[image: image1.png]
[image: image2.png]
Table of Contents

3Executive Summary

4Focus and Strategy

5Other Competitive Sources from Lutris Technologies

5Enhydra Genesis

5Starting with Real-world Requirements

7Enhydra.org: Open Source for eBusiness™

7Working Groups

7The Enhydra Public License

8It’s All About Community

8The Enhydra Value Proposition

8Flexibility and Control

8Benefits of the Open-source Process

9Lower Total Cost of Ownership

9Driving Enhydra Requirements

9Lutris and Enhydra

9Enhydra Leader

10Lutris Enhydra, Certified Product from Lutris

10Lutris Enhydra Journal

11Lutris Solution Partner Program

11The Open-Source Enterprise Software and Services Company

11Lutris Enhydra 3

11Enhydra Framework

12Superservlet for Rapid Three-tier Design and Development

13Enhydra Web Container for Inter-application Server Portability

13A Wireless Development and Deployment Platform

13Internationalization for Localization

13Enhydra XMLC for Real-World Development

14How It Works

14Real Web Development Value

14Superior Wireless, Device-independent, Language-independent Support

15Improved for Performance

15When is Lutris Enhydra the Right Tool?

16Best Lightweight Framework

16Best Presentation Server

17Soon, the Best Enterprise Server Choice

17Commercial Application Servers Overview

18Enhydra

18Focusing on Enhydra versus BEA

18About J2EE

18Enhydra 4 and the Services Architecture

18The ASP Customer Focus

18The Enhydra 4 Services Architecture: Accent on Extensibility

18An Enhydra Service

18Enhydra APIs and J2EE APIs

18The Kernel and Core Enhydra

18Management and Deployment

18Working with Technology Partners to Deliver Core J2EE Services

18Enhydra Default Services

18Real-world Security Support

18For the Developer

18Enhydra 4 is underway in the open-source process

18Summarizing The Enhydra 4 Competitive Advantage

18Summary

Executive Summary

As standard APIs and technologies are established, the application server is quickly becoming the operating system of Internet infrastructure. The Enhydra Java/XML application server not only is establishing itself as the open-source application server of choice, but it is competing directly with closed-source commercial products such as BEA WebLogic and IBM WebSphere. Lutris Enhydra is Lutris Technologies’ certified version of the open-source Enhydra technology, for which Lutris provides the same level of support, training, and consulting services that one would expect from its closed-source competitors. When considering total cost of ownership, Lutris Enhydra offers significant advantages over enterprise IT, as well independent software vendors and Internet consultants delivering custom solutions for Internet infrastructure technology.

As enterprise IT gains experience with application server deployments—platforms that conform to Sun’s Java 2 Enterprise Edition specification (J2EE) in particular—it has become clear that there are multiple roles to be played by the appropriate application server. Most likely, high-cost J2EE enterprise application servers would be overkill for 75 percent of Web applications developed for intranets and eCommerce sites. A high-quality lightweight Java/XML application framework such as Lutris Enhydra 3 better serves these functions.

Enhydra is not simply trying to emulate the larger and closed-source J2EE competitor application servers. In fact, leveraging its Enhydra™ XMLC alternative to JavaServer Pages (JSP), Enhydra is by far a superior solution as a presentation server for any J2EE or servlet environment that needs to support wireless and voice presentation, in addition to standard Web clients. Leveraging the major industry standard markup languages and protocols, Lutris Enhydra natively supports more wireless and voice client capabilities than any application server available.

Lutris and Enhydra.org, the open-source home of Enhydra and other Internet infrastructure-building technology, soon will be competing directly with J2EE vendors to deliver Enhydra 4, a highly extensive, dynamic, and maintainable version of Enhydra that introduces the Enhydra 4 services architecture. This enterprise platform is engineered to support all the J2EE services, as well as critical services and capabilities that will serve the mission-critical requirements of the ASP (application service provider) market. The Enhydra 4 component view of services means that product vendors can configure Enhydra to be perfectly tuned for their product needs. And, in the tradition of Enhydra 3, consultants will continue to be able to say “yes” to their ASP, Enterprise and product customers with Enhydra 4.

The overriding competitive advantage of Enhydra and all of its family members is its basis and evolution in the open-source process. Open-source technology, by virtue of its large community and its freely accessible source code that is enhanced and guided by its steward, Lutris Technologies, means that adopters of Enhydra and Lutris Enhydra are assured that they are using the highest quality technology and will never be held hostage for bug fixes, updated patches, or support desks.

Finally, the missing piece that has contributed to IT’s reluctance to embrace an open-source strategy is systematically coming into place. Working with Lutris Technologies, well-known OEMs and partners are putting their support behind Lutris Enhydra. Hewlett-Packard is co-launching Lutris Enhydra for the HP e3000 line. NEC Soft is localizing and re-distributing Lutris Enhydra in Japan. And Motorola is shipping Enhydra as the application server foundation for its new line of J2ME iDEN phones. Lutiris is moving quickly to erase the remaining obstacles to the world wide Enterprise IT adoption of open-source Enhydra.

Focus and Strategy

This paper is written for corporate IT organizations, software vendors, system vendors, and professional services companies that are evaluating the Internet infrastructure component known as the application server. This paper addresses the way in which the application server Enhydra fits in with respect to the large community of modern application server products, both open-source and closed. This paper also is applicable to those who are new to Enhydra and are seeking a basic understanding of this groundbreaking open-source project via a high-level comparative discussion. If you are an executive or engineering manager, you will find this paper very readable. And, if you’re new to open-source technology, background on the open-source movement is provided. For an in-depth explanation of this movement, be sure to read Eric Raymond’s The Cathedral and the Bazaar (O’Reilly and Associates, October 1999).
This is an unusual competitive paper because it addresses the sometimes-tricky topic of comparing open-source technology, such as Enhydra, with closed-source technology such as BEA WebLogic. In addition to addressing functional comparisons, this paper casts a unique light on what it means to compare technologies that originate from two worlds: the traditionally closed-source, proprietary world—BEA WebLogic, IBM WebSphere—and the emerging open-source world as it moves up the “solution stack” of Internet-enabling infrastructure—operating system (Linux), Web server (Apache), and now application server (Enhydra).

This paper does not endeavor to provide a detailed comparison. Rather, its purpose is to point you in the right direction with regard to the metrics you might use to compare Enhydra with competitive technologies and products. We will focus on the philosophical differences of design and implementation models, development environments, runtime deployment, and technical strategies for solving real-world problems, including how to support devices in both the wired and wireless worlds.

This paper attempts to answer:

1. What is Enhydra? Enhydra 3.0? Enhydra 4.0?

2. How is Lutris related to Enhydra?

3. What are the key features of Enhydra?

4. How is Lutris Enhydra differentiated from BEA WebLogic, IBM WebSphere, and other commercial application servers?

By the time you finish reading this paper, we believe you will agree with the following conclusions:

The open-source genesis and evolution of Enhydra is core to its competitive advantage.

· Enhydra is characterized by adherence to rapidly evolving standards as well as innovation driven by real-world problem definition and resolution. In other words, Enhydra always will be an optimal choice because the open-source process heavily drives its evolution. And Lutris is the only commercial concern that is driving a major application server product in this way.

· Enhydra 4’s services architecture simultaneously will deliver J2EE, protect your investment in legacy systems, and protect you from the limitations of J2EE.

· Enhydra has the ability to adapt to many roles. No other application server can address as many roles as Enhydra.

· Enhydra XMLC makes Enhydra the industry’s leading native presentation platform for wired and wireless Web applications.

