

 Lutris EAS 4

LUTRIS EAS
SERVICES ARCHITECTURE:
DYNAMIC CLASS LOADING

Lutris EAS 4
Services Architecture Classloader

Version 1.4

Table of Contents
1 INTRODUCTION 3

2 A WEB OF SERVICES - WEB SERVICES AND BEYOND 3

3 THE SERVICES PROGRAMMER'S MODEL 4

4 HOW WE GOT HERE: JAVA CLASS LOADING REQUIREMENTS 4
4.1 Requirements for Java..4
4.2 Implementing class loading requirements for Java ...5

5 BRIDGING SPACE: USING DELEGATION TO SHARE COMMON CLASS LOADERS 6
5.1 Hierarchies and federations: sharing classes to bridge disparate name spaces..........6
5.2 Implementing the hierarchical delegation model ..7
5.3 Implementing the federated delegation model..7

6 ENHYDRACLASSLOADER IN THE EAS SERVICES ARCHITECTURE 9
6.1 EnhydraClassloader for the service provider...9
6.2 Static context: setting up the service class loader...9
6.3 Dynamic context: setting up the client class loader...11
6.4 All together now...14

7 WRITING SERVICES, MINDFUL OF BINDING SCOPE 15
7.1 Class visibility in the Services Architecture..15
7.2 Upgradability..16
7.3 Composability...17

8 FREEDOM TO INNOVATE 18

9 RESOURCES 19

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 2 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

1 Introduction
The class loading scheme in the EAS Services Architecture makes it easy to upgrade and compose
applications and systems. This may sound ordinary, but it is unique and stems from the ability of
Lutris EAS 4 to dynamically compose class loader delegation. This article explains how EAS
Services Architecture class loading scheme works, in fairly dense technical detail. (This is a "hard
hat area", in the words of one reviewer.) To set your eyes on the prize, I start by describing the
service programming model for both client and service programmers. To set the stage, I summarize
the requirements and implementation of Java class loading. Then I try to show, step by step, how
the EAS class loading scheme works and how it differs from ordinary class loading schemes. This
part takes some patience as I unwrap different layers of the problem and our solutions. Finally, I
describe how to write services to maximize your upgrade possibilities, and suggest that such
services are the most composable. If you get through all that here, in a future article we'll talk about
how the class loading scheme works in the deployment of WAR and EAR applications.

You don't need to know this to use and enjoy Lutris EAS 4. But I think it is interesting, and it
distinguishes Lutris EAS 4 from other J2EE application servers. If you are a developer, I hope to
show you that services are easy to use and write. If you are a designer, I hope to suggest that the
services programming model is superior in many cases to either EJB or XML architectures. If you
are evaluating Lutris EAS 4 as an enterprise platform, I hope to present one of the technologies
underlying the composability of EAS services, which will make Lutris EAS 4 more extensible, secure,
usable, and reliable than the competition. While Lutris EAS 4 supports the J2EE- or XML-based
programming models, you are also free to innovate with an architecture that brings the benefits of
interface-disciplined programming up from the level of the object to the level of semantic services.

2 A Web of Services - Web Services and beyond
Much excitement now surrounds the ideas of "Web Services" and "Service-based architectures." In
these systems, components interoperate via XML data adapters and use XML to present meta-data
about their facilities so they can be assembled into applications. While Lutris EAS 4 supports these
architectures with SOAP services and XMLC, the underlying EAS Services Architecture itself has the
same goals but uses a different approach: it delivers the same level of composability, but uses
tightly-bound Java invocation interfaces for security and efficiency. The EAS class loading scheme
makes this possible and makes Lutris EAS 4 unique among J2EE application servers. By raising
Java encapsulation from the level of an object to that of a service, it provides a much richer and
more powerful integration than XML or any fixed component model.

But the first benefit most people notice about our class loading scheme is not composability but
upgradability. On most Java application servers, to upgrade the server you have to bring it down
completely, and to upgrade an application component you have to stop the entire application,
undeploy it, and redeploy entirely. This is because Java class loading requirements make it difficult
to partition class binding scope; most vendors have used simple class loader hierarchies which
require all associated components to be deployed or undeployed at once. As a result, most lapses
in server or application availability stem not from failures but from upgrades. On Lutris EAS 4, you
can upgrade the implementation of services at run time even while maintaining existing clients.

This works through two mechanisms. First, when clients look up services using JNDI, the necessary
class binding scope is automatically made visible to the client. Clients need not have library jar files
in their deployment archives. Second, Lutris EAS 4 makes it possible to separate service
implementation classes from the export/interface classes. Clients can continue to hold objects of

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 3 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

export/interface classes while implementation classes are replaced, which permits old and new
service objects to interoperate but prohibits clients from interfering with implementation classes.
Together these mechanisms permit clients to always get exactly the classes they need.

3 The services programmer's model
The programmer's model for service clients is natural: If you want a service, just look it up at run-
time by name in JNDI. If it's a service that returns a proxy target, you can use the target like any
other client object. If it's a library service that returns no target, you can now see all the library
classes from your client code. Also, if you want to make libraries available to components without
doing a run-time lookup, you can add library lookup's to your deployment descriptors and never
touch the code. Either way, after the lookup, you will be able to see all the service export/interface
classes - classes determined to be correct at build time, because you compiled client code against
the export classes of the service, ensuring that the class scope provisioning will be sufficient.

