CAROL Library User Manual

CAROL (Common Architecture for RMI
ObjectWeb Layer), a RMI manager

Guillaume Riviere

Guilllaume.Riviere@inrialpes.fr

CAROL Library User Manual: CAROL (Common Architecture for RMI ObjectWeb Layer), a RMI man-
ager
by Guillaume Riviere

Copyright © 1997-2002 INRIA

CAROL is a library allowing to use different RMI implementations. Thanks to CAROL, a Java server
application can be independent of RMI implementations and accessible simultaneously by RMI clients using
different RMI implementations. CAROL allows to design, implement, compile, package, deploy, and execute
distributed applications compliant with the RMI model.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover texts, and with no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Table of Contents

R 1 o o 11 Tod 1T o ST 1
1.2, ADOUL thiS MANUAL.......e ittt st e e e et a e aesae st et e e e e eneeeeseees 1

IR Y Fo A O AN 1 RS SR 1

G T T YA O N = (@ SRR 2

2. CAROL OVEIVIBWcuitiieitieteteeeeeaeetestesaeseeeeseaaesaeseessasese e e eaesbesbesee s aasaneeaeaaeab e beabe e e aeebeebesbeseesenseneeneeneebenbenen 3
2.1. Presentation Of the CAROL lIDFAIY........ccooiiiiiiieeree e 3

2.2. CAROL Standard arChitECIULR............coueoirererie ettt e bbbt e b sbe e e 3
2.2.1. CAROL ArCRItECIUIR.....ccuiiei ittt ettt st b b e b b e et ae b b 3

2.2.2. RMI IIOP deVelopmMENLt FUIBS.........coui ettt et s sre e 5

2.2.3. INDI deVEIOPMENT FUIES.........coieeieee ettt sttt ne e e sneennas 10

2.3. Non standards CAROL t0ols and MeChaniSMmS..........ccocviriiereininine e 11
2.3.1. Implicit context propagation with RMI JRMP.........cccooeiiiicisr e 11

2.3.2. Referenceable an Reference binding through a RMI IIOP CosNaming..........cccccoeu..... 12

2.3.3. Name ServiCe ManagEMEBNL......cccccveiieiierereeeetese e ste e e et esre e e e e e s aesresreseae e esesrennas 13

2.4. Getting Started CONCIUSION.........cciiiieeeeece s s s ae s be e sae e eneerenrenes 13

I O7 Y @I O] a1 110 18] = 11o] o [OOSR 14
3.1. Presentation of the CAROL library configuratiQn...........ccocevereeeeriniesiseseseece s seeseeesesne e 14

3.2. CAROL CONFIQUIALION.......euiiieiiieeieseete sttt ettt st st b ettt b e bbb 14
3.2.1. General configuration filES..........coeo i e 14

3.2.2. General configuration rules for all RMI and JNDI architeCtures.........cccoevvvrereeennneenn. 14

3.2.3. RMI JRMP CONFIQUIALION......ceitiiitiirietreeiereee ettt e 16

3.2.4. RMI HIOP CONFIQUIALION.......cuiiitiiitee sttt e e 17

3.2.5. RMI JEREMIE personality CONfiguIatiQn...........c.cooerrinineiineienieeneesese e 18

3.2.6. LMI personality CONfIQUIAtIQN........cccoueiriiirieireeereie e 19

3.2.7. MULTI RMI CONFIQUIALION. ...ttt s 20

4. CAROL FEQUITEIMENESoueitiiiteiiiteitstetese ettt sttt sb et e st se bt e b st b et b et b et e b e bt se e bt seebene e b et e b et e bt s b e st snene e 24
LA ST L (ST T =) O 24

5. LINKS QNA REFEIEINCE.......o ittt ettt s b e b b e et st et e s b s b e st e b et e e eneebeneas 25
LY IR L ST Lo [SO 25

N I T = Lo = OSSP U TSRS PRP 26
A.Ll. Free DOCUMENTALION LICENCE......c..ooiiieiii ettt sttt se e sr e 26

L] 017 34

List of Tables

K B OF=T o] o [T o [=T = U o] fo] o1=] 1= OE PRSP SRR 14
3-2. Carol RMI XXX SPECIfICS PrOPEITIES.c.ciueuiieiiiettistesieeriee ettt st 15
3-3. Carol RMI JRMP SPECIfICS PrOPEITIES......cuereeuiiriiirieiste ittt 16
3-4. Carol RMI [IOP SPECIfICS PrOPEITIES.ciueuirieeiiriiirieeste ettt ettt 17
3-5. Carol RMI JEREMIE SPECIfICS PrOPEITIES.......coueviiriiirieirieis ettt e 19
3-6. Carol RMI LMI SPECIfICS PrOPEITIES.... .o vieeeeeerieetiriese ettt sttt see st e et sbe e e e s e e e e enesreeeas 20

List of Figures

P2 I o LR (@ T ¢ aT=To o F= T a1y o' 3
N NN I g g Tl aF= Va1 o 4

List of Examples

2-1. RMI DASIC BXAMPIE ...t bbb e bbbt bbbt e bbbt 5
2-2. RMITMPECIE @XPOIL ..ttt st b e ettt b et bbbt s b e bt b et bt bbb bt ne b et 6
2-3. RMI @XPIICIE EXPOIL.....eviiiteieieete ettt sttt st s b e ettt b et bbb b e b e se b et b et bbbt sb bt ne b et 7
2-4. INDI DASIC EXAMPIE......eeieieiete bbbttt bbbt b et bbbt e e 10
3-1. RMI JRMPcarol.properties 1SRN 16
3-2. RMI lIOP carol.properties 1= PSR 17
3-3. JEREMIBEONAthan. XMl fil@ ...ttt st sae s 18
3-4. JEREMIEcarol.properties 1= SRS 19
3-5. LMI carol.properties 1= SRRSO 19
3-6. MULTI RMI carol.properties LS 1= SRRSO 20

Chapter 1. Introduction

1.1. About this manual

This manual was meant as a tutorial that can give you an introduction on how to use the CAROL RMI IIOP
library.

