_OBJECT_NTIL pointer isreturned instead.

DDS TopicListener_on_inconsistent_topic (abstract)
Synopsis

#include <dds_dcps.h>
void
DDS_TopicListener_on_inconsistent_topic
(void *listener_data,
DDS_Topic the_topic,
const DDS_InconsistentTopicStatus *status);

223

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Description

This operation must be implemented by the application and is called by the Data
Distribution Service when the DDS_InconsistentTopicStatus changes.

Parameters

inout void *1listener_data - apointer to auser defined object which may
be used for identification of the Listener.

in DDS_Topic the_topic - apointer to the pps_Topic on which the
conflict occurred (thisis an input to the application).

in const DDS_InconsistentTopicStatus *status - the
DDS_InconsistentTopicStatus struct (thisisan input to the application).

Return Value
<none>

Detailed Description

This operation is the external operation (interface, which must be implemented by
the application) that is called by the Data Distribution Service when the
DDS_InconsistentTopicStatus changes. The implementation may be left
empty when thisfunctionality is not needed. This operation will only be called when
the relevant bpbs_TopicListener iSsinstalled and enabled for the
DDS_InconsistentTopicStatus. TheDDS InconsistentTopicStatus Will
change when another bps_Topic exists with the same topic_name but different
characteristics.

The Data Distribution Service will call the bbs_TopicListener operation with a
parameter the_topic, which will contain a pointer to the bbs_Topic on which
the conflict occurred and a parameter status, which will contain the
DDS_InconsistentTopicStatus Struct.

Topic-Definition Type Specific Classes

224
API Reference

This paragraph describes the generic DDS_TypeSupport class and the derived
application type specific <NameSpace>_<type>TypeSupport classes which
together implement the application pps_Topi c interface. For each application type,
used as DDS_Topic data type, the pre-processor generates a
<NameSpace>_<type>DataReader class from an IDL type description. The
SPACE_FooTypeSupport classthat would be generated by the pre-processor for a
fictional type Foo (defined in the module space) describes the
<NameSpace>_<type>TypeSupport classes.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

ClassDDS TypeSupport (abstract)

The DDS_Topic, DDS_MultiTopic OF DDS_ContentFilteredTopic isbound
to adata type described by the type name argument. Prior to creating a bbs_Topic,
DDS_MultiTopic OF DDS_ContentFilteredTopic, the data type must have
been registered with the Data Distribution Service. Thisis done using the data type
specific DDS_TypeSupport_register_type operation on aderived class of the
DDS_TypeSupport interface. A derived class is generated for each data type used
by the application, by calling the pre-processor.

The interface description of thisclassis asfollows:

/*

* interface DDS_TypeSupport

*/

/*

* abstract operations

*/

/* DDS_TypeSupport

* DDS_TypeSupport__alloc

* (void) ;

*/

/* DDS_ReturnCode_t

* DDS_TypeSupport_register_type
* (DDS_TypeSupport _this,

* Domainparticipant domain,
* DDS_string type_name) ;

*

* DDS_string

* DDS_TypeSupport_get_type_name
* (DDS_TypeSupport _this);
*/
/*

* implemented API operations

* <no operations>

*/

The next paragraph list the bbs_TypeSupport operation. This abstract operation is
listed but not fully described since it is not implemented in this class. The full
description of this operation isgiven in the SPACE_FooTypeSupport class (for the
data type example Foo), which contains the data type specific implementation of
this operation.

225

&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

DDS TypeSupport__alloc (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>TypeSupport class. Therefore, to use this operation,
the data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module SPACE) derived SPACE_FooTypeSupport class.

Synopsis
#include <dds_dcps.h>
DDS_TypeSupport
DDS_TypeSupport__alloc
(void) ;

DDS TypeSupport_get_type name (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NamesSpace>_<type>TypeSupport class. For further explanation see the
description for the fictional datatype Foo (defined in the module spAcCE) derived
SPACE_FooTypeSupport Class.

Synopsis
#include <dds_dcps.h>
DDS_string
DDS_TypeSupport_get_type_name
(DDS_TypeSupport _this);

DDS TypeSupport_register_type (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NamesSpace>_<type>TypeSupport class. For further explanation see the
description for the fictional datatype Foo (defined in the module spacEk) derived
SPACE_FooTypeSupport Class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_TypeSupport_register_type
(DDS_TypeSupport _this,
Domainparticipant domain,
DDS_string type_name) ;

Class SPACE_FooTypeSupport

226
API Reference

The pre-processor generates from IDL type descriptions the application
<NameSpace>_<type>TypeSupport classes. For each application data type that
is wused as DDS_Topic data type, a typed class
<NameSpace>_<type>TypeSupport isderived from the bDs_TypeSupport

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

class. In this paragraph, the class SPACE_FooTypeSupport describes the
operations of these derived <NameSpace>_<type>TypeSupport Classes as an
example for the fictional application type Foo (defined in the module spPACE).

For instance, for an application, the definitions are located in the space. id1 file.
The pre-processor will generate a space . h includefile.

The DDS_Topic, DDS_MultiTopic OF DDS_ContentFilteredTopic isbound
to a data type described by the type type_name argument. Prior to creating a
DDS_Topic, DDS_MultiTopic OF DDS_ContentFilteredTopic, the datatype
must have been registered with the Data Distribution Service. Thisis done using the
data type specific SPACE_FooTypeSupport_register_type oOperation on the
<NameSpace>_<type>TypeSupport classfor each datatype. A derived classis
generated for each data type used by the application, by calling the pre-processor.
The interface description of thisclassis asfollows:
/ *
* interface SPACE_FooTypeSupport
*/
/ *
* implemented API operations
*/
SPACE_FooTypeSupport
SPACE_FooTypeSupport__alloc
(void) ;
DDS_ReturnCode_t
SPACE_FooTypeSupport_register_type
(SPACE_FooTypeSupport _this,
DDS_DomainParticipant domain,
DDS_string type_name) ;
DDS_string
SPACE_FooTypeSupport_get_type_name
(SPACE_FooTypeSupport _this);

The next paragraph describes the usage of the SPACE_FooTypeSupport
operations.
SPACE_FooTypeSupport__alloc

Synopsis
#include <Space.h>
SPACE_FooTypeSupport
SPACE_FooTypeSupport__alloc
(void) ;

Description
This operation creates anew SPACE_FooTypeSupport.

227
API Reference

&4 PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-Definition Module

Parameters
<none>

Return Value

SPACE_FooTypeSupport - the handle to the newly created
SPACE_FooTypeSupport. In case of an error, anil pointer is returned.

Detailed Description

This operation creates a new SPACE_FooTypeSupport. The
SPACE_FooTypeSupport must be created using this operation. In other words, the
application is not allowed to declare an object of type SPACE_FooTypeSupport.
When the application wants to release the SPACE_FooTypeSupport it must be
released using DDS_free.

In case there are insufficient resources available to allocate the
SPACE_FooTypeSupport, anil pointer isreturned instead.

SPACE_FooTypeSupport_get type name

228
API Reference

Synopsis
#include <Space.h>
DDS_string
SPACE_FooTypeSupport_get_type_name
(SPACE_FooTypeSupport _this);

Description

This operation returns the default name of the data type associated with the

SPACE_FooTypeSupport.

Parameters

in SPACE_FooTypeSupport _this -the SPACE_FooTypeSupport Object on
which the operation is operated.

Return Value

DDS_string - the name of the data type of the SPACE_FooTypeSupport.

Detailed Description

This operation returns the default name of the data type associated with the
SPACE_FooTypeSupport. The default name is derived from the type name as
specified in the IDL definition. It is composed of the scope names and the type
name, each separated by “: :”, in order of lower scope level to deeper scope level
followed by the type name.

& PRISMTECH

3 DCPS Classes and Operations 3.3 Topic-DefinitionModule

SPACE_FooTypeSupport_register_type

&4 PRISMTECH

Synopsis
#include <Space.h>
DDS_ReturnCode_t
SPACE_FooTypeSupport_register_type
(SPACE_FooTypeSupport _this,
DDS_DomainParticipant domain,
DDS_string type_name) ;

Description
This operation registers a new data type nameto abDS_DomainParticipant.

Parameters

in SPACE_FooTypeSupport _this -the SPACE_FooTypeSupport object on
which the operation is operated.

in DDS_DomainParticipant domain - a pointer to a
DDS_DomainParticipant object to which the new datatypeisregistered.

in DDS_string type_name - aloca alias of the new datatype to be registered.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT_MET.

Detailed Description

This operation registers a new data type name to a DDS_DomainParticipant.
This operation informs the Data Distribution Service, in order to allow it to manage
the new registered data type. This operation also informs the Data Distribution
Service about the key definition, which allows the Data Distribution Service to
distinguish different instances of the same data type.