“The Enhydra Competitive White Paper” walks you through the genesis of Enhydra, its open-source evolution, and the way in which it is leveraged by Lutris Technologies as a supported commercial product. After addressing key Enhydra innovations, such as Enhydra XMLC for wireless development, the paper discusses leading commercial application servers, summarizing what we believe are important points to consider while performing your detailed analysis. Finally, we highlight the differentiating features of Enhydra and introduce the motivations behind and features included in the revolutionary Enhydra 4 services architecture.

Other Competitive Sources from Lutris Technologies

Enhydra is the ideal solution for a company contemplating a transition from traditional Perl development or other well-known proprietary solutions such as Cold Fusion. For these large audiences, Lutris has developed a set of white papers focusing on what it means to migrate to Enhydra from these specific domains:

· “Migrating from CGI/Perl to Enhydra”

· “Migrating from Cold Fusion to Enhydra”

Included in both of these papers are discussions that compare and contrast features and capabilities of Enhydra and the respective technology in question. Be sure to visit www.lutris.com for instructions on how to receive these white papers.

Enhydra Genesis

Understanding the competitive features of any software technology is greatly enhanced if you understand the design center behind that technology. Enhydra origins reflect not only its foundation in custom Web application development, but its long-term goals as well.

Starting with Real-world Requirements

The Enhydra architecture was designed and implemented by Lutris Technologies to support Lutris Consulting’s delivery of highly maintainable Web applications. More than three years ago, when Lutris began building Enhydra, the application server market was extremely immature. Lutris decided to build its own Web application-building tool set in anticipation of selecting one of the maturing third-party application server tools. The following attributes served as guides for the way in which the Lutris consulting development and deployment environment was designed and constructed.

Native extensibility for adapting to a wide range of customer requirements. As a consulting organization, it was critical that the tools we built supported Lutris’ ability to deliver solutions to the widest possible range of customers. Customer requirements would address hardware and operating systems as well as features that were difficult to anticipate in the early days of Internet and intranet applications. Flexibility through extensibility was an essential requirement for our development platform. And, of course, Java would be critical to making platform independence possible. From experience gained through working with other consulting organizations, we found that most shrink-wrapped tools were not viable options because the customer always had one or more feature requirements that forced lower levels of custom development. Each customer had a different philosophy about how to implement fail over and user authentication. This demand drove the flexibility that characterizes Enhydra.

A highly adaptable development environment. Lutris Technologies was founded by networking engineers, experts in the Distributed Computing Environment (DCE), the high-end technology from The Open Group (formerly the Open Software Foundation). The combination of UNIX and network expertise, as well as a long-time involvement in open-source technologies such as sendmail, Tcl, and man GNU tools, influenced highly adaptive nature of Enhydra’s development environment. Enhydra application designers are not restricted to required tools and can take virtually any approach to application designs they wish, although Enhydra encourages solid 3-tier application architecture design. Today, the results can be seen in the ability of Enhydra to easily support developers who use the command line and simple editor tools and those who prefer a highly graphical development and debug environment.

Support innovation for solving real-world problems. Because the genesis of Enhydra predated J2EE and Sun’s plethora of API specifications, including JSP, Lutris was compelled to pioneer and innovate where real-world solutions were required. Having developed a technology that reflected a JSP approach, Lutris architects went back to the drawing board to solve the HTML/Java interface challenge and defined Enhydra XMLC, described later in this paper. The value of this approach is well recognized within the Java community and continues to prove itself a significant alternative to JSP.

Support both small- and large-scale projects. The Lutris development and deployment environment had to be able to scale, from building and deploying large sales force automation intranet applications to supporting dot com eCommerce sites. Complementing the incorporation of a native three-tier architecture, Lutris chose an entirely Java-based implementation. Java, with its OO principles and its use of open-source CVS for source code versioning, allowed us easily to scale from the smallest to the largest projects.

Many other attributes of Enhydra have emerged, driven by real-world needs. For example, the Enhydra Multiserver is able to accept and return HTTP requests directly when there is no Web server available. This feature was incorporated into Enhydra in order to support easy development on Windows and Linux laptops as Lutris consultants flew in airplanes to and from customer sites.

Enhydra.org: Open Source for eBusiness™

Established on January 15, 1999, Enhydra.org is the official home of the open-source Enhydra application server, supporting project-driven technologies that complement Enhydra, including the Enhydra InstantDB™ Java database and other open-source contributions. The charter of Enhydra.org is to deliver core elements of Internet infrastructure through the open-source process for eBusiness. Here you will find supporting activities that drive a large, robust, high-energy open-source community through mailing lists of working groups, documentation, demo applications, and, of course, open-source code that is freely downloadable.

Enhydra.org is the mechanism through which Lutris Technologies leads and guides the evolution of Enhydra. We are often asked, “What is to keep Enhydra from splintering into many Enhydras, thereby eliminating the usefulness of this effort?” One answer is that it is in the interest of everybody in the large Enhydra community to inhibit splintering. Another answer is this: as the Linus Torvald of Enhydra, as well as the Red Hat of Enhydra (and the EPL license, discussed below) Lutris can ensure that Enhydra.org continues on a path of vital, pragmatic, well-documented technology.

On the other hand, although Lutris maintains a strong leadership role in the evolution of Enhydra, the open-source process is very much in control of determining the hottest and most relevant topics that determine the direction Enhydra takes. There is no better example than the emergence of Enhydra XMLC as a wireless device presentation technology.

Working Groups

Enhydra.org leverages working groups connected by mailing lists to focus highly motivated individuals on key topics. These topics include internationalization, security, and architecture. Each working group is chaired by an individual who has demonstrated leadership in the related area, either in the form of contributed expertise or a body of code that bootstrapped the project. Some of the 19 working groups deliver large code contributions (e.g., Brock for Enhydra Personalization Services), while others simply ensure that the underlying Enhydra platform delivers the best service possible with respect to a particular topic.

The Enhydra Public License

It doesn’t matter how useful an open-source technology is if the license prevents you from taking advantage of it. If you are an ISV looking for a standard application server platform upon which to ship your product, the issue of software licensing is critical.

The Enhydra Public License, EPL, is designed to be as liberal as possible while also protecting Enhydra, Enhydra.org, and patented concepts. The EPL applies both to downloadable Enhydra on Enydra.org as well as to Lutris’ certified product, Lutris Enhydra. Basically, the EPL ensures that you can do anything with the source code—including shipping it with your product—if you so choose.

There are two distinguishing elements of the EPL license:

1. All of the code you develop outside the Enhydra technology (i.e., your application and its intellectual property) is yours. It’s only when you get inside the core Enhydra source code that you must return code changes to Enhydra.org as candidates for possible inclusion in the product.

2. Similar to the Mozilla open-source license, EPL ensures that you can build your application without encumbering any of your intellectual property. EPL gives you license to use any patented concepts within Enhydra so long as you use those concepts by incorporating the Enhydra application server. In other words, you couldn’t use a patented concept for an implementation not involving the Enhydra application server.

Also, keep in mind that the term Enhydra is a trademark of Lutris Technologies. If you wish to use the Enhydra trademark, please contact Lutris at info@lutris.com.

It’s All About Community

Freely available source code and a large, well-connected, proactive developer community characterize successful open-source projects. With more than 3,000 developers composing the Enhydra.org mailing lists, Enhydra.org is a vital and growing open-source project.

