
TM

Developer’s Guide

Copyright © 2000, 2001 by Lutris Technologies, Inc. All rights reserved.

No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written permission from Lutris Technologies, Inc.
No patent liability is assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the author assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of the information contained
herein.

The Lutris and Enhydra logos, Enhydra XMLC, Enhydra Enterprise, and InstantDB are trademarks or registered
trademarks of Lutris Technologies, Inc. All other trademarks, trade names or company names referenced herein
are used for identification only and are the property of their respective owners.

Sun, Sun Microsystems, the Sun logo, Solaris, Forte, Java, JavaScript, Java 2, JDBC, J2EE, iPlanet, and all Sun,
Java, and iPlanet based trademarks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. UNIX® is a registered trademark in the United States and other countries,
exclusively licensed through X/Open Company, Ltd. Windows, WinNT, Win32, and Access are registered
trademarks of Microsoft Corp. InstallShield is a trademark of InstallShield Software Corp. Cygwin is a trademark
of Cygnus Solutions Corp. Oracle is a trademark or registered trademark of Oracle Corp. Sybase is a trademark
of Sybase Corp. Informix is a trademark of Informix Corp. Red Hat Linux is a trademark of Red Hat Corp. Linux
is a registered trademark of Linus Torvalds. Netscape is a registered trademark of America Online, Inc.
PostgreSQL is Copyright © 1996-2000 by PostgreSQL Inc. JBuilder™ and InterBase® are trademarks of
Borland/Inprise. The Bluetooth trademarks are owned by Telefonaktiebolaget L M Ericsson, Sweden. All other
product names mentioned herein are trademarks of their respective owners.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
trademarks. Where those designations appear in this book, and Lutris Technologies, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

Acknowledgements

Lutris Enhydra Development: Jason Abbott, Kyle Clark, Mark Diekhans, Larry Deran, Michael Gardner,
Dick Gemoets, Scott Harrison, Craig Heath, Peter Hearty, Aidan Hosler, Wes Isberg, Andy John, Peter Johnson,
Matthew Kalastro, Ray Kiuchi, Paul Mahar, John Marco, Shawn McMurdo, Ioan Mitrea, Paul Morgan,
Christophe Ney, Robert Pirani, Scott Pirie, Joseph Shoop, Wayne Stidolph, Josh Sugnet, Simon Tuffs, Mike Ward.

Lutris Customer Services: Andy Ames, Debbie Brackeen, Peter Darrah, Jim Dumont, Jason Dunton,
Anne Hopkins, Andrew Longsworth, Lindsey Lonne, Livia Peras, John Powell, Christopher Reed, Jane Richter,
Katrina Seitz, Steve Slany, Daniel Thomas.

Lutris Consulting: Ashley Baumann, David Black, Dennis Chatham, Jon Coyle, Tola Dalton, Jay Gunter,
John Hellier, Donna Karolchik, Bill Karwin, Alyssa Lalanne, Graham Moore, Jim Murphy, Thom Nelson,
Natasha Perry, Kristen Pol, Lisa Reese, Matt Schwartz, Harvey Thompson, Robert Trama, Shiming Shi,
David Simons, Jonathan Webb.

Lutris Marketing: Keith Bigelow, Scott Campbell, Lynda Hall, Holly Hamner, Klaus Krull, Helen Meservey,
Lynn Renshaw, Greg Schwarzer, Gillian Webster, David Young.

Lutris Enhydra Documentation: Teresa Andrews, Ian Evans, Curtis Gavin, Laurel Kline, Michael Maceri,
C. Rand McKinney.

Thanks also to the following Lutris departments: customer service, consulting, finance, legal, IS, marketing,
quality assurance, research and development, sales, technical support, training, and the executive staff.

Printed in the U.S.A.
ENW-US041-35 1E1R1200
0102030405-9 8 7 6 5 4 3 2 1

1200 PACIFIC AVENUE, SUITE 300, SANTA CRUZ, CA 95060 ✦ PHONE 831.471.9753 ✦ FAX 831.471.9754 ✦ http://www.lutris.com

i

Contents

Chapter 1
Introduction 1
What you should already know 1
Conventions used in this book 2
Lutris Enhydra document set. 4

Getting Started 4
Developer’s Guide 4
Wireless Application Developer’s Guide . . . 4

Lutris documentation updates available online . 5
Contacting Lutris Technical Publications 5
Where to find support and training for

Lutris Enhydra 5
Lutris support. 5

Registering your product online 5
Contacting Lutris Technical Support 6
Submitting bug reports to Lutris

Technical Support 6
Lutris training 6

Available training courses 6
Contacting Lutris Education Services . . . 7

Additional Enhydra information available
on Enhydra.org 7

Enhydra.org mailing lists 7
Mailing list archives 8

Enhydra.org working groups 8
Documentation working group 8

Enhydra.org community documentation . . . 8
Open-source software downloads 8

Acknowledgments 9

Chapter 2
Using the Application Wizard to

create Enhydra applications 11
Application Wizard generators. 11

Web Application generator 11
Enhydra SuperServlet generator 11

Using the Application Wizard
command-line interface 11

Generator options 12
Using the Application Wizard GUI 12

Chapter 3
Using the Multiserver
Administration Console 15

Overview . 15
Multiserver architecture 15

Connection methods. 16
Enhydra class loader 16

Launching the Admin Console 17
Viewing application status. 18

Understanding the Application tab 19
Enhydra super-servlet

Application Status window 19
Servlet Status window 21
WAR Status window 22

Understanding the Connections tab. 23
Starting an application 24
Stopping an application 24
Adding an application 24

Adding an Enhydra super-servlet
application 24

Preparing the configuration files 25
Adding the application in the

console window 25
Adding a single servlet 26
Adding a Web application archive 27
Connecting the new application 28
Removing a connection 29

Deleting an application. 29
Modifying an application 29

Modifying configuration files by hand 30
Multiserver configuration file 30
Admin Console configuration file 30
Enhydra application configuration file . . 31
Changing the console username

and password. 32
Modifying configuration files in the console . 32

Application tab. 33
Sessions tab 34
Database tab 35
Advanced tab. 36

ii

Servlet tab 36
WAR tab . 37

Finalizing application modifications 38
Monitoring traffic to the application. 38

The active event list 39
Debugging event details 40

Request tab 40
Trace tab . 41
Response tab 42

Saving the current state of the console 43
Creating a WAR file 44

Chapter 4
Using Enhydra Kelp 51
Introduction . 51

Kelp features 51
Using the wizards 52

Using the Enhydra Application wizard . . 52
Using the XMLC Compiler wizard 53
Using the Deployment wizard 56
Using the Enhydra Import wizard 58
Using the Enhydra Application wizard . . 60

Using the Property pages 61
XMLC project property page 61
Enhydra Deployment property page 62
XMLC node property page 62
Enhydra Template node property page . . 64

Setting project properties 64
Paths page. . 65

Output path 65
Source subtab 65
Required libraries subtab 65

Build page . 66
Generate source to output path option . . . 66

Run page . 66
Main class option 66
Application parameters option 66

Kelp sample projects. 66
Deploying the Web application 67

Debugging Enhydra applications 69
Working with the Kelp source code 70
Kelp working group 71

Chapter 5
Enhydra XMLC 73
Introduction . 73

Why use XMLC? 74
XMLC and markup languages 75

XML . 75

Document Object Model 75
Example DOM tree 76
DOM implementations 77

How to use XMLC. 78
Simple XMLC example 78

Using the XMLC command 80
Command syntax 80
Changing the Java class name 81

Example. 81
Saving the Java source-code file 81

Example. 81
Modifying URLs. 81

Example. 82
Specifying the HTML parser 82

Example. 82
Deleting mock-up data 82

Example. 82
Diagnosing problems 83

Example. 83
Using an options file 83

Options file format. 84
Example. 84

Using XMLC metadata files 84
Using XMLC to generate Web pages 85

DynaCat sample application 85
Building DynaCat 86
Running DynaCat 86
Writing the generated HTML

output files 86
Populating a table 87

About the catalog page 87
Populating the table 88

Populating forms 89
About the form page 89
Text fields 90
Check boxes 91
Radio buttons 91
Text areas 92
List boxes 92

Manipulating JavaScript 92
Compile-time includes 93

Syntax . 94
Using XMLC with Enhydra 94

Using the Enhydra make system 94
Example. 95

Automatically recompiling with XMLC . . . 96
Instantiating pages with xmlcFactory . . . 96
Setting up the application class

directory structure 96

iii

Specifying how document classes
are updated 97

Adding XMLC logging to track
the recompilation 97

XMLC reference 98
XMLC command-line options 98
XMLCUtil class 101
DOM classes and methods 101

DOM objects. 101
DOM Java interfaces 103

Chapter 6
Using the Data Object

Design Studio 105
Using the DODS graphical user interface 105

Running with parameters 106
Data Object editor 106
Attribute editor 107
Query classes 108
Querying a view 108

DODS projects 108
Code generation 109

One-to-many relationships 109
Many-to-many relationships 109
Creating the tables 110
Using the DO classes to create data. . . . 110
Using the Query classes to

retrieve data 111
Using the DO classes to delete data. . . . 112
Using comparison operators. 112
Using QueryBuilder for advanced

queries 113
Using QueryBuilder without Query

classes 114
Debugging queries using QueryBuilder . 114
Caching tables in memory 114

Chapter 7
Using InstantDB 115
Introduction . 115

Configuring your system 115
Creating a new database. 116
Viewing a database. 116
Using the InstantDB JDBC driver. 117

Database URLs 117
JDBC result sets 118

Using InstantDB with Enhydra. 118
General procedure 118

Running the DiscRack application
with InstantDB 119

Creating the DiscRack database 119
Configuring DiscRack 119

Using properties files 119
Format .120
Database directories. 120

Using paths relative to the
properties file120

Using absolute or relative paths 120
Defining partitions. 121

Tuning properties 122
Logging and debugging properties123
Transaction and recovery properties 123

Recovery 123
Date, time, and currency properties124
String-handling properties125

Using the InstantDB sample applications 125
commsql .126
ScriptTool. .126

Format of input file 127
Example. 130

dump . .130
JDBCAppl and DBBrowser. 131

Applet security and JavaScript
compatibility 132

SQLBuilder. 132
InstantDB data types134

Numeric types134
Auto-incrementing 134

Decimal and numeric types 135
DATE data types. 135

Formatting dates136
Timestamps. 136
Date functions 137
Interpreting two-digit dates 137

CURRENCY type 137
BINARY type 138
Strings .139

Case-insensitive comparisons 139
Using SMALLCHAR 139
String literals140
String functions 141

Chapter 8
Using PostgreSQL 143
Introduction . .143

Features. .143
Where to find PostgreSQL documentation . .143

iv

Using PostgreSQL with Enhydra. 144
Using DODS 144
Running DiscRack 144

Creating the DiscRack database 145
Configuring DiscRack to run

with PostgreSQL 145

Chapter 9
Using Enhydra Director 147
Overview of Director 147
Installing and configuring Director 148

System requirements 148
Windows NT and 2000 148
Solaris . 149
Linux . 149

Preparation 149
Using Director with Apache 150

Files. . 150
Procedure 151
Configuring Director 154
Troubleshooting. 156

Using Director with iPlanet Web Server . . . 157
Installation. 157
Configuring Director for iPlanet 158
Troubleshooting. 160

Using Director with Internet
Information Server (IIS) 161

Installation. 161
Procedure 161
Configuring Director for IIS 162
Troubleshooting. 165

Building Director DLLs from source code . . 166
Building Director for iPlanet. 166
Building Director for IIS 167

Configuring your application 167
Configuring your application with the

Multiserver Administration Console . . 167
Configuring your application by

editing multiserver.conf 167
Load balancing with Director 168
Editing enhydra_director.conf 168

Optimizing Director performance 171
Load balancing HTTP requests and

Enhydra . 171
Separating static and dynamic content . . 172
Scaling up 172
Limitations of Director and session

affinity 173

Increasing performance for Director
and Apache on Linux173

Hardware considerations173
Tuning the Linux OS. 174
Tuning the Apache Web Server. 174

TCP TIME_WAIT problem176
Solving the TIME_WAIT threshold 177

Appendix A
Using SSL with Enhydra 179
System requirements179
Background .179
Installation and configuration180

Step 1: Install Enhydra 180
Step 2: Download and install JSSE

JAR files. .180
Step 3: Configure Make180
Step 4: Edit the Java security file. 181
Step 5: Generate or install your X509

certificates 181
Generating your private key 181
Generating a certificate request 182
Submitting your certificate request 183
Importing a certificate183

Modifying your application184
Configuration file in detail185

For more information on Java and SSL186

Appendix B
XMLC metadata file schema 187
Structure . .187
Tag reference. .187

<compatibility> 188
<compileOptions> 188
<deleteElement>. 190
<document>190
<documentClass>191
<domEdits> 193
<html> .193
<htmlTagSet> 193
<htmlTag> .194
<htmlAttr>194
<implements>194
<javaCompiler>195
<javacOption>195
<parser> .195
<urlMapping/>196
<urlRegExpMapping/> 197

v

<xcatalog>. 198
<xmlc>. . 198

Appendix C
DOML file syntax 199
Structure . 199
Tag reference . 199

<doml> . 200
<database> 200
<package>. 201

<table> .201
<column> .202
<javadoc> .203
<referenceObject>204
<type> .204
<initialValue> 205

Sample DOML file 205

Index 207

vi

C h a p t e r 1 , I n t r o d u c t i o n 1

1Chapter
Introduction Chapter 1

This book describes the tools included with Lutris® Enhydra,™ and discusses some
techniques for developing and deploying Enhydra applications. It provides detailed
documentation on the following main components of Enhydra:

• Application Wizard
• Multiserver Administration Console
• Kelp tools
• Enhydra™ XMLC
• Data Object Design Studio (DODS)
• InstantDB
• Enhydra Director

The appendices include information on:

• Integrating SSL with Enhydra
• XMLC metadata files
• The data object markup language (DOML) used by DODS

What you should already know
This book assumes you have the following basic skills:

• General understanding of the Internet, the World Wide Web (Web), and
Hypertext Markup Language (HTML).

• Good working knowledge of the Java programming language. Some knowledge
of Java servlets is also helpful.

• Knowledge of basic UNIX commands and the UNIX make utility. This is not
necessary if you are developing your application with the Kelp toolset in an IDE
such as JBuilder.

• Good understanding of relational databases; knowledge of SQL is helpful.

2 D e v e l o p e r ’ s G u i d e

C o n v e n t i o n s u s e d i n t h i s b o o k

Conventions used in this book
The typographical conventions used in this book are listed in Table 1.1.

Table 1.1 Typographical conventions

Convention Description

Italics Indicates variables, new terms and concepts, and book titles. For example,
• A servlet is a Java class that dynamically extends the functionality of a

Web server.
Fixed-width Used to indicate several types of items. These include:

• Commands that you enter directly, code examples, utility programs,
and options. For example,
• cd mydir
• System.out.println("Hello World");
• make utility
• -keep option

• Java packages, classes, methods, objects, and other identifiers. For
example,
• ErrorHandler class
• run() method
• Session object
Note: Method names are suffixed with empty parentheses, even if the
method takes no parameters.
Note: Only specific references to object names are in fixed-width;
generic references to objects are shown in plain text.

• File and directory names. For example:
• /usr/local/bin
Note: UNIX path names are used throughout and are indicated with a
forward slash (/). If you are using the Windows platform, substitute
backslashes (\) for the forward slashes (/).

Fixed-width italic
and
<Fixed-width italic>

Indicates variables in commands and code. For example,
• xmlc [options|optfile.xmlc ...] docfile
Note: Angle brackets (< >) are used to indicate variables in directory paths
and command options. For example,
• -class <class>

Boldface Used for the words Note, Tip, Important, and Warning when they are
used as headings that draw your eye to essential or useful information.

Keycaps Used to indicate keys on the keyboard that you press to implement an
action. If you must press two or more keys simultaneously, keycaps are
joined with a hyphen. For example,
• Ctrl-C.

C h a p t e r 1 , I n t r o d u c t i o n 3

C o n v e n t i o n s u s e d i n t h i s b o o k

Table 1.2 lists additional conventions used in this book, including the convention
used to describe the Enhydra root directory, platform-related conventions, and so on.

| (pipe) Used as a separator in menu commands that you select in a graphical user
interface (GUI), and to separate choices in a syntax line. For example,
• File|New
• {a|b|c}
• [a|b|c]

{ } (braces) Indicates a set of required choices in a syntax line. For example,
• {a|b|c}
means you must choose a, b, or c.

[] (brackets) Indicates optional items in a syntax line. For example,
• [a|b|c]
means you can choose a, b, c, or nothing.

. . . (horizontal
ellipses)

Used to indicate that portions of a code example have been omitted to
simplify the discussion, and to indicate that an argument can be repeated
several times in a command line. For example,
• xmlc [options|optfile.xmlc ...] docfile

plain text Used for URLs and generic references to objects. For example,
• http://www.lutris.com/documentation/index.html
• The presentation object is in the presentation layer.

ALL CAPS Indicates SQL statements. For example:
• CREATE statement

Table 1.2 Additional conventions

Convention Description

Enhydra root
directory

When you install Enhydra, you install the Enhydra executables and
libraries in a directory of your choosing. This directory is referred to as the
Enhydra root directory or <enhydra_root>.

Paths UNIX path names are used throughout and are indicated with a forward
slash (/). If you are using the Windows platform, substitute backslashes (\)
for the forward slashes (/). For example,
• /usr/local/bin

URLs URLs are indicated in plain text and are generally fully qualified. For
example,
• http://www.lutris.com/documentation/index.html

Screen shots Most screen shots reflect the Microsoft Windows look and feel.

Table 1.1 Typographical conventions (continued)

Convention Description

4 D e v e l o p e r ’ s G u i d e

L u t r i s E n h y d r a d o c u m e n t s e t

Lutris Enhydra document set
The Lutris Enhydra documentation set is an excellent resource for information about
Enhydra. The documentation set includes the following printed guides.

Note Online versions of these books in both PDF and HTML formats are provided with the
purchase of Lutris Enhydra. These online books, along with additional Enhydra
online documentation, are located in the doc subdirectory of the directory in which
you installed Lutris Enhydra. You can also view the online books and installation
instructions directly from the product CD.

Getting Started

Getting Started with Lutris Enhydra introduces the fundamentals of Enhydra. The
purpose of this book is to introduce Lutris Enhydra and provide a groundwork for
understanding and working with Enhydra and its associated tools. It includes a
detailed tutorial and an explanation of the Enhydra DiscRack sample application.

Note As part of our commitment to support the Enhydra and open-source communities,
Lutris Technologies has made the latest online version of Getting Started with
Lutris Enhydra available for free viewing and download from the Lutris
Documentation home page at http://www.lutris.com/documentation/index.html.

Developer’s Guide

The Lutris Enhydra Developer’s Guide introduces advanced topics and explores key
features of Enhydra in detail. The purpose of the Developer’s Guide is to provide
developers with the information they need to create and debug sophisticated
Enhydra applications. This guide provides in-depth information on the
Lutris Enhydra development tools:

• Application Wizard
• Multiserver Administration Console
• Kelp tools
• Enhydra™ XMLC
• Data Object Design Studio (DODS)
• InstantDB
• Enhydra Director

Note The Developer’s Guide is available only with the purchase of Lutris Enhydra.

Wireless Application Developer’s Guide

The Lutris Enhydra Wireless Application Developer’s Guide presents information on
wireless technologies and describes how to develop wireless applications with
Enhydra. It includes a detailed tutorial and an explanation of the Enhydra AirSent
wireless sample application.

C h a p t e r 1 , I n t r o d u c t i o n 5

L u t r i s d o c u m e n t a t i o n u p d a t e s a v a i l a b l e o n l i n e

Note The Wireless Application Developer’s Guide is available only with the purchase of
Lutris Enhydra.

Lutris documentation updates available online
The latest product documentation updates and release notes are available to
registered users from the Lutris Documentation home page at
http://www.lutris.com/documentation/index.html.

Contacting Lutris Technical Publications
We strongly encourage you to send us your feedback because it helps us understand
your needs and makes our documentation even better. You can submit feedback
from the Lutris website at
http://www.lutris.com/documentation/feedback/index.html. You can also submit
feedback by sending email to documentation@lutris.com.

Where to find support and training for Lutris Enhydra
Lutris Enhydra includes a package of products for developing Enhydra applications,
including open-source products. Lutris Technologies, Inc. provides support and
services for Lutris Enhydra.

Note Open-source communities or commercial entities support the other products. For
detailed information on the available support options for those products, please refer
to the appropriate group or company website.

Lutris support

Lutris offers a variety of support programs designed to assist you with your technical
support needs. We can help with installing and using your Lutris product,
developing and debugging your code, maintaining your deployed applications,
providing onsite consulting services, and delivering enterprise-level support. For
more information about any of the Lutris technical support programs, see the Lutris
Support home page at http://www.lutris.com/support/index.html or call Lutris
Customer Service toll-free at 1-877-688-3724, Monday–Friday, 8 a.m.–6 p.m. Pacific
Time (outside of North America, please call 1-831-460-7590).

Registering your product online
Lutris strongly encourages you to register your product online. Registering your
product entitles you to 15 days of free installation support and provides you with the
option of purchasing Lutris Support Services.

To register online, browse to the product registration form that is available at
http://www.lutris.com/register.html.

6 D e v e l o p e r ’ s G u i d e

W h e r e t o f i n d s u p p o r t a n d t r a i n i n g f o r L u t r i s E n h y d r a

Contacting Lutris Technical Support
For more information about any of Lutris’ technical support programs, see the Lutris
Support home page at http://www.lutris.com/support/index.html or call Lutris
Customer Service toll-free at 1-877-688-3724, Monday–Friday, 8 a.m.–6 p.m. Pacific
Time (outside of North America, please call 1-831-460-7590). You can also send email
to support@lutris.com.

Submitting bug reports to Lutris Technical Support
To report suspected Lutris Enhydra bugs, fill out the Bug Report form available at
http://lutrisbugs.custhelp.com/cgi-bin/lutrisbugs/people. We recommend that
you choose the Search Bugs link before submitting a bug report so that you can see if
your bug has already been reported. Be sure to include steps-to-reproduce, exact
error messages, and code snippets, if applicable, to help us better evaluate your
report.

Lutris training

Lutris wants to ensure your success. Our expert trainers guide participants through
hands-on labs designed to provide an intensive learning environment where
participants quickly learn how to maximize Lutris Enhydra in development and
deployment environments.

Available training courses
The following courses are currently offered by Lutris Technologies. For more
information about training offerings, see the Lutris Training home page at
http://www.lutris.com/training/index.html.

Lutris Enhydra Fundamentals
Lutris Technologies currently offers a five-day, instructor-led course titled
Lutris Enhydra Fundamentals. This course is intended primarily for developers,
architects, project managers, IT staff, and consultants who will be using Lutris
Enhydra or are evaluating it for future projects.

Building Wireless Applications
Lutris Technologies currently offers a two-day, instructor-led course titled
Building Wireless Applications with Lutris Enhydra. This course is intended primarily
for Enhydra developers who want to create applications that serve content to
cellphones or other wireless devices.

Lutris Enhydra Database Techniques
Lutris Technologies currently offers a two-day, instructor-led course titled
Database Techniques with Lutris Enhydra. This course is intended primarily for
Enhydra developers working on applications that require existing database platform
support, Java database specialists and DBAs responsible for maintaining the data
layer of an Enhydra application, and evaluators interested in seeing the database
capability available through Enhydra.

C h a p t e r 1 , I n t r o d u c t i o n 7

A d d i t i o n a l E n h y d r a i n f o r m a t i o n a v a i l a b l e o n E n h y d r a . o r g

Contacting Lutris Education Services
For more information about training offerings, see the Lutris Training home page at
http://www.lutris.com/training/index.html or call Lutris Customer Service
toll-free at 1-877-688-3724, Monday–Friday, 8 a.m.–6 p.m. Pacific Time (outside of
North America, please call 1-831-460-7590). You can also send email to
training@lutris.com.

Additional Enhydra information available on Enhydra.org
You can find a variety of information about open-source Enhydra at the Enhydra
website: http://www.enhydra.org. The Enhydra website is the home of the Enhydra
open-source community, one of Enhydra’s greatest assets. The Enhydra community
consists of numerous entities, including community sponsors, technology providers,
users, and of course developers.

Enhydra.org mailing lists

The Enhydra.org website includes archives of the various electronic mailing lists that
serve as the backbone of the Enhydra community, as well as instructions on how to
subscribe to the mailing lists.

Lutris encourages you to join one or more of the following Enhydra email lists:

• Enhydra@enhydra.org

The Enhydra mailing list for developer interaction. The Enhydra project team
monitors this list. It is the ideal place to get answers to your questions from fellow
Enhydra developers.

• Enhydra-daily@enhydra.org

A daily collection of all mail sent to enhydra@enhydra.org is sent to subscribers of
this list.

• Enhydra-digest@enhydra.org

A weekly digest of all mail sent to enhydra@enhydra.org.

• EnhydraEnterprise@enhydra.org

The Enhydra Enterprise mailing list is tailored for those who are developing and
deploying Enhydra applications on a large scale. Here you can find answers to the
more detailed Enhydra questions, such as those on Enterprise Java Beans (EJB)
and the Common Object Request Broker Architecture (CORBA).

• EnhydraEnterprise-digest@enhydra.org

A weekly digest of all mail sent to EnhydraEnterprise@enhydra.org.

• Enhydra-announce@enhydra.org

The mailing list for receiving Enhydra announcements.

8 D e v e l o p e r ’ s G u i d e

A d d i t i o n a l E n h y d r a i n f o r m a t i o n a v a i l a b l e o n E n h y d r a . o r g

For information and instructions on joining one or more of these lists, go to
http://www.enhydra.org/community/mailingLists/index.html.

Mailing list archives
You can search the combined Enhydra mailing list archives at
http://www.enhydra.org/community/mailingLists/index.html.

Enhydra.org working groups

Enhydra working groups bring together developers interested in creating new
Enhydra applications and contributing new technologies or bug fixes for Enhydra.

Each working group provides access to the current project source code and to the
project email list. This lets you communicate with the project leaders and other
developers.

For information and instructions on joining one or more of these groups, go to
http://www.enhydra.org/project/workingGroups/index.html.

Documentation working group
The documentation working group is focused on facilitating developer-created
documentation for open-source Enhydra and related technologies. The working
group also provides a central point for documentation discussions and proposals.

Community members are encouraged to submit and collaborate on articles of any
length, on topics of general interest to all Enhydra developers—from beginning to
advanced.

For information and instructions on joining this groups, go to
http://www.enhydra.org/project/workingGroups/index.html.

Enhydra.org community documentation

The Enhydra website also has documentation provided by members of the
community. For more information on this documentation, see
http://www.enhydra.org/software/documentation/enhydra/index.html.

Open-source software downloads

You can download the latest version of open-source Enhydra and other related
software at: http://www.enhydra.org/software/downloads/index.html.

C h a p t e r 1 , I n t r o d u c t i o n 9

Acknowledgments
As an open-source product, Enhydra benefits from the contributions of many
developers around the world. Lutris would like to thank the members of the Enhydra
community, particularly those who contributed information used in some form in
this book.

10 D e v e l o p e r ’ s G u i d e

C h a p t e r 2 , U s i n g t h e A p p l i c a t i o n W i z a r d t o c r e a t e E n h y d r a a p p l i c a t i o n s 11

2Chapter
Using the Application Wizard to
create Enhydra applications Chapter 2

The Application Wizard is a utility that creates a set of skeleton files for new Enhydra
applications and components. It provides a command-line tool, a graphical wizard,
and an API for integration with Kelp. For information on using the Application
Wizard with Kelp, see “Using the Enhydra Application wizard” on page 52.

Application Wizard generators
The Application Wizard uses two generators to create Enhydra projects—the Web
Application generator and the Enhydra SuperServlet generator.

Web Application generator

The Web Application generator produces the skeleton for an application that uses
XMLC, Java Servlets using the Servlet API, business objects (BOs), and data
objects (DOs).

Enhydra SuperServlet generator

The Enhydra SuperServlet generator produces the skeleton for an application that
uses XMLC, presentation objects (POs), business objects (BOs), and data
objects (DOs).

Using the Application Wizard command-line interface
The appwizard command takes predefined code-generator names as parameters and
creates the skeleton code. The appwizard syntax is:
appwizard <generator name> <generator options>

12 D e v e l o p e r ’ s G u i d e

U s i n g t h e A p p l i c a t i o n W i z a r d G U I

The following table lists appwizard’s valid generator names:

Generator options

The following table lists the options for the application generators.

For example, to generate an Enhydra super-servlet application for HTML clients
from the command line, enter the following:
appwizard en3app -project myProjectName -package org.myorg.mypackage -client HTML -root
/home/user/enhydraApps/

Using the Application Wizard GUI
The command appwizard with no arguments brings up the Application Wizard GUI
for invoking the generators.

Table 2.1 Generator names for the Application Wizard

Generator
Generator
name Description

Web Application webapp A servlet-based Web application that contains a
welcome servlet and a redirect servlet. The welcome
servlet uses XMLC to show the current time. The
redirect servlet redirects the user to the welcome page.

Enhydra SuperServlet en3app An Enhydra SuperServlet-based application that uses
the Presentation Object API.

Table 2.2 Options for application generator

Option Description
client <Client_type> The application client type. Valid types are HTML, WML, cHTML,

and XHTML.
copyright <Copyright_string> Copyright string to add to the headers of generated files.
copyrightfile <File> Text file containing the copyright string to add to the headers of

generated files.
nomake Do not generate GNU Makefiles for your project.
overwrite Overwrite any existing files when generating files.
project <Project_name> The project directory name. You must specify a project.
package <Package_name> The top-level package for the generated Java files. You must

specify a package.
root <Root_path> The root path for your project. You must specify a root path for

your application.
noscript Do not generate shell scripts to start your application.

C h a p t e r 2 , U s i n g t h e A p p l i c a t i o n W i z a r d t o c r e a t e E n h y d r a a p p l i c a t i o n s 13

U s i n g t h e A p p l i c a t i o n W i z a r d G U I

Figure 2.1 Application Wizard GUI

Figure 2.1 shows the generator selection screen in the Application Wizard GUI.

1 Select the appropriate generator from the drop-down list and click Next.

The valid generators are Web Application, a servlet-based application, or Enhydra
super-servlet, a PO/BO/DO-based application.

Note The Enhydra Home Directory box displays the Enhydra installation the generators
will use to find the templates. Click Set to navigate to the correct Enhydra
installation.

2 Select the appropriate client type from the drop-down list.

The valid types are:

• HTML
• WML
• cHTML
• XHTML

3 Enter the project directory name in the Project Directory Name edit box.

4 Enter the package name for your project in the Package edit box.

5 Enter the root path for your Enhydra applications in the Root Path edit box. Click
Set to set your Enhydra application root to something other than $HOME/enhydraApps.
Click Next.

6 Select the appropriate radio button for inserting copyright text in the files
generated by the Application Wizard.

Choose File lets you specify a template file whose contents will be added to each
generated file. Click Set to navigate to your template file.

Enter Copyright Text lets you enter the text in the edit box below.

Choose No Copyright if you do not want to insert copyright text in the generated
files.

Click Next.

14 D e v e l o p e r ’ s G u i d e

U s i n g t h e A p p l i c a t i o n W i z a r d G U I

7 To generate Makefiles for use with the GNU make utility, check Create Makefiles.

8 To have the Application Wizard create shell startup scripts, check Create Shell
Scripts.

9 Click Finish to generate your project.

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 15

3Chapter
Using the Multiserver
Administration Console Chapter 3

Overview
The Enhydra Multiserver is a servlet runner that runs Enhydra super-servlet
applications, Java servlets, and Java ServerPages (JSPs). The Multiserver has the
following features:

• The Apache Tomcat servlet container, which makes the Multiserver a
Servlet 2.2-compliant servlet container.

• Enhydra Director support, allowing the Multiserver to take requests from the
most popular Web servers, including Apache, Netscape iPlanet, and Microsoft
Internet Information Server.

• Supports multiple connection methods, allowing your application to take requests
from a Web server or direct HTTP requests at the same time.

• A graphical administration console.

• Built-in HTTP debugger console, allowing you to monitor and debug requests for
your Web application.

• Standalone HTTP Web server capability that supports the http-basic-auth protocol.

• Application partitioning within the Java Virtual Machine (multiple class loaders).

• Pure Java implementation.

• Runs on most UNIX systems, Windows 95, 98, NT, and 2000.

• Scales from single server to clustered server environments.

Multiserver architecture

The Enhydra Multiserver uses three types of configuration files:

• The configuration file for the Multiserver itself, multiserver.conf, which contains
configuration information listing for the applications running on the server. The
file <enhydra_root>/multiserver.conf is an example that ships with the server.

• The configuration file for an Enhydra super-servlet application, normally called
<app>.conf, where app is the name of the application. Copying an Enhydra

16 D e v e l o p e r ’ s G u i d e

O v e r v i e w

application’s configuration file to <enhydra_root>/apps will make the application
visible to the demonstration Multiserver installation that comes with the server.

• The web.xml file as defined in the Servlet 2.2 specification. To run servlets or JSPs on
the Multiserver, they must be placed in a directory structure commonly referred to
as a Web Application Archive, or WAR. The configuration file for a WAR is
defined as the file WEB-INF/web.xml. WARs are discussed in more detail in “Adding a
Web application archive” on page 27.

The Multiserver logs errors, warnings, and debugging messages to a file defined in
multiserver.conf. In the demonstration installation, this file is
<enhydra_root>/log/multiserver.log.

Connection methods
The Enhydra Multiserver allows a Web application to take requests from multiple
sources at the same time. For example, you can configure your application to accept
Web server requests and direct HTTP requests at the same time. With that
configuration, you can access your application through the Web server, or directly
from the Multiserver, all at the same time. This capability is valuable for debugging
configuration and load balancing problems.

Each method of listening for client requests is called a connection method. The
Multiserver supports three connection methods: HTTP, HTTPS, and Enhydra
Director. In the example above, the Multiserver has an HTTP connection method
running on a port, like 8000, listening for HTTP traffic. It also has an Enhydra
Director connection running on another port, like 8080, listening for requests
forwarded from a Web server. Enhydra Director has its own protocol.

The connection methods are built on an underlying architecture that uses channels
and filters. Each channel defines a connection method, a URL prefix, and an
application. Filters are an added layer of abstraction used by the server to monitor
incoming requests. The traffic debugger uses the Multiserver’s filter capability to
display requests for an application. Filters also enable logging for your application.

Enhydra class loader
To avoid class loading problems, you must understand the Multiserver’s CLASSPATH
and the Enhydra class loader.

Any Java application is written as a set of classes. Each time a previously
unreferenced class is accessed, the Java Virtual Machine (JVM) automatically loads
the class through the class loader. The class loader looks for the class file in a
sequential list of directories or archives (ZIP files or JAR files). This sequential list is
known as the CLASSPATH.

In the Enhydra Multiserver, each application receives its own class loader. The
Multiserver uses class loaders for a number of reasons. Separate class loaders let the
server start and stop applications without stopping the server. Class loaders also
prevent applications from conflicts over class ownership, and lets them run
autonomously.

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 17

L a u n c h i n g t h e A d m i n C o n s o l e

When an Enhydra super-servlet application requires a class, the following sequence
of events takes place:

1 The application’s class loader tries to find the class in the directories or archives
defined in the Enhydra application’s configuration file. If the class is found, a
private version of that class is loaded for the application.

2 If the class is not found, the class loading responsibility is passed to the system
class loader. This class loader looks in all directories and archives defined in the
system CLASSPATH. The system CLASSPATH is a combination of the default Java
CLASSPATH and the CLASSPATHs added by the Enhydra Multiserver start script,
typically defined by the CLASSPATH environment variable. Any class loaded by the
system class loader is shared by all applications, and therefore cannot be easily
modified.

With a servlet application deployed as a WAR (a Web application archive, as
discussed in “Creating a WAR file” on page 44), the class loading sequence is similar,
but the CLASSPATH is constructed differently. The Servlet 2.2 specification defines two
subdirectories of the directory WEB-INF. The first is called classes where expanded
class files are placed, and the second is called lib where JAR files are placed. On
startup, the classes directory and every JAR file in the lib directory are automatically
added to the application’s CLASSPATH. See “Creating a WAR file” on page 44 for more
information.

Note Some JDBC drivers can only be loaded by the system class loader. If you encounter
JDBC problems, try adding the location of the JDBC classes to the system CLASSPATH,
and remove the locations from the application’s CLASSPATH.

Launching the Admin Console
You can start the Multiserver and its Admin Console simultaneously from the
command line.

1 Type the following command at the shell prompt to start the Multiserver:
<enhydra_root>/bin/multiserver

where enhyra_root is the root of your Enhydra installation. Invoking the
multiserver command without specifying a multiserver.conf as an argument
brings up the server in the demonstration installation.

If this fails, your PATH is probably not configured properly. See Chapter 2,
“Installation,” of the Getting Started with Lutris Enhydra.

2 In your Web browser, open the URL http://<machine_name>:8001, where machine_name
is the name of the server where you started the Enhydra Multiserver. This default
URL may be modified by the user.

3 You will be prompted for a user name and password. The default username is
admin and the password is enhydra. To change these settings, see “Modifying an
application” on page 29.

18 D e v e l o p e r ’ s G u i d e

V i e w i n g a p p l i c a t i o n s t a t u s

4 Your browser connects to the Enhydra Multiserver Admin Console and provides
access to the console tools, as shown in Figure 3.1, “Multiserver Administration
Console display”:

Figure 3.1 Multiserver Administration Console display

The control frame on the left contains the Enhydra Multiserver Admin Console
tools, which are used to select, start, stop, add, delete, modify, or debug an
application. There is also a button, Save State, for saving the current state of the
server.

The content frame on the right displays status screens or dialog boxes for the
selected application.

Viewing application status
The Applications window, located at the top of the control frame in the Admin
Console, contains a list of all applications that have been added to the Enhydra
Multiserver. Upon initial start-up of your server, the Welcome, JavaDoc, and
WarExample samples appear in this window as the only installed applications.

Note There are two kinds of Web applications:

• Enhydra super-servlet applications, created with Enhydra development tools
• Servlet applications, otherwise known as WAR files (see “Adding a Web

application archive” on page 27).

Control Frame Content Frame

Applications
list box

Administration
Console
buttons

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 19

V i e w i n g a p p l i c a t i o n s t a t u s

To manage an application, select its name in the Applications window. This displays
its status information in the content frame, and any of the console tools that represent
valid operations for that application are activated at this time.

Figure 3.2 Application Status window

Understanding the Application tab

The Status window in the content frame provides basic information for the selected
application, such as the number of requests if the application is currently running,
requests per session, and uptime. Some of these are read from <appName>.conf. Other
controls in this window provide for refreshing the screen and accessing online help.

Enhydra super-servlet Application Status window
The following tables represent the standard fields in the Application status display.

Table 3.1 Application Status: General information

Field Description

Type Type of application, usually Standard Enhydra Application. For a
custom application, its type will be displayed in this field.

Conf File Name of the configuration file, found in /<enhydra_root>/apps/, for
example, Welcome.conf.

Description Modifiable description of the application.
Additional Classpaths Location of additional CLASSPATHs necessary for the successful

instantiation of this application. For example,
/usr/local/<enhydra_root>/.

Up Time Elapsed time since application startup. If the application has not been
started, a Not running message appears here.

Started Time of the most recent application startup. If the application has not
been started, a Not running message appears here.

20 D e v e l o p e r ’ s G u i d e

V i e w i n g a p p l i c a t i o n s t a t u s

Table 3.2 Application Status: Presentation information

Field Description

PO Cache Indicator of whether presentation objects are being cached or not. Values
are enabled or disabled.

Entries Number of entries currently in the PO cache.
Resource Cache Indicator of whether resources are being cached or not. Values are enabled

or disabled.

Table 3.3 Application Status: Session information

Field Description

Session Manager Type of session manager in use, usually Standard Enhydra Session
Manager. If you have installed a custom session manager, its type is
displayed. If there are no active sessions, N/A is displayed.

Active # Sessions Number of currently active sessions. If there are no active sessions, N/A is
displayed.

Peak # Sessions Peak number of sessions attained by this application during its current
instantiation. If there are no active sessions, N/A is displayed. The Reset link
allows you to reset this value to 0.

When Time and date when the peak number of sessions occurred.

Table 3.4 Application Status: Database information

Field Description

Database Manager Type of database manager in use, usually Standard Enhydra Database
Manager. If you have installed a custom database manager, its type is
displayed. If the application does not require the use of the database
manager, N/A is displayed.

Active # Connections Number of active connections to the database manager, during the
application’s current instantiation. If the application does not require
the use of the database manager, this field is not displayed.

Peak # Connections Peak number of connections to the database manager during the
application’s current instantiation. If the application does not require
the use of the database manager, this field is not displayed. The Reset
link allows you to reset this value to zero.

When Time and date when the peak number of connections occurred. If the
application does not require the use of the database manager, this field
is not displayed.

Table 3.5 Application Status: Request information

Field Description

Total # Requests Total number of requests of this application during its current
instantiation. If the application is not running, N/A is displayed.

Current #/min Current number of requests of this application per minute, during its
current instantiation. If the application is not running, N/A is displayed.

Peak #/min Peak number of requests of this application per minute, during its current
instantiation. If the application is not running, N/A is displayed. The Reset
link allows you to reset this value to zero.

When Time and date when the peak number of requests per minute occurred.

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 21

V i e w i n g a p p l i c a t i o n s t a t u s

The Advanced section of the application status display is an optional,
application-specific area. Information is only displayed here if the application has a
toHtml method implemented.

Servlet Status window
If your selected application is a servlet, the following tables represent the standard
fields in the Servlet Status window.

Figure 3.3 Servlet Status window

The following tables provide information about the Servlet Status window.

Table 3.6 Servlet Status: General information

Field Description

Type By default, displays Servlet.
Doc Root File system location to associate with the document root of the servlet.

For example, /tmp.
Classname Class name of the servlet.
Description Modifiable description of the servlet.
Initial Arguments Initial arguments passed to the servlet, represented in name/value

pairs, for example, max = 256. The text no initial arguments is
displayed if there are none.

Additional Classpaths Location of additional CLASSPATHs necessary for the successful
instantiation of this servlet.

Up Time Elapsed time since servlet startup. If the servlet has not been started,
the text Not running appears in this field.

Started Time of the most recent servlet startup. If the servlet has not been
started, the text Not running appears in this field.

22 D e v e l o p e r ’ s G u i d e

V i e w i n g a p p l i c a t i o n s t a t u s

WAR Status window
If your application is a WAR (Web application archive, see “Creating a WAR file” on
page 44) file, the Status window, as shown in Figure 3.4, displays fields as described
in Table 3.8.

Figure 3.4 WAR Status window

The following table provides information about the Status window.

Table 3.7 Servlet Status: Request information

Field Description

Total # Requests Total number of requests of this servlet during its current instantiation. If
the servlet is not running, N/A is displayed.

Current #/min Current number of requests of this servlet per minute, during its current
instantiation. If the servlet is not running, N/A is displayed.

Peak #/min Peak number of requests of this servlet per minute, during its current
instantiation. If the servlet is not running, N/A is displayed. The Reset link
allows you to reset this value to zero.

When Time and date when the peak number of requests per minute occurred.

Table 3.8 WAR status

Field Description

Type By default, displays Web Application.
Session Timeout Period of time, in minutes, for which the session may remain idle before

timing out.
WAR Expanded Whether the WAR file has been extracted.
WAR Validated Whether the WAR file has been validated.
Invoker Enabled Indicator of whether /servlets/* syntax is in use, true or false.
WorkDir Persistent Indicator of whether to the work directory is saved after the termination

of the current Multiserver session, true or false.
Description Plain English description of this archive.

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 23

V i e w i n g a p p l i c a t i o n s t a t u s

Understanding the Connections tab

Selecting the Connections tab in the Status window displays the connection status for
the selected application. This section also contains controls for adding new
connections, removing existing connections, enabling and disabling connections, and
modifying the filters associated with any of the connections.

Figure 3.5 Connections Status window

The following table provides information about the Connections Status window.

Initial Arguments Initial arguments passed to the servlet, represented in name/value pairs,
for example, max = 256. The text no initial arguments is displayed if there
are none.

Additional Classpaths Path to the root directory of the Web archive, after it is decompressed.
Uptime Period of time, in seconds, for which the session may remain idle before

timing out.

Table 3.9 Connections Status window

Field Description

Type Type of connection.
• HTTP: Connect through a Web browser. No additional steps are needed.
• HTTPS: Connect through secure HTTP.
• Enhydra Director: Connect through a Web server configured to use

Director.
URL URL that may be used to access the application through the particular

connection type. These are live links through which you may access the
application, when both the application and the Multiserver are running.

Requests Number of requests that have been received by the application through the
specified connection.

Filters Filters associated with the current connection. These may be used to filter
selectively for certain types of data or conditions, each viewable in its own log
file.

Enabled? Status of the current connection, Enabled or Disabled.
Create Button for adding new connections.
Remove Button for removing each of the existing connections.

Table 3.8 WAR status (continued)

Field Description

24 D e v e l o p e r ’ s G u i d e

S t a r t i n g a n a p p l i c a t i o n

Starting an application
Use the Start button in the control frame to start an installed application. If the
application is already running, the Start button is disabled. Since the Start operation
changes the state of the application, it activates the Save State button. If you want this
application to be automatically started the next time the Enhydra Multiserver is
started, use the Save State button to save this setting, as described in “Saving the
current state of the console” on page 43.

To start an application:

1 Select an application from the Applications window by clicking on its name.
2 Click the Start button.

Stopping an application
Use the Stop button in the control frame to stop an installed application. If the
application is not currently running, the Stop button is disabled. Since the Stop
operation changes the state of the application, it enables the Save State button. If you
want this application to be stopped the next time the Enhydra Multiserver is started,
use the Save State button to save this setting, as described in “Saving the current state
of the console” on page 43.

To stop an application:

1 Select an application from the Applications window.
2 Click the Stop button.

If an application has active users, you are prompted to confirm you want to stop the
application.

Adding an application
For the most part, all types of applications are handled in the same way in the Admin
Console. However, in the case of adding an application, the console provides
different windows for adding an Enhydra application, a single servlet, or a WAR file.

Whichever one you add, though, the process consists of two parts: adding the
application, and creating at least one connection for it.

Adding an Enhydra super-servlet application

Use the Add button in the control frame to add an application to the Enhydra
Multiserver. Before adding it, its application configuration file must be made
accessible to the console, as described below.

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 25

A d d i n g a n a p p l i c a t i o n

Preparing the configuration files
1 Copy the application’s configuration file, application.conf, to

/usr/local/<enhydra_root>/apps/.

2 In the configuration file, comment out the first line of the Server.Classpath variable.

3 Directly beneath this, uncomment the second line.

4 Set the Server.Classpath variable equal to the absolute path to the application’s
JAR file:
Server.Classpath[] = "/<application_root>/output/lib/<appName>.jar"

5 Save and close the configuration file.

Adding the application in the console window
1 In the Admin Console window, click the Add button to display the Add New

Application/Servlet window.

Figure 3.6 Add New Application window

2 Select the Application radio button at the top of the window to display the
Application tab section, if it isn’t already displayed.

3 Select an application from the pull-down Select Application menu. The names in
the menu represent applications with configuration files in the
/usr/local/<enhydra_root>/apps/ folder, but which have not already been added to
the console. For each such file, the associated application name appears in the
menu. The menu is empty if there are no more applications available to add.

4 Optionally, complete the Description field.

5 Click OK twice to return to the admin console. The Applications window is
updated to reflect the new application, which is selected by default. Its status
appears in the content frame.

6 Create a connection for the application according to the instructions in
“Connecting the new application” on page 28.

26 D e v e l o p e r ’ s G u i d e

A d d i n g a n a p p l i c a t i o n

Adding a single servlet

Although Enhydra provides the capability for adding a single servlet to the console,
as described below, users will typically find it more efficient to add all of their
servlets in the form of a Web archive (WAR), as discussed in “Adding a Web
application archive” on page 27.