Precondition

A type_name cannot be registered with two different
<NameSpace>_<type>TypeSupport Classes (this means of a different data type)
with the same DDS_DomainParticipant. When the operation is called on the
same DDS_DomainParticipant with the same type_name for a different
<NameSpace>_<type>TypeSupport class, the operation returns
DDS_RETCODE_PRECONDITION_NOT_MET. However, it is possible to register the
same <NameSpace>_<type>TypeSupport classes with the same

229
API Reference

3 DCPS Classes and Operations 3.3 Topic-Definition Module

230
API Reference

DDS_DomainParticipant and the same or different type_name multiple times.
All registrations return DDS_RETCODE_OK, but any subsequent registrations with
the same type_name are ignored.

Return Code
When the operation returns:

DDS_RETCODE_OK - the SPACE_FooTypeSupport Class is registered with the
new data type name to the DDS_DomainParticipant or the
SPACE_FooTypeSupport classwas already registered.

DDS_RETCODE_ERROR - an internal error has occurred.

DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

DDS_RETCODE_BAD_PARAMETER - oOne or both parameters is the
DDS_OBJECT_NTIL pointer or the parameter type_name has zero length.
DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS_RETCODE_PRECONDITION_NOT_MET - thiS type_name is aready
registered with this DDS_DomainParticipant for a different
<NameSpace>_<type>TypeSupport class.

& PRISMTECH

3 DCPS Classes and Operations

3.4 Publication Module

&4 PRISMTECH

<<create>>

3

.4 PublicationModule

v 1
DataWriter ‘

* QosPolic! <<implicit>> "
assert_liveliness() > (fom mﬁaskrudu’oy!\h/iu\t:/ mplicit Publisher
<<abstract>> dispose() * qos
<<abstract>> dispose_w_timestamp() * begin_coherent_changes()
<<abstract>> get_key_value() <<implicit>> . * copy_from_topic_gos()
get_listener() create_datawriter()
get_liveliness_lost_status() delete_contained_entities()
get_matched_subscription_data() default_datawriter_gos delete_datawriter()
get_matched_subscriptions() end_coherent_changes()
get_offered_deadline_missed_status() get_default_datawriter_qos()
get_offered_incompatible_gos_status() Topic getﬁliste_ngr()
get_publication_match_status() (from Topic-Definition Module) get_participant()
get_publisher() get_qos()
get_qos() * 1 lookup_datawriter()
get_topic() resume_publications()
<<abstract>> register() 1 |set_default_datawriter_qos()
<<abstract>> register_w_timestamp() 0.1 S set_listener()
set_listener() : <<implicit>> | set_qos()
set_qos() <<implicit>> suspend_publications()
<<abstract>> unregister() BN StatusCondition
<<abstract>> unregister_w._timestamp() 1 (from Infrastructure Module)
<<abstract>> write() 0.1 1 N
<<abstract>> write_w_timestamp()

<<create>> /
* : <<implicit>>
<<implicit>> WaitSet DomainParticipant
(from Infrastructure Module) (from Domain Module)
0.1
<<Interface>> 1

DataWriterListener
<<Interface>>

PublisherListener

on_liveliness_lost()
on_offered_deadline_missed()
on_offered_incompatible_qos()
on_publication_match()

Figure 18 The DCPS Publication Module’s Class M odel
This module contains the following classes:

DDS Publisher
Publication type specific classes

* DDS_PublisherListener (interface)
* DDS_DataWriterListener (interface).

The paragraph “Publication type specific classes’ contains the generic class and the
generated data type specific classes. For each data type, a data type specific class
<NameSpace>_<type>DataWriter IS generated (based on IDL) by calling the
pre-processor.

For instance, for the fictional datatype Foo (thisalso applies to other types), defined
in the module space; “Publication type specific classes’” contains the following
classes:

* DDS_DataWriter (abstract)
* SPACE_FooDataWriter.

231
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

A DDS_Publisher isan object responsible for data distribution. It may publish
data of different data types. A DDS_DataWriter acts as atyped accessor to a
DDS_Publisher. The DDS_Dataliriter isthe object the application must use to
communicate the existence and value of data-objects of a given data type to a
DDS_Publisher. When data-object values have been communicated to the
DDS_Publisher through the appropriate bDS_DataWriter, it is the
DDS_Publisher’s responsibility to perform the distribution. The
DDS_Publisher will do this according to its own DDS_PublisherQos, and the
DDS_DataWriterQos attached to the corresponding bDS_DataWriter. A
publication is defined by the association of a DDS_DataWriter to a
DDS_Publisher. This association expresses the intent of the application to publish
the data described by the DDs_Datawriter in the context provided by the
DDS_Publisher.

ClassDDS Publisner

232
API Reference

The DDS_Publisher actson behalf of one or more bDS_DataWriter Objects that
belong to it. When it isinformed of a change to the data associated with one of its
DDS_DataWriter objects, it decides when it is appropriate to actually process the
sample-update message. In making this decision, it considers the
DDS_PublisherQos and the DDS_DataWriterQos.

The interface description of this classis asfollows:

/*

* interface DDS_Publisher

*/

/*

* inherited from class DDS_Entity
*/

/* DDS_StatusCondition

* DDS_Publisher_get_statuscondition
* (DDS_Publisher _this);

*/

/* DDS_StatusMask

* DDS_Publisher_get_status_changes
* (DDS_Publisher _this);

*/

/* DDS_ReturnCode_t

* DDS_Publisher_enable

* (DDS_Publisher _this);

*/

/*

* implemented API operations

*/

DDS_DataWriter
DDS_Publisher create_datawriter
(DDS_Publisher _this,

& PRISMTECH

3 DCPS Classes and Operations

3.4 PublicationModule

const DDS_Topic a_topic,
const DDS_DataWriterQos *gos,

const struct DDS_DataWriterListener *a_listener,
const DDS_StatusMask mask) ;

DDS_ReturnCode_t
DDS_Publisher_delete_datawriter
(DDS_Publisher _this,

const DDS_DataWriter a_datawriter);
DDS_DataWriter
DDS_Publisher_lookup_datawriter
(DDS_Publisher _this,

const DDS_char *topic_name) ;
DDS_ReturnCode_t

DDS_Publisher delete_contained_entities
(DDS_Publisher _this);

DDS_ReturnCode_t
DDS_Publisher_ set_gos
(DDS_Publisher _this,

const DDS_PublisherQos *qgos);
DDS_ReturnCode_t

DDS_Publisher_get_gos
(DDS_Publisher _this,

DDS_PublisherQos *gos) ;
DDS_ReturnCode_t

DDS_Publisher set_listener
(DDS_Publisher _this,

const struct DDS_PublisherListener *a_listener,
const DDS_StatusMask mask) ;
struct DDS_PublisherListener

DDS_Publisher_get_listener

(DDS_Publisher _this);
DDS_ReturnCode_t

DDS_Publisher_suspend_publications
(DDS_Publisher _this);

DDS_ReturnCode_t
DDS_Publisher_resume_publications
(DDS_Publisher _this);
DDS_ReturnCode_t

DDS_Publisher_ begin_coherent_changes
(DDS_Publisher _this);

DDS_ReturnCode_t
DDS_Publisher_end_coherent_changes
(DDS_Publisher _this);
&4 PRISMTECH

233
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

DDS_ReturnCode_t
DDS_Publisher_wait_for_acknowledgments
(DDS_Publisher _this,
const DDS_Duration_t *max_wait);

DDS_DomainParticipant
DDS_Publisher get_participant
(DDS_Publisher _this);

DDS_ReturnCode_t
DDS_Publisher_set_default_datawriter_gos
(DDS_Publisher _this,
const DDS_DataWriterQos *gos) ;

DDS_ReturnCode_t
DDS_Publisher_get_default_datawriter_gos
(DDS_Publisher _this,
DDS_DataWriterQos *qgos) ;

DDS_ReturnCode_t
DDS_Publisher_ copy_from_topic_gos
(DDS_Publisher _this,

DDS_DataWriterQos *a_datawriter_gos,

const DDS_TopicQos *a_topic_gos);
The next paragraphs describe the usage of all bbs_Publisher operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they are inherited.

DDS Publisher _begin_coherent_changes
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_begin_coherent_changes
(DDS_Publisher _this);
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

Description

This operation requests that the application will begin a ‘coherent set’ of
modifications using bps_batawWriter objects attached to this bps_pPublisher.
The ‘coherent set’ will be completed by a matching call to bps_pPublisher_
end_coherent_changes.

234

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

Parameters

in DDS_Publisher _this -theDDS_Publisher object on which the operation
is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_UNSUPPORTED.

Detailed Description

This operation requests that the application will begin a ‘coherent set’ of
modifications using DDs_Datawriter objects attached to this bps_pPublisher.
The ‘coherent set’ will be completed by a matching call to bpps_pPublisher_
end_coherent_changes.

A ‘coherent set’ is aset of modifications that must be propagated in such away that
they are interpreted at the receivers’ side as a consistent set of modifications; that is,
the receiver will only be able to access the data after all the modifications in the set
are available at the receiver end.