Note: Please note that this manual is designed to be used along with, not instead of, the RMI IIOP Tutorial
(http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/tutorial.html) and the JNDI tutorial
(http://java.sun.com/products/jndi/tutorial). There are a number of cases where it is much easier to refer to
the rather RMI 1IOP and JNDI tutorials than trying to rehash what it already covers.

This manual will teach you the general way to use the CAROL abstraction in order to manipulate remote object
on multi-RMI architecture. You will learn in particulars:

« The CAROL configuration rules for each RMI architecture,

the RMI IIOP general mechanism and programming rules,
- the JNDI general mechanism and programming rules,

« the Extended RMI JRMP mechanisms for implicit context propagation.

1.2. What is CAROL?

CAROL is a library allowing to use different RMI implementations. Thanks to CAROL, a Java server
application can be independent of RMI implementations and accessible simultaneously by RMI clients using
different RMI implementations. CAROL allows to design, implement, compile, package, deploy, and execute
distributed applications compliant with the RMI model. CAROL provide tools for accessing to a Java server, in
the same time, through the ObjectWeb JEREMIE RMI like RPC, through the JAVA standard RMI RPC and
through a CORBA RPC (via a RMI lIOP). Therefore, a Java server using CAROL manipulates remote object
only through RMI IIOP API classes and interfaces and never through CAROL classes or interface. So, CAROL
allows a Java server to be independent, by configuration, of the RMI architecture and provider.

The CAROL library basically provides support (CAROL basic SPIs) for the following RMI implementations:

. ObjectWeb JEREMIE (JRMP 1.1 and 1.2)
« Sun RMI JRMP (JRMP 1.1 and 1.2)

+ SunJDK 1.4 RMI IIOP

« CAROL LMI implementation

« CAROL CMI implementation

Chapter 1. Introduction

The CAROL library provides also non standard tools for RMI and JNDI architecture:

« a set of mechanisms for implicit context propagation in RMI JRMP,
- a set of mechanisms for Referenceable and Reference objects binding in a CosNaming.
- a set of mechanisms for RMI Registry, Jeremie Registry and CosNaming management.

Please see thHgon standard CAROL tools and mechanisthapter for more information.

1.3. Why CAROL?

CAROL is basically design to be a solution for implementing J2EE specifications on interoperability and
implicit context propagation. This library allows a J2EE server to be accessible, at the same time, by IIOP and
JRMP clients.

Chapter 2. CAROL overview

2.1. Presentation of the CAROL library

This section describes the general CAROL architecture and development rules. CAROL is based on an API/SPI
mechanism for export and registering RMI objects. This section describes which API are used by CAROL and
how to develop a server using this API. This section is supposed to be used with the RMI [IOP tutorial
(http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/tutorial.html) and the JNDI tutorial
(http://java.sun.com/products/jndi/tutorial).

2.2. CAROL standard architecture

2.2.1. CAROL architecture

CAROL is behind the standard RMI IIOP and JNDI API. A Java server using CAROL have to be a standard
RMI [IOP server and use only the JNDI interfaces for name service connections (see the Rettib@P
Development ruleand theJNDI Development rulesection). A standard RMI [IOP server is required to migrate
to the CAROL library without any code modification. Using CAROL library, in this case, is only a configuration
manipulation. CAROL simulates a standard RMI IIOP PortableRemoteObjectDelegate and a standard JNDI
context factory for interceptions and manipulations of the RPC and naming mechanism. CAROL allows any
RMI 1IOP remote object to be manipulate by a server on different RMI architectures and different naming
services, in the same time, without code modification on the server or on the client side.

CAROL uses the standard RMI 1IOP PortableRemoteObject to abstract the export mechanism. The figure 2.1
shows that the server only manipulate remote object via the RMI IIOP PortableRemoteObject and this
PortableRemoteObject is a delegation to a "configured by system properties" PortableRemoteObjectDelegate
class.

Chapter 2. CAROL overview

Figure 2-1. RMI [IOP mechanism

Server, Remote Object

HOP export, narrow, foStuh, connedt, unexport

1 RMI IIOP
FPortableRemoteObject Stub Uil
Defegation Defegation Defegation
P.R.O. Delegate Stub Delegate Util Delegate
javaxrmi COREL. Portabl e Remote Db jpot Class javaxrmi COREA. StubClass javaxrmi COREA. LKl Class
"""""""""""""""""""""""" T

ORB ORBSingleton

In fact, the CAROL remote object API is the standard RMI IIOP API. A Java server using CAROL is supposed
to use only the java.rmi.* and the javax.rmi.* classes and never to call directly the CAROL library classes.

The same mechanism is used for objects registering through JNDI: a CAROL server is supposed to use only the
JNDI interface to manipulate and contact the remote object name service. So, with INDI, a CAROL server use
the InitialContext mechanism, for (un)registering object, and this InitialContext delegate the registering to a
context object build by a factory "configured by system properties”. In the figure 2.2 we can see that the server
only manipulates remote object registered via the JNDI InitialContext API.

Chapter 2. CAROL overview

Figure 2-2. JNDI mechanism

bind

CustominitalContext

New [nitiziContext?)

AP InitialContext : |:|

Server

bind

JNDI

-Dava. haring. factong intial== CustomFactan=

2.2.2. RMI IIOP development rules

This section describes the basic rules of RMI IIOP development. For more information, see the Sun entry for
RMI [IOP Documentatiorfhttp://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/index.html). This RMI IIOP quick
start guide is design for a 3 step development:

« Development of the RMI IIOP remote objects and development of the RMI server part

« Java and CAROL RMI IIOP objects compilation

- Deployment step in a distributed environment

The Java classes used in this section are:

+ java.rmi.Remote (http:/ljava.sun.com/j2se/1.4/docs/api/java/rmi/Remote.html)

» javax.rmi.PortableRemoteObject
(http://java.sun.com/j2se/1.4/docs/api/javax/rmi/PortableRemoteObject.html)

2.2.2.1. RMI 1IOP remote objects development step

A RMI IIOP remote object needs only to expose its remote methods in a Java interface exrading. This
is exactly the same development rules than in classical RMI JRMP. In the example 2-1, the remoteoobject
exposes its remote methag/Method() in the remote interfacEooRemotelnterface

Chapter 2. CAROL overview

Example 2-1. RMI basic example

/[The foo object is a remote object
import java.rmi.RemoteException;

/[The class foo implements only
/lthe FooRemotelnterface interface
public class Foo implement FooRemotelnterface {

/[This method is remote
public Integer myMethod() throws RemoteException{
return new Integer(0);

}
}

/[The foo remote interface
/lextends only the Remote interface
/land exposes the remote methods
import java.rmi.Remote;

import java.rmi.RemoteException;

public interface FooRemotelnterface extends Remote {

/[This method is remote
public Integer myMethod() throws RemoteException;

Note: The method myMethod() throws a RemoteException if an exceptions occurs in the remote method call.