Follow these steps to add a servlet application to the Console:

1 Click the Add button to display the Add New Application/Servlet window and
select the Servlet radio button to toggle to the Servlet tab section.

Figure 3.7 Add New Servlet window

2 Complete the fields as described in the following table.

3 Click OK to return to the console window. In the updated Applications window,
the new servlet is selected by default. Its status appears in the content frame.

4 Create a connection for the servlet according to the instructions in “Connecting the
new application” on page 28.

Table 3.10 Adding Servlets

Field Description

Name Identifier string used to refer to this servlet. Required.
Class Name Name of the class to instantiate for this servlet. This class must

implement the servlet interface. Required.
Additional Class Paths Any additional CLASSPATHs required for this servlet. Multiple class

paths, each on its own line separated by carriage returns, can be
specified in this field. Optional.

Doc Root Root of the servlet’s filesystem on disk. Required.
Initial Arguments Any initial arguments required for this servlet. These are made

available to the servlet’s init() method. Multiple initial arguments,
each on its own line separated by carriage returns, can be specified
in this field. Optional.

Description Description to be associated with the servlet being added.
Optional.

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 27

A d d i n g a n a p p l i c a t i o n

Adding a Web application archive

A Web archive (WAR) is a collection of servlets bound together for convenient
administration. Once configured, a WAR may be moved from one server to another
without the need for further modification.

For information on creating a WAR file, see the section “Creating a WAR file” on
page 44.

Follow these steps to add your WAR file to the Console.

1 In the Administration Console window, click the Add tool to display the Add
New Application/Servlet window.

2 Select the WAR radio button to switch to the WAR tab section.

Figure 3.8 Add New WAR window

3 Complete the fields as described in the following table.

4 Click OK to return to the console. The Applications window is updated to reflect
the new application, and it is selected by default. Its status appears in the content
frame.

Table 3.11 Adding WARs

Field Description

Name Name of the archive, not necessarily the file name.
Doc Root Path to the root directory of the Web archive, after it is decompressed.
Session Timeout Period of time, in minutes, for which the session may remain idle

before timing out.
WAR Expanded Leave selected.
WAR Validated Leave selected; see Tomcat documentation for details.
Invoker Enabled Select if you want to use /servlets/* syntax.
WorkDir Persistent Select if you want to save the work directory after the termination of

the current Multiserver session.
Description Plain English description of this archive.

28 D e v e l o p e r ’ s G u i d e

A d d i n g a n a p p l i c a t i o n

5 Create a connection for the WAR according to the instructions in “Connecting the
new application” on page 28.

Connecting the new application

After adding an application to the console, you must specify how it should connect to
the outside world. The Enhydra Multiserver lets you choose:

• One-to-one: one port to one application.
• One-to-many: one port to many applications.
• Many-to-many: multiple ports to multiple applications.

Use the Add New Connection window to add and remove connections.

1 Select the desired application in the Applications window.

2 Click the Connections tab in the Status window.

3 Click Create to display the Add New Connection screen. In this screen, select the
desired connection method.

Figure 3.9 Add New Connection window

• HTTP: This method opens a socket in the Multiserver on the local machine
using HTTP, connecting through a Web browser. HTTP is a good choice for a
development environment because of its simplicity.

• HTTPS: Connect through secure HTTP. This option is only available if you
have configured your Enhydra installation with Sun's Java Secure Socket
Extension Kit. For more information, see “Using SSL with Enhydra” on
page 179 for more information.

• Enhydra Director: This works in conjunction with a Web server configured to
use Enhydra Director. If you use this option, make sure to set the URL prefix
and port number to those used in your Director configuration file. See
“Configuring your application” on page 167 and “Editing
enhydra_director.conf” on page 168 in Chapter 9, “Using Enhydra Director” for
more information.

4 Enter the URL prefix—the part of the URL that immediately precedes the file
name. Or, leave it set to the default, the forward slash character.

5 Enter the port number. If you do not have root access on your system, you must
pick a number above 1000. The highest valid port number is 65535. If the specified
port is already being used, the attempt to add the connection fails. The netstat
command shows the state of the ports on UNIX systems.

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 29

D e l e t i n g a n a p p l i c a t i o n

6 Click OK to return to the Connections screen.

To run your newly added application, see “Starting an application” on page 24.

Removing a connection

Click Remove Connection button to remove an application. A pop-up window will
ask for confirmation before the connection is removed. Click OK to remove the
connection.

Deleting an application
Use the Delete button to remove an application from the Enhydra Multiserver. If the
selected application is currently running, the Delete button is disabled. You must
stop a running application prior to removing it, as described in “Stopping an
application” on page 24.

1 Select the application from the Applications window.

2 Click the Delete button in the console tools section.

3 Click OK to confirm.

4 The Remove Application (or Servlet, or WAR) popup appears, confirming the
deletion.

When an application is deleted, its entries are removed from the Enhydra
Multiserver configuration file. The application itself, however, is not removed from
the file system, and its configuration file is not removed from <enhydra_root>/apps/.
You may add the application again at any time, using the Add button, described in
“Adding an application” on page 24.

Since the Delete operation changes the state of the application, performing this
operation activates the server Save State tool. If you want this application to not be
present the next time the Enhydra Multiserver is started, click Save State to save this
setting.

Modifying an application
The Enhydra Multiserver Admin Console provides a graphical user interface and
“one-stop shopping” for modifying your Enhydra applications, Java servlets, and
WAR files. The fields displayed in the console reflect properties found in two
configuration files:

• /usr/local/<enhydra_root>/multiserver.conf, the basic Multiserver configuration file
• /usr/local/<enhydra_root>/apps/<appName.conf>, the configuration file specific to the

application designated by its name.

30 D e v e l o p e r ’ s G u i d e

M o d i f y i n g a n a p p l i c a t i o n

However, the configuration file for the console itself,
/usr/local/<enhydra_root>/multiserverAdmin.conf, must be modified by hand in any text
editor.

Additionally, some of the variables in the other two configuration files are not
reflected in the console, and must also be modified manually, as necessary.

Modifying configuration files by hand

The following tables identify the modifiable variables found in each of the files. You
can edit these files in any text editor or word processing program.

Multiserver configuration file
The file multiserver.conf is a simple Enhydra Multiserver configuration file that
describes applications running on the server. Many of these properties are modifiable
in the console, which overwrites this file when you save changes you make in the
Modify screens.

Admin Console configuration file
The file multiserverAdmin.conf contains properties used to configure the console itself,
including the password and user name properties. For additional application-specific
properties, see “Enhydra application configuration file” on page 31.

Table 3.12 Basic Multiserver configuration file (multiserver.conf)

Parameter Description
Server.ConfDir Where the config files are.
Server.LogFile Set up logging.
Server.LogToFile[] Specifies logging levels.
Server.LogToStderr[] Specifies logging levels.
Application.simpleApp.ConfFile Specify only one application (no graphical administration).
Application.simpleApp.Description Plain English description of the application.
Application.simpleApp.Running Indictor of whether the application is running.
Connection.p9000.Type Connection type (HTTP, HTTPS, Enhydra Director).
Connection.p9000.Port Port to bind.

Table 3.13 Admin Console configuration file (multiserverAdmin.conf)

Parameter Description
Admin.Username User name required to access the admin app. This is used in

conjunction with the “Basic Auth” HTTP authentication method. If
both the user name and password are " " (blank), then no
authentication is required.

Admin.Password Same as above.

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 31

M o d i f y i n g a n a p p l i c a t i o n

Enhydra application configuration file
The file <appName>.conf contains properties for the specified Enhydra application.

Admin.DebugQueueSize Maximum number of transactions (a request and the resulting
response) to store when debugging.

Admin.SaveResponseData Indicator of whether each of the stored transactions should keep a
copy of the data written out to the net when debugging. Consumes
additional memory. Be careful when using this option and large
values of Admin.DebugQueueSize simultaneously. Values are true or
false.

Table 3.14 Application configuration file (<appName>.conf)

Parameter Description
Server.ClassPath[] Comma-separated CLASSPATH directories and files used by this

application. Assumes run from the output directory for
debugging. If you run from the JAR, you must rebuild after every
change to the app.

Server.AppClass The fully qualified name of the application class.
Server.PresentationPrefix Prefix used to derive presentation object class names and paths

from URLs. Assumes run from the output directory for
debugging.

Server.AutoReload Flag to indicate that application classes and resources should be
reloaded automatically if any file in the CLASSPATH changes.
Note: This is a debugging option and may slow down the
performance of your application. The CLASSPATH should not contain
any directories (or underlying directories) that contain constantly
changing files, such as log files, for example, the application’s
output directory, which contains the application log files in the
underlying log directory.

Application.DefaultUrl If the URL / (Web server root) for this application is accessed, the
user will be redirected to this URL. This should be a relative URL.

Server.XMLC.AutoRecompilation Enable or disable recompilation of XMLC document classes when
the source files are out of date. For this to work, XMLC document
classes must have been compiled using the -for-recomp flag. The
application must be running with its classes (at least XMLC
classes) in directories rather than in a JAR. The HTML files must
be on the CLASSPATH in the same package as the class that was
generated from them.

Server.XMLC.AutoReload Enable or disable automatic reloading of XMLC document classes
when the class file has changed. This is a subset of the
Server.XMLC.AutoRecompilation and checks for XMLC document
classes that have been loaded being out of date, however it
doesn’t check or recompile source files. If
Server.XMLC.AutoRecompilation is set, this option is ignored.

SessionManager.Lifetime Maximum number of minutes a user session can last, after which
the session is terminated regardless of activity. Setting the value
to less than or equal to 0 gives an infinite lifetime. The default is
1440 minutes (24 hours).

Table 3.13 Admin Console configuration file (multiserverAdmin.conf) (continued)

Parameter Description

32 D e v e l o p e r ’ s G u i d e

M o d i f y i n g a n a p p l i c a t i o n

Changing the console username and password
The user name and password properties deserve special mention because they are
buried in the /usr/local/<enhydra_root>/MultiserverAdmin.conf file. Simply modify the
variables Admin.Username and Admin.Password as desired.

Modifying configuration files in the console

Use the Modify button to change some of the configurable attributes of your
application. In the Modify screens, you can modify attributes associated with the
selected application, which appear in the application’s own configuration file,
/usr/local/<enhydra_root>/apps/<appName>.conf or in the Enhydra Multiserver
configuration file /usr/local/<enhydra_root>/multiserver.conf.

For properties in the multiserverAdmin.conf file, or for properties from the other files
that are not reflected in the console, you must make modifications manually in any
text editor.

If the application you have selected is currently running, the Modify button is
disabled.

1 Select an application from the Applications window.

2 Click the Stop button to stop running the application and enable the Modify
button.

SessionManager.MaxIdleTime Maximum number of minutes a user may be idle before being
logged off. Setting the value to less than or equal to 0 gives an
infinite idle time. You should not set this and SessionLifetime
both to zero, else sessions will never expire. The default is 30
minutes.

SessionManager.
MaxNoUserIdleTime

Maximum number of minutes a session not associated with a
logged in user (perhaps login pending) may be idle before the
session is deleted. Setting the value to less than or equal to 0 will
give an infinite idletime. You should not set this and
SessionLifetime both to zero else sessions will never expire. The
default is 30 minutes.

SessionManager.
IdleScanInterval

Seconds between idle user scans in the Session Manager. The
default is 30 seconds.

SessionManager.
RandomizerIntervals[]

Set of varying intervals, in seconds, to use for adding
user-generated entropy to the random number generator. It is a
good idea to use several different prime numbers. Setting this key
is only necessary in very security-conscious environments.
Suitable defaults are used if this is not specified.

PresentationManager.
CacheClasses

Enables or disables caching of presentation object classes in
memory. Optional; the default is true.

PresentationManager.
CacheFiles

Enables or disables caching of files (HTML, GIF, etc.) that are
served as part of the application. Optional; the default is false.

Table 3.14 Application configuration file (<appName>.conf) (continued)

Parameter Description

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 33

M o d i f y i n g a n a p p l i c a t i o n

3 Click the Modify button to display the Status screen in the content frame. It
contains several configuration tab sections: Application/Servlet, Sessions,
Database, Advanced.

If modifying servlets or WAR files, there will only be one tab, Servlet or WAR,
respectively, displayed. The other tabs are specific to Enhydra applications and
only appear when modifying one of them.

4 Select the tab containing the information you wish to modify, and consult the
appropriate section(s) below for further information.

In most cases, specific parameters available in each tab section depend upon the
individual application.

On each tab, click the Save button to write back modifications to the appropriate
configuration file, or Cancel to cancel any changes and return to the Status screen for
the selected application. There is no need to use the Save button in every tab section;
clicking it once when you’ve finished with all of the sections is sufficient.

Application tab
This tab represents the general configurable parameters for the selected application.
The Additional Classpaths field is read from and saved to the application’s
configuration file, /usr/local/<enhydra_root>/apps/<appName>.conf. The Description field
is read from and saved to the Enhydra Multiserver configuration file,
/usr/local/<enhydra_root>/multiserver.conf.

Figure 3.10 Application tab section

34 D e v e l o p e r ’ s G u i d e

M o d i f y i n g a n a p p l i c a t i o n

The following table provides information about application form fields.

Sessions tab
This tab section presents session-specific parameters for the selected application. All
of the fields are read from and saved to the application’s configuration file,
/usr/local/<enhydra_root>/apps/<appName>.conf.

Figure 3.11 Sessions tab section

Not all of these attributes may appear for your selected application. The following
table represents the list of all available attributes.

Table 3.15 Modifying applications: Application form fields

Field Description
Name Identifier string used to refer to this application. It is not modifiable

once set, and appears here for reference only.
Additional Class Paths Any additional CLASSPATHs required for this application. Multiple class

paths, each on its own line separated by carriage returns, can be
specified in this field.

Description Description to be associated with the application being added. Optional.

Table 3.16 Modifying Application: Sessions form fields

Field Description
IdleScanInterval Frequency, in seconds, at which the session manager tests whether

any sessions should be expired. Must be greater than zero.
SessionManagerLifetime Maximum number of minutes a session is valid. If this value is zero,

then there is no lifetime limit. Required.
SessionMaxNo-UserIdleTime Maximum number of minutes a session that does not have a User

object associated with it may be idle before the session is expired
deleted). If this value is less than or equal to zero, then the session
may be idle indefinitely. Default is the same as MaxIdle.

SessionMaxIdle-Time Maximum number of minutes a session may be idle before the
session is expired (deleted). If this value is less than or equal to zero,
then the session may be idle indefinitely.

Randomizer-Intervals Set of varying intervals, in seconds, to use for adding user-generated
entropy to the random number generator. It is a good idea to use
several different prime numbers. Multiple intervals, each on its own
line separated by carriage returns, can be specified in this field.

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 35

M o d i f y i n g a n a p p l i c a t i o n

Database tab
This tab presents database-specific parameters for the selected application. All of the
fields are read from and saved to the application’s configuration file,
/usr/local/<enhydra_root>/apps/<appName>.conf.

There may be no modifiable database attributes, depending on the specific
application selected. If so, the text Nothing to modify appears under the Database tab.

Table 3.17 Modifying Application: database form fields

Field Description
Debug Specify true to enable Query and Transaction logging, false to

disable it. Optional; false if not specified.
DB.<dbname>.Jdbc-Driver JDBC driver to use to access the database. Required.
DB.<dbname>.Class-Type Class of the logical database implementation or a symbolic

name if one of the standard types is selected. This is
recommended because, although JDBC abstracts the data
access, the functionality of each database is slightly different,
and this parameter allows for optimized usage. Optional.
Standard types are:
• Oracle: For Oracle 7/8 usage
• Informix: For Informix usage
• Sybase: For Sybase usage
• Msql: For Microsoft MSQL usage
• Standard: For all other JDBC databases

DB.<dbname>.ObjectId.CacheSize Number of object IDs to cache between database queries.
Optional. If not specified, defaults to 1024.

DB.<dbname>.ObjectId.MinValue Starting number of Object ID allocation. This is only used if the
Object ID table is empty, and thus is useful in development and
testing. Optional. If not specified, it defaults to
100000000000000000. Note that the largest number that can be
associated with an OID in the Enhydra Multiserver is
database:DECIMAL(19,0).

DB.<dbname>.Connection.Url JDBC URL of the database. Mandatory. e.g.,
jdbc:sequelink://dbHost:4000/[Informix];
Database=dummy

DB.<dbname>.Connection
.MaxPoolSize

Maximum number of open connections to the database.
Optional. If not specified, defaults to 0. A value of 0 means that
connections are allocated indefinitely or until the database
(JDBC) refuses any new ones.

DB.<dbname>.Connection
.QueryTimeout

Amount of time, in seconds, that a query blocks before
throwing an exception. If less than or equal to 0, then the query
will not block. Optional. If not specified, defaults to 0. This is
not implemented by all logical databases.

DB.<dbname>.Connection.User Database user used to access the database. Mandatory.
DB.<dbname>.Connection
.Allocation-Timeout

Maximum amount of time, in milliseconds, that a thread waits
for a connection from the connection allocator before an
exception is thrown. This prevents possible deadlocks. If less
than or equal to zero, the allocation of connections will wait
indefinitely. Optional. If not specified, defaults to 1000 (ms).

36 D e v e l o p e r ’ s G u i d e

M o d i f y i n g a n a p p l i c a t i o n

Figure 3.12 Database tab section

Advanced tab
This tab section presents all of the application-specific parameters for the selected
application that are not related to sessions or databases. Consult your application’s
documentation on this form’s fields. All fields are read from and saved to the
application’s configuration file, /usr/local/<enhydra_root>/apps/<appName>.conf.

Figure 3.13 Advanced tab section

Servlet tab
This tab section represents the only configurable parameters for servlets. All of the
attributes available for modification here are read from and saved to the Enhydra
Multiserver configuration file, /usr/local/<enhydra_root>/multiserver.conf.

DB.<dbname>.Connection
.Transaction Timeout

Amount of time, in seconds, that a transaction blocks before
throwing an exception. If less than or equal to zero, the
transaction will not block. Optional. If not specified, defaults to
0. This is not implemented by all logical databases.

DB.<dbname>.Connection.Logging Specify true to enable SQL logging, false to disable it. Optional.
Defaults to false if not specified.

DB.<dbname>.Connection.Password Database user’s password. Required.
DefaultDatabase Default logical database used by this application. Optional. If

not specified, then the first entry in the Databases field is used.
Databases List of logical SQL database names.

Table 3.17 Modifying Application: database form fields (continued)

Field Description

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 37

M o d i f y i n g a n a p p l i c a t i o n

Figure 3.14 Servlet tab section

The following table provides information about modifying servlets.

WAR tab
This tab section represents the only configurable parameters for WAR files. All of the
attributes available for modification here are read from and saved to the Enhydra
Multiserver configuration file, /usr/local/<enhydra_root>/multiserver.conf.

Figure 3.15 WAR tab section

Table 3.18 Modifying servlets

Field Description
Name Identifier string used to refer to this servlet. It is not modifiable once set,

and appears here for reference only.
Class Name Name of the class to instantiate for this servlet. This class must

implement the servlet interface. Required.
Additional Class Paths Any additional CLASSPATHs required for this servlet. Multiple classpaths,

each on its own line separated by carriage returns, can be specified in
this field.

Doc Root Root of the servlet’s file system on disk. Required.
Initial Arguments Any initial arguments required for this servlet. These are made

available to the servlet’s init() method. Multiple initial arguments,
each on its own line separated by carriage returns, can be specified in
this field.

Description Description to be associated with the servlet being added. Optional.

38 D e v e l o p e r ’ s G u i d e

M o n i t o r i n g t r a f f i c t o t h e a p p l i c a t i o n

The following table provides information about modifying WARs.

Finalizing application modifications

1 After making the desired modifications to your application, select Save. An alert
appears, confirming that the changes have been saved to the corresponding
configuration file.

2 If you made changes that affected the Enhydra Multiserver configuration file,
another alert appears to confirm this modification.

3 Click OK to return to Status information for the selected application. Any
modifications that have been made to the application-specific configuration files
take effect upon starting the application.

4 To save changes that affect the Enhydra Multiserver configuration file, click the
Save State button in the control frame.

Monitoring traffic to the application
The debugging utility is used as a window into the operation of a running
application to aid in debugging or maintaining an application. Enabling this feature
displays a separate debugging control panel which is used to control
debugging-specific functions. Debugging information is then displayed in the
content frame area of the display.

If the selected application is not currently running, or has no active connections, the
Debug button is disabled.

1 Select an application from the Applications window.

2 Click the Debug button in the console tools section. The debugging control panel,
containing the debugging controls and an event viewing space, appears.

Table 3.19 Modifying WARs

Field Description
Doc Root Path to the root directory of the Web archive, after it is decompressed.
Description Plain English description of this archive.
Default Session Timeout Period of time, in minutes, for which the session may remain idle before

timing out.
Is War Expanded Whether the WAR file has been extracted.
Is War Validated Whether the WAR file has been validated.
WorkDir Persistent Select if you want to save the work directory after the termination of the

current Multiserver session.

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 39

M o n i t o r i n g t r a f f i c t o t h e a p p l i c a t i o n

Figure 3.16 Debugging control panel

The name of the application is appended with the designation D in the Applications
window to designate that this application is currently being debugged.

You can now view events that are being handled by the application being debugged
in the event viewing space.

Events appear here only if the application is actively being used. If no events are
displayed, you can generate some activity in the selected application, which is
reflected in the debugging control panel.

The active event list

Once an application or servlet is in debugging mode, any event handled by this
application appears in the debugging controls window’s event viewing space. Each
line has a format similar to the following:
200 host1 GET Welcome.po

Table 3.20 Debug control panel buttons

Button Description

Pause Pauses the debugging function, and stops the accumulation and scrolling of events.
This is useful while debugging an application with a fast-scrolling event list that
needs to be paused for perusal. Disabled if when the Pause function is already on.

Resume Resumes the debugging function, and restarts the accumulation and scrolling of
events. Disabled until the Pause button is activated.

Clear Clears all of the current accumulated events listed in the event viewing space.
Finish Halts the debugging function, and closes the debugging controls window. The

application being debugged loses its D designation in the Applications window.

40 D e v e l o p e r ’ s G u i d e

M o n i t o r i n g t r a f f i c t o t h e a p p l i c a t i o n

The first column designates the status code returned to the browser as a result of this
request, in this case, 200. These status codes are color-coded to designate different
types of events that might need attention.

The second column refers to the name of the remote host that originated this request.

The third column refers to the type of event. Here, we have a GET request. The other
option is a POST request. In this column, the name of the request type (i.e., the word
GET) is a clickable link. Clicking on this link displays the Debug screen in the Admin
Console’s content frame. “Debugging event details” explains the information in this
screen.

The fourth column refers to the resource being requested by the browser at the
remote host, in this case, Welcome.po.

Debugging event details

Clicking the name of the type of event (GET or POST) in the third column of the
debugging active event list, displays detailed information about that event. This
information appears in the content frame of the console, split between three tabs:
Request, Trace, and Response.

Request tab
This tab represents information about the request sent from the remote browser to
the Enhydra Multiserver. It contains areas for general information, headers, cookies,
and parameters associated with this request.

Figure 3.17 Debug Request tab

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 41

M o n i t o r i n g t r a f f i c t o t h e a p p l i c a t i o n

The following table provides information about Request tab fields.

Trace tab
This tab represents a trace listing of calls made to the servlet API by the application as
a result of this event. The last item on this list is the amount of elapsed time for the
application to handle this request. The diagram below is an example of a trace tab.

Table 3.21 Debugging detail: Request tab fields

Field Content
Server Name Name of the server hosting the Enhydra Multiserver.
Server Port Port number on the server used to access the Enhydra Multiserver.
URI URI used to request a resource for this event.
Scheme Scheme used to make the request.
Total Bytes Number of bytes (if applicable) of this request.
Query String Query string (if any) of this request.
Remote IP Address IP address of the remote client making this request.
Remote Host Host name of the remote client making this request.
Remote User Remote user name (if available) making this request.
Auth Type Authentication type (if applicable) used for this request.
Content Length Content length (if applicable) of this request.
Content Type Content type (if available) of this request.
Method Method (get or post) applicable to this request.
Path Info Path information for the resource being requested.
Path Translated Translated path information for the resource being requested.
Protocol Protocol and version being used for the communication of this request.
Cookie Name and value of the header cookie associated with this request.
Accept-Charset Acceptable character set specified in the header of this request.
Pragma Pragma header for this request.
Accept Accept header values for this request.
Referer Referer URL header for this request.
Accept-Language Header setting the acceptable language parameter.
User-Agent Browser originating this request.
Host Server host name and port number.
Connection Connection type header setting.
Accept-Encoding Acceptable encoding types for this request.
Cookie Name Cookie name (if applicable) for this request, and its value.
Parameter Name Parameters (if any) for this request.

42 D e v e l o p e r ’ s G u i d e

M o n i t o r i n g t r a f f i c t o t h e a p p l i c a t i o n

Figure 3.18 Debug Trace tab

Response tab
This tab represents information about the response sent back to the remote browser
from the Enhydra Multiserver as a result of this request. It contains areas for general
information, headers, cookies, and the actual response data. This last item is of note
as the actual HTML source sent back to the browser will be displayed for HTML
responses.

Figure 3.19 Debug Response tab

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 43

S a v i n g t h e c u r r e n t s t a t e o f t h e c o n s o l e

The following table provides information about Response tab fields.

Saving the current state of the console
The Save State button lets you save the current state of the Enhydra Multiserver to
the Enhydra Multiserver configuration file /usr/local/<enhydra_root>/multiserver.conf,
and is read the next time the server is started.

The Save State button starts out in a disabled state. However, the first change to the
state of the server causes the button to become enabled. The following operations
cause a change to the state of the server, and thus cause the Save State button to
become active.

• Starting or stopping an application via the Start or Stop buttons

• Adding a new application via the Add button

• Deleting an existing application via the Delete button

• Modifying any of the fields for a servlet or WAR file, using the Modify button

• Modifying the Description field for an application, using the Modify button

• Adding a new connection to an application using the Add Connection button

• Removing an existing connection from an application using the Remove
Connection button

• Enabling a disabled connection of an application using the Enable Connection
button

• Disabling an enabled connection of an application using the Disable Connection
button

• Adding a new filter to an existing connection of an application using the Modify
Filters button

• Removing an existing filter from a connection of an application using the Modify
Filters button.

Table 3.22 Debugging detail: Response tab fields

Field Content
Content Length Content length (if applicable) of this response.
Content Type Content type (if available) of this response.
Status Code Status code being returned to the browser with this response.
Total Bytes Number of bytes (if applicable) of this response.
Expires Expiration time for the response data if cached.
Cache-Control Cache control setting.
Cookie Name Name of the cookie (if any) for this response.
Response Data Data being returned as part of this response.

44 D e v e l o p e r ’ s G u i d e

C r e a t i n g a W A R f i l e

To save the current state of the Enhydra Multiserver:

1 Perform one or more of the operations listed above, and arrive at the server state
that you wish to save.

2 Select the Save State button from the console tools section.

The content frame refreshes, presenting you with a confirmation alert.

3 Click OK to proceed with the save, or Cancel to abort. If you select OK, the
window refreshes and displays notification of a successful save operation.

4 Click OK to return to the Admin Console.

Creating a WAR file
This section describes how to set up the directory structure of a WAR file to deploy
Java servlets, JSPs, and static content. Under the Servlet 2.2 API, JSPs and servlets are
assembled into a directory structure referred to as a Web application archive, or
WAR. When the WAR is finished, you can compress it into a file with a .war
extension. Once set up, it can be moved from server to server without further
configuration. A good way to understand how to construct a WAR is to look at a
simple example.

A simple WAR example
Suppose you want to deploy a JSP called Hello.jsp and a servlet called Hello.java. Set
up the following directory structure:
/tmp/webApp

myJspDir
Hello.jsp

WEB-INF
classes

Hello.class
web.xml

The directory structure begins with a document root directory that has an arbitrary
name, in this case, webApp. The JSP page can be placed either in the document root
directory or in any of its subdirectories. In this example, it is placed in an arbitrary
subdirectory named myJspDir. WEB-INF, the one required subdirectory, contains the
configuration file web.xml and a directory called classes which in turn contains the
compiled servlet classes. If you are only using JSPs, you do not need a classes
subdirectory. The Multiserver adds the classes directory to its CLASSPATH, so the server
automatically finds servlets placed in that directory.

The last required file, web.xml, contains deployment information like name mappings,
parameters, and default file mappings. The web.xml file in this simple example
contains the following essentially empty file:
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 45

C r e a t i n g a W A R f i l e

<web-app>
<!-- configuration options would go here -->

</web-app>

Once you register your Web application with the Multiserver, you access the above
pages with the following URLs:

• http://<your_host>/myPrefix/myJspDir/Hello.jsp
• http://<your_host>/myPrefix/servlet/Hello

The http://<your_host> section of the URL represents your host machine. When you
configure the Multiserver to run the servlet, you tell it that the path to the document
root is /tmp/webApp, and the URL prefix is some arbitrary string like /myPrefix.
Therefore, every request with the prefix myPrefix is forwarded to the Multiserver
which in turn runs your application.

The remainder of the URL for the JSP page corresponds to the directory structure.
You can put HTML files in the same directory and request them in a similar manner.
Calls to the servlet require the reserved word “servlet” in the URL. When the servlet
server sees it, it knows to look for the corresponding class in the classes subdirectory
of the WEB-INF directory.

For more information
For a somewhat more complex example, see the WarExample application that ships with
Enhydra. Beyond that, Sun’s Servlet 2.2 specification provides more information
about configuring a WAR, containing both instructions and examples. You can
download it from http://java.sun.com/products/servlet/download.html.

A more complex web.xml file
As mentioned above, the web.xml file describes a number of configuration parameters.
The web.xml file in the foregoing example is empty. It contains no configuration
parameters. The following web.xml file shows how to perform some common
configuration tasks, described by comments in the code.
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<!-- The next two sections define name/class mappings. -->
<servlet>

<servlet-name>BasicHello</servlet-name>
<servlet-class>Hello</servlet-class>
<init-param>

<param-name>SomeParameter</param-name>
<param-value>Parameterized hello from the web.xml file.</param-value>

</init-param>
</servlet>
<servlet>

<servlet-name>PackagedHello</servlet-name>
<servlet-class>a.b.c.HelloPackage</servlet-class>

</servlet>

46 D e v e l o p e r ’ s G u i d e

C r e a t i n g a W A R f i l e

<!-- The next two sections define name/url mappings. -->
<servlet-mapping>

<servlet-name>BasicHello</servlet-name>
<url-pattern>/Hello</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>PackagedHello</servlet-name>
<url-pattern>/Howdy/*</url-pattern>

</servlet-mapping>
<!-- The next two sections define welcome files and the error page. -->
<welcome-file-list>

<welcome-file>index.jsp</welcome-file>
<welcome-file>index.html</welcome-file>
<welcome-file>myFunkyIndex.htm</welcome-file>

</welcome-file-list>
<error-page>

<error-code>404</error-code>
<location>/aDirectory/myFavoriteErrorPage.html</location>

</error-page>
<!-- This application wide parameter mapping is used to map the / to a page. This
parameter is used by the index.jsp page in this example. -->
<context-param>

<param-name>welcomeServlet</param-name>
<param-value>/Hello</param-value>

</context-param>
</web-app>

Mapping servlets to URLs
The first lines in the web.xml file map servlet classes to arbitrary names. In the above
example, the Hello servlet class is mapped to the name BasicHello. In another example,
the mapped class is in a package. The class file for the HelloPackage servlet is located at
/someDir/webApps/webApp/WEB-INF/classes/a/b/c/HelloPackage.class. Once the servlet
classes are mapped to names, the names can link the classes with arbitrary URL
mappings. For example, the HelloPackage servlet is mapped to /Howdy/*, so the
following URL brings up the servlet:
http://localhost:8010/myPrefix/Howdy/aBigHello

Notice there is no use of the reserved word “servlet” in the URL. Frequently, every
servlet in a Web application is mapped to a corresponding URL to avoid using the
word “servlet.” The example uses the wildcard * (asterisk), but you can map to
specific names. The pattern-matching rules are described in more detail in the servlet
specification. For security reasons, a single * (asterisk) is the only supported
wildcard.

JSPs can be mapped to URLs in the same way. Just use the jsp-file tag instead of the
servlet-class tag when you define the servlet.

Mapping default and error pages
The welcome-file-list and error-page sections of the web.xml file defines default pages
and the error page. The welcome-file-list section lists the default pages. There are
three entries: index.jsp, index.html, and myFunkyIndex.htm. If a URL is called without a
page specified, these are the default pages. For example, assume a WAR has the
following configuration:

A /tmp/webApp/aDirectory containing a file index.html.

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 47

C r e a t i n g a W A R f i l e

The root of the Web application is mapped to /tmp/webApp. The URL prefix is mapped
to "/myPrefix".

In this case, a call to the following URL would return the contents of index.html:
http://localhost:8010/myPrefix/aDirectory

If there was another subdirectory webApp/anotherDir with the file myFunkyIndex.htm, a
call to http://localhost:8010/myPrefix/anotherDirectory returns the contents of
myFunkyIndex.htm.

The error-page section defines the default error page. In this case, the 404 File Not
Found error is mapped to a page called myFavoriteErrorPage.html in the directory
aDirectory. Nonexistent URLs will map to this page.

Defining parameters used by the application
Virtually every application uses parameters that are set in a configuration file. In the
Servlet 2.2 model, the parameters used by an application are included in the web.xml
file. The above example web.xml file includes one parameter set for a servlet and one
for the entire Web application. The Hello servlet includes a parameter defined in the
block beginning with the init-param tag. The servlet then gets that value with the
following call:
getInitParameter("SomeParameter")

The application-wide parameter is defined in the block beginning with the tag
context-param. This value can be accessed by any servlet or JSP with the following
method call:
getServletContext().getInitParameter("welcomeServlet")

Servlets talk to each other through the servlet context in a similar manner. For
example, if you have a factory class you instantiate on startup and place in the servlet
context, then all other servlets can access that factory object through the servlet
context. A full discussion of JNDI, security, and servlet/EJB communication is
beyond the scope of this document, but they are an integral part of Servlet 2.2.

Using the load-on-startup tag
While it is not used in this example, the load-on-startup tag is very useful. Many large
Web applications start at least one servlet that manages services for the rest of the
application. That central servlet might start a database connection pool manager,
verify that an email server is working, test a credit card verification service, or
instantiate objects used by the rest of the servlets. This tag takes a positive integer as
an argument. The number determines what order the servlets are started in. For more
information, see the web.xml DTD in the servlet specification. The DTD includes
descriptions of other tags not used here, including tags that control the security
context and references to Enterprise Java Beans.

Mapping the slash to a servlet welcome page
Mapping the slash (/) to a servlet is an apparently simple task that requires a
somewhat complicated solution. It is common to map the opening page of an
application to a servlet, in which case a request to the URL http://foo.com/myPrefix is

48 D e v e l o p e r ’ s G u i d e

C r e a t i n g a W A R f i l e

forwarded to the servlet mapped to http://foo.com/myPrefix/Hello. Note that your
application prefix can just be / if you want http://foo.com to go to http://foo.com/Hello.

The most intuitive answer is to simply define a URL mapping to the URL /.
However, if you do this, the mapping acts like mapping /* and every URL not
defined in the web.xml file to the default page. Files like foo.html are no longer served.
This occurs because mapping / takes over the default servlet. This behavior is
defined in the servlet specification. Because *.html, *.wml, and other static files are
handled by the default servlet, the returned request looks like the page you mapped
to the slash.

One good solution to this problem is to use a JSP page in the document root that
forwards the request to your welcome servlet. The server receives the request for the
slash and looks for the welcome-file mappings. It finds an index.jsp file and calls it.
That JSP file then forwards the request to your welcome servlet. The advantage to this
approach is that it leaves the default servlet that comes with the server in place. It
also takes advantage of the welcome-file approach defined in the Servlet 2.2
specification. The index.jsp file can be copied to any subdirectory and it forwards the
request to the default servlet defined in the web.xml file.

An important point to note with this approach is the possible security risk of the
default servlet showing directory listings. If a directory listing will compromise your
site’s security, put an index.jsp or index.html in every directory. For example, assume
you have a webApp/media directory containing your site’s images. Without a welcome
file, a call to http://foo.com/myPrefix/media returns a directory listing of all the images.
If you do not want a user to see that listing, put an index.jsp or index.html file in the
media subdirectory.

The default web.xml file
The Multiserver has a web.xml file that defines default mappings, located in
enhydra.jar. You can extract the file from the JAR file using a ZIP utility or other
extraction utility. Reading this web.xml file is instructive. For example, there is a
mapping for "/servlet/*" to the ServletInvoker servlet. The default welcome mappings
are listed at the bottom of the file.

Adding MIME types for WAP/WML
While the default web.xml file defines hundreds of MIME mappings, it does not define
the MIME mappings used by the WAP protocol, the protocol used to transmit
content to the micro-browsers in cellular telephones. If your WAR contains *.wml and
*.wbmp files, you need to add the wireless MIME types to your web.xml file.

Adding other JAR files to a Web application
So far, this section has only described how to add servlets or other classes to the
classes subdirectory in the WEB-INF directory. Any JAR files your application uses are
put in the lib subdirectory of the WEB-INF directory. The name lib is a reserved word.
The Multiserver adds the WEB-INF/classes directory and every JAR file in WEB-INF/lib to
its CLASSPATH. Servlets do not have to be in the classes subdirectory. They can be
anywhere in the Multiserver’s CLASSPATH if they are mapped in the default web.xml file.

C h a p t e r 3 , U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 49

C r e a t i n g a W A R f i l e

The images directory
Frequently, a Web application has an images or media subdirectory that contains all the
image files for the application. During development you want the images to be part
of your WAR, but at deployment time you want the Web server to serve them.
Although images and static files can be served from a WAR, the Web server will
serve them more efficiently because Web servers are written in native code and are
optimized to serve static content.

The following steps describe how to serve static content from the WAR during
development and from the Web server’s htdocs directory after deployment.

1 During development, put your images in an images subdirectory of the top-level
Web application directory.

2 Make links in your HTML relative to / (Web server root). For example, the HTML
your servlets return contains the following:

3 During development, use a URL prefix of / (Web server root) so all requests go to
the Web application.

4 When you deploy, move all static content from your WAR to the Web server’s
document directory.

5 Configure the Web server and the Multiserver to use an URL prefix like myPrefix
for your WAR. Images are then served by the Web server, and URLs like
/myPrefix/Hello are forwarded to the application server.

Enhydra issues
The previous information applies to any servlet or JSP container that is
Servlet 2.2-compliant. This section describes issues that are specific to the Enhydra
Multiserver servlet runner.

Super-servlet applications are easy to add to a WAR. You can use a super-servlet
application, JSPs, and servlets in the same application. Enhydra applications deploy
as a single servlet.

50 D e v e l o p e r ’ s G u i d e

C h a p t e r 4 , U s i n g E n h y d r a K e l p 51

4Chapter
Using Enhydra Kelp Chapter 4

This chapter describes how to use Kelp to develop Enhydra applications with XMLC.
It assumes a basic understanding of either JBuilder or JDeveloper and the Enhydra
Application Framework.

Introduction
Kelp is a set of Enhydra tools that extend a Java integrated development
environment (IDE) to simplify the creation of Enhydra applications.

Kelp for JBuilder is a set of Enhydra tools for Borland JBuilder. For information on
JBuilder, visit the Borland Web site at: http://www.borland.com/jbuilder/.

Kelp for JDeveloper is a set of Enhydra tools for Oracle JDeveloper. For information on
JDeveloper, visit the Oracle JDeveloper Web site at:
http://www.oracle.com/tools/jdeveloper/.

Kelp features

Kelp provides the following Enhydra tools:

• Enhydra Application wizards
The Application wizards generate Web or wireless applications using either the
Servlet API or the Enhydra super-servlet programming model.

• XMLC Compiler wizard
The Compiler wizard lets you set XMLC options, select HTML files to compile,
and call XMLC from within the IDE.

• Enhydra Deployment wizard
This wizard allows you to copy static content to the document root, set up your
project properties to start the Enhydra server when your run the project, process
templates, and create deployable archives.

• Enhydra Import wizard
The Import wizard allow you to import an Enhydra project that uses GNU
Makefiles in to your IDE.

52 D e v e l o p e r ’ s G u i d e

U s i n g t h e w i z a r d s

• Enhydra XMLC property pages
The XMLC property pages give you full control over how XMLC builds document
object model (DOM) classes from your HTML files. You can open the property
page directly from the project navigator’s right-click menu.

• Enhydra Template property pages
The Enhydra Template property pages let you specify a list of strings to search and
replace when you are generating files from templates.

• Build integration
Through property pages, you can set up JBuilder to invoke XMLC and the
Enhydra configuration processes whenever you make or rebuild your JBuilder
project. This feature lets you quickly ensure your files are updated without having
to run a wizard.

• Kelp sample projects
These projects demonstrate techniques for creating dynamic Web pages with
XMLC for both wireless and Web applications.

Using the wizards
Kelp provides four wizards that help you develop Enhydra applications from within
your IDE:

• Enhydra Application wizard
• XMLC Compiler wizard
• Enhydra Deployment wizard
• Enhydra Import wizard

Use the Enhydra Application wizard to create new Enhydra projects. To create a new
Enhydra project, select File|New to open the Object Gallery. Click the Enhydra tab.
Select the appropriate wizard for your application. Once you create a project, you can
use the XMLC Compiler and Enhydra Deployment wizards to work with it.

The XMLC Compiler, Enhydra Deployment, and Enyhdra Import wizards are
located in the Wizards menu. These wizards let you invoke Enhydra-specific parts of
the make system.

Note You can invoke these same processes directly within the Project Builder without
opening either wizard when you make or rebuild a project.

In both the XMLC Compiler and Enhydra Deployment wizards, you use a tabbed
dialog box to select files, set options, and view the build process. The settings on the
Options tab are the same as those found on the associated project property pages.

The Enhydra Import wizard is similar to the Application wizard. This wizard allows
you to convert a GNU Makefile project to an IDE project.

Using the Enhydra Application wizard
The Enhydra Application wizard generates a set of skeleton files for Enhydra
applications. You can generate two kinds of applications: Web applications, which
use the Java Servlet API, or Enhydra super-servlet applications, which use the

C h a p t e r 4 , U s i n g E n h y d r a K e l p 53

U s i n g t h e w i z a r d s

Enhydra PO/BO/DO model. For more information on the Enhydra Application
wizard, see Chapter 2, “Using the Application Wizard to create Enhydra
applications.”

To create a new application using the Application wizard:

1 Select File|New.

2 Click the Enhydra tab.

3 Select either Web Application or Enhydra SuperServlet application.

4 Click OK.

This will start the Application wizard for the type of Enhydra application you
selected.

1 Select your application’s client type in the Client Type drop-down menu. The
possible choices are:

• HTML
• WML
• cHTML
• XHTML

2 Enter the project directory name.

3 Enter the project package name.

4 Enter the root path for your applications. Click Set to navigate to your root
directory.

5 Click Next.

6 If your application requires copyright text, select either Choose File if you have a
text file that contains your copyright text, or Enter Copyright Text to enter the
copyright text in the edit box below the radio buttons. If your application does not
require copyright text, select No Copyright.

7 Click Next.

8 On the Supplemental Files dialog are two check boxes: Create Makefiles and
Create Shell Scripts.

Create Makefiles creates GNU Makefiles so your project can be built from the
command line using make. Create Shell Scripts will create Bourne shell scripts to
launch your application from the command line.

9 Click Finish to complete the Application wizard.

Using the XMLC Compiler wizard
The XMLC Compiler wizard compiles HTML, WML, cHTML, and XHTML files into
DOM classes. To open the wizard, select Wizards|XMLC Compiler. The wizard is
only available when a project is open.

Note If you do not see the XMLC Compiler option in the Wizard menu, make sure
kelp2.0.jar, toolbox.jar, and enhydra.jar are listed in the IDE CLASSPATH.

54 D e v e l o p e r ’ s G u i d e

U s i n g t h e w i z a r d s

The wizard is organized into dialog box with three-tabs: Selections, Options, and
Output. The Selections tab, shown in Figure 4.1, displays all HTML files in the
currently selected project. You can use the single arrow buttons (< and >) to add or
remove files from the list selected to be compiled. Use the double arrow buttons
(<< and >>) to add and remove all files from the selection list. Check the Show Full File
Path checkbox to display the full path of the files.

Figure 4.1 Selections tab of the XMLC Compiler wizard

The Options tab displays additional tabs for compile, XMLC types, and trace options.

• The Compile options let you customize the generated DOM classes.

• The XMLC Types tab allows you to add new file extensions to be associated with
XMLC, and display on the Selections tab.

• The Trace options let you display detailed information during the compile process
without affecting the generated classes.

The Options tab also has an Invoke XMLC during Project Make/Rebuild check box.
Check this box to call XMLC without opening the XMLC Compiler wizard. This calls
XMLC when you build or make a project node that contains a selected HTML file.

C h a p t e r 4 , U s i n g E n h y d r a K e l p 55

U s i n g t h e w i z a r d s

Figure 4.2 Options tab of the XMLC Compiler wizard

The Output tab shows the results of your XMLC compile based on the files you
selected on the Selections tab. For information on the Output tab, see “Setting output
options” on page 56.

Using mapping tables for generated class names
One common make option is to use a mapping table to customize generated class
names. By default the XMLC Compiler wizard uses the current directory name to
determine the package name in the generated source. Unless your HTML files are
stored in the same directory as your presentation package Java source files, you need
to use the mappings option to map the HTML directory to the presentation package
name.

Note The Lutris guidelines recommend that you keep your HTML files in a resources
directory and map them to the presentation package when generating the DOM
classes. Both the Kelp sample project and the Enhydra DiscRack example store
HTML files in a resources directory.

To create mappings:

1 Click Edit in the Mappings section of the Make tab to open the Project Map editor
that lets you associate source directories with package names.

2 Click Add to create a new mapping.

You can enter a source directory or use the Set button to navigate to one.

56 D e v e l o p e r ’ s G u i d e

U s i n g t h e w i z a r d s

The dialog box in Figure 4.3 shows how to set up the compiler to use the
org.enhydra.kelp.sample.presentation package name when compiling HTML pages
stored in /usr/local/jbuilder/kelp2/sample/org/enhydra/kelp/sample/resources.

Figure 4.3 Mapping a source directory to a package

Setting output options
The Output tab (Figure 4.4) is automatically selected when you click Compile in the
XMLC Compiler wizard. This tab contains a scrollable text area that displays the
results of the compile. If you have any errors in your HTML files, the problems
appear on this tab. You can optionally save the output to a text file by checking
Output To Log File and entering a file name.

Figure 4.4 Output tab of the XMLC Compiler wizard

The Output page displays the files that are created during the compilation process.
At the start of the compilation process, the wizard erases any files it created during a
previous compile. If a HTML file contains a new error, the associated Java and class
files will be erased and not regenerated.

Using the Deployment wizard
The Deployment wizard lets you quickly configure projects for your current
environment and directory structure. The wizard can do four tasks. The first task is
to generate configuration files and deployment descriptors from templates. The
second is to setup your project so you can launch Enhydra with your application. The

C h a p t e r 4 , U s i n g E n h y d r a K e l p 57

U s i n g t h e w i z a r d s

third is to copy static content to your document root. The fourth is to create a
deployable archive, based on the type of application.

Selections tab
The Selections tab lets you select which of the available template files in your project
will be processed. The left pane shows available templates, and the right pane shows
the selected templates. Use the arrow buttons to move files from one pane to the
other. Double arrow buttons (<< and >>) move the entire contents of one pane to the
other. Single arrow buttons (< and >) move the selected file or files from one pane to
the other.

Check Show Full File Path to show the full path of each template file.

Options tab
The Options tab has four subtabs: Paths, Content Types, General, and Template.

Check Deploy During Build to deploy your application on each project rebuild. The
Show Messages box is enabled if Check Deploy During Build is checked. If Show
Messages is checked, you’ll any deployment messages in the Output tab.

The Paths tab lets you change the paths for your project.

Deploy Root controls setting for configuration your project’s path, document root,
and archive file. Click the ellipses button to navigate to a folder.