A connectivity change may occur in the middle of a set of coherent changes; for
example, the set of partitions used by the DDS_Publisher or one of its connected
DDS_Subscribers may change, alate-joining bbs_DataReader May appear on
the network, or acommunication failure may occur. In the event that such a change
prevents an entity from receiving the entire set of coherent changes, that entity must
behave asiif it had received none of the set.

These calls can be nested. In that case, the coherent set terminates only with the last
call topbs_Publisher end coherent changes.

The support for ‘ coherent changes' enables a publishing application to change the
value of severa data-instances that could belong to the same or different topics and
have those changes be seen *atomically’ by the readers. Thisisuseful in caseswhere
the values are inter-related (for example, if there are two data-instances representing
the ‘altitude’ and ‘velocity vector’ of the same aircraft and both are changed, it may
be useful to communicate those values in a way the reader can see both together;
otherwise, it may e.g., erroneoudly interpret that the aircraft is on acollision course).

Return Code

When the operation returns:

* DDS_RETCODE_UNSUPPORTED - the operation is not yet implemented. It is
scheduled for afuture release.

235
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

DDS Publisher _copy_from_topic_qos

236
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_copy_ from_topic_gos
(DDS_Publisher _this,
DDS_DataWriterQos *a_datawriter_gos,
const DDS_TopicQos *a_topic_gos) ;

Description

This operation will copy policiesin a_topic_gos to the corresponding policiesin
a_datawriter_gos.

Parameters

in DDS_Publisher _this - the DDS_Publisher object on which the operation
is operated.

inout DDS_DataWriterQos *a_datawriter_gos - the destination
DDS_DataWriterQos Struct to which the gosPolicy settings should be
copied.

in const DDS_TopicQos *a_topic_gos - the source DDS_TopicQos Struct,
which should be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation will copy the QospPolicy settingsin a_topic_gos to the
corresponding QosPolicy Settingsin a_datawriter_gos (replacing the values
ina_datawriter_gos, if present). This will only apply to the common
QosPolicy Settingsin each <pps_Entity>Qos.

Thisis a“convenience” operation, useful in combination with the operations
DDS_Publisher_get_default_datawriter_gos and DDS_Topic_get_gos.
The operation DDS_Publisher_copy_ from_topic_gos can be used to merge
the DDs_Datawriter default gosPolicy settings with the corresponding ones on
the DDS_TopicQos. The resulting DDS_DatawriterQos can then be used to
create anew DDS_DataWriter, Or Set itSDDS_DataWriterQos.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

This operation does not check the resulting a_datawriter_gos for consistency.
Thisis because the “merged” a_datawriter_gos may not be the final one, as the
application can still modify some gosPolicy settings prior to applying the
DDS_DataWriterQos totheDDS_DataWriter.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the QosPo1licy Settings have successfully been copied from
the DDS_TopicQos to the DDS_DataWriterQos.

* DDS RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has aready been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS Publisher _create datawriter

&4 PRISMTECH

Synopsis

#include <dds_dcps.h>

DDS_DataWriter

DDS_Publisher create_datawriter
(DDS_Publisher _this,

const DDS_Topic a_topic,
const DDS_DataWriterQos *gos,
const struct DDS_DataWriterListener *a_listener,
const DDS_StatusMask mask) ;

Description

This operation creates a DDS_DataWriter with the desired
DDS_DataWriterQos, for the desired DDS_Topic and attaches the optionally
specified DDS_DatawWriterListener tOit.

Parameters

in DDS_Publisher _this -theDDS_Publisher object on which the operation
is operated.

in const DDS_Topic a_topic - apointer to the topic for which the
DDS_DataWriter iscreated.

237
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

238
API Reference

in const DDS_DataWriterQos *gos -theDDS_DataWriterQos for the new
DDS_DataWriter. In case these settings are not self consistent, no
DDS_DataWriter iScreated.

in const struct DDS_DataWriterListener *a_listener - apointerto
the DDS_DataWriterListener instance which will be attached to the new
DDS_DataWriter. It ispermitted to use DDS_OBJECT_NIL asthe value of the
listener: this behaves as aDDS_DataWriterListener Whose operations
perform no action.

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_DataWriterListener for acertain status.

Return Value

DDS_DataWriter - Return value is a pointer to the newly created
DDS_DataWriter. In case of an error, the bbs_0OBJECT_NIL pointer is
returned.

Detailed Description

This operation creates a DDS_DataWriter with the desired
DDS_DataWriterQos, for the desired DDS_Topic and attaches the optionally
specified DDS_DataWriterListener toit. The returned DDS_DataWriter iS
attached (and belongs) to the bps_prublisher on which this operation is being
called. To delete the pDS_DataWriter the operation bDS_Publisher_
delete_datawriter Or DDS_Publisher_delete_contained_entities

must be used.

Application Data Type

The pDs_Datawriter returned by this operation is an object of a derived class,
specific to the data type associated with the pps_Topic. For each
application-defined data type <type> there is a class
<NameSpace>_<type>DataWriter generated by calling the pre-processor. This
data type specific class extends pps_patawriter and contains the operations to
write data of datatype <type>.

QosPalicy

The possible application pattern to construct the bbs_DatawriterQos for the
DDS_DataWriter iSto:

* Retrieve the QosPolicy settings on the associated DDS_Topic by means of the
get_gos operation on the bps_Topic.

* Retrieve the default DDS _DatawWriterQos by means of the
DDS_Publisher get_default datawriter_gos operation on the
DDS_Publisher

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

e Combine those two lists of QosPolicy settings and selectively modify
QosPolicy settings as desired

» Usetheresulting DDs_DatawriterQos to construct the bbs_DatawWriter.

*In case the gpecified QospPolicy settings are not consistent, no
DDS_DataWriter iscreated and the DDs_OBJECT_NIL pointer isreturned.

Default QoS

The constant DDS_DATAWRITER_QOS_DEFAULT can be used as parameter gos to
create aDDS_DataWriter with the default DDS_DatawriterQos as set in the
DDS_Publisher. The effect of using DDS_DATAWRITER_QOS_DEFAULT iS the
same as calling the operation DDS_Publisher_get_default_datawriter_gos
and using the resulting DDS_DataWriterQos to createthe DDS_DataWriter.

The special bDS_DATAWRITER_QOS_USE_TOPIC_QOS can be used to create a
DDS_DataWriter with acombination of the default bDs_DatawriterQos and
the DDS_TopicQos. The effect of using
DDS_DATAWRITER_QOS_USE_TOPIC_QOS isthe same as calling the operation
DDS_Publisher_get_default_datawriter_qgos and retrieving the
DDS_TopicQos (by means of the operation bps_Topic_get_gos) and then
combining these two QosPolicy settings using the operation
DDS_Publisher_copy_ from_topic_gos, Whereby any common policy that is
set on the DDS_TopicQos “overrides’ the corresponding policy on the default
DDS_DataWriterQos. Theresulting DDs_bataWriterQos isthen applied to
create the bDs_DataWriter.

Communication Satus

For each communication status, the statusChangedrlag flag isinitialy set to
FALSE. |t becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_DataWriterListener operation isinvoked and the communication statusis
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The fact that the status is reset prior to calling the
listener meansthat if the application callsthe get_<status_name>_status from
inside the listener it will see the status already reset.

The following statuses are applicable to the DDS_DatalriterListener:

DDS_OFFERED_DEADLINE_MISSED_STATUS
DDS_OFFERED_INCOMPATIBLE_QOS_STATUS
DDS_LIVELINESS_LOST_STATUS
DDS_PUBLICATION_MATCHED_STATUS.

239
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bDs_aNY_STATUS can be
used to select all statuses applicable to the DDS_DataWriterListener.

Satus Propagation

In case a communication status is not activated in the mask of the
DDS_DataWriterListener, the DDS_PublisherListener Of the containing
DDS_Publisher isinvoked (if attached and activated for the status that occurred).
This allows the application to set a default behaviour in the
DDS_PublisherListener Of the containing pps_prPublisher and a
DDS_DataWriter specific behaviour when needed. In case the communication
status is not activated in the mask of the Dbs_PublisherListener aswell, the
communication status will be propagated to the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant. In casethe DDS_DomainParticipantListener iS
also not attached or the communication status is not activated in its mask, the
application is not notified of the change.

DDS Publisher _delete contained_entities
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_delete_contained_entities
(DDS_Publisher _this);

Description

This operation deletes all the bDS_Datawriter objects that were created by means
of one of the bDs_Publisher_create_datawriter operations on the
DDS_Publisher.

Parameters

in DDS_Publisher _this-theDDS_Publisher object on which the operation
is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_PRECONDITION_NOT_MET.

240

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation deletes all the bps_Datawriter objects that were created by means
of one of the bDS_Publisher_create_datawriter operations on the
DDS_Publisher. In other words, it deletes all contained DDsS_DataWriter
objects.