2.2.2.2. RMI IIOP server development step

The RMI IIOP server has to manage remote objects. This section only describes the (un)export management of a
RMI IIOP remote object. Please see tH¢DI development rulesection for the remote object (un)registering
managment. One of the most important step in a remote object life cycle is the export step (and the opposite
unexport step). To Exporte a remote object means to prepare this object to receive remote call. RMI [IOP
abstracts the intricate CORBA implementation mechanism of this export with the API class

PortableRemoteObject . To Export a remote object is mandatory for remote call. There is two way for this

export:

- The implicit method: if the remote object class implementsftbigableRemoteObject class, this remote
object is automatically export in is creation time. In the example 2-2 the remote object is implicitly exported
by inheritance. In this case, the server only needs to construct the remote object to exported it.

Chapter 2. CAROL overview

Example 2-2. RMI implicit export

/IThe foo object is a remote object
import java.rmi.RemoteException;
import javax.rmi.PortableRemoteObject;

/IThe class foo extends PortableRemoteObject
/land implements the FooRemotelnterface interface
public class Foo extends PortableRemoteObject
implements FooRemotelnterface {

/[The constructor
public Foo() throws RemoteException {
super();

}

/[This method is remote

public Integer myMethod() throws RemoteException {
return new Integer(0);

}
}

/IThe foo remote object server
import java.rmi.RemoteException;
import org.objectweb.carol.util.configuration.CarolConfiguration;

public class Server {

/IThe main method of this server
public static void main(String [] args) {

try {
/linitialize carol

CarolConfiguration.init();

FooRemotelnterface myFoo = new Foo();
/I the object is automatically
/I exported on RMI IIOP
} catch (RemoteException e) {
/[Foo construction problem

}

The explicit method: if the remote object class do not implemenPthn@ableRemoteObject class, this
remote object has to be explicitly exported by the server.plibéic static void
exportObject(java.rmi.Remote) method inPortableRemoteObject class allow to do that. In the
example 2-3 the remote object is explicitly exported by the server.

Example 2-3. RMI explicit export

/IThe foo object is a remote object
import java.rmi.RemoteException;

/[The class foo implements
llonly the FooRemotelnterface interface
public class Foo implement FooRemotelnterface {

/[The constructor
public Foo() throws RemoteException {
super();

}

/[This method is remote

public Integer myMethod() throws RemoteException {
return new Integer(0);

}
}

/IThe foo remote object server

import java.rmi.RemoteException;

import javax.rmi.PortableRemoteObject;

import org.objectweb.carol.util.configuration.CarolConfiguration;

public class Server {

/[The main method of this server

public static void main(String [] args) {
try {

/linitialize carol

CarolConfiguration.init();

FooRemotelnterface myFoo = new Foo();
/IThe object is explicitly exported on RMI [IOP:
PortableRemoteObject.exportObject(myFoo);
} catch (RemoteException e) {
/[Foo construction problem

}

2.2.2.3. CAROL RMI IIOP compilation step

Chapter 2. CAROL overview

The compilation step is designed by Java and RMI. There is no particular compilation step in order to use
CAROL. Therefore, you need to compile Java classes and to compile stubs and skeletons with each RMI

provider compiler for each RMI architecture (IOP, JRMP, JEREMIE ...).

Chapter 2. CAROL overview

2.2.2.4. CAROL RMI lIOP server deployment step

The 3 points below are mandatory for CAROL server deploying on multi-RMI architecture:

« There is 2 ways for carol initialization: first, the best way, is to call the
org.objectweb.carol.util.configuration.CarolConfiguration.init() method. The second way is to set the 2 system
property javax.rmi.CORBA.PortableRemoteObjectClass =org.objectweb.carol.rmi.multi.MultiPRODelegate
and java.naming.factory.initial =org.objectweb.carol.jndi.spi.MultiOrblInitialContextFactory in the server
JVM. This second method doesn’t allows to switch off carol features by configuration: The properties
carol.start.rmi=false and carol.start.jndi=false doesn’t work with this configuration method.

« Thecarol.properties file can be configured (see tBAROL Configuratiorchapter) and visible in the
JVM classpath.

« For each RMI architecture all remote objects stub and skeleton have to be visible in the classpath.

Note: For the moment, in CAROL library, there is 3 remote architectures available (CAROL SPI
implementation): IIOP, JRMP and JEREMIE. There is no, in those 3 architectures, stub/skeleton class
conflicts. For example, if my remote object is Foo with Fooltf remote interface:

« The stub/skel name for IIOP are: _Fooltf Stub / Foo_Tie
« The stub/skel name for JRMP are: Fooltf_Stub /Fooltf_Skel
« The stub/skel name for JEREMIE are: Fooltf_ OWStub /Fooltf_ OWSkel

And so there is no class name conflict, those 3 RMI architectures can be available in the same JVM. The
Java classes used in this section are:

 javax.naming.InitialContext (http://java.sun.com/j2se/1.4/docs/apif/javax/naming/InitialContext.html)
« org.objectweb.carol.rmi.jrmp.interceptor.JServerRequestinterceptor