The programmer's model for service writers is natural, too. In the enhydra-services.xml descriptor,
you segregate your implementation classes from your interface/export classes. If you are publishing
a library, that's all there is - no coding required. If you are providing target service proxies, you write
a factory for the targets. Lutris EAS 4 takes care of the rest.

You need not understand how the JNDI lookup of a service has the important side-effect of making
visible the export classes required for the service target to be used, or that our class loaders are
arranged in a federated scheme rather than a hierarchy, permitting local sharing without interfering
with the global space. But understanding it is half the fun, and gives you another dimension for
comparing application servers. The story starts back in the days when the language wasn't even
called "Java" yet and enterprise-class computing was not foremost in the minds of the designers...

4 How we got here:
Java class loading requirements

4.1 Requirements for Java

To realize Sun's vision of vast forests of embedded devices connected to a network, a primary
design objective of the Java VM was the safe network download and execution of platform-
independent byte code. This leads to the VM's requirements for loading classes and to the
implementation, which are sometimes summarized as one requirement, for run-time typing:

Feature Requirement Implementation

extensible To permit byte code to be loaded from anywhere, the
loading system must be extensible.

Classloader superclass delegates to user
subclasses to load byte code.

lazy
resolution

To respect network latencies, the VM has to defer binding
until actually necessary.

VM defers loading & binding until de-
referencing variables for fields and method
parameters and result values.

multiple
namespaces

To permit byte code to be loaded at any time, the VM has to
support multiple namespaces to avoid irremediable name
collisions as new byte code is loaded

each class loader defines a name space

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 4 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

collisions as new byte code is loaded

irrevocable
binding

To permit the VM to optimize within and across classes,
binding once made must be irrevocable

VM enforcement of binding invariants

run-time
typing

To be safe, the type system has to be enforced at run time, so
the VM must be able at run time to resolve symbolic
references within code, binding them to available binary
code

All of the above and more...

The key things to remember from this are (a) lazy resolution means you may not know until well into
run time that you have a class-binding problem; (b) java.lang.Classloader is a template class
which establishes a standard algorithm and set of behaviors for loading classes that must be
followed to get correct behavior. For these reasons, you must take care when writing your own
class loaders; consider next the implementation of each feature.

4.2 Implementing class loading requirements for Java

Extensible: The class loading process is normally initiated by the VM which delegates the loading to
a Classloader. The loading process involves loading byte code for the classes, converting to any
internal binary form, and resolving, which is primarily linking symbolic names to actual binaries (also
called "binding"). The Classloader class defines the template algorithm in four methods, some of
which subclasses override in order to modify the loading behavior. (I'll show with the full signatures
but indented to show the order of invocation):

• public Class loadClass(String name..) // top-level method
• public final Class findLoadedClass(String name) // find cached Class
• public Class findClass(String name..) // look for byte code
• protected final Class defineClass(String name, byte[]...) // convert to class
• protected final Class resolveClass(Class c) // link class

Basically, a class loader is supposed to check its cache first, and then try to find the class in its
resources (files or URLs). If byte code is found, load it and delegate to the superclass to define and
resolve the class. Resolving the class may involve recursively loading more classes. Subclasses
may implement any of the non-private, public or protected methods. Implementers mainly override
findClass(String name) in order to access custom resources, but I'll discuss below the
significance of overriding other methods.

Lazy resolution: When does the VM initiate loading? Basically, loading a class causes its parent to
be loaded, but otherwise no class is loaded unless by dereference of a non-null reference. Classes
may also be loaded explicitly. Thus, a class is loaded (a) explicitly by calling
Classloader.loadClass(..) or Class.forName(String...); or (b) implicitly by the VM, (i) when
dereferencing a variable or (ii) when resolving the parent of a class. To load a class, the VM calls
loadClass(..) on the Classloader of the currently executing class. Many programmers are
confused by lazy resolution because you can have incompatible classes in a system and not get
ClassCastException until much later, when a non-null reference is passed to another class.

Multiple namespaces: Each class loader defines a unique name space. Many Java programmers
don't realize that the identity of a class is determined by the combination of the fully-qualified name
of the class and its class loader. You can get ClassCastException when the two types have the
same name; to understand how this is enforced, you have to understand that the VM maintains a set
of binding invariants for each class.

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 5 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

Irrevocable binding and binding invariants: Given multiple namespaces, there can be more than one
instance of java.lang.Class representing a given type in a VM. There are many reasons to require
that, once classes bind with each other, the binding be irrevocable, e.g., to permit the VM to make
certain cross-class binary optimizations.1 As a practical matter, irrevocable means (a) a class loader
always returns the same Class when asked to load a given class name; and (b) no class may link
with two other Class instances having the same name.

The Classloader cache mechanism implements both (not surprisingly, in final methods). First, all
class loaders are supposed to check the cache before attempting to load a class. Second, the
system maintains a set of rules (the binding invariants) which prevent any second class instance
from being used when a first class instance has already been linked with (the third) class instance.
For example, if class CA has been linked with the first class CB, the system adds an invariant rule for
any field of type B in class CA that references thereto must be resolved to class CB. The system
adds rules for all fields, method parameters, or method results of type B. These rules are added
when a class is added to the cache or linked to another class. Whenever you get a
ClassCastException from passing in an object of the correct type (but loaded from a different class
loader than the same type class linked earlier), it is because one of these invariants was violated.