Bootstrap File is used for launching Enhydra from your IDE. Click the ellipses button
to navigate to the project’s bootstrap file.

Template Path points to the location of your project’s .in files, which are template
files. These files are processed and copied to your Deploy Root folder using relative
paths.

In the Content section, Resource Path is a folder that contains any static content files
for your project. These static files will be copied to your document root using relative
paths. The Content Types sub-tab controls what static files the wizard recognizes.
Click the ellipses button to navigate to the folder containing the static resources for
your project.

The Content Types subtab shows the extensions of static resource files that will be
copied from the Resource Path directory to your document root directory. Click Add
to enter a new extension. Select an extension and click Remove to keep files with that
extension from being copied. Click Reset to go to the default values of recognized
extensions.

The General subtab has two sections: Presentation API, where you select what type
of project archive file should be created, and Project Run Configuration, where you
adjust the settings for starting Enhydra with the project.

If your project uses the Java servlet API, select Servlet in Presentation API. If you are
using the Enhydra super-servlet API, select Presentation Object. Enhydra
super-servlet archives contain the classes in your output directory. Servlet archives
are Web Application Resource (WAR) files that contain the output classes, static
content files, and a deployment descriptor.

58 D e v e l o p e r ’ s G u i d e

U s i n g t h e w i z a r d s

In Project Run Configuration, check Configure Project For Running Enhydra if you
want to launch the Multiserver with your project. If this box is checked, the two
sub-options are enabled. Check Project Run Parameters to have the wizard
automatically set the parameters of the Multiserver. Create StartEnhydra.java should
only be checked when you use JDeveloper with Kelp. StartEnhydra.java is a helper
class that starts Enhydra.

The Template tab lets you adjust the template settings for your project. Configuration
templates have the extension .conf.in. Deployment descriptor templates have the
extension xml.in. Templates are text files with placeholders that are replaced with
system specific information by the wizard. One of the default placeholders is
@CLASSES@ and it is replaced with the current class output directory specified by your
project.

You can customize the search and replace mechanism by editing the data in the
Replace Text table on the Options tab of the wizard. The default option lets you
quickly restore the default project settings. The Replace With values can refer to
relative paths. If you enter a value starting with a period, the wizard will substitute
the directory containing the project file for the period. For example, if you open the
Kelp Web Application project from:
/home/user/jbprojects/samples/webapp/KelpWebApp.jpr

and have a Replace Text table containing:

The resulting configuration files (.conf) will contain
/home/user/jbprojects/samples/webapp/classes in place of the @CLASSES@ placeholders that
are in each of the templates (.conf.in).

For applications deployed on Windows, some find values of the form @*_PATH@ are
handled differently than typical find values. They are expanded according to the
following find values to deal with the different forms of Windows paths:

• @SHELL_*_PATH@ expands to Unix-style paths with the system drive as the root of the
file system and the //<drive letter>/<dir> format for other drives. For example,
//d/myDir.

• @JAVA_*_PATH@ expands to Java-style Windows paths with the <drive letter>:/<dir>
format. For example, d:/myDir.

• @OS_*_PATH@ expands to Windows-style paths with the <drive letter>:\<dir> format.
For example, d:\myDir.

The Default button doesn’t set the table back to static values. It searches through your
.conf.in templates and imports any replacements it finds.

Using the Enhydra Import wizard
The Enhydra import wizard lets you quickly import source files from an existing
Enhydra GNU Makefile project into a JBuilder or JDeveloper project file. As an

Text to Find: @CLASSES@

Replace With: ./classes

C h a p t e r 4 , U s i n g E n h y d r a K e l p 59

U s i n g t h e w i z a r d s

example, this section describes how to import the DiscRack example project to
JBuilder.

Note The JBuilder project file that comes with Enhydra 3.0.x is not compatible with Kelp 2.
We recommend that you follow these steps to create a new project for use with
Kelp 2.

Here are the steps for running the DiscRack example using Kelp with JBuilder 4.
They are broken down into three sections:

• Importing DiscRack
• Building DiscRack
• Running DiscRack

If you have the application running outside of JBuilder, you should also be able to
skip“Running DiscRack.”

Importing DiscRack
Follow these steps to import DiscRack in to JBuilder.

1 First build DiscRack as described in the README file to generate the data package
source code.

2 Create a new JBuilder project file.

3 Select Wizards|Enhydra Import.

4 Set the project directory to <enhydra_root>/examples/DiscRack.

5 Click Next to navigate through the wizard, accepting all default settings.

6 Click Finish to import the project.

Building DiscRack
Follow these steps to build DiscRack.

1 Open the XMLC Compiler wizard.

2 Click Compile to generate the DOM Java source files using XMLC.

3 When XMLC is finished compiling, click Close.

4 Select Project|Make to compile the Java source files.

5 Select Wizards|Enhydra Deployment.

6 Click Deploy to copy static content files, process configuration templates, and
create a deployable archive.

Running DiscRack
Follow these steps to run DiscRack.

1 Select Project|Project Properties.

2 Add the InstantDB library to the required library list:

1 Select the Paths tab.
2 Select the Required Libraries subtab.

60 D e v e l o p e r ’ s G u i d e

U s i n g t h e w i z a r d s

3 Click Add.
4 Click New.
5 Name the library InstantDB.
6 Click Add.
7 Navigate to the location of idb.jar, select it, and click OK.
8 Click OK until the Project Properties dialog is closed.

3 Select Run|Run Project.

4 Open a browser to http://localhost:5555 to view the application.

Using the Enhydra Application wizard
The Enhydra Application wizard speeds up the development of Enhydra
applications by creating skeleton project files. Figure 4.5 shows the Enhydra
Application wizard.

Important Running the Enhydra Application wizard while you are using a project that already
contains Enhydra files may cause unexpected results. Before you run the Enhydra
Application wizard, you should create a new project for the generated files.

Figure 4.5 Enhydra Application wizard

Once you have a opened a new project, select File|New to open the Object Gallery.
The gallery provides options for quickly generating many common classes. Click the
Enhydra tab, select the Enhydra Application icon, and click OK to open the wizard.

For more information on the Enhydra Application wizard, see Chapter 2, “Using the
Application Wizard to create Enhydra applications.”

After you have set the options you want, click OK to generate your Enhydra
application. After generation is complete, you should view the newly generated
Readme.html file that has been added to your project. Readme.html shows the steps you
need to build and run the application. The steps will vary, depending on what
version of JBuilder you are using.

C h a p t e r 4 , U s i n g E n h y d r a K e l p 61

U s i n g t h e P r o p e r t y p a g e s

Using the Property pages
Property pages are dialog boxes in which you set build options for the entire project or
for a selected node in JBuilder. A node is an object in the project tree of a JBuilder
project. For the purposes of this section, a node refers to a file in a project. Project
property pages appear as tabs in the Project Properties dialog box. Node property
pages let you customize options for a specific file in your project.

The Kelp project property pages add to JBuilder’s existing Code Style, Paths, Run,
and Compiler property pages. The Paths property page is where you set the library
files your project requires.

• To open the Project Properties dialog box, select Project|Project Properties.

• To open a Node property page, right-click a file in your project and select
Properties from the right-click menu.

JBuilder opens a property page specific to the file you’ve selected. If you right-clicked
a Java source file, the property page will have RMI (Remote Method Invocation) and
JNI (Java Native Interface) settings. To open the Enhydra Template node property
page, right-click a file with a .in extension in the template directory, /input. When
you right-click an HTML file and select Properties, the XMLC node property page
appears. In JDeveloper, right-click the HTML file and select XMLC Properties.

XMLC project property page
You can view the XMLC project properties page by opening the Project|Project
Properties dialog box and selecting the Enhydra XMLC tab (Figure 4.6). This page
shows the same make and output options that you can set on the Options tab of the
XMLC Compiler wizard.

Figure 4.6 Project Properties page

62 D e v e l o p e r ’ s G u i d e

U s i n g t h e P r o p e r t y p a g e s

The Compile tab includes three sections:

• Generated Java Source tells you which XMLC options need to be set for the
current IDE.

• Mappings determines how class names are generated.

• XMLC Options lets you specify XMLC command line options or select an XMLC
Options file to set XMLC options. For more information on XMLC command line
options, see Chapter 5, “Enhydra XMLC.”

Click Edit to open the XMLC Parameter Editor. The XMLC Parameter Editor is used
to better organize complex XMLC command line options.

Within the Mappings section, you can define a mapping table and set which nodes
you want to use with the table. The mapping table lets you specify package names to
use when generating DOM classes for a given directory. For example, the Kelp
sample project uses a mapping table to map all the HTML files in a resources
directory into the org.enhydra.kelp.sample.presentation package.

To view or edit the package name mapping:

1 Open the XMLC Compiler wizard.
2 Select the Options tab.
3 Click the Edit button.

This opens the mapping table, where you can add a new entry that maps a directory
to the correct presentation package. Here is a sample mapping for the Kelp sample
project:

Source directory:
/user/local/jbuilder/kelp2/samples/webapp/src/kelp/webapp/resources

Package name:
kelp.webapp.presentation

Click the Output tab on the XMLC page in Project|Properties. These settings cause
the XMLC to stream out additional information when compiling the HTML files. The
Output settings do not affect the generated DOM classes.

Note For faster compiles, deselect all the Output options.

Enhydra Deployment property page
Select Project|Project Properties and click the Enhydra Deployment tab to view the
Enhydra Deployment properties.

The Enhydra Deployment property page contains the same settings as the Options
tab of the Enhydra Deployment wizard. For more information, see “Using the
Deployment wizard” on page 56.

XMLC node property page
You can open the XMLC node property page by right-clicking an HTML, cHTML,
WML, or XHTML file in the Project pane and selecting Properties. This opens the

C h a p t e r 4 , U s i n g E n h y d r a K e l p 63

U s i n g t h e P r o p e r t y p a g e s

Properties page for the selected file. This page has four options, as shown in Figure
4.7:

• Copy to Output as a Static Resource should be checked if the file will be served as
a static file. The file will be copied to the output directory.

• Generate DOM Class should be checked if you want to select this file for
compilation with XMLC.

• Generated Class Names, allows you to configure the names of generated classes.
Click Map Table to open the Map editor.

• XMLC Options allows you to enter XMLC command-line options for the selected
file, or for your entire project. XMLC Options is only available when Generate
DOM Class is checked.

Figure 4.7 XMLC Node Properties page

How Kelp sets class names for XMLC
You can use the Generated Class Name section to select how you want to generate
the class name. There are three choices—default, custom, and mapped. The file name,
directory location, and project source path determine the default name.

For example, if you create a new Enhydra Application in
/home/bob/jbprojects/untitled1, the source path for the Welcome.html file is
/home/bob/jbprojects/untitled1, the directory location is
/home/bob/jbprojects/untitled1/untitled1/presentation and the file name is Welcome.html.
The package name is untitled1.presentation.WelcomeHTML.

The source path is removed from the directory location to create the new package
name. The new class name is formed by removing the .html extension and adding
“HTML”. Select Custom option to enter your own class name. When using custom
class naming, be sure the name you enter conforms to a valid Java identifier.

Note If the selected HTML file is not located in a subdirectory of one of the Project source
path settings, Kelp may not be able to generate a valid default class name.

64 D e v e l o p e r ’ s G u i d e

S e t t i n g p r o j e c t p r o p e r t i e s

To map your HTML files to user-defined class names, select Mapped and click Map
Table to open the Edit Project Map dialog box. XMLC uses this mapping table to set
custom package names based on the directory of the HTML file. This mapping table
is normally used to map a resources directory to a presentation package. There is only
one mapping table per project. For more information, see “XMLC project property
page” on page 61 and “Using the XMLC Compiler wizard” on page 53.

Setting XMLC options for selected files
To set additional XMLC options for the selected file, use the XMLC Options section
in the XMLC node property page (see Figure 4.7 on page 63).

Command-line parameters let you add command-line options to XMLC from within
your IDE. Click Edit to open the XMLC Parameter editor. The Parameter editor
allows you to organize complex command line parameters. If you have an options
file for XMLC, click Set and select the options file. To clear a previously selected
options file, click Clear. For more information on using XMLC, see Chapter 5,
“Enhydra XMLC.”

Note The following XMLC options are not supported as command-line parameters when
using Kelp:

• -class
• -dump
• -info
• -javac
• -javacflag
• -javacopt
• -keep
• -methods
• -sourceout
• -verbose
• -version

Enhydra Template node property page
The Enhydra Template node property page contains the same settings that appear on
the Template tab of the Enhydra Deployment project properties page. Right-click the
.in file and select Properties to open the Enhydra Template node property page for a
.in file in your project.

In addition to the project properties, there is a Generate .conf check box that you can
select to generate configuration files for the current template.

Setting project properties
JBuilder and JDeveloper provide many properties that let you customize your
projects. After opening a project that you want to use with Enhydra, select
Project|Properties to configure path, compiler, and run settings. You do not need to
enter anything in the Servlets tab to work with Enhydra applications. Most of the
settings you will need to work with are found on the Paths tab.

C h a p t e r 4 , U s i n g E n h y d r a K e l p 65

S e t t i n g p r o j e c t p r o p e r t i e s

Paths page

Configuring your project to use the correct paths for file output, project files, and
libraries will simplify the development of your Enhydra applications. This section
describes the options on the Project Properties Paths page that are relevant to using
Kelp.

Output path
The output directory specifies where you want class files to be created. This is also
where Multiserver looks for images that have relative references to the presentation
objects. For example, the Enhydra Application wizard creates images under:
<source directory>/<package directory>/presentation/media

When you build the project inside JBuilder, the image is copied to the output
directory along with the compiled class files. For the image to display properly, the
output directory must be set to a classes subdirectory under the source directory.

The Enhydra Deployment wizard also uses this setting when creating deployable
archives

Source subtab
The source path is where the compiler looks for Java files and packages to compile.
When compiling package names, the source files will be in subdirectories under the
source directory. For example, if your highest-level package is com, the com directory
will be located directly under a source path.

You can set the Source path to the same location as the project file. When you create a
project using the Project wizard in JBuilder Foundation, it creates a directory for your
project under jbprojects in your home directory. You can use this directory as your
source.

JBuilder lets select multiple source paths. This can be useful when you are working
on several modules from the Enhydra source code. If you have checked out the
Enhydra source code from cvs, you’ll see that it is divided into several modules. Each
module contains its own source directory.

Note If you are using automatic source packages in JBuilder 4, be sure that your output
path is not a subdirectory of any of your source paths.

Note You should remove any source paths that your project does not require.

Required libraries subtab
Enhydra applications require that enhydra.jar be in their CLASSPATH. You can add JARs
to an application CLASSPATH by using JBuilder libraries. If you installed Kelp using the
Windows installer, you already have an Enhydra library defined for you. If you are
using JDBC in your application, you will need to add the JDBC driver as a library.

If you need to define an Enhydra library in JBuilder Foundation, click Add and then
click New. Name your library and click Add button to navigate to the JAR file you
want to add.

66 D e v e l o p e r ’ s G u i d e

K e l p s a m p l e p r o j e c t s

Note You may need to modify the Enhydra library if you have upgraded to a newer
version of Enhydra. Make sure the enhydra.jar for the library matches the enhydra.jar
referenced in the IDE class path. Use the About button in the XMLC Compiler wizard
to determine the version of Enhydra that is in the IDE CLASSPATH.

Build page

This section describes the options on the Project Properties Build page that are
relevant to using Kelp.

Generate source to output path option
On the Build page, you can check Generate Source To Output Path to keep the
generated XMLC Java files separate from your HttpPresentation implementations. If
you select this option, the Java source files for the DOM classes will be created in a
Generated Source directory under your output classes directory.

Run page

This section describes the options on the Project Properties Run page that are
relevant to using Kelp.

Main class option
JBuilder Foundation lets you specify the class to run when you run the project. This
class does not need to be part of your project’s source files.

If you have an Enhydra library selected under the Required Libraries option, you can
use the main class to launch Multiserver. Use the Set button to select the Multiserver
startup class, com.lutris.multiServer.Multiserver.

Application parameters option
If you have set the main class to launch Multiserver, you can use the application
parameters to pass in a configuration file. For example, if you create a Web
application using the Enhydra Application wizard, the application parameter is
set to:
<source directory>/output/conf/servlet/servlet.conf

Kelp sample projects
Kelp includes two sample projects that demonstrates how to use XMLC and Enhydra
to create Web and wireless applications within JBuilder. If you are new to both
Enhydra and Kelp, you can start learning Enhydra by running the Kelp sample
application. The Kelp sample demonstrates only a small part of Enhydra’s
capabilities.

C h a p t e r 4 , U s i n g E n h y d r a K e l p 67

K e l p s a m p l e p r o j e c t s

Once you feel comfortable with the Web application sample, examine the DiscRack
example that comes with Enhydra, located in
/usr/local/lutris-enhydra3.5/examples/DiscRack. The DiscRack example provides a
more complete application that incorporates JDBC access. You can run the DiscRack
example using most JDBC-compliant data sources, including Oracle, Microsoft SQL
Server, PostgreSQL, and InstantDB.

If you are already familiar with Enhydra, you can use DiscRack to see how to set up a
project for your own applications. For more information on DiscRack, see Chapter 5,
“DiscRack sample application,” of Getting Started with Lutris Enhydra.

Deploying the Web application
Kelp includes the Enhydra Deployment wizard that you can use to automatically
configure the Web Application project. Before running the Enhydra Deployment
wizard or the sample, be sure to review the steps provided in the readme.html file
that is included with the project.

If you are running under Linux or Solaris and you do not have root privileges, you
may need to copy the Kelp sample projects to your home directory before working
with it. To do this copy <IDE_root>/kelp2/samples to a directory under your home
directory.

If port 9000 is available, you can start up Enhydra and view the sample servlets
without modifying the configuration templates. If you need to run on another port,
you will need to modify the following line in servlet.conf.in. The configuration
templates are located in the sample project's /input/conf/servlet directory. Change the
following line to an available port.
Connection.p9000.Port = 9000

When you modify files within the IDE, be sure to select File|Save All to commit the
file to disk before running the Enhydra Deployment wizard. The wizard may ignore
changes made since the last save.

If you are using a port other than 9000, the links within the readme.html will fail.
Add the port you are using to the URL. To use port 8080, enter http://localhost:8080/
as your URL. If localhost fails, try using the IP address 127.0.0.1 in place of localhost.

The Enhydra Deployment wizard creates two configuration files from the templates.
The first file is servlet.conf. Along with the port number, it controls the document
root and logging file paths. The servlet.conf.in template has placeholders for path
settings. The path settings are set through Enhydra Deployment wizard.

The Enhydra Deployment wizard creates the web.xml deployment descriptor using
the same placeholder replacement mechanism used to create the servlet.conf file. The
web.xml file contains a testDataPath parameter to set where the servlets can find text
and property files used within the sample. To change this directory, change the
<param-value> to your directory.
<init-param>

<param-name>
testDataPath

</param-name>

68 D e v e l o p e r ’ s G u i d e

K e l p s a m p l e p r o j e c t s

<param-value>
@JAVA_DEPLOY_PATH@/data

</param-value>
</init-param>

Note If you modify any templates, be sure to run the Enhydra Deployment wizard to
regenerate the configuration files and deployment descriptors. Enhydra will ignore
any changes made to the templates that have not been deployed.

The Enhydra Deployment wizard also sets up the sample project so that you can
launch the application with the Enhydra server. It does this by setting the project's
main run class, or by generating a StartEnhydra.java file. In either case, the wizard sets
the servlet.conf file as a parameter to Enhydra.

The sample servlets
The sample project consists of four presentation objects that show some of the
common uses of XMLC. The sample is simplified in that it only contains a
presentation layer. Production Web applications will normally contain a least three
packages including presentation, business and data. For a detailed explanation on
how you can separate applications into these three functional areas, see Getting
Started with Lutris Enhydra.

Note If you have moved a sample project after running Enhydra Deployment wizard, you
should run the wizard again before using the sample.

Each servlet dynamically generates HTML files using XMLC. The HTML source files
are located in a resources directory. Each HTML file is compiled into a class file using
the XMLC Compiler wizard. There is a corresponding Java file that implements
HttpServlet for each HTML file. These files work with the generated HTML classes to
create and process input from the Web pages. The Java files are located in the
org.enhydra.kelp.webapp.presentation package. The four servlets demonstrate the
following:

• Greetings Servlet: This is similar to a traditional Hello World example. This servlet
contains one HTML element that is set through XMLC to greeting the user with a
phrase contained in the Java source.

• Table Servlet: One of the most common tasks for dynamic HTML generation is
populating an HTML table. This servlet shows you how to define a table as a
template in HTML and then populate it through Java when a user requests the
page. In a real world application, the data would most likely come from an JDBC
data source. For the sake of simplicity, this example uses populates the table with
an array of values that are hard coded into a Java file.

• New Node Servlet: XMLC allows you to insert HTML blocks from external
sources into an existing page. This example shows a page containing a span of
HTML that is read in from a text file. You may modify the text file to alter the page
without recompiling the HTML or Java files.

C h a p t e r 4 , U s i n g E n h y d r a K e l p 69

D e b u g g i n g E n h y d r a a p p l i c a t i o n s

• Form Servlet: You can use XMLC with HTML input fields to create data entry
forms. This servlet shows you how to update a file on the server based on input
values from retrieved from a Web browser. For simplicity, this example uses a
property file to store displayed values. Normally values would be stored in a
JDBC data source that would be accessed through the business and data layers of
an application.

Debugging Enhydra applications
The only requirement to debug Enhydra applications from JBuilder is that you start
Multiserver from your JBuilder project. Although it defaults to using configuration
files specific to the sample project, you can pass it the location of any multiserver.conf
file.

To run an Enhydra application, you will need two configuration files. One is for your
application and the other is for Multiserver. The configuration file for Multiserver
specifies the location of any application configuration files. A detailed description of
Enhydra configuration files is available in Appendix B, “Multiserver Administration
Console” of Getting Started with Lutris Enhydra.

Before you debug an application, make sure you can run the Kelp sample project
successfully. This means running the Enhydra XMLC wizard and the Enhydra
Deployment wizard. If this is successful, step through the following procedure to see
how easy it is to debug an Enhydra application.

1 Make sure the Multiserver is not already running.

2 Open the Kelp sample project.

3 Select TableServlet.java in the kelp.webapp.presentation package.

4 Locate the for loop of the fixupTable() method and click the left edge of the editor
to put a breakpoint on the line that reads table.appendChild(newRow);

After you set the breakpoint, the line appears in red.

5 If you are using JDeveloper, select StartEnhydra.java.

6 From the menu, select Run|Debug.

This starts the debugger. The debugger opens a command window even if you
have selected Execution Log for console I/O.

7 Open the table page in your browser by opening http://localhost:9000 and clicking
Table Page.

70 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t h e K e l p s o u r c e c o d e

This triggers the breakpoint, as shown here:

You can set the value of i to 4 to change how many rows are generated in the table.
Your browser may time out if you keep the program suspended for too long.

Working with the Kelp source code
Because Kelp is an open source project, the source code needed to customize or
enhance Kelp is available to everyone. To get the source code, download the Enhydra
source release.

All the Kelp classes are in kelp2.0.jar. Setup installs the JAR in
<JBuilder_root>kelp2/lib within your JBuilder directory. If you used the Custom setup
option to install the open source, you will have three project files you can use to
modify the three components that make up the JBuilder wizard.

The jb-kelp.jpr file contains all the source files required to build kelp2.0.jar. These
classes use Swing and JBuilder’s Open Tools API to implement the wizard. To use
this file, you need to create a library using JBuilder Addin Jars that contains
pthelp3.1.jar, jbuilder.jar, jbuilder.zip, and jdeveloper.zip. The pthelp3.1.jar and
jbuilder.jar files are available in JBuilder Foundation. jdeveloper.zip file is available
with Oracle JDeveloper 3.

C h a p t e r 4 , U s i n g E n h y d r a K e l p 71

K e l p w o r k i n g g r o u p

To work with a single IDE such as JBuilder Foundation, you can leave out the
unrelated library files and remove the appropriate packages from the project. The
IDE-specific packages are as follows:

Visit the following newsgroups for information about the developing addins and
using the JBuilder OpenTools API:

• borland.public.jbuilder.opentools
• borland.public.jbuilder.thirdpartytools

Kelp working group
JBuilder Kelp is part of the Enhydra Kelp family of products. The Kelp working
group is dedicated to making Enhydra technologies easier to use through the use of
Java IDE add-ons. The working group has a mailing list at:
http://www.enhydra.org/project/workingGroups/Kelp.html.

You can use this list to post questions or suggestions for this or other Kelp products.
View the mail list archive to get information on recent releases and tips on how to
make the most of Kelp. You can also use the Kelp working group to contribute to the
Kelp open-source project.

org.enhydra.kelp.jbuilder Borland JBuilder

org.enhydra.kelp.jdeveloper Oracle JDeveloper 3

72 D e v e l o p e r ’ s G u i d e

C h a p t e r 5 , E n h y d r a X M L C 73

5Chapter
Enhydra XMLC Chapter 5

This chapter describes Enhydra XMLC, the XML compiler. XMLC lets you create
Web and XML applications with a clean separation between layout and content,
enabling interface designers and programmers to work in parallel on applications
without interfering with each other’s work.

Introduction
XMLC is a compiler for documents written in eXtensible Markup Language (XML) or
Hypertext Markup Language (HTML). XMLC takes as its input an XML or HTML
document and creates a Java class that represents that document as a DOM structure.
A Java application can use this class to programmatically modify the document and
then pass the resulting dynamic content to a Web server, save it to the file system, or
use it in some other way.

From a programming perspective, the HTML or XML pages become “resources.”
Your code can manipulate the document content, without affecting its layout.

One way to think of XMLC is as a template engine for XML and HTML documents,
because it creates an API from a template document. Unlike other template engines,
XMLC is highly extensible. In addition to compiling existing document types, such as
Wireless Markup Language (WML), you can extend it to compile other XML
document types (for example, MathML).

74 D e v e l o p e r ’ s G u i d e

I n t r o d u c t i o n

Figure 5.1 illustrates application development with XMLC:

Figure 5.1 Application development with XMLC

Why use XMLC?

You can use XMLC for any application that needs to manipulate XML or HTML files.
However, XMLC has a number of advantages when developing Web applications.
For example, two of the most popular techniques for generating dynamic Web
content are:

• Programs or scripts using the Common Gateway Interface (CGI), which have
HTML embedded in the application code.

• Java Server Pages (JSP), which have Java application code embedded in HTML
pages.

Both approaches work well for simple, hand-coded HTML pages; however, they do
not work as well for complex applications or sophisticated Web pages developed
with graphical HTML design tools. This is because they intermingle HTML and
application code. In contrast, XMLC enables separation of Java code and HTML
pages. This:

• Allows parallel development of HTML layout by graphic designers and
programming code by engineers, once you have created the basic storyboard and
functional structure of the HTML pages.

• Facilitates application maintenance because changes to page layout do not affect
programming logic, and vice-versa. Further, XMLC’s auto-recompilation feature
lets you change an application’s presentation (look and feel) without stopping the
application.

• Significantly improves application performance because documents are parsed at
compile time rather than at runtime.

C h a p t e r 5 , E n h y d r a X M L C 75

I n t r o d u c t i o n

• Helps to ensure application integrity by catching inconsistencies between HTML
documents and code. Because XMLC generates objects that reflect document
structure, the Java compiler can detect changes that affect the associated code. For
example, if the designer removes a tag that the code uses, the compiler catches this
problem at compile time, rather than causing a problem at runtime.

XMLC and markup languages

XMLC ships with support for compiling HTML, XML, cHTML, XHTML, VoiceXML,
and WML. For more information on languages for wireless applications, see the
Wireless Application Developer’s Guide.

HTML and XML are both derived from the Standard Generalized Markup Language
(SGML), a very general document description language. Figure 5.2 shows the
relationships among the markup languages in the SGML family.

Figure 5.2 SGML family of markup languages

XML
The eXtensible Markup Language (XML) is designed to describe the properties of
data, including its display. XML is actually a meta-language that you use to define
your own markup tags. Thus, XML-derived languages such as Wireless Markup
Language (WML), VoiceXML, and Math Markup Language (MathML) have their
own sets of tags for particular problem domains. By its nature, XML is extensible for
a variety of application domains, so there can be any number of XML derivatives.

Document Object Model

The Document Object Model (DOM) defines the hierarchical object structure of
HTML or XML documents. The DOM provides an API for HTML and XML
documents.

...

SGML

HTML XML

XHTML WML VoiceXML MathML

76 D e v e l o p e r ’ s G u i d e

I n t r o d u c t i o n

The DOM is a standard maintained by the World Wide Web Consortium (W3C). You
can learn more about the DOM at the W3C Web pages: http://www.w3.org.

Both HTML and XML documents consist of nodes, that correspond to tags, delimited
by angle brackets (< and >). So, for example, the HTML tag BODY is a node. Each tag,
for example, <BODY>, is paired with a closing tag, for example </BODY>.
Everything between the opening tag and the closing tag is said to be the tag’s
contents. In general, a node may have contents and may also contain other tags. For
example, in this fragment of HTML,
<BODY><P>Some content</P><P>Some more content</P></BODY>

The BODY node contains the two P nodes; the first P node has the text content “Some
content,” the second “Some more content.”

Both HTML and XML documents have tree structures, with a single root node with
other nodes branching off the root. The DOM data structure for these documents is
sometimes referred to as a DOM tree. In the example above, the two P nodes are
branches of the BODY node.

The following example shows how document elements fit together.

Example DOM tree
Here is an example of a very simple XML document containing a contact list with
names, phone numbers, and email addresses. Figure 5.3 shows the DOM tree for this
document.
<?xml version="1.0"?>
<CONTACTS>

<INDIVIDUAL>
<NAME>Wally Walrus</NAME>
<PHONE>831-555-1234</PHONE>
<EMAIL>wally@lutris.com</EMAIL>

</INDIVIDUAL>
<INDIVIDUAL>

<NAME>Ollie Otter</NAME>
<PHONE>831-555-4321</PHONE>
<EMAIL>ollie@lutris.com</EMAIL>

</INDIVIDUAL>
</CONTACTS>

As shown in Figure 5.3, the root node for this DOM tree is CONTACTS. It has two
children, each called INDIVIDUAL. Each INDIVIDUAL node, in turn, has NAME,
PHONE, and EMAIL nodes as children.

C h a p t e r 5 , E n h y d r a X M L C 77

I n t r o d u c t i o n

Figure 5.3 Example of a DOM tree for an XML file

XMLC compiles an XML document into an object that:

• Extends the class com.lutris.xml.xmlc.XMLObject
• Implements the interface org.w3.dom.Document

XMLC compiles an HTML document into an object that:

• Extends the class org.enhydra.xml.xmlc.HTMLObjectImpl
• Implements the interface org.w3.dom.html.HTMLDocument

When you instantiate the class that represents the page, you can use the methods of
these classes and interfaces to manipulate the document and its content. “Using
XMLC to generate Web pages” on page 85 provides several examples of using the
DOM tree.

DOM implementations
Although the W3C provides the standard DOM interface, actual implementations of
the interface vary. XMLC uses a DOM implementation from the Apache Xerces
project (for more information, see http://xml.apache.org/xerces-j/index.html). In
addition, XMLC has a special, custom DOM derived from Xerces, called Lazy DOM.

Lazy DOM generally improves the runtime performance of XMLC document classes
by minimizing the number of DOM nodes instantiated. For documents in which the
application does not modify or access the majority of the document, the Lazy DOM
will increase runtime performance significantly over Xerces. However, if the
application does access a majority of nodes in a document, the Lazy DOM may be
slower than Xerces.

78 D e v e l o p e r ’ s G u i d e

I n t r o d u c t i o n

If you are using POs and the writeDOM() or writeHTML() methods, you can set the
XMLC_DOM_STATS option in your multiserver config file and it will generate
runtime statistics to the log file for each page. This can be useful in determining how
much of the DOM is being expanded, and whether using Lazy DOM will yield
performance improvements.

Note Searching the DOM tree will expand all the document nodes, and applications
should thus avoid doing so to achieve acceptable performance.

The Lazy DOM API is the same as the Xerces API, so you never have to modify your
code to change the DOM that you use.

XMLC uses Lazy DOM by default for HTML and generic XML documents. You can
also build DTD-specific derived DOMs, such as WML, on the Lazy DOM. To use the
Xerces DOM instead, use this command-line option:
-dom xerces

You may also specify the DOM in the metadata <documentClass> element. For more
information, see “Using XMLC metadata files” on page 84, and Appendix B, “XMLC
metadata file schema.”

How Lazy DOM works
When using Lazy DOM, all instances of an XMLC document class share a read-only
template DOM. Each instance of a document class starts out with just the top-level
Document object. XMLC does not expand the Document object’s child nodes. When an
application accesses a node of the instance DOM via one of the DOM API methods,
XMLC copies nodes from the template DOM into the instance DOM.

XMLC expands all direct children of a node when an application accesses any child
of the node. It expands attribute nodes separately from children, and it expands all
attributes of an element simultaneously. The formatter methods that convert the
documents to text files will traverse the tree without expanding unexpanded nodes.
A node can exist without its parent being expanded if accessed via its ID attribute
accessor method. XMLC uses this to optimize getElementXXX() methods.

How to use XMLC

The most common use of XMLC is for developing a presentation layer for an
Enhydra application; however, you can also use XMLC without Enhydra. For
example, you can use XMLC to create a standalone application that generates a
semi-dynamic Web site, such as a catalog that is updated whenever you run the
application. See “Using XMLC to generate Web pages” on page 85 for an example.

Simple XMLC example
You can use XMLC to dynamically alter a Web page. A typical scenario is:

• A Web page designer and a Web developer agree that a certain page will contain
one dynamic element, and they assign it the ID attribute “TheTime.” They must
assign a unique identifier (ID attribute) to each HTML element that will contain
dynamic content within a page.

C h a p t e r 5 , E n h y d r a X M L C 79

I n t r o d u c t i o n

Note The ID attributes must be unique within a single HTML page. ID attributes can
re-used in separate HTML pages.

• The designer creates a first version of the page, which includes a SPAN tag with an
ID attribute value “TheTime,” shown in the code sample that follows.

• The developer compiles the page with XMLC and then adds Java code to
manipulate the named element.
<HTML>
<BODY>
The current time is 00:00:00
</BODY>
</HTML>

When the developer compiles Test.html, XMLC:

• Parses Test.html.

• Generates a Java source-code file named TestHTML.java. XMLC deletes this file after
compiling it, unless you provide the -keep command-line option to retain the
source file.

• Calls the Java compiler, javac, to generate the Java class TestHTML.

Figure 5.4 illustrates these operations:

Figure 5.4 XMLC at work

The TestHTML class contains methods that can access elements in the original
document. For the Web page in the previous example, TestHTML includes a method
named setTextTheTime() that the application can use to change the text in the
corresponding SPAN tag.

80 D e v e l o p e r ’ s G u i d e

U s i n g t h e X M L C c o m m a n d

XMLC generates a setTextxxx() method for each ID attribute inside of a SPAN tag that it
encounters in the input document. The xxx in the method name is replaced by the
capitalized spelling of the ID attribute value of the SPAN tag.

Note To conform to Java conventions, XMLC automatically capitalizes the first character of
the ID name. For example, if you specify an ID attribute “foo,” XMLC creates the
method setTextFoo(). If you specify an ID attribute “FOO,” XMLC creates the method
setTextFOO().

After running Test.html through XMLC, you can write a Java program that uses the
methods in the TestHTML class. For example, this code segment inserts the current time
into the Test.html page.
import java.util.Date;
public String myTimeFunction() {

String now = new Date().toString();
TestHTML doc = (TestHTML)comms.xmlcFactory.create(TestHTML.class);
doc.setTextTheTime(now);
return doc.toDocument();

}

The doc.toDocument() method returns a string representation of the document. For
more examples using XMLC to generate dynamic Web content, see “Using XMLC to
generate Web pages” on page 85.

Using the XMLC command
This section provides an overview and examples of some of the most commonly used
XMLC command-line options. For a detailed description of all the XMLC
command-line options, see “XMLC command-line options” on page 98.

Command syntax

The syntax of the XMLC command is
xmlc [options | optfile.xmlc ...] docfile

where options is one or more command-line options, optfile.xmlc is one or more
options files or metadata files, and docfile is the document to compile. For
information on using options files, see “Using an options file” on page 83. For
information on using metadata files, see “Using XMLC metadata files” on page 84.

Each XMLC option begins with a hyphen (-) and can be followed by an
argument (arg):
-opt [arg]

For example:
-class fooBar

Tip Instead of specifying options on the command line, you can provide an .xmlc file
containing the options. See “Using an options file” on page 83.

C h a p t e r 5 , E n h y d r a X M L C 81

U s i n g t h e X M L C c o m m a n d

Note The Kelp tools include an XMLC wizard that lets you set XMLC options, select
HTML files for compilation, and control how XMLC builds DOM classes from input
files. For more information about Kelp, see Chapter 4, “Using Enhydra Kelp.”

Changing the Java class name

By default, XMLC creates a class with the same name as the input file. For example,
for an HTML page Foo.html, XMLC creates a class named Foo in file FooHTML.class.

The -class option changes the name of the Java class file that XMLC creates. You can
also specify a package name in the -class argument, which causes the class to be
generated in the specified package.

Example
This command compiles Simple.HTML and generates a class named MyDocClass:
xmlc -class MyDocClass Simple.HTML

This command creates a class named SimpleHTML in a package named
simpleApp.presentation:
xmlc -class simpleApp.presentation.SimpleHTML Simple.HTML

Saving the Java source-code file

By default, XMLC deletes the Java source file it generates and saves only the class
file. If, however, you are debugging your project, you may need to keep the Java files.
The -keep option saves the Java source file that XMLC generates as input to the Java
compiler.

When you specify the -keep option, XMLC saves the source file using the same name
it uses for the generated class file. If you use the -keep option without the -class
option, XMLC creates a Java source file with the same name as the input file, but with
a .java suffix.

Example
This command compiles a file named Simple.HTML and saves the Java source-code file,
Simple.java:
xmlc -keep Simple.html

Modifying URLs

XMLC can modify the URLs in an HTML page it compiles. This can be useful, for
example, with an Enhydra application in which you want to maintain a working
storyboard during development. You can create template HTML pages with links
among the pages that end in “.html”—then, when you compile the pages, you need to
replace these URLs with links that end in “.po” to link to presentation objects at
runtime.

82 D e v e l o p e r ’ s G u i d e

U s i n g t h e X M L C c o m m a n d

XMLC provides three options for modifying URLs:

• -urlmapping option converts all occurrences of a specified URL to a different URL.

• -urlregexpmapping option converts URLs that match the first specified regular
expression to new URLs matching the second specified regular expression.

• -urlsetting option converts the URL for a specified ID to a new URL.

Note You can use these options with the -docout option to write a new HTML file with
updated URLs instead of producing a class file.

Example
This command compiles Simple.HTML, producing a class in which all instances of the
URL Edit.html are replaced with the URL Edit.po:
xmlc -urlmapping 'Edit.html' 'Edit.po' Simple.html

Specifying the HTML parser

XMLC uses an HTML parser when it compiles an HTML input file, and an XML
parser when it compiles an XML input file. You can change the parser that XMLC
uses with the -parser option. The default parser for HTML is HTML Tidy. The only
XML parser currently available is the Xerces parser.

Note Earlier versions of XMLC used the Swing HTML parser by default. The Swing parser
generates different DOM trees for nonconforming HTML than does the HTML Tidy
parser. Thus, if you previously compiled nonconforming documents with the Swing
parser and do not want to make changes to your code, you might need to specify that
XMLC use the Swing parser.

Example
This command compiles Simple.HTML using the Swing parser instead of the HTML
Tidy parser:
xmlc -parser swing Simple.HTML

Deleting mock-up data

The -delete-class option deletes any elements in the input file that have the specified
CLASS attribute value. This lets you maintain a Web page with mock-up data that is
not included in the generated document.

Example
The following table row is tagged with the class name discardMe:
<tr class="discardMe">

<td>Van Halen</td>
<td>5150</td>
<td>Blah</td>

</tr>

C h a p t e r 5 , E n h y d r a X M L C 83

U s i n g t h e X M L C c o m m a n d

The following option causes XMLC to discard any HTML tags whose CLASS attribute
is discardMe:
-delete-class discardMe

Diagnosing problems

You can use several of the XMLC options to help understand the results of a
compilation:

• -verbose traces the overall execution of a compilation.

• -parseinfo traces the execution of the parser. It can be useful for debugging page
problems.

• -parser tidy uses the Tidy parser to validate the HTML. The Tidy parser will
output messages to help you debug your files.

• -info produces a dump of the compiled page, including a list of all IDs and all
URLs in the page.

• -methods generates a list of all the methods generated for each class that XMLC
creates.

Note You can use the -nocompile option with any of the above options to produce a listing
of information without generating a class file.

Example
This command compiles Simple.HTML and displays all available information about the
compilation process:
xmlc -verbose -parseinfo -info -methods Simple.html

Using an options file

Instead of entering XMLC options directly, it is often convenient to use an options file
to specify options. An options file is a text file that contains a line for each XMLC
option to use. You can use more than one options file at a time, and you can specify
options on the command line in addition to naming options file(s).

• If you specify more than one options file in a command line, XMLC processes
them one at a time, from left to right, starting with the first (leftmost) file named
on the command line.

• If you specify individual options in addition to one or more options files, XMLC
processes the individual options after the options files.

Note Some options, such as -implements, can have multiple values. Other options, such as
-parser, can have only one value. If you include multiple uses of an option that can
have only one value, XMLC applies the last value indicated.

84 D e v e l o p e r ’ s G u i d e

U s i n g t h e X M L C c o m m a n d

Options file format
An XMLC options file has the following format:

• Each line containing an option must start with the hyphen (-) character, followed
by the option name, and then any arguments.

• XMLC uses whitespace to separate items.

If you need to use an item that itself contains whitespaces, you can enclose that
item with quotation marks. You can use either single (') or double (") quotes, as
long as you use matching pairs to surround the text.

• Comment lines begin with the number sign (#) character.

• XMLC ignores blank lines.

• You can use UNIX-style escape sequences such as newline (\n) and tab (\t). XMLC
converts each such sequence into a single character when it parses the string.

Example
The following command compiles Simple.html using the options file, options.xmlc:
xmlc options.xmlc Simple.html

The file options.xmlc contains these lines:
-urlmapping 'Edit.html' 'Edit.po'
-urlmapping 'DiscCatalog.html' 'DiscCatalog.po'
-urlmapping '../personMgmt/Exit.html' '../personMgmt/Login.po?event=logout'
-delete-class discardMe

Using XMLC metadata files

Instead of using an options file, you can use an XMLC metadata file to specify how a
XMLC will process a document. You can combine the use of metadata files,
command-line options, and options files for a single document. However, metadata
files are more structured and allow more flexibility in document processing
directives than command line options. In general, it will be simpler to use one
method rather than a combination.

The XMLC metadata schema is described in detail in Appendix B, “XMLC metadata
file schema.”

XMLC metadata files are XML files that can specify directives for the entire
document, as well as directives for specific elements within the document. In
addition to specifying how a document is to be compiled, an XMLC metadata file can
also specify requirements on the structure of portions of the document. This allows
you to detect changes in the document that may affect the application code if the
application does not compile after a change to the document.

XMLC metadata files also enable you to have a common set of directives for multiple
versions of a document. You can use a single metadata file for multiple localized
versions of a document (for example, English and French), or multiple markup
language versions (for example, HTML and WML) of a document.

C h a p t e r 5 , E n h y d r a X M L C 85

U s i n g X M L C t o g e n e r a t e W e b p a g e s

You use an XMLC metadata file the same way that you use an options file:
xmlc [options | optfile.xmlc ...] docfile

where optfile.xmlc is one or more metadata files. An XMLC metadata file must have
a filename extension of .xmlc. XMLC can differentiate between a metadata file and an
options file, because the metadata file contains an XML header.

Using XMLC to generate Web pages
Although the most popular use of XMLC is for developing the presentation layer of
an Enhydra application, you can also use it in other ways. For example, you can also
use XMLC to:

• Generate and manipulate XML data to be used in business-to-business (B2B)
transactions.

• Compile HTML templates that are used by a standalone application to generate
HTML files and save them to the file system.

This section describes some of the most important XMLC programming techniques
in the context of a standalone application, DynaCat. You can also apply these
techniques to Enhydra applications.

DynaCat sample application

DynaCat is a standalone Java application that illustrates some XMLC programming
techniques, including populating a table and filling in a form. It is an example of a
semi-dynamic Web application, which generates HTML files each time it is run, in
contrast to a standard Web application, which generates HTML files “on the fly,” in
response to client browser requests.

To the Web server, the HTML files generated by a semi-dynamic application appear
just like static HTML files; however, their content can actually come from a database
or some other data source. This makes a semi-dynamic application ideal for
applications such as catalogs, which do not need to be updated every time a user
access them, but rather on an occasional basis.

The source code for DynaCat is in:
<enhydra_root>/examples/semidynamic

DynaCat has these files:

• DynaCat.java, the source code for the application
• Disc.java, a simple class representing a compact disc
• Catalog.html, the template file for a disc catalog (HTML table)
• Form.html, the template file for an input form
• build, a shell script for building the application

For simplicity, DynaCat by default uses hard-coded string data. However, it also has
a method that gets data from the InstantDB DiscRack database instead. To use this

86 D e v e l o p e r ’ s G u i d e

U s i n g X M L C t o g e n e r a t e W e b p a g e s

method, you must install and configure InstantDB, and create and populate the
DiscRack database as described in Chapter 7, “Using InstantDB.”

DynaCat’s main() method controls the program. It calls methods to get data,
manipulate the template document objects, and then save the output into HTML
files.

Building DynaCat
To build DynaCat, use the provided build script.

1 Make <enhydra_root>/examples/semidynamic the working directory.

2 Make sure your CLASSPATH contains <enhydra_root>/examples/semidynamic.

3 In a shell window (an Enhydra shell on Windows), enter the following command:
./build

You will see a few messages in the shell window as XMLC compiles the template
pages. The build script creates the following files:

• CatalogHTML.java and FormHTML.java, the source files that XMLC creates from the
template files.

• CatalogHTML.class and FormHTML.class, the class files that XMLC creates by
compiling the source files.

• Disc.class, the class file for a Disc object.

Note If you have any problems building DynaCat, make sure your CLASSPATH environment
variable includes a reference to enhydra.jar.

Note The build script needs a fully qualified path to xmlc if <enhydra_root>/bin is not in your
PATH.

Running DynaCat
To run DynaCat, enter the following command in the shell window:
java DynaCat

You will see the following messages displayed in the shell window:
WRITING HTML TO catalog_dynamic.html
WRITING HTML TO form_dynamic.html

Load these pages in your browser to see the final results, as shown in Figure 5.5 and
Figure 5.6.

Writing the generated HTML output files
After building the pages based on the document templates and the data, DynaCat
writes output HTML pages using the DOMFormatter object:
File outFile = new File(“catalog_dynamic.html");
DOMFormatter formatter = new DOMFormatter();
formatter.write(catalogPage, outFile);

C h a p t e r 5 , E n h y d r a X M L C 87

U s i n g X M L C t o g e n e r a t e W e b p a g e s

Figure 5.5 DynaCat catalog page

Populating a table

Populating an HTML table with data from a database or some other data source is a
common application task.

Note Using XMLC to work with tables is also discussed in Getting Started with Lutris
Enhydra.

About the catalog page
Catalog.html is the template HTML page containing the table that DynaCat populates.
When you compile this file with XMLC, it creates a DOM representation of the page
that DynaCat uses.

This code shows a portion of catalog.html:
...
<tr>

<th>Artist</th>
<th>Title</th>
<th>Genre</th>

</tr>

<tr id="TemplateRow">
<td>Van Halen</td>
<td>Fair Warning</td>
<td>Good Stuff</td>

</tr>

<tr class="discardMe">
<td>Van Halen</td>
<td>5150</td>
<td>Blah</td>

</tr>
...

The table has a heading row followed by four template (placeholder) data rows with
a CLASS attribute of “discardMe.” These template rows let the designer see how the

88 D e v e l o p e r ’ s G u i d e

U s i n g X M L C t o g e n e r a t e W e b p a g e s

page will look after the program runs. When XMLC compiles the page, it uses the
-delete-class option to remove these rows.