Note: The operation will return bDS_PRECONDITION_NOT_MET if the any of the
contained entities is in a state where it cannot be deleted. In such cases, the
operation does not roll-back any entity deletions performed prior to the detection of
the problem.

Return Code
When the operation returns:

* DDS_RETCODE_OK - the contained pDDs_Entity objects are deleted and the
application may delete the DDS_Publisher.

* DDS RETCODE ERROR - aninterna error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_publisher has already been
deleted.

* DDS RETCODE OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE PRECONDITION NOT MET - oneor more of the contained entities
arein a state where they cannot be deleted.

DDS Publisher _delete datawriter

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher delete_datawriter
(DDS_Publisher _this,
const DDS_DataWriter a_datawriter) ;

Description
This operation deletes aDDS_Datawriter that belongsto the bbs_publisher.

Parameters
in DDS_Publisher _this - the DDS_Publisher object on which the operation
-is operated.

241
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

in const DDS_DataWriter a_datawriter - a pointer to the
DDS_DataWriter, which isto be deleted.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_ALREADY_
DELETED, DDS_RETCODE_OUT_OF_RESOURCES Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description

This operation deletes a bbs_bataliriter that belongs to the DDS_Publisher.
When the operation is called on a different bps_Publisher, as used when the
DDS_DataWriter was created, the operation has no effect and returns
DDS_RETCODE_PRECONDITION_NOT_MET. The deletion of the DDS_DataWriter
will automatically unregister all instances. Depending on the settings of
DDS_WriterDataLifecycleQosPolicy, the deletion of the bDS_Datawriter
may also dispose of al instances.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_DataWriter isdeleted.
* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter a_datawriter isnot a valid
DDS_DataWriter.

* DDS_RETCODE_ALREADY_DELETED - the DDS_publisher has already been
deleted.

e DDS RETCODE_OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS_RETCODE_PRECONDITION_NOT_MET - the operation is called on a different
DDS_Publisher, asused when the DDS_DataWriter was created.

DDS Publisher _enable (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>

242

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS_ReturnCode_t
DDS_Publisher enable
(DDS_Publisher _this);

DDS Publisher_end_coherent_changes

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_end_coherent_changes
(DDS_Publisher _this);

Note: Thisoperation is not yet implemented. It is scheduled for a future release.

Description

This operation terminates the ‘ coherent set’ initiated by the matching call to

DDS_Publisher_begin_coherent_changes.

Parameters

in DDS_Publisher _this -theDDS_publisher object onwhich the operation
is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_UNSUPPORTED.

Detailed Description

This operation terminates the ‘ coherent set’ initiated by the matching call to
DDS_Publisher_begin_coherent_changes. If there is no matching call to
DDS_Publisher_begin_coherent_changes, the operation will return the error
DDS_PRECONDITION_NOT_ MET.

Return Code

When the operation returns:

* DDS_RETCODE_UNSUPPORTED - the operation is not yet implemented. It is
scheduled for afuture release.

DDS Publisher _get_default_datawriter _gos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_get_default_datawriter_gos
(DDS_Publisher _this,

243
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

244
API Reference

DDS_DataWriterQos *gos);

Description
This operation gets the default DDS_DatawWriterQos Of the DDS_Publisher.

Parameters

in DDS_Publisher _this-theDDS_Publisher object on which the operation
is operated.

inout DDS_DataWriterQos *gos - apointer tothe Dbs_bDataWriterQos
struct (provided by the application) in which the default bDs_DatawWriterQos
for the DDS_Datawriter iSwritten.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation gets the default DDS_DataWriterQos of the DDS_Publisher (that
is the struct with the gosPolicy settings) which is used for newly created
DDS_DataWriter Objects, in case the constant DDS_DATAWRITER_QOS_DEFAULT
is used. The default pDs_patawriterQos isonly used when the constant is
supplied as parameter gos to specify the pbs_DataWriterQos in the
DDS_Publisher_create_datawriter operation. The application must provide
the DDS_DataWriterQos struct in which the gosPolicy Settings can be stored
and pass the gos pointer to the operation. The operation writes the default
DDS_DataWriterQos to the struct pointed to by gos. Any settingsin the struct are
overwritten.

The values retrieved by this operation match the set of values specified on the last
successful call to DDS_Publisher_set_default_datawriter_gos, or, if the
call was never made, the default values as specified for each gosPolicy setting as
defined in Table 5 on page 59.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the default DDS_Datawriter QosPolicy Settings of this
DDS_Publisher have successfully been copied into the specified
DDS_DataWriterQos parameter.

e DDS RETCODE_ERROR - aninternal error has occurred.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has aready been
deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS Publisher _get_listener

Synopsis
#include <dds_dcps.h>
struct DDS_PublisherListener
DDS_Publisher_get_listener
(DDS_Publisher _this);

Description
This operation allows accessto abDS_PublisherListener.

Parameters

in DDS_Publisher _this -theDDS_Publisher object on which the operation
is operated.

Return Value

struct DDS_PublisherListener - apointer to the DDS_PublisherListener
attached to the bDs_Publisher.

Detailed Description

This operation allows access to a DDS_PublisherListener attached to the
DDS_Publisher. When no pbDs_publisherListener was attached to the
DDS_Publisher, the DDS_OBJECT_NIL pointer is returned.

DDS Publisher _get_participant

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>

DDS_DomainParticipant
DDS_Publisher_get_participant
(DDS_Publisher _this);

Description
This operation returns the bbs_bomainParticipant associated with the
DDS_Publisher Of the DDS_OBJECT_NIL pointer.

245
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Parameters

in DDS_Publisher _this-theDDS_Publisher object on which the operation
is operated.

Return Value

DDS_DomainParticipant - a pointer to the bDS_DomainParticipant
associated with the pps_publisher or the DDS_OBJECT_NIL pointer.

Detailed Description

This operation returns the bbs_bomainParticipant associated with the
DDS_Publisher. Note that there is exactly one pps_bomainParticipant
associated with each pDs_Publisher. When the bps_pPublisher was already
deleted (there is no associated DDS_DomainParticipant any more), the
DDS_OBJECT_NTIL pointer is returned.

DDS Publisher _get _gos
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_get_gos
(DDS_Publisher _this,
DDS_PublisherQos *gos) ;

Description

This operation allows access to the existing set of QoS policies for a
DDS_Publisher.

Parameters

in DDS_Publisher _this -theDDS_publisher object on which the operation
is operated.

inout DDS_PublisherQos *gos - a pointer to the destination
DDS_PublisherQos struct in which the QosPolicy settings will be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

246

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Detailed Description

This operation allows access to the existing set of QoS policies of a
DDS_Publisher on which this operation is used. This DDS_PublisherQos iS
stored at the location pointed to by the gos parameter.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of QoS policy values applied to this

DDS_Publisher has successfully been copied into the specified
DDS_PublisherQos parameter.

e DDS_RETCODE_ERROR - an internal error has occurred.
* DDS_RETCODE_ILLEGAI_OPERATION - the operation is invoked on an

inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has aready been

del eted.

* DDS RETCODE_OUT OF_ RESOURCES - the Data Distribution Service ran out of

resources to complete this operation.

DDS Publisher_get_status changes (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis

#include <dds_dcps.h>

DDS_StatusMask

DDS_Publisher get_status_changes
(DDS_Publisher _this);

DDS Publisher_get_statuscondition (inherited)

&4 PRISMTECH

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis

#include <dds_dcps.h>

DDS_StatusCondition

DDS_Publisher_get_statuscondition
(DDS_Publisher _this);

247
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

DDS Publisher_lookup_datawriter

Synopsis
#include <dds_dcps.h>
DDS_DataWriter
DDS_Publisher_lookup_datawriter
(DDS_Publisher _this,
const DDS_char *topic_name) ;

Description

This operation returns a previously created bbs_batawWriter belonging to the
DDS_Publisher which is attached to a bbDs_Topic with the matching
topic_name.

Parameters

in DDS Publisher _this -theDDS_Publisher oObject on which the operation
is operated.

in const DDS_char *topic_name - the name of the bbs_Topic, whichis
attached to the DDs_Datawriter to look for.

Return Value

DDS_DataWriter - Return value is a pointer to the bbs_batawriter found.
When no such pps_batawWriter isfound, the DDS_OBJECT_NIL pointer is
returned.

Detailed Description

This operation returns a previously created bbs_batawWriter belonging to the
DDS_Publisher which is attached to a bDs_Topic with the matching
topic_name. When multiple DDS_Datatwriter objects (which satisfy the same
condition) exist, this operation will return one of them. It is not specified which one.

DDS Publisher_resume_publications

248
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_ resume_publications
(DDS_Publisher _this);

Description
This operation resumes a previously suspended publication.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Parameters

in DDS_Publisher _this -theDDS_Publisher object on which the operation
is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES, DDS_RETCODE_NOT_ENABLED Of DDS_RETCODE_
PRECONDITION_NOT_MET.