Most programmers experience the Java class loading only as failures - ClassNotFoundException,
ClassCastException, etc. You now recognize one of the interesting cases of ClassCastException,
and what it takes for there to be a ClassNotFoundException: the class loader was unable to find the
class in the cache or in its resources.

But consider yourself a designer of an application server. Not only are classes distinct if they are in
different name spaces, but also Java's memory management takes most of the control away from
you. No class or class loader will be garbage-collected at least until all instances of those classes
are not reachable. How would you implement undeployment and redeployment? Most have
followed Sun's lead in using class loader hierarchies. This enables them to share classes, but it
effectively makes the entire hierarchy into a single deployment unit. To understand how Lutris has
worked around that problem, see next how our class loader scheme achieves the same goal of
sharing classes without pulling everything into a single deployment hierarchy.

5 Bridging space: using delegation to share
common class loaders

5.1 Hierarchies and federations: sharing classes to bridge
disparate name spaces

The goal of supporting multiple name spaces is not only to keep them distinct, but also to permit
them to work together. The only way (short of data-based communications) for two classes from
different name spaces to work together is for them to be able to share classes loaded from a
common class loader.

In the VM Sun established a delegation model that enforces a hierarchical scheme, whereby child
class loaders can share common classes in the parent class loader. This is how (parent) system
classes are shared with multiple (child) class loaders. In this scheme, a parent is set on Classloader
construction, to ensure constancy of the delegate ordering, which is required to ensure that
successive loadClass(..) calls always return the same class.

1 In J2SE 1.4, the debugging architecture (JPDA) permits you to replace a class at runtime. This is consonant with the irrevocable binding
rule because you cannot replace it with another class in the running system, previously bound to third classes.

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 6 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

In the EAS Services Architecture the team at Lutris has added a delegation model that enforces a
federated scheme, whereby both the client and the service class delegate to the export/interface
class loader of the service. This is how services classes are shared with multiple clients. These new
delegates can be added dynamically at any time. Our variant of delegation is deterministic and
preserves all the requirements and semantics of class loading, but permits class loader schemes to
be assembled dynamically.

5.2 Implementing the hierarchical delegation model

When implementing a Classloader, the "upward delegation" rule is that when any Classloader is
asked to load a class, it first delegates to its parent, and continues only if the parent is unable to load
the class. This means that if any class is ever loaded by a common parent, it will be the class used
when resolving other classes. This prevents binding errors and enforces the primacy of system
classes because the ordering is determined to privilege system class loaders.

Standard algorithm: With upward delegation, the template algorithm changes to insert the delegation
in loadClass(..) (here represented without full signatures and in text form for):

• loadClass(..)
• {check cache}
• parentClassloader.loadClass(..)
• findClass(..)
• check files/URL's
• ask parent to resolve/bind
• {installs in cache}
• ...

Each class loader checks the cache, checks the parent, and only then tries to load the byte code
itself, handing the result back to the parent class for resolution.2 The system Classloader will
attempt to resolve what's required at load time (super classes, etc.) and will add the invariants (re:
method and field references) when the class is added to the cache.

So, given this, what classes will the VM load when trying to resolve a reference in a class? This is
sometimes called the "visibility" or "binding scope" of the class. For the Classloader class under the
hierarchical delegation scheme, it is:

• the ability of a given class to bind other classes, as determined (recursively) by the parent class
loaders and by a class loader's own sources of byte code

You can compare class loading schemes in terms of the visibility they afford to classes. You'll find
the EAS Services Architecture provides more sources, each of which has a finer granularity. (This
granularity contributes to the composability of services.) Our scheme and the visibility are more
complex than the standard Sun scheme, but I hope you'll agree the expressive power is worth it.

5.3 Implementing the federated delegation model

The EAS org.enhydra.classloader.EnhydraClassloader (ECL) has a delegate list which it uses
after delegating to the parent. Classloaders can be added to the end of the list at run time, but

2 Don't confuse the parent class with the parent class loader.

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 7 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

nothing is ever removed from the list. Once a class is loaded from a particular class loader, that
loader will always be the first one capable of loading that class which is asked to load it - just as
guaranteed by parent delegates. Consider the revised algorithm, with added steps in bold:

• loadClass(..)
• {check cache}
• parentClassloader.loadClass
• findClass(..)
• {check cache}
• for each delegate: delegate.findClass
• findClassSelf(..)
• check files/URL's
• ask parent to resolve/bind
• {installs in cache}
• ...

First, we created a method findClassSelf which does what findClass used to. Subclasses of the
EnhydraClassloader override this in order to implement local resources, etc. This permits us to use
findClass for recursive delegate calls.

You will note that the delegation happens in and to findClass(..), not loadClass(..). It's in
findClass(..) rather than loadClass(..) because parents do not need to be searched during
delegation.3 It's to findClass(..) because delegating to loadClass(..) would change the
semantics of findClass(..) to add a parentClassloader.loadClass(..). But because the
delegation happens in findClass(..), we have the duplicate cache check for the initiating class
loader, at a minimal performance penalty. In this way the EnhydraClassloader can act both as a
delegator (going through the delegate list) and a delegate (checking the cache in findClass).