This is the XMLC command line used to compile the page:
xmlc -class cataloghtml -delete-class discardMe catalog.html

The template row left in the table has an ID attribute with value “TemplateRow,”
which DynaCat uses to access the row object in the DOM tree.

To add a disc description to the table, DynaCat accesses the template row object,
modifies the data in the row, clones it to create a new row object, and adds the cloned
row to the table in the DOM tree. After it has added all data to the table, DynaCat
removes the template row and then writes the document out to a HTML file.

Populating the table
To populate the table, DynaCat first instantiates a CatalogHTML object based on the
template HTML file:
CatalogHTML catalogPage = new CatalogHTML();
prepHTML(catalogPage);

The prepHTML() method prepares the HTML page for modification: it removes the ID
attributes from the template row to prevent duplicate ID values, which are not
allowed by the DOM.
private static void prepHTML(CatalogHTML page) {

try {
HTMLTableRowElement templateRow = page.getElementTemplateRow();

// Remove ids to prevent duplicates
// (browsers don't care, but the DOM does)
templateRow.removeAttribute("id");
HTMLElement artistCellTemplate = page.getElementArtist();
HTMLElement titleCellTemplate = page.getElementTitle();
HTMLElement genreCellTemplate = page.getElementGenre();

artistCellTemplate.removeAttribute("id");
titleCellTemplate.removeAttribute("id");
genreCellTemplate.removeAttribute("id");

...
} //prepHTML

The getDiscs() method returns a group of discs that can be manipulated later.
private static Vector getDiscs() {

Vector v = new Vector();
v.addElement(new Disc(1, "Felonious Monk Fish", "Deep Sea Blues", "Jazz", true));
v.addElement(new Disc(2, "Funky Urchin", "Lovely Spines", "Techno Pop", true));
v.addElement(new Disc(3, "Stinky Pups", "Shark Attack", "Hardcore", true));
return v;

}

DynaCat iterates through the retrieved records and calls a method that adds the
contents of each record to the page:
vRecords = getDiscs();
Enumeration eRecords = vRecords.elements();
while (eRecords.hasMoreElements()) {

Disc disc = (Disc)eRecords.nextElement();
addDiscToPage(catalogPage, disc); // Add disc as table row

}

C h a p t e r 5 , E n h y d r a X M L C 89

U s i n g X M L C t o g e n e r a t e W e b p a g e s

The addDiscToPage() method, which is shown below, performs several operations to
add the disc information to the HTML table. It:

• Accesses the DOM tree to retrieve a placeholder row in the disc table
• Fills in the title, artist, and genre information in the placeholder object
• Clones (copies) the object to produce a new row object
• Appends the row to the table object
public static void addDiscToPage(CatalogHTML page, Disc disc) {

HTMLTableRowElement templateRow = page.getElementTemplateRow();
Node discTable = templateRow.getParentNode();
try {

page.setTextArtist(disc._artist);
page.setTextTitle(disc._title);
page.setTextGenre(disc._genre);
Node clonedNode = templateRow.cloneNode(true);
discTable.appendChild(clonedNode);

} catch(Exception ex) {
System.out.println("Error adding disc to HTML " + ex);

}
} //addDiscToPage

Populating forms

Another common application task is populating a form with default values.
Although DynaCat does not process user input, it does illustrate how to populate a
form with default values, which is useful with Enhydra or other Web applications.
The populateForm() method in DynaCat populates the form elements with default
values.

Note Using XMLC to work with forms is also discussed in Chapter 5, “DiscRack sample
application,” of Getting Started with Lutris Enhydra.

About the form page
Form.html contains the form that DynaCat populates with data from the database.
When you compile this file with XMLC, it produces a DOM tree representation of the
page, which DynaCat can then manipulate.

This code snippet shows a portion of the Form.html file:
<FORM ACTION="DiscCatalog.html?Edit.po" NAME="EditForm" METHOD="GET">

<INPUT TYPE="hidden" NAME="discID" VALUE="invalidID" ID="DiscID">
Artist: <INPUT TYPE="TEXT" NAME="artist" id="Artist" >

Title: <INPUT TYPE="TEXT" NAME="title" id="Title" >

Genre: <INPUT TYPE="TEXT" NAME="genre" id="Genre" >

Do you like this disk? <INPUT TYPE="checkbox" NAME="like" CHECKED ID="LikeBox">
<P>
Text Area: <TEXTAREA NAME="summary" ID="summary" ROWS=6 COLS=30></TEXTAREA>
<P>Select List:
<SELECT id="DiscList" Name="discID">
<OPTION ID="invalidID">Select One:</OPTION>
<OPTION id="templateOption">This is dummy text</OPTION>
</SELECT>
<P>
Select your favorite Disc:

90 D e v e l o p e r ’ s G u i d e

U s i n g X M L C t o g e n e r a t e W e b p a g e s

<DIV ID="radioButtonGroup">
<INPUT TYPE=RADIO NAME="favorite" ID="templateRadio" VALUE="0">
</DIV>
</FORM>

The form page contains examples of these common HTML form elements, also
shown in Figure 5.6:

• Text fields
• Text area
• Pull-down list boxes (select lists)
• Radio buttons
• Check boxes

Figure 5.6 DynaCat form page

Text fields
The following snippet shows the text fields in Form.html:
<INPUT TYPE="hidden" NAME="discID" VALUE="invalidID" ID="DiscID">
Artist: <INPUT TYPE="TEXT" NAME="artist" id="Artist" >

Title: <INPUT TYPE="TEXT" NAME="title" id="Title" >

Genre: <INPUT TYPE="TEXT" NAME="genre" id="Genre" >

The populateForm() method uses the following statements to populate the text fields:
page.getElementDiscID().setValue(id);
page.getElementTitle().setValue(title);
page.getElementArtist().setValue(artist);
page.getElementGenre().setValue(genre);

The call to getElementxxx() returns the DOM object representing the text field with ID
of xxx. For example, getElementTitle() returns the object with ID of “Title.”

C h a p t e r 5 , E n h y d r a X M L C 91

U s i n g X M L C t o g e n e r a t e W e b p a g e s

Notice that the text fields also have a NAME attribute, used when the form is submitted.
Although NAME and ID do not have to be the same, it is usually most convenient to
make them the same.

Note You can set the values of HIDDEN and PASSWORD form fields the same way you set them
for text fields.

Check boxes
The following snippet shows the checkbox in Form.html:
Do you like this disk? <INPUT TYPE="checkbox" NAME="like" CHECKED ID="LikeBox">

The populateForm() method also sets the checked state of the check box with this
statement:
page.getElementLikeBox().setChecked(isLiked);

The setChecked() method takes a boolean argument; if true, the check box is checked
by default, if false, the check box is unchecked by default.

Radio buttons
The following snippet shows the radio button in Form.html:
<DIV ID="radioButtonGroup">
<INPUT TYPE=RADIO NAME="favorite" ID="templateRadio" VALUE="0">
</DIV>

The populateRadioGroup() method creates a radio button group with this code:
public static void populateRadioGroup(FormHTML page,

Enumeration eRecords) {
Disc disc;
HTMLInputElement radioButtonTemplate = page.getElementTemplateRadio();
radioButtonTemplate.removeAttribute("id");
HTMLDivElement div = page.getElementRadioButtonGroup();
while (eRecords.hasMoreElements()) {

disc = (Disc)eRecords.nextElement();
HTMLInputElement clonedRadioButton =

(HTMLInputElement) radioButtonTemplate.cloneNode(true);
clonedRadioButton.setValue(disc._title);
Node radioText = page.createTextNode(disc._artist + ": " +

disc._title);
clonedRadioButton.appendChild(radioText);
div.appendChild(clonedRadioButton);
HTMLBRElement br = (HTMLBRElement)page.createElement("BR");
div.appendChild(br);
}

div.removeChild(radioButtonTemplate);
}

The method clones the radio button template tag and sets its value to the title of each
disc. Then, it creates a text node and appends it as a child of the new cloned radio
button. Finally, it appends the cloned button to the DIV tag, which acts as a container
for the whole radio button group, and appends a break (BR tag) to the DIV to make
each radio button appear on a new line.

92 D e v e l o p e r ’ s G u i d e

U s i n g X M L C t o g e n e r a t e W e b p a g e s

Text areas
The following snippet shows the text area in Forms.html:
Text Area: <TEXTAREA NAME="summary" ID="summary" ROWS=6 COLS=30></TEXTAREA>

The following statement sets the default value of the multiline text field (TEXTAREA) to
the value of the discSummary string.
String discSummary = "TITLE= " + disc._title + "\nARTIST= " + disc._artist + "\nGENRE = " +

disc._genre;
page.getElementSummary().appendChild(page.createTextNode(discSummary));

Notice that discSummary contains newline characters (\n), to force newlines (line feeds)
within the field.

List boxes
The following snippet shows the list box in Form.html:
<P>Select List:
<SELECT id="DiscList" Name="discID">
<OPTION ID="invalidID">Select One:</OPTION>
<OPTION id="templateOption">This is dummy text</OPTION>
</SELECT>

The populateSelectList() method populates the multiple-option list box SELECT list.
Because it requires all disc records, it performs its own “query,” calling getDiscs().
Then, for each disc in the result set, it performs the following:
public static void populateSelectList(FormHTML page, Enumeration eRecords) {
...

HTMLOptionElement clonedOption =
(HTMLOptionElement) templateOption.cloneNode(true);
clonedOption.setValue(Integer.toString(disc._ID));
Node optionTextNode =
page.createTextNode(disc._artist + ": " + disc._title);
clonedOption.appendChild(optionTextNode);
selectList.appendChild(clonedOption);

...

The call to cloneNode() creates a clone (copy) of the template option, then the call to
setValue() sets its value to the disc’s ID.

Note To be meaningful, each OPTION must have a unique VALUE attribute. In this example, a
disc’s ID property is assumed to be unique.

The DOM method createTextNode() creates a new text node, then the call to
clonedOption.appendChild() makes it the child (content) of the OPTION tag. Finally,
selectList.appendChild() adds the new cloned option to the SELECT list.

Manipulating JavaScript

Sometimes you need to set JavaScript content from your application. For example,
you may need to do this if you want to set JavaScript variable values from a database,
or if you want to maintain a working storyboard and replace the content of a SCRIPT
tag at XMLC compile time.

C h a p t e r 5 , E n h y d r a X M L C 93

U s i n g X M L C t o g e n e r a t e W e b p a g e s

Because SCRIPT elements are treated specially in the DOM, this requires a special
technique. This technique works equally well for VBScript, or any other client
scripting language. First, create a template script element like this:
<SCRIPT ID="myScript" TYPE="text/javascript">
var xyz = 0; // Dummy content
</SCRIPT>

The SCRIPT tag can go anywhere in the document’s HEAD or BODY. It can have any
“dummy” content desired, to make the application storyboard work. Then, as
illustrated in the DynaCat application, use a method like setScript() to add content to
the SCRIPT tag:
static void setScript(HTMLScriptElement element, String script) {

Node child;
while ((child = element.getFirstChild()) != null) {

element.removeChild(child); // Delete any children of SCRIPT
}
child = element.getOwnerDocument().createCDATASection(script);
element.appendChild(child); // Create new node to hold data.

}

You call this method with the HTMLScriptElement, whose content you want to replace,
and with a String that represents the script content you want to insert. For example:
setScript(script, JS_STRING);

where JS_STRING has a value set from within the application, for example:
JS_STRING = "function popAlert() { alert('New Script Substituted in Page!!!') }";

To see this in action, remove the comment preceding this line in DynaCat.java,
comment out the previous line that sets JS_STRING to an empty string, then rebuild
and run the application. When you load the page, your browser will display the
message “New Script Substituted in Page!!!”

An alternative technique is to use HIDDEN form elements and set their values as
described in “Populating forms” on page 37.

Compile-time includes

An include is a directive to incorporate the entire contents of one document within
another document. You can use includes for common headers, footers, or other
blocks of content that are duplicated in multiple pages.

XMLC supports compile-time includes, which occur when you run the XMLC
command, in contrast to runtime includes, which occur when an application runs.
The individual included files can take any form, but the resulting document must be
a valid HTML file. XMLC converts the resulting document to a DOM and generates a
class from it.

You must use the XMLC -ssi option when compiling your files in order to use
includes. XMLC recognizes the syntax of server-side includes (SSI), as used in most
web servers.

One approach to using includes with XMLC is to define an interface for each file to be
included. Then, the generated DOM class must implement that interface. This way,

94 D e v e l o p e r ’ s G u i d e

U s i n g X M L C w i t h E n h y d r a

common code that operates on the included file can operate on generated objects
based on the file.

Syntax
The syntax for an XMLC include is:
<!--#include file="filename" -->

where filename is the name of the file to be included. When compiling the files with
XMLC, you must use the -ssi option. If you don’t, XMLC will ignore the directives.
The directive must be used exactly as shown above. In particular:

• Do not put a space before the word include
• A space must precede the ending comment (-->)
• The file name must be enclosed in quotes.

The filename can include a path, either an absolute path or a relative path. Relative
paths are in relation to the location of the file containing the include directive. An
included file may itself have an include directive (this is known as a “nested
include”). You may have up to 64 levels of nested includes.

After XMLC processes an include, the resulting document is just as if the HTML from
the included document were inserted into the including document, at the point of the
include directive.

Note The resultant HTML file must be a legal, well-formed HTML document.

Using XMLC with Enhydra
This section describes how to use XMLC with the Enhydra make system, and how to
use Enhydra’s automatic recompilation feature for pages generated by XMLC.

Using the Enhydra make system

The Enhydra make command helps you build applications with XMLC. The
stdrules.mk make file included with Enhydra in <enhydra_root>/lib defines a number
of make variables that XMLC uses, as summarized in Table 5.1.

By convention, the Enhydra make rules cause XMLC to generate class files with the
same base name as the source HTML files with “HTML” appended. For example,

C h a p t e r 5 , E n h y d r a X M L C 95

U s i n g X M L C w i t h E n h y d r a

when you compile Simple.HTML using the standard Enhydra make rules, XMLC
generates the class file SimpleHTML.

Example
This example shows a Makefile for compiling four HTML objects with XMLC:
ROOT = ../../../..

PACKAGEDIR = golfShop/presentation/xmlc/login

HTML_DIR = ../../html/login

HTML_XMLC_OPTS_FILE = login.xmlc

HTML_CLASSES = LoginHTML \
LogoutHTML \
CheckVersionHTML \
NewAccountHTML

include $(Root)/config.mk

Table 5.1 Variables used by XMLC when compiling HTML

Variable Description

<Language>_CLASSES The list of classes to be generated from <Language> using XMLC. Each
class must be
• Named in the form xxxx<Language>
• Generated from a <Language> file named xxxx.<Language extension>

in <Language>_DIR. For example, the classes generated from an
HTML file come from xxxx.html in HTML_DIR.

• Named in this list without the .class extension
<Language>_DIR The name of the directory that contains the <Language> files for XMLC

to compile. For example use HTML_DIR for HTML files. This directory
name is relative to either the current directory or the root ($ROOT).

XMLC_<Language>_OPTS Options to pass to XMLC when it compiles <Language> files. For
example use XMLC_HTML_OPTS for HTML files. You can leave this
variable unspecified or empty.
Note: You cannot specify both the XMLC_<Language>_OPTS and
XMLC_<Language>_OPTS_FILE variables.

XMLC_<Language>_OPTS_FILE The name of an XMLC options file with the extension .xmlc. This file
contains options to pass to XMLC when it compiles <Language> files.
For example use XMLC_HTML_OPTS_FILE for HTML files. You can leave
this variable unspecified or empty.
Note: You cannot specify both XMLC_<Language>_OPTS and
XMLC_<Language>_OPTS_FILE variables.

96 D e v e l o p e r ’ s G u i d e

U s i n g X M L C w i t h E n h y d r a

Automatically recompiling with XMLC

You have seen how XMLC lets you keep an application’s content and layout
separate. Normally, though, if you change an HTML page, you have to recompile the
application for the change to take effect. However, XMLC also has the capability to
automatically recompile HTML pages as they change, without requiring that the
application be stopped.

Automatic recompilation adds some additional overhead to your application. When
a user visits a page, Enhydra checks the timestamp of the HTML page, and if it has
changed, it automatically recompiles the page with XMLC. To reduce this overhead,
you can compile the HTML page with XMLC yourself and configure the application
to reload the class when a user first visits the page.

To enable automatic recompilation in your application:

1 Use xmlcFactory to instantiate your document objects as described in “Instantiating
pages with xmlcFactory.”

2 Set the XMLC_AUTO_COMP option in your config.mk file as described in “Setting up the
application class directory structure.”

3 Set Server.ClassPath[] in your app.conf file as described in “Setting up the
application class directory structure.”

4 Add options in your config.mk and app.conf files to update your class files or to
recompile your HTML files at runtime as described in “Specifying how document
classes are updated.”

5 Optionally, add XMLC logging as described in “Adding XMLC logging to track
the recompilation.”

Instantiating pages with xmlcFactory
Use xmlcFactory to instantiate your pages in your Java code. For example:
WelcomeHTML welcome = (WelcomeHTML)comms.xmlcFactory.create(WelcomeHTML.class);

Caution Do not use the standard new constructor to instantiate document objects if you want to
enable automatic recompilation.

You can always use xmlcFactory to instantiate your pages. If you do not have
automatic recompilation enabled, the xmlcFactory.create method simply calls new. If
you set your code up to call xmlcFactory.create, you can add automatic recompilation
later and need not make any changes.

Setting up the application class directory structure
Most Enhydra applications deploy in a single Java archive (.jar) file that contains all
the application classes. However, to use automatic recompilation, you must run your
application directly from the class files, and you must store the HTML files in the
same directories as the corresponding Java classes.

C h a p t e r 5 , E n h y d r a X M L C 97

U s i n g X M L C w i t h E n h y d r a

You need to set two values to make this happen:

• In the application’s config.mk file, set XMLC_AUTO_COMP=YES.

This tells XMLC to set up the directory structure and store the files in the
appropriate locations. After you run XMLC, your files are found in
<appRoot>/output/lib/classes, where appRoot is the application root directory.

• In your application configuration file, appName.conf.in, set
Server.ClassPath[]=<class_dir> where class_dir is the relative path to the directory
containing the application’s class files. For example,
Server.ClassPath[] = <appRoot>/classes.

Specifying how document classes are updated
Once you have modified the HTML file as desired, you can:

• Compile it yourself: Compile the document with XMLC into a class file, and
Enhydra loads the class as needed.

• Let Enhydra recompile it: Enhydra recompiles the HTML file into document class
and reloads it as needed.

You must configure your application for one of the options shown in Table 5.2.

When you specify the -generate both option, XMLC generates both an interface and
an implementation class.

When you specify the -for-recomp option, XMLC generates an interface, an
implementation class, and an .xmlc file that contains the options used to compile the
page. This ensures that the same options are applied when the page is dynamically
recompiled.

Caution Using the -for-recomp option and the new constructor to instantiate a document object
causes an error; always use the xmlcFactory interface to instantiate your document
objects, as described in “Instantiating pages with xmlcFactory.”

Adding XMLC logging to track the recompilation
You can optionally add the XMLC option for logging in your app.conf file. For
example:
Server.LogToFile[] = EMERGENCY, ALERT, CRITICAL, ERROR, XMLC

This adds information in the log file about XMLC automatic recompilation and
reloading.

Table 5.2 Types of automatic recompilation

To have Enhydra
XMLC option in
config.mk Setting in app.conf file

Recompile the HTML file and reload
resulting class

 -for-recomp Server.XMLC.Autorecompilation = true

Reload class only -generate both Server.AutoReload = true

98 D e v e l o p e r ’ s G u i d e

X M L C r e f e r e n c e

XMLC reference
This section is a reference for the XMLC command-line options, XMLCUtil methods,
and DOM classes and methods.

For complete reference information, see the online Javadoc, located in the
<enhydra_root>/doc subdirectory.

XMLC command-line options

To invoke XMLC from the command line, use this syntax:
xmlc [options] [optfile.xmlc ...] docfile

Here’s a typical example of a command line is used to compile a HTML input file and
write an output class file with a specified name:
xmlc -d ../../classes -class app.presentation.user.UserTable ../html/usertable.html

You can specify any number of the XMLC options shown in Table 5.3. See “Using the
XMLC command” on page 29 for more information and examples of using several of
the more common options.

Table 5.3 XMLC command-line options

Option Description

-class <class> Sets the fully qualified class name for the generated class or
interface. See “Changing the Java class name” on page 81
for an example.

-classpath <path> Passed on to javac.
-d <dir> Specifies the destination directory for the class file. This

option is passed on to javac.
-delete-class <classname> Deletes all elements that have CLASS attribute with value

<classname>; useful for removing mock-up data.
Note: This class name has nothing to do with a Java class.
You can include multiple instances of this option.

-docout <outfile> Writes a static document to outfile instead of generating
and compiling Java code. You can use this option for pages
that have URLs that need mapping, but no dynamic
content.

-dom <DOMname> Specifies the DOM to use. Default is Lazy DOM Valid
values are: xerces, lazydom

-domfactory <classname> Specifies the Java class for creating DTD-specific
documents. This option is not supported for HTML input
documents. The DOM factory must have a constructor that
does not take any arguments.
This class must:
• Implement the interface org.enhydra.xml.xmlc.

dom.XMLCDomFactory

• Be on the CLASSPATH

C h a p t e r 5 , E n h y d r a X M L C 99

X M L C r e f e r e n c e

-dump Displays the DOM tree for the input document. See the
section “Diagnosing problems” on page 83 for an example.

-extends <classname> Specifies the class that the generated document extends.
This class must:
• Extend XMLObjectImpl for XML documents
• Extend HTMLObjectImpl for HTML documents
• Be available on the CLASSPATH
The class is normally an abstract class.

-for-recomp Generates support for automatic class recompilation; the
information is stored in a file with an .xmlc suffix appended
to the class name, as specified with the -class option.
Implies the -generate both option.

-g Passed on to javac.
-generate <type> Specifies what XMLC generates:

• class: XMLC generates a class that does not depend on
an interface (default).

• interface: XMLC generates only an interface.
• both: XMLC generates both an interface and an

implementation class. The implementation has the
suffix Impl appended to the class name, and uses the
class name specified with the -class option.

• implementation: XMLC generates the class that
implements the interface, but not the interface.

-html:addattr <attr> Adds the specified attribute attr to the list of valid HTML
attributes. The parser then allows the attribute for all tags.
Note: Used only by the HTML Tidy parser.

-html:addtag <tag> <flags> Adds the specified tag to the list of valid HTML tags. The
parser then allows the tag. The tagname is case-insensitive.
flags is a comma-separated list that contains the content
model and other options that describe the tag. You can
specify the following values:
• inline: Tag applies to character-level elements.
• block: Tag applies to block-like elements such as

paragraphs and lists.
• empty: Tag does not have a closing tag.
• opt: Closing tag is optional for this tag.
You must specify at least one of the following flags: inline,
block, or empty.
Note: Used only by the HTML Tidy parser.

-html:addtagset <tagsetname> Adds a predefined set of tags to the list of valid HTML
tags. You can specify:
• cyberstudio: Tags added by Adobe Cyberstudio, which

are ignored by most browsers.
Note: Used only by the HTML Tidy parser.

-html:frameset Deprecated and is ignored.

Table 5.3 XMLC command-line options (continued)

Option Description

100 D e v e l o p e r ’ s G u i d e

X M L C r e f e r e n c e

-html:old-class-constants Generates old-style, all uppercase class names. Available
for compatibility with applications generated by older
versions of XMLC, which generated HTML class attribute
constant names in all uppercase.

-implements <interface> Specifies the interface that the generated class will
implement. You can include multiple instances of this
option.

-info Prints information about the document object, including
IDs and URLs.

-javac <prog> Specifies the name of the Java compiler to use.
-javacflag <flag> Passes the specified flag to the javac program, including

any leading hyphen (-) or plus (+) characters. You can
include multiple instances of this option.
Note: Use the -javacopt option for compiler options that
require values.

-javacopt <opt> <value> Passes the specified option and value to pass to javac,
including any leading hyphen (-) or plus (+) characters.

-keep Saves the generated Java source file. See “Changing the
Java class name” on page 81 for an example.

-methods Prints the signature of each generated access method, and
lists any methods or access constants that were not
generated because they were not valid Java identifiers.

-nocompile Do not compile the generated Java source file.
-O Passed on to javac.
-parseinfo Prints detailed information about the parsing of the page.
-parser <parser> Specifies the parser that XMLC uses:

• tidy: Enables the HTML Tidy parser. This is the default
HTML parser and always performs validation.

• swing: Enables the Swing parser for HTML. This parser
always performs validation.

• xerces: Enables the Xerces parser for XML. This is the
default XML parser and performs XML validation by
default.

-sourceout <sourceout> Specifies the root directory for source files generated by
XMLC.
If you specify the -keep option, the generated source files
are stored in this directory.

-ssi Enable processing of server-side includes in the input
document.

-urlmapping <origURL> <newURL> Maps all occurrences of <orgiURL> to <newURL>. You can
include multiple instances of this option.

-urlregexpmapping <regexp> <replace> Maps all occurrences of the URL that matches regular
expression <regexp> to the URL specified by <replace>. You
can include multiple instances of this option.
This option uses the gnu.regexp package and recognizes
regular expressions with POSIX extensions.

Table 5.3 XMLC command-line options (continued)

Option Description

C h a p t e r 5 , E n h y d r a X M L C 101

X M L C r e f e r e n c e

XMLCUtil class

The XMLCUtil class contains a number of utility methods for working with DOM
representations of documents. This class extends java.lang.Object.

DOM classes and methods

This section summarizes some of the primary DOM classes and methods.

DOM objects
The DOM is a set of general objects for XML documents. To use XML for a particular
application, you can define a set of Element classes for that application. The DOM
specification includes a set of classes for HTML documents.

The DOM actually supports two different views of a document:

• A flat collection of nodes, each of which has a different type
• An object-oriented hierarchy with inheritance

-urlsetting <id> <newURL> Changes the URL for the specified <id> to the specified
<newURL>. You can include multiple instances of this option.

-validate yes|no Changes the default document validation mode of the
parser. If you specify an option value that the parser does
not support, XMLC generates an error.

-verbose Generates useful output about the compilation process.
-version Prints XMLC version number. If you do not specify any

other options, XMLC quits after printing the version
number.
Note: You do not need to specify a docfile with this option.

-xcatalog <catalog> Specifies the catalog file to use for resolving external
entities. You can use this option to specify local DTDs.

Table 5.4 XMLCUtil methods

Method Description
findFirstText Returns the first text descendent node of a specified element.
getAttributeByName Returns the attribute object for a named attribute.
getElementById Recursively searches for the element with the specified ID value, starting

at a specified node.
getFirstText Returns the first text descendent node of a specified element.
getRequiredElementById Recursively searches for the required element with the specified ID

value, starting at a specified node.
printNode Prints a node and its children.
replaceNode Replaces a node with a specified node from another document.

Table 5.3 XMLC command-line options (continued)

Option Description

102 D e v e l o p e r ’ s G u i d e

X M L C r e f e r e n c e

The node view provides a consistent, low-level interface to each tree node, which can
be used in any environment, but might be more important for performance-critical
applications. Table 5.5 shows the core node interfaces in the DOM.

Table 5.6 shows the core XML interface objects in the DOM.

Table 5.5 Standard node interfaces in org.w3c.dom

Object type Description
Node Represents a single node in the document tree. This is the primary interface for

the DOM.
NodeList Presents an interface for working with an ordered lists of nodes, such as the list

of children of a node.
NamedNodeMap Represents a collection of nodes that can be accessed by name.

Table 5.6 Core XML interface in the DOM

Object type Description
Document Represents the entire HTML or XML document and is the root of the

document tree.
DocumentFragment Represents a portion of a document’s tree. DocumentFragment objects are

considered lighter weight versions of the Document object type.
DocumentType Provides an interface to the list of entities that are defined for the

document.
Note: This object type does not have any children.

Entity Represents an entity in an XML document.
Entity Reference Refers to an entity node.
Element Represents an element of a document. Each element can have attributes

associated with it.
Attr Represents an attribute of an Element object. The values allowed for an

Attr are specified in the DTD for the language you are using.
ProcessingInstruction Processor-specific instruction.

Note: This object type does not have any children.
Comment Comment in the source file, which starts with the “<!--” character

sequence and ends with the “-->” character sequence.
Note: This object type does not have any children.

Text Textual element.
Note: This object type does not have any children.

CDataSection Used to escape blocks of text that would otherwise be regarded as
markup. You can use CDATA sections to include material without having
to escape every delimiter in the material.
Note: This object type does not have any children.

Notation Represents a notation that is declared in the DTD of the document. Used
to declare the format of an unparsed entity or to declare processing
instruction targets.
Note: This object type does not have a parent or any children.

C h a p t e r 5 , E n h y d r a X M L C 103

X M L C r e f e r e n c e

DOM Java interfaces
Although W3C does not provide implementations of the DOM, it does provide a set
of Java interfaces and support objects for XML and HTML. You can find the Javadoc
for the HTML interfaces in the online documentation provided with Enhydra.

Table 5.7 summarizes some of the commonly used HTML interfaces. You can see that
these objects are named to match the familiar HTML tags:

Table 5.7 Commonly used HTML interfaces in the DOM

Object type Represents in document
HTMLAnchorElement Link anchor
HTMLBodyElement Body of the HTML document
HTMLBRElement Line break element
HTMLButtonElement Button element
HTMLDocument Root of the HTML hierarchy, which contains the document’s contents
HTMLFontElement Font definition element
HTMLFrameElement Frame definition
HTMLHeadElement Head information of the HTML page
HTMLHeadingElement Heading
HTMLHRElement Horizontal rule
HTMLLinkElement Link to an external resource
HTMLOListElement Ordered list
HTMLParagraphElement Paragraph
HTMLPreElement Preformatted text
HTMLTableElement Table
HTMLTitleElement Title of the page
HTMLUListElement Unordered list

104 D e v e l o p e r ’ s G u i d e

C h a p t e r 6 , U s i n g t h e D a t a O b j e c t D e s i g n S t u d i o 105

6Chapter
Using the Data Object
Design Studio Chapter 6

The Data Object Design Studio (DODS) consists of three parts: an object-oriented GUI
design tool that reads and writes DOML files, a set of code generators that reads
DOML files to generate data-access code, and a set of underlying Enhydra classes to
facilitate data access in Enhydra applications.

DODS lets you design the data-layer classes of an application that uses the Enhydra
application framework. DODS then generates the Java source code for the data-layer
classes and compiles them for you.

Using the DODS graphical user interface
There are three different panels in the DODS GUI: There is a Graphical View, and
below that, there is a Package/Object Tree and an Attribute table.

• The Graphical View panel displays the hierarchy of the data object you have
created.

• The Tree is a directory structure of the packages that hold the data objects which
will be created by DODS.

Database
ServerSQLDatabase

ServerSQLDatabase
ServerSQL

DODS GUI

DOML FILE

106 D e v e l o p e r ’ s G u i d e

U s i n g t h e D O D S g r a p h i c a l u s e r i n t e r f a c e

When the project is finished and built, this directory structure will be created with
the appropriate .java files in each directory corresponding to the data objects in
those packages.

• The Attribute table displays the attributes of a data object.

When a data object is selected in either the Tree or the Graphical View, its attributes
are listed in the table. For example, if a customer has the attributes of name, phone
number, and address, each of these attributes is listed in the Attribute table when the
Customer object is selected.

Running with parameters

The script that starts DODS, <enhydra_root>/bin/dods, can be given optional
parameters.
dods [<project file> [<output directory> [regen]]]

If you specify a project file, it will be opened automatically when DODS starts.

If you specify an output directory, it will be preselected when you click the Build
button.

If you provide regen as the third parameter, the DODS GUI will not load, but the
named project file will be loaded, and the code generators will write source code to
the named output directory. The regen parameter is useful for running DODS from a
Makefile or script to completely rebuild an application. The project file can be
thought of as the actual source code for the data layer of the application.

Data Object editor

The Database tab in the Data Object editor dialog box has two main sections. Db
Table Name specifies the table name. When you choose a name, keep in mind the
naming restrictions of your database vendor. For example, there may be a maximum
length for the name, or perhaps the name cannot be an SQL reserved word, or there
may be names that are reserved for use by the database itself.

The following table describes DataBase Mapping Type box’s options.

Option name Description

Every Class Not supported in the current version of DODS.
Every Concrete Class Not supported in the current version of DODS.
Entire Hierarchy Not supported in the current version of DODS.

C h a p t e r 6 , U s i n g t h e D a t a O b j e c t D e s i g n S t u d i o 107

U s i n g t h e D O D S g r a p h i c a l u s e r i n t e r f a c e

Attribute editor

The Database tab in the Attribute editor dialog has the following elements. The Db
Type pull-down menu holds a list of database column types that are valid for storing
the Java type chosen for this attribute. Some column types require a size setting,
which you enter in the Size edit box.

The following table describes the available options on the Database tab.

Lazy Loading This flag affects the behavior of the DO class (defined in the DO.java file
for the data object). If it is checked, when you supply a known ObjectId
to create a DO instance, the DO instance is created but the corresponding
row in the table is not retrieved until the first get() or set() method call is
made. This is useful when you are reconstituting a hierarchy of objects
from rows in the table, but you will not always need the data for this
particular object in that hierarchy.
Checking Lazy Loading delays the hit on the database until the moment
the data is actually needed. Depending on how your application accesses
its database, this can result in extra database hits, and thus hurt
performance. If this flag is not checked, all the data members are
retrieved from the table when the DO instance is created. If your
application will not always need these data members, this can waste
memory.

Cached This flag affects the behavior of the DO class. If it is checked, all DO
instances are stored in a cache inside the DO class. Subsequent queries of
the table using the Query class will first check the cache before hitting
the database. This is appropriate when different parts of your
application hold references to the same DO instance.

Fully Cached This flag affects the behavior of the DO class. If it is checked, the entire
table is queried and cached when your application starts. This is
appropriate for tables of static data that is accessed frequently and that
will not change during the execution of your application.
Note that there is a refreshCache() method available if your application
needs to refresh the cache with new values in the table.

Option Description

Is an Index If this option is checked, a database index is created on this column in
the table.

Can be Null If this option is not checked, the NOT NULL restriction is placed on the
column.

Can be queried If this option is checked, the Query class generated for this data object will
include a set() method for this column to allow restricting the search.

Referenced DO must
exist

If this option is checked and this attribute is a reference to another data
object (that is, the Java type for this attribute is another DO), then a
REFERENCES restriction is placed on the column. This enforces
referential integrity between the tables for these two data objects.

Value is constant If this option is checked, the attribute is made a constant data member in
the DO class, and no column is created in the table for this data object.

Option name Description

108 D e v e l o p e r ’ s G u i d e

D O D S p r o j e c t s

Query classes

The Query classes generated by DODS allow you to search the database for DOs.
attributes of the DO that are marked Can Be Queried will have a method
setQueryAttributeName in the Query class. These setQuery methods allow you to prune the
search results.

The Query classes generated by DODS all use the QueryBuilder helper class. The
setQueryAttributeName methods invoke the QueryBuilder.addWhereClause method to
construct the SQL select command that performs the search. After creating an
instance of a Query class, you can obtain the associated instance of QueryBuilder to add
extra clauses to the select command. Some developers elect to extend a Query class to
implement new methods for such extra functionality. Using extra clauses, your select
command can perform more complex searches.

Note The QueryBuilder.NOT_EQUALS qualifier will not work with DB2 databases.
Use <> instead.

Querying a view

You can use DO/Query classes to access a view instead of a table. For example, let’s
say that you have used DODS to create a DO named Person, and you want a view
named count_people:
create view count_people (total) as select count(*) from person

You would create another DO named Count, specify its table name to be count_people,
then add an integer attribute named total and mark that attribute as Can be Queried.

Click Build to let DODS generate the classes PersonDO, PersonQuery, PeopleSQL.sql,
CountDO, CountQuery, and CountSQL.sql.

Discard the CountSQL.sql file, and remove the create table count_people statement from
the create_tables.sql file that DODS generated.

Use the create_tables.sql file to define your tables in your database. Then manually
create the count_people view using the create view above.

The CountQuery class can now be used just as you would use any Query class. The
CountDO object returned by CountQuery will contain the total you want.

Note Only get() methods should be called on the CountDO object.

DODS projects
In DODS, you create a data object entity for each data-layer class that your
application requires. Each data object contains attributes.

An attribute describes either a piece of data (for example, int, String, or Date) or a
reference to another data object. By using reference attributes, you create an
interconnected hierarchy of data objects.

C h a p t e r 6 , U s i n g t h e D a t a O b j e c t D e s i g n S t u d i o 109

D O D S p r o j e c t s

A collection of data object specifications is stored as a project file. You can reopen a
project file and make changes to your data objects.

Code generation

After you have designed your data objects, as described in “Using the DODS
graphical user interface” on page 105, DODS generates the Java and SQL source code
to implement them.

As a simple example, suppose your application stores and retrieves information
about car dealers, car owners, and the cars themselves. For this application, you
would create three database tables: Dealer, Owner, and Car.

The Dealer table has one column, Name, that stores that name of the car dealership as a
String.

The Owner table has two columns. Name stores the name of the car owner as a String,
and Age stores the age of the owner as an int.

The Car table has one column, LicensePlate, that stores the license plate number of the
car as a String.

DODS will create the following files for this application.

One-to-many relationships
Suppose the car dealerships only sell new cars. The dealership sells many cars, but
only sells a given car once. In this case, you have a one-to-many relationship. You’d
represent this relationship by adding another column, Dealer, to the Car table that
contains a reference to the foreign key of Dealer. The Java type of this attribute is a
DealerDO, and the database type is a REFERENCE.

Many-to-many relationships
Car owners can own multiple cars at a time, and may also sell cars to each other. In
this case, the car can have multiple owners, which is a many-to-many relationship.
To represent this relationship, you need to create a new table, CarOwner. It has three
columns: Car, Owner, and IsCurrent.

Table 6.1 Files generated by DODS for car dealership application

Generated file Description
DealerSQL.sql SQL file that contains the CREATE TABLE statement for the Dealer table.
DealerDO.java Java file that represents a new or existing row in the Dealer table.
DealerQuery.java Java file that retrieves DealerDO objects for row in the Dealer table.
OwnerSQL.sql SQL file that contains the CREATE TABLE statement for the Owner table.
OwnerDO.java Java file that represents a new or existing row in the Owner table.
OwnerQuery.java Java file that retrieves OwnerDO objects for row in the Owner table.
CarSQL.sql SQL file that contains the CREATE TABLE statement for the Car table.
CarDO.java Java file that represents a new or existing row in the Car table.
CarQuery.java Java file that retrieves CarDO objects for row in the Car table.

110 D e v e l o p e r ’ s G u i d e

D O D S p r o j e c t s

Car contains a reference to the foreign key of the Car table. The Java type is CarDO, and
the database type is a REFERENCE.

Owner contains a reference to the foreign key of an Owner. The Java type is OwnerDO, and
the database type is REFERENCE.

IsCurrent is a boolean value that is true if the owner referenced by the OwnerDO is the
current owner of the car. The Java type is boolean, and the database type is BIT.

DODS would generate the following files for this new table:

Creating the tables
Before you use the Java classes generated by DODS, you first need to use the SQL
files to create your database tables. To make this easier, DODS creates the file
create_tables.sql. create_tables.sql is a concatenation of DealerSQL.sql, OwnerSQL.sql,
CarSQL.sql, and CarOwnerSQL.sql. Use this file with the interactive SQL tool for your
database to create the tables.

Using the DO classes to create data
After the tables are created in your database, you can use the Java classes generated
by DODS. For example, to create a car dealership, a car owner, a car, and to establish
the relationships between them all, you’d do the following:
// create a dealer
DealerDO autoWorld = DealerDO.createVirgin();
autoWorld.setName("Bob's Auto World");

// create a car
CarDO lemon = CarDO.createVirgin();
lemon.setLicensePlate("ABC123");
lemon.setDealer(autoWorld);

// create an owner
OwnerDO joe = OwnerDO.createVirgin();
joe.setName("Joe Lanechange");
joe.setAge(16);

// joe is the current owner of the car
CarOwnerDO currentOwner = CarOwnerDO.createVirgin();
currentOwner.setCar(lemon);
currentOwner.setOwner(joe);
currentOwner.setIsCurrent(true);
currentOwner.save();

The call to currentOwner.save() does the following:

• Writes, or saves, the OwnerDO, Joe Lanechange, to the Owner table in the database.
• Writes the CarDO, lemon, to the Car table in the database.
• Writes the CarOwnerDO object, currentOwner, into the CarOwner table in the database.

Table 6.2 DODS-generated files for CarOwner table

Generated file Description
CarOwnerSQL.sql SQL file containing the CREATE TABLE statement for CarOwner table.
CarOwnerDO.java Java file that maps instances of many to many relationships.
CarOwnerQuery.java Java file that retrieves instances of many to many relationships.

C h a p t e r 6 , U s i n g t h e D a t a O b j e c t D e s i g n S t u d i o 111

D O D S p r o j e c t s

Because the CarOwnerDO object, currentOwner, holds references to other DO objects, CarDO
and OwnerDO, it must first write them to the database before it can write itself to the
database.

Because the CarDO, lemon, holds a reference to a DealerDO, autoWorld, when
currentOwner.save() calls lemon.save(), lemon.save() itself calls autoWorld.save(). So, the
dealership gets saved as the car.

You could also explicitly call the save() methods. The DO objects remember whether
they are synchronized with the database, and their save() methods do nothing if their
data has already been saved to the database. For example, if you explicitly called
save() on all the DO objects, a call to currentOwner.save() would only write itself to the
CarOwner table in the database.

Using the Query classes to retrieve data
Now that you’ve saved data in the tables, you can use the Query classes to retrieve
objects from the database. The following code retrieves the DealerDO created in the
previous section.
DealerQuery dealerQuery = new DealerQuery();
dealerQuery.setQueryName("Bob's Auto World");
DealerDO autoWorld = dealerQuery.getNextDO();

This code returns the Cars sold by that Dealer:
CarDO[] cars = autoWorld.getCarDOArray();

You could do the same thing with the following code.
CarQuery carQuery = new CarQuery();
carQuery.setQueryDealer(autoWorld);
CarDO[] cars = carQuery.getDOArray();

The getCarDOArray() method, however, is much easier to use.

To find the car by its license plate, use the following code.
CarQuery carQuery = new CarQuery();
carQuery.setQueryLicensePlate("ABC123");
carQuery.requireUniqueInstance(); // plate numbers are unique
CarDO lemon = carQuery.getNextDO();

To find out who currently owns the car:
OwnerDO[] lemonOwners = lemon.getOwnerDOArray_via_CarOwner();
if (lemonOwners[0].getName().equals("Joe Lanechange"))
System.err.println("Joe owns the lemon");

CarDO.getOwnerDOArray_via_CarOwner() is another convenience method generated by
DODS. The following code does the same thing.
CarOwnerQuery carOwnerQuery = new CarOwnerQuery();
carOwnerQuery.setQueryCar(lemon);
OwnerDO[] lemonOwners = carOwnerQuery.getOwnerDOArray();
if (lemonOwners[0].getName().equals("Joe Lanechange"))
System.err.println("Joe owns the lemon");

112 D e v e l o p e r ’ s G u i d e

D O D S p r o j e c t s

Using the DO classes to delete data
Suppose you wanted to remove the car owner from the database.
OwnerQuery ownerQuery = new OwnerQuery();
ownerQuery.setQueryName("Joe Lanechange");
OwnerDO joe = ownerQuery.getNextDO();
joe.delete();

The row for Joe Lanechange is removed from the Owner table.

Because you created a row in the CarOwner table that referenced the row for Joe in the
Owner table, that row in the CarOwner table must also be deleted. If it is not deleted, the
database will lose referential integrity. The CarOwner table would have a reference to
an Owner row that no longer exists.

Some databases, like Oracle, have a feature called cascading delete. The database
detects a dangling reference like the reference to Joe in the CarOwner table, and will
automatically delete the row in CarOwner. When using DODS to describe your
database tables, you specify the database vendor. If that vendor does not have the
cascading delete feature, DODS will generate additional code in the DO.delete()
method to perform the cascading delete to preserve referential integrity in the
database.

Using comparison operators
You can use Query objects to find specific data in the database. For example to find all
owners who are 16 years old, use this code:
OwnerQuery ownerQuery = new OwnerQuery();
ownerQuery.setQueryAge(16);
OwnerDO[] troubleMakers = ownerQuery.getDOArray();

To find owners younger than 21:
OwnerQuery ownerQuery = new OwnerQuery();
ownerQuery.setQueryAge(21, QueryBuilder.LESS_THAN);
/*
* This produces the SQL query:
* SELECT Owner.* FROM Owner
* WHERE Owner.Age < 21
*/
OwnerDO[] youngDrivers = ownerQuery.getDOArray();

Every Query class uses a QueryBuilder object. Calls such as ownerQuery.setQueryAge(21,
QueryBuilder.LESS_THAN); utilize QueryBuilder comparison operators.

The following table lists QueryBuilder’s comparison operators.

Table 6.3 QueryBuilder comparison operators

Operator Description
EQUAL Equal to (==)
NOT_EQUAL Not equal (!=)
LESS_THAN Less than (<)
LESS_THAN_OR_EQUAL Less than or equal to (<=)
GREATER_THAN Greater than (>)
GREATER_THAN_OR_EQUAL Greater than or equal to (>=)

C h a p t e r 6 , U s i n g t h e D a t a O b j e c t D e s i g n S t u d i o 113

D O D S p r o j e c t s

Using QueryBuilder for advanced queries
You can access the QueryBuilder object to add SQL WHERE clauses to perform more
sophisticated searches.

For example, the following code will find Owners who are 16 years or older, and who
have purchased cars from a dealer whose name begins with “Bob”:
OwnerQuery ownerQuery = new OwnerQuery();
ownerQuery.setQueryAge(16, QueryBuilder.GREATER_THAN_OR_EQUAL);
QueryBuilder qb = ownerQuery.getQueryBuilder();
qb.addWhere(OwnerDO.PrimaryKey, CarOwnerDO.Owner);
qb.addWhere(CarOwnerDO.Car, CarDO.PrimaryKey);
qb.addWhere(CarDO.Dealer, DealerDO.PrimaryKey);
qb.addWhere(DealerDO.Name, "BOB",
QueryBuilder.CASE_INSENSITIVE_STARTS_WITH);
OwnerDO[] bobsCustomers = ownerQuery.getDOArray();
/*
* The code above uses a mix of setQueryXxx() methods
* and QueryBuilder.addWhere() methods.
* It produces this SQL query which JOINs the necessary tables:
*
* SELECT Owner.* FROM Owner, CarOwner, Car, Dealer
* WHERE Owner.Age >= 16
* AND Owner.oid = CarOwner.Owner
* AND CarOwner.Car = Car.oid
* AND Car.Dealer = Dealer.oid
* AND LOWER(Dealer.Name) LIKE "bob%"
*
* For each column in your table,
* DODS creates a static RDBColumn member in your DO class.
* These members are used in the calls to addWhere().
*
* For each table (see any .sql file generated by DODS),
* DODS adds an 'oid' column as the primary key.
* So, OwnerDO.PrimaryKey is the RDBColumn member
* for the 'oid' column in the Owner table.
*
* QueryBuilder.CASE_INSENSITIVE_STARTS_WITH is a comparison operator
* which produces string comparison clauses using SQL's LIKE operator.
*/

Your familiarity with SQL will help you compose advanced queries with
QueryBuilder.

IS_NULL Has a null value
IS_NOT_NULL Does not have a null value
CASE_INSENSITIVE_EQUAL Applies only to strings. Equals, or matches, regardless of case.
CASE_SENSITIVE_CONTAINS Applies only to strings. Contains the string, and case-sensitive.
CASE_INSENSITIVE_CONTAINS Applies only to strings. Contains the string, regardless of case.
CASE_SENSITIVE_STARTS_WITH Applies only to strings. Begins with the string, and case-sensitive.
CASE_INSENSITIVE_STARTS_WITH Applies only to strings. Begins with the string, regardless of case.
CASE_SENSITIVE_ENDS_WITH Applies only to strings. Ends with the string, and case-sensitive.
CASE_INSENSITIVE_ENDS_WITH Applies only to strings. Ends with the string, regardless of case.

