Getting Started with Celtix

Table of Contents

OVBIVIBW. ...ttt et e e ettt e+ 4o ettt 4o e oo R b e et e e e e sb e et e e e e e nnbe e e e e e e annneeeeeeaas 1
Setting Up YOUr ENVIFONMENT..........oiiii e 1
Setting the _HOME VAlTADIES...............oocueeeiiieeeeeeee ettt e a e 1
Setting the PATH VAIIGDIE.ooeeeeeeeeee ettt ettt e e snnea e 2
Setting the CLASSPATH VaAl@DIE.............co...eeeeeeeeeeeeeeeeeeeeee et e ea e e e e e e e 2
Using a Script to Set Up the SHhell ENVIFONMENL................cceeeeeiieeeeeeie ettt eea e e sea e essaaeenenes 2
Celtix Development ENVIFONMENT..........ooooiiiiir s 3
USING CEItIX Wt ECHDSE.......cc.eeeeeeeeee ettt ettt e et e e et e e e e e e e 3
USING CEItIX WIR ANttt e et e e e e e e et e e e et a e e et e e e e nanes 4
Directory Structure of @ CeltiX Project...........oooveiimiiiieieeeee e 5
Writing a SOAP/HTTP Client and Server with CeltiX...........oiiee 5
Generating Java Code for @ WSDL CONIIACH.............occueee et 7
Browsing the Generated COUE.cooo ettt a e e et e e e 7
IMPIEMENTING TNE SEIVANL.........oooo ettt e e e e e et e e e e e e e e eaaaee s 7
WIItING the SEIVEIr MaINIINE.ooeeeeeeee ettt ettt et et e e et e e ettt e e e st aeesnasnaaeannnnnesean 8
WHItING the ClENTE MAINIINE................c...eeeeeeeeeeeeeeeeeeeeeee ettt ettt e e e e e ettt e e e e e e e e et aaaaaeaas 8
Running the Client @and SErVer..............euiiii s 9
Running Celtix applications directly from the command-line..................cccccouiuiei oo 9
Running Celtix appliCations USING ANL......... .ottt e et e e et e e e eaane 10
Overview

This article shows you how to get started with Celtix. This includes showing you how to set up your development
environment and build and run a basic SOAP/HTTP client and server. For information on how to install Celtix,
see The Celtix Installation Guide, available from the Celtix website,
http://forge.objectweb.org/projects/celtix/.

This document was written for Celtix Milestone 3; as Celtix matures future versions may deviate from this the
material covered in this document. The Celtix team will endeavor to keep this document as up-to-date as
possible.

Setting up Your Environment

Celtix should always be run from an appropriately configured shell. To configure your shell you need to do the
following:

1. Set your c1asspaTH to pick-up the correct version of the JDK and the correct versions of the Celtix JAR
files.

2. Set your paTH to ensure you are using the correct Java compilers and the correct version of the Celtix
tools.

3. If you are using Ant as a build system, then you will need to pick up the correct version of Ant as well.

Setting the HOME Variables

Many open-source projects follow the useful convention of having an _roME environment variable to describe
the location of the project installation on the file system; when using Celtix you will want to set Java HOME,
CELTIX HOME and ANT HOME appropriately. The cELTIx HOME variable should be set to the root of your Celtix

Setting up Your Environment:Setting the _HOME Variables
installation.

Setting the PATH Variable

To ensure that you pick up the correct version of the Java compiler, add the directory Java HOME/bin to the
PATH environment variable. Running java -version at the prompt will verify that you are picking up the correct
version of Java; for Celtix, you should be using JDK 1.5.0 or higher.

To pick up the Celtix tools add the directory cELTIx HOME/bin to the paTH environment variable. This ensures
that you will use the Celtix code generation tools like wsd12java and java2wsdl.

Setting the CLASSPATH Variable

To ensure that you are using the correct version of the Celtix classes, you should add
CELTIX HOME/lib/celtix.jar and CELTIX HOME/etc to the CLASSPATH.

If you wish to use Ant, then add ANT HOME/bin to the CLASSPATH.