The Enhydra Value Proposition

The open-source aspect of Enhydra is so powerful that it must be considered on the same level as Enhydra technology and feature benefits. To understand the value of an open-source product such as Enhydra, let’s briefly review some of the benefits of leveraging an open-source solution.

Flexibility and Control

With traditional closed-source products, you are completely dependent on the company delivering the product. But when you have the source code, you are the one who is in control. You can debug more easily with source code as a reference. In a pinch, you also can make the necessary changes to fix the problem. Or you can come well armed when you call the company that supports the open-source product, such as Lutris Technologies. You have an instant software escrow account for future insurance.

Also, there are no feature surprises with open-source software because the technology is monitored and driven by a large, visible, and vocal community. Contrast that to a closed-source product such as Microsoft Word: this application served as the basis of an article in Scientific American in 1999 on the topic of feature creep.

Benefits of the Open-source Process

The open-source process means quality implementations driven by real-world needs. Open-source efforts such as Enhydra.org ensure that the technology will support meaningful features as driven by a plugged-in community of consultants and end users. The same community ensures that the code base evolves with the highest possible quality. With thousands of eyes having access to source code, no algorithm is safe from scrutiny. Enhydra undergoes 24x7 worldwide code review. To paraphrase Sun’s Bill Joy, most of the smart people in the world don’t work for you or Sun or Microsoft. With open-source, you are using code that has been scrutinized by the best and brightest.

Lower Total Cost of Ownership

It’s only natural that when people are first introduced to open-source, they think “free code.” But, of course, nothing is free. Support is not free. Maintenance and administration are not free. The development of applications on top of open-source is not free. But, when comparing Lutris Enhydra against other commercial application servers, we find that total cost of ownership is significantly lower.

For startup companies, this means bootstrapping your Web application without paying an enormous percentage of your funding for per-CPU deployment. When you get funding, come to Lutris for certified Enhydra products, associated support services, and even design and development of your second-generation Enhydra application. For ISVs, an open-source platform like Enhydra means modest to no per-CPU license costs for distributing your application on top of a high-quality application server. And for IT managers in high-growth companies, open-source reduces the likelihood of runaway per-CPU application server costs.

Most people are familiar with the emerging presence of open-source software and its increasing role in enterprise IT. For IT, an open-source strategy means that it’s easier to access and recruit talented engineers both from open-source projects and universities, where tools like Enhydra are selected as the basis for software engineering courses. Open-source also means lowered reliance on training courses. Open-source technology is based on standards; thus, training courses are neither costly nor proprietary. Enhydra and the users of Enhydra enjoy all of the benefits of both open-source and the open-source mechanism.

Driving Enhydra Requirements

As we mentioned, a large, active community is crucial to the success of any open-source software project. This community ensures that a project such as Enhydra sticks to a steady but pragmatic evolution of features and capabilities. The requirements for enhancements that emerge from the community typically represent consensus based on intense scrutiny via email-based discussion.

Enhydra XMLC, the unique Enhydra compiler, is an excellent example of the productivity of this process. Lutris originally defined and developed Enhydra XMLC to make it easier for HTML designers and Java developers to work independently of each other while developing highly maintainable Web applications. Members of the Enhydra community recognized that Enhydra XMLC could be adapted to support wireless development efforts. They campaigned proactively via code contributions and email discussions to make this happen. The end result is Enhydra 3.5—with Enhydra XMLC support for virtually every wireless device on the planet.

Lutris and Enhydra

Forrester has determined that the number one impediment to the adoption of open-source products by enterprise IT is the presence of visible commercial support behind that technology. Although Enhydra.org is an independent project that benefits many, Lutris Technologies, Enhydra, and Enhydra.org are closely related in a mutually beneficial relationship.

Enhydra Leader

Every effective open-source project needs focused leadership. Having bootstrapped Enhydra.org with Enhydra 2, Lutris assumed a leadership role that it continues to serve in today. Lutris was instrumental in recruiting technology members Evidian Software, formerly BullSoft, and France Telecom to jointly with Lutris to deliver key pieces of a J2EE solution, discussed below.

Now that Enhydra.org has reached a meaningful threshold of size and activity, Lutris is moving Enhydra.org to a more conventional open-source project as described by the Enhydra Community Process, or ECP. Rather than maintain full control of source code changes to the source tree, Lutris and the Enhydra community will recognize, through a voting process, individual contributors who have earned the right to govern source code changes through their participation, code contributions, and demonstrated expertise. This is good news for everybody, ensuring the Enhydra and the community benefit from a fully implemented open-source process.

Lutris Enhydra, Certified Product from Lutris

Up till now, we’ve been using the terms “Enhydra” and “Lutris Enhydra” interchangeably. “Enhydra” refers to the open-source Enhydra application server that can be downloaded for free under the EPL license from www.enhydra.org. “Lutris Enhydra” is Lutris’ certified, productized version of Enhydra. Lutris Enhydra is distinguished by the following attributes:

	Certified Product
	It has been certified by Lutris’ QA process for popular vendor hardware and software configurations, such as JVMs, operating systems (e.g., Windows 2000, Unix, Linux), Web servers (e.g., iPlanet, Microsoft IIS, Apache), databases (e.g., PostgreSQL, InstantDB, Oracle) and, finally, hardware platforms (e.g., HP, IBM, Sun). Please consult www.lutris.com for the current list of expanding certified vendor platforms and configurations.

	CD
	Lutris Enhydra is available on a CD with full support for easy installation on Windows environments as well as Linux using the RPM standard.

	Documentation
	Lutris Enhydra includes enhanced, bound, professionally prepared documentation that goes beyond the abundant free documentation that can be found on Enhydra.org.

	Support
	Purchasing Lutris Enhydra entitles you access to Lutris Support services. Lutris Support offers technical support programs that provide individual incident packages as well as the range of traditional programs expected from an enterprise-quality product, including various levels of support: silver, gold, and platinum.

	Training
	Leveraging the Lutris Enhydra product, Lutris delivers training courses, including

· Lutris Enhydra Fundamentals

· Building Wireless Applications with Lutris Enhydra

· Database Techniques with Lutris Enhydra

These courses are conducted regularly in Santa Cruz, California, USA, and can be presented at or near your facility. They also can be customized to suit your particular business situation.

Lutris Enhydra Journal

Lutris has enhanced its support of the Enhydra community with a complementary newsletter on current Enhydra topics: the Lutris Enhydra Journal. This bi-monthly publication features insightful articles on Enhydra from both the business and technical communities. To subscribe, visit www.lutris.com.

Lutris Solution Partner Program

Lutris has launched its Lutris Solution Partner Program, which includes training and other benefits for partners. More information can be found at www.lutris.com

The Open-Source Enterprise Software and Services Company

Finally, Lutris Technologies focuses on delivering enterprise-quality products and services that leverage the open-source process and open-source technologies. Lutris’ customers include:

· ISVs that license Lutris Enhydra and embed it within larger software applications.

· System integrators building Web applications for businesses worldwide.

· End users building dynamic websites.

· Partners needing a development and deployment platform as a foundation for their own developer programs.

[image: image3.png]Lutris Enhydra 3

This section introduces Enhydra 3. Enhydra powers wired and wireless websites, eCommerce, CRM, and intranet products and services deployed around the world.

Enhydra Framework

Enhydra is a Java/XML open-source application server for wireless and Web application development and deployment. A development environment with a small set of carefully chosen tools, it’s also a runtime environment for deploying and managing Enhydra applications. It is written entirely in Java, making it hardware- and operating system independent. Enhydra is a member of Enhydra.org, which hosts a growing family of technologies, all representing key aspects of building Internet infrastructure.