Table 6.3 QueryBuilder comparison operators (continued)

Operator Description

114 D e v e l o p e r ’ s G u i d e

D O D S p r o j e c t s

Using QueryBuilder without Query classes
In some cases you do not need DOs, you just need to read from the database. For
instance, if you won’t be saving any changes to data in a database table, you don’t
need DO objects in your query. Another is when you are generating a report, and
only need a few columns. In these cases, you can use QueryBuilder without Query
classes.

For example, to generate a report listing the license plate of each car, the dealer who
originally sold the car, and every owner of the car, use the following code.
//create a QueryBuilder that will retrieve the desired fields
QueryBuilder qb = new QueryBuilder();
qb.select(CarDO.LicensePlate);
qb.select(DealerDO.Name);
qb.select(OwnerDO.Name);

// compose the necessary joins
qb.addWhere(OwnerDO.PrimaryKey, CarOwnerDO.Owner);
qb.addWhere(CarOwnerDO.Car, CarDO.PrimaryKey);
qb.addWhere(CarDO.Dealer, DealerDO.PrimaryKey);

// retrieve the values for the desired fields
RDBRow row;
while (null != (row = qb.getNextRow()))

System.err.println(
“ Plate # =” + row.get(CarDO.LicensePlate).getString() +
“ Dealer =” + row.get(DealerDO.Name).getString() +
“ Owner =” + row.get(OwnerDO.name).getString());

Debugging queries using QueryBuilder
The QueryBuilder class has many addWhere methods to help you assemble complex
queries. Calling the method QueryBuilder.debug() will print the assembled SQL before
it is executed.

Caching tables in memory
If you have a simple table with static data, you can load the entire table in to memory
when your application starts to speed up data access. Specify that the DO class is
cache-enabled. Your Query object will search the cache instead of querying the
database.

Note Cached tables are not relational databases. You cannot run JOIN operations on
cached tables. If you call getQueryBuilder(), your Query object will assume that you are
setting up a complex query that the cache can not support, and will send the query to
the database, ignoring the cache.

C h a p t e r 7 , U s i n g I n s t a n t D B 115

7Chapter
Using InstantDB Chapter 7

This chapter introduces the InstantDB database and describes how to use it with
Enhydra. For information on installing InstantDB, see the installation instructions on
the CD.

For information on advanced topics, and complete reference documentation, see the
online HTML documentation that was installed to the doc subdirectory of the
directory in which you installed InstantDB.

Introduction
InstantDB is a pure Java Relational Database Management System (RDBMS). It has a
very small installation footprint: the core classes occupy less than 200 KB of space.

InstantDB supports many aspects of the SQL-92 entry-level standard, including:

• Joins
• Transactions
• Sub-selects
• Table aliasing
• Triggers
• Foreign keys

InstantDB also supports encrypted data storage and comes with a JDBC driver, so
any Java application can use it, including Enhydra applications.

Configuring your system

After you have installed InstantDB, as described in the installation instructions on the
CD, be sure to put the InstantDB JAR files idb.jar, jta-spec1_0_1.jar, and idbexmpl.jar
in your CLASSPATH. For example, if <idb_root> is the directory in which you installed
InstantDB:
CLASSPATH=<idb_root>/Classes/idb.jar:<idb_root>/Classes/jta-spec1_0_1.jar:

<idb_root>/Classes/idbexmpl.jar
export CLASSPATH

Note When using the Cygwin shell on Windows, you must use a backslash (\) and a
semicolon (;) to separate entries. For example:
CLASSPATH=<idb_root>/Classes/idb.jar\;<idb_root>/Classes/jta-spec1_0_1.jar\;...

116 D e v e l o p e r ’ s G u i d e

I n t r o d u c t i o n

Creating a new database

The easiest way to create an InstantDB database is to use the application called
ScriptTool, which is included with InstantDB as a sample application. This
application is described in greater detail in “ScriptTool” on page 126.

To create a new database with ScriptTool:

1 Create a directory for your database.

This is not required, but is recommended to keep all the files together in one place.
Make this the active (working) directory.

2 Create a database properties file in the working directory, and give it the extension
.prp.

The entries in this file are described in “Using properties files” on page 119. For an
example of a database properties file, see <InstantDB_root>/Examples/sample.prp.

Tip You can usually just copy this file to a file with the name of your database and
then alter it as needed.

3 Create a text file in the working directory that contains the SQL CREATE TABLE
statements for your database and a reference to the properties file you created in
step 2.

The syntax of this input file is described in “ScriptTool” on page 126. For an
example of a SQL input file, see <InstantDB_root>/Examples/sql1.txt.

4 Enter the following command in a shell window, where <SQLFile> is the name of
the SQL file created in step 3:
java org.enhydra.instantdb.ScriptTool <SQLFile>

This command runs the Java application, ScriptTool, using <SQLFile> as input.
ScriptTool creates three subdirectories:

• indexes contains files with index and primary key information.
• system contains files that define all the database metadata.
• tables contains files with table information.

To confirm that the database was created, make sure these directories are there. You
can also use the DBBrowser utility, as described in the following section.

Viewing a database

You can view the metadata and contents of an InstantDB database with the DBBrowser
application.

To view the contents of a database, use the command:
java -Xms16m -Xmx32m org.enhydra.instantdb.DBBrowser

C h a p t e r 7 , U s i n g I n s t a n t D B 117

I n t r o d u c t i o n

This command runs DBBrowser, the Java sample application that serves as the
InstantDB database browser.

The Results list box initially displays the system properties such as the Java Virtual
Machine (JVM) being used. To browse a database:

1 Click the Browse button.

2 In the File Selection dialog box, select a properties file (for example, discRack.prp).

3 Click Open.

4 To connect to the database, click the Connect button.

After a brief pause, the Tables list box displays all the tables in the database,
including the system tables and indexes.

To query a table, select the table in the Tables list box then click the Submit button.
This constructs an SQL statement in the SQL text box, executes it, and displays the
results in the Results list box. For example, if you choose the Disc table in the
DiscRack database, then click Submit, you see “SELECT * FROM DISC” in the SQL
text box, and then all the data in the Disc table in the Results list box.

Using the InstantDB JDBC driver

InstantDB includes a JDBC driver that enables it to connect to Java applications.

Database URLs
To identify an InstantDB database, use the following URL:
jdbc:idb:path

URL text box

SQL list box

Tables list box

Results list box

SQL text box

118 D e v e l o p e r ’ s G u i d e

U s i n g I n s t a n t D B w i t h E n h y d r a

where path is the full path of the database properties file. The properties file tells
InstantDB where to find or create the database tables, and specifies all the properties
of the database, as described in “Using properties files” on page 119.

Note For backward-compatibility with older versions of InstantDB, you can also use URLs
of the form:
jdbc:idb=path

JDBC result sets
As indicated in the JDBC specification, InstantDB limits the number of open result
sets to one per statement. As soon as InstantDB executes a new SQL statement, it
closes any existing result set. To access multiple result sets simultaneously, use
multiple statements.

It is important to close result sets explicitly, whenever possible. If the garbage
collector tries to destroy an open result set, InstantDB’s finalize() method tries to
close the result set. This can lead to transaction access conflicts with the main thread
in some virtual machines—which, in turn, can lead to deadlocks.

Using InstantDB with Enhydra
You can configure an Enhydra application to use an InstantDB database with just a
few steps. Because both Enhydra and InstantDB are pure Java applications, the entire
application is portable to any system that has a standard JVM.

General procedure

To use an InstantDB database with an Enhydra application named appName:

1 In the application configuration file <appName>/<appName>.conf (sometimes, by
convention, <appName>/<appName>.conf.in), set the following line:
DatabaseManager.DB.<database_id>.Connection.Url = "jdbc:idb:<propFile>.prp"

where <database_id> is the database identifier used in the configuration file, and
<propFile> is the full path to the database properties file.

2 In the same configuration file, identify the JDBC driver with the line:
DatabaseManager.DB.database_id.JdbcDriver = "org.enhydra.instantdb.jdbc.idbDriver"

3 Add the path to idb.jar to the setting for CLASSPATH in the application’s start script
in <appName>/start.

Note On Windows systems, database files must be on the C drive due to limitations with
the Cygnus tools.

After making these changes, rebuild the application, then test it by loading the
appropriate URL in your browser.

C h a p t e r 7 , U s i n g I n s t a n t D B 119

U s i n g p r o p e r t i e s f i l e s

Running the DiscRack application with InstantDB

To run the Enhydra sample application, DiscRack, you must first create a DiscRack
database in InstantDB and then configure the application to use InstantDB.

Creating the DiscRack database
Create the DiscRack database as follows:

1 Create a new directory to contain the database; call it, for example, discrack_idb.
Make this the working directory.

2 Copy the InstantDB properties file,
<enhydra_root>/DiscRack/discRack/data/discRack.prp, to the new directory you just
created.

3 Use the ScriptTool utility to create the new DiscRack database as described in
“Creating a new database” on page 116.

Enhydra comes with a file that contains the CREATE TABLE statements for the
DiscRack database.

4 Enter the following command in a shell window:
java org.enhydra.instantdb.ScriptTool <enhydra_root>/examples/DiscRack/

discRack/data/create_tables.sql.instantDB

This command reads the CREATE TABLE statements for the DiscRack database
and creates the corresponding InstantDB database.

Configuring DiscRack
To run the DiscRack application with InstantDB:

1 Modify the application configuration file and the start script as described in the
previous section.

2 Start DiscRack as you normally would; for example, by entering this command in
the output directory:
./start

The application starts, and you can then access it from your Web browser. For
more information, see Getting Started with Lutris Enhydra.

Using properties files
An InstantDB properties file is a text file that defines an InstantDB database. When
creating a database, InstantDB derives the name of the database from the name of the
properties file. For example, a properties file named foo.prp creates a database called
foo.

Note Renaming a properties file after a database has been created causes the database to
become inaccessible.

120 D e v e l o p e r ’ s G u i d e

U s i n g p r o p e r t i e s f i l e s

The properties file includes this information:

• Database directories
• Tuning properties
• Logging and debugging properties
• Transaction and recovery properties
• Date, time, and currency properties
• String-handling properties

Format

A properties file consists of a series of name/value pairs, separated by an equal
sign (=), on separate lines. Lines beginning with an exclamation point (!) are
comments. For example:
! Path where database tables are held.
tablePath=./tables

Property names are case-sensitive.

Note There should not be any spaces before or after the equal sign in a property
assignment line.

Database directories

The properties file contains entries that specify the directories where InstantDB will
store database files. These files contain information such as system tables, indexes,
and the actual database tables. Table 7.1 summarizes directory location properties.

Note On Windows, you can use either forward slashes (/) or double backslashes (\\) as the
path delimiter. The highest degree of portability is provided when you use relative
paths with forward slashes.

Using paths relative to the properties file
You can specify paths relative to the properties file itself. To enable this option,
include the entry:
relativeToProperties=1

This is the most portable scheme because if you move the database, you do not need
to edit the properties file.

Using absolute or relative paths
If the properties file does not contain the relativeToProperties entry, or if
relativeToProperties has a value of zero (0), database directory properties can be
either absolute or relative paths to the user directory. The user directory is specified
by the system property user.dir, and is usually the directory in which the JVM is
running. Changing user.dir does not change the user’s current directory, it simply
changes the property. Java does not provide a way to programmatically change the
user directory at runtime.

C h a p t e r 7 , U s i n g I n s t a n t D B 121

U s i n g p r o p e r t i e s f i l e s

You can also specify paths using system properties. To do this, precede the path with
a dollar sign ($). For example, this entry sets tablePath to the runtime value of the
system property user.dir:
tablePath=$user.dir

The following table shows the properties for the file directory-location entries.

Defining partitions
You can alter the locations for table files by defining partitions. A partition is a
directory identified with a partition number. To use partitions, specify the total
number of partitions with the entry partitionCount, and specify a directory for each
partition. For example:
partitionCount=2
partition1=c:/users/petes/tables
partition2=d:/users/tom

This defines two partitions on different disk drives.

Note Partition directories are always absolute paths and must physically exist before
InstantDB can create tables in them. InstantDB does not create the directories for you.

To create a table on a particular partition, use the syntax:
CREATE TABLE name ON PARTITION n.

For example, to create a new table on partition 1, use:
CREATE TABLE petesTable ON PARTITION 1 (int1 int).

This command creates the table petesTable in the directory c:\users\petes\tables.

Table 7.1 Properties file directory-location entries

Property Required Specifies location of

indexPath No Index tables. Defaults to tablePath if not specified.
partitionCount No Number of additional table partitions.
partition1
partition2
…

No Absolute paths to alternative partitions.

systemPath No System tables, such as the table of all columns. Defaults to
tablePath if not specified.

tablePath Yes Database tables.
tmpPath No Temporary tables, such as result sets. Defaults to tablePath if

not specified.

122 D e v e l o p e r ’ s G u i d e

U s i n g p r o p e r t i e s f i l e s

Tuning properties

Tuning properties affect how InstantDB caches data in memory. For very large
databases, these properties can have a dramatic effect on performance. For more
information, see the online documentation.

Table 7.2 Tuning properties

Property Default value Description

cacheAmount 256 rows or 10% How many rows in each column to cache.
If cacheCondition is CACHE_ROWS, the value is a number of
rows; if cacheCondition is CACHE_PERCENT, the value is a
percentage of the total number of rows in the table.

cacheCondition CACHE_ROWS If the value is CACHE_ROWS, cacheAmount is a number of rows. If
the value is CACHE_PERCENT, cacheAmount is a percentage of the
total number of rows in the table.

controlColCacheSize 8192 Specifies the size of the $$control system column.
fastUpdate 0 By default, InstantDB writes to the database after every

INSERT, DELETE, or UPDATE is committed. A nonzero
value specifies that InstantDB does not write changes to the
database immediately. This can improve performance.

flushAfterCacheMisses 128 If the main readahead buffer is not used to retrieve data,
this allows a thread to use it again. Useful when multiple
threads are in READ UNCOMMITTED state.
If there are multiple read-only threads, lower this setting; if
there is a single thread, leave the default value.

indexLoad 5 Percentage of free space in an index that must be present
before the index reorganizes itself.

resultsSetCacheAmount 100 How many rows in each result set to cache.
If resultsSetCache is CACHE_ROWS, the value is the number of
rows; if resultsSetCache is CACHE_PERCENT, the value is a
percentage of the number of rows in the result set.

resultsSetCache CACHE_ROWS cacheCondition setting to use for result sets.
resultsOnDisk 0 By default, InstantDB holds result sets entirely in memory.

A nonzero value specifies that result sets are saved to disk.
rowCacheSize 20 Number of rows to read into the disk lookahead buffer.

Recommended value is between 128 and 256.
searchDeletes 0 By default, InstantDB does only a cursory search for

deleted rows during UPDATE statements. Setting
searchDeletes=1 causes more detailed searches for deleted
rows. This slows down UPDATE executions, but results in
more compact tables.

singleRowCount 8 Allows tables to be read a single row at a time. Useful when
multiple readers are doing full-table scans.

systemCacheSize 100% How many rows in each system table column to cache.
If systemCacheCondition is CACHE_ROWS, the value is a number
of rows; if systemCacheCondition is CACHE_PERCENT, the value is
a percentage of the total number of rows in the table.

C h a p t e r 7 , U s i n g I n s t a n t D B 123

U s i n g p r o p e r t i e s f i l e s

Logging and debugging properties

These properties affect where InstantDB sends trace output. For more information,
see the online documentation.

Transaction and recovery properties

InstantDB supports ANSI standard transactions. It executes all SQL statements
within a transaction. By default, auto-commit is enabled so there is no need to
perform explicit commits after every statement.

Two properties control transaction processing:

• transLevel controls how the journal file is used.

• transImports determines the number of rows imported in an IMPORT statement
before the current transaction is committed.

Recovery
If InstantDB opens a database and finds that data is missing, it cannot tell whether
another JVM is using the database or whether it has failed to shut down cleanly and
needs to recover the data. By default, InstantDB asks whether it should perform
recovery. You can alter InstantDB’s behavior with the recoveryPolicy database
property.

systemCacheCondition CACHE_PERCENT If the value is CACHE_ROWS, systemCacheSize is a number of
rows. If the value is CACHE_PERCENT, systemCacheSize is a
percentage of the total number of rows in the table.

systemRows rowCacheSize Number of rows of system tables to read into the disk
lookahead buffer. Recommended value is between 128 and
256.

timerCheck 5000 Interval in milliseconds between checks for timed-out
queries.

Table 7.2 Tuning properties (continued)

Property Default value Description

Table 7.3 Logging and debugging properties

Property Default value Description

exportSQL 0 Nonzero means include SQL statements in the export file.
traceConsole 0 Nonzero means trace output also directed to console.
traceFile N/A Relative or absolute path where exporting and trace

information is sent.
traceLevel 0 Bitmap of various items that can be traced.

124 D e v e l o p e r ’ s G u i d e

U s i n g p r o p e r t i e s f i l e s

• Setting recoveryPolicy=1 causes InstantDB to perform automatic recovery when it
finds a corrupt database.

This is useful when the database is being used as a server and automated failover
recovery is required.

• Setting recoveryPolicy=2 causes InstantDB to issue a prompt when it encounters a
potentially corrupt database.

This is useful during development when interactive database monitoring might
accidentally lead to corruption.

• Setting recoveryPolicy=0 causes InstantDB to refuse to open the database if data
appears to be missing

This table lists additional transaction and recovery properties.

Note InstantDB’s recovery policy makes the most sense in the context of its use by multiple
JVMs, which is beyond the scope of this document. For information on multiple
JVMs using InstantDB, see the online documentation.

Date, time, and currency properties

These properties control how InstantDB handles dates, times, and currency values.
For more information, see “DATE data types” on page 135 and “CURRENCY type”
on page 137.

Table 7.4 Transaction and recovery properties

Property Default value Description

recoveryPolicy 2 0: Do not perform recovery.
1: Perform automatic recovery.
2: Prompt the user via standard input (stdin).

transImports 100 When doing an import, defines the number of rows imported
before the transaction is committed. Recommended
value 8192.

transLevel 1 Sets the level of transaction journalling.

Table 7.5 Date, time, and currency properties

Property Default value Description

currencyDecimal 2 Number of digits after decimal point in currency
outputs.

currencySymbol $ Currency symbol used in currency outputs.
dateFormat “yyyy-mm-dd” Default format for date columns.
milleniumBoundary 0 If set, all two-digit dates less than its value are

interpreted as 21st century dates.
nowMeansTime 0 Set to 1 causes the date string “now” to store a full

timestamp. Default is to store only the date for fields
with no hour in the format string.

C h a p t e r 7 , U s i n g I n s t a n t D B 125

U s i n g t h e I n s t a n t D B s a m p l e a p p l i c a t i o n s

String-handling properties

These properties control InstantDB’s string handling. For more information, see
“Strings” on page 139.

Using the InstantDB sample applications
InstantDB comes with some sample Java applications. These are intended to
introduce users to JDBC programming with InstantDB. Because InstantDB includes
the source code of the sample applications, you can modify them to suit your own
purposes (subject to the Enhydra Public License).

Some of these applications are useful utility programs that let you perform tasks such
as database creation, browsing, and data manipulation.

Note To use the sample applications, your CLASSPATH must include idbexmpl.jar, the Java
archive that contains the example application classes.

The sample applications include:

• commsql, a simple command-line utility that processes SQL statements interactively

• ScriptTool, a utility that accepts SQL scripts

• dump, which displays the contents of InstantDB system files

• JDBCAppl and DBBrowser, which let you browse and query a database from within an
applet (JDBCAppl) or a Java application (DBBrowser)

• SQLBuilder, an application that uses Java reflection to read metadata

Table 7.6 String handling properties

Property Default value Description

altStringHashing 0 If set to 1, string hashes use the JDK Object.hashCode()
function. By default, uses InstantDB’s string hashing.

likeIgnoreCase 0 Set to 1 to cause LIKE clauses to always perform
case-insensitive comparisons.

prepareIgnoresEscapes 0 Set this value to 1 (one) if you want
PreparedStatement.setString() to ignore \ (backslash)
characters when processing string constants. When
set, InstantDB does not attempt to interpret
\ (backslash) as the start of an escape sequence.

strictLiterals 0 Same as SET LITERAL STRICT_ON. Prevents string
literals from being interpreted as column names or
numbers.

126 D e v e l o p e r ’ s G u i d e

U s i n g t h e I n s t a n t D B s a m p l e a p p l i c a t i o n s

commsql

The commsql application accepts SQL statements from the command line and executes
them interactively. To run commsql, enter this command in a shell window:
java org.enhydra.instantdb.commsql

The program initially loads the InstantDB JDBC driver and then prompts you for a
URL to connect to. Enter the URL of an InstantDB properties file. For the URL syntax,
see “Database URLs” on page 117. InstantDB then opens the database corresponding
to this properties file. If the file does not exist, InstantDB creates it. You will then see
the prompt:
Enter SQL string, or . to exit

You can enter any valid InstantDB SQL commands. If the command produces a
result set, commsql displays the results in the shell window.

When you want to exit the program, type a period (.) on a line by itself.

ScriptTool

The ScriptTool application was the original InstantDB sample program, called sample.
Over time, however, it has become considerably more complex and is now a useful
utility program for running SQL scripts.

ScriptTool runs an input file containing commands that it executes. The format of the
input file is described in the next section. If you invoke ScriptTool without any

C h a p t e r 7 , U s i n g I n s t a n t D B 127

U s i n g t h e I n s t a n t D B s a m p l e a p p l i c a t i o n s

command-line arguments, it opens the file sql1.txt by default. This file is provided in
the /Examples directory and contains sample commands to be executed.

To specify an input file on the command line, use this syntax:
java org.enhydra.instantdb.ScriptTool <SQLFile>

where SQLFile is the name of the input file.

Format of input file
A ScriptTool input file is an ASCII text file containing a series of commands that
ScriptTool executes in order. Every command must begin with a command letter,
followed by either a SQL statement or further command information. Every
command must be terminated with a semicolon (;).

Each input file must begin with a d command to load at least one JDBC driver.
Normally, an o command to open a database would follow immediately thereafter.
Table 7.7 describes all valid commands for an input file.

Table 7.7 Commands for ScriptTool utility

Command Description

c stmt Execute command stmt. For example:
c close;

See Table 7.8 on page 128.
d driver Load JDBC driver, driver. For example:

d org.enhydra.instantdb.jdbc.idbDriver;

e SQLstmt Execute SQLstmt with no result set. For example:
e UPDATE table1 SET col1=col1+1;

i tableName Get index information for tableName.
l tableName colName Display last values inserted into table tableName or column colName.
o url Open URL url. For example:

o jdbc:idb=sample.prp;

p SQLstmt Create a prepared statement, SQLstmt. For example:
SELECT * FROM ?;

q SQLquery Execute query SQLquery that returns a result set.
r count {

cmds
}

Loop that executes the commands, cmds, in brackets count times.

m [n|p|f|l|i|c|b|t] Move within scrollable result set:
• n: next row
• p: previous row
• f: first row
• l: last row
• c: current row
• i: move to the insert row
• b: move before the first row
• t: move after the last row

m a row Move to absolute row number row in a scrollable result set.

128 D e v e l o p e r ’ s G u i d e

U s i n g t h e I n s t a n t D B s a m p l e a p p l i c a t i o n s

The c command is a “catch all” for performing various miscellaneous tasks. It must
be followed by one of the statements listed in Table 7.8.

m r numRows Move a number of rows numRows relative to current position in a
scrollable result set.

s param1, param2,... Set parameters on a prepared statement and execute.
Optionally precede each parameter with a type specifier enclosed in
percent signs (%). The following types are recognized:
• %asciiStream%
• %binaryStream%
• %timestamp%
• %boolean%
For example, this command calls preparedStatement.setTimestamp(). If
no type specifier is included, a setString() is performed.
s %timestamp%2000-01-14 10:52:52.12345678;

t script Start off a new thread with its own input script.
u colName value Update a row in the table underlying a result set.

Table 7.8 Miscellaneous ScriptTool statements

Command Description

autocommit on Turns autocommit mode on.
autocommit off Turns autocommit mode off. All further transactions have to be

explicitly committed or rolled back.
batch mode Further statements and prepared statements get batched

together.
break A useful “no-op” command. By setting a breakpoint on the line

of code in ScriptTool.java that handles this, you can get a script
to break at any point by simply placing this command wherever
you want the break to occur.

cancel row updates Cancel updates to a row.
close Close the current connection.
commit Commit the current transaction using the JDBC

Connection.commit() method.
create test object Creates a small test object to test saving objects as blobs.
delete row Delete a row in the table underlying a result set.
execute batch Executes batched commands.
exit Exit the program immediately.
export all Exports all tables to CSV text files.

Table 7.7 Commands for ScriptTool utility (continued)

Command Description

C h a p t e r 7 , U s i n g I n s t a n t D B 129

U s i n g t h e I n s t a n t D B s a m p l e a p p l i c a t i o n s

get columns tableNamePattern
columnNamePattern

Retrieves information about the columns with names that match
the string pattern columnNamePattern in tables with names that
match the string pattern tableNamePattern. The percent sign (%)
can be used for matching zero or more characters, and an
underscore (_) can be used for matching a single character. For
example, to get information about all columns with three-letter
names that start with “co” in tables with names that start with
“t” and end with “e,” the command would be constructed as
follows:
c get columns t%e co_;

Only metadata entries matching the search pattern are returned.
If a search pattern argument is set to a null ref, that argument's
criteria will be dropped from the search.

get imported_keys tableName Retrieves and displays foreign keys referenced by the table
tableName.

get exported_keys tableName Retrieves and displays columns in the table tableName that are
referenced as foreign keys.

get crossReference
primaryTable foreignTable

Retrieves and displays the foreign keys in the table foreignTable
that reference keys in the table primaryTable.

import all Import all tables from CSV text files.
insert row Insert a row in the table underlying a result set.
rollback Rollback the current transaction using the JDBC

Connection.rollback() method.
set global connection Make the current Connection object available to other threads.
set global prepared statement Make the current prepared statement the global statement that

other threads can pick up.
set isolation
READ_UNCOMMITTED

Set the transaction isolation level to
Connection.TRANSACTION_READ_UNCOMMITTED.

set isolation SERIALIZABLE Set the transaction isolation level to
Connection.TRANSACTION_SERIALIZABLE.

set timeout n Set the timeout on queries to n seconds. (ScriptTool defaults
to 300).

show metadata Displays the type info and table list result sets.
time The time in milliseconds that the previous command took to

run.
toggle result set close Close a result set after displaying results.
toggle RSMD Toggles display of result set metadata after queries.
update row Update a row in the table underlying a result set.
use global prepared statement Use the current “global” prepared statement rather than the

thread’s own prepared statement.
use global connection Use the global Connection object rather than setting up a separate

connection for this thread.
wait for children Wait for all child threads to complete.

Table 7.8 Miscellaneous ScriptTool statements (continued)

Command Description

130 D e v e l o p e r ’ s G u i d e

U s i n g t h e I n s t a n t D B s a m p l e a p p l i c a t i o n s

Example
A sample script is shown below:
; First load the JDBC driver and open a database.
d jdbc.idbDriver;
o jdbc:idb=sample.prp;

; start off a couple of threads reading from some other scripts
t sql2.txt;
t sql3.txt;

; Record all results
e SET EXPORT "export0.txt" FIXEDLENGTH COLNAMEHEADER ROWNUMBERS

CONTROLCOL SUMMARYHEADER;

; Create the table and its index
e DROP TABLE tester;
e CREATE TABLE tester (

id int PRIMARY KEY,
fullName CHAR(30),
email CHAR(60),
login CHAR(8),
password CHAR(20));

e CREATE INDEX loginIndex ON tester (login);

; put some initial data in the table
e INSERT INTO tester VALUES (1,"Alice","Alice@isp","Alice","Alice");
r 5 {;
 e INSERT INTO tester VALUES (2,"Bob","Bob@isp","Bob","Bob");
};
q SELECT * FROM tester;

; modify the table contents
p UPDATE tester SET fullName=?,email=?, login=?, password=? WHERE id=?;
s 'pete@some','pete','pete','pete',2;
q SELECT * FROM tester;

c close;

dump

The dump application displays (dumps) the contents of some of InstantDB’s system
files. You can display the contents of either the system table containing column
information, the system table containing table information, or the journal file.

You must run dump from the directory that contains the system file being dumped. By
default, dump displays to the standard output device (standard out), but you can
redirect to any file if required.

The command-line syntax is as follows:
java org.enhydra.instantdb.dump dbName {t | c tableID | j}

where dbName is the name of the database.

• The t flag, when used alone, displays the content of the tables system file
(dbNamedbtables).

C h a p t e r 7 , U s i n g I n s t a n t D B 131

U s i n g t h e I n s t a n t D B s a m p l e a p p l i c a t i o n s

• The c flag displays the columns system file (dbNamedbcols) for the table with that
ID number.

If tableID is 0, it displays information for all tables. To determine the ID number for
a table, display the contents of the table dbNamedbtables.

• The j flag displays the contents of the journal file.

JDBCAppl and DBBrowser

The JDBCAppl application illustrates how to access InstantDB from a Java applet. Open
the HTML file /Examples/ex1.htm in your Web browser to run JDBCAppl. This file also
includes instructions for using JDBCAppl.

JDBCAppl tries to load the RmiJdbc SQL driver and the JDBC-ODBC bridge, in addition
to the InstantDB JDBC driver. It ignores any errors if any of these fail to load.

This figure shows JDBCAppl, as it appears in Microsoft Internet Explorer.

Also included in ex1.htm is a piece of JavaScript that illustrates how a Java applet’s
public methods and properties can be accessed using the JavaScript object model.

DBBrowser provides a main method and frame for JDBCAppl, so you can run it as a
standalone application instead of an applet.

132 D e v e l o p e r ’ s G u i d e

U s i n g t h e I n s t a n t D B s a m p l e a p p l i c a t i o n s

Applet security and JavaScript compatibility
To get the JDBCAppl applet to work properly, there are two issues you need to
consider: applet security and JavaScript compatibility.

InstantDB needs permission to read from and write to the disk. Internet Explorer
allows an applet to perform local file access if you add the path for the InstantDB and
JDBCAppl classes to the CLASSPATH in the registry:
HKEY_LOCAL_MACHINE\Software\Microsoft\Java VM\Classpath

Netscape Communicator does not normally allow an applet to write to or read from
the file system. The proper way to get the applet to work with Communicator is to
sign it with a digital certificate that is either trusted, or that has itself been signed by a
trusted certification authority. For details, see Netscape’s Web site:
http://home.netscape.com.

As a workaround, you can include the following import statement in the applet:
import netscape.security.PrivilegeManager;

Then, add these lines to the method to request the additional privileges:
PrivilegeManager.enablePrivilege("UniversalPropertyRead");
PrivilegeManager.enablePrivilege("UniversalPropertyWrite");
PrivilegeManager.enablePrivilege("UniversalFileRead");
PrivilegeManager.enablePrivilege("UniversalFileWrite");
PrivilegeManager.enablePrivilege("UniversalFileDelete");

The file JDBCAppl.nets in the Examples directory is a version of JDBAppl.java that already
contains the above changes.

Finally, find Communicator’s prefs.js file (on Windows, typically in C:\program
files\netscape\users\default), and add this line:
user_pref("signed.applets.codebase_principal_support", true);

When you compile the applet, make sure the following line (or the path to your
Netscape Java classes) is included in your CLASSPATH:
c:\progra~1 \netscape\communicator\program\java\classes\java40.jar

SQLBuilder

SQLBuilder is a standalone Java application that you can use to view database tables,
records, and fields. It’s similar to JDBCAppl except:

• It retrieves database metadata and result sets using Java reflection.
• It lets you specify a row limit on queries.
• It lets you build simple queries by selecting columns.

To run SQLBuilder, enter the following command in a shell window:
java org.enhydra.instantdb.SQLBuilder.SQLBuilder

C h a p t e r 7 , U s i n g I n s t a n t D B 133

U s i n g t h e I n s t a n t D B s a m p l e a p p l i c a t i o n s

The SQLBuilder window appears:

SQLBuilder has two main user interface areas:

• A group of radio buttons you can use to select the application’s “look and feel.”

• The main SQLBuilder interface, which consists of four tabbed panes: Connection,
Dbase Data, Query, and Results Data.

The Connection pane lets you connect to a database. To connect, choose a JDBC
driver from the pull-down list, and enter a URL for the database. To connect to an
InstantDB database, click the Browse button and select a properties file. Some
databases may also require a user name and password, though InstantDB does not.
Next, click the Connect button. The status changes first to “Connecting” and then to
“Connected.” The Connect button then changes to a Disconnect button.

The Dbase Data pane displays the database metadata for the database.

The Query pane provides a pull-down list of the available tables. For the currently
selected table, a second pull-down list shows the available columns.

• Selecting a table causes its columns to be entered in the Columns pull-down list
box. It also sets up a default query to select everything from the table.

• Selecting a column causes the query to change to that column only.

• Selecting more columns causes them to be added, one by one, to the query.

The Row Limit box lets you limit the number of rows returned by the query, and the
Submit button submits the currently entered query. You can also enter any other
query in the Query text box.

When SQLBuilder is connected to an InstantDB database, the contents of the results
table represent the query results. This takes advantage of InstantDB’s result set
navigation API calls. For other databases, the table is always 1000 rows long, and you
can only move forward through the result set.

134 D e v e l o p e r ’ s G u i d e

I n s t a n t D B d a t a t y p e s

The Result Data pane shows result set metadata for the current result set. This is
mostly column-based data. To display metadata for a column, choose a column from
the pull-down list.

InstantDB data types
Because InstantDB is a pure Java database, and its only interface is JDBC, its data
types are based on Java’s data types. The available data types are listed in the
following table.

Numeric types

InstantDB’s numeric data types follow the same rules as their Java equivalents, with
one exception: a NULL value is represented by the minimum negative number for
BYTE, INT, and LONG types. Any attempt to use the minimum value with these
types results in a SQLException.

Note This does not apply to FLOAT or DOUBLE where “not a number” (NaN) is used to
represent NULL.

Auto-incrementing
There is no separate COUNTER type. Instead, the column condition AUTO INCREMENT
can be added to a column during table creation. For example:
CREATE TABLE table1 (int1 int AUTO INCREMENT)

The auto-increment condition can be applied to both INT and LONG column types.

It is often convenient to be able to turn AUTO INCREMENT off (for example, during
IMPORT operations). You can do this with the following SQL statement:
SET table1 AUTO INCREMENT OFF

Table 7.9 InstantDB data types

Type Synonyms Comment

BYTE TINYINT, BIT, BOOLEAN 1 byte signed integer
INT INTEGER, SHORT, SMALLINT 4 byte signed integer
LONG 8 byte signed integer
DECIMAL NUMERIC Varies with specification
CURRENCY Descended from LONG
DOUBLE 8 byte floating point
FLOAT 4 byte floating point
DATE DATETIME, TIMESTAMP, TIME Descended from LONG
CHAR VARCHAR, VARCHAR2 Variable-length string
SMALLCHAR Single byte ASCII variable-length string
BINARY VARBINARY, LONGVARBINARY,

OLE, LONGCHAR, TEXT, IMAGE
Binary data or long text

C h a p t e r 7 , U s i n g I n s t a n t D B 135

I n s t a n t D B d a t a t y p e s

To turn AUTO INCREMENT back on:
SET table1 AUTO INCREMENT ON

By default, AUTO INCREMENT integer (int) columns start at 1,000; long columns
start at 10,000,000,000; and all values are incremented by one. You can change the
default with the command:
SET INCREMENT_BASE {<base>|MAX} ON {<table>.<column> | ALL}

For example, to set the initial value to 100, use the command:
SET INCREMENT_BASE 100 ON mytable.mycolumn

You may sometimes need to find a column’s maximum value and then allocate
auto-increment values above that—which is particularly useful if a table has been
imported from an external source. For example:
SET INCREMENT_BASE MAX ON mytable.mycolumn

If you have imported a large number of tables, it might be convenient to tell the
database to set all the auto-increment columns to be one more than their maximum
values. You can do this with:
SET INCREMENT_BASE MAX ON ALL

It is not currently possible to alter the increment step.

Decimal and numeric types

InstantDB supports fixed-precision arithmetic using the CURRENCY type. However,
for compatibility with other SQL implementations, it also accepts the DECIMAL and
numeric data types.

DECIMAL and numeric are not fixed-precision data types in InstantDB. Instead they
are mapped to INT, LONG, or DOUBLE types, as described in Table 7.10.

DATE data types

As in Java, the DATE type is stored as a long value. InstantDB uses its own date
conversion methods to translate date and timestamps into long values.

Table 7.10 Numeric data type mapping

Precision Scale Mapped type

none none LONG
any > 0 DOUBLE
1 to 9 none or 0 INT
> 9 none or 0 LONG

136 D e v e l o p e r ’ s G u i d e

I n s t a n t D B d a t a t y p e s

Formatting dates
InstantDB’s default format for dates is “yyyy-mm-dd” (for example, “2000-12-24”).
InstantDB provides a nonstandard SQL extension to control how dates are formatted
for output. Use the following syntax:
SET DATE FORMAT format

where format can include any of the strings listed in Table 7.11, separated by any
character. Typically a hyphen (-) or forward slash (/) is used for the date separator.

Once you set the date format, all tables that are created use this date format and
queries against these tables use this format to represent dates. The SET DATE
FORMAT command is connection-specific; it affects only those tables created on the
current database connection. For example, this statement:
SET DATE FORMAT "dd/mm/yyyy"

sets the date format so dates have the form 16/11/1997.

Date values can also include the time. To include time information, add time format
letters as described in Table 7.11. For example, this statement sets the date format so
dates have the form 13:12:58.626 16/11/1997:
SET DATE FORMAT "hh:nn:ss.lll dd/mm/yyyy"

The following table shows date and time format strings.

Timestamps
When InstantDB inserts values into a DATE column, it also accepts the string
“NOW” or “now” to represent the current date. This is known as a timestamp. A
timestamp does not include the time unless specified by the column format. To
include the full time in addition to the date in a timestamp, use the string “current
time.”

Note InstantDB does not store nano-second values, only milliseconds. Consequently,
when you insert a java.util.Timestamp value into the database, there may be a
rounding error at the millisecond level.

If you insert a literal timestamp into a date column, the full timestamp is inserted,
regardless of the date format. Time zone differences can also result in unexpected

Table 7.11 Date and time format strings

Format string Description Example

yyyy Four digit year 2001
yy Two digit year 67
mmm Three letter month Jan
mm Two digit month 11
dd Day 31
hh Hour 12
nn Minute 59
ss Second 59
lll Milliseconds 999

C h a p t e r 7 , U s i n g I n s t a n t D B 137

I n s t a n t D B d a t a t y p e s

values in a date column. To check what is really in a date column, try a command
like:
SELECT TO_DATE(date_COL, "hh:nn:ss dd:mm:yyyy")

Date functions
Table 7.12 describes date functions available with InstantDB.

Interpreting two-digit dates
By default, InstantDB interprets two-digit years as being in the 20th century. To
specify a 21st century year, you need to use a four-digit year. For many applications,
however, this is insufficient. To address this, InstantDB lets you set the property
milleniumBoundary in the properties file. When this property is set, it allows
two-digit dates less than milleniumBoundary to be interpreted as 21st century dates.

For example, if milleniumBoundary is set to 40, all two-digit dates in the range 00..39
are interpreted as 2000 through 2039, respectively, and all two-digit dates in the
range 40..99 are interpreted as 1940 through 1999, respectively.

CURRENCY type

For CURRENCY columns, the default currency symbol is the dollar sign ($), and the
default number of digits after the decimal point is 2. A nonstandard extension lets
you change the format of currency data:
SET CURRENCY {SYMBOL symbol|DECIMAL numDigits}

where symbol is the currency symbol (for example, $), and numDigits is the number of
digits to display after the decimal.

A CURRENCY column is always created with the current currency format. Once a
column is created, it retains those settings, even if new SET CURRENCY statements
change the global values.

When inserting currency values, you can optionally include the currency symbol. If
you do this, you must quote the value. For example:
INSERT INTO curtable VALUES (200.00)

and
INSERT INTO curtable VALUES ('$200.00')

are both equivalent (assuming the default global settings).

Table 7.12 Date functions

Name Parameters Example

TO_DATE(date, fmtStr) Returns date formatted according to
format string fmtStr.

TO_DATE(date1, “hh:nn:ss
dd:mm:yyyy”)

TO_NUMBER(date, field) Returns the numeric value of the
date. The fields are as defined in
java.util.Calendar.

TO_NUMBER(date1, 10)

138 D e v e l o p e r ’ s G u i d e

I n s t a n t D B d a t a t y p e s

Currency values are held as appropriately-scaled Java LONG values. This means, for
example, that the value $300.00 is actually held as 30,000 cents. Where InstantDB can
obtain a context for evaluating a currency constant, it applies suitable formatting
rules. Thus, the following statements all produce identical results:
SELECT * FROM mytable WHERE cost < 30000
SELECT * FROM mytable WHERE cost < 300.00
SELECT * FROM mytable WHERE cost < '$300.00'

For both DATE and CURRENCY types, the formatting information is held on a
per-connection basis. This means that when you perform a SET DATE or SET
CURRENCY command, the changes affect only the current connection.

When a CREATE TABLE is subsequently performed, the format settings in effect for
the current connection are stored with any date or currency columns that get created.
The formatting options do not affect how values are actually stored, only how they
are displayed, and in the case of currency columns, how values must be formatted for
input.

You cannot have different currency format settings within the same table. For
example, you can’t have display formats for U.S. dollars and German Marks in the
same table. Similarly, you cannot have two date columns in a table if one displays
only the date and the other displays only the time.

When a result set is created, the formatting options for any columns in the result set
are dependent on the columns from which they were sourced. They are not
dependent on the current connection’s settings.

BINARY type

Declaring a column to be of the BINARY type (or one of its equivalents) allows it to
hold an arbitrary array of bytes. The JDBC driver returns such objects as byte[].

There are several ways you can insert data into a binary column:

• Use a string that identifies a file. InstantDB reads the contents of the file as the
binary data. For example:
INSERT INTO blobtable VALUES ("c:\example\binary.dat")

• Use a string containing a sequence of integers. For example:
INSERT INTO blobtable VALUES ("0x10, 0x20, 48, 64")

• Use an explicit text string. For example:
INSERT INTO blobtable VALUES ("hello world")

If you use the TEXT or LONGCHAR pseudonyms for binary columns, InstantDB
assumes that you want only literal text in the column; it does not attempt to
interpret the data as numbers or file names.

• Use a single hexadecimal number. For example:
INSERT INTO blobtable VALUES (0001021B1C1D1E1F)

• Use the PreparedStatement.setBytes() and setObject() methods.

C h a p t e r 7 , U s i n g I n s t a n t D B 139

I n s t a n t D B d a t a t y p e s

Note Be careful when you use the sequence of integers technique. The resulting values
must fall into the normal Java byte range (–128..127). If the resulting value is outside
this range, it is interpreted as a “short” and saved as two bytes. If the value is outside
the short range, it is interpreted as an “int”; if it is outside the int range, it is
interpreted as a “long.”

The table containing the binary column only holds a pointer to the actual binary data.
The data is held in a separate “blob” file. InstantDB recognizes two types of binary
data as special—strings and Java objects. Strings are always returned as Java string
objects. Objects saved using the PreparedStatement.setObject() method are returned in
their native object format. Such objects must implement the java.io.Serializable
interface in order to be saved as binary data.

Blobs are cached just like any other data, which means you should be careful when
handling large blobs. You might want to explicitly declare blob columns as CACHE 0
ROWS.

Strings

InstantDB handles strings with the CHAR(n) data type. Strings can be delimited by
either a single quotation mark (') or a double quotation mark ("). Thus, 'a string' and
"a string" are equivalent. Within a string, the other quotation character can be used
freely (for example, "Here's a string with a quote"). The delimiter can be included in a
string by using a backslash (\) as an escape. For example:
"He said \"How's That\"".

Java recognizes the backslash (\) as an escape character, so within a Java program
you need to escape the backslash, and you also need to escape the double quotes.
Therefore, you would write the previous example as:
"He said \\\"How's That\\\"".

You can also include horizontal tabs and newlines in strings by using the standard
tab (\t) and line feed (\n) characters.

Case-insensitive comparisons
By default, string comparison in SQL is case-sensitive. InstantDB supports the
nonstandard SQL extension IGNORE CASE in LIKE clauses to make string
comparison case-insensitive. For example:
SELECT * FROM mytable WHERE name LIKE "A%" IGNORE CASE

This query matches all names beginning with uppercase A or lowercase a.

You can make all string comparisons that use LIKE case-insensitive by including the
following line in the database properties file:
likeIgnoreCase=1

Using SMALLCHAR
InstantDB uses the Java standard char and String types for string data. As with all
Java character-based data, each character is represented as a two-byte Unicode

140 D e v e l o p e r ’ s G u i d e

I n s t a n t D B d a t a t y p e s

character. Java I/O and internationalization methods automatically handle
translation to and from local single-byte character sets. Thus, InstantDB can handle a
large number of character sets easily. However, all string data, whether in memory or
on disk, requires two bytes to represent each character. This is typical of Java
applications.

Despite the very high capacities now available in terms of both disk size and memory
capacities, there are some environments (such as hand-held computers, personal
organizers, and mobile phones) where compactness is more important than
internationalization. In such environments, use InstantDB’s SMALLCHAR data type.

The SMALLCHAR data type holds only the least significant byte of the
corresponding Unicode character. This corresponds to the normal ASCII character
set and can therefore represent the normal range of Latin character sets. You can use
SMALLCHAR columns instead of CHAR or VARCHAR columns, if you do not need
to represent non-Latin characters.

String literals
Some development environments automatically generate SQL statements in which
column names (as well as string literals) are quoted. For example:
SELECT * FROM mytable WHERE "mycol" = "abcd"

Notice both the column name and the literal value are quoted. By default, InstantDB
accepts this and searches the column mycol for the value “abcd.” However, this can be
ambiguous. For example, should
SELECT * FROM mytable WHERE "myothercol" = "mycol"

be interpreted as a join on the two columns, or a search for the text “mycol” in
“myothercol?”

To dispense with such ambiguities, you can modify InstantDB’s default behavior
with the property strictLiterals in the database properties file. To make InstantDB
interpret all quoted strings as string literals, use this setting:
strictLiterals=1

Note The only exceptions to this are date strings, which can usually be interpreted from
context.

You can also use the following SQL statement to change the interpretation of string
literals:
SET LITERALS [STRICT_ON|STRICT_OFF]

Any such change applies to all active connections, not just the issuing connection. In
the previous statement, STRICT_OFF is the default.

C h a p t e r 7 , U s i n g I n s t a n t D B 141

I n s t a n t D B d a t a t y p e s

String functions
Table 7.13 describes InstantDB’s string functions.

Table 7.13 String functions

Name Description Example

UPPER(string) Returns string converted to uppercase. UPPER("abcd")

LOWER(string) Returns string converted to lowercase. LOWER("ABCD")

SUBSTR(string,
startPos [, len])

Returns substring of string, starting at startPos,
optionally of length len.
If len is not specified, substring extends to end of
string.

SUBSTR("ABCD",1,3)

LENGTH(string) Returns the length of string. LENGTH("ABCD")

142 D e v e l o p e r ’ s G u i d e

C h a p t e r 8 , U s i n g P o s t g r e S Q L 143

8Chapter
Using PostgreSQL Chapter 8

This chapter introduces the PostgreSQL database and describes how to use it with
Enhydra. For information on installing PostgreSQL, see the top-level index.html file
on your product CD.

Introduction
PostgreSQL is an open-source database server that supports the SQL-92/SQL-3
language standards, transaction integrity, and type extensibility. It is a descendant of
Postgres, a pioneering object-relational database developed at UC Berkeley.