This scheme enforces the rule that a class loader always returns the same class for a given type
name, both for itself and on behalf of all the class loaders that it delegates to. What's new is that an
EnhydraClassloader might be unable to load a class at one point but almost immediately thereafter
be able to load that same class, by virtue of a new delegate being added to the delegation list.4

With delegate lists, you now know a bit more about how a client comes to see the service export
classes after looking up a service in JNDI: the export class loader is added to the delegate list for
the client during the lookup. For classes defined by EnhydraClassloaders, you understand visibility
now as "...determined by the ordered list of parents, delegates, and byte code sources..." This
makes it possible for clients to get dynamic scope.

3 All EnhydraClassloaders on delegation lists have our "top" class loader as their parent. Class loading is always initiated by a
loadClass(), not findClass() (which isn’t public). Since loadClass() guarantees that the parent chain is always
invoked, and since the parent is the same, subsequent parent delegation can be skipped by calling findClass().
4 Sun has similar semantics in the URLClassloader by virtue of permitting new URL's to be added after the class loader is constructed;
these semantics do not violate any class loading requirements. However, adding URL's does not permit classes to be shared; only if they
come from a common class loader can classes be shared. In our scheme, a service export class loader can be added to the delegate list of
any number of clients, so they can all share those classes. This would be impossible by adding URL's to the class loaders for each client.

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 8 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

6 EnhydraClassloader in the EAS Services
Architecture

6.1 EnhydraClassloader for the service provider

Not only clients but also service providers use EnhydraClassloaders. The service implementation
class loader is an EnhydraClassloader with the service export class loader on its delegate list. Thus
the export class loader is on the delegate list of both the client and the service. This is how classes
are shared.

This next section discusses the technical details of how the EnhydraClassloader is used in the EAS
Services Architecture. It talks about the setup for services and for clients, and how the export class
loader is added to the client delegate list during the JNDI lookup.

This section should help for writing services and clients, especially when writing service deployment
descriptors. Programmers new to EAS are sometimes confused by how some descriptor elements
are close but distinct (e.g., "load-service" and "bound-library"; "export-jar" and "service-jar"). More
generally, this section should give you a model of what's going on so you can reason your way
around the class loader issues in the services architecture.

6.2 Static context: setting up the service class loader

A service is implemented in a TargetAccessPoint (TAP)5 subclass which is instantiated by EAS at
run time. EAS first sets up your service classloader appropriately and uses them to load your TAP
class and create a TAP instance. The class loader used to load/define the TAP class is the
"implementation" class loader.6 As you know from the loading rules, every object it defines will
search for classes starting from itself, the implementation class loader, so you can think of it as the
binding gateway for your service. Whatever classes you need should be accessible from the
implementation class loader.

As an EnhydraClassloader (ECL), the implementation class loader has a delegate list, and the first
element on the delegate list is the "export" class loader. Classes will be defined from the export
class loader before they would be defined by the implementation class loader, because a delegating
class loader first defers to any delegates. Also on the delegate list are "bound" libraries. (Again, a
library is a service that presents only classes - no target proxy.) Bound libraries are services made
available to the service implementation ECL only by putting the export class loaders for those
services on the delegation list when the TAP implementation class loader is created. These typically
represent classes your TAP classes require and are not visible from the export class loader. You
add them by listing the services in bound-library elements of the enhydra-service.xml. These are all
in the following diagram:

Diagram: service class loaders

5 The TargetAccessPoint (TAP) is so-called because it is the point where clients access service "targets", i.e., proxies. Your TAP class is
essentially a factory for producing targets. When a client looks up the service in the namespace, there is no pre-existing target object
waiting in storage; instead, there is a reference to your TAP factory that is invoked during the lookup to produce the target. The target is
passed back to the client as a service proxy. In cases of service libraries, there is no target, but the class scope mechanisms are the same.
6 The implementation class loader is sometimes called the "private class loader." Don't confuse that with any notion derived from Java's
private access specifier. Also, the export class loader is sometimes called the "public class loader", or its classes referred to as the "service
interfaces". Don't confuse that with any notion derived from Java's public access specifier or Java Interfaces, or with the more restricted
notion of "service interface" element in the enhydra-service.xml.

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 9 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

You can see the numbers on the graph representing steps in the delegation order, so you can walk
through a typical load operation:

 pseudo-code explanation

0 {implementationECL.}loadClass(..) VM or explicit call to load class

1 {implementationECL.}super.loadClass(..) upwards delegation to parent

 {implementationECL.}findClass(..) implementationECL.loadClass(..)
calls implementationECL.findClass(..)

2 {for each delegate, call findClass(..)} implementationECL.findClass(..)
delegate loop

3 delegate[0].findClass(..) exportECL checks cache...

 {for each delegate,} ...delegates

4
 delegate[0].delegate[0].findClass(..)

... first delegate is export ECL of parent
service

5 delegate[0].findClassSelf(..) ... export ECL checking URL's

6 delegate[1].findClass(..) boundLibrary1 checks cache, delegates,
URL's

7 delegate[2].findClass(..) boundLibrary2 checks cache, delegates,
URL's

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 10 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

8 {exportECL.}findClassSelf(..) implementationECL checks URL's

The effect of this scheme is correct: classes will be loaded first from parents, then from cache, then
delegates, and then from local URL's. Thus, service implementation loaders defer to their export
loaders, and will load classes from there first. Further, class scope granted by specification (in the
enhydra-service.xml descriptor) will take precedence over class scope gained at run-time (via
naming lookup, discussed below). The service developer controls visibility but can enjoy incremental
visibility, e.g., during implementation upgrades.