Key components of the Enhydra Java/XML application server:

· Enhydra Multiserver launches both Enhydra servlet applications and Tomcat Web container (servlet 2.2/JSP 1.1). The Multiserver also establishes and maintains connections to Web servers.

· Enhydra Director routes client requests to clusters of Enhydra servers for scalability and server-level fail over.

· Enhydra Admin. Console remotely manages the lifecycle of Enhydra applications and manages debugging by monitoring HTTP requests/responses down to the servlet API.

· [image: image4.wmf]Legacy Service

JMX

Legacy

Component

Enhydra Enterprise Kernel

Configuration

Legacy Service

API

Custom Service

JMX

Custom

Component

Configuration

Custom Service

API

JMX

Legacy Service

JMX

Legacy

Component

Enhydra Enterprise Kernel

Configuration

Legacy Service

API

Custom Service

JMX

Custom

Component

Configuration

Custom Service

API

JMX

Enhydra XMLC is an XML compiler for driving dynamic wired and wireless Web presentations. Enhydra XMLC performance has been improved five-fold by the recent addition of “Lazy DOM” support
. This innovation from Lutris and members of the Enhydra community is explained at length below.

· Enhydra Superservlet is a highly integrated servlet environment for rapid design and development of Enhydra applications.

Superservlet for Rapid Three-tier Design and Development

Lutris architects anticipated the Web container architecture that was eventually specified by Sun and donated to the Apache Jakarta project as “Tomcat.” When Java developers were beginning to figure out how to chain Java servlets together, Lutris avoided this unnecessary complication by viewing the application as a single servlet, logically divided into the classic three-tier representation of presentation logic, business rule, and data logic. Individual Enhydra applications, launched by their own Enhydra Multiserver-spawned class-loader, inherit their own environment of session, transaction, and database state information.

This architecture accents reusability and ease of maintenance by isolating the key functional roles of an application. The superservlet architecture supplies a great number of advantages of a lightweight framework, including rapid development, ease of learning, and superior integration of presentation, session, and data services.

Enhydra Web Container for Inter-application Server Portability

For servlet portability from other application servers, or for developers who prefer JSP, the Enhydra Web container features Tomcat servlet 2.2 and JSP 1.1 compatibility. Servlets built, for example, in the IBM WebSphere Standard environment are easily ported to the Enhydra Web container environment.

A Wireless Development and Deployment Platform

Lutris Enhydra provides native support for both wired HTML browser devices and the popular WML (Wireless Markup Language) devices. Lutris Enhydra 3.5 extends wireless device support to include cHTML/I-mode, XHTML, J2ME, and VoiceXML.

Internationalization for Localization

Thanks in large part to its worldwide availability via Enhydra.org; Enhydra is an excellent platform for building internationalized applications. Enhydra code has been refined for Unicode, Big 5, and Kanji. DigitalSesame’s David Li of Taiwan chairs the I18N working group. Given his company’s goals for the Asian market, he is highly motivated to ensure that Enhydra is the best internationalization platform possible.

Multi-language support is made possible at the presentation layer by Enhydra XMLC, which makes it easy to load presentation skins that differ based on the preferred language.

Enhydra XMLC for Real-World Development

[image: image5.png]Early in the evolution of Enhydra, Lutris Consulting engineers developed a similar technology to Sun’s JavaServer Pages. Like JSP, Enhydra technology supported the developer’s ability to insert Java into HTML pages for the purpose of creating HTML dynamically. Early experiences with this approach convinced Lutris architects to define a fundamentally different approach to the challenge of generating markup language from Java logic. The result was Enhydra XMLC, a compiler of markup language documents, such as XML, HTML, WML, and others. Enhydra XMLC supports the building of highly maintainable Web presentations by removing the need to imbed Java logic inside XML/HTML Web pages.

How It Works

Enhydra XMLC leverages support for cascading style sheet ID attributes to associate areas of dynamic content with Java methods. Unlike JSP, Enhydra XMLC avoids the introduction of new HTML/XML tags. By basing this technology in an XML foundation, Enhydra XMLC can support virtually any markup language required.

Enhydra XMLC performs three tasks during compilation, listed in Figure 2. First, it validates the input document as a valid, well-formed document. Second, it generates a Document Object Model, or DOM tree, which is a Java class that represents the XML document in memory where it can be manipulated. Third, it creates Java convenience methods for easily accessing in the DOM tree dynamic areas of content that were identified by the insertion of ID attributes in the compiled document. This relieves the Java developer from creating the code required to traverse the DOM tree to make content changes.

Real Web Development Value

The beneficial implications of the Enhydra XMLC approach to generating dynamic presentations are many.

· With Enhydra XMLC, designers can make significant changes to the user interface without the involvement of the Java developer or changes to Java code.

· With Enhydra XMLC, HTML/WML designers and Java developers have to meet and confer only at the beginning of projects. Once the dynamic elements of individual Web pages are identified, the two parties need never interact (with the exception of major changes to the dynamic content).

· With Enhydra XMLC, the designer’s mocked-up pages are used as the only template pages needed, because no Java code is inserted.

· With Enhydra XMLC, any HTML editor can be used since no new HTML or WML tags are introduced. Enhydra XMLC requires only the use of CSS ID attributes, which are standard with HTML 4.0 and above.

· Enhydra XMLC conversion of markup language documents into a Java DOM means that the developer can view the entire Web application with a truly object-oriented view. Unlike JSP, the application’s flow of control is dictated by Java and not HTML. HTML, XML, and other presentation markup languages are now simply a Java resource.

The end result is that Enhydra XMLC allows HTML designers to focus on their expertise without having to become Java-savvy or needing to rely on Java engineers for changes to dynamic presentations. This feature also allows Java developers to more easily work with third-party graphic design firms, for example.

Superior Wireless, Device-independent, Language-independent Support

The Enhydra XMLC basis in XML enables it to support XML/HTML documents as well as emerging document standards for wireless and voice. In addition to its current support for WML, Enhydra 3.5 adds additional device support to Enhydra XMLC for these presentation document formats:

· cHTML/i-mode, the standard for wireless devices in Japan

· J2ME, Sun’s Java 2 Micro Edition, for supporting highly dynamic, graphical wireless device presentations.

· VoiceXML, a new standard for converting voice instructions to the XML format.

· XHTML, an evolving standard that will be leveraged by the new WAP 2 and I-mode 3 wireless protocols.

Improved for Performance

Lutris and the Enhydra community continue to fine-tune Enhydra XMLC, not only for device support, but also for performance. Enhydra 3.5 adds Lazy DOM support to Enhydra XMLC for significant performance improvements.

When is Lutris Enhydra the Right Tool?

The Internet is a new economic battleground, still early in its evolution. Users are defining, by practice, the role of Web applications and the application servers that are becoming the operating systems of the Internet. In a Darwinian scenario, the technologies that make business sense win the day, and all the others become answers to future trivia questions.

It has become clear to Lutris and many of our enterprise customers that there are different tools, or application servers, for different jobs. This is a direct result of the fact that different situations dictate the use of different programming models. The challenge is to choose the appropriate tool or platform for the job at hand. Requirements for Web application projects can be reviewed from the intersecting perspectives of project management, time to market, and technology.

Project management: Will you meet your schedules with a heavyweight EJB implementation? Will you resource the project in a timely manner, accounting for training overhead? Is your staff ready for the complexity of J2EE development? Are you?

Time-to-market: Can you afford the time to build the end solution for the next five years or do you need to get to market quickly, intending to evolve your end solution over time?