« org.objectweb.carol.rmi.jrmp.interceptor.JServerRequestinfo

« org.objectweb.carol.rmi.jrmp.interceptor.JServiceContext

« org.objectweb.carol.rmi.jrmp.interceptor.JClientRequestinterceptor

« org.objectweb.carol.rmi.jrmp.interceptor.JClientRequestinfo

« org.objectweb.carol.rmi.jrmp.interceptor.Jinitializer

« org.objectweb.carol.rmi.jrmp.interceptor.Jinitinfo

« org.objectweb.carol.rmi.jrmp.interceptor.Protocollnterceptorlnitializer

« org.objectweb.carol.jndi.iiop.llIOPContextWrapperFactory

« org.objectweb.carol.jndi.iiop.llOPContextWrapper

Warning

But, be careful, there is stubs and/or skeletons class name conflicts for different providers of the same
RMI architecture. For example, this is not possible, with CAROL, to deploy a remote object on two RMI
provider with the same architecture (for example RMI JRMP 1.1 and RMI JRMP 1.2 or DAVID RMI
IIOP and SUN JDK 1.4 RMI IIOP) because there are a stubs and/or skeletons class name conflicts in
the server JVM.

Chapter 2. CAROL overview

2.2.3. INDI development rules

This section describes the basic INDI development rules. For more information, see the Sun 8B/ for
Documentatiorthttp://java.sun.com/products/jndi/1.2/javadoc/). This JNDI start guide is designed for a 2 steps
development:

- Development of the JNDI server part

« JNDI deployment step on a distributed environment

2.2.3.1. Development of the JNDI server part

For remote object access with CAROL, the first part is to develop and deploy RMI IIOP remote objects (see the
RMI 1IOP Development ruleshapter) on a Java server. The second part is to register those objects in one/many
name service through the standard JNDI Interface. For this, the server needs tolhitidtCantext object

and to register all remote objects in this context like in the Example 2-4:

Example 2-4. JNDI basic example

/[The foo remote object server

import java.rmi.RemoteException;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import org.objectweb.carol.util.configuration.CarolConfiguration;

public class Server {

/[The main method of this server

public static void main(String [] args) {
try {

/linitialize carol

CarolConfiguration.init();

/I the object is automatically
/I exported on RMI IIOP
FooRemotelnterface myFoo = new Foo();

/I now the server bind this object trough JNDI
/I with the name myobjectname

InitialContext ic = new InitialContext();
ic.rebind("myobjectname”, myFoo0)

} catch (RemoteException e) {
/[Foo construction problem

Jcatch (NamingException ne) {
/[Foo binding problem

}

10

Chapter 2. CAROL overview

Note: In this example, the server use a default IntialContext without configuration. You may want to
configure your server JNDI for each name service (registry, cosnaming ...). Please use only the CAROL
configuration to setup your multi JINDI name service. For this feature, a Java server, needs the CAROL JNDI
context factory (see the CAROL Configuration chapter).

2.2.3.2. INDI deployment step on a distributed environment

The 3 points below are mandatory for CAROL server deploying on multi name service architecture:
« The system property java.naming.factory.initial need to be instantiated to
org.objectweb.carol.jndi.spi.MultiOrbinitial ContextFactory in the server JVM.

« Thecarol.properties and thegndi.properties files need to be configured (see BAROL
Configurationchapter) and visible in the server JVM classpath.

- Each name service (registry, cosnaming, ...) can be launched in the distribute environment.

Warning

Be careful, the InitialContext need to be configured for CAROL with the system property
java.naming.factory.initial instantiated to

org.objectweb.carol.jndi.spi.MultiOrbinitialContextFactory . Every other properties
configured directly in the server InitialContext will be lost. The important point is to understand that the
IntialContext is an indirection to an other context, the CAROL one, which manage all the contexts
for each name service.

2.3. Non standards CAROL tools and mechanisms

2.3.1. Implicit context propagation with RMI JRMP

One of the non standard features (API) provided by CAROL is the possibility to instantiate, for a Java server, an
implicit context propagation. This API is very useful for security and transaction behavior. This APl is a
simplification of CORBA portable interceptor concept. Therefore, this feature use a server and client interceptor
with an initializer registering mechanism. This mechanism is pure Java without any CORBA classes connection
(only thertjar classes is needed). This mechanism works with 1.1 and 1.2 RMI version. This section explain
the way to build, register and use server and client interceptor through RMI JRMP.

11

Chapter 2. CAROL overview

2.3.1.1. CAROL RMI JRMP interceptors API

Implementing JRMP interceptors is very easy. A server interceptor only need to implements the

JServerRequestinterceptor interface and use thiServerRequestinfo interface to propagate a
JServiceContext . On the client side this is the same concept WitlientRequestinterceptor interface
andJClientRequestinfo interface. For propagation, a CAROL propagation context need only to be a

Serializable (or Externalizable) object and to implements the intesféeeiceContext

2.3.1.2. CAROL RMI JRMP Client interceptor

A JRMP client interceptor is a class implements dbgientRequestinterceptor . All the methods in this

class are executed in the same Thread than the client remote call. All JServiceContext registered in the
JClientRequestinfo (in the send_* methods) are send to the Server. All JServiceContext send by the server can
be found in the JClientRequestinfo (in the receive_* methods).

2.3.1.3. CAROL RMI JRMP Server interceptor

A JRMP server interceptor is a class implementsitherverRequestinterceptor . All the methods in this

class are executed in the same Thread than the server remote call. All JServiceContext registered in the
JServerRequestinfo (in the send_* methods) are send to the Client. All JServiceContext send by the client can be
found in the JServerRequestinfo (in the receive_* methods).

2.3.1.4. CAROL RMI JRMP JServiceContext

For each call,A CAROL JServiceContext can be find with is context_id. A JServiceContext is just a Serializable
Object. For performance reason, it can be interesting to decrease the Context size by using a Externalizable
mechanism. Carol provide a tool (org.objectweb.carol .util.perfs .CarolJRMPPerfomanceHelper) with static
methods to calculate the Serializable size of a Serializable object.