Detailed Description

If the DDS_Publisher is suspended, this operation will resume the publication of
all DDs_Dataliriter objects contained by this bDs_publisher. All data held in
the history buffer of the DDs_Datawriter'sisactively published to the consumers.
When the operation returns, all Dbs_Datavwiriter's have resumed the publication
of suspended updates.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_Publisher object has been resumed.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has aready been
deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_NOT_ENABLED - the DDS_Publisher iSnot enabled.

* DDS_RETCODE_PRECONDITION_NOT MET - the DDS_Publisher is not
suspended.

DDS Publisher _set default_datawriter _qos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_set_default_datawriter_gos
(DDS_Publisher _this,
const DDS_DataWriterQos *gos);

249
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

250
API Reference

Description
This operation sets the default DDs_DatawriterQos oOf the DDS_Publisher.

Parameters

in DDS_Publisher _this - the DDS_Publisher object on which the operation
is operated.
in const DDS_DataWriterQos *gos - the DDS_DataWriterQos struct, which

contains the new default bpps_bpatawriterQos for the newly created
DDS_DataWriters.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_ DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_INCONSISTENT POLICY.

Detailed Description

This operation sets the default bDs_batawriterQos oOf the DDS_Publisher (that
is the struct with the gosPolicy settings) which is used for newly created
DDS_DataWriter Objects, in case the constant DDS_DATAWRITER_QOS_DEFAULT
is used. The default bDs_DatawWriterQos isonly used when the constant is
supplied as parameter gos to specify the pps_bpatawriterQos in the
DDS_Publisher create_datawriter operation.

The DDS_Publisher_set_default_datawriter_gos operation checksif the
DDS_DataWriterQos issalf consistent. If it is not, the operation has no effect and
returns DDS_RETCODE_INCONSISTENT POLICY.

The values set by this operation are returned by
DDS_Publisher_get_default_datawriter_gos.

Return Code

When the operation returns:

e DDS_RETCODE_OK - the new default DDS_DataWriterQos iS Set.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS_RETCODE_BAD _PARAMETER - the parameter gos is not a valid
DDS_DataWriterQos. It contains a QosPolicy setting with an invalid
DDS_Duration_t value, an enum value that is outside its legal boundaries or a
sequence that has inconsistent memory settings.

DDS_RETCODE_UNSUPPORTED - one or more of the selected QosPolicy values are
currently not supported by OpenSplice.

DDS_RETCODE_ALREADY_DELETED - the DDS_Publisher has already been
deleted.

DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS_RETCODE_INCONSISTENT POLICY - the parameter gos contains
conflicting QosPolicy settings, e.g. a history depth that is higher than the
specified resource limits.

DDS Publisher _set_listener

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

DDS_Publisher_set_listener
(DDS_Publisher _this,
const struct DDS_PublisherListener *a_listener,
const DDS_StatusMask mask) ;

Description
This operation attaches abps_PublisherListener t0othe DDS_Publisher.

Parameters
in DDS_Publisher _this -theDDS_publisher object onwhich the operation

is operated.

in const struct DDS_PublisherListener *a_listener - apointertothe

DDS_PublisherListener instance, which will be attached to the
DDS_Publisher.

in const DDS StatusMask mask - abit-mask in which each bit enables the

invocation of theDDs_PublisherListener for acertain status.

Return Value
DDS_ReturnCode_t - Possible return codes of the operation are:

DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

251
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

252
API Reference

Detailed Description

This operation attaches a bbs_PublisherListener to the DDS_Publisher.
Only one DDS_PublisherListener can be attached to each DDS_Publisher. If
aDDS_PublisherListener was already attached, the operation will replace it
with the new one. When a_1listener iSthe DDS_OBJECT_NIL pointer, it
represents a listener that is treated as a NOOP?! for all statuses activated in the
bitmask.

Communication Satus

For each communication status, the statusChangedrlag flag isinitially set to
FALSE. |t becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated
DDS_PublisherListener operation isinvoked and the communication status is
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The status is reset prior to calling the listener, so if the
application callsthe get_<status_name>_status from inside the listener it will
see the status already reset. An exception to this rule is the bbDs_0BJECT_NIL
listener, which does not reset the communication statuses for which it is invoked.

The following statuses are applicable to the bDS_PublisherListener:

* DDS_OFFERED_DEADLINE MISSED_STATUS (propagated)
* DDS_OFFERED_INCOMPATIBLE_QOS_STATUS (propagated)
* DDS_LIVELINESS_LOST_STATUS (propagated)
* DDS_PUBLICATION_MATCHED_STATUS (propagated).

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bbs_ANY_STATUS can be
used to select al statuses applicable to the bDS_PublisherListener.

Satus Propagation

The Data Distribution Service will trigger the most specific and relevant Listener.
In other words, in case a communication status is also activated on the
DDS DataWriterListener Of a contained pDs_DatawWriter, the
DDS_DataWriterListener on that contained DDS_Datawriter iSinvoked
instead of the DDS_PublisherListener. This means that a status change on a
contained DDS_DatawWriter only invokes the DDS_PublisherListener if the
contained DDS_DataWriter itself does not handle the trigger event generated by
the status change.

1. Short for No-Operation, an instruction that peforms nothing at all.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

In case a status is not activated in the mask of the DDS_PublisherListener, the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant iSinvoked (if attached and activated for the status that
occurred). This allows the application to set a default behaviour in the
DDS_DomainParticipantListener of the containing
DDS_DomainParticipant and a bbS_Publisher specific behaviour when
needed. In case the DDS_DomainParticipantListener iSaso not attached or
the communication status is not activated in itsmask, the application is not notified
of the change.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_PublisherListener is attached.
e DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_Publisher has already been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS Publisher_set_gos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_set_gos
(DDS_Publisher _this,
const DDS_PublisherQos *qgos) ;

Description

This operation replaces the existing set of QosPolicy settings for a
DDS_Publisher.

Parameters

in DDS_Publisher _this -theDDS_Publisher object on which the operation
is operated.

in const DDS_PublisherQos *gos - containsthe new set of QosPolicy
settings for the bbs_pPublisher.

253
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_IMMUTABLE_POLICY.

Detailed Description

This operation replaces the existing set of gospPolicy settings for a
DDS_Publisher. The parameter gos contains the QospPolicy settings which is
checked for self-consistency and mutability. When the application tries to change a
QosPolicy setting for an enabled DDS_Publisher, which can only be set before
the pps_pPublisher is enabled, the operation will fail and a
DDS_RETCODE_IMMUTABLE_POLICY isreturned. In other words, the application
must provide the currently set gosPolicy settingsin case of the immutable
QosPolicy settings. Only the mutable QosPolicy settings can be changed. When
qgos contains conflicting gosPolicy settings (not self-consistent), the operation
will fail and abDS_RETCODE_INCONSISTENT POLICY iSreturned.

The set of QosPolicy settings specified by the gos parameter are applied on top of
the existing QoS, replacing the values of any policies previously set (provided, the
operation returned DDS_RETCODE_OK).

Return Code

When the operation returns:

e DDS_RETCODE_OK - the new DDS_PublisherQos is Set.

* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_BAD_PARAMETER - the parameter qgos is not a vaid
DDS_PublisherQos. It containsaQosPolicy setting with an enum valuethat is
outside its legal boundaries or a sequence that has inconsistent memory settings.

* DDS_RETCODE_UNSUPPORTED - one or more of the selected gospPolicy values
are currently not supported by OpenSplice.

* DDS_RETCODE_ALREADY_DELETED - the DDS_publisher has already been
deleted.

e DDS RETCODE_OUT OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

254

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* DDS_RETCODE_IMMUTABLE_POLICY - the parameter gos contains an immutable
QosPolicy sefting with a different value than set during enabling of the
DDS_Publisher.

DDS Publisher_suspend_publications

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_suspend_publications
(DDS_Publisher _this);

Description

This operation will suspend the dissemination of the publications by all contained
DataWriter Objects.

Parameters

in DDS Publisher _this -theDDS_Publisher object on which the operation
is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_TLLEGAT_
OPERATION, DDS_RETCODE_ALREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_NOT_ENABLED.

Detailed Description

This operation suspends the publication of all bbs_Datawriter objects contained
by this bDs_pPublisher. The data written, disposed or unregistered by a
DDS_DataWriter is stored in the history buffer of the pps_patawriter and
therefore, depending on its QoS settings, the following operations may block (see
the operation descriptions for more information):

* DDS_DataWriter_dispose

* DDS_DataWriter_dispose_w_timestamp

* DDS_DataWriter_write

* DDS_DataWriter_write_w_timestamp

* DDS_DataWriter_writedispose

* DDS_DataWriter_writedispose_w_timestamp
* DDS_DataWriter_unregister_instance

* DDS_DataWriter_unregister_instance_w_timestamp

255
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

Subsequent calls to the bbs_Publisher_suspend_publications operation
have no effect. When the pbs_ Publisher iSs deleted before
DDS_Publisher_resume_publications is called, all suspended updates are
discarded.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_Publisher has been suspended.

e DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY DELETED - the DDS_Publisher has already been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

e DDS RETCODE_NOT ENABLED -theDDS Publisher iSnot enabled.