Features

PostgreSQL, in addition to including standard relational database structures that
have primitive data types—such as floating-point numbers, integers, character
strings, money, and dates—also incorporates some core object-oriented concepts:

• Classes
• Inheritance
• Types
• Functions

Because it contains both relational and object-oriented features, PostgreSQL is
referred to as an object-relational database. The object-oriented features let users extend
the system to suit their application needs. For increased flexibility, PostgreSQL also
supports constraints, triggers, rules, and transactional integrity.

Where to find PostgreSQL documentation

The RPM installation program installs documentation files in:
/usr/doc/postgresql-<version number>

The documentation includes README files, a user guide, and a programmer’s guide
in HTML format.

You can find additional information on the PostgreSQL Web site at:
http://www.postgresql.org.

144 D e v e l o p e r ’ s G u i d e

U s i n g P o s t g r e S Q L w i t h E n h y d r a

For information on the RPM installation process, see the top-level index.html file on
your product CD.

Using PostgreSQL with Enhydra
To enable the Enhydra database manager to access PostgreSQL, you must add the
PostgreSQL JDBC driver file to your CLASSPATH. The best way to do this is to edit your
application’s start script and add the line:
CLASSPATH=/usr/lib/pgsql/jdbc<version number>.jar

By default, the PostgreSQL RPM installation puts the JDBC JAR file, jdbc<version
number>.jar, in the directory /usr/lib/pgsql. If you move the JAR file, remember to
change the reference in the start script.

Important Be sure to edit the start script file in <appName>/<appName>, not <appName>/output, which is
overwritten every time you build the application.

Using DODS

As described in Getting Started with Lutris Enhydra, the Data Object Design
Studio (DODS) requires special columns named OID and VERSION in each table.
However, OID is a reserved word in PostgreSQL. Fortunately, the column names
used for OID and VERSION are configurable.

To configure these names, add the following lines to your application configuration
file, making sure they come before any other DatabaseManager lines:
DatabaseManager.ObjectIdColumnName = "<ColName_for_ObjectId>"
DatabaseManager.VersionColumnName = "<ColName_for_Version>"

where <ColName_for_ObjectId> and <ColName_for_Version> are the column names to use
instead of OID and VERSION; for example:
DatabaseManager.ObjectIdColumnName = "ObjectId"
DatabaseManager.VersionColumnName = "ObjectVersion"

Note In the DODS Database menu, select PostgreSQL to generate appropriate SQL. The
CREATE TABLE statements that DODS generates don’t always have the correct data
types for PostgreSQL, so you may need to edit them. You can modify the data types
that DODS generates by editing the dods.conf file.

Running DiscRack

This section describes how to create the DiscRack PostgreSQL database and
configure DiscRack to use PostgreSQL.

C h a p t e r 8 , U s i n g P o s t g r e S Q L 145

U s i n g P o s t g r e S Q L w i t h E n h y d r a

Creating the DiscRack database
Before running the DiscRack application, you need to create the DiscRack database.
Use PostgreSQL’s psql tool to load the SQL script containing the necessary CREATE
TABLE statements:
psql> \i <DiscRack_root>/data/create_tables.sql.PostgreSQL

where DiscRack_root is the root directory of the DiscRack application, normally
<enhydra_root>/examples/DiscRack/discRack.

Configuring DiscRack to run with PostgreSQL
Follow these steps to configure DiscRack to use PostgreSQL.

1 Add the following lines to the appropriate group in the discRack.conf.in file
located in DiscRack/discRack.
DatabaseManager.DB.db_id.JdbcDriver = "postgresql.Driver"
DatabaseManager.DB.db_id.Connection.Url = "jdbc:postgresql:db_id"

where db_id is the name of your database.
DatabaseManager.DB.db_id.Connection.User = "your_username"
DatabaseManager.DB.db_id.Connection.Password = "your_pwd

where your_username is the user name and your_pwd is the password.

2 Add these lines to discRack.conf.in:
DatabaseManager.ObjectIdColumnName = "ObjectId"
DatabaseManager.VersionColumnName = "ObjectVersion"

This is explained in “Using DODS” on page 144.

3 Modify the CLASSPATH in the start script as explained in “Using PostgreSQL with
Enhydra” on page 144.

4 Rebuild the DiscRack application by typing make in the directory DiscRack/discRack.

5 In a browser, access DiscRack at http://localhost:5555.

146 D e v e l o p e r ’ s G u i d e

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 147

9Chapter
Using Enhydra Director Chapter 9

This chapter describes Enhydra Director, a load balancing and sharing server for
Enhydra applications.

Overview of Director
Director works in conjunction with a Web server to provide load balancing and
failover capabilities to Enhydra applications.

Here is a typical Director set-up, illustrated in “A typical Director installation” on
page 148:

DemoCompany has a website, www.democompany.com, and uses an Enhydra
application, demoApp, to process orders from this site. They also use an Apache Web
Server, configured to use Director on a network interface outside their firewall.
Behind the firewall are three machines running instances of demoApp, with private
IP addresses. demoApp uses data located on a database server also located within
the firewall.

When the Web server receives requests for
http://www.democompany.com/demoApp, Director routes those requests to one
of the three Enhydra servers with demoApp. The Enhydra server never receives
requests directly from the user. All requests are received by Director and forwarded
on to the appropriate server. If one of the Enhydra servers fails, Director sends
requests to another Enhydra server.

As the number of connections increases, Director sends requests to the Enhydra
servers based on the amount of load on the servers. This ensures that the load is
distributed evenly among all available servers, and no one server is overloaded by
connections unless the entire cluster is overloaded.

148 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

Figure 9.1 A typical Director installation

Installing and configuring Director
This section describes how to install Director and configure it to work with a Web
server.

System requirements

Director runs on Windows NT and 2000, Solaris, and Linux. Additionally, if you
build Enhydra from the open-source distribution, the Director module will compile
and run on most UNIX systems supported by the iPlanet Web Server.

Note Enhydra Director requires TCP/IP networking support. If you have not already done
so, configure TCP/IP on at least one of your system’s network interfaces.

Windows NT and 2000
On Microsoft Windows NT and 2000, Director requires the following:

• Windows NT 4.0 (Service Pack 6 or later) or Windows 2000, running on an Intel
80386 or higher CPU (Pentium 200 MHz or faster recommended)

• 64 MB memory

• One of the following Web servers:

• iPlanet Enterprise Server, version 4.0 or higher
• Microsoft Internet Information Server, version 4.0 or higher

Web Server
with Enhydra

Director

Enhydra
Server

Enhydra
Server

Enhydra
Server

Database
Server

Internet

Web Server
with Enhydra

Director

Enhydra
Server

Enhydra
Server

Enhydra
Server

Database
Server

Internet

Web Clients

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 149

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

Solaris
On Sun Solaris, Director requires the following:

• Sun Solaris version 2.6 running on a Sparc-compatible system with 64 MB RAM
(128 MB recommended)

• One of the following Web servers:

• Apache Web Server, version 1.3.9 or later
• iPlanet Web Server, version 4.0 or higher

Linux
On Linux, Director requires the following:

• Version 2.2 of the kernel or later, with support for recent versions of the glibc
C library. Red Hat 6.1 or higher recommended, running on:

• Intel 80386 or later CPU (Pentium 200 MHz or faster recommended)
• 64 MB RAM (128 MB recommended)

• One of the following Web servers:

• Apache Web Server, version 1.3.9 or higher
• iPlanet Web Server, version 4.0 or higher

Note The minimum amount of memory required on your servers will vary greatly
depending on how you use Director. Large-scale enterprise clusters serving complex
applications under heavy load will require considerably more memory than a small
cluster of servers used for development purposes.

Preparation

Before installing Director, determine the following:

• Machines and applications on which you will be running the Enhydra Multiserver

• For each application:

• Name of the machine and the port number on which each instance of the
application will run. The port number is the port used when configuring a
connection of type EnhydraDirector using the Multiserver Administration
Console. For information on configuring your application in the Multiserver
Administration Console, see “Configuring your application” on page 167.

• URL prefix used to identify the application (for example, “/demoApp“).

• An application requires session affinity if requests for the same session to an
application should always be routed to the application server instance that
created the session. Unless your application supports distribution of its sessions
among other instances, you should assume that session affinity is needed. If
your application does not use session information at all, you do not need
session affinity.

• Name of the Web server instance on which you want to configure Director

150 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

• TCP port of the Web server instance on which you intend to configure Director (by
default, port 80)

• For Apache, determine:

• Location of the configuration files for Apache, typically /usr/local/apache/conf

• Location of the executables directory for your Apache server, typically
/usr/local/apache/bin

• For iPlanet/Netscape, determine:

• Location of the obj.conf file for your Web server instances

On Windows, this is typically C:\Netscape\Server4\<instance>\config\obj.conf. On
UNIX, this is often /usr/netscape/server4/<instance>/config/obj.conf.

• Where to install the Director files

On Windows, we recommend C:\usr\local\enhydra\director\nsapi. On UNIX, we
recommend /usr/local/enhydra/director/nsapi.

Using Director with Apache

This section describes how to configure Director to work with the Apache Web
Server.

Files
This section describes the files you use with Apache.

Apache extension module
The Apache extension module, mod_enhydra_director.so, is in the Apache libexec
directory and is loaded with the AddModule and LoadModule directives in
httpd.conf. This module forwards application requests to the Enhydra server and
forwards the server response to the client.

Director configuration file
This file, enhydra_director.conf, contains configuration information for Director. By
default, the Apache extension module (mod_enhydra_director.so) looks for this file in
the same directory as the httpd.conf file.

Director daemon
This program, edir_daemon, runs in the background and monitors the state of the
shared-memory region that is used by child instances of the Director module to
coordinate load balancing.

edir_daemon is necessary because Apache uses separate processes to allow
multithreading of simultaneous requests. The daemon is automatically launched
when Apache starts, and automatically cleans up the shared memory and exits when
Apache is stopped.

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 151

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

Director status utility
This utility, edir_status, directly reads the shared-memory region used by the
Director module. It reports the current state of each configured application and
Enhydra server.

Director scoreboard
The scoreboard, enhydra_director.ipc, contains the shared-memory data used by all
the Apache child processes when they are handling Director requests. Normally, the
contents of this file are kept in memory as an mmap()-based, shared-memory region.

This file also serves as the scoreboard lock file, using fcntl()-based locking. Its
normal home is in the edir subdirectory of the Apache logs directory. It is normally
only accessible to the Apache child user ID.

Apache error log
The standard error log for the Apache server is typically called error_log. The
Director handler logs all errors encountered while handling requests to this file.
Certain startup messages are also logged to error_log; however, the Director daemon
logs most startup errors to the system log.

System log
The system log is typically in /var/log/messages or /var/adm/messages. If the daemon
encounters errors while it is initializing, it has no access to the Apache error log, so it
logs the error to the system log using the daemon logging channel.

Procedure
The following steps assume that you are installing the Director files into your Apache
installation directories. To build Director, you must first obtain, compile, and install
Apache 1.3.9 or later. You must configure Apache so that Dynamic Shared-Object
Support (mod_dso) is enabled. To do this, configure Apache with the following options:
./configure --enable-rule=SHARED_CORE --enable-module=SO

The build scripts use the Apache apxs utility to automatically obtain the correct
installation directories for the Director components. You should take note of where
this utility is installed in case you need to explicitly tell the configure script its
location. apxs is a script that looks for the Apache configuration directories. Be sure
Perl 5 is installed, because apxs is a Perl script.

Step 1: Get Director source code
There are two source packages for creating the Director module for Apache. A
smaller distribution containing only the source code of Director is included with the
prebuilt distributions of Enhydra. The Director source code is also included with the
full Enhydra source distribution, available under the Enhydra Public License (EPL).
Obtain the Director source code from either of these sources and extract it into a
working directory.

152 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

If you are using the Enhydra prebuilt distribution, extract
<enhydra_root>/director/enhydra-director1.0.tar. The extracted source code will be in
this directory:
./enhydra-director1.0

Change directories to enhydra-director1.0. This directory contains the subdirectories
common, apache, nsapi, and so on. From this point on, this directory is referred to as
$SRCROOT.

If you are using the Enhydra source distribution, extract enhydra-src<version>.tar.gz
into the current directory. You will find the Director source in
Enhydra/modules/EnhydraDirector/src/. From this point on, this directory is referred to
as $SRCROOT.

Step 2: Build the Director Apache module
If you installed Apache in the default location on either Solaris or Linux, run the
./configure script with no arguments, make the project, then install the project:
cd $SRCROOT/apache
./configure
make
make install

This builds the Director Apache module and installs the mod_enhydra_director.so file
into the libexec directory for your Apache distribution.

There are several options for configure. For example:
--with-apxs=<Path to location of apxs>apxs

allows the location of the Apache apxs script to be specified if the default
configuration script cannot find it.

If you use the --with-apxs option and configure still cannot find apxs, Apache may not
have been configured to support shared libraries. If this is the case, you will have to
reconfigure and rebuild Apache. See “Procedure” on page 151 for the options you
need to configure Apache with shared-library support.

Note If you are using Apache with the mod_ssl module, use the --enable-eapi option of the
configure script when configuring Director.
./configure --enable-eapi

This option is needed for extended APIs added by mod_ssl.

--enable-debugging adds debugging messages to the build. This allows the
EnhydraDirectorDebug option to be specified in httpd.conf or <Options debug="0xNNNNNN"/>
to be specified in enhydra_director.conf. Enabling debugging can be useful if you
experience problems with setting up the module.

After running make install, you will find mod_enhydra_director.so in your Apache
installation’s libexec directory. You will also find the file enhydra_director.conf.default
in the conf directory.

Note If you installed Apache and Enhydra in nondefault locations, you need to specify the
location of apxs and the location of the libexec directory when you configure Apache
and Director.

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 153

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

Use the following httpd.conf options to specify the locations of Director configuration
and data files:

• EnhydraDirectorConfigFile specifies the full path to the file, enhydra_director.conf. By
default this is the configuration file in the conf subdirectory of your Apache
installation.

• EnhydraDirectorLockFile specifies the location of the file used for locking the
scoreboard during shared access. If you set this parameter, you should not need to
set the EnhydraDirectorDataFile option.

If you installed Enhydra on an NFS file system, you may need to set this
parameter. Due to locking bugs in many, if not most, NFS implementations,
Director does not work if the lock file is located on an NFS file system.

By default, the lock file is located under the logs directory. To allow the
load-balancing code to run as the Apache child user ID, the actual lock file is
located under logs/edir, where edir has permissions set to allow the child
processes to read and write. The permissions of the logs directory are unaffected.

• EnhydraDirectorDataFile is an expert setting for developers and advanced users
only. You should not need to set this parameter unless you are a developer or are
experimenting with alternate shared-memory modules (see edir_shmem.h). This
option allows the scoreboard shared-data file to be specified as a different file than
the lock file, or even as a System V IPC region.

By default, the mmap shared-memory module uses the same file as the filesys mutex
module (see edir_mutex.h). This means locking and data sharing use the same file
on most modern UNIX implementations, including Solaris, Linux, and FreeBSD.

• EnhydraDirectorDaemonPath is an advanced option. If you install the Director daemon
(edir_daemon) in a different location than the Apache bin directory, this option can
be used to specify the full path to the daemon.

• EnhydraDirectorDebug is an advanced option. If you used --enable-debugging when
building Director, this option can be used to set the debugging mask in the
module. The debugging mask is also propagated to the daemon when it is started.
For more information on possible values, see edir_debug.h or
enhydra_director.conf.default.

To enable full, highly voluminous debugging, including hex dumps of all
communication between the module and Enhydra, specify the value 0xffffffff. Be
forewarned that doing this will severely limit Director’s performance, and will
dump hundreds of megabytes of logging data to the Apache error log.

This option is identical to <option debug="0xNNNNNNNN"/> in enhydra_director.conf,
except that it gets set much earlier and allows debugging of the code that loads the
configuration file and scoreboard, as well as the daemon launching code.

154 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

Configuring Director
Use the following steps to configure Director:

Step 1: Locate httpd.conf
Find out where httpd.conf is located for your Apache installation. Usually this is
something like /usr/local/apache/conf/httpd.conf. However, Apache is very flexible in
how it can be installed, so this may differ. The build scripts use apxs to automatically
install the compiled module and programs into the recommended locations.

Step 2: Locate DSO modules
Determine where Apache stores its DSO modules. This is usually libexec under the
Apache installation root. For example, on many Apache installations, the DSO
module directory is /usr/local/apache/libexec. Some versions of Apache use
/usr/local/apache/sbin or /usr/local/apache/modules for the DSO module directory.
Note what directory your version of Apache uses, as you will need this when you
configure the LoadModule line in httpd.conf.

Step 3: Add the Director module to the Apache configuration
1 Open httpd.conf in a text editor.

2 Search for the last line in the file starting with LoadModule. The default httpd.conf
should have a commented sample line for the LoadModule directive, such as the
following:
LoadModule foo_module libexec/mod_foo.so

If it doesn’t contain a commented sample LoadModule line, go to the end of the
file.

3 Using the last component of the libexec directory located in step 2, add a line to the
list of LoadModules directives (if any), that looks like:
LoadModule enhydra_director_module libexec/mod_enhydra_director.so

If the last component of your Apache installation’s libexec path ends in, for
example, /modules, then you would instead add the line:
LoadModule enhydra_director_module modules/mod_enhydra_director.so

If there are other LoadModule lines, they usually will contain the correct path to
the libexec path, so you can use the other directives as a guide.

Note If you are using mod_rewrite, make sure the LoadModule rewrite_module directive
comes before the LoadModule enhydra_director_module directive if you intend to use
mod_rewrite to redirect URLs to Director. Also, you should use the mod_rewrite [PT]
tag to force pass-through of redirected URLs.

4 Search for the last line starting with AddModule. If such a line does not exist as a
comment, go to the end of the file and add the line:
AddModule mod_enhydra_director.c

5 Add any desired Enhydra-specific directives such as EnhydraDirectorDebug to
httpd.conf. These directives are optional in almost all cases.

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 155

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

6 Save httpd.conf.

Step 4: Create the Director configuration file
The Director configuration file for Apache is normally located in the same directory
as httpd.conf. However, you can use the EnhydraDirectorConfigFile directive in
httpd.conf to specify a different file:
EnhydraDirectorConfigFile /usr/<enhydra_root>/director/enhydra_director.conf

For a description of the syntax and the directives available in enhydra_director.conf,
see “Editing enhydra_director.conf” on page 168.

The file enhydra_director.conf.default contains several useful examples that can be
easily copied to match your site setup. The comments within the default file also
describe most of the available options.

It’s important to note that the configuration file is based on a XML DTD
(EnhydraDirectorConfig.dtd) and is strictly validated. This means the file must contain
valid XML, and it must follow the format defined in the DTD. Case is important in all
section and property names, and order is important among different sections.

Step 5: Restart the Apache server
Use the apachectl script, or your own script, to restart the Apache server. The usual
command is apachectl restart.

Step 6: Verify correct startup
1 Use ps -aef or ps -ax, depending on your system, to make sure edir_daemon is

running.

2 In the Apache logs directory, there should be a subdirectory called edir that
contains the file enhydra_director.ipc. This file is the lock and scoreboard file.

3 In the Apache bin directory, where httpd is located, run edir_status. This should
dump current information from the scoreboard and configuration files. If this
succeeds, Director is running.

4 If errors occur within the edir_daemon process, the errors are logged to the system
log using syslog(). The daemon channel is used. Normally the messages go to the
messages file, which is /var/adm/messages on Solaris and /var/log/messages on Linux.

5 If initialization errors occur within the module, the errors are reported in the
Apache error log.

Step 7: Verify connectivity
1 Start a Web browser.

2 If you have set a <Status> section in the configuration, you can connect to its URL
prefix to ensure that the handler is functioning. You can use
enhydra_director.conf.default as your configuration file and connect to
http://localhost/status to verify Director is working correctly. The application
information will not be valid, however.

156 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

3 Connect to one of your configured application prefixes.

4 Errors encountered while handling requests are reported in the Apache error log.

Troubleshooting
Problem The Director Apache extension fails to load when Apache is started.

• Check httpd.conf for correct configuration of the module, as described in the
previous sections.

• Check the system log file for errors reported by the edir_daemon program.

• Check the Apache error log for errors reported by the Director module.

• Ensure that the enhydra_director.conf file exists and contains valid and syntactically
correct configuration data. If the syntax is not valid, Director reports the specific
errors and line numbers to the Apache error log.

Problem Director starts with no errors, but I can’t connect to my application.

• If you configured the <Status> section, check the status prefix for connection
failures to your back-end Enhydra servers.

• Make sure that the prefixes configured in enhydra_director.conf match the prefixes
configured for your application on the Enhydra server. The prefixes must match
exactly, including case. Trailing slashes in the prefix are not significant and are
ignored.

• Make sure that the application servers and ports in the enhydra_director.conf file
refer to valid and running instances of your application. Make sure your
application is running on the Enhydra server.

• You application must use the Director connection method on ports to which the
Apache Director extension will dispatch requests. The connection method is set in
the MultiServer.conf file for your application. The preferred method for setting the
connection method is using the Admin Console.

• We highly recommend that you configure the <Status> section in the configuration
file so you can examine the runtime state and configuration of the handler.

Problem Apache child processes dump core (crash).

• This is evidence of an error in the Director module that needs the attention of
Lutris engineers.

• There’s also the possibility that there is a bug elsewhere in Apache, or in some
other module. If possible, remove all unneeded modules from the httpd.conf file to
try to narrow the problem down to the Enhydra module.

• If you’re an engineer and can give us stack traces from the Gnu Debugger (gdb), we
would be very appreciative, especially stack traces from --enable-debugging
compilations.

• Please report any bugs of this nature to Enhydra.org, at http://www.enhydra.org.
The more details you can provide about what led to the failure, the better we can

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 157

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

track down and fix any problems. Machine state information, configuration
information, and any steps to reproduce the bug would be very helpful.

Using Director with iPlanet Web Server

Installation
Installation of this module follows the same general procedure as with any other
NSAPI extension to a Netscape Web Server, so you may want to refer to the Netscape
online documentation at http://www.iplanet.com/ for additional information.

Files
The Director module for iPlanet is either the NSAPI Extension libedir.so for UNIX or
the NSAPI Extension EnhydraDirector.dll for Windows.

This file is an NSAPI-extension DLL that does the actual work of forwarding an
Enhydra request to the correct Enhydra application server. It must be installed on
each iPlanet Web Server instance that will serve your application’s URL prefix.

For example, if you have set up iPlanet to enable the Web server www.myhost.com,
and you want your application to be located at http://www.myhost.com/myApp,
you must enable the EnhydraDirector.dll extension in the obj.conf configuration file for
the www.myhost.com Web server instance. See “Configuring Director for iPlanet”
on page 158 for details on configuring this module.

The Director configuration file is enhydra_director.conf. One of the required settings in
obj.conf is the location of this file.

Procedure for UNIX systems
These instructions assume that you will install the Director files into
/usr/local/enhydra4.0/director/enhydra-director1.0. If you want to install the files in
some other location, replace this location with your own installation directory in all
the following steps.

1 Change directories to /usr/local/enhydra4.0/director/.

2 Extract enhydra-director1.0.tar.gz with the following command:
gunzip enhydra-director1.0.tar.gz ; tar xvf enhydra-director1.0.tar

This creates a subdirectory, enhydra-director1.0, in the current directory.

3 Change directories to enhydra-director1.0.

4 Build the extension-shared object .so file.

The build uses a GNU automake environment, so you begin building by running
the ./configure script. Type ./configure --help to get a list of supported options.

If you have installed iPlanet in a nonstandard directory, you need to use this
option to specify where the plugins directory is located for your server:
--with-netscape-plugins-dir

158 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

Also, the --enable-debugging option may be used to add full verbose debugging
macros to the build. When you are finished building, you should have these files:
./.libs/libedir.so, ./enhydra_director.conf.default, and ./obj.conf.example.

5 Install the Director files.

Assuming you have chosen the recommended directory, install the files you built
above as:
/opt/netscape/EnhydraDirector/libedir.so
/opt/netscape/EnhydraDirector/enhydra_director.conf.default

The obj.conf.example file is just an example obj.conf where the necessary additions
are highlighted in comments. You must edit your existing obj.conf file to configure
your particular server.

Procedure for Windows
These instructions assume that you will install the Director files into
C:\usr\local\<enhydra_root>\director\nsapi\. If you want to install the files to a
different location, replace C:\usr\local\<enhydra_root>\director\nsapi\ with your own
installation directory in all the following steps. If you want to build the DLL from
source, see “Building Director for iPlanet” on page 166.

1 Use the precompiled binary (<enhydra_root>\director\nsapi\EnhydraDirector.dll) or
build the Director files from the source. For instructions on building the iPlanet
DLL from source, see “Building Director DLLs from source code” on page 166.

2 Install the Director files. You need the following files:
C:\usr\local\<enhydra_root>\director\nsapi\EnhydraDirector.dll
C:\usr\local\<enhydra_root>\director\nsapi\enhydra_director.conf.default

Configuring Director for iPlanet
To configure Director for iPlanet, three steps are required. First, stop the Netscape
Web Server by running C:\Netscape\Server4\<instance>stopsvr on Windows and
running /usr/netscape/server4/<instance>/stop on UNIX. Second, install the NSAPI
extension. Repeat these two steps as needed for any other virtual Web servers that
need to be configured with Director. Finally, edit /<netscape root>/https-<machine
name>.<domain name>/obj.conf for each Web server instance to specify the location of the
Director module.

Note The <enhydra_root>/director/nsapi/obj.conf.example file is a sample obj.conf file that
you can edit with site-specific information to simplify configuration.

1 Edit obj.conf and go to the lines where the <Init...> sections are located. This
should be near the beginning of the file.

• For UNIX, add the following init lines:
Init fn="load-modules"
funcs="edir_init,edir_nsapi_handler,edir_nsapi_name_trans"
shlib="/usr/netscape/EnhydraDirector/libedir.so"

Init fn="edir_init"
conffile="/usr/netscape/server4/<Instance>/config/enhydra_director.conf"

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 159

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

• For Windows, add the following init lines:
Init fn="load-modules" funcs="edir_init,edir_nsapi_handler,edir_nsapi_name_trans"
shlib="C:/Netscape/EnhydraDirector/EnhydraDirector.dll"
Init fn="edir_init"
conffile="C:/Netscape/Server4/<Instance>/config/enhydra_director.conf"

Note The paths in obj.conf for Windows must use a forward slash (/) character to
separate directories.

Note The init lines above must consist of only two actual lines in the obj.conf file.

If your Netscape server is not installed in /usr/netscape, or if you did not install
the libedir.so DLL in the recommended location, edit the init lines accordingly.
Replace <Instance> with the Web server instance for which you are configuring.

2 In the <Objectname=default> section, add the line:
NameTrans fn=edir_nsapi_name_trans

The previous line must go immediately before:
NameTrans fn=document-root root=...

3 Just after the closing </Object> for <Objectname= default>, add the section:
<Object name=enhydra_director>
Service fn="edir_nsapi_handler" method=(GET|HEAD|POST)
</Object>

The obj.conf.example file gives an example of the obj.conf file for a fictitious site.

4 Create the configuration file.

The Director configuration file for NSAPI is the file indicated by the conffile=...
directive in the init lines described previously. There can be multiple instances of
Director on a machine, with one instance per configured Web server instance.
Each Director instance should be assigned a different configuration file.

The full description of the syntax and of all the directives available in the
configuration file is beyond the scope of this document. However, the file
enhydra_director.conf.default contains several useful examples that can be easily
copied to match your site setup. The comments within the default file also describe
most of the available options.

The configuration file is based on an XML DTD (EnhydraDirectorConfig.dtd) and is
strictly validated. This means that the file must contain valid XML, and it must
follow the format defined in the DTD. Case is important in all sections and
property names, and order is important among different sections.

5 Start the Netscape server.

Run the C:\Netscape\Server4\<instance>/startsvr or
/usr/netscape/server4/<instance>/start script, depending on your platform.

6 Make sure the Netscape server started correctly and is running.

Check the Netscape server error log for errors that might have occurred while
iPlanet loaded the Director DLL. Also check for Director errors.

160 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

7 Verify that you can connect to the server.

• Start a Web browser.

If you have set a <Status> section in the configuration, you can connect to its
URL prefix to ensure that the handler is functioning. You can use
enhydra_director.conf.default as your configuration file and connect to
http://localhost/status to verify Director is working correctly. The application
information will not be valid, however.

• Connect to one of your configured application prefixes.

If serious errors occur, they are logged to the server error log.

Troubleshooting
Problem The NSAPI extension fails to load when the Netscape server is started.

• Ensure that the obj.conf configuration has the right path for the .so or .DLL file. This
is the Init ... shlib= ... directive.

• Check the Netscape server error log for errors.

• Ensure that the enhydra_director.conf file exists and contains valid and syntactically
correct configuration data. If the syntax is not valid, Director reports the specific
errors and line numbers to the Netscape server error log.

Problem Director starts up without errors, but I can’t connect to my application.

• If you configured the <Status> section, check the status prefix for connection
failures to your back-end Enhydra servers.

• Make sure that the prefixes configured in enhydra_director.conf match the prefixes
configured for your application on the Enhydra server. The prefixes must match
exactly, including case. Trailing slashes in the prefix are not significant and are
ignored.

• Make sure that the application servers and ports in the enhydra_director.conf file
refer to valid and running instances of your application. Make sure your
application is running on the Enhydra server.

• Your application must use the EnhydraDirector connection method on ports that the
NSAPI Director extension will dispatch requests to.

• We highly recommended that you configure the <Status> section in the
configuration file so you can examine the runtime state and configuration of the
handler.

Problem The Netscape server crashes, hangs, or dies unexpectedly.

• This is evidence of an error in the handler or filter DLL that needs the attention of
Lutris engineers.

• Please report any bugs of this nature to Enhydra.org, at http://www.enhydra.org.
The more details you can provide about what led to the failure, the better we can
track down and fix any problems. Machine state information, configuration
information, and any steps to reproduce the bug would be very helpful.

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 161

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

Using Director with Internet Information Server (IIS)

Installation
Three files are necessary to use Director with IIS: EnhydraFilter.dll, EnhydraHandler.dll,
and enhydra_director.conf. These files are described in the following sections.

ISAPI filter—EnhydraFilter.dll
This file is an ISAPI header preprocessing filter that reroutes Enhydra application
URLs to the Director ISAPI Handler application. It can be configured either as a
global ISAPI filter or as a local filter on a particular Web server instance.

• If the filter is applied globally, it reroutes Enhydra URLs for all IIS Web Servers on
the system.

• If the filter is configured as a local Web server instance, it routes only Enhydra
URLs for the configured Web server.

See the following section for details on configuring the filter.

ISAPI handler extension—EnhydraHandler.dll
This file is an ISAPI extension DLL that does the actual work of forwarding an
Enhydra request to the correct Enhydra application server. It must be installed on
each IIS Web Server instance that will serve your application’s URL prefix.

For example, if you have configured IIS to enable the Web server www.myhost.com,
and you want your application to be located at http://www.myhost.com/myApp,
you must enable the EnhydraHandler.dll extension on the www.myhost.com Web
server instance.

Director configuration file—enhydra_director.conf
This file contains the configuration for Director.

• If you configured EnhydraFilter.dll as a global filter, there will be only one instance
of this file, and it controls the configuration for all IIS Web Server instances on the
system.

• If the filter was configured for specific servers, a different instance of this file will
exist for each server.

The configuration file must be located in the same directory as EnhydraFilter.dll.

Procedure
These instructions assume that you installed Enhydra in c:\usr\local\<enhydra_root>.
If you installed Enhydra in a different location, replace this path with your own
installation directory in the following steps.

The ISAPI DLLs, EnhydraFilter.dll and EnhydraHandler.dll for Director are located at
c:\usr\local\<enhydra_root>\director\isapi. If you are compiling the DLLs from
source, see “Building Director DLLs from source code” on page 166.

162 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

Note If you are installing IIS, choose Custom install, and install all components except the
Personal Web Manager.

Configuring Director for IIS
To configure Director with IIS, follow these steps:

Step 1: Stop IIS
To stop IIS:

1 In the Control Panel, double-click Services on NT. On Windows 2000, open
Control Panel|Administrative Tools|Services.

2 Select World Wide Web Publishing Service.
3 Click Stop to stop the World Wide Web Publishing Service.
4 Stop the FTP Publishing Service, if you are using the FTP service included with IIS.

Step 2: Install the filter (global)
If you are installing the filter globally, follow this procedure. If you are installing for a
specific server, see “Step 3: Install the filter (for a specific server).”

1 Start the IIS Internet Service Manager program by choosing Start|Programs|
Windows NT 4.0 Option Pack|Microsoft Internet Information Server|Internet
Service Manager on NT.

On Windows 2000, open Control Panel|Administrative Tools|Internet Service
Manager.

2 On NT, in the tree view that contains the Console Root folder, expand the Internet
Information Server subfolder if it has not already been expanded. You should see
a small computer icon next to the name of your machine. On Windows 2000, there
is no Console Root. The Internet Information Server folder is the root.

3 Right-click the name of your machine (not Default Web Site) and click Properties.

4 In the Master Properties frame, select WWW Service in the selection box, then click
Edit to edit the master IIS properties for your machine.

5 Select the ISAPI Filters tab.

6 If the EnhydraFilter filter is already installed, remove it.

7 Click Add.

8 For the Filter Name property, enter EnhydraFilter.

9 For the Executable property, type in or browse to the file
C:\usr\local\<enhydra_root>\director\isapi\EnhydraFilter.dll.

10 Click OK to accept the filter name and executable.

11 Back in the WWW Service Master Properties dialog box, click Apply to add the
filter, then click OK to close the dialog box. The filter does not become active until
IIS is restarted.

The filter is now installed and will become active when IIS is restarted.

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 163

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

Step 3: Install the filter (for a specific server)
1 Start the IIS Internet Service Manager program by choosing Start|Programs|

Windows NT 4.0 Option Pack|Microsoft Internet Information Server|Internet
Service Manager on NT.

On Windows 2000, select Start|Settings|Control Panel|Administrative Tools|
Internet Service Manager.

2 On NT, in the tree view that contains the Console Root folder, expand the Internet
Information Server subfolder if it has not already been expanded. You should see
a small computer icon next to the name of your machine. On Windows 2000, there
is no Console Root. The Internet Information Services folder is the root.

3 Right-click the entry for your website instance or the Default Web Site for the IIS
default website instance, and click Properties.

4 Select the ISAPI Filters tab in this dialog box.

5 If the EnhydraFilter filter is already installed, remove it.

6 Click Add.

7 For the Filter Name property, enter EnhydraFilter.

8 For the Executable property, type in or browse for the file
C:\usr\local\<enhydra_root>\director\isapi\EnhydraFilter.dll.

9 Click OK to accept the filter name and executable.

10 In the Default Web Site Properties dialog box, click Apply to add the filter, then
click OK to close the dialog box.

11 Restart the WWW Publishing Service in the Services Control Panel.

Step 4: Install the handler
Repeat as needed for multiple IIS websites.

1 Start the IIS Internet Service Manager program by choosing Start|Programs|
Windows NT 4.0 Option Pack|Microsoft Internet Information Server|Internet
Service Manager on NT.

On Windows 2000, select Start|Settings|Control Panel|Administrative Tools|
Internet Service Manager.

2 On NT, in the tree view that contains the Console Root folder, expand the Internet
Information Server subfolder if it has not already been expanded. You should see
a small computer icon next to the name of your machine. On Windows 2000, there
is no Console Root. The Internet Information Services folder is the root.

Underneath this, you should see entries for your website(s). If you have only one
website on this system, it is usually set up as Default Web Site.

3 Expand the subtree for the website.

4 If a virtual directory called EnhydraDirector already exists, remove it.

5 Right-click Default Web Site (or the name of an alternate website) and select New|
Virtual Directory from the popup menu.

164 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

6 The alias for the virtual directory must be EnhydraDirector. This entry is
case-sensitive.

7 Click Next.

8 For the physical path, type in (or browse to)
C:\usr\local\<enhydra_root>\director\isapi.

9 Click Next.

10 For the permissions, check Allow Execute Access on NT, Execute on Windows
2000, and uncheck all other permissions. This permission must be checked in
order for the handler to work properly.

11 Click Finish to add the new Virtual Directory.

The handler is now installed for the selected WWW server instance. Repeat “Step 3:
Install the filter (for a specific server)” for each WWW server on which you intend to
use Director.

Step 5: Create the configuration file
Create the configuration file
C:\usr\local\<enhydra_root>\director\isapi\enhydra_director.conf. The easiest way to
do this is to copy enhydra_director.conf.default to enhydra_director.conf.

The full description of the syntax and of all the directives available in the
configuration file is beyond the scope of this document. However, the default file
contains several useful examples that can be easily copied to match your site setup.
The comments within the default file also describe most of the available options.

An important thing to note is that the configuration file is based on an XML DTD
(EnhydraDirectorConfig.dtd) and is strictly validated. This means that the file must
contain valid XML, and it must follow the format defined in the DTD. Case is
important in all sections and property names, and order is important among different
sections.

Step 6: Start IIS
1 On NT, open the Services dialog box from the Control Panel and double-click

Services. On Windows 2000, select Start|Settings|Control Panel|Administrative
Tools|Internet Service Manager.

2 Find the entry for World Wide Web Publishing Service and select it.
3 Click Start to start the World Wide Web Publishing Service.

IIS should now be running.

Step 7: Verify correct startup
1 On NT, run Start|Programs|Administrative Tools (Common)|Event Viewer. On

Windows 2000, open Start|Settings|Control Panel|Administrative Tools|Event
Viewer.

2 Check the Application log for EnhydraFilter events.

If Director started correctly, the filter logs and events indicates the configuration file
were processed successfully.

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 165

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

Step 8: Verify connectivity
1 Start a Web browser.

2 If you have specified a <Status> section in the configuration, you can connect to its
URL prefix to ensure that the handler is functioning. You can use
enhydra_director.conf.default as your configuration file and connect to
http://localhost/status to verify Director is working correctly. The application
information will not be valid, however.

3 Connect to one of your configured application prefixes.

If connection errors occur, they are logged to the Application event log and can be
viewed with the Event Viewer.

Troubleshooting
Problem EnhydraFilter.dll fails to load when IIS is started.

• Ensure that the IIS configuration has the right path for the filter DLL.

• Check the Application event log for errors reported by the filter or by IIS.

• Ensure that enhydra_director.conf exists and contains valid and syntactically correct
configuration data. If the syntax is not valid, the filter should report the specific
errors and line numbers to the Application event log.

Problem The Filter starts up but I can’t connect to my application.

• Check the application event log for EnhydraHandler error reports.

• If you configured the <Status> section, check the status prefix for connection
failures to your back-end Enhydra servers.

• Make sure that the prefixes configured in enhydra_director.conf match the prefixes
configured for your application on the Enhydra server. The prefixes must match
exactly, including case. Trailing slashes in the prefix are not significant and are
ignored.

• Make sure that the application servers and ports in the enhydra_director.conf file
refer to valid and running instances of your application.

• Make sure your application is running on the Enhydra server.

• Your application must use the EnhydraDirector connection method on ports that the
IIS handler will dispatch requests to.

• We highly recommend that you configure the <Status> section in the configuration
file so you can examine the runtime state and configuration of the handler.

Problem The Event Log messages contain no new lines.

This is a Windows problem that happens immediately after you install an application
that registers itself with the event logger. If you reboot Windows, this problem goes
away.

Problem MSVCRTD.DLL not found

166 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

You are trying to run a debug compiled version of the filter or handler, and do not
have the debug runtime libraries installed. These libraries come with Microsoft
Visual C++.

Problem IIS crashes with an Unhandled Exception, or the Web Application Manager reports
that the handler is dying.

• This is evidence of an error in the handler or filter DLL that needs the attention of
Lutris engineers.

• Please report any bugs of this nature to Enhydra.org, at http://www.enhydra.org.
The more details you can provide about what led to the failure, the better we can
track down and fix any problems. Machine state information, configuration
information, and any steps to reproduce the bug would be very helpful.

Building Director DLLs from source code

Director includes precompiled binaries of the DLLs needed to configure Director
with iPlanet and IIS. However, if you want to make modifications or customizations
to these Director DLLs, you can compile the DLLs from the source code.

Building Director for iPlanet
If you don’t have Microsoft Visual C++ 6.0 or later, you should use the precompiled
NSAPI extension DLL from your Enhydra install or from the Enhydra.org website.

To build EnhydraDirector.dll from source:

1 Go to the <enhydra_root>\director\ directory (by default,
C:\usr\local\<enhydra_root>\director\).

2 Extract enhydra-director1.0.zip to a temporary directory using an unzip utility like
WinZip.

3 Start Visual Studio and open the Director NSAPI workspace, the /nsapi directory
in the directory where you extracted enhydra-director1.0.zip.

4 Set EnhydraDirector as the active project.

5 Set the active configuration to Debug or Release, according to your needs.

6 If you installed Netscape server in a nondefault location, you also need to edit the
build settings (C Preprocessor) to set the correct include directories for the
Netscape header files.

7 Run Build All to build the DLL.

In the same directory as the workspace, you will find a copy of both
enhydra_director.conf.default and obj.conf.example. The newly built DLL will be found
in the Debug or Release subdirectory, according to the usual Visual Studio convention.

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 167

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

Building Director for IIS
To build EnhydraFilter.dll and EnhydraHandler.dll for IIS:

1 Go to the <enhydra_root>\director directory (by default,
C:\usr\local\<enhydra_root>\director).

2 Extract enhydra-director1.0.zip to a temporary directory using an unzip utility like
WinZip.

3 Start Visual Studio and open the Director ISAPI workspace, the /isapi directory in
the directory where you extracted the zip file.

4 Set EnhydraDirector as the active project.

5 Set the active subproject to All.

6 Set the active configuration to Debug or Release, according to your needs.

7 Select Run|Build All to build the EnhydraFilter.dll and EnhydraHandler.dll.

The DLLs will be in EnhydraHandler\<Debug or Release>\EnhydraHandler.dll and
EnhydraFilter\<Debug or Release>\EnhydraFilter.dll.

Configuring your application

There are two ways to configure your applications to work with Director. You can
modify the setting of the application through the Multiserver Administration
Console, or you can edit the configuration files for your application by hand.

Configuring your application with the Multiserver Administration Console
Create a new connection method for you application, and select EnhydraDirector as the
connection method, making sure the URL prefix and port number are correct for
your application. For more information on using the Admin Console, see Chapter 3,
“Using the Multiserver Administration Console.”

Configuring your application by editing multiserver.conf
multiserver.conf contains all the settings for applications run by the Enhydra
Multiserver. Edit this file to configure your application to work with Director. For
more information on editing this file, see “Modifying configuration files by hand” on
page 30.

The Connection Methods section of multiserver.conf defines channels for Enhydra
applications. Add a new channel for your application by adding two lines:
Connection.HttpConn<port number>.Type = EnhydraDirector
Connection.HttpConn<port number>.Port = <port number>

For example, if your application is on port 8005, add the following:
Connection.HttpConn8005.Type = EnhydraDirector
Connection.HttpConn8005.Port = 8005

168 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

In the Channel section, tell the Multiserver the application name, URL, and whether
the application is enabled:
Connection.HttpConn<port number>.<Application name>.Servlet = <Application name>
Connection.HttpConn<port number>.Url = /<HTTP server path>
Connection.HttpConn<port number>.Enabled = yes

If your application is called simpleApp, on port 8005, and its URL is /simpleApp, add the
following:
Connection.HttpConn8005.simpleApp.Servlet = simpleApp
Connection.HttpConn8005.Url = /simpleApp
Connection.HttpConn8005.Enabled = yes

Load balancing with Director

Director uses the following algorithm to load balance requests to Enhydra
applications.

If the traffic is low, Director uses a round-robin load balancing scheme to choose
which Enhydra server to route requests to. Round-robin load balancing involves
directing requests to the next server, regardless of the load on that particular server.

Should the number of requests increase to a point where all servers are busy, Director
uses a scoreboard load-balancing scheme. In scoreboard load balancing, Director
calculates a score for each server based on the number of concurrent sessions and a
user-defined value, weight, that specifies how much load the application instance
should take.

The score for the server is calculated according to the following formula:
score = (weight * scale) / num_conn

weight is the value assigned in enhydra_director.conf, and num_conn is the number of
current active sections assigned to the server. scale is determined by another formula:
scale = (maxint / maxweight)

maxint is the maximum value for an unsigned long integer. maxweight is the maximum
weight of all the entries in enhydra_director.conf for that particular application
instance.

In the scoreboard scheme, the server with the highest score that is not failing is
assigned the next connection. If all the servers are failing, Director returns to
round-robin load balancing. Similarly, if the number of connections goes back to
zero, round-robin load balancing is used.

Editing enhydra_director.conf

This section lists the options for enhydra_director.conf, the configuration file for
Director. enhydra_director.conf is an XML document that must be strictly validated.
The general options for Director are specified with an <Options...> tag in
enhydra_director.conf.

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 169

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

The following table lists the global settings for Director.

The following example is an Options tag from a sample enhydra_director.conf:
<Options retrytime="30" />

For each application that Director will handle requests for, you need an application
tag (<Application...>) in enhydra_director.conf. The following table lists the option for
the application tag.

Table 9.1 General options for Director

Option Example Description
daemon daemon="/usr/local/<enhydra_root>/" Location of the Director daemon. This field

is optional and is ignored on
multithreaded platforms where the
daemon is not used.

daemondebug daemondebug="0x00000001" Debugging mask for the Director daemon.
This field is optional.

daemoninterval daemoninterval="1" Number of seconds between each check of
the scoreboard activity status by the
daemon. This field is optional.

daemontimeout daemontimeout="30" Number of seconds of inactivity after
which the daemon exits. This field is
optional and is ignored on multithreaded
platforms where the daemon is not used.

debug debug="0x00000001" Debugging mask for the Director module.
This field is optional.

retrytime retrytime="30" Number of seconds Director will wait
before attempting to open another
connection to an application server that
has stopped responding to requests from
Director.
If all servers for an application are failing,
Director reverts to a round-robin
load-balancing scheme.

Table 9.2 Per-application options

Option Example Description
prefix prefix="/demoApp" URL prefix on the Enhydra server for a particular application.

This string must match the actual URL exactly, including case.

170 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a n d c o n f i g u r i n g D i r e c t o r

For each configured application, you should add one or more application server
definitions to enhydra_director.conf. These options will be within an <Application...>
block. The following table lists the options available within an application server tag.

The following example is an application tag from a sample enhydra_director.conf:
<Application prefix="/demoApp">

<AppServer host="host1" port="7000" weight="1" auth="myPass" />
<AppServer host="host1" port="7001" weight="1" auth="myPass" />
<AppServer host="host1" port="7002" weight="1" auth="myPass" />
<AppServer host="host2" port="7000" weight="3" auth="myPass" />

</Application>

The status tag lets you configure a URL to check the status of Director. This tag is
normally used in conjunction with restriction settings to limit the clients to
authorized administrators. The following table lists the option for the status tag.

The restriction settings must be within an application tag or a status tag. The
following table describes the options for restricting applications.

Table 9.3 Options available in an Application tag

Option Example Description
host host="host1" Host name of the machine on which the application server is

running.
port port="7000" Host’s port number on which the application server is listening.
weight weight="1" Integer describing how much load the server instance takes on

when the load is heavy. A higher weight indicates that the server
instance will receive more connections than a server instance with
a lower value. Thus, a server instance given a weight of 3 will take
on three times as much load as a server instance with a weight of 1.

auth auth="myPass" auth key setting of the Enhydra server. This string must match the
authorization key of the server exactly.

Table 9.4 Status tag option

Option Example Description
prefix prefix="/status" URL prefix on the Enhydra server for the status application.

This string must match the actual URL exactly, including case.

Table 9.5 Restriction settings for applications

Option Example(s) Description
client client="127.0.0.1"

client="10.20.20.0/24"
Restricts application clients to a
particular machine or subnet.
This is useful for creating
administration applications, or
for applications that should be
accessed only by authorized
clients.