2.3.1.5. CAROL RMI JRMP interceptor registering

To register interceptor in CAROL is very easy. A server/client initializer implement3itit@lizer and use
the pre_init and post_init methods for registering server and client interceptors thiiaitigifo interface.

For JVM CAROL JRMP initialization, use the org.objectweb.Portablelnterceptor.JRMPInitializerClass. XXX
property where XXX is the Jinitializer full classname (for example pass
-Dorg.objectweb.Portablelnterceptor.JRMPInitializerClass
.org.objectweb.carol.rmi.jrmp.interceptor.Protocollnterceptorlnitializer register into CAROL the
Protocolinterceptorlnitializer class). Register more than one Jinitializer is possible with CAROL
(The Protocolinterceptorinitializer is mandatory for CAROL multi protocol management).

12

Chapter 2. CAROL overview

2.3.2. Referenceable an Reference binding through a RMI IIOP
CosNaming

The second non standard CAROL features is a way to register Referenceable/Reference and Serializable objects
in a CosNaming through JNDI. The IIOP InitialContext delivered for IIOP wrap the Referenceable/Reference or
Serializable object into a standard remote object. This remote object is exported into the JNDI context bind(or
rebind) method and unexported into the JNDI context unbind method. CAROL use automatically, on the server
side, this mechanism with a standard CAROL IIOP configuration (you need to call the IIOP protocol ’iiop’ in the
carol.properties file see theaCAROL configuratiorchapter).

For a JNDI java RMI IIOP client you can use thePContextWrapperFactory by setting the
-Djava.naming.factory.initial jvm properties (with the full name of the factory). This factory builds a JNDI

Context based on ygudi.properties uses the wrapping mechanism. For other client (Non JNDI), you can
re-build manually the Referenceable or Serializable object for the CosNaming wrapper remote object (see inside
thellOPContextWrapper class for a detailed mechanism. A CAROL server can be also an IIOP CAROL

client without any extra configuration than in a classical IOP CAROL server.

2.3.3. Name Service Management

The third non standard CAROL features is a way to start and stop automatically RMI Name Services. This
mechanism is based on a API/SPI system. The API is represented by the
org.objectweb.carol.jndi.ns.NameServiceManager . This class provide static methods for start and

stop configured name services for each protocol. A CAROL configuration property can be set inside the
carol.properties for automatically start all non started and configured Name Services (see the configuration
chapter). Carol provide also three Name Service SPI implementation for RMI Registry, Jeremie Registry and
CosNaming management. This mechanism start those Name Services on the port defined by the jndi url property.

2.4. Getting started conclusion

CAROL is only configured by system properties and files. There is no intrusion of CAROL classes in a standard
RMI [IOP server. The server is RMI architecture independent but work simultaneously on different RMI
architectures. The next chapter explains the general rules for this configuration.

13

Chapter 3. CAROL Configuration

3.1. Presentation of the CAROL library configuration

This section describes the configuration rules for different RMI and name services managed by CAROL.
Currently, CAROL is distributed with tools and classes that allow to use:

+ ObjectWeb/Jonathan JEREMIE (http://objectweb.org/jonathan) RMI JRMP like

« Sun RMI JRMP (http://java.sun.com/j2se/1.4/docs/guide/rmi/index.html) (version 1.1 and 1.2)
« Sun RMI IIOP (>JDK 1.4) (http://java.sun.com/j2se/1.4/docs/guide/idl/index.html)

« Local Method Invocation (LMI) for embedded server

CAROL allows to configure a remote (or local) Java server to be accessible by one,two or three of those RMI
architectures, in the same time, by configuration.

3.2. CAROL configuration

3.2.1. General configuration files

CAROL configuration is based on three properties files. danel-defaults.properties file, the

carol.properties file and thgndi.properties file. Thecarol-defaults.properties file is

mandatory to configure CAROL. This file is embedded in the carol jar file and the CAROL user is not suppose to
modify those defaults properties. Carol load first this default file properties and erase all configuration property
with the property find in the jndi file configuration and (after) with the property find in the carol file

configuration. So, the only important file for the CAROL user isd¢hel-defaults.properties . We are

going to describe, in the next section, only the content of this file.

Note: If there is an (rpc-)URL property in the jndi.properties , the RMI name of the url is use instead of the
carol-defaults.properties configured one (jrmp). By default, in the carol.properties , ho configuration
is needed.

The configuration described below only use thel.properties file. Do not forget that the JNDI
configuration (of one of the activated protocols) can be set insidiadhgroperties file.

3.2.2. General configuration rules for all RMI and JNDI architectures

The carol.properties file is a standard Java properties file. All properties, in this file, follow the rules below
(we suppose that XXX is the RMI name like ’jrmp’, "iiop’,jeremie’, cmi’ or 'Imi’. For all those defaults
provided RMI protocol, please use those names.

14

Chapter 3. CAROL Configuration

Table 3-1. Carol general properties

Property name Property value Description Required

carol.protocols ‘XXX protocol-name’, Activated protocols nameNo, default: jrmp
'YYY protocol-name’ The first (XXX) is the
default protocol for
CAROL. This default
protocol is used by the
server when there is no
entrant protocol

carol.start.ns 'true’, 'false’ CAROL will automatically No, default: false
start all non started and
configured Name Services
if this property is set to
‘true’

carol.start.rmi 'true’, 'false’ The CAROL PortableRe- [No, default: true
moteObjectDelegate
mechanism will be
deactivated if this property
is set to 'false’

carol.start.jndi 'true’, 'false’ The CAROL No, default: true
InitialContextFactory
mechanism will be

deactivated if this property
is set to 'false’

carol.jvm.’property-name’[property-value’ All extra JVM properties [No
for RMI (directly pass to
the JVM with 'name’ name
and 'value’ value without
any verifications). This is
equivalent to put
-D’property-
name’="property-value’ in
the Java JVM option
carol.jndi.’property-name’[property-value’ All INDI properties for all No
RMI (directly pass to JND
with 'name’ name and
'value’ value without any
verifications). This is
equivalent to put 'property
name’'="property-value’ in
the JNDI properties file