Clients also have a delegate list, which after lookup includes the export class loader. Hence, after
the lookup clients will similarly load the export classes first from the export class loader. This is how
services and clients share common classes, and the ordering is why it works. Essentially, the export
class loader acts as a local "system" class loader, taking precedence in binding for the community
created by a service and its clients.

Upgrade: Now you can glimpse how EAS can upgrade the implementation without disconnecting
clients. Clients can hold references to objects defined by classes in the export class loader, so their
own classes may have bound to the export classes. ("Bound" here means that the VM added
binding invariants referring to those Class instances). But clients do not bind with classes in the
implementation class loader even if the target objects the clients hold are defined by implementation
classes. This permits clients to use new targets defined by different implementation classes without
binding errors. As a result, the implementation class loader can be removed and replaced, adopting
the old export class loader on its delegate list. Existing clients will be able to continue to use their old
targets and also get new targets without getting ClassCastException's from the system Classloader's
cache-based invariant enforcement mechanism.

However, this glimpse is incomplete. Which client class loader gets the service export class loader
on its delegate list? Objects the client holds may come from many class loaders, but any client
object in any thread should be able to use the target and hence needs to resolve the export classes.
For you to understand the answer to that, let's see how EAS uses the context class loader in
implementing thread-based scoping for applications and services.

6.3 Dynamic context: setting up the client class loader

In Java 2, Sun implemented context class loaders to permit dynamic scoping. These follow the
thread of execution as a backup class loader to the hierarchy available from the current object.7 The
EnhydraClassloader delegates to the current context class loader as the last phase of the
loadClass(..) process. We can thus again amend our definition of class visibility, which now we
understand is "... determined by the current class loaders for the parent, the object and its
delegates, and the context..." The complete algorithm is thus:

• loadClass(..)
• {check cache}
• parentClassloader.loadClass
• findClass(..)
• {check cache}
• for each delegate: delegate.findClass
• findClassSelf(..)
• check files/URL's

7 This was needed to support situations where objects running in a thread required visibility into a broader scope than their own
Classloader. This is necessary, e.g., for the RMI class loader running under the system class loader to be able to access client scope in
order to deserialize classes.

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 11 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

• ask parent to resolve/bind
• {installs in cache}
• ...
• contextClassloader.findClass(..)
•

This means that the EnhydraClassloader is compliant with any class loader set as the context class
loader. But an EnhydraClassloader can and does act as the context class loader, providing a
dynamic naming scope.

EAS creates a single EnhydraClassloader to serve as the context class loader for each "client."
Whenever that client thread does a JNDI lookup of service, our naming system adds the service
export class loader to the delegate list of the EnhydraClassloader. Any object in the service or
application will then be able to load classes from the looked-up service's export class loader.

To associate this single EnhydraClassloader with a client, EAS uses its control over threading.
Clients are either service threads or application threads; EAS manages applications and services
primarily as thread aggregations. Any new Thread, whether created by a call to new Thread(..) or
using our thread service, adopts the context class loader of the creating thread. When EAS starts
applications or services, it sets up the application/service context class loader for the initial threads,
and the same class loader instance follows any threads created by the service or the client. As a
result, anything running in the thread of a service or application will be able to load classes from the
export class loaders of any services looked-up from that service or application. In this sense,
services are acting as clients to other services in the same way as application clients are.8

Since we have an EnhydraClassloader acting as the context class loader in every service and
application thread, we have a mechanism for adding dynamic context: When any client (whether
service or application) does a lookup in the naming system to another service, the naming system
casts the current context class loader to an EnhydraClassloader and adds the export class loader of
the looked-up service to the delegation list of the context class loader, making it available throughout
the service or application threads.

Just as you can declare in XML the bound libraries to be added to the service class loader when it is
created, you can specify services to be pre-loaded into the context class loader. The result is a
delegate list with the class loaders specified by load-services followed by the export class loaders of
the services that are looked up in JNDI:

Diagram: context class loader

8 This makes the term "client" somewhat ambiguous, in that it's used both for "the service-user" and "the identity associated with the CCL-
context." For example, when application code running in an application thread uses a service target, the application is the client in both
senses. But when that same service target in turn invokes another service target (perhaps in a way unknowable to the application client),
then the invocation is running in the application thread, but one might consider the initial service target the client of the other service
target.

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 12 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

When the EnhydraClassloader is used as a delegate context class loader, it has no byte code
resources of its own. Further, it delegates to the same "top" class loader as others and is ordinarily
invoked via findClass(..), so it effectively does no parent delegation. This does not affect the
correctness of the upward-delegation scheme because the context class loader is guaranteed to be
the last class loader invoked, after which the "top" class loader (and its system parents) have already
been invoked.

Since this context class loader is available in any client thread, the class loaders on the delegate list
are available when executing in other objects. For example, when the client invokes a proxy target,
the target will first resolve classes through its defining loader (the implementation class loader) and
then through the context class loader.

The rules for when to use load-service and bound-library are relatively simple. Use bound-library if
you need classes to be visible from your TAP classes. Use load-service if you need classes to be
visible in any of your threads, e.g., even when executing objects not created by the TAP
implementation class loader. (I remember this by thinking of threads dynamically loading services,
but libraries being bound to the defining class loaders.) If you need the same service for both, put it
on both lists; the same class loader will be used in both places, so the classes will resolve correctly
both for clients and when the target is calling back into the TAP.