Technology choice: Does your select application server development and deployment environment support your entire team’s ability to meet your goals? Do you have to perform extensive training both for developers and administrators? Does your application design require pieces of the application to be distributed across servers, or will the entire application reside on an individual server?

Today, more and more customers are distinguishing between lightweight and heavyweight application server frameworks. Why? The implications on project development costs, deployment costs, time to market, and training become significant or insignificant depending on the nature of the solution being considered.

Most Web applications—perhaps 70 or 80 percent—are request/response, short-session, data-centric applications. Users of these applications are willing to hit the retry button when failure occurs. On the project side, these Web applications are perceived as straightforward, get-to-market projects, somewhat independent (at the business layer) of other department projects or products under development. Further, speed is everything to some applications, where low-latency is achieved by dedicated servers for single-purpose scaling and tuning. These are the applications that are best suited by lightweight frameworks.

Other applications are defined to leverage existing resources for longer lifecycles, and by their critical role or purpose to be intolerable of fail over situations. These applications and the platforms that are their operating systems must support the best in reliability and robustness. The ASP market, for instance, attempts to deliver the ultimate in fault-tolerant Web application servers where there is no room for a platform to crash. ASPs shift the spotlight to management where security, lifecycle management, and account management are critical to survival.

Best Lightweight Framework

The growth of Enhydra by the participation of consultants, ISVs, and IT departments has established Enhydra 3 as the open-source lightweight application server of choice. Enhydra 3 is an excellent choice for an enterprise’s standard lightweight platform, particularly given that it uses much of the same technology and programming language—namely, Java—that are supported in larger enterprise-class application servers. Not only is Enhydra extremely configurable and ideal for rapid development, but it also includes a number of J2EE APIs, particularly servlet 2.2/JSP 1.1 support as well as productivity and wireless development-enhancing technologies, thanks to Enhydra XMLC and its native three-tier superservlet architecture.

Enhydra use of standard servlet Web container technology and APIs makes it possible to easily migrate from this lightweight framework to heavier enterprise J2EE frameworks, including Enhydra 4, discussed later in this section. Because Enhydra 3 supports numerous migration paths to a J2EE platform, with Enhydra 4 as your enterprise application server, you can support a program for migrating your applications to a J2EE platform over time. Because an Enhydra application is structured as a single superservlet, for instance, it therefore can be used as a single component in a J2EE Blueprint application.

Best Presentation Server

Enhydra and Enhydra XMLC combine to make Enhydra the best presentation server in the industry, both closed-sourced and open. There are at least two reasons:

1. Enhydra XMLC enables the creation of easy-to-maintain and rework user interface presentations, eliminating the need for HTML/WML designers to be dependent on Java developers (and vice versa). This real-world capability is not available with Microsoft ASP or Sun’s JavaServer Pages (JSP).

2. Enhydra XMLC features native support of virtually every display device on the planet. From Web browsers to voice devices to wireless PDAs and cell phones, Enhydra leads the application server industry in this inherent capability.
From a supportability, maintainability, and project resource management point of view, JSP is the weak link in Sun’s J2EE Web container specification. JSP was defined as a standard without undergoing the test of extensive real-world Web deployments. The result is that features such as JPS taglibs have been introduced as afterthoughts in an attempt to patch some of these well-documented shortcomings. Enhydra XMLC, on the other hand, was defined from the ground up to address the needs of real-world consulting and product development needs.

Enhydra XMLC and the lightweight Enhydra framework make Enhydra the ideal presentation layer in any multi-tier Java application server configuration. In other words, you can benefit from the wireless and maintainability advantages of Enhydra XMLC and still build your business and data layers with the session and entity beans of a fully compliant J2EE application server such as Enhydra 4, BEA WebLogic, IBM WebSphere, or Silverstream.

Soon, the Best Enterprise Server Choice

Enhydra 4 is an enterprise-class version of the Enhydra application server currently under development. Targeted for availability in the first half of 2001, Enhydra 4 can be downloaded today as an easy-to-install, late alpha-stage product from Enhydra.org. Enhydra 4 is much more than yet another implementation of the J2EE specification. Enhydra 4 features the Enhydra services architecture that is, like open-source itself, designed to give administrators and developers a greater degree of configuration, integration, and deployment control than can be found from commercial J2EE products today. Enhydra 4 is discussed in greater detail below.

Enhydra provides the most flexible set of options for key roles in the enterprise or your product configuration strategy. From lightweight- to enterprise-class configurations, Enhydra is a cost-effective solution.
Commercial Application Servers Overview

There are approximately 40 vendors of application servers today. Like the car industry of the early 1900s and the PC industry in the early 1980s, consolidation and collapse are winnowing down the choices.

Today, there are only a handful of J2EE-compliant products such as those from ATG, BEA and iPlanet. Soon, Enhydra will be another. Each one has differentiating characteristics, but they also share a commonality that we will use later in this paper to compare with the Enhydra 4 architecture. The following comparative technologies encompass most server-side Java architectures. We exclude non-Java applications because, by definition, they are outside the set of evolving industry standards, supported by the Java programming language, that are defining enterprise-class applications servers.

Cost

Enterprise application servers are expensive. Most of them cost $10,000 or more per CPU to deploy. For independent software vendors, shipping a product on these platforms adds a tremendously high cost that must be passed on to the customer.

Monolithic Implementations

All of today’s closed-source J2EE architectures are monolithic. Vendors such as BEA and iPlanet integrate implementations of J2EE services together and deliver as an unalterable solution. If you have a Java messaging service that you believe to be faster or better, you cannot replace similar functionality in these products.

Complexity of development and deployment

Successful projects require more than great software. In order to maintain reasonable schedules, successful projects also require reasonable, containable overhead with respect to learning curves and implementation time. ATG Dynamo is an excellent product, but consider the depth of documentation required to ramp up on this technology. It represents a steep startup curve that can be mitigated only by staffing your project with veteran programmers. If your project requires all of Dynamo’s power, then there is little debate; if it doesn’t, is it the best solution for your project?

Restricted configuration capability in a production environment

Today’s modern application servers are often ill suited to address the needs of ASP customers, including those who need hot deployment in a 7x24 data center. To modify the security access list in a BEA deployment, for example, an administrator must recompile the ACLs list in order to capture changes, take the running applications off-line, and then restart the system.

Proprietary, inflexible programming models

Application servers advertised as J2EE-compliant are not immune from proprietary policies on application architectures. In the ATG environment, for example, you still are required to make use of ATG form handlers and other ATG-specific mechanisms that impinge the building of portable applications and force you to incur proprietary training overhead. In general, it is very difficult for application server vendors to migrate to J2EE support without migrating their old architectures and the tools that supported them.

Silverstream now supports “business object” development, which is a new feature in this data-centric architecture. If you’re already a Java or server-side development shop, do you really want to go with an environment that originally focused on migrating Visual Basic developers to the Java world?

Handcuffed by legacy of technology acquisition.

When you buy products such as iPlanet, are you paying for more than you want? Do you really need all the capabilities—and associated cost—of an iPlanet? With iPlanet, you’re also getting a heterogeneous implementation of Java and C++ by virtue of historical technology acquisitions by both Sun (NetDynamics) and Netscape (Kiva). When you are paying top dollar for a platform technology, keep in mind that you might be buying functionality that never will be put to use.