Table 3-2. Carol RMI XXX specifics properties

Property name Property value Description Required

15

Chapter 3. CAROL Configuration

Property name Property value Description Required
carol. XXX .PortableRemg=XXX portable remote The portable remote obje@tlo, There is a default for
teObjectClass object class name’ delegate class name for tteach RMI provided by carpl

RMI (CAROL provide
implementation of those
classes for RMI
JRMP,JEREMIE, LMI and
CMI, see below)

carol. XXX 'XXX carol Name ServiceThe Name Service class No, this property is only
.NameServiceClass class name’ name for this RMI (CAROlnecessary for automatically
provide implementation ofstart a Name Service for
those classes for RMI this protocol and there is a
JRMP, RMI [IOP and default for each RMI
JEREMIE, see below) [provided by carol

carol. XXX.url ‘property-value’ JNDI url value. This No, there is defaults for
‘property-name’ property is equivalent to theach RMI provided by carpl
indi java.naming.

provider.url property

carol.XXX.context. factoryproperty-value’ JNDI initial context factoryNo, there is defaults for
‘property-name’ class name. This propertyéach RMI provided by
equivalent to the jndi carol.
java.naming. factory.initia
property
carol. XXX. interceptors [interceptor 1 Interceptors initializers |No

name’,interceptor 2 namehames

3.2.3. RMI JRMP configuration

One of the SPI personality provided by CAROL is the standard Sun RMI JRMP. This personality can be used
with all standard RMI JRMP features. CAROL allow implicit context propagation with RMI JRMP (like a
transactional or a security context) via a RMI [IOP Interceptors like mechanism. The example below explains the
general way for CAROL RMI JRMP configuration:

Example 3-1. RMI JRMP carol.properties file.

activated protocols
carol.protocols=jrmp

Example of Interceptors initializer class

carol.jrmp.interceptors=
org.objectweb.carol.jtests.conform.interceptor.jrmp.Initializer

In the file above we see a JRMP standard configuration, note that nothing is needed except custom interceptors
configuration. You can customized your configuration with:

16

Table 3-3. Carol RMI JRM

P specifics properties

Chapter 3. CAROL Configuration

Property name

Property value

Description

Required

carol.jrmp.

'JRMP portable remote

PortableRemoteObjectCladgect class name’

JRMP implementation of

No, there is a default for

the Portable Remote ObjetRMP

class name

carol.jrmp.
NameServiceClass

'JRMP carol Name Servic
class name’

dRMP implementation of
the Carol name service

No, there is a default for
JRMP based on the regist

carol.jvm.jrmp.
server.portnumber

'jrmp port number’

All jndi properties needed
for XXX name service
configuration. This is
equivalent to put 'property
name’="property-value’ in
the jndi.properties file

No, there is a default for
JRMP (0)

carol.jvm.org. objectweb.
Portablelnterceptor.
JRMPInitializerClass. 'jrm
initializer name’

" (empty)

Initializer for JRMP
inteceptors

No, there is defaults for
JRMP. If there is a multi
protocol configuration,
CAROL automaticaly put
interceptors for multi
protocol management. Th
property is equivalent, for
irmp, to the carol.jrmp
.interceptors one

3.2.4. RMI lIIOP configuration

ry

is

One of the SPI personality provided by CAROL is the standard Sun RMI IIOP. This personality can be used with
all standard RMI 11OP features. CAROL allow implicit context propagation with RMI [IOP (like a transactional

or a security context) via a RMI lIOP Interceptors mechanism. The example below explains the general way for
CAROL RMI IIOP configuration:

Example 3-2. RMI IIOP carol.properties

activated protocols
carol.protocols=iiop

file.

Example of Interceptors initializer class (class name with package)

carol.iiop.interceptors=

org.objectweb.carol.jtests.conform.interceptor.iiop.l|OPInitializer

In the file above we see a IIOP standard configuration, note that nothing is needed except custom interceptors
configuration. You can customized your configuration with:

17

Table 3-4. Carol RMI IIOP specifics properties

Chapter 3. CAROL Configuration

Property name

Property value

Description

Required

carol.iiop.

'lIOP portable remote

PortableRemoteObjectCladgect class name’

IIOP implementation of th
Portable Remote Object
class name

®&No, there is a default for
11OP

carol.iiop.
NameServiceClass

'IIOP carol Name Service
class name’

IIOP implementation of th
Carol name service

®&o, there is a default for
IIOP based on the
tnameserv CosNaming

carol.jvm.org.objectweb.
Portablelnterceptor.
IIOPInitializerClass. 'iiop
initializer name’

" (empty)

Initializer for IOP
inteceptors

No, there is defaults for
IIOP. If there is a multi
protocol configuration,
CAROL automaticaly put
interceptors for multi
protocol management. Th
property is equivalent, for
iiop, to the carol.iiop
.interceptors one

is

3.2.5. RMI JEREMIE personality configuration

One of the SPI personality available/provided by CAROL is the ObjectWeb Jonathan JEREMIE personality.
This personality can be used with all standard JEREMIE features. CAROL also allow JEREMIE to propagate
implicitly a context (like a transactionnal or a security context) via a JEREMIE handler mechanism. This section
explains the general way for CAROL JEREMIE configuration in the two jonathan.xml and carol.properties files:

Example 3-3. JEREMIE jonathan.xml

<?xml version="1.0"?>

file

<IDOCTYPE Configuration SYSTEM "configuration.dtd">

<CONFIGURATION>

<ELEM name="DavidCarolHandler">
<ATOM class="org.objectweb.carol.rmi.jonathan.david.DavidCarolHandler"/>

</ELEM>

<ELEM name="david/orbs/iiop/services_handler_context/1534">
<ALIAS name="/DavidCarolHandler" />

</ELEM>

<ELEM name="JeremieCarolHandler">

<ATOM

class="org.objectweb.carol.rmi.jonathan.jeremie.JeremieCarolHandler"/>

</ELEM>

<ELEM name="jeremie/service_handler_context/1535">
<ALIAS name="/JeremieCarolHandler" />

</ELEM>

<ELEM name="jeremie/stub_factories/std">
<CONFIGURATION>
<ELEM name="Stub name extension">
<PROPERTY type="String" value="OW"/>

</ELEM>

</CONFIGURATION>

18

Chapter 3. CAROL Configuration

</ELEM>
</CONFIGURATION>

Inside The above file, JEREMIE is configured to use the OW extension for stub/skeleton and to use the CAROL
protocol handler.