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 13 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

6.4 All together now

Let's review the whole class loader scheme and elaborate a complete description of class visibility in
EAS.

Diagram: EAS class loading scheme

Client context class loader: This delegates to the export class loaders of the "load-services" and any
services looked-up. The "load" services are also specified in the enhydra-service.xml. As a
delegate of the service's context class loader, their classes are visible in any thread of the service.
Both services and applications have a context class loader. Whenever they look up a service (i.e.,
act like a client to the service), the export class loader of the service is added to the delegate list if it

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 14 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

is not already there.9 Unlike most class loaders, this context class loader does not load any byte
code and effectively does no upward delegation, acting instead as a representative of the class
loaders on the delegate list.

Implementation class loader: Like most class loaders, it has a parent and delegates upwards first in
loadClass(..) calls. Normally, the parent will be the "top" EnhydraClassloader, whose parent is the
system class loader. However, if you specify a parent in the enhydra-service.xml descriptor, the
parent will be the implementation class loader of the parent service. As an EnhydraClassloader, it
also has a delegate list, which contains first of all the export class loader. If you specified a parent
service, then the export class loader has the export class loader of the parent service first on its
delegate list.10 The classes directly defined by both the implementation and the export class loader
are specified in the enhydra-service.xml URL entries for the service-jar and export-jar elements.

On the implementation class loader delegate list, note the "bound-libraries." These are the export
class loaders of services listed in the enhydra-service.xml bound-library elements, and they are
added to the delegate list before the TAP is constructed. As delegates of the implementation class
loader, they are visible to any object defined by it, no matter what thread the object is running in.
Thus, if your target implementation depends on a service classes which it does not look up directly,
then the required service should be listed as a bound library so its export classes are visible even
when the target is running in a client thread, which may not have looked up the required service.
Notice the difference between having a parent service and using a bound-library: bound libraries only
see export classes of the desired services, while the parent permits your service to see anything
visible through the parent's implementation class loader.

For services, the implementation class loader scheme defines the static binding scope. For both
services and applications, the context class loader scheme defines the dynamic binding scope. The
dynamic scope follows the application or service in any of their threads. (The static scope of
applications is the subject of a later article.)

7 Writing services, mindful of binding scope

7.1 Class visibility in the Services Architecture

Let's now compare the complete definition of class visibility in EAS with the common view and our
initial definition. This definition derives from the combination of the revised algorithm above and the
class loader layout.

Common
view

System classes and all the classes in the class path

Initial
definition

the ability of a given class to bind other classes, as determined by the parent class loaders and by sources of
byte code

EAS
definition

the ability of the currently-executing class to bind other classes, as determined by
(a) the current contents of the Class cache;

9 I have not discussed what might be called the implementation class loader for applications or how applications set up their bound-
libraries or load-services; that is the subject of another article and of the deployment chapter in the EAS documentation.
10 Note "parent" is used in three contexts: (a) as the parent class of the class loader, i.e., the class that defines all methods not overridden;
(b) as the parent class loader of the class loader, i.e., the upward-delegate in loadClass(..); and (c) as the parent service of the
service, i.e., whose class loaders are sometimes called "the parent's class loaders" and are associated with the child (i) as the upward
delegate of the child implementation class loader; and (ii) as the initial entry on the delegate list of the child export class loader.

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 15 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

definition (b) the result of its parent class loader's loadClass(..) call, including any recursive loading;
(c) the result of any delegate class loader findClass(..) calls, taken in delegate order (for the service
implementation class loader, the list of the export class loader and any bound-libraries);
(d) the set of byte code resources available to this class loader and the ability of the superclass to define the
class from any such byte code; and
(e) the result of a call to the current context class loader associated with the thread of the currently-executing
service or application (i) of loadClass(..) if not an EnhydraClassloader, or otherwise (ii) of findClass(..), which
will in turn call findClass(..) on the list of export class loaders of the specified pre-load services as well as any
services looked-up from Threads created by the current service or application.

Most programmers do not need to know this definition. To use a service, you need only have looked
it up in JNDI at one point in the lifecycle of the application or service (even by declaration). To write
a service, you need only know to deploy using enhydra-service.xml, which requires you segregate
export classes from implementation classes, and where you can identify dependencies
(implementation or export) on other services.11 In this service architects will want to give themselves
the most flexibility in upgrading their services later.

7.2 Upgradability

Services can be undeployed completely, including the export class loader, so you can always
replace everything. But if you change the export class loader, existing clients will not be able to use
the newly-deployed version of the export classes. Any client class bound to a class in the export
class loader will be unable to bind with a class of the same type in the new export class loader.
Thus, to maintain existing clients, you should retain the export class loader when undeploying and
adopt it when deploying.12

In order to upgrade the most possible of your classes, you might want to include only the minimum
required classes in your export class loader: whatever is publicly reachable to the client from the
target interface.13 What's publicly reachable is the set of classes traversed by traversing the public
fields and the return and parameter types of public methods of the service target interface class and
any class so traversed.14 Any other references made by the target object to references will be

11 In the event that you do write services and get ClassCastException or ClassNotFoundException,
you will recognize the class loaders listed in the voluminous debugging output available. Two
options that I recommend:

In the Multiserver script are variables controlling the logging of the class loader scheme for given
events. For example, you can log the entire class loader layout whenever there is a
ClassNotFoundException.