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 171

O p t i m i z i n g D i r e c t o r p e r f o r m a n c e

The following example is a status tag with restriction settings from a sample
enhydra_director.conf:
<Status prefix="/status">

<Restrict server="127.0.0.1" />
<Restrict client="127.0.0.1" />

</Status>

Optimizing Director performance
A Web server with Director on the front-end, configured with a cluster of Enhydra
servers, provides a fairly scalable solution. The following information should help
you gain performance benefits when you use Director and Enhydra.

Load balancing HTTP requests and Enhydra

Director provides a form of loosely coupled clustered Java application servers. The
Web server, using Director, distributes requests to a number of Enhydra servers.

HTTP request load balancers, like Cisco System’s Local Director, Radware’s Web
Server Director, Alteon’s ACEdirector, and similar hardware, are designed for high
volume sites that need to distribute HTTP requests to a number of logical Web
servers. They also provide some basic IP-based session affinity, so session requests
always go back to the server on which the session was created. In general, these

server server="www.democompany.com"
server="www.democompany.com" port="800"

Restricts an application to
requests from a particular Web
server. This value can be either
an IP address or a host name.
This option can be further
modified by defining port, so
that only requests from a
particular port on a particular
Web server will be processed.
Note that this value is different
from the application’s host
value. host specifies the Enhydra
application server, while server
specifies the Web server.

virtualserver virtualserver="vweb.democompany.com"
virtualserver="vweb.democompany.com" port="80"

Restricts an application to
requests coming from a
particular virtual server on the
Web server.
This option can be further
modified by defining a port, so
that only requests from a
particular port on a particular
virtual server will be processed.

Table 9.5 Restriction settings for applications (continued)

Option Example(s) Description

172 D e v e l o p e r ’ s G u i d e

O p t i m i z i n g D i r e c t o r p e r f o r m a n c e

HTTP load balancers perform best when distributing typical high-volume HTTP
traffic: static HTML and files. This is because Web servers are typically limited by file
I/O, rather than processing power. Most of the work of a Web server is copying files
from the local file system and sending them to the network.

Application servers, however, are generally limited by processing power, not file
I/O. This is particularly true with Java application servers. Producing dynamic
content usually requires more processing power, and application servers are best
utilized when processing requests than serving files.

Director solves these problems by moving the dynamic processing to one or more
separate machines and distributing the dynamic request load among these machines.
It allows the Web server to process HTTP requests, and passes application requests to
the application servers, and it does all this transparently.

Separating static and dynamic content
When you write your Enhydra applications, it is best to separate the static Web
content (HTML pages and graphics) from the dynamic content created by your
application. This allows the Web server to serve the static content and your
application servers to create the dynamic content, which plays to the strengths of
both servers.

Scaling up
You may, however, reach a point where the load of the Web server will be too great.
This situation may be caused by the limitations of your HTTP server (for instance,
Apache’s multi-process model described in “Increasing performance for Director and
Apache on Linux” on page 173) or because the heavy load is pushing the limits of
your HTTP server’s hardware.

One solution is to purchase a more powerful Web server. A second solution is to
have more than one Web server serving requests. The second solution is more
desirable when the cost of purchasing a more powerful Web server exceeds the
combined cost of an HTTP request load balancer (like Cisco System’s Local Director,
Radware’s Web Server Director, Alteon’s ACEdirector, and similar hardware), a
number of less expensive Web servers, and a larger number of Enhydra application
servers. This second solution scales up well, and Director is well suited for this
set-up.

Most HTTP request load balancers provide for session affinity to the server that
began the user session based on the user’s IP address.

Note AOL clients, due to their proxying mechanism, break this type of session affinity
because the user’s IP address changes for each request.

Director is more reliable than IP-based session affinity because it recognizes session
cookies and URL-encoded session IDs for Enhydra applications, and will attempt to
preserve session affinity by routing request to the originating server. If the
originating server is unavailable, Director will route requests to the next available
server, according to “no affinity” load-balancing rules.

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 173

O p t i m i z i n g D i r e c t o r p e r f o r m a n c e

Limitations of Director and session affinity
There are two areas that Director does not currently deal well with: mid-request
failover and multi-host session management.

If a back-end Enhydra server fails without sending the requested data to the user,
Director will send the request to the next available Enhydra server, and mark the first
server as “failing” for a user-configurable amount of time. “Failure” here means that
the Enhydra server has stopped responding due to a machine crash. Director never
retries requests due to application-specific errors. If HTTP request data has been sent
to the original server, Director has no way of knowing how much progress was made
for that session, and fails that request, sending request to the next available
application server. The user’s session data would be lost, and they would have to
begin another session on the new application server.

The other situation is multi-host session management. Director simply routes
requests to Enhydra application servers. The application itself must deal with request
data storage. The default request handler creates sessions that apply only to the
originating application server. For applications that use the standard session
manager, leave “session affinity” enabled for the application’s Director connections.

You could write your own session manager that stores session data in a database for
every request, but this is likely to severely limit performance (due to the large
number of database accesses) and to provide a single point of failure, which
clustering is designed to avoid. Though a session-database solution to this limitation
in Director is not recommended, that is not to say it won’t work. It would require a
sophisticated, replicated, high-performance database management system with its
own load-balancing schema. Most applications work well with Director’s session
affinity, so before attempting a session-database solution you should examine the
complex issues involved with implementing such a system.

Increasing performance for Director and Apache on Linux

A common Director configuration consists of an Apache Web server running on i386
hardware under the Linux operating system. The Apache server sends static content
to the client, and passes requests for dynamic content to a number of Enhydra
application servers using Director. The following tips will help increase performance
on such a configuration.

Hardware considerations
Because Web servers are file I/O bounded (see “Load balancing HTTP requests and
Enhydra” on page 171), the amount of available memory and the speed of file I/O
are the most important considerations for serving static content.

The amount of memory is the more important hardware factor, assuming your Web
server has a reasonably fast processor. Ideally you’d have enough RAM to cache all
frequently-used static data to speed up requests and bypass the file system.

Note If your network bandwidth is low (below 15 MB/second), adding RAM usually
doesn’t help performance. The network is the bottleneck in such a circumstance.

174 D e v e l o p e r ’ s G u i d e

O p t i m i z i n g D i r e c t o r p e r f o r m a n c e

The second most important hardware factor is file I/O speed. If you cannot cache all
your static content, having a high performance file system, such as a SCSI RAID
array, will help you retrieve files faster.

Tuning the Linux OS
Changing some default settings on your Linux distribution can help improve
performance for your Web server and your Enhydra servers.

Kernel versions
Use the most recent stable production Linux kernel. Considerable effort has been
expended to improve the performance of networking in the kernel.

Remove non-essential daemon
Run only the most essential system daemons. The more daemons running on the
server, the less virtual memory space and kernel table space is available for your Web
server or Enhydra application server.

Increase the maximum number of open files and inodes
Increase the maximum number of files and inodes that may be open at once. These
values are set in /proc/sys/fs/file-max and /proc/sys/fs/inode-max. Set the maximum
number of files to at least 16348, and the maximum number of inodes to at least
49152.

Improve file access time
Place the static data on a separate partition, and use the noatime option when
mounting the file system in /etc/fstab. This prevents the system from updating file
access times, which you don’t need (or can get from the Web server’s log files).

Note Some benchmarks have shown limited improvement from this change. It has other
benefits, however, such as better fsck times and improved data integrity.

Increase the number of available TCP sockets
The default Linux configuration will limit Director to about 260 connections per
second. Even sites that do not usually reach this limit may experience load spikes
that could cause denial of service errors. If connection rates are likely to exceed 500
connections per second, you need to recompile your kernel to increase the number of
available TCP sockets. See “TCP TIME_WAIT problem” on page 176 for instructions
on increasing your TCP sockets.

Tuning the Apache Web Server
The Apache Web Server is focused on flexibility, extensibility, and portability rather
than raw performance. Some Apache features can be disabled to reduce the server’s
overhead and improve performance. If you do need a particular feature, enable it
only for the portions of your site that require it, and leave it disabled for the other
parts. This section discusses only those features that directly relate to Director and
Enhydra performance, but you may need to tune other features to maximize

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 175

O p t i m i z i n g D i r e c t o r p e r f o r m a n c e

performance. See the Apache documentation for information on tuning features not
discussed here.

Design your applications to separate static content from dynamic content
Your servers will perform best when Apache is used to server static content and
Enhydra is used to serve dynamic content. Enhydra, like all application servers, is
not designed for efficient file I/O, whereas Apache is designed to do just that.

Use the latest stable release of Apache
Use the most recent stable production release of Apache. Similar to the Linux kernel,
considerable effort has been made to tune the most recent versions for increased
performance. In addition, the default values of many tuning parameters were
changed in the 1.3 release of Apache.

Disable hostname lookups
Disable DNS lookups for Web server requests. This increases performance because
Apache doesn’t need to query DNS to resolve the client IP address before
responding. This feature is disabled by default in Apache 1.3 or greater. If you are
running Apache 1.2, set HostnameLookups to Off in httpd.conf.

Additionally, if you use the Allow from domain or Deny from domain directives, specify IP
addresses rather than hostnames.

Allow Apache to follow symbolic links
For security reasons, Apache is often configured to not follow symbolic links
(because an intruder might replace a file with a symbolic link to another file). This
check may not be worth the performance cost if other, stronger security measures,
such as firewalls, are in place.

You should enable FollowSymLinks in all your directories in httpd.conf, and never
enable SymLinksIfOwnerMatch.

Disable AllowOverride
Apache allows you to dynamically fine-tune file access via the AllowOverride directive
in httpd.conf and the placement of .htaccess files in your Web server directories. This
is not needed for many sites, and should be disabled by setting AllowOverride to None.

Monitor the number of server processes
Apache spawns child processes to handle incoming requests. It dynamically adjusts
the number of child processes, and some parameters used in this algorithm can be
adjusted. The defaults are reasonable for most circumstances. However, you should
check the Apache error log, typically <Apache_root>/logs/error_log, to see if there are
frequent messages regarding spawning more than four child processes per second. If
this occurs, increase the MinSpareServers setting in httpd.conf.

Ensure browser caching
Typically, static content files change infrequently, and when they do, they change in
predictable ways (for example, files that change daily or weekly). You can reduce the

176 D e v e l o p e r ’ s G u i d e

O p t i m i z i n g D i r e c t o r p e r f o r m a n c e

number of client requests by making sure that client browsers will cache these items
instead of wasting resources retrieving them from the Web server each time the user
accesses the site.

By default, Apache does not specify expiration times. Client browsers generally
cache items without a specific expiration time, but it is preferable to set an explicit
time.

The easiest way to set the expiration times is to use the Apache expires module,
mod_expires. You can use this module to set blanket expiration times for your files,
including, for example, an expiration time for all GIF files. For information on
mod_expires, see http://www.apache.org/docs/mod/mod_expires.html.

Even if you log page hits, and therefore don’t want clients to cache the static HTML
pages, you can improve performance by caching static graphics, which are often
larger than the HTML pages that call them.

Note If you do set long expiration times for these files, you will encounter problems if the
files change before your expiration times. In this situation, you should give the
changed files different URLs.

TCP TIME_WAIT problem

The TCP protocol includes a “cooling off period” for connections that have recently
been closed. This is the TIME_WAIT state. It is required by the TCP specification to
ensure that stray data from a defunct connection on the same port does not find its
way to the new connection. RFC 793, “Transmission Control Protocol,” states that the
wait period should be four minutes.

The problem is that this four-minute wait is far too conservative for
high-performance transaction-oriented server implementations. For example, we
have a server that is in steady state receiving and processing 200 requests per second.
Director opens a new connection for each transaction to the back-end Enhydra
server. This means that 200 connections per second on average are going into the
TIME_WAIT state when they finish. After four minutes, older TIME_WAIT
connections begin to disappear, as expected. This means that there will be, on
average, about four minutes worth of TIME_WAIT connections at any given time.
Doing the math, we get 200 * 4 * 60 = 48000 connections in the TIME_WAIT state.

The maximum number of connections that any one server can have in any state is
65535. This is because RFC 793 specifies that the port that defines the local endpoint
for the connection is only a 16-bit unsigned integer, and the largest such number is
65535. Worse, ports 0-1024 are usually reserved for well-known services and are not
available as dynamically allocated, or ephemeral, ports. In the best of all cases, there
are 64511 ports available.

With a four minute TIME_WAIT, we can compute 64511 ports /(4 minutes * 60
seconds per minute) = 268 connections per second. This means that no matter how
fast your server is, connections will begin failing at 268 connections per second
average load. Actually, the failures will usually start just before that threshold is
reached.

C h a p t e r 9 , U s i n g E n h y d r a D i r e c t o r 177

O p t i m i z i n g D i r e c t o r p e r f o r m a n c e

Solving the TIME_WAIT threshold
The current solution to this problem is to reduce the amount of time that old
connections spend in TIME_WAIT. This is technically in violation of RFC 793, but the
trade-off in performance gain well offsets this violation.

The purpose of TIME_WAIT is to prevent any lingering duplicates from old
connections from finding their way into an existing connection, where they could
cause data corruption. Back in the days of 9600-baud X.25 networks, where a packet
could very well circulate around many tens of seconds among remote routers, four
minutes was a good number to serve the purpose of TIME_WAIT. The Web had not
been invented at this point, and even if it had, nobody expected the current hardware
to be capable of sustaining 200 or more transactions per second.

On a typical Enhydra high-throughput server, all the back-end Director connections
take place on a fast 100Base-T or Gigabit Ethernet subnet. In such a situation, a packet
is either going to arrive at its destination or die within milliseconds—if not
microseconds—unless server routing misconfigurations are present.

On the Internet side of the server, connections are coming from all locations. It is
quite possible that stray packets could linger for quite some time. For a single
client-server pair, the four-minute TIME_WAIT is not going to be a problem and may
be reasonable if the connection is being reestablished for each transaction. However,
a Web server is a server with many different clients. HTTP requests from a single
client are in most cases piggy-backed into one TCP session using HTTP “Keep-alive”
semantics. Most new connections are coming from different clients, which prevents
the stray segment problem.

For a stray segment to make it into a new connection, the following conditions must
all be met:

1 The local port of the new connection must match the local port of the old
connection.

2 The local IP address of the new connection must match the local IP address of the
old connection.

3 The remote port of the new connection must match the remote port of the old
connection.

4 The remote IP address of the new connection must match the remote IP address of
the old connection.

5 The TCP sequence number in the old segment packet must be such that the new
connection will think it is valid. This is highly unlikely, even in the already
unlikely event that the other four conditions have been met.

Given these conditions, it should be very safe to set a TIME_WAIT interval that is
quite low. Choose a TIME_WAIT value that keeps the average number of
outstanding TIME_WAIT connections below 30000. That is, TIME_WAIT_SECS *
CONNECTIONS_PER_SECOND < 30000. A value of 60 seconds will allow a
theoretical maximum of 1072 connections per second, and up to 500 connections per
second without going over 30000 TIME_WAIT connections. If you need more, lower
TIME_WAIT even more.

178 D e v e l o p e r ’ s G u i d e

O p t i m i z i n g D i r e c t o r p e r f o r m a n c e

Changing TIME_WAIT on Linux
On Red Hat 6, run the following command:
/sbin/sysctl net.ipv4.ip_local_port_range

If you haven’t already changed this value, it is 1024 to 4999. This is the range of
ephemeral ports available by default, and is too low for a high performance server.
Use this command to change the range from 1024 to 65535:
/sbin/sysctl -w net.ipv4.ip_local_port_range="1024 65535"

By default the TIME_WAIT interval on Red Hat Linux is one minute. This allows up
to 1072 connections per second, or 500 per second without exceeding 30000
TIME_WAIT connections. If you need more, you have to change a kernel header file
and recompile your Linux kernel. If /usr/src/linux is a symbolic link to your current
kernel source, change the file /usr/src/linux/include/net/tcp.h.

Change the line
#define TCP_TIMEWAIT_LEN (60*HZ)

to
#define TCP_TIMEWAIT_LEN (<TIMEWAITSECS> * HZ)

where <TIMEWAITSECS> is the number of seconds for connections to remain in the
TIME_WAIT state.

For example, if you are changing the TIME_WAIT period to 15 seconds, the line will
be:
#define TCP_TIMEWAIT_LEN (15 * HZ)

Once you have saved tcp.h, completely rebuild and install the kernel.

Changing TIME_WAIT on Solaris
On Solaris, the TIME_WAIT interval is a tunable parameter and can be changed
using ndd. The value is specified in milliseconds, so to specify a value of 30 seconds,
use 30000 milliseconds.

For Solaris 2.6 and earlier:
ndd -set /dev/tcp tcp_close_wait_interval 30000

For Solaris 2.7 and later:
ndd -set /dev/tcp tcp_time_wait_interval 30000

The change takes place immediately on all new connections. Old connections will
still wait for the old interval until they expire. You should put this command into a
system start-up file so it is run each time the system is rebooted.

Changing TIME_WAIT on Windows
The TIME_WAIT interval is set in the registry key under HKEY_LOCAL_MACHINE:
SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay

If this key does not exist you can create it as a DWORD value. The numeric value is the
number of seconds to wait; it can be set to any value between 30 and 240. If it is not
set, Windows defaults to 240 seconds for TIME_WAIT.

A p p e n d i x A , U s i n g S S L w i t h E n h y d r a 179

AAppendix
Using SSL with Enhydra Appendix A

This appendix is a guide to developing Enhydra applications that use Secure Sockets
Layer (SSL) encryption. Although this is not a tutorial, if you follow these
instructions you can modify the Golf Shop example application to use SSL.

System requirements
You must have the following to use SSL with Enhydra:

• JDK 1.2.2
• Your JDK must include keytool (located in <JDK_HOME>/jre/bin)
• Sun's Java Secure Socket Extension Kit (available at

http://java.sun.com/products/jsse/)

The Java Secure Socket Extension Kit contains implementations of cryptographic
algorithms, and is subject to U.S. export restrictions: You cannot download it in
countries that the United States currently has an embargo against. Sun has made a
separate version available for export outside the United States and Canada. For more
information, see the JSSE website.

Background
There are two ways to use SSL with Enhydra:

• You can associate Enhydra with a Web server using Enhydra Director. This is the
recommended method, as any serious use of encryption will take a large amount
of CPU cycles. It is far better to do this with native code than with Java. The
preferred setup would consist of Enhydra with Apache and the mod_ssl module.
See http://www.modssl.org. For information on integrating Director with
Apache, see Chapter 9, “Using Enhydra Director.”

• If you need a pure Java solution, you can build SSL support directly into Enhydra.

This document discusses the pure Java option. There are a variety of commercial SSL
tool kits for Java, but we recommend the Sun Java Secure Socket Extension Kit (JSSE).
JSSE combines SSL features found in Sun's Java Web server with the security API of
JDK 1.2. This is likely to be a defining standard for other commercial Java SSL
vendors, though it may take some time for the vendors to release their own
implementations of JSSE.

180 D e v e l o p e r ’ s G u i d e

I n s t a l l a t i o n a n d c o n f i g u r a t i o n

JSSE is reasonably full featured. Sun's implementation is a reference release: they do
not plan on supporting JSSE further. JSSE implements SSL 3.0 and TLS, although it is
currently unclear how secure this implementation is.

Installation and configuration
Here are the basic steps to get SSL working with Enhydra.

1 Install a version of Enhydra as usual, using the built in SSL hooks.
2 If building from source, edit config.mk.
3 Download and install the JSSE JAR files.
4 Edit your Java security policy file.
5 Generate or install X509 certificates.
6 Modify Enhydra configuration files to add the SSL connection method.

Each step is described in more detail in the sections that follow.

Step 1: Install Enhydra

Make sure that you have the version of Enhydra with SSL support. Enhydra has no
implementations of cryptographic algorithms, so its export outside the U.S. is not
restricted.

Step 2: Download and install JSSE JAR files

JSSE is currently available only from Sun at http://java.sun.com/products/jsse/.
Once you have downloaded the ZIP file, unzip the three JAR files and place them in
their target locations.

JSSE is a Java extension kit, so if you place it in <JDK_root>/jre/lib/ext, the Java
compiler and virtual machine will be able to find the JSSE classes without changing
the CLASSPATH.

If you do not have access to this directory, you must run the Enhydra configure script
with the -jsse option. This flag takes as an argument the directory containing the
JSSE JAR files.

Step 3: Configure Make

If you are building Enhydra from source, set HAVE_JSSE=YES in your top-level config.mk.
Make sure that this environment variable is set after include
$(ROOT)/lib/make/stdrules.mk, or it will not work.

A p p e n d i x A , U s i n g S S L w i t h E n h y d r a 181

I n s t a l l a t i o n a n d c o n f i g u r a t i o n

Step 4: Edit the Java security file

You can find your Java security file at <JDK_root>/jre/lib/security/java.security. Find
the list of security providers. The default is:
security.provider.1=sun.security.provider.Sun

To add the default JSSE security provider, add this line:
security.provider.2=com.sun.net.ssl.internal.ssl.Provider

The numbering refers to the order in which the security providers are used. If you are
using a vendor’s implementation of JSSE, the security provider will be something
else. Refer to your vendor documentation for more information.

Step 5: Generate or install your X509 certificates

If you are testing your setup, you will want to generate your X509 certificate yourself.
If you are building a production site, you will need to purchase a certificate from a
certificate authority such as Thawte or Verisign.

Generating your private key
You can use the JDK keytool utility to generate your own X509 certificates, but be
aware that this is a memory-intensive operation. Also, when you generate a
certificate you will need to give information to the keytool utility. Do not lose this
information.

At the command prompt, presuming that <JDK_root>/jre/bin is in your path, enter:
keytool -genkey -alias name -keyalg RSA

Note The program will not work without the -keyalg RSA option. Netscape uses RSA
encryption, but the keytool uses DSA by default. At this point you will be prompted
to confirm that the information is correct. If it is then the program will proceed to
generate a self-signed certificate and key. This may take some time. Finally, you will
be prompted for a password for the certificate. Make a note of the password because
you will not be able to use the certificate without it.

Do not attempt to run this command until you have changed your java.security file
as described previously. If you do, you will get the following error:
keytool error: KeyPairGenerator not available

An RSA-enabled provider is not provided with the default JDK1.2.x.

When you run the keytool command, you will be prompted for the following
information:

• keystore password: If this is the first time you are running keystore, it creates a
keystore in your home directory, and you will be prompted to create a keystore
password. You will need this password every time you use any key management.
The alias is the name that will identify the key in the keystore (you can have
several keys in your keystore). If you do not specify an alias, the default name is
mykey.

182 D e v e l o p e r ’ s G u i d e

I n s t a l l a t i o n a n d c o n f i g u r a t i o n

• First and Last name: The fully qualified domain name of the host from which
you’ll be running your server (for example, www.mycompany.com). It is
important for you to enter the correct name because the certificate authority will
not issue a certificate if the name is incorrect.

• Name of organizational unit: This is not the company name, but rather the name
of an internal department (for example “Engineering”).

• Name of your organization: The full name of your company (for example
“MyCompany Incorporated”).

• City or location: For example, “Santa Cruz.”

• State or Province: For example, “California.”

• Country code: For example, “USA.”

To verify that the key was properly created in the keystore, you can verify it with:
keytool -list

Generating a certificate request
If you want a certificate, either your own self-signed certificate or one from a
recognized certificate authority, you will need to generate a certificate request. You
can submit the certificate request to your certificate authority or issue your own self-
signed certificate using either keytool or OpenSSL.

To generate a certificate request, type the following at the command prompt:
keytool -alias <name> -certreq -file <filename>

where <name> is the alias of the key in the keystore that you are generating the request
against. The specified file is where the certificate request will be written to. If no file is
specified, the request will be output to standard output.

A successful certificate request should look like this:
-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBuzCCASQCAQAwezELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExEzARBgNVBAcT
CnNhbnRhIGNydXoxDzANBgNVBAoTBmx1dHJpczEbMBkGA1UECxMSc2VjdXJlIGRldmVsb3BtZW50
MRQwEgYDVQQDEwtzdGV2ZSBsYXRpZjCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAuunCyGrr
wCCZeUAJrCvoN/n82k8IF1OwH7KNzAyaPgMU6L7CcawvWqVQY/TncHZmy5tvIlNaEJR300Ha8Keo
TxWIG7T/GHgwqBcjmt/reZbvKdKxBnT7ocoWx2G5BjHoN8RxMLQtZIc/vd9QUrelfw3WMTSLoT4A
QJiAOQpcSvECAwEAAaAAMA0GCSqGSIb3DQEBBAUAA4GBAEkeC/6FzrLO0EUAg0zaIDHazB7kKqZH
cbxpAhPC1/x9ow5D/BOwUf114lMK1L8rNDSv9UlTrRJfG36cNFHIiomu42kUovFV774Ad0up6IF0
AFFOXitH2CiZVM5458NVECGdlNauRvjpwQvsRcRHC2rEpfTD0db9ISH/lN0JmDUz
-----END NEW CERTIFICATE REQUEST-----

The first and last lines (which start with BEGIN and END) are part of the certificate
request and should not be removed.

To validate the certificate request, use OpenSSL or keytool. Even though OpenSSL is
not Java-based, it is more robust and has a more refined set of command-line tools
than keytool. OpenSSL is an open-source implementation of the SSL and TLS
protocols, and is widely used with the Apache mod_ssl package to provide SSL
servers. If you have any doubts about open-source cryptographic packages, note that
OpenSSL and mod_ssl are used by three commercial Apache vendors as the basis for

A p p e n d i x A , U s i n g S S L w i t h E n h y d r a 183

I n s t a l l a t i o n a n d c o n f i g u r a t i o n

their secure servers. Refer to http://www.openssl.org and http://www.modssl.org
for downloads and documentation.

When OpenSSL is installed, run the command
openssl req -noout -text -in <csr>

where <csr> is the name of the file containing your certificate request.

Submitting your certificate request
To submit your certificate to a recognized certificate authority, consult the
instructions on their Web page. Two well known certificate authorities are:
http://www.thatwte.com and Verisign.

If you are doing development and are creating your own self-signed certificate, run
the command
keytool -sefcert -alias <keyname>

where <keyname> is the alias of the key you want to associate with the certificate. The
certificate is stored in the keystore.

To validate the certificate, you first need to export the certificate from the keystore:
keytool -export -alias <name> -file <filename>

where <name> is the alias of the associated key, and <filename> is the name of the file
that the certificate will be written to.

Now read the certificate information:
keytool -printcert -file <file>

where <file> is the name of the file with the exported certificate.

Importing a certificate
If you are using a certificate authority to issue your certificate, you will receive a file
that looks like this:
-----BEGIN CERTIFICATE-----
MIIC3DCCAkWgAwIBAgIDATZXMA0GCSqGSIb3DQEBBAUAMIHEMQswCQYDVQQGEwJa
QTEVMBMGA1UECBMMV2VzdGVybiBDYXBlMRIwEAYDVQQHEwlDYXBlIFRvd24xHTAb
BgNVBAoTFFRoYXd0ZSBDb25zdWx0aW5nIGNjMSgwJgYDVQQLEx9DZXJ0aWZpY2F0
aW9uIFNlcnZpY2VzIERpdmlzaW9uMRkwFwYDVQQDExBUaGF3dGUgU2VydmVyIENB
MSYwJAYJKoZIhvcNAQkBFhdzZXJ2ZXItY2VydHNAdGhhd3RlLmNvbTAeFw0wMDA3
MjQyMjMyNDBaFw0wMTA4MDcyMjMyNDBaMHoxCzAJBgNVBAYTAlVTMRMwEQYDVQQI
EwpDYWxpZm9ybmlhMRMwEQYDVQQHEwpTYW50YSBDcnV6MSIwIAYDVQQKExlMdXRy
aXMgVGVjaG5vbG9naWVzLCBJbmMuMR0wGwYDVQQDExRiZWVsemVidWIubHV0cmlz
LmNvbTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA4pMbXgVD0jBrQHW5Xqpj
jfSQ70HzCwagrUyHPtV5LbvLffInJ2mAhihlqwPxCmr0HnYIioDxtJgr/3gqfL9C
IC1/L1xlEx06IKBkFs9X4XVXPay2DzFFGnpvCvSlEjCYobHpK+QqwF8bJrnEa9Bd
oyLyxkGBGthaQkxUJARus+MCAwEAAaMlMCMwEwYDVR0lBAwwCgYIKwYBBQUHAwEw
DAYDVR0TAQH/BAIwADANBgkqhkiG9w0BAQQFAAOBgQC6xEHb6Is9jUJUf06XfWiD
wrZ4/IOYnA52bg54NVTTyjjl3qxcQpanAwajp6aAnWUYb34MuRZ8dpsYVu3TUjNF
xxgv0MWQByb4LIjv+l2JcTO4a5ZmFp7Kqp6U2XgdgcS2YYxG+mMQmTdJ3PjCB4Od
g3TILQ8TdSHnSG4YaQgNPw==
-----END CERTIFICATE-----

You can verify that the certificate works by using OpenSSL:
openssl x509 -noout -text -in <crt>

184 D e v e l o p e r ’ s G u i d e

M o d i f y i n g y o u r a p p l i c a t i o n

where <crt> is the name of your certificate file.

Or, you can use keytool:
keytool -printcert -v -file <crt>

where <crt> is the name of your certificate file.

Note keytool and openssl handle certificates in different ways. keytool complains that a
certificate is unreadable if it contains a new line at the end of the file, but openssl does
not have this problem.

Once you have verified your certificate, you can import it into your keystore by
issuing the command:
keytool -import -alias <name> -file <crt> -trustcacerts

where <crt> is the name of your certificate file, and <name> is the name of the alias that
you want to associate with the certificate. The trustcacerts option tells keytool to look
in the cacerts file found in the <JDK_root>/jre/lib/security directory. This file contains
the root certificates for Thawte and Verisign, and keytool uses them to verify the
certificates you input into the keystore.

Note If you are using a certificate authority other than Thawte or Verisign, you will have to
import that certificate authority’s root certificates into the
<JDK_root>/jre/lib/security/cacerts file. To do this, download the root certificate files
from your certificate authority, then run keytool:
keytool -import -alias <name> -file <filename> -keystore cacerts

where <name> is the alias that you want to associate with the certificate and <filename>
is the name of the file containing the root certificate.

Modifying your application
Now you can alter your Enhydra application configuration file so that it can find the
certificates and keys. For example, here is the configuration file for the GolfShop
demo that is shipped with the Enhydra source code. This configuration file is in the
<GolfShop_root>/output directory.

This example uses the XMLC implementation of the GolfShop demo.

Add the following to the configuration file:
begin ---------------------------------
Connection.golfPortSSL.Type = https
Connection.golfPortSSL.Port = 8443
Connection.golfPortSSL.SecureRandomAlgorithm =SHA1PRNG
Connection.golfPortSSL.SecureRandomProvider = SUN
Connection.golfPortSSL.SSLContextProvider = SunJSSE
Connection.golfPortSSL.SSLContextProtocol =TLS
Connection.golfPortSSL.KeyStoreLocation="/home/steve/.keystore"
Connection.golfPortSSL.KeyStoreProvider=JKS
Connection.golfPortSSL.KeyManagerAlgorithm = SUNX509
Connection.golfPortSSL.KeyManagerProvider = SunJSSE
Connection.golfPortSSL.TrustManager=JSSE
Connection.golfPortSSL.Password = <your password here>
Connection.golfPortSSL.ClientAuthentication=false

A p p e n d i x A , U s i n g S S L w i t h E n h y d r a 185

M o d i f y i n g y o u r a p p l i c a t i o n

Connect the port to the application

Channel.golfPortSSL.golfChannel.Servlet = GolfShopSSL
Channel.golfPortSSL.golfChannel.Url= /
Channel.golfPortSSL.golfChannel.Enabled = yes

Specify applications (no admin).

Application.GolfShopSSL.ConfFile = GolfShopXMLC.conf
Application.GolfShopSSL.Description = "Enhydra Demo Secure Shopping Cart Application (SSL)."
Application.GolfShopSSL.Running = yes
#end --

Configuration file in detail

This section explains each line you added to the configuration file in detail.
Connection.golfPortSSL.Type = https

Defines the connection method. This line is required if you want to use SSL.
Connection.golfPortSSL.Port = 8443

Defines the port to connect to with the HTTPS method. The default port for SSL is
443, but that is a privileged port on UNIX and you will need to be root to use it. The
HTTP alternative ports are in the 8000 range. If you are testing your application on a
port other than 443, Internet Explorer will not be able to connect to it. Netscape does
not have a problem with SSL on nonstandard ports.

A workaround is to use SSH port-forwarding to bind port 44 on your local machine
to the port on which Enhydra is running. For example, if your Enhydra application is
running on foo.bar.org on port 8443 where you are user steve, then your invoke ssh:
ssh -x -l steve -L 443:foo.bar.org:8443 steve@foo.bar.org.
Connection.golfPortSSL.SecureRandomAlgorithm =SHA1PRNG

Java security provides a cryptographically strong Pseudo Random Number
Generator (PRNG). This specifies the algorithm.
Connection.golfPortSSL.SecureRandomProvider = SUN

The provider refers to the providers in the java.security file, in this case SUN or SSL.
Connection.golfPortSSL.SSLContextProvider = JSSE

The SSLContext Provider currently defaults to JSSE. The SSLContext holds the state
of the SSL implementation. SSLContext is used to generate the factories for the
sockets.
Connection.golfPortSSL.SSLContextProtocol =TLS

This currently has two defaults: SSL or TLS. TLS is a protocol that is a likely
replacement for SSL 3.0.
Connection.golfPortSSL.KeyStoreLocation="/home/steve/.keystore"

The keystore is generated and managed by the keytool utility. The default is to have it
in your home directory.
Connection.golfPortSSL.KeyStoreProvider=JKS

The keystore provider.

186 D e v e l o p e r ’ s G u i d e

F o r m o r e i n f o r m a t i o n o n J a v a a n d S S L

Connection.golfPortSSL.KeyManagerAlgorithm = SUNX509

Currently SUNX509 is the only legal value.
Connection.golfPortSSL.KeyManagerProvider = JSSE

This is currently the only provider. The name may change to SunJSSE in the future.
Connection.golfPortSSL.TrustManager=JSSE

The Trust manager.
Connection.golfPortSSL.Password = <your password here>

When you generated the key and certificate or the certificate request you had to
specify a password.

At this point, assuming that everything is correctly configured, you should be able to
start up Enhydra and connect on port 8443.

For more information on Java and SSL
The following books, newsgroups, and Web pages provide additional information
about Java security issues and SSL.

• For general Java security, see Java Security by Scott Oakes (published by O’Reilly &
Associates).

• For an interesting and topical book, see Java2 Network Security by Marco Pistoia
(published by Prentice-Hall). Note that the sample code has many bugs.

• The best source for JSSE information is the Javadoc files that come with the JAR
files. In particular, see overview.html, API_users.html, and addtional.html files, which
are very useful.

• The comp.lang.java.security newsgroup has occasional discussions on JSSE.

• Sun has a mailing list archive at
http://java.sun.com/security/hypermail/java-security-archive, which has many
interesting posts related to JSSE.

• An excellent resource to learn about SSL is the open-source OpenSSL libraries at
http://www.openssl.org. OpenSSL forms the basis of most of the commercial SSL
versions of Apache when combined with mod_ssl (http://www.modssl.org).

• For an excellent paper on SSL scalability issues, see
http://www.awe.com/mark/apcon2000/. The authors are two of the main
OpenSSL developers.

A p p e n d i x B , X M L C m e t a d a t a f i l e s c h e m a 187

BAppendix
XMLC metadata file schema Appendix B

This appendix describes the schema of XMLC metadata files. For general
information on XMLC metadata files, see “Using XMLC metadata files” on
page 84.

Structure
The hierarchy of tags in an XMLC schema file is as follows:
<xmlc>

<compileOptions/>

<parser>
<xcatalog/>

</parser>

<html>
<htmlTagSet/>
<htmlTag/>
<htmlAttr/>
<compatibility/>

</html>

<domEdits>
<deleteElement/>

</domEdits>

<documentClass>
<implements/>

</documentClass>

<javaCompiler>
<javacOption/>

</javaCompiler>

</xmlc>

Tag reference
This section contains an alphabetical reference of all the tags allowed in the
XMLC schema file. Each entry corresponds to an XML tag, and contains the
subsections:

• Content: Tags that the tag can contain.

188 D e v e l o p e r ’ s G u i d e

T a g r e f e r e n c e

• Attributes: Attributes the tag can have.

• Context: Tags within which the tag can appear, in other words, the tags that
can contain it.

So, for a tag <sampleTag>, whose attributes are attribute1, attribute2, and so on,
whose context is <contextTag>, and that can contain contentTag, its general syntax
would look like:
<contextTag>

<sampleTag attribute1 attribute2 ...>
<contentTag/>

</sampleTag>
</contextTag>

<compatibility>

Enables compatibility with the way older version of XMLC handled HTML.

Content None.

Attributes The <compatibility> tag has the following attributes:

oldClassConstants
Older versions of XMLC generated HTML class attribute constants as all upper
case (e.g. CLASS_DELETEROW) with values being case-preserved. If a true
value, this option will reproduce the old behavior. This option is intended to
aid in the porting of existing applications; it may not be support in future
releases.

oldNameConstants
Older versions of XMLC generated HTML name attribute constants as all
upper-case (e.g. NAME_INPUT) with values being case-preserved. If a true
value, this option will reproduce the old behavior. This option is intended to
aid in the porting of existing applications; it may not be support in future
releases.

Context <html>

<compileOptions>

Specifies options for the document compiler.

Content None.

Attributes The <compileOptions> tag has the following attributes:

printVersion
Print the XMLC version number (boolean value).

T a g r e f e r e n c e

A p p e n d i x B , X M L C m e t a d a t a f i l e s c h e m a 189

keepGeneratedSource
Keep the generate Java source, do not delete it (boolean value).

printDocumentInfo
Print useful information about the contents of the document, such as ids and
URLs (boolean value).

printParseInfo
Print detailed information about the page parsing (boolean value).

printDOM
Print out the DOM tree for the page (boolean value).

printAccessorInfo
Print the signature of each generated access method and constant (boolean
value). This also lists the methods and access constants that were not generated
due to being invalid Java identifiers.

compileSource
If true, the generate source will be compiled, if false don't compile the source.
Default is true. (boolean value).

inputDocument
URL of the document to compile.

processSSI
If true, process server-side include directives. If false, pass them through as
comments. Default is false.

documentFormat
The format of the document. Value is one of xml, html, or unspecified. If
unspecified, then first line of the file is checked for an XML header. If an XML
header is found, xml is assumed, other html is assumed. The default is
unspecified. This attribute is only required for parsing XML files that don't have
a XML header as the first line.

sourceOutputRoot
Specifies the root directory for the generate source files. A full package
hierarchy is created under this directory. If not specified, the file is created in
the current directory. If -keep is specified, the generate source files will be saved
under this directory.

190 D e v e l o p e r ’ s G u i d e

T a g r e f e r e n c e

classOutputRoot
Specifies the root directory for the compiled class files. A full package hierarchy
is created under this directory. If not specified, the file is created in the current
directory. The metadata file for recompilation is also created in this directory.

compileSource
If false, the source code will not be generated or compiled. This is useful with
the documentOutput option, for validating documents, and for print
information about the documents. Default is true. (boolean value).

documentOutput
Write a the document, after DOM editing, to file. This is useful for pages where
the URL’s must be mapped to reference dynamic pages, but there is no other
dynamic content. Normally used with createCode="false".

Context <xmlc>

<deleteElement>

Delete all matching elements. This is often used to specify the element class of
mock-up data that is to be deleted from the document.

Content None.

Attributes The <deleteElement> tag has the following attributes:

elementIds
Restrict replacement to the elements matching any of the ids in the
space-separate list.

elementClasses
Restrict replacement to the elements any of the class names in the
space-separate list. These are class attribute values, as specified by the HTML
CLASS attribute, not Java class names.

elementTags
Restrict replacement to the elements matching any of the tag names in the
space-separate list. Case is ignored for HTML.

Context <domEdits>

<document>

Not yet implemented.

T a g r e f e r e n c e

A p p e n d i x B , X M L C m e t a d a t a f i l e s c h e m a 191

<documentClass>

Specify properties of the XMLC document class to generate.

Content <implements>

Attributes The <documentClass> tag has the following attributes:

name
The fully-qualified name of the class to generate. If generate specifies class, then
this is the name of the class. Otherwise, this is the name of the interface to
generate, with the generated implementation will have “Impl” appended to this
name.

generate
Specifies what kind of classes should be generated. Normally either class or
both is used. Valid values are:

• class: Generate a simple class (default).

• interface: Generate just an interface but not the implementation.

• implementation: Generate an implementation of the interface, named in the
form “nameImpl,” but not the interface.

• both: Generate both an interface and an implementation.

delegateSupport
Generate code for delegate support used by for XMLC document class
reloading. Boolean value, default is false.

createMetaData
Create a XMLC meta-data XML file in the same directory as the class file. This is
used by the XMLC recompilation factory. Boolean value, default is false.

recompilation
Set all options required for XMLC recompilation. Boolean value, default is false.
Setting this to true results in:

• generate="both"
• delegateSupport="true"
• createMetaData="true"

extends
Specify the class that the generated class will extend. This class must extend
org.enhydra.xml.xmlc.XMLObjectImpl for XML documents or
org.enhydra.xml.xmlc.html.HTMLObjectImpl for HTML documents.

192 D e v e l o p e r ’ s G u i d e

T a g r e f e r e n c e

domfactory
Specify the Java class for creating DOM documents. This class must implement
org.enhydra.xml.xmlc.dom.XMLCDomFactory. The option is not supported for
HTML documents. The DOM factory must have a constructor that takes no
arguments. This class serves as a factory for Document objects, giving a
mechanism for creating DTD-specific DOMs. Element classes that correspond
to a specific element types. The specified class must be available on the
CLASSPATH.

dom
Specify one of a predefined set of DOM factories. This is a short-cut for the
domfactory attribute. These are the valid values along with the
XMLCDomFactory they map to are:

• lazydom: The LazyDOM, derived from the Xerces DOM.

• XML: org.enhydra.xml.xmlc.dom.lazydom.LazyDomFactory
• HTML: org.enhydra.xml.xmlc.dom.lazydom.LazyHTMLDomFactory

• xerces: The Xerces DOM.

• XML: org.enhydra.xml.xmlc.dom.xerces.XercesDomFactory
• HTML: org.enhydra.xml.xmlc.dom.xerces.XercesHTMLDomFactory

The default value, if neither the domfactory or dom attributes are specified is
lazydom.

recompileSourceFile
Specifies the classpath-relative path of the source file that the recompilation
factory will use. This is compiled into the class as the value of the
XMLC_SOURCE_FILE field. If not specified, the file path is generated by
converting the package name into a file path and merging with the base name
of the source file.

elementAccessorReturnType
Specifies the class or interface to use as the return type for the all generated
getElementXXX() methods. If not specified, the return type is obtained for each
element using XMLCDomFactory associated with the document.

The type specified must implement org.w3c.dom.Element as well as be assignment
compatible (without casting) to the actual return type. This is used to make the
class more generic and make it possible to write interfaces to which multiple
documents conform. One of the following value maybe used instead of a class
or interface name:

• Element: a short-cut for org.w3c.Element.

• class: the actual class name of the element.

• interface: the value obtained from the nodeClassToInterface() method in the
XMLCDomFactory object being used to compile the document.

T a g r e f e r e n c e

A p p e n d i x B , X M L C m e t a d a t a f i l e s c h e m a 193

Context <xmlc>

<domEdits>

tag containing DOM editing specifications. These are modifications done to
elements in the DOM during the compilation of a document.

Content • <urlEdit>
• <urlMapping>
• <urlRegExpMapping>
• <deleteElement>

Attributes None.

Context <xmlc>

<html>

Tag containing HTML-specific options.

Content • <htmlTagSet>
• <htmlTag>
• <htmlAttr>
• <compatibility>

Attributes encoding
Specify the encoding to use when reading a HTML document. This is a HTML
encoding name, not a Java encoding name

Context <xmlc>

<htmlTagSet>

Add a predefined set of proprietary HTML tag and attributes to the list of valid
HTML tags. This option is only used by the tidy parser.

Content None.

Attributes The <htmlTagSet> tag has the following attributes:

tagSet
The name of the tag set. The following tag sets are defined:

• cyberstudio: Tags added by Adobe CyberStudio.

Context <html>

194 D e v e l o p e r ’ s G u i d e

T a g r e f e r e n c e

<htmlTag>

Add a proprietary tag to set of valid HTML tags.

Content None.

Attributes The <htmlTag> tag has the following attributes:

name
The name of the tag.

inline
Tag is a character level element.

block
Tag is a block-like element, e.g. paragraphs and lists.

empty
The tag does not have a closing tag.

optclose
The closing tag is optional.

Context <html>

<htmlAttr>

Add a proprietary attribute the list of valid HTML attributes. The attribute will
be allowed on all tags. This option is only used by the tidy parser.

Content None.

Attributes The <htmlAttr> tag has the following attributes:

name
The name of the attribute. It will be allowed for all HTML tags.

Context <html>

<implements>

Specifies the name of an interface the document class will implement.

Content None.

T a g r e f e r e n c e

A p p e n d i x B , X M L C m e t a d a t a f i l e s c h e m a 195

Attributes The <implements> tag has the following attributes:

name
The fully qualified class name of the interface that will the generated class will
implement.

Context <documentClass>

<javaCompiler>

Specify information about the Java compiler.

Content <javacOption>

Attributes The <javaCompiler> tag has the following attribute:

javac
Specify the command name of the Java compiler to use.

Context <xmlc>

<javacOption>

Specifies an option to pass to the Java compiler.

Content None.

Attributes The <javacOption> tag has the following attributes:

name
The name of an option understood by the specified Java compiler. The flag
argument should contain the leading minus (-) or plus (+) characters.

value
The value to associate with the option. Omitted if the option doesn’t take a
value.

Context <javaCompiler>

<parser>

Specifies the parser and parsing options.

Content <xcatalog/>

196 D e v e l o p e r ’ s G u i d e

T a g r e f e r e n c e

Attributes The <parser> tag has the following attributes:

name
Name of the parser. The valid values are:

• tidy: Use the Tidy parser for parsing HTML. This is the default for HTML.
Validation is always done by this parser.

• swing: Use the Swing parser for parsing HTML. Limited validation is always
done by this parser.

• xerces: Use the Xerces parser for parsing XML. This is only XML parser and
is the default. Validation is optional with this parser. The default is to
validate.

validate
Changes the default document validation mode of the parser. An error is
generated if the value isn’t supported by the parser. Boolean value.

Context <xmlc>

<urlMapping/>

Specifies the literal replacement of URLs in element attributes. When used in
the <domEdits> tag, it applies globally to elements. When use in a element or
sub-document, it applies only to that context.

Content None.

Attributes The <urlMapping> tag has the following attributes:

editAttrs
List of attributes that are to be edited. If not specified, defaults to the attributes
that the XMLCDomFactory object for the document defines as containing URLs.

elementIds
Restrict replacement to the elements matching any of the ids in the
space-separate list.

elementClasses
Restrict replacement to the elements any of the class names in the
space-separate list. These are class attribute values, as specified by the HTML
CLASS attribute, not Java class names.

elementTags
Restrict replacement to the elements matching any of the tag names in the
space-separate list. Case is ignored for HTML.

T a g r e f e r e n c e

A p p e n d i x B , X M L C m e t a d a t a f i l e s c h e m a 197

url
The existing URL. If not specified, all URLs for the matching elements will be
replaced.

newUrl
The replacement URL.

Context <domEdits>

<urlRegExpMapping/>

Specifies the regular expression replacement of URLs in element attributes. If
the regular expression matches, it is substituted using a replacement pattern.
POSIX extended regular expressions are used implemented uses the
gnu.regexp package. Set the documentation on this package for details of the
regular expression and substitution syntax. When used in the <domEdits> tag, it
applies globally to elements. When use in a element or sub-document, it applies
only to that context.

Content None.

Attributes The <urlRegExpMapping> tag has the following attributes:

editAttrs
List of attributes that are to be edited. If not specified, defaults to the attributes
that the XMLCDomFactory object for the document defines as containing URLs.

elementIds
Restrict replacement to the elements matching any of the ids in the
space-separate list.

elementClasses
Restrict replacement to the elements any of the class names in the
space-separate list. These are class attribute values, as specified by the HTML
CLASS attribute, not Java class names.

elementTags
Restrict replacement to the elements matching any of the tag names in the
space-separate list. Case is ignored for HTML.

regexp
The POSIX regular expression to match against URL tag attributes.

subst
The substitution expression to use to the generate the replacement URL.