Example 3-4. JEREMIE carol.properties file

activated protocols
carol.protocols=jeremie

In the file above we see a JEREMIE standard configuration, note that nothing is needed except custom
interceptors configuration. You can customized your configuration with:

Table 3-5. Carol RMI JEREMIE specifics properties

Property name Property value Description Required
carol.jeremie. 'JEREMIE portable remotdEREMIE implementationNo, there is a default for
PortableRemoteObjectCladgect class name’ of the Portable Remote JEREMIE
Object class name
carol.jeremie. 'JEREMIE carol Name |JEREMIE implementationNo, there is a default for
NameServiceClass Service class name’ of the Carol name serviceJEREMIE based on the
ieremie registry

3.2.6. LMI personality configuration

One of the SPI personality available/provided by CAROL is the CAROL LMI personality. This personality is
for, an only for, local methods call. With this personality, jndi register (and return) local java references. The
Referenceable mechanism is also provide in LMI context. For the moment, LMI is only tested in a non multi
protocol environment.

Note: This implementation is not conform to RMI specifications: There is no serialization and the server
"remote” call is executed is the client thread. This is a fake implementation, faster than standard RMI but not
conform.

Example 3-5. LMI carol.properties file

activated protocols
carol.protocols=Imi

19

Chapter 3. CAROL Configuration

In the file above we see a LMI standard configuration, note that nothing is needed. You can customized your
configuration with:

Table 3-6. Carol RMI LMI specifics properties

Property name Property value Description Required
carol.Imi. 'LMI portable remote LMI implementation of theNo, there is a default for
PortableRemoteObjectCladgect class name’ Portable Remote Object [LMI
class name
carol.Imi. 'LMI carol Name Service [LMIimplementation of theNo, there is a default for
NameServiceClass class name’ Carol name service (fake)LMI based on a fake
registry service

3.2.7. MULTI RMI configuration

The example below describes a general RMI configuration with 3 RMI architectures configured and 2 RMI
activated (RMI IIOP and JEREMIE) and with RMI [IOP default:

Example 3-6. MULTI RMI carol.properties s file

carol properties

(note that for this configuration only this
property is needed)
carol.protocols=iiop,jeremie

start or not all non started name services
carol.start.ns=true

use carol rmi (Multi PORD)
carol.start.rmi=true

use carol naming (Multi JNDI)
carol.start.jndi=true

HHHHHHH AR R A
Configuration for Rmi JRMP
HHHHHHH A R

portable remote object delegate class
carol.rmi.PortableRemoteObjectClass
=org.objectweb.carol.rmi.multi.JrmpPRODelegate

Name service class for this protocol
carol.rmi.NameServiceClass

=org.objectweb.carol.jndi.ns.JRMPRegistry

here, for jndi we take the jndi.properties but
we can make some :

20

configuration for rmi jrmp jndi

java.naming.factory.initial property
carol.jrmp.context.factory
=com.sun.jndi.rmi.registry.RegistryContextFactory
java.naming.provider.url property

carol.jrmp.url

=rmi://localhost:1099

port number
carol.jvm.jrmp.server.portnumber=10

T R PP T
Configuration for Rmi IOP
HHH T R T

portable remote object delegate class for this protocol
carol.iiop.PortableRemoteObjectClass
=com.sun.corba.se.internal.javax.rmi.PortableRemoteObject

Name service class for this protocol
carol.iiop.NameServiceClass
=org.objectweb.carol.jndi.ns.IIOPCosNaming

configuration for rmi jrmp jndi

java.naming.factory.initial property

carol.iiop.context.factory
=org.objectweb.carol.jndi.iiop.lIOPReferenceContextWrapperFactory
java.naming.provider.url property

carol.iiop.url

=iiop://localhost:2000

HHEHHH R R R
Configuration for JEREMIE
T

portable remote object delegate class for this protocol
carol.jeremie.PortableRemoteObjectClass
=org.objectweb.carol.rmi.multi.JeremiePRODelegate

Name service class for this protocol
carol.jeremie.NameServiceClass
=org.objectweb.carol.jndi.ns.JeremieRegistry

here, for jndi we take the jndi.properties but we can make some :
configuration for rmi jrmp jndi

java.naming.factory.initial property

carol.jeremie.context.factory
=org.objectweb.jeremie.libs.services.registry.jndi.JRMIInitialContextFactory
java.naming.provider.url property

carol.jeremie.url

=jrmi://localhost:2001

HHEHHE R S
Configuration for CMI
R R R R

portable remote object delegate class for this protocol

Chapter 3. CAROL Configuration

21

carol.cmi.PortableRemoteObjectClass
=org.objectweb.carol.rmi.multi. CmiPRODelegate

Name service class for this protocol
carol.cmi.NameServiceClass
=org.objectweb.carol.jndi.ns.CmiRegistry

here, for jndi we take the jndi.properties but we can make some :

configuration for rmi jrmp jndi

java.naming.factory.initial property
carol.cmi.context.factory
=org.objectweb.carol.cmi.jndi.CmilnitialContextFactory

java.naming.provider.url property
carol.cmi.url
=cmi://localhost:2002

HHH T R AT
Configuration for LMI
BRI T

portable remote object delegate class for this protocol
carol.Imi.PortableRemoteObjectClass
=org.objectweb.carol.rmi.multi.LmiPRODelegate

Name service class for this protocol
carol.Imi.NameServiceClass
=org.objectweb.carol.jndi.ns.LmiRegistry

here, for jndi we take the jndi.properties but we can make some :

configuration for rmi jrmp jndi

java.naming.factory.initial property
carol.Imi.context.initial
=org.objectweb.carol.jndi.Imi.LmilnitialContextFactory

java.naming.provider.url property
(only for carol, no importance)
carol.Imi.url

=Imi://nohost:0

HHIH R T
Configuration for Interceptor
BRI

xtra properties for the jvm (only in use in the multi protocol case)