Support by closed source vendors

BEA is, without question, the industry-dominant leader. It appeals to executives and has become a product that is bought for its brand-appeal. However, engineers using BEA, asking questions specific to the BEA platform, dominate EJB development newsgroups. Clearly, these people are there for two reasons: they’re not getting the support they need in real time, and they have discovered that the BEA platform is not an easy one with which to work.

Bolt-on Wireless Support

Competitors in the industry are scrambling to offer the kind of wireless support that is natively available today in Enhydra 3. Many enterprise application server vendors are relying on third-party tools and partnerships to re-engineer wireless support into their platforms. These afterthought architectures will deliver difficult-to-port solutions since they will be non-standard implementations outside the scope of J2EE.

Enhydra

Enhydra addresses the above concerns in the following ways:

· Enhydra 3 is infinitely extensible. Entire services can be extended or replaced, depending on your need.

· Enhydra was written to be highly adaptable with respect to tool selection. You can select virtually any best-of-breed tools to work with Enhydra.

· Training overhead for Enhydra is very low. Since Enhydra introduces little proprietary technology or concepts, virtually everything you learn in Enhydra training can be transferred to other standards-based environments.

· By supporting the Tomcat 3.2 (servlets 2.2 and JSP 1.1), Enhydra applications migrate easily.

· Lutris Enhydra refocuses your spending dollar toward services and support. With Enhydra, if you need to bring new servers online to support your rapidly growing enterprise, it won’t blow your budget like the per-CPU costs of other application servers would. This point is of particular value for software vendors, who can avoid driving customers away with prohibitive per-CPU costs.

· There is no legacy of patching together acquired technologies. Enhydra has evolved steadily as a functionally increasing set of services and capabilities. The architecture is elegant and clear. And the open-source community evolves the product in response to actual market needs.

· Enhydra encourages solid three-tier application architecture designs. But if you want to write a simple two-tier, data-to-presentation application, you can!

· With Enhydra, you can provide your own first-tier support, if you so choose, because you have the source code. When you want simply to use the source code as a form of escrow, Lutris Technologies offers full product support services. MyNet, Turkey’s largest email portal, leveraged Enhydra source code availability to resolve a character set limitation: MyNet could not resolve this challenge in a timely manner through IBM and its WebSphere application server. With source code, you are in control of the success of your project.

· Enhydra supports the hot deployment of Web application vis a vis the Enhydra class loader. Enhydra 4 goes even further to support these features in a J2EE/enterprise configuration.

· Enhydra provides a low-threshold to fledgling Java developers. The Enhydra “appWizard” automatically builds a source tree organized as a three-tier distribution, and, using a predefined Make system, creates a running “stub Web application” that can be reworked at the developer’s own pace.

· Enhydra is the industry’s superior wireless development platform. Enhydra enables the developer to write one application with support for multiple presentations. As a presentation server, Enhydra represents platform-independent solutions when used with third-party application servers, including BEA WebLogic and IBM WebSphere.

Focusing on Enhydra versus BEA

“How does Enhydra compare with BEA WebLogic?” This is the most commonly asked question of Lutris and Enhydra.org. Let’s review some of the high-level differentiators that draw a clear distinction between Lutris Enhydra 3 and BEA WebLogic.

	· Lower cost of ownership
	The Lutris Enhydra licensing model represents significantly smaller per-CPU deployment costs as compared to WebLogic.

	· Greater performance
	As a lightweight application server, Enhydra has been shown in comparison tests to be 9 to 15 times faster than BEA WebLogic in through put (rate of data sent from the application to all clients), round time (average time to complete one iteration of a test script) and response time (average time for satisfying HTTP request and response).

	· Project Management Friendly
	Clean separation of resources, namely HTML designers and Java developers, reduces lines of interdependency. This is critical when the developers work for one company and the designers work for another. This is why Frog Design, www.frogdesign.com, a high end design house has partnered with Lutris.

	· Open-source Foundation
	Lutris Enhydra is based in open-source Enhydra. 100% of Lutris Enhydra’s source code ships with the product, ensuring maximum control and adaptability and flexibility, from adding new features, fixing bugs to deploying new applications. Driven by the open-source community of worldwide developers, Enhydra’s features and functionality are grounded in real world requirements.

	· Greater ease of configuration and deployment
	BEA WebLogic deployment requires complex descriptor files and re-compilation. With Enhydra, simple ASCII configuration files are used and no re-compilation is required. Individual applications can be deployed, stopped and restarted with out affecting other running Enhydra applications.

	· Customizability and adaptability
	With Lutris Enhydra, developers and their customers have the source code. Thanks to the availability of source code and the inherently extensible Enhydra architecutre, code modifications can be made at every level of Enhydra when new or reworked functionality is dictated. For example, developers can develop and easily plug in a new session manager for custom failover needs.

	· Native wireless and J2ME support
	Lutris Enhydra features native support for wired and wireless devices, including HTML, WML (WAP), cHTML (i-mode), XHTML, VoiceXML and J2ME (supported with kXML, the small device XML parser) and most recently, Flash 5 clients. With BEA WebLogic, you must go through third party sources or construct your own infrastructure. With Enhydra XMLC, you can write one application and add new devices incrementally.

	· Faster access to emerging technologies
	Enhydra is driven by requirements that emerge from the open-source community. New features, based on real world need, appear quickly. Closed source strategies such as BEA’s cannot keep up.

	· Reduced training requirements
	Enhydra is easy to learn. BEA is difficult due to its design and focus on EJB development. If most of your projects require straightforward Java development, training issues are greatly reduced with Enhydra.

	· Access to the worldwide Enhydra development community
	It’s common to see WebLogic developers “crashing” generic Java newsgroups, hoping to find an answer to a WebLogic-specific development issue. Enhydra developers enjoy finger tip access to the entire Enhydra development community through Enhydra.org. Java developers will find access to this community to be extremely, sophisticated helpful and professional in nature.

	· Enhydra XMLC
	BEA doesn’t have Enhydra XMLC. XMLC is rapidly becoming the preferred alternative to JavaServer Pages for project managers, designs and Java developers.

About J2EE

To be fair to application server vendors, the specification being followed, namely Sun’s J2EE, is not really a definition of an ASP-quality application server implementation. In fact, there are many instances in the J2EE blueprints where the vendor must supply the implementation details. For instance, J2EE defines deployment descriptor files, but it does not explain how to deploy the application. In a distributed environment, this is an important concern.

J2EE addresses core Internet computing services and APIs, including EJB container, RMI for invoking methods remotely, Web containers, JNDI for naming, JDBC for persistence, JTA for transactions, and JMS for messaging and JavaMail.

J2EE is a limited application server definition, more relevant to implementing Web applications for single customers. J2EE also comes with legal considerations that should be carefully noted.

J2EE is a very exacting and, as enforced by Sun’s SCSL license, a very demanding specification. Through J2EE, Sun defines with precision a branded set of APIs that cannot be enhanced by vendors. Vendors cannot mix and match versions of APIs within a version of J2EE. EJB v2.0 support legally cannot be put in a J2EE V1.2 environment, for example. Instead, vendors must wait until they are ready to implement and ship the entire J2EE V1.3 environment where EJB v2.0 is defined. Vendors with customers still using V1.2 face a significant support and sales challenge to upgrade customers to V1.3. Enterprise organizations can be quite stubborn about upgrading their mission-critical platforms, not to mention concerned when bug fixes for V1.2 are stopped.

At first glance, J2EE appears to be comprehensive. But gaps quickly become apparent when it is viewed in the context of a real-world deployment:

· J2EE does not address quality of service or scalability.

· J2EE does not address management or deployment or reliability in reasonable detail.