DDS Publisher_wait_for_acknowledgments

256
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_Publisher_wait_for_acknowledgments
(DDS_Publisher _this,
const DDS_Duration_t *max_wait);
Note: Thisoperation is not yet implemented. It is scheduled for a future release.

Description

This operation blocks the calling thread until either all data written by the contained
DDS_DataWriters isacknowledged by the matched bDS_DataReaders, or until
the duration specified by max_wait parameter elapses, whichever happensfirst.

Parameters

in DDS_Publisher _this -theDDS_Publisher object on which the operation
is operated.

in const DDS_Duration_t *max_wait - themaximum duration to block for
the DDS_Publisher wait_for_acknowledgments, after which the
application thread is unblocked. The special constant
DDS_DURATION_INFINITE can be used when the maximum waiting time does
not need to be bounded.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_UNSUPPORTED.

Detailed Description

This operation is intended to be used only if one or more of the contained
DDS_DataWriters has itS DDS_ReliabilityQosPolicyKind Set to
DDS_RELIABLE_RELIABILITY_QO0S. Otherwise the operation will return
immediately with DDS_RETCODE_OK.

It blocks the calling thread until either all data written by the contained reliable
DDS_DataWriters isacknowledged by all matched DDS_DataReader entities
that have their bDS_ReliabilityQosPolicyKind Set to DDS_RELIABLE_
RELIABILITY_QOS, or else the duration specified by the max_wait parameter
elapses, whichever happensfirst. A return value of bbs_RETCODE_OK indicates that
all the samples written have been acknowledged by all reliable matched data
readers; a return value of DDS_RETCODE_TIMEOUT indicates that max_wait
elapsed before all the data was acknowledged.

Return Code

When the operation returns:

* DDS_RETCODE_UNSUPPORTED - the operation is not yet implemented. It is
scheduled for afuture release.

Publication Type Specific Classes

This paragraph describes the generic bbs_batawriter class and the derived
application type specific <NameSpace>_<type>Dataliriter classes which
together implement the application publication interface. For each application type,
used as DDS_Topic data type, the pre-processor generates a
<NameSpace>_<type>DataWriter class from an IDL type description. The
SPACE_FooDataWriter class that would be generated by the pre-processor for a
fictional type Foo (defined in the module space) describes the
<NameSpace>_<type>DataWriter classes.

ClassDDS DataWriter (abstract)

&4 PRISMTECH

DDS_DataWriter allows the application to set the value of the sample to be
published under agiven bps_Topic.

A DDs_DataWriter is attached to exactly one pps_pPublisher Which actsas a
factory for it.

257
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

258
API Reference

A DDS_Datawriter isbound to exactly one pps_Topic and therefore to exactly
one data type. The DDS_Topic must exist prior to the bbs_DataWriter's
creation.

DDS_DataWriter iSan abstract class. It must be specialized for each particular
application data type. For afictional application data type Foo (defined in the
module spPACE) the specialized class would be SPACE_FooDataWriter.

The interface description of this classis as follows:

/*

* interface DDS_DataWriter

*/

/*

* inherited from class DDS_Entity

*/

/* DDS_StatusCondition

* DDS_DataWriter_get_statuscondition
* (DDS_DataWriter _this);

*/

/* DDS_StatusMask

* DDS_DataWriter_get_status_changes
* (DDS_DataWriter _this);

*/

/* DDS_ReturnCode_t

* DDS_DataWriter_enable

* (DDS_DataWriter _this);

*/

/*

* abstract operations
* (implemented in the data type specific DDS_DataWriter)

*/

/* DDS_InstanceHandle_t

* DDS_DataWriter_register_instance

* (DDS_DataWriter _this);

* const <data> *instance_data);

*/

/* DDS_InstanceHandle_t

* DDS_DataWriter_register_instance_w_timestamp
* (DDS_DataWriter _this);

* const <data> *instance_data,

* const DDS_Time_t *source_timestamp) ;
*/

/* DDS_ReturnCode_t

* DDS_DataWriter_unregister_instance

* (DDS_DataWriter _this);

* const <data> *instance_data,

* const DDS_TInstanceHandle_t handle);
*/

/* DDS_ReturnCode_t

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS_DataWriter_unregister_instance_w_timestamp
(DDS_DataWriter _this);
const <data> *instance_data,
const DDS_InstanceHandle_t handle,
const DDS_Time_t *source_timestamp) ;

* % % o

*

*/
DDS_ReturnCode_t
DDS_DataWriter_write
(DDS_DataWriter _this);
const <data> *instance_data,
const DDS_InstanceHandle_t handle) ;

* % %

*

*

/
DDS_ReturnCode_t
DDS_DataWriter write_w_timestamp
(DDS_DataWriter _this);
const <data> *instance_data,
const DDS_InstanceHandle_t handle,
* const DDS_Time_t *source_timestamp) ;
/
DDS_ReturnCode_t
DDS_DataWriter_dispose
(DDS_DataWriter _this);
const <data> *instance_data,
* const DDS_InstanceHandle_t instance_handle) ;
/
DDS_ReturnCode_t
DDS_DataWriter_dispose_w_timestamp
(DDS_DataWriter _this);
const <data> *instance_data,
const DDS_InstanceHandle_t instance_handle,
const DDS_Time_t *source_timestamp) ;

* % %

*

~
* % %

*

~
* % %

*

*

/
DDS_ReturnCode_t
DDS_DataWriter_writedispose
(DDS_DataWriter _this,
* const <data> *instance_data,

* % %

*

* const DDS_InstanceHandle_t instance_handle) ;

*/

/* DDS_ReturnCode_t

* DDS_DataWriter_writedispose_w_timestamp

* (DDS_DataWriter _this,

* const <data> *instance_data,

* const DDS_InstanceHandle_t instance_handle,
const DDS_Time_t *source_timestamp) ;

*/

/* DDS_ReturnCode_t
DDS_DataWriter_ get_key_ value
(DDS_DataWriter _this);
<data> *key_holder,

* X %

259

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

* const DDS_InstanceHandle_t handle);
*/

/* DDS_InstanceHandle_t

* DDS_DataWriter_lookup_instance

*/ (DDS_DataWriter _this,

* <data> *instance_data) ;

/*

/*

* implemented API operations

*/

DDS_ReturnCode_t
DDS_DataWriter_set_gos
(DDS_DataWriter this,
const DDS_DataWriterQos *gos) ;

DDS_ReturnCode_t
DDS_DataWriter_get_gos
(DDS_DataWriter this,
DDS_DataWriterQos *qgos);

DDS_ReturnCode_t
DDS_DataWriter set_listener
(DDS_DataWriter this,
const struct DDS_DataWriterListener *a_listener,
const DDS_StatusMask mask) ;

struct DDS_DataWriterListener
struct DDS_DataWriter_get_listener
(DDS_DataWriter this);

DDS_Topic
DDS_DataWriter_get_topic
(DDS_DataWriter this);

DDS_Publisher
DDS_DataWriter_get_publisher
(DDS_DataWriter this);

DDS_ReturnCode_t
DDS_DataWriter_wait_for_acknowledgments
(DDS_DataWriter _this,
const DDS_Duration_t *max_wait);

DDS_ReturnCode_t
DDS_DataWriter_get_liveliness_lost_status
(DDS_DataWriter this,
DDS_LivelinessLostStatus *status);

DDS_ReturnCode_t
DDS_DataWriter_get_offered_deadline_missed_status
260

API Reference & PRISMTECH

3 DCPS Classes and Operations

(DDS_DataWriter this,

DDS_OfferedDeadlineMissedStatus *status);

DDS_ReturnCode_t

3.4 PublicationModule

DDS_DataWriter_get_offered_incompatible_gos_status

(DDS_DataWriter this,

DDS_OfferedIncompatibleQosStatus *status) ;

DDS_ReturnCode_t

DDS_DataWriter_get_publication_matched_status

(DDS_DataWriter this,

DDS_PublicationMatchedStatus *status);

DDS_ReturnCode_t
DDS_DataWriter_assert_liveliness
(DDS_DataWriter this);

DDS_ReturnCode_t
DDS_DataWriter_get_matched subscriptions
(DDS_DataWriter this,

DDS_InstanceHandleSeqg *subscription_handles) ;

DDS_ReturnCode_t

DDS_DataWriter_get_matched_subscription_data

(DDS_DataWriter this,
DDS_SubscriptionBuiltinTopicData
*gsubscription_data,

const DDS_InstanceHandle_t subscription_handle

)

The next paragraphs describe the usage of all bDs_patawriter operations. The
inherited operations are listed but not fully described because they are not
implemented in this class. The full description of these operations is given in the
classes from which they areinherited. The abstract operations are listed but not fully
described because they are not implemented in this specific class. The full
description of these operations is located in the subclasses, which contain the data

type specific implementation of these operations.
DDS DataWriter_assert_liveliness

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_assert_liveliness
(DDS_DataWriter _this);

Description

This operation asserts the liveliness for the bDs_Datawriter.