Protocol Interceptors initializer class
carol.jrmp.interceptors=
org.objectweb.carol.interceptor.myJRMPInterceptorlnitializer

Protocol Interceptors initializer class
carol.iiop.interceptors=
.org.objectweb.carol.interceptor.myllOPInterceptorinitializer

HHIH T R AT
Configuration for Global JNDI
BRI

Chapter 3. CAROL Configuration

22

note that all other jndi properties than
url and context factory can be found in
the jndi.properties file or in the jvm

(like this one)
carol.jndi.java.naming.factory.url.pkgs
=org.objectweb.carol.naming

Chapter 3. CAROL Configuration

23

Chapter 4. CAROL requirements

This chapter describe the system requirements for CAROL.

Web sites index

General CAROL requirements

Java environment
A CAROL Java server need a JDK 1.2 or greater
A CAROL Java server need tharol.jar file in it's classpath

CAROL RMI JRMP requirements

Server Environement
A CAROL RMI JRMP Java server need a JDK 1.2 or greater
Client Environement
A CAROL RMI JRMP Java client need a JDK 1.2 or greater
A CAROL RMI JRMP Java client need tharol.jar file in it's classpath

CAROL RMI lIOP requirements

Server Environement
A CAROL RMI IIOP Java server need a JDK 1.4 or a 2.6 CORBA with RMI [IOP
Client Environement
A CAROL IIOP client need a CORBA 2.6
A CAROL RMI IIOP Java client need a JDK 1.4 or a 2.6 CORBA with RMI [IOP anddfel.jar file in it's classpath

CAROL JEREMIE requirements

Server Environement

A CAROL JEREMIE Java server need a JDK 1.2 and a Jonathan 3.0 alphal0 or greater
Client Environement

A CAROL JEREMIE Java client need a JDK 1.2 and a Jonathan 3.0 alphal0 or greater

24

Chapter 5. Links and Reference

Web site list and book reference

Web sites index

ObjectWeb web sites

ObjectWeb

ObjectWeb main web site
CAROL

CAROL ObjectWeb web site
JONATHAN

JONATHAN ObjectWeb web site
Monolog

Monolog ObjectWeb web site

SUN web sites

Java Sun
Java Sun main web site
JDK 1.4
Java JDK 1.4 API
RMI
RMI documentation and tutorial web site
RMI 1IOP
RMI HIOP documentation and tutorial web site

OMG web sites

OMG
OMG main web site
CORBA web page
CORBA web page
Portablelnterceptor
Portablelnterceptor documentation

25

Appendix A. Licence

This document is released under Free Documentation licence; the terms of this licence are detailed below.

A.1l. Free Documentation Licence

GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative

works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;

it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The "Document”, below, refers to any
such manual or work. Any member of the public is a licensee, and is
addressed as "you".

26

Appendix A. Licence

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly

within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding

them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the

general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or

for automatic translation to a variety of formats suitable for input

to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is
not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain

ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only

by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the

machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself,

plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

27

Appendix A. Licence

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies

to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further

copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100,
and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover

Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify

you as the publisher of these copies. The front cover must present

the full title with all words of the title equally prominent and

visible. You may add other material on the covers in addition.

Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated

as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit

legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the
general network-using public has access to download anonymously at no
charge using public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this

Transparent copy will remain thus accessible at the stated location

until at least one year after the last time you distribute an Opaque

copy (directly or through your agents or retailers) of that edition to

the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give

28

Appendix A. Licence

them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release

the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution

and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to
it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications",
preserve the section’s title, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers

29

or the equivalent are not considered part of the section titles.
M. Delete any section entitled "Endorsements”. Such a section
may not be included in the Modified Version.
N. Do not retitle any existing section as "Endorsements"
or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or

appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the

list of Invariant Sections in the Modified Version'’s license notice.

These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list

of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or

by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified

versions, provided that you include in the combination all of the

Invariant Sections of all of the original documents, unmodified, and

list them all as Invariant Sections of your combined work in its

license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of

Invariant Sections in the license notice of the combined work.

Appendix A. Licence

30

Appendix A. Licence

In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications”. You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in

the collection, provided that you follow the rules of this License for

verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all

other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they

are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these

copies of the Document, then if the Document is less than one quarter
of the entire aggregate, the Document’s Cover Texts may be placed on
covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the
original English version of this License. In case of a disagreement
between the translation and the original English version of this
License, the original English version will prevail.

31

Appendix A. Licence

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to

copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,

parties who have received copies, or rights, from you under this

License will not have their licenses terminated so long as such

parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions

of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns. See
http:///mww.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.

If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or

of any later version that has been published (not as a draft) by the

Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections"
instead of saying which ones are invariant. If you have no
Front-Cover Texts, write "no Front-Cover Texts" instead of
"Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we

32

Appendix A. Licence
recommend releasing these examples in parallel under your choice of

free software license, such as the GNU General Public License,
to permit their use in free software.

33

Glossary

RMI

(Remote Method Invocation) This is the standard specifications of the Java RPC.

RPC

(Remote Procedure Call) all remote method call protocol is a RPC.

JVM

(Java Virtual Machine) The Java virtual machine.

JDK

(Java Development Kit) A set a Java tools (compiler, jvm, library ...) for Java programs development.

API

(Application Programming Interface) Interfaces allowing to use library in programs.

SPI

(Service Provider Interface) Interface for provider library plugging in an other library.

JNDI

(Java Naming Directory Interface) Standard API/SPI for J2EE naming interface .

OMG

(Object Management Group) Industrial group for computer standard specifications.

CORBA

(Common Object Request Broker Architecture) OMG RPC specification.

34

Glossary

[IOP

(Inter-operable Internet Object Protocol) CORBA RPC standard protocol on TCP/IP

JRMP

(Java Remote Method Protocol)Java RMI standard protocol

35