· Implementation guidelines of CMP (Container Managed Persistence) is left to the vendor. Without these details, EJBs cannot easily port to other J2EE platforms.

By avoiding certain implementation guidelines, J2EE is enforcing a closed-source approach in areas of the “J2EE Blueprints”. You can’t look under the hood, so to speak, as you can with open-source code. What do you do when your EJB wants to take advantage of a special SQL syntax request, such as outer join? CMP rules that it must take care of that for you. But how do you, the developer, know it can do such a thing?

Enhydra 4 and the Services Architecture

Being first is not always best. Lutris architects and the Enhydra community have the advantage of having watched the way in which BEA and others have implemented the rather immature application environment as defined by J2EE. As mentioned earlier, the single characteristic they share is their monolithic nature. As we watched our competitors systematically move to J2EE, a number of issues became clear.

J2EE is not a definition for an ASP-quality application server. But why shouldn’t it be? The user profile of an Application Service Provider is one that pushes the limits of manageability, scalability, mission-critical reliability, account management, and classic deployment issues such as hot deployment of runtime components.

The ASP Customer Focus

Lutris Technologies distinguishes Enhydra technology as standards-based, enhanced with innovation inspired by real-world challenges. From Enhydra XMLC to superservlets, Lutris’ customers always have been those in the trenches trying to implement and support customer requirements. This real-world accent is virtually guaranteed by the evolution of Enhydra in the open-source process, where worldwide user feedback and input is accessed and delivered long before FCS.

In every software project, it’s vital to apply the right tool to the right job. In order to identify the right tool, Lutris identified the ASP as the customer profile and design center for the Enhydra 4 enterprise platform. How will enterprise-class application servers serve the needs of the ASP market?

· How will an ASP perform account and billing management in an environment of shared object services?

· How will robustness and reliability be supported in such a complex scenario of application objects demanding services and resources?

· With multiple applications from multiple customers, will ASPs really want to launch a JVM for every application?

Lutris has attempted to define an architecture that can adapt to your job requirements.

· What can be done today, in lieu of the maturation of J2EE?

· What can enable flexibility?

· What can customers maintain themselves?

· What can accommodate ISV product configurations?

· What can be done now, yet set the stage for the future?

The answer to these questions is the Enhydra 4 services architecture. In defining this structure, it became clear that a thoroughly extensible architecture was key to addressing a number of issues ranging from offering maximum customer control and manageability to allowing customers to incorporate features to account for J2EE shortcomings.

On the other hand, we didn’t want to abandon those who wanted a smaller footprint or similar services in a lightweight configuration.

The Enhydra 4 Services Architecture: Accent on Extensibility

The Enhydra 4 services architecture is truly extensible. Users can configure Enhydra 4 just with the services they require. Users can make the footprint as small as necessary, choosing to deploy only those services that make sense to their particular needs. This form of framework tuning can adjust performance as well as manageability, since there a fewer variables that could go wrong.

The Enhydra 4 platform has a longer lifetime because you can add new, more modern services to replace the old. With service versioning, you can update the platform at your own pace. And by wrapping your legacy functions such as corporate LDAP server as an Enhydra Service, you truly can integrate your enterprise into your new-generation application platform.

A services approach makes the most sense because there is no single perfect application server for every need.

An Enhydra Service

The Enhydra 4 service architecture defines a service as anything from an SAP connection manager to an application itself. It is an isolated body of code introduced to the Enhydra kernel, discussed below. Applications are loadable and manageable, not just pages or EJBs, as defined by J2EE. A service comes packaged with a class loader, name space, loader and unloader, and service request name.

A service might be a database manager whose role is to manage the connections with a database. The availability of this service to other services means that developers can write leaner, more focused, highly optimized services that can share the database manager service. Optimized services are easier to maintain, isolate, and debug. Therefore, they execute faster. Moreover, a services architecture is

· Devised to allow easy legacy import

· Structured to fit the modularity needs of an open-source working group

· Usually wrapped, to support advanced management

· Integrated with custom class loader and dynamic visibility structures to provide versioned set of services in each application scope and allow hot update of implementation.

A service adds capabilities to the platform that has a different life cycle than applications. A service provides for sharing common functionality among applications, resulting in leaner applications that are easier to support, version, enhance, and manage. Under the Enhydra services architecture, services are more manageable citizens. And, by adding a custom “mbean” (managed bean), new services can extend the Enhydra management environment. This also includes legacy applications within a service wrapper, making it possible to extend Enhydra management to legacy-based services as well.

Relying on other services that can be shared is the way the Enhydra services architecture encourages highly optimized services. Even Enhydra InstantDB will be delivered as a persistence service in Enhydra 4.

Enhydra 4 supports additional flexibility through the use of “shims.” With shims, developers can insert software shims between the kernel and any service, allowing the programmer to intercept requests for services. This feature allows the programmer to add a policy to an existing security service, for example, such as barring certain access after 5 p.m. A runtime change rather than a source code change to existing service is plainly a real-world requirement.

Enhydra APIs and J2EE APIs

There are two fundamental service API groups under the Enhydra services architecture. One group represents the J2EE services, or J2EE personality. The other is the group of Enhydra enhanced services. These two groups are functionally equivalent except that the Enhydra services go further in terms of functionality and control. In chapter 17 of the “Sun Blueprints” document, everything that suggests, “thou shall not” is supported in the Enhydra services set. You want to create threads? “Blueprints” says you can’t. Enhydra says you can. The services below and others will be augmented with additional Enhydra services representing critical functions that are not part of the J2EE specification:

· task scheduler service

· logging service

· deployment service, and

· timing services.

The Kernel and Core Enhydra

Enhydra 4 incorporates the Enhydra kernel, a strategic feature for turning J2EE and Enhydra services into a mission-critical platform for control, robustness, and reliability. The kernel can come up and run by itself. It offers some resource management APIs/factories as core functions, including the following kernel managers:

	· classloader - makes classloaders
	· thread – wrapped threads

	· loader - loads services
	· initialization – starts services

	· logger - simple syslog-style
	· time – determines system time

	· socket - hands out wrapped sockets
	· mbean server – handles management traffic

An ASP does not want to launch a JVM for every application. The Enhydra kernel plays a key role between the JVM and the Enhydra services, supporting control, robustness, and reliability. The kernel is responsible for launching Enhydra services and ensuring that requests for resources are available when a service makes a request.
Management and Deployment

Enhydra 4 uses services to create a platform capable of supporting what we call “deep management.” The Enhydra 4 services architecture gives developers guidelines for enabling their service to participate as good management citizens: thus, it enables the Enhydra management system to receive the information necessary to monitor and assure the fitness of the services and the environment as an integrated whole.

The management of Enhydra 4 is based around the Java Management extensions (JMX) API, a standard Java API defined through the Java Community Process. Services and manageable components within Enhydra implement a bean, called an mbean, which describes their management capabilities. This information is surfaced to management applications through the management service using industry standard protocols such as SNMP. Even services that are wrappers around legacy functions can share and be shared in the management environment.

Further, in a distributed system, everything that is controlled is in name space. Management, deployment, and configuration are stored in the Enhydra name space.

Finally, the service view simplifies configuration and deployment. The Enhydra kernel is designed to assume that it never will be taken down. Administrators can add new services at runtime, without bringing the Enhydra kernel down. Two versions of the EJB container can run simultaneously, for example. When one container is removed, all the services that had been using it can be pointed to the newer, tested version.