&4 PRISMTECH

261
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

262
API Reference

Parameters

in DDS_DataWriter _this - iSthe DDS_DataWriter object on which the
operation is operated.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_ DELETED, DDS_RETCODE_
OUT_OF_RESOURCES Of DDS_RETCODE_NOT_ENABLED.

Detailed Description

This operation will manually assert the liveliness for the bps_batawriter. This
way, the Data Distribution Service is informed that the corresponding
DDS_DataWriter is still alive. This operation is used in combination with the
DDS_LivelinessQosPolicy Set t0O DDS_MANUAL_BY_PARTICIPANT_
LIVELINESS_QOS Of DDS_MANUAL_BY_TOPIC_LIVELINESS_QOS. See Section
3.1.3.10, DDS LivelinessQosPolicy, on page 79, for more information on
LivelinessQosPolicy.

Writing data viathe Dbs_bataWriter_write operation of aDDS_DataWriter
will assert the liveliness on the pbs_batawriter itself and its containing
DDS_DomainParticipant. Therefore, DDS DataWriter assert
liveliness isonly needed when datais not written regularly.

The liveliness should be asserted by the application, depending on the
DDS_LivelinessQosPolicy. Asserting the liveliness for thispps_batawriter
can also be achieved by asserting the liveliness to the bDs_DomainParticipant.
Return Code

When the operation returns:

* DDS_RETCODE_OK - the liveliness of this pbs_patawriter has successfully
been asserted.

* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_bDatawriter has already been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

* DDS RETCODE_NOT ENABLED - the DDS_DatawWwriter iSnot enabled.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriter_dispose (abstract)

This abstract operation is defined as a generic operation, which isimplemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module sPACE) derived SPACE_FooDataliriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_dispose
(DDS_DataWriter _this,
const <data> *instance_data,
const DDS_InstanceHandle_t instance_handle) ;

DDS DataWriter_dispose w_timestamp (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module spACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_dispose_w_timestamp

(DDS_DataWriter _this,
const <data> *instance_data,
const DDS_InstanceHandle_t instance_handle,
const DDS_Time_t *source_timestamp) ;

DDS DataWriter _enable (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_enable
(DDS_DataWriter _this);

263
&4 PRISMTECH AP| Reference

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriter_get _key value (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module spACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_key_value
(DDS_DataWriter _this,
<data> *key_holder,
const DDS_InstanceHandle_t handle);

DDS DataWriter_get_listener

Synopsis
#include <dds_dcps.h>
struct DDS_DataWriterListener
DDS_DataWriter_get_listener
(DDS_DataWriter _this);

Description
This operation allows accessto aDDS_DataWriterListener.

Parameters

in DDS_DataWriter _this -the DDS_DataWriter object on which the
operation is operated.

Return Value

struct DDS_DataWriterListener - a pointer to the
DDS_DataWriterListener attached tothe DDS_Datawriter.

Detailed Description

This operation allows access to a DDS_DataWriterListener attached to the
DDS_DataWriter. When no DDS_DatalriterListener was attached to the
DDS_DataWriter, the DDS_OBJECT_NIL pointer is returned.

DDS DataWriter_get_liveliness lost_status

264
API Reference

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

&4 PRISMTECH

DDS_DataWriter_get_liveliness_lost_status
(DDS_DataWriter _this,
DDS_LivelinessLostStatus *status);

Description

This operation obtains the bbs_LivelinessLostStatus Struct of the
DDS_DataWriter.

Parameters

in DDS_DataWriter _this -the DDS_batawriter object on which the
operation is operated.

inout DDS_LivelinessLostStatus *status - the contents of the
DDS_LivelinessLostStatus Struct of the bbs_batawriter will be copied
into the location specified by status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the bbs_LivelinessLostStatus struct of the
DDS_DataWriter. Thisstruct contains the information whether the liveliness (that
the DDS_Datawriter has committed through its DDS_LivelinessQosPolicy)
was respected.

This means, that the status represents whether the pps_bpatawriter failed to
actively signal its liveliness within the offered liveliness period. If the livelinessis
lost, the DDS_DataReader Objects will consider the bps_patawriter as no
longer “aive’.

The pDS_LivelinessLostStatus can also be monitored using a
DDS_DataWriterListener Of by using the associated bps_StatusCondition.
Return Code

When the operation returns:

* DDS RETCODE OK - the current DDS LivelinessLostStatus oOf this
DDS_DataWriter has successfully been copied into the specified status
parameter.

* DDS RETCODE ERROR - aninterna error has occurred.

265
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_bDatawriter has already been
deleted.

* DDS_RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to compl ete this operation.

DDS DataWriter_get_matched_subscription_data
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_matched_subscription_data
(DDS_DataWriter _this,
DDS_SubscriptionBuiltinTopicData *subscription_data,
const DDS_InstanceHandle_t subscription_handle) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
DDS DataWriter_get_matched_subscriptions
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_matched_subscriptions
(DDS_DataWriter _this,
DDS_InstanceHandleSeq *subscription_handles) ;

Note: This operation is not yet implemented. It is scheduled for afuture release.
DDS DataWriter_get_offered_deadline_missed_status
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_offered_deadline_missed_status
(DDS_DataWriter _this,
DDS_OfferedDeadlineMissedStatus *status) ;

Description

This operation obtains the Dps_of feredbeadl ineMissedStatus struct of the
DDS_DataWriter.

Parameters

in DDS_DataWriter _this -the DDS_bDataWriter object on which the
operation is operated.

266

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

inout DDS_OfferedDeadlineMissedStatus *status - the contents of the
DDS_OfferedDeadlineMissedStatus Struct of the bDs_Datawriter will
be copied into the location specified by status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the DDS_0Of feredDeadlineMissedStatus struct of the
DDS_DataWriter. This struct contains the information whether the deadline (that
the DDS_Datawriter has committed through itSDDS_DeadlineQosPolicy) was
respected for each instance.

The DDS_OfferedDeadlineMissedStatus can also be monitored using a
DDS_DataWriterListener Of by using the associated bps_StatusCondition.
Return Code

When the operation returns:

* DDS_RETCODE_OK - the current DDS_LivelinessLostStatus oOf this
DDS_DataWriter has successfully been copied into the specified status
parameter.

* DDS RETCODE _ERROR - aninterna error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_Datawriter has aready been
deleted.

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DataWriter_get offered_incompatible _qos_status

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_offered_incompatible_gos_status
(DDS_DataWriter _this,
DDS_OfferedIncompatibleQosStatus *status) ;

267
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

268
API Reference

Description

This operation obtains the bps_offeredIncompatibleQosStatus struct of the
DDS_DataWriter.

Parameters
in DDS_DataWriter _this -the DDS_DataWriter object on which the
operation is operated.

inout DDS_OfferedIncompatibleQosStatus *status - the contents of the
DDS_OfferedIncompatibleQosStatus struct of the DDS_DataWriter
will be copied into the location specified by status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation obtains the bps_offeredIncompatibleQosStatus struct of the
DDS_DataWriter. This struct contains the information whether a QospPolicy
setting was incompatible with the requested QosPolicy Setting.

This means, that the status represents whether a bDs_DataReader object has been
discovered by the bDS_Datawriter with the same bps_Topic and a requested
DDS_DataReaderQos that was incompatible with the one offered by the
DDS_DataWriter.

The Dbs_OfferedIncompatibleQosStatus can aso be monitored using a
DDS_DataWriterListener Or by using the associated pDs_StatusCondition.
Return Code

When the operation returns:

* DDS _RETCODE_OK - the current DDS_OfferedIncompatibleQosStatus Of
this DDs_Datawriter has successfully been copied into the specified status
parameter.

e DDS RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_bDatawriter has already been
deleted.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

* DDS RETCODE_OUT_OF RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DataWriter_get_publication_matched_status
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_publication_matched_status
(DDS_DataWriter _this,
DDS_PublicationMatchedStatus *status) ;

Note: Thisoperation is not yet implemented. It is scheduled for a future release.
DDS DataWriter_get_publisher
Synopsis

#include <dds_dcps.h>
DDS_Publisher
DDS_DataWriter_get_publisher
(DDS_DataWriter _this);

Description

This operation returns the bbs_publisher to which the DDS_Datawriter

belongs.

Parameters

in DDS_DataWriter _this -the DDS_DataWriter object on which the
operation is operated.

Return Value

DDS_Publisher - a pointer to the bbs_publisher to which the
DDS_DataWriter belongs.