In the LMC you can view the classloaders for each service as an "expert" attribute. Each class
loader in turn lists the URLs registered with it.
12 Before you undeploy a service, you can choose whether to remove or retain the export class loader using the KeepExportClassloader
attribute in the ServiceManager MBean. If a class loader has been retained, on redeployment it will be adopted. This mechanism will
likely change.
13 "Target interface" here is a technical term meaning the classes of the target object specified in the enhydra-service.xml service-interface
element. For ordinary, unwrapped targets this should be the class of the target that your TargetAccessPoint factory returns from
createTarget(..). For wrapped targets, the dynamic proxy wrapper will have this class and delegate to the actual target returned from
createTarget(..). With wrappers, you can specify multiple Interface classes in order to wrap multiple interfaces around a single target.
14 This definition of minimal assumes your client is not deserializing target objects and is not in the same package or a subclass of the
service target interface. If your client has more than public access to the target, you will have to include anything reachable from that
access level. If your client deserializes target objects, you would have to modify the definition to include anything the target object
requires for deserialization, i.e., the transitive closure of the set of target and target parent classes and non-null references in the target

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 16 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

resolved initially by the service implementation class loader, even when running in client threads.15
In the "Resource" section below is a link to a small program that calculates the set of export classes
for you.

You can probably imagine the caveats to the rule for minimum-required classes. For example, if
your old targets interoperate with classes from the new targets or the new TAP, then those classes
also belong in the export class loader. Even though the classes are not seen by the client and can
be loaded without being in the export class loader, they must be the same Class instance in order to
interoperate or you will get a ClassCastException. For example, in the case of a target that acts as a
proxy for a callback to the TAP, on undeployment you would replace the old reference with a balking
implementation, and on redeployment you would replace that balking reference with the new
operative reference. You can do this only if the callback class is defined in the export class loader
(or some other common class loader, as Runnable is defined by the system class loader). But for
most service writers, the minimum-required rule is easy to calculate and suffices.

7.3 Composability

Why not put all the classes in the export class loader? Having to bring down the application to
upgrade it does not seem like a burden; most people are used to it now, and upgrades can be
planned during slow periods or when cover is available within a server cluster. This may be true, but
it misses the real benefits of the class loader scheme: increased design granularity and stronger
semantic encapsulation of services.

System composability is related to component modularity, but it measures the ease with which
modules can be integrated, including assembly, validation, management, and evolution. It is a
property of systems, not of modules, and spans the lifecycle of the system and any system it evolves
to or coordinates with. Upgradability contributes to composability because it eliminates downtime for
interface-compatible changes. Composability contributes to upgradability because the units for
upgrade can be smaller, rather than having to upgrade entire systems or applications. Many people
are attracted to the EAS Services Architecture because it solves their upgrade problems. But they
become committed to it when they begin to realize the benefits of composability.

In Java enterprise computing, there has been a disconnect between the design unit (a component)
and the run-time unit (the object). Except in rare cases, components are not actually encapsulated
by objects. Even worse is when the component model breaches object encapsulation. The EJB
specification does this in its design when requiring public methods and fields to support EJB
container operations; the leading EJB vendors do this in their implementations when providing web
container clients with unlimited visibility into EJB implementation classes. Further, most seasoned
designers of EJB's find themselves designing around the implementation limitations, e.g., creating
bulk interfaces to avoid excessive database updates. EJB component designs are often determined
by OR-mapping and EJB container semantics, rather than vice-versa. EJB, like XML, is limited by
being a data abstraction, an interface back to the relational database.

XML-based Web services, while not directly comparable to EJB's, seem by contrast quite attractive
because they present a much richer semantic interface than possible from EJB. Unlike EJB's, they
do not unnecessarily restrict the invocation layer and hence can integrate more disparate systems.
They make it possible for cross-business collaboration between partners and through supply and
workflow chains. But like EJB's, web services come at the cost of encoding, of rendering objects into
something else (XML) and back again - a potential loss both in semantics and in performance, not to
mention security.

object. (RMI and hence EJB's do deserialization, but Lutris EAS 4 handles the deployment of EJB's specially. That will be the subject of
a later article.)
15 This assumes the defining loading is the implementation class loader. This is ordinarily the case for TAP objects and their progeny, but
if the defining loader is some other class loader (say, the export class loader), then that will be the starting point for resolution.

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 17 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

The EAS Services architecture advances composability significantly with the dynamic association of
binding invocation context and by enforcing a distinction between implementation and interface
classes in services. By associating binding context on JNDI lookup to a service, EAS provides the
runtime flexibility of a web services architecture. By using delegation to class loaders rather than
copying library jars, EAS enables you to safely share services across applications and with the
system, avoiding duplication and bridging name spaces. By segregating implementation and
interface at run time, EAS presents in live systems exactly what the service designer ordered - the
required classes are available and other classes are not - providing a level of correctness missing
from the EJB specification and not possible in data-based XML interfaces. This reserves for the
developer the freedom to upgrade long after the initial deployment, and sets actual boundaries for
the run-time components.