Load balancers are great example of how custom services support deployment needs. Not all network administrators like to manage load balancers the same way. So Enhydra 4 has been designed to include a default load balancing service. The administrators have the option to replace it with their own enterprise-specific mechanism.

Working with Technology Partners to Deliver Core J2EE Services

Lutris is working with its Enhydra.org technology partners Evidian Software (formerly BullSoft) and France Telecom to deliver service-based open-source implementations of the J2EE EJB container and CORBA ORB (Object Request Brokers), respectively. In order to migrate the stand-alone JOnAS EJB technology to the Enhydra 4 services architecture, Evidian and Lutris have reorganized JOnAS into new services:

1. Transaction manager service

2. Database manager service

3. EJB (v 1.1) container service.

Rather than maintaining the overhead of its own security model, the JOnAS EJB container now delegates security to the Enhydra security service.

Enhydra Default Services

As a product, Enhydra 4 will be a selected set of core services including or augmented by additional services such as J2EE, EnhydraMQ (for messaging), and EnhydraWeb for superservlet application development. Create a wrapper around Progress’ SonicMQ messaging technology for more enterprise quality than the default mechanism provides.

Real-world Security Support

There is no single way to implement security. Security policies, strategies, and implementations vary from company to company. We believe that every Enhydra alternative is deficient in this area. Broadvision and Vignette each have implemented its own vision for security. Quite simply, you must do it the way each company dictates. When you deploy an application with BEA, you have static configuration for access controls, meaning that the only way to make changes—such as adding a new customer, for example— is to stop the application, make changes to the ACL, and then redeploy the ACLs list.

The fact is that enterprises already have a security strategy. Rather than shoehorning an un-malleable security mechanism, you can add a new Enhydra service that builds on your existing system, such as an LDAP database. Rather than bring down applications, you simply update your security service.

Enhydra 4 has simple access verification as part of its base product. As an Enhydra service, it is designed to be unplugged and replaced with a customer’s custom security service that accesses that corporate LDAP system. No other application server allows a new service to be written and used to replace and existing service.

For the Developer

Lutris has made it very easy for third-party software vendors to write new services, via the Enhydra appWizard wizard (part of the Enhydra.org Kelp working group project, to create a simple “hello world” service framework. From there you simply add your code. And because the product is open-source, you can examine other services for strategies to use. Our partners can create unique bundles simply by turning on or off selected services.

Enhydra 4 is underway in the open-source process

A late-alpha stage version of Enhydra 4 is available today on Enhydra.org. Already, Java developers around the world have downloaded it and are working on the tuning and refinement of this new programming model.

Summarizing The Enhydra 4 Competitive Advantage

Enhydra 4 carries on the Enhydra tradition of pragmatic, real-world support for those pioneering the Internet economy:

· Extensibility for extreme modularity. Rather than preintegrate, Enhydra 4 gives you a set of default services and invites you to use, replace, and improve them as you wish.

· Designed for in-depth management.

· Designed for legacy support and integration with existing technologies and enterprise policies.

· Designed to continue support for EnhydraWeb and the superservlet architecture of Enhydra 3.

Lastly, Enhydra 4 is Lutris’ and Enhydra.org’s response to the lessons learned from the first wave of J2EE commercial deployments. Enhydra 4 gives you both the J2EE environment and the flexibility to adapt and enhance it for your computing and eBusiness goals.

Summary

Enhydra is infrastructure technology with a unique value proposition: deliver low total cost of ownership but with superior technology through a combination of open-source based innovation and incorporation of standards. The growing size and distribution of the Enhydra.org community of consultants, software vendors, and corporate IT organizations is moving Enhydra innovations toward becoming de facto standards, especially Enhydra XMLC.

As enterprise IT gains more experience with Web-based development, a significant pattern has become apparent with the identification of at least two programming models that require the use of lightweight and enterprise-quality J2EE application servers. Enhydra is the perfect lightweight framework solution, thanks to its pragmatic architecture for rapid development and extreme extensibility, support for best-of-breed development tools, and adherence to evolving Java and XML standards.

In addition, Enhydra 3 leverages those standards to support a solid path for Enhydra applications to migrate to the J2EE environment. The additional benefit of the superior approach of Enhydra 3 to presentation building—a vast improvement over the fundamentally flawed JavaServer Pages—introduces a third role for Enhydra, as a presentation server for third-party J2EE-based deployments. As a presentation server, Enhydra makes J2EE environments capable of wireless and wired Web applications that are easy to maintain. It also greatly reduces project interdependencies between HTML designers, information architects, and Java developers.

Lutris continues to leverage a real-world perspective through the open-source process and its own hands-on involvement in Web application building. By introducing a fully extensible, plug-in model based on services, Enhydra 4 gives unprecedented control to ASPs, vendors, and enterprise IT so they can grow the capabilities of their platforms as needed. The manageability of that platform is enhanced by the controlled addition of services only as they are needed, as well as the more intricate management features that are supported by the services themselves. Enhydra 4 simply appears to be a superior approach to deploying J2EE services and custom services, and embracing legacy functions into the enterprise IT Internet computing platform.

Enhydra is more than an open-source movement supported by a large group of commercial concerns. Lutris Technologies, the originator and steward of Enhydra and Enhydra.org, has delivered the industry’s first success story where a commercial concern has introduced and delivered significant server technology through the open-source mechanism. Through the development of worldwide partner-based relationships, Lutris is addressing the number one concern IT has about open-source: there must be a large, robust selection of established vendors to provide support services to back up the technology. Lutris Technologies and a growing list of well-known companies, including NEC Soft of Japan, are continuing to establish that essential community.

The Enhydra™ Competitive White Paper

By David H. Young

Lutris Technologies, Inc.

February 2001

� EMBED PBrush ���Figure � SEQ Figure * ARABIC �1� - Enhydra 3 architecture including the Superservlet

HBO’s Sopranos and �Enhydra XMLC

Softcom, Inc. built HBO’s Soprano’s website using Softcom’s SMIL Streaming Media technology as integrated with Enhydra and Enhydra XMLC at the presentation layer. The business layer is served by a closed-source, commercial third-party application server.

Enhydra Services Architecture�

Allows easy incorporation of legacy functionality.

Structured to fit open-source working group modularity needs

Supports highly focused, advanced management

Provides for version control of functionality

Allows hot swap support of implementations and versions of implementations.

���Figure � SEQ Figure * ARABIC �2� - Enhydra XMLC compiler, DOM, and accessor methods

�
Enhydra 3.5�
WebLogic�
WebSphere�
Oracle 9i�
�
VoiceXML�
(�
�
Via Voice�
(�
�
CHTML/iMode devices�
(�
Partial�
�
�
�
WML/WAP�
(�
(�
(�
(�
�
MIDp/J2ME-HTTP�
(�
�
�
�
�
XML Schema Architecture�
(�
�
�
(�
�
XHTML/WAP 2/ioMde3�
(�
�
�
�
�
Open-source�
(�
�
�
�
�
�Figure � SEQ Figure * ARABIC �3� - Enhydra 3.5 Native Wireless Support

�

Figure � SEQ Figure * ARABIC �4� - Enhydra 4 services architecture plug-in structure

� “Lazy DOM”, a derivation of the Apache Xerces Document Object Model, is an innovation by Lutris Technologies for the purpose of improving the runtime performance of XMLC document

A White Paper From Lutris Technologies, Inc.

1200 Pacific Avenue Suite 300, Santa Cruz, CA USA 95060

http://www.lutris.com (831) 471.9753

Copyright © 2000-2001 by Lutris Technologies, Inc. All Rights Reserved.
1

_1035311728