Detailed Description

This operation returns the bbs_pPublisher to which the bps_batawriter
belongs, thus the DDs_Publisher that has created the bps_patawriter. If the
DDS_DataWriter isalready deleted, the DDS_OBJECT NIL pointer isreturned.

DDS DataWriter_get_gos
Synopsis

#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_get_gos

269

&4 PRISMTECH API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

(DDS_DataWriter _this,
DDS_DataWriterQos *gos) ;
Description

This operation allows access to the existing list of gosPolicy settings for a
DDS_DataWriter.

Parameters

in DDS_DataWriter _this -the DDS_DataWriter object on which the
operation is operated.

inout DDS_DataWriterQos *gos - a pointer to the destination
DDS_DataWriterQos struct in which the gospPolicy settingswill be copied.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation allows access to the existing list of gosPolicy settings of a
DDS_DataWriter on which this operation is used. This DDS_DataWriterQos iS
stored at the |ocation pointed to by the gos parameter.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the existing set of QoS policy values applied to this
DDS_DataWriter has successfully been copied into the specified
DDS_DataWriterQos parameter.

* DDS_RETCODE_ERROR - aninternal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_bDatawriter has already been
deleted.

* DDS_RETCODE_OUT_OF_RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

DDS DataWriter_get_status changes (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

270

API Reference & PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

Synopsis
#include <dds_dcps.h>
DDS_StatusMask
DDS_DataWriter_get_status_changes
(DDS_DataWriter _this);

DDS DataWriter_get_statuscondition (inherited)

This operation is inherited and therefore not described here. See the class
DDS_Entity for further explanation.

Synopsis
#include <dds_dcps.h>
DDS_StatusCondition
DDS_DataWriter_get_statuscondition
(DDS_DataWriter _this);

DDS DataWriter_get_topic

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_Topic
DDS_DataWriter_get_topic
(DDS_DataWriter _this);

Description

This operation returns the pps_Topic which is associated with the

DDS_DataWriter.

Parameters

in DDS_DataWriter _this -the DDS_batawriter object on which the
operation is operated.

Return Value

DDS_Topic - Return value is a pointer to the bps_Topic which is associated with
the DDS_DataWriter.

Detailed Description

This operation returns the pbps_Topic which is associated with the
DDS_DataWriter, thusthe pDs_Topic with which the bDs_Datawriter is
created. If the DDS_Datawriter isaready deleted, the bDs_OBJECT_NTIL pointer
isreturned.

271
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriter _lookup_instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional data type
Foo (defined in the module spACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
DDS_InstanceHandle_t
DDS_DataWriter_lookup_instance
(DDS_DataWriter _this,
<data> *instance_data) ;

DDS DataWriter_register_instance (abstract)

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module spACE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
const DDS_InstanceHandle_t
DDS_DataWriter_register_instance
(DDS_DataWriter _this,
const <data> *instance_data);

DDS DataWriter_register_instance w_timestamp (abstract)

272
API Reference

This abstract operation is defined as a generic operation, which is implemented by
the <NameSpace>_<type>DataWriter class. Therefore, to use this operation, the
data type specific implementation of this operation in its respective derived class
must be used. For further explanation see the description for the fictional datatype
Foo (defined in the module spaCE) derived SPACE_FooDataWriter class.

Synopsis
#include <dds_dcps.h>
const DDS_InstanceHandle_t
DDS_DataWriter_register_instance_w_timestamp
(DDS_DataWriter _this,
const <data> *instance_data,
const DDS_Time_t *source_timestamp) ;

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriter_set_listener

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_set_listener
(DDS_DataWriter _this,
const struct DDS_DataWriterListener *a_listener,
const DDS_StatusMask mask) ;

Description
This operation attaches abbps_DataWriterListener t0the DDS_DataWriter.

Parameters

in DDS_DataWriter _thiS-the DDs_batawriter object on which the
operation is operated.

in const struct DDS_DataliriterListener *a_listenel - apointerto
the DDs_DataWriterListener instance, which will be attached to the
DDS_DataWriter.

in const DDS_StatusMask mask - abit-mask in which each bit enables the
invocation of the DDS_DataWriterListener for acertain status.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_ALREADY_DELETED Of DDS_RETCODE_
OUT_OF_RESOURCES.

Detailed Description

This operation attaches a DDS_DataWriterListener t0the DDS_DataWriter.
Only one bDS_DataWriterListener can be attached to each DDS_Datatiriter.
If aDDS_DataWriterListener Wasaready attached, the operation will replaceit
with the new one. When a_1listener isthe DDS_OBJECT_NIL pointer, it
represents a listener that is treated as a NOOP?! for all statuses activated in the
bitmask.

Communication Satus

For each communication status, the statusChangedFlag flagisinitially set to
FALSE. |t becomes TRUE whenever that communication status changes. For each
communication status activated in the mask, the associated

1. Short for No-Operation, an instruction that peforms nothing at all.

273
API Reference

3 DCPS Classes and Operations 3.4 PublicationModule

274
API Reference

DDS_DataWriterListener operation isinvoked and the communication statusis
reset to FALSE, as the listener implicitly accesses the status which is passed as a
parameter to that operation. The status is reset prior to calling the listener, so if the
application callsthe get_<status_name>_status from inside the listener it will
see the status already reset. An exception to thisrule is the bppDs_OBJECT_NIL
listener, which does not reset the communication statuses for which it isinvoked.

The following statuses are applicable to the bDS_DataWriterListener:
« DDS_OFFERED_DEADLINE_MISSED_STATUS

« DDS_OFFERED_INCOMPATIBLE_QOS_STATUS

« DDS_LIVELINESS_LOST_STATUS

« DDS_PUBLICATION_MATCHED_STATUS.

Status bits are declared as a constant and can be used by the application in an OR
operation to create a tailored mask. The special constant bbs_aANY_STATUS can be
used to select al statuses applicable to the bDS_DataWriterListener.

Satus Propagation

In case a communication status is not activated in the mask of the
DDS_DataWriterListener, the DDS_PublisherListener Of the containing
DDS_Publisher isinvoked (if attached and activated for the status that occurred).
This allows the application to set a default behaviour in the
DDS_PublisherListener Of the containing pbps_pPublisher and a
DDS_DataWriter specific behaviour when needed. In case the communication
status is not activated in the mask of the Dbs_PublisherListener aswéll, the
communication status will be propagated to the
DDS_DomainParticipantListener of the Containing
DDS_DomainParticipant. In case the DDS_DomainParticipantListener iS
also not attached or the communication status is not activated in its mask, the
application is not notified of the change.

Return Code

When the operation returns:

* DDS_RETCODE_OK - the DDS_DataWriterListener iS attached.
* DDS_RETCODE_ERROR - an internal error has occurred.

* DDS_RETCODE_ILLEGAL_OPERATION - the operation is invoked on an
inappropriate object.

* DDS_RETCODE_ALREADY_DELETED - the DDS_DataWriter has aready been
deleted.

e DDS RETCODE_OUT OF_ RESOURCES - the Data Distribution Service ran out of
resources to complete this operation.

& PRISMTECH

3 DCPS Classes and Operations 3.4 PublicationModule

DDS DataWriter_set_qos

&4 PRISMTECH

Synopsis
#include <dds_dcps.h>
DDS_ReturnCode_t
DDS_DataWriter_set_gos
(DDS_DataWriter _this,
const DDS_DataWriterQos *gos) ;

Description

This operation replaces the existing set of gospPolicy settings for a
DDS_DataWriter.

Parameters

in DDS_DataWriter _this-the DDS_DataWriter object on which the
operation is operated.

in const DDS_DataWriterQos *gos - containthe new set of QospPolicy
settings for the bDS_Datawriter.

Return Value

DDS_ReturnCode_t - Possible return codes of the operation are:
DDS_RETCODE_OK, DDS_RETCODE_ERROR, DDS_RETCODE_ILLEGAL_
OPERATION, DDS_RETCODE_BAD_PARAMETER, DDS_RETCODE_
UNSUPPORTED, DDS_RETCODE_ALLREADY_DELETED, DDS_RETCODE_
OUT_OF_RESOURCES, DDS_RETCODE_IMMUTABLE_POLICY Of
DDS_RETCODE_INCONSISTENT POLICY.

Detailed Description

This operation replaces the existing set of QosPolicy settings for a
DDS_DataWriter. The parameter gos contains the struct with the gospPolicy
settings which is checked for self-consistency and mutability. When the application
tries to change a QosPolicy setting for an enabled bbs_patawriter, which can
only be set before the bDs_patawriter isenabled, the operation will fail and a
DDS_RETCODE_IMMUTABLE_POLICY iSreturned. In other words, the application
must provide the presently set QosPolicy settingsin case of the immutable
QosPolicy settings. Only the mutable QosPolicy settings can be changed. When
gos contains conflicting QosPolicy settings (not self-consistent), the operation
will fail and abDS_RETCODE_INCONSISTENT_ POLICY iSreturned.

The set of QosPolicy settings specified by