
Page | 1

EnhydraDM application

This is demo application for document management.
On application startup two servlet classes are initialized EnhydraDM and

WebDavServlet. They behave like two separated applications that share business,

specification and data layer. They’re also using the same configuration file (web.xml file)

with separated parameters for every application. It works with HSQL DB.

EnhydraDM application is typical Enhydra application. It implements presentation

logic with PO objects. The most of actions in application go throughout this presentation

layer except Read and Write actions that are handled by WebDavServet.

Application uses NTLM authentication, by default, but FORM authentication is

supported, too. That is meter of configuration in web.xml file.

The main page can be opened in two different modes: Document and Template.

Default is Document. In Document mode the main page shows list of documents with list

of possible actions, and in Template mode it shows list of templates.

Picture 1: Main page (Manager.po)

Page | 2

Picture2: Actions

In the top left corne on the main page there are link for changing mode

Document/Template, And in the top right corner there is Recycle Bin link for reviewing

of deleted documents with restore action for every of them.

User can upload a document, and create new document from template. There are

limitations of file extensions that can be uploaded, and file size, too. By default allowed

file extensions for upload are: doc, docx, xls, xlsx, ppt, pptx, pps, pptx, pps, ppsx, jpeg,

msg, pdf, zip, gif, bmp, txt, tif, png. Maximum file size is 2MB, by default.

There is a list of all possible actions for every document depends of its current

state. Only Read and Edit actions are executed trought WebDAV protocol.

 Read action is available for every document. Document will be opened in read

only mode in correspondent default interpreter program for document mime type (Word,

Excel, AdobeReader ..) , or in browser.

In application property file editablemimetypes.properties are defined document

extensions and correspodent mime types for all editable document types. That means that

only documents with extension stored in this property file can be opened in Edit mode.

For Check In functionality there is separete page where user can browse for file

that want to Check In.

 There are adequate flags for every document state: locked, unlocked,

autoversionable, not autoversioable and archived. If document is archived there is no

possibility to change document any more so the only flag for this document is archived

flag.

If one user locks the document (Check Out or Edit), actions like Check In,

Delete, Uncheck Out, On/Off Archived, On/Off Autoversionable, Create Version, Set

as Current Version (in Versions part) are disabled for all other users, except him, until he

does unlock.

If document is archived actions: Edit, Check Out, Uncheck Out, Check In,

Delete, On/Off Autoversionable, Create Version, View Document Versions, Set as

Current Version are disabled.

 If autoversionable flag for document is false no version history is saved for that

document (during period that autoversionable is false), but in that case document version

can be manually created using CreateVersion action which is available for not

autoversionable documents.

Actions: Read, Duplicate Document, Copy To Clipboard, Send As

Attachment, Send Link Location, Download Document, and Restore Document (from

Recycle Bin) are always available.

Page | 3

Action Duplicate Document creates copy of document with default values for

lock and autoversionable.

Picture 3 Flags

 Actions Delete and Send as Attachment is possible to execute on multiple

documents. Check Box is used to select documents that are candidates for group actions

execution.

 To create document from template user have to enter document name and choose

template from drop down list in Document mode on the main page. If one choose XSL

template, above name field it will appear radio buttons for choosing language (English or

German language) and on create, page with FoEditor in chosen language, will be opened.

Document created this way is PDF document

 Creating template from template is similar to creating document from template with

one exception. Creating XML template from template isn’t allowed, and XML templates

will newer appear in mentioned drop down list.

DocumentVersions page shows list of document/temlate versions.

Page | 4

Picture4: Versions

The list of possible actions (Read Document Version, Set as Current Version,

Copy To Clipboard, Send As Attachment, Send Link Location and Download

Document):

Picture5: Document Version Actions

Page | 5

Details page shows document/template details

FoEditor is text editor that interprets entered text as HTML. On submit entered text will be

stored in database and then transformed to PDF format. Generated PDF file then will be stored

with other files from the main page. Font and text size are the same in the Fo Editor and

PDF file. Font is Times New Roman and size is 12pt.

Page | 6

Picture6:Fo Editor

FoEditor supports some basic text editor functionalities: cut, copy, paste, undo,

redo, text styling (bold, italic underline), bulleting, numbering and table drawing. All

functionalities are available from toolbar and some of them are available from context

menu too.

Page | 7

Picture7: Context menu

Above FoEditor, there is label with document name entered on the main page and

two text fields. Name should be entered without extension. Text fields use as example how

additional data can be embedded in PDF file beside FoEditor content. That data will be

stored in database too.

Pictue9: Document properties

In the gray box on the right side of this page, there are two password fields and

couple check boxes that enable user to lock created PDF file. They aren’t part of the form

and don’t influence on data stored in database, but only on PDF file.

Page | 8

Picture10: PDF Properties

 This page supports Multilanguage. FoEditor supports all required languages:

English, German, Hungarian, Slovenian and Slovakian (button hints and context menu

items are translated). Language setup is separate for FoEditor and labels and buttons on

the page. Labels and buttons translation is stored in foeditor_laguageId.properties files.

Those files can be changed at runtime and new properties files can be added at runtime.

Fo Editor for different languages uses different JavaScript files.

Default language is English, but it can be changed. Default language is used when no

language is explicitly required or required language settings aren’t found. As an example

that Multilanguage works well, when user choose XSL file in the "Create from Template"

table on the main page, radio buttons for choosing language will appear.

 Document created this way is will be edited in FoEditor. Along with editing

document content, content from text fields stored with that document will be loaded into

appropriate text fields. When opens page with FoEditor for editing document, user can’t

choose language. In this mode language is always English.

FoEditor implementation

On the FoEditor page naming convection for form input names and FoEditor

names must be strictly followed. “Document properties” text fields and FoEditor must

have “fo.” prefix. Those text fields must have “.string” suffix and FoEditor must have

“.node” suffix. “PDF properties” text fields and check boxes must have “.pdf” prefix and

they don’t have suffix.

 FoEditor is implemented using tinyMCE control. TinyMCE is open source

JavaScript control developed by Moxiecode Systems AB. This contol interprets entered

text as HTML content and it overalls variety of plugins with different functionalities.

FoEditor uses only two of them, table and contextmenu. TinyMCE supports

Multilanguage. It use different JavaScript file for different language. FoEditor supports

English, German, Hungarian, Slovenian and Slovakian languages. If one require language

that isn’t supported with appropriate JavaScript it won’t harm editors functionalities, it

will only damage toolbar and contextmenu layout.

Folder with TinyMCE control is placed inside resource folder in Presentation

layer.

Page | 9

TinyMCE control is included and configured in FoEditor.html page. All

configuration options are placed within the tinyMCE.init() JavaScript call.

 There are only one FoEditor on the page but there number is unlimited.

Tested within: Microsoft Internet Explorer and Mozilla Firefox

Feature 1:

 Within Mozila Firefox when user presses Enter, text lose style (bold, italic,

underline)

Resolution 1:

We still have this problem.

Generating PDF file procedure

 Generating PDF file procedure is divided into three steps, three transformations.

All files necessary for transformation are placed in application layer into

resource/appwizard folder. Paths to all files necessary for transformations are defined in

web.xml.
- Tidy transformation – transforms FoEditor content from HTML to XHTML

format. It use tidy.properties file, placed in application layer into

resource/appwizard/conf folder. Path to this folder is defined in web.xml.

- xhtml2fo transformation – transform XHTML format to FO format. It use

xhtml2fo.xsl template. This template file can be changed at runtime.

- Fop transformation – finally create PDF file. It uses userconfig.xml file and

specialized (XSLFast) XSL-FO template. XSLFast project and additional files

are placed in XSLFast folder. This XslFast project reports errors when preview

of generated document is required, but it makes useful template. Generated

template should be manual changed in order to be used for mentioned

transformation. This template must be uploaded on main page (Template

mode)

Note: (only for FORM authentication): If someone uses application for the first

time the first step is registration. After successful registration user can log in.

Page | 10

APPLICATION STRUCTURE

SPECIFICATION LAYER

(Package: org.enhydra.dm)

This layer contains all base software classes (basic API, WebDAV implementation

part):

- servlet class: WebDavServlet.java the main servlet for WebDAV related

application part

In sub package API are stored all interfaces:

- DocumentManager.java, DocumentStore.java, FoDocumentManager.java,

Document.java, AppUser.java, DocumentVersion.java, UserManager.java,

FoDocument.java and FoDocumentParam interfaces

In sub package: api.exceptions

- BaseException.java: the exception class that is all other exception classes

from business part extends.

In sub package: api.handler

- MethodHandler.java: interface for al method handlers

- AbstractHandler.java: abstract class that implements MethodHandler.java

interface with abstract service () method. All handler classes extends this class.

In sub package: api.loggers

- Log.java: abstract class for logger functionality

In sub package: api.util

- DesEncryption.java: Interface for encryption and decryption.

In sub package: api.util.filesys

- FileChangeListener.java: interface

- FileChangeListenerImpl.java: abstract class that implements

FileChangeListener.java

These two classes together with FileMonitor.java represent mechanism for

monitoring and reloading file changes. Files reload period is setup in web.xml file. Files

reload period should be set up in seconds. If files reload period is 0 or negative number or

it isn't set up at all, application won't reload files at runtime.

Page | 11

In sub package HANDLER are stored all WebDAV handler implementations:

- There are placed all possible handler classes but only some of them are

really implemented and used in this application (That is list of handlers is derived from

Davenport project and adaptive). Implemented handlers are :

- DefaultGetHandler.java (for GET request)

- DefaultHeadHandler.java (for HEAD request)

- DefaultOptionsHandler.java (for OPTIONS request)

- DefaultLockHandler.java (for LOCK request)

- DefaultUnlockHandler.java (for UNLOCK request)

- DefaultPropfindHandler.java (for PROPFIND request)

- DefaultPutHandler.java (for PUT request)

In sub package LOGGERS are stored all log (Log.java) implementations:

- EnhydraLog.java

- Log4jLog.java

In sub package UTIL are stored implementations of interfaces from api.util

package and some additional classes for basic functionality:

- Base64.java : Encodes and decodes from Base64 notation

- DesEncryptionImpl.java : implementation of DesEncryption.java interface

- EnhydraDMConstants.java : project constants class (list of all constants)

- MimeUtility.java : mime type utility class

- Numerator.java

- TransformUtility.java (xhtml2fo.xsl)

In sub package UTIL.FILESYS are implementation classes for mechanism for

monitoring and reloading file changes.

- FileMonitor.java

- PropertyChangeListenerImpl.java listener for properties files.

- TemplateChangeListenerImpl.java listener for xsl template files.

Page | 12

BUSINESS LAYER

(Package: org.enhydra.dm.business)

This layer contains:

- Default implementations for major interfaces

DocumentManagerImpl.java, DocumentStoreImpl.java and

FoDocumentManagerImpl.java, UserManagerImpl.java
(These are default implementations. In web.xml file application can be configured

to use some custom implementations)

Implementations for beans: DocumentImpl.java, AppUserImpl.java,

DocumentVersionImpl.java FoDocumentIParamImpl.java and

FoDocumentImpl.java interfaces (not configurable)

In sub package EXCEPTIONS are places BasicException.java extensions:

- ActionNotAllowedException.java

 - ConfigurationException.java

 - DatabaseException.java

 - DesEncryptionException.java

 - DocumentStoreException.java

 - LockException.java

 - FileSizeException.java

PRESENTATION LAYER

(Package: org.enhydra.dm)

This layer contains in package:

- EnhydraDM.java

 In sub package: presentation

- PO objects implementations.

Page | 13

Tested with many extensions: doc, docx, xlsx, xls, pps, ppt, msg, pdf, and the others

Feature 1:

PDF documents, opened via WebDAV, are placed inside browser window instead

of related program (Adobe Reader …).

Resolution 1:

Set parameter inside default PDF interpreter (Adobe Reader). This parameter is

placed in Edit->Preferences window. Choose “Internet” in list and uncheck “Display PDF

in browser” option.

Feature 2:

Office documents, opened via WebDAV, are placed inside browser window

instead of related program (Microsoft Office Word, Microsoft Office Excel …).

Resolution 2:

Set parameter in Control Panel->Folders Options window in File Types tab, find

needed extension (doc, xls…), click on “Advanced” button and uncheck option “Browse

in same window” (In Office 2007 it is disabled and unchecked by default).

Feature 3:

When you open a (e.g.) Microsoft Office XP document in Microsoft Internet Explorer, the

document opens as read-only and you cannot save the changes that you make to the

document.

Resolution 3:

Note: This isn’t confirmed with Windows Vista, where we still have this problem.

To open documents in Internet Explorer as read/write so that you can save changes

to the document, add the “OpenDocumentsReadWriteWhileBrowsing” sub-key to the

registry. To do this, follow these steps.

1. Quit any Office XP programs that are running.

2. Click Start, and then click Run, type regedit in the Open box, and then click OK.

3.

Locate and then click to select the following registry subkey:

HKEY_CURRENT_USER\Software\Microsoft\Office\xx(version

number)\Common\Internet

Page | 14

4. On the Edit menu, point to New, and then click DWORD Value.

5. Type OpenDocumentsReadWriteWhileBrowsing, and then press ENTER.

6. Right-click OpenDocumentsReadWriteWhileBrowsing, and then click Modify.

7. In the Value data box, type 1, and then click OK.

8.

On the File menu, click Exit to quit Registry Editor