Using a Script to Set Up the Shell Environment

Rather than setting these variables for every shell, consider using a setenvs script to this for you. An example
script, setenvs.bat, for use with Windows, is shown below in Codesnap 1.

Setting up Your Environment:Using a Script to Set Up the Shell Environment

@echo off

REM Ensure that the values for the following variables are
REM set correctly for your installation.

set CELTIX HOME=c:\bin\celtix-ms3\celtix
set JAVA HOME=c:\bin\jdkl.5.0
set ANT HOME=c:\bin\apache-ant-1.6.2

REM You should not have to modify anything below this point.

echo.

echo Take note of the following important variables - are they correct for your
echo system? If not then edit this file and correct them!

echo.

echo CELTIX HOME = $CELTIX HOMES%

echo JAVA HOME = %JAVA HOMES

echo ANT HOME = %ANT HOME$

echo.

set PATH=%CELTIX HOME$%\bin;$PATHS
set PATH=%JAVA HOMES$\bin;$PATHS
set PATH=%ANT HOME%\bin; $PATHS

set CELTIX_JAR:%CELTIX_HOME%\lib\celtix.jar

if not exist 3%CELTIX JAR% (
REM Assume it's a source (rather than a binary) distribution of Celtix
set CELTIX JAR=%CELTIX HOME%\build\lib\celtix.jar

)

set CLASSPATH=%CELTIX JAR%;3CLASSPATHS

title Celtix Shell

Codesnap 1: setenvs.bat

Celtix Development Environment

Developing applications with Celtix code is no different from developing with any other Java library or API. You
just need to set the cLasspaTH appropriately and begin coding. You can develop with your favorite editor, IDE
(Integrated Development Environment) or build system. In this section, we recommend two open-source tools
used extensively by developers of Celtix:

- Eclipse

« Ant

Using Celtix with Eclipse

Eclipse (available from http://www.eclipse.org) provides an excellent Java IDE for Celtix development. We
recommend using Eclipse 3.1.1 or higher, as Celtix requires support for Java 1.5 language constructs that is not
available in earlier versions of Eclipse.

Eclipse provides a way to store “User Libraries”; collections of JARs and classes that can be reused across
projects. Create a user library for Celtix by navigating to the “User Libraries” dialog box in Eclipse.

Celtix Development Environment:Using Celtix with Eclipse

Window — Preferences — Java — Build Path — User Libraries

Add the file ce1tix.jar to the user library. If you are using a binary distribution of Celtix, this can be found in
CELTIX HOME/lib/celtix.jar; if you are using a source distribution of Celtix, it can be found in
CELTIX HOME/build/lib/celtix.jar.

At the time of writing, Eclipse is unable to pickup the manifest classpath presentin celtix.jar. As a result you
will also have to explicitly add all the JAR files for JAX-WS to your user library. For a binary distribution, these
files will reside under CELTIX HOME/lib/jaxws-ri/20051104/1ib. In a source distribution, they can be found
under CELTIX HOME/tools/jaxws-ri/20051104/1ib.

After you have created a user library for Celtix, you can add it to the Java project build path and Eclipse will auto-
compile your code.

Using Celtix with Ant

Many Java developers will be familiar with the Ant build system, downloaded from http://ant.apache.org. Ant
build-files provide an effective build system for Celtix — if you wish to use Ant, then you may wish to use the
build-file below in CodeSnap 2 as a starting-point template. The build file imports the common build.xml file
used by the Celtix samples. This build file offers a number of features:

« The variable codegen.notrequired is true if no XSD or WSDL files in the wsd1.dir directory have
changed since the last run of wsd12java. If you do not declare wsd1.dir as a property then the default
value . /wsdl is used.

« The wsd12java task can be used to generate Java code.

« The celtixrun task can be used to run a Java class with appropriate cLasspats and JVM argument
settings for use with Celltix.

<project default="build">
<!-- Import generic celtix build.xml file -->
<property environment="env"/>
<import file="${env.CELTIX HOME}/samples/common build.xml"/>

<target name="generate.code" unless="codegen.notrequired">
<echo message="Generating code using wsdl2java..."/>
<wsdl2java file="HelloWorld.wsdl"/>
<touch file="${codegen.timestamp.file}"/>

</target>

<!-- Targets to run the client and server -->
<target name="helloworld.Server" depends="build">

<celtixrun classname="helloworld.Server"/>
</target>

<target name="helloworld.Client" depends="build">
<celtixrun classname="helloworld.Client"/>
</target>
</project>

CodeSnap 2: Sample build. xm1l file for use with Celtix.

Directory Structure of a Celtix Project:Directory Structure of a Celtix Project

Directory Structure of a Celtix Project

There are a number of useful conventions for laying out the directory structure of a Celtix project. While you do
not have to follow these conventions, it is beneficial to do so. For the purposes of this getting started guide, we
will assume that you this directory structure has been adhered to.

A project typically contains the following directories:

* build/classes contains compiled Java classes, including those generated by wsd12java.
* build/src contains Java source code generated by wsd12java.
* src contains Java source code.

* wsdl contains WSDL files.

Some other directories are also common:

» cfg (or conf) contains configuration information

* etc contains miscellaneous files.

* 1ib contains JAR files needed for compilation

* log contains log files generated at run-time.

The top level project directory contains:

« The Ant build file (build.xml).

- Eclipse .classpath and .project files.

« Any other project-related files.

Writing a SOAP/HTTP Client and Server with Celtix

This section shows how to write a client and server for a simple “Hello, World” program. The tradition of “Hello,
World” dates back to 1978 when Kernigan and Ritchie used a “Hello, World” program as the first C program in
their book The C Programming Language. Their original program simply printed “Hello, World” to the screen.
The client-server equivalent provides a saydello () method that a client can invoke remotely, sending a string
and receiving a string response.

The “Hello, World” interface used here is defined in the WSDL file HelloWorld.wsdl. While there is a “Hello,
World” demo in the Celtix distribution, it uses a slightly different WSDL contract than that used here. The version
used for this demo corresponds to the Java interface shown in CodeSnap 3.

public interface HelloWorld ({
public String sayHello (String message) ;
}

CodeSnap 3: HelloWorld interface.

The full WSDL contract is shown in CodeSnap 4.

Writing a SOAP/HTTP Client and Server with Celtix:Writing a SOAP/HTTP Client and Server with Celtix

<?xml version="1.0" encoding="UTF-8"?>
<!--WSDL file template-->
<!--(c) 2005, IONA Technologies, Inc.-->
<definitions name="HelloWorld.wsdl"
targetNamespace="http://www.celtix.org/courseware/HelloWorld"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.celtix.org/courseware/HelloWorld"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<types>
<schema targetNamespace="http://www.celtix.org/courseware/HelloWorld"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="sayHello">
<complexType>
<sequence>
<element maxOccurs="1" minOccurs="1" name="message"
nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="sayHelloResponse">
<complexType>
<sequence>
<element maxOccurs="1" minOccurs="1" name="return"
nillable="true" type="xsd:string"/>
</sequence>
</complexType>
</element>
</schema>
</types>
<message name="sayHello">
<part element="tns:sayHello" name="parameters"/>
</message>
<message name="sayHelloResponse">
<part element="tns:sayHelloResponse" name="parameters"/>
</message>
<portType name="HelloWorld">
<operation name="sayHello">
<input message="tns:sayHello" name="sayHello"/>
<output message="tns:sayHelloResponse" name="sayHelloResponse"/>
</operation>
</portType>
<binding name="HelloWorld DocLiteral SOAPBinding" type="tns:HelloWorld">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="sayHello">
<soap:operation soapAction="" style="document"/>
<input name="sayHello">
<soap:body use="literal"/>
</input>
<output name="sayHelloResponse">
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="HelloWorldService">

<port binding="tns:HelloWorld DocLiteral SOAPBinding" name="SOAPOverHTTP">

<soap:address location="http://localhost:9090/helloworld"/>
</port>

Writing a SOAP/HTTP Client and Server with Celtix:Generating Java Code for a WSDL Contract

Generating Java Code for a WSDL Contract

The wsd12java command-line tool (available in CELTIX HOME/bin) is used to generate Java support code form
your WSDL contract. The most commonly used command line options are:

* -keep keeps the generated Java source code (it gets deleted by default).

* -p namespace=pkg: generated types is the WSDL namespace namespace will be placed in the Java
package pkg.

* -d build/classes puts compiled code into the destination directory build/classes.

* -s build/src puts generated Java code into the source directory build/src.

For example, to generate Java code for the HelloWorld.wsdl contract, you might use:

‘wsdleava -s src -d classes -keep ./wsdl/HelloWorld.wsdl

Some users prefer not to keep the generated source code. If you wish to only generate compiled Java classes
then omit the flags -s src -keep.

When the destination package is not specified with the -p option (as in the above example), then the package is
derived from the target namespace used in the WSDL document, using an algorithm defined in the JAX-WS
specification. For example, the namespace used in the sample HelloWorld.wsdl contract is
http://www.celtix.org/courseware/Helloworld; thisis converted to a package name as follows:

« The leading http://www is stripped
« The order of the domain name is reversed, giving org.celtix
« The remaining components in the URL path are converted to lower case and appended using a . separator,

giving: org.celtix.courseware.helloworld

Browsing the Generated Code
The wsd12java tool generates many files. In this example you should only take interest in two:

- the service endpoint interface, He11lowWorld, contains methods that correspond to the operations in the
WSDL contract.

- the service class HelloWorldService, contains suitable constructors and methods that correspond to
the ports defined in the WSDL contract.

Using your favorite editor or Java IDE, browse these classes and become familiar with their contents.

Implementing the Servant

To implement the servant, create a Java class that implements the service endpoint interface. In the case of the
Hello World example this will be org.celtix.courseware.helloworld.HelloWorld. A commonly used
convention suggests that you should name your implementation class with the same name as the service
endpoint interface, suffixed with Tmp1. A sample implementation is shown below in CodeSnap 5.

Writing a SOAP/HTTP Client and Server with Celtix:Implementing the Servant

package helloworld
import org.celtix.courseware.helloworld.HelloWorld;

public class HelloWorldImpl implements HelloWorld
{
public String sayHello (String argOQ)
{
System.out.println ("sayHello (" + arg0 + ")");
return "Hello right back at yal!";

}

CodeSnap 5: Servant implementation class: helloworld.HelloWorldImpl .

Writing the Server Mainline
A server mainline typically does at least the following:
- Create the servant object; and

+ Create and publish the servant object's endpoint using Endpoint.publish ().

A sample server mainline is shown below in CodeSnap 6.

package helloworld;
import javax.xml.ws.Endpoint;

void main (String[] args)
{
Object helloWorldImpl = null;

String address = "http://localhost:9090/helloworld";
bus = Bus.init () ;

helloWorldImpl = new HelloWorldImpl () ;
Endpoint.publish (address, helloWorldImpl) ;

}

CodeSnap 6: Server mainline class: helloworld.Server.

Writing the Client Mainline

A client mainline typically performs the following tasks:

« Declare the service oname and the location of the WSDL file.

- Create the service, using a generated constructor.

« Use the service to create a proxy to the remote service implementation.

« Invoke on the service.

An example client is shown below in CodeSnap 7.

Writing a SOAP/HTTP Client and Server with Celtix:Writing the Client Mainline

package helloworld;

import java.io.File;

import java.net.MalformedURLException;
import java.net.URL;

import javax.xml.namespace.QName;

import org.objectweb.celtix.Bus;

import org.objectweb.celtix.BusException;

public static void main (String[] args)

{
OName serviceName = new QName ("http://www.celtix.org/courseware/HelloWorld",
"HelloWorldService") ;

URL wsdlURL = null;
String wsdlFileLocation = "./wsdl/HelloWorld.wsdl";
try {
wsdlURL = new File (wsdlFileLocation) .toURL() ;
}
catch (MalformedURLException e) {
System.out.println ("Error creating a URL from file '" +
wsdlFileLocation + "'; details: " + e);

}

HelloWorldService helloWorldService =
new HelloWorldService (wsdlURL, serviceName) ;

helloWorld helloWorld = helloWorldService.getSOAPOverHTTP () ;

String response = helloWorld.sayHello ("Hello!");
}

CodeSnap 7: Server mainline class: helloworld.Client

Running the Client and Server

Running Celtix applications directly from the command-line

To run the client and server you must have your cLASSPATH variable set to include
CELTIX HOME/lib/celtix.jar and CELTIX HOME/etc.

The Celtix runtime uses the java.util.logging framework; you can configure Celtix logging levels by pointing
the JVM to a 1ogging.properties file by defining the JVM system variable java.util.logging.config.file.
Celtix provides a default 10gging.properties file in the etc directory, so you can use:

‘—Djava.util.logging.config.file=%CELTIX_HOME%/etc/logging.properties

You can run your classes from the prompt as shown:

java -Djava.util.logging.config.file=... helloworld.Client
java -Djava.util.logging.config.file=... helloworld.Server

To avoid repetitive typing create a startup script for your client and server; examples for the Windows operation
system are shown below in CodeSnap 8, and CodeSnap 9 below.

Running the Client and Server:Running Celtix applications directly from the command-line

@echo off
setlocal

if "SCELTIX HOMES" == "" (
echo You must set environment variable CELTIX HOME to run this script.
goto :eof

)

set BASE DIR=%~dp0
set CELTIXiJAR=%CELTIX7HOME%\lib\celtix.jar
if not exist 3CELTIX JAR% (
REM Assume it's a source (rather than a binary) distribution of Celtix

set CELTIX JAR=%CELTIX HOME%\build\lib\celtix.jar
)

set CLASSPATH=%BASE DIR%\build\classes;%CELTIX JAR%;%CELTIX HOME%\etc; $SCLASSPATHS

set JVM ARGS=-Djava.util.logging.config.file=%CELTIX HOME%/etc/logging.properties

java %JVM ARGS% helloworld.Client %*

CodeSnap 8: Script to run client.

@echo off
setlocal

if "$CELTIX HOME3" == "" (
echo You must set environment variable CELTIX HOME to run this script.
goto :eof

)

set BASE DIR=%~dp0
set CELTIX_JAR=%CELTIX_HOME%\lib\celtix.jar
if not exist $CELTIX JARS (
REM Assume it's a source (rather than a binary) distribution of Celtix

set CELTIX JAR=%CELTIX HOME%\build\lib\celtix.jar
)

set CLASSPATH=%BASE DIR%\build\classes;%CELTIX JAR%;$CELTIX HOME%$\etc; $CLASSPATHS

set JVM ARGS=-Djava.util.logging.config.file=%CELTIX HOME%/etc/logging.properties

java %JVM ARGS% helloworld.Server $*

CodeSnap 9: Script to run server.

Running Celtix applications using Ant

You can also run Celtix using targets from an Ant build file. The Ant targets shown in CodeSnap 2 show how a
generic -run.celtix target can be reused for targets start the Hello World client and server. With these rules in
place, you can now start the client and server using:

‘ant helloworld.Client

10

Running the Client and Server:Running Celtix applications using Ant

ant helloworld.Server

11

	Overview
	Setting up Your Environment
	Setting the _HOME Variables
	Setting the PATH Variable
	Setting the CLASSPATH Variable
	Using a Script to Set Up the Shell Environment

	Celtix Development Environment
	Using Celtix with Eclipse
	Using Celtix with Ant

	Directory Structure of a Celtix Project
	Writing a SOAP/HTTP Client and Server with Celtix
	Generating Java Code for a WSDL Contract
	Browsing the Generated Code
	Implementing the Servant
	Writing the Server Mainline
	Writing the Client Mainline

	Running the Client and Server
	Running Celtix applications directly from the command-line
	Running Celtix applications using Ant