Thus, the class loader scheme enables the Lutris EAS 4 to present a set of composability features
unmatched elsewhere:

Component designs are not entangled with extrinsic concerns of data encoding or interface
granularity

Component form is not determined - libraries, proxies, call-backs, and respondents are all
supportable

Component resolution can be smaller because deployment units are smaller

Component boundaries are verified at compile-time and enforced at run-time

Component deployment units are not monolithic

Component type and instance numericity is undetermined; 0..n services and targets can even be
shared

Component assembly is easy and intuitive, both programmatically and declaratively

Component upgrade is possible at runtime, providing unlimited integration time

The EAS class loading scheme is not the only contributor to composability. Most notably, service
invocation decorators and interceptors extend composition and management to the method level and
provide a new mechanism for layering in aspects of system behavior that would otherwise be
scattered or unmodifiable. Pervasive management makes run-time system analysis and re-
composition possible by providing both the data to make assessments and the controls to implement
decisions. The class loading scheme decouples granularity and scope to provide more freedom;
other features add views and controls to add power.

But beyond features, subsystems, and 'ilities, is feel. While understanding the EAS Services
Architecture is half the fun, the bigger half is using it. It's intuitive and easy to program. Things work
when they're supposed to. Gone are the integration nightmares of mentally tracking back through
encoding and communications layers. It puts the fun back into writing enterprise software!

8 Freedom to innovate
The primary design goal of the EAS Services Architecture was to develop a services architecture
which is composable and upgradable, to facilitate rapid development and redevelopment of the
server and applications. Its first incarnation, Lutris EAS 4, supports J2EE, SOAP, and the Enhydra
application programming model. It also exemplifies the EAS Services Architecture as a real
contribution to the state of the art in Java enterprise computing, in part because of the dynamic
federated class loading scheme. This scheme presents a simple use model to the application
programmer, an intuitive design model to the service developer, a high-level composable component
model for the system architect, and a powerful upgrade model to the systems administrator - all by
virtue of the careful implementation of federated class loaders in accordance with Java's class

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 18 of 19
4 August 2001

Lutris EAS 4
Services Architecture Classloader

Version 1.4

loading requirements and the needs of enterprise applications. This care prevents the services
model from being brittle or exposing implementation holes. Services are fun to work with and easy
to evolve; in the race for more features (and fewer bugs), you can get started fast and stay ahead.
Lutris EAS 4 supports well-known programming models, giving you the power to be productive with
existing components, tools, and concepts. It also presents a new way to design and develop; with
both compatibility and flexibility, you have the freedom to innovate.

9 Resources
JSR 111 is the Java Specification Request for Java Services Framework. Lutris is on the expert
committee. http://www.jcp.org/jsr/detail/111.prt

The Java VM Specification section 5.4.3 defines class resolution.
http://java.sun.com/docs/books/vmspec/2nd-edition/html/ConstantPool.doc.html#7349. Section 3.6.3
defines dynamic linking of method references. http://java.sun.com/docs/books/vmspec/2nd-
edition/html/Overview.doc.html#1963

Binding invariants are discussed in Sheng Liang and Gilad Bracha, Dynamic Class Loading in the
Java Virtual Machine in "Proceedings of the ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications," October 1998. A postscript version is available from Gilad
Bracha's home page at http://java.sun.com/people/gbracha. The VM spec discusses binding
invariants in section 5.3.4, http://java.sun.com/docs/books/vmspec/2nd-
edition/html/ConstantPool.doc.html#78621

"The safe network download and execution of platform-independent byte code" is the answer I
remember when one of the original Java product managers was asked about the design goals of the
Java VM. James Gosling has what he calls the original white paper linked off
http://java.sun.com/people/jag, and the VM specification has an introduction listing its goals.

A small program to calculate the minimum-required classes, i.e., the publicly-reachable classes from
a set of target interfaces, is available at http://www.lutris.com/TODO/Reach.java.

Contact Information
Lutris Technologies, Inc.
1200 Pacific Avenue, Suite 300 Santa Cruz, CA 95060
fax 831 471 0957 U.S. toll free 877-688-3724
International +1-831-460-7590

Lutris Technologies UK, Ltd.
Regus Building, 54 Clarendon Road
Watford, Herts WD1 1DU, UK
tel +44-1923-431669 fax +44-1923-431869

Copyright © 2001 by Lutris Technologies, Inc. All rights reserved. The Lutris and Enhydra logos, Enhydra XMLC, and
InstantDB are trademarks or registered trademarks of Lutris Technologies, Inc. Java and all Java-based marks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All other trademarks, trade
names, or company names referenced herein are used for identification only and are the property of their respective owners.

Lutris Technologies, Inc. • Unauthorized Reproduction Prohibited Page 19 of 19
4 August 2001

	Introduction
	A Web of Services - Web Services and beyond
	The services programmer's model
	How we got here: �Java class loading requirements
	Requirements for Java
	Implementing class loading requirements for Java

	Bridging space: using delegation to share common class loaders
	Hierarchies and federations: sharing classes to bridge �disparate name spaces
	Implementing the hierarchical delegation model
	Implementing the federated delegation model

	EnhydraClassloader in the EAS Services Architecture
	EnhydraClassloader for the service provider
	Static context: setting up the service class loader
	Dynamic context: setting up the client class loader
	All together now

	Writing services, mindful of binding scope
	Class visibility in the Services Architecture
	Upgradability
	Composability

	Freedom to innovate
	Resources