198 D e v e l o p e r ’ s G u i d e

T a g r e f e r e n c e

Context <domEdits>

<xcatalog>

Specifies a XCatalog file to use in resolving external entities when parsing XML
files. This element maybe specified multiple times. The catalogs will be
searched in the order specified.

Content None.

Attributes The <xcatalog> tag has the following attribute:

url
The URL of the XML catalog file.

Context <parser>

<xmlc>

Root element for XMLC metadata documents.

Content • <compileOptions>
• <parser>
• <html>
• <domEdits>
• <document>
• <documentClass>
• <javaCompiler>

Attributes None.

Context None (top-level tag).

A p p e n d i x C , D O M L f i l e s y n t a x 199

CAppendix
DOML file syntax Appendix C

This appendix describes the syntax of DOML files, which are used by the Data Object
Design Studio (DODS) to generate data access code for Enhydra applications.

Structure
The hierarchy of tags in a DOML file is as follows:
<doml>

<database>
<package>

<package>
....
</package>
<table>

<column>
<type/>
<referenceObject/>
<initialValue/>
<javadoc/>

</column>
</table>

</package>
</database>

</doml>

Tag reference
This section contains an alphabetical reference of all the tags allowed in DOML files.
Each entry corresponds to an XML tag, and contains the subsections:

• Content: Tags that the tag can contain.

• Attributes: Attributes the tag can have.

• Context: Tags within which the tag can appear, in other words, the tags that can
contain it.

200 D e v e l o p e r ’ s G u i d e

T a g r e f e r e n c e

So, for a tag <sampleTag>, whose attributes are attribute1, attribute2, and so on,
whose context is <contextTag>, and that can contain contentTag, its general syntax
would look like:
<contextTag>

<sampleTag attribute1 attribute2 ...>
<contentTag/>

</sampleTag>
</contextTag>

<doml>

Root element of DOML files. This tag contains a database hierarchy that
contains all the packages.

Content • <database>

Attributes None.

Context None.

<database>

Contains the package hierarchy, and specifies the database.

Content • <package>

Attributes The following attributes are valid for <database>:

database
The database attribute specifies the database vendor. The valid types are as
follows:

Context <doml>

Table C.1 Valid database attributes

Attribute Description
Standard_JDBC Generated SQL code will conform to standard JDBC SQL. This is the

default attribute.
Oracle DODS will generate SQL optimized for Oracle databases.
Informix DODS will generate SQL optimized for Informix databases.
MSQL DODS will generate SQL optimized for MS SQL Server databases.
Sybase DODS will generate SQL optimized for Sybase databases.
PostgreSQL DODS will generate SQL optimized for PostgreSQL databases.

T a g r e f e r e n c e

A p p e n d i x C , D O M L f i l e s y n t a x 201

<package>

Each package can contain a sub-package or a table structure.

Content • <package>
• <table>

Attributes <package> has the following attributes:

id
The name of the package. The format for the name includes the parent
package’s id value. For example, if I had a package myPackage, and a sub-package
of it called mySubPackage, mySubPackage’s id value would be myPackage.mySubPackage.

Context <database>

<table>

<table> describes a table in a database.

Content • <column>

Attributes <table> has the following attributes:

id
Similar to the id attribute in <package>, <table>’s id contains the value of the table
name located in a package. For example, if I had a package myPackage, a sub-
package mySubPackage, and a table myTable, the id value is
myPackage.mySubPackage.myTable.

dbTableName
The actual SQL table name. By default this is the same as the id value, minus the
package information. For example, myPackage.mySubPackage.myTable’s dbTableName
is myTable.

isFinal

The possible values for isFinal are:

• true
• false

isLazyLoading
This attribute specifies whether the DO will use lazy loading. If a DO uses lazy
loading, when you supply a known ObjectId to create a DO instance, the DO
instance is created but the corresponding row in the table is not retrieved until
the first get() or set() method call is made. It delays the hit on the database until

202 D e v e l o p e r ’ s G u i d e

T a g r e f e r e n c e

the moment the data is actually needed. The possible values for isLazyLoading
are:

• true
• false

isAbstract
This attribute specifies whether the data object is abstract. In DODS, all data
objects that are extended must be abstract. This is because of how DODS
handles database tables. Only non-abstract leaf classes have tables in the
database.

The possible values for isAbstract are:

• true
• false

isEJB
This attribute is not currently used by DODS.

isView
This attribute is not currently used by DODS.

extensionOf
The name of another table of which this table is an extension. The value of
extensionOf must match the id of a previously defined table.

caching
This attribute specifies whether the DO is fully cached, partially cached, or not
cached. Cached DOs are stored locally, and queries for the cached DO do not go
to the database table. The query instead looks up the information in the cache.
The values for caching are:

• none
• partial
• full

Context <package>

<column>

<column> describes a column in a database table.

Content • <error>
• <javadoc>
• <referenceObject>
• <type>
• <initialValue>

T a g r e f e r e n c e

A p p e n d i x C , D O M L f i l e s y n t a x 203

Attributes <column> has the following attributes:

id
The name of the column in the database table.

isConstant
Specifies whether the column contains a constant value.

The possible values for isConstant are:

• true
• false

isIndex
This attribute specifies whether the table column will be an index. If isIndex is
true, an index is created on this column in the table.

The possible values for isIndex are:

• true
• false

isUnique
Specifies whether the column must contain unique values.

The possible values for isUnique are:

• true
• false

usedForQuery
Specifies whether the values of the column will be used for queries.

The possible values for usedForQuery are:

• true
• false

Context <table>

<javadoc>

The <javadoc> tag contains the text for Javadoc entries for the column.

Content None.

Attributes None.

Context <column>

204 D e v e l o p e r ’ s G u i d e

T a g r e f e r e n c e

<referenceObject>

If the column is a reference to another table, <referenceObject> specifies the table.

Content None.

Attributes <referenceObject> has the following attributes.

constraint
Specifies whether the specified table row must exist.

The possible values for constraint are:

• true
• false

reference
Specifies the ID of the referenced table.

Context <column>

<type>

<type> dictates the form of the data stored in the column. If no <type> is specified,
the column contains all default values.

Content None.

Attributes <type> has the following attributes.

canBeNull
Specifies whether the column can contain null values.

The possible values for canBeNull are:

• true
• false

dbType
Specifies the internal SQL data type the database will use for this column. The
default value of dbType is VARCHAR.

javaType
Specifies the Java data type returned by the DO to the user when querying this
attribute of the DO. The default value of javaType is String.

S a m p l e D O M L f i l e

A p p e n d i x C , D O M L f i l e s y n t a x 205

size
Specifies the size of data types that are commonly measured in width, like
VARCHAR. size must be an integer.

Context <column>

<initialValue>

<initialValue> is used to specify a default initial value for the column.

Content None.

Attributes None.

Context <column>

Sample DOML file
The following snippet is the contents of a DOML file, sample.doml, that will
create tables containing data about cars, car dealers, and car owners.
<?xml version="1.0" encoding="UTF-8"?>
<doml>

<database database="Standard">
<package id="sample">

<table id="sample.Dealer">
<column id="Name">

<type dbType="VARCHAR" javaType="String"/>
</column>

</table>
<table id="sample.Owner">

<column id="Name">
<type dbType="VARCHAR" javaType="String"/>

</column>
<column id="Age">

<type dbType="INTEGER" javaType="int"/>
</column>

</table>
<table id="sample.Car">

<column id="LicensePlate">
<type dbType="CHAR" javaType="String"/>

</column>
<column id="Dealer">

<referenceObject reference="sample.Dealer"/>
<type dbType="none" javaType="sample.DealerDO"/>

</column>
</table>
<table id="sample.CarOwner">

<column id="Car">
<referenceObject reference="sample.Car"/>
<type dbType="none" javaType="sample.CarDO"/>

</column>

206 D e v e l o p e r ’ s G u i d e

S a m p l e D O M L f i l e

<column id="Owner">
<referenceObject reference="sample.Owner"/>
<type dbType="none" javaType="sample.OwnerDO"/>

</column>
<column id="IsCurrent">

<type dbType="BIT" javaType="boolean"/>
</column>

</table>
</package>

</database>
</doml>

I n d e x 207

Index

Symbols
! (exclamation point) characters in properties

files 120
" (double quote) characters

in output files 84
in strings 139

(number sign) characters in options files 84
$ (dollar sign) characters in properties files 121
' (single quote) characters

in output files 84
in strings 139

/ (forward slash)
in dates 136
in directory paths 120

\ (backslash)
in directory paths 120
in strings 125, 139

– (hyphen)
in dates 136
in XMLC options 80, 84

A
absolute paths 120
access conflicts 118
access methods 100
access restrictions 170
accessing

data objects 105
PostgreSQL database 144

Add New Connection dialog 28
addDiscToPage() method 89
adding

applications to Multiserver Console 24
check boxes 91
jar files 48
list boxes 92
radio buttons 91
records to HTML tables 88
servlets to Multiserver Console 26
text fields 90, 92
Web archives to Multiserver Console 27

AddModule directive 150
addWhereClause() method 108
administration console. See Multiserver

Administration Console
altStringHashing property 125
Apache extension module 150

Apache Web Server 150
increasing performance for 173, 174
logging error and system information 151
running with Enhydra Director 151-156
shared memory data for 151
troubleshooting 156

apachectl script 155
APIs 75
app.conf 97
appendChild() method 92
applets 132

accessing InstantDB with 131
application generators 11
application parameters 30, 31, 33, 36

defining 47
application programming interface 75
application server

See also Enhydra
application server tag 169, 170
Application Wizard 51

command-line interface described 11
overview 11, 52
running 52, 60
starting user interface for 12

applications 147
adding jar files 48
adding to Admin Console 24
changing configurations 29
compiling 74
configuring Enhydra 118, 167
connecting to 28, 117
creating Enhydra-specific 52, 53
current state 151
debugging 69
designing data-layer classes for 105, 108
encrypting 179
forwarding requests 150, 157
loading Java classes for 16
logging configurations for 97
overview to DynaCat sample 85
performance-critical 102
presentation layers for 78
removing from Multiserver Console 29
restricting access to 170
running DiscRack 119
running Enhydra 24, 69
saving state 29
setting Java archives for 65
setting up directory structures for 96

208 D e v e l o p e r ’ s G u i d e

support for large scale 7
types described 52
viewing status 18, 19

Applications window (Multiserver) 18
appwizard command 11, 12
apxs script 151

specifying 152
arbitrary arrays 138
arbitrary names 46
archives (Enhydra.org mailing list) 8
arrays 138
ASCII character set 140
assignment 120
attaching to databases 117, 129

with SQLBuilder 133
Attr type 102
Attribute editor dialog 107
Attribute Table (DODS) 106
attributes 99

changing 32
defined 108
displaying data 106
editing 107

auth option 170
AUTO INCREMENT condition 134
autocommit command 128
automatic recompilation 96
automatic recovery 124
Autorecompilation option 97
AutoReload option 97

B
backslash (\) characters

in directory paths 120
in strings 125, 139

bandwidth 173
batch mode command 128
BINARY data type 138
blobs 128, 139
Bourne shell scripts 53
break command 128
browsing 117
buffers 122, 123
bug reports 6
Build integration 52
building DLLs 166
buttons 91
byte arrays 138
byte range 139

C
c command (ScriptTool) 127, 128
cache 173

blobs and 139
databases and 107, 114, 122

CACHE_PERCENT setting 122
CACHE_ROWS setting 122
cacheAmount property 122
cacheCondition property 122
cancel row updates command 128
capitalization 80
cascading delete 112
case comparisons 125, 139
case sensitivity 120, 139
catalog files 101
Catalog.html 85, 87
CatalogHTML object 88
CDataSection type 102
certificate authorities 181, 183

handling requests from 184
certificates

generating private keys for 181
generating requests for 182
getting 181, 182
importing 183
passwords for obtaining 181
setting up 184
submitting requests for 183
validating requests 182, 183

CGI programs 74
changing

application configurations 29
configuration files 32
configurations 168
Java class file names 81
templates 68
URLs 81
user names and passwords 32
Web pages 78, 96

channels 16
CHAR data types 139
character sets 140
check boxes 91
child nodes 76, 102
–class option 81, 98
class files 65

generating Java 66
loading 16
renaming 81
setting destination directory 98

I n d e x 209

class loader 16
class names 63, 98, 100

mapping to HTML files 64
classes 101

automatic recompilation and 96
creating Java 73, 81
customizing generated names 55
generating 53, 60, 95, 97
generating methods used with specific 83
instantiating 77
Kelp-specific 70
mapping servlet to arbitrary names 46
reference for XMLC 98
reloading 97
running specific 66
updating document 97
XML interface 101

CLASSPATH
adding Java archives to 65
adding PostgreSQL driver to 144
described 16

–classpath option 98
ClassPath setting 97
client option 170
client types 13, 53
clients 150, 170
cloneNode() method 92
close command 128
closing result sets 118, 129
code generators 11, 105, 109
collections 102
column DOML tag 202
columns. See fields
command-line interface (Application Wizard) 11
command-line options (XMLC) 80-84

alphabetical listing of 98
running multiple 83
setting from IDE 64

command-line utility 126
Comment type 102
comments 84, 102

properties files 120
commit command 128
commits 123

enabling 128
Common Gateway Interface 74
commsql application 126
comparison operators 112

listed 112
comparisons 139
compatibility XMLC tag 188
compile options 54, 62
compileOptions XMLC tag 188
compiler. See XMLC

compiling 75
HTML objects 95, 97
XML documents 93

configuration files 69
changing 32
editing 168
Enhydra application 31
generating 64
GolfShop demo 184, 185
missing entries 29
multiserver 30
multiserver console 30
passing to Multiserver 66
regenerating 68
types described 15

configuration parameters 45
application 30, 31, 33, 36
multiserver console 30

configuration templates 58, 67
configurations

changing application 29
DiscRack application 119
Enhydra applications 167
Enhydra Director 150-157
InstantDB database 115, 118
logging application 97
servlets 36
SSL 180, 184-186
Web archives 44, 45

conflicts 16
connection methods 16
connections 147

cooling off periods for 176, 177
displaying status 23
establishing database 117, 129
establishing with Multiserver 167
establishing with SQLBuilder 133
InstantDB database 117
Java applications 117
maximum number 176
multiple data sources 16
removing 29
setting application 28

Connections Page (Multiserver) 23
constants 107
contacting

Lutris Documentation 5
Lutris Technical Support 6
Lutris Training 7

content files 57
controlColCacheSize property 122
conventions

documentation 2
for Enhydra root directory 3

210 D e v e l o p e r ’ s G u i d e

for screen shots 3
for URLs 3
UNIX pathnames 3

coordinating load balancing 150
copying sample projects 67
copyright text 13, 53
corrupt databases 124
COUNTER type 134
Create Makefiles option 14
Create Shell Scripts option 14
create test object command 128
create() method 96
create_tables.sql 108, 110
createTextNode() method 92
creating

data objects 108
database tables 110
databases 116
DiscRack database 119
Enhydra applications 52, 53
Enhydra projects 52
HTML files 82
Java classes 73, 81
Java source files 81
new projects 60
output files 86
presentation layers 78
queries 108
SQL queries 133
tables for InstantDB 121
XMLC options files 83

currency constants 138
CURRENCY data type 135, 137
currency properties 124
currency symbol 137
currencyDecimal property 124
currencySymbol property 124
current date 136
customizing

DOM classes 54
projects 64
searches 58

D
–d option 98
d command (ScriptTool) 127
daemon option 169
daemondebug option 169
daemoninterval option 169
daemons 153
daemontimeout option 169
data

accessing 105

binary 138
caching in memory 107, 114, 122
committing to databases 123
deleting 112
formatting 124, 136, 137
generating mock 82, 98
missing 124
retrieving 122
retrieving for HTML forms 89
retrieving for HTML tables 87
retrieving with queries 111, 113, 117
saving 111
searching for 108
viewing attributes 106
viewing hierarchy 105

data access code 199
Data Object Design Studio

creating data objects 108
overview 105
running 106
running PostgreSQL with 144
search functionality for 108
views described 105

Data Object Design Studio. See DODS
Data Object Editor dialog 106
data objects 108
data properties 124
data sources 87

connecting to multiple 16
data types

in InstantDB 134-141
PostgreSQL database 143

database connections 117, 129
with SQLBuilder 133

database DOML tag 200
database information 20
DataBase Mapping Type options 106
database parameters 35
database server 143

See also PostgreSQL database
databases 115, 143

See also data; tables
binary data and 138
corrupt 124
creating 116, 119
creating indexes for 107
creating tables for 110
date, time and currency properties for 124
displaying metadata for 133
displaying tables in 132
enabling transactions for 128
getting table IDs 131
inaccessible 119
incomplete 124

I n d e x 211

instantiating data objects for 107
logging and tuning properties for 123
moving 120
null values in 134
opening 127
populating 110
querying 111, 113, 117
reading from 87, 89, 114, 122
running on Windows systems 118
searching 108
storing 120
string-handling properties for 125
transaction and recovery properties for 123
tuning properties for 122
viewing 116
writing changes to 122

data-layer classes 105, 108
date conversions 135
DATE data type 135
date format strings 136
date formats 136
date functions 137
date separators 136
dateFormat property 124
dates 136

as literal strings 140
interpreting two-digit 137
setting current 136

DB2 databases 108
DBBrowser application 116, 131
deadlocks 118
debug information 123
debug option 169
debug() method 114
debugger 69

enabling 153, 158
debugging

events 40
from JBuilder 69
queries 114
XMLC options for 83

debugging control panel 38
debugging mask 153, 169
debugging messages 16, 152
debugging properties 123
debugging utility 38
DECIMAL data type 135
decimals 124, 137
default pages 46
default values 89
defaults 48, 58
defining partitions 121
delete row command 128
–delete-class option 82, 98

deleteElement XMLC tag 190
deleting data 112
delimiters 139
demonstration installations 17
deploying servlets 17
deployment descriptors 67

regenerating 68
Deployment property page 62
Deployment wizard 51, 52

interface described 57
running 56
setting up sample projects 67

design tools 74
diagnostics 83
digital certificates 132
directives 84
Director. See Enhydra Director
directories

properties files and 120
setting class files 98
setting for make 95
setting for WAR files 27, 38
setting root 100
setting source 62
setting up for Web archives 44
specifying DODS output 106
specifying paths for 65, 120
structuring for application class 96

Disc.java 85
DiscRack application

configuring 119
importing 59
running 119, 144

DiscRack database 85, 119
discRack.prp 119
displaying

application status 18, 19
connection information 23
data attributes 106
data hierarchy 105
databases 116, 132
debugging information 38
DOM trees 99
events 39
HTML forms 89
metadata 116, 129, 133, 134
servlet status 21
session-specific parameters 34
system properties 117
system tables 130
Web archive status 22

DLLs 166
–docout option 98

212 D e v e l o p e r ’ s G u i d e

document classes
updating 97

Document Object Model 75, 77
duplicate IDs and 88
generating objects for 77
Java-specific interface objects 103
objects specific to 101
sample XML tree for 76
XML-specific classes and methods 101

document objects
getting information about 100
instantiating 96, 97

Document type 102
document type definitions 98, 101
document validation mode 101
document views 101
document XMLC tag 190
documentation 5, 143

updates and release notes 5
documentation conventions 2
documentation set 4-??
documentClass XMLC tag 191
DocumentFragment type 102
DocumentType type 102
DODS. See Data Object Design Studio
dods.conf 144
dollar sign ($) in properties files 121
DOM. See Document Object Model
DOM classes

generating 53
instantiating 77
specifying package names for 62

DOM factories 192
DOM implementations 77
DOM trees 76

displaying 99
DOM. See Document Object Model
domEdits XMLC tag 193
–domfactory option 98
DOML files 105, 199

sample 205
doml tag 200
DOML tag reference 199
DOMs

Lazy DOM 77
Xerces 77

double quotes 84, 139
downloading

Enhydra open-source software 8
JSSE 180

DSA encryption 181
–dump option 99
dump application 130
dumps 83, 153

duplicate IDs 88
DynaCat program 85

building and running 86
displaying HTML forms with 89
generating output for 86

DynaCat.java 85
dynamic content 172
dynamic recompilation 96
Dynamic Shared-Object Support 151

E
e command (ScriptTool) 127
edir_daemon program 150
edir_status utility 151
editing

configuration files 168
data attributes 107
data objects 106
Java security files 181
package mappings 62

Element classes 101
Element type 102
enabling automatic recompilation 96
encryption 179
Enhydra

accessing source code for 8
documentation set 4-??
downloading open-source software 8
mailing lists 7
online documentation 5
prerequisites to using 1
product registration 5
reporting bugs 6
root directory conventions 3
support for large scale applications 7
technical support 5-6
training courses 6
website (Enhydra.org) 7
working groups (Enhydra.org) 8

Enhydra Application Server
auth key for 170

Enhydra applications 147
building Web pages for 85-93
configuring 118, 167
configuring for use with InstantDB 118
creating 52, 53
debugging 69
encrypting 179
forwarding requests 157
logging configurations for 97
presentation layers for 78
restricting access to 170
running 24, 69

I n d e x 213

separating static/dynamic content 172
setting Java archives for 65
setting up directory structures for 96
viewing status 18, 19

Enhydra configurations 31
Enhydra Director

building Apache module for 152
building DLLs for 166
changing configurations 168
checking status of 170
configuring for Apache Web Servers 150-157
enabling debugging for 153, 158
encrypting applications with 179
getting source code for 151
increasing performance for 173
installing 148
limitations 173
optimizing performance 171
overview 147
prerequisites for setting up 149
running with Internet Information

Server 161-166
running with iPlanet Web Server 157-160
scoreboard for 151
system requirements 148

Enhydra Director connections 16, 28
Enhydra projects. See projects
enhydra.jar 65
Enhydra.org 7

community documentation 8
mailing list archives 8
mailing lists 7
working groups 8

enhydra_director.conf 150, 161, 168
enhydra_director.ipc 151
EnhydraDirector.dll 157
EnhydraDirectorConfigFile directive 155
EnhydraDirectorConfigFile option 153
EnhydraDirectorDaemonPath option 153
EnhydraDirectorDataFile option 153
EnhydraDirectorDebug option 152, 153
EnhydraDirectorLockFile option 153
EnhydraFilter.dll 161
EnhydraHandler.dll 161
Entity Reference type 102
Entity type 102
error logs 151
error pages 46
errors 16
escape characters 139
escape sequences 84, 125
events

debugging 40
viewing 39

ex1.htm 131
exclamation point (!) in properties files 120
execute batch command 128
exit command 128
export all command 128
exportSQL property 123
–extends option 99
eXtensible Markup Language. See XML

F
failover 124, 147, 173
fastUpdate property 122
fcntl() method 151
fields

containing binary data 138
creating indexes on 107
getting last value added to 127
incrementing numeric types in 134
multiline text 92
returning names 140
viewing 132, 133

file I/O 172, 173
file names 138
files

accessing from applets 132
creating HTML 82
creating output 86
creating XMLC options 83
editing Java security 181
loading class 16
opening property pages for HTML 61
renaming Java class 81
renaming properties 119
saving Java source 81
setting directory paths for properties 120
specifying XMLC options 95
storing image 49

filters 16
findFirstText() method 101
fixed-precision arithmetic 135
flushAfterCacheMisses property 122
–for–recomp option 97, 99
Form Servlet 69
Form.html 85, 89
formatting data 124

as currency 137
as dates 136

forms
adding check boxes 91
adding list boxes 92
adding radio buttons 91
populating HTML 89-92

214 D e v e l o p e r ’ s G u i d e

forward slash (/)
in dates 136
in directory paths 120

functions
date-specific 137
string-specific 141
XML interface 101

functions. See methods

G
–g option 99
garbage collection 118
–generate option 99
–generate both option 97
generating

.XMLC files 66, 97
classes 60, 95
configuration files 64
dynamic Web content 74
Enhydra applications 11
interfaces 97
reports 114
Web pages 85-93

getAttributeByName() method 101
getElementById() method 101
getFirstText() method 101
getInitParameter() method 47
getQueryBuilder() method 114
getRequiredElementById() method 101
GNU automake environment 157
GolfShop demo 179

setting up encryption utility for 184
graphical HTML design tools 74
graphical user interface

Application Wizard 12
DODS 105

Graphical View (DODS) 105
graphics 65
Greetings Servlet 68
GUI. See graphical user interface

H
hardware 173
hashCode() method 125
hex dumps 153
hexadecimal numbers 138
hidden fields 91, 93
host option 170
HTML documents

compiling 73
Java-specific objects for 103
object model for 101

HTML files 85
creating 82
generating DOM classes from 53
mapping 55, 64
opening property pages for 61
setting compiling options for 64
storing 96
viewing compilation information for 56
viewing project-specific 54
viewing properties page for 62

HTML forms 89-92
adding check boxes 91
adding list boxes 92
adding radio buttons 91

HTML objects 77
compiling 95, 97

HTML pages
changing 96
compiling 56
instantiating 96
modifying URLs for 81
preparing for modification 88

HTML tables
populating 87-89

HTML tag attributes 99
HTML tags 99
HTML templates 85
HTML Tidy parser 82, 100
html XMLC tag 193
HTML_CLASSES variable 95
HTML_DIR variable 95
–html:addattr option 99
–html:addtag option 99
–html:addtagset option 99
HTMLAnchorElement interface 103
htmlAttr XMLC tag 194
HTMLBodyElement interface 103
HTMLBRElement interface 103
HTMLButtonElement interface 103
HTMLDocument interface 77, 103
HTMLFontElement interface 103
HTMLFrameElement interface 103
–html:frameset option 99
HTMLHeadElement interface 103
HTMLHeadingElement interface 103
HTMLHRElement interface 103
HTMLLinkElement interface 103
HTMLObjectImpl class 77, 99
–html:old–class–constants option 100
HTMLOListElement interface 103
HTMLParagraphElement interface 103
HTMLPreElement interface 103
HTMLTableElement interface 103
htmlTag XMLC tag 194

I n d e x 215

htmlTagSet XMLC tag 193
HTMLTitleElement interface 103
HTMLUListElement interface 103
HTTP connection method 16
HTTP open-source server. See Apache Web Server
HTTP requests 171

retrying 173
HTTP sockets 28
HTTPS connections 28
Hypertext Markup Language. See HTML
hyphen (–)

in dates 136
in XMLC options 80, 84

I
i command (ScriptTool) 127
idb.jar 115
idbexmpl.jar 115
IdleScanInterval field 34
IDs

database tables 131
duplicating 88
generating list of 83

IIS. See Internet Information Server
image files 49
images 65
images directory 49
implementation classes 97
–implements option 100
implements XMLC tag 194
import all command 129
IMPORT operations 134
Import wizard 51, 52

running 58
importing certificates 183
include 93
INCREMENT_BASE option 135
incrementing numeric values 134
indexes 117

allocating free space for 122
creating 107
getting information for 127

indexes directory 116
indexLoad property 122
indexPath property 121
–info option 83, 100
initial values 135
initialValue DOML tag 205
input 89, 172, 173
input files

building DOM classes with 81
changing associated class files 81
creating Java source files from 81

deleting specified elements 82
ScriptTool 127
specifying parser for 82

insensitive case comparisons 139
insert row command 129
installation

demonstration only 17
Enhydra Director 148
JSSE 180
SSL 180

InstantDB database
accessing from Java applets 131
connecting to 117, 133
creating 116
creating tables for 121
data functions 137
data properties for 124
data types described 134-141
debugging 123
displaying system information for 130
dump utility for 130
overview 115, 118
properties file for 119
recovery procedure for 124
returning multiple result sets for 118
running DiscRack with 119
sample applications for 125
setting up 115
strings in 125
transaction support 123
viewing 116

instantiating
data objects 107
document classes 77
document objects 96, 97
Web pages 96

interfaces 102
generating 97
specifying 100

Internet Information Server 161
creating DLLs for 167
installing 161
running with Enhydra Director 162-165
troubleshooting 165

iPlanet Web Server 157
configuring 158
creating DLLs for 166
troubleshooting 160

isolation levels 129

J
jar files 96

adding 48

216 D e v e l o p e r ’ s G u i d e

Java applets 132
accessing InstantDB with 131

Java archives 96
adding to CLASSPATHs 65

Java byte range 139
Java classes 73, 81

loading 16
Java compilers 100
Java Database Connectivity. See JDBC
Java encryption 179
Java files

compiling 65, 100
creating 81
generating 66
renaming 81
saving 81

Java IDE add-ons 71
Java interfaces 103
Java objects

as binary data 139
Java programs

character translations and 140
Java Secure Socket Extension Kit 179

downloading 180
Java security 186
Java security file 181
Java Server Pages 74
Java servlet API 57
Java Virtual Machine 120

displaying current 117
–javac option 100
–javacflag option 100
javaCompiler XMLC tag 195
–javacopt option 100
javacOption XMLC tag 195
javadoc DOML tag 203
JavaScript 92

accessing applets with 131
jb-kelp.jpr 70
JBuilder

debugging Enhydra applications 69
development tools for 51
setting options for 61

JBuilder libraries 65
JBuilder OpenTools API 71
JDBC drivers 117

loading 17, 127
specifying 118

JDBC programming 125
JDBCAppl application 131

running 131
security for 132

JDBCAppl.nets 132
JDeveloper 51

JDK 179
JDK keytool utility 179, 181, 182, 184
joins 114
JSP applications 74
JSSE. See Java Secure Socket Extension
JVM 120

displaying current 117

K
–keep option 81, 100
Kelp classes 70
Kelp for JBuilder 51
Kelp for JDeveloper 51
Kelp sample projects 66
Kelp tools 51
Kelp working group 71
–keyalg RSA option 181
KeyPairGenerator not available message 181
keystore password 181
keytool utility 179, 181, 182, 184

L
l command (ScriptTool) 127
large scale applications 7
Latin character sets 140
Lazy DOM 77, 78
Lazy Loading option 107
LENGTH function 141
lib directory 48
libedir.so 157
libraries 65

building for Director 166
specifying 61

likeIgnoreCase property 125, 139
line feeds 92
Linux systems

changing TIME_WAIT state for 178
optimizing 174
running Enhydra Director 149

list boxes 92
listeners 16
literals 125, 136, 140

binary data as 138
whitespaces as 84

load balancing 147, 168, 171
coordinating 150

loader 16
loading JDBC drivers 17, 127
LoadModule directive 150
load-on-startup tag 47
lock files 153
logging properties 123

I n d e x 217

logs 16, 151
LogToFile option 97
lookahead buffer 122, 123
LOWER function 141
Lutris documentation 5
Lutris technical support 5-6

M
m command (ScriptTool) 127
mailing lists (Enhydra.org) 7
mailing lists Enhydra.org)

archives 8
main() method 86
make 94

configuring 180
invoking specific parts of 52

make options 55, 61
make variables 94
Makefiles 14, 53

example for HTML 95
many-to-many relationships 109
mapping defaults 48
mapping servlets 46
mapping tables 55, 62
mapping URLs 98, 100
markup languages 73, 75
markup tags 75, 99

attributes for 99
Math Markup Language (MathML) 75
media directory 49
memory 173
memory cache

blobs and 139
databases and 107, 114, 122

memory regions 150
messages 16
metadata 132

viewing 116, 129, 133, 134
metadata files 84

schema described 187
–methods option 83, 100
methods

client requests 16
generating list of class-specific 83
getting signatures for access 100
reference for XMLC 98
XML interface 101

milleniumBoundary property 124, 137
MIME types 48
mmap() method 151
mock data 82, 98
mod_enhydra_director.so 150
monetary values 137

moving databases 120
multi-host session management 173
multiline text fields 92
Multiserver Administration Console

adding application connections with 167
adding applications 24
adding servlets 26
adding Web archives 27
changing application configurations 29
changing configuration files 32
changing user name and password 32
configuration file for 69
configuring applications 33
configuring servlets 36
displaying connection information 23
launching 17, 66
overview 15
passing configuration files to 66
removing applications 29
removing connections 29
running Kelp sample project 69
saving changes 38
saving state 43
setting connections 28
starting/stopping applications 24
tools described 18
viewing application status 18, 19
viewing debugging information 38

multiserver command 17
multiserver configuration files 30
multiserver.conf 15, 30
multiserver.log 16
multiserverAdmin.conf 30
multithreading 150

N
NamedNodeMap object type 102
names 35, 46
naming

class files 81
classes 63
packages 64, 81

NaNs 134
native object formats 139
Netscape browsers 181
new constructor 96, 97
New Node Servlet 68
newline characters 92
newlines 139
NFS implementations 153
–nocompile option 83, 100
node interfaces 102
Node object type 102

218 D e v e l o p e r ’ s G u i d e

Node property pages 61
NodeList object type 102
nodes 61, 76
NOT_EQUALS qualifier 108
Notation type 102
Nothing to modify message 35
nowMeansTime property 124
null values 107, 134
numeric data types 134, 135

auto-incrementing 134

O
–O option 100
o command (ScriptTool) 127
obj.conf file 158
Object Gallery 60
object models 75
object-relational database 143
objects 101

as binary data 139
compiling HTML 95, 97
getting information about 100
instantiating document 96, 97
Java-specific interface 103
XML compiler and DOM 77
XML-specific interface 102

one-to-many relationships 109
online

documentation 4, 5
registration 5

online documentation 143
opening

Application wizard 60
databases 127
HTTP sockets 28
property pages 61
XMLC Compiler wizard 53

open-source products 70
OpenSSL 182, 183
OpenTools API (JBuilder) 71
operators 112
optimizing Enhydra Director 171
options 97

application generator 12
class generation 60
compile 54, 62
database mapping 106
Enhydra Director configurations 168
make 55, 61
output 56
project 61, 64
trace 54

XML compiler 80-84
alphabetical listing of 98
running multiple 83
setting from IDE 64
setting with make 95

XMLC property page 63
options files 83

alternatives for 84
creating 83
specifying 64, 95

output 101, 172, 173
as static resource 63
compiler 62, 99
date formats and 136
debugging 123
saving compiler 56

output directory 106
output files 98

creating 86
output options 56
output paths 65
ownership 16

P
p command (ScriptTool) 127
package DOML tag 201
Package/Object Tree (DODS) 105
packages

associating with classes 81
compiling 65
Kelp sample project 71
mapping HTML files to 55
naming 64, 81
specifying 62
viewing mappings for 62

pages (default) 46
parameters 66

defining application 47
setting application 30, 31, 33, 36
setting database 35
setting multiserver 30
viewing session-specific 34

–parse option 83
–parseinfo option 83, 100
–parser option 82, 100
parser XMLC tag 195
parsing 82, 100
partition property 121
partitionCount property 121
partitions 121
passwords 91

certificates and 181
changing Multiserver Console 32

I n d e x 219

pathnames
UNIX 3

paths 120
See also directories

Paths property page 61
performance (Enhydra Director) 171, 173
performance-critical applications 102
populateForm() method 89, 91
populateRadioGroup() method 91
populateSelectList() method 92
populateText() method 90
populating

databases 110
HTML forms 89-92
HTML tables 87-89

port option 170
PostgreSQL database

accessing 144
features described 143
online documentation for 143
overview 143
running with DiscRack application 144

prefix option 169, 170
prepareIgnoresEscapes property 125
prepHTML() method 88
preprocessing filter 161, 162, 163
prerequisites 1
presentation information 20
presentation layers 78
presentation objects

images for 65
linking to at runtime 81

printNode() method 101
private keys 181

setting up 184
ProcessingInstruction type 102
product registration 5
project files 108
Project Properties Build page 66
Project Properties dialog 61
Project Properties Paths page 65
Project Properties Run page 66
project settings 58
projects 52

creating 60
customizing 64
setting options for 61, 64
setting up sample 67

properties 31
database performance 122
date, time and currency values 124
logging and debugging 123
setting directory paths with 121
string-handling 125

system 117
transaction and recovery 123

properties files 118
case-insensitive comparisons in 139
date formats in 137
overview 119
setting directory paths for 120
setting table location in 121
setting up 120
string literals in 140

Property pages 52, 61-64

Q
q command (ScriptTool) 127
queries 132

adding WHERE clauses 113
building 133
column names in 140
creating for views 108
creating SELECT statements for 108
debugging 114
enabling auto-incrementing with 134
entering dates in 136, 138
returning multiple result sets 118
running 111, 117, 127
running from the command line 126
setting currency values in 137
string comparisons in 139
timing out 123, 129

Query and Transaction logging 35
query classes 108, 111
QueryBuilder class 108, 113, 114
quotation marks 84, 139

R
r command (ScriptTool) 127
radio buttons 91
Randomizer-Intervals field 34
readahead buffer 122
read-only templates 78
records 88, 132

adding to tables 129
caching 122
limiting number of returned 133
moving to specific 127
updating 128, 129

recovery properties 123
recoveryPolicy property 123, 124
referenceObject DOML tag 204
referential integrity 107

preserving 112
refreshCache() method 107

220 D e v e l o p e r ’ s G u i d e

registering Enhydra 5
relational databases. See databases
relative paths 120
relativeToProperties option 120
release notes 5
reloading classes 97
remote browsers 42
renaming

Java class files 81
properties files 119

replaceNode() method 101
reporting bugs 6
reports 114
request handlers 173
request information 40
requests 16, 147, 157, 168

forwarding 150, 157
generating certificate 182
load balancing 171
restricting 171
retrying 173
simultaneous 150
submitting certificate 183

resource files 57
restoring defaults 58
restricting application access 170
result sets 118

caching 122
closing 129
displaying metadata for 129, 134
formatting options for 138
getting 132
navigating 127
saving 122

resultsOnDisk property 122
resultsSetCache property 122
resultsSetCacheAmount property 122
retrieving data 122

for HTML forms 89
for HTML tables 87
with queries 111, 113, 117

retrying requests 173
retrytime option 169
rollback command 129
rollbacks 129
rounding errors 136
round-robin load balancing 168
rowCacheSize property 122
rows. See records
RSA encryption 181
running

DiscRack application 119
DynaCat program 86
Enhydra applications 24, 69

Enhydra Director 148
JDBCAppl application 131
keytool 181, 182
specific classes 66
SQL queries 126, 127
SQLBuilder 132
SSL 180

runtime compiling 96

S
s command (ScriptTool) 128
sample applications

InstantDB-specific 125
sample databases 115
sample DOML file 205
sample projects 52, 66

setting up 67
sample servlets 68
Save State tool 29
save() method 111
saving

compiler output 56
data 111
Java source files 81
Multiserver Console settings 38
Multiserver Console state 43
result sets 122

schema 187
schema. See database schema
scoreboard 151

load balancing 168
screen shot conventions 3
SCRIPT elements 93
ScriptTool application 116, 126

commands listed 127
exiting 128
miscellaneous statements 128

search restrictions 107
searchDeletes property 122
searches 108

customizing 58
Secure Sockets Layer. See SSL
security 179, 186
security (JDBCAppl application) 132
security files 181
self-signed certificates 181, 182

creating 183
Serializable interface 139
server application 143
server option 171
servers 147

current state 151
failing 173

I n d e x 221

forwarding responses 150
HTTP open-source. See Apache Web Server
increasing performance for 173
optimizing 171
scalability 172
sending requests to 157

Servlet Status window (Multiserver) 21
servlet welcome page 47
servlets

adding to Admin Console 26
configuring 36
deploying as WAR 17
Enhydra considerations 49
mapping to URLs 46

session affinity 149
session management 173
SessionLifetime field 34
SessionMaxIdle-Time field 34
SessionMaxNo-UserIdleTime field 34
session-specific parameters 34
set global connection command 129
set global prepared statement command 129
set isolation commands 129
set timeout command 129
setBytes() method 138
setChecked() method 91
setObject() method 138, 139
setQueryAttributeName() method 108
setting up sample projects 67
setting up socket encryption 180
setValue() method 92
SGML markup languages 75
shared memory 150
shell scripts 14, 53
show metadata command 129
signatures 100
single quotes 84, 139
singleRowCount property 122
SMALLCHAR data type 139
socket encryption 179

setting up 180
testing 181

sockets 174
opening HTTP 28

Solaris systems
changing TIME_WAIT state for 178
running Enhydra Director 149

source code
building DLLs from 166
generating 11, 109
sample applications 125
saving Java 81
setting root directory for 100

source code, accessing 8

source directories 62
source files

importing 58
source paths 65
–sourceout option 100
SQL queries 132

adding WHERE clauses 113
building 133
column names in 140
creating for views 108
creating SELECT statements for 108
debugging 114
enabling auto-incrementing with 134
entering dates in 136, 138
returning multiple result sets 118
running 111, 117, 127
running from the command line 126
setting currency values in 137
string comparisons in 139
timing out 123, 129

SQL scripts 126
example 130

SQL standards 115, 143
sql1.txt 116
SQLBuilder application 132

interface described 133
SSL

additional references for 186
configuring 184-186
installing 180
overview 179
running 180
system requirements 179
testing 181
validating certificate requests 182, 183

starting
Application Wizard 12
DODS 106
installed applications 24
Multiserver Administration Console 17
the debugger 69

startup errors 151
startup scripts 14
state 151

saving 29
saving Multiserver Console 43

static content 172, 173
static data 114
static resources 63
status information

connections 23
servlets 21
Web applications 18, 19
Web archives 22

222 D e v e l o p e r ’ s G u i d e

status tag 170
status utility 151
Status window (Multiserver) 19
stdrules.mk 94
stop script 158
stopping applications (Multiserver console) 24
stopsvr script 158
storyboards 92
strictLiterals property 125, 140
string constants 125
string data types 139
string delimiters 139
string functions 141
string-handling properties 125
strings 139

binary data and 138, 139
comparing 139
including tabs and newlines 139
literals in 140

submitting bug reports 6
submitting certificate requests 183
subscribing to Enhydra mailing lists 7
SUBSTR function 141
substrings 141
super-servlet applications 52
SuperServlet generator 11

starting 12
support 5-6
Swing parser 82, 100
symbolic names 35
syntax

dates 136
DOML files 199
dump command-line 130
ScriptTool commands 127
table creation on specific partitions 121
XMLC command line 80

syslog() method 155
system class loader 17
system directory 116
system logs 151
system properties 117

setting directory paths with 121
system requirements

Enhydra Director 148
SSL 179

system tables 117, 123
displaying contents 130

systemCacheCondition property 123
systemCacheSize property 122
systemPath property 121
systemRows property 123

T
t command (ScriptTool) 128
table DOML tag 201
Table Servlet 68
tablePath property 121
tables 122

See also data; databases
adding data 110
caching 114
containing binary data 139
creating 110
creating for InstantDB 121
currency format settings and 138
defining mapping 62
displaying in database 117
getting available 133
getting IDs for 131
getting last value added to 127
importing/exporting 128
populating HTML 87-89
setting location of temporary 121
setting referential integrity for 107
specifying location of 121
viewing 132

tables directory 116
tabs 139
tag attributes 99
tag reference

DOML files 199
XMLC schema files 187

tags 75, 99
TCP protocol 176
TCP sockets 174
technical support 5-6
template engines 73
template files 57
Template node property page 61, 64
Template property pages 52
template settings 58

changing 68
templates 78
temporary tables 121
Test.html 79
testDataPath parameter 67
TestHTML class 80
text 138

forcing to next line 92
text areas (HTML forms) 92
text fields 90

multiline 92
Text type 102
threads 150
time 136

I n d e x 223

time command 129
time format strings 136
time properties 124
time zones 136
TIME_WAIT state 176, 177

changing 178
timed-out queries 123
timerCheck property 123
timestamps 124, 135, 136
tmpPath property 121
TO_DATE function 137
TO_NUMBER function 137
toggle result set close command 129
toggle RSMD command 129
tools (Multiserver) 18
trace options 54
trace output 123
traceConsole property 123
traceFile property 123
traceLevel property 123
traces 41, 83
traffic debugger 16
training courses 6
transaction access conflicts 118
transaction properties 123
transactions 123, 176

enabling 128
setting isolation levels 129

transImports property 123, 124
transLevel property 123, 124
tuning properties 122
type DOML tag 204
type specifiers 128
typographical conventions 2

U
u command (ScriptTool) 128
Unicode characters 139
Uniform Resource Locators. See URLs
UNIX pathnames 3
UNIX platforms

running Enhydra Director on 157
update row command 129
updating document classes 97
UPPER function 141
URL

conventions 3
–urlmapping option 82, 100
urlMapping XMLC tag 196
–urlregexpmapping option 82, 100
urlRegExpMapping XMLC tag 197
URLs 23

generating list of 83

InstantDB database 117
mapping 98, 100
mapping servlets to 46
modifying 81
opening 127
redirecting to Director 154, 161

–urlsetting option 82, 101
use global connection command 129
use global prepared statement command 129
user directory 120
user input 89
user names 32
user sessions

See also sessions
user.dir property 120
utility methods 101

V
–validate option 101
validating certificate requests 182, 183
VARCHAR data type 140
–verbose option 83, 101
verbose debugging 158
–version option 101
viewing

application status 18, 19
connection information 23
data attributes 106
data hierarchy 105
databases 116, 132
debugging information 38
DOM trees 99
events 39
HTML forms 89
metadata 116, 129, 133, 134
servlet status 21
session-specific parameters 34
system properties 117
system tables 130
Web archive status 22

views 101
virtualserver option 171

W
W3C Web pages 76
wait for children command 129
WAP protocol 48
WAR. See Web archives
warnings 16
Web Application generator 11

options 12
starting 12

224 D e v e l o p e r ’ s G u i d e

Web applications. See applications
Web archives

adding to Admin Console 27
configuring 44, 45
deploying servlets as 17
viewing status 22

Web browsers 132
getting information on remote 42

Web pages
changing 78, 96
default 46
generating HTML 85-93
generating mock-up data for 82, 98
instantiating 96
modifying URLs for 81
preparing for modification 88
separating static/dynamic content for 172

Web servers. See servers
Web sites 78
web.xml 16, 45

content described 46
defaults 48

web.xml deployment descriptor 67
website (Enhydra) 7
weight option 170
welcome pages 47
whitespace as literals 84
Windows platforms

changing TIME_WAIT state 178
database files and 118
running Enhydra Director 148, 158
specifying directory paths for 120

wireless applications 66
Wireless Markup Language. See WML
wizards 51, 52
Wizards menu 52
WML 75
WML documents 73
working groups 71

Enhydra.org 8
World Wide Web. See Web

X
X509 certificates. See certificates
–xcatalog option 101
xcatalog XMLC tag 198
Xerces parser 82, 100
Xerces project 77
XML 75
XML compiler. See XMLC
XML documents

compiling 73, 93
compiling options for 61
Java-specific objects for 103

object model for 101
processing 84

XML files 84
XML interface objects 102
XML objects 77
XML parser 82, 100
XMLC

See also XMLC options
associations 54
example for 78
generating DOM objects 77
getting version 101
make variables for 94
markup language support 75
markup languages and 73
overview 73, 74, 78, 85, 94
recompiling with 96
saving output 56
specifying output 62, 99
specifying parser for 82, 100
troubleshooting 83
types 54

XMLC classes and methods 98
XMLC Compiler wizard 51, 52, 53-56
.xmlc files 95
XMLC metadata files 84

schema described 187
tag reference 187

XMLC node property page 62
XMLC options 80-84

alphabetical listing of 98
running multiple 83
setting from IDE 64
setting with make 95

XMLC options files 83
alternatives for 84
creating 83
generating 66, 97
specifying 95

XMLC project properties page 61
XMLC property pages 52
XMLC reference 98
xmlc tag 198
XMLC wizard 81
XMLC_AUTO_COMP option 97
XMLC_HTML_OPTS variable 95
XMLC_HTML_OPTS_FILE variable 95
xmlcFactory class 96
XMLCUtil class 101
XMLObjectImpl class 99

Y
years 137

	Developer’s Guide
	Contents
	1: Introduction
	What you should already know
	Conventions used in this book
	Lutris�Enhydra document set
	Getting Started
	Developer’s Guide
	Wireless Application Developer’s Guide

	Lutris documentation updates available online
	Contacting Lutris Technical Publications
	Where to find support and training for Lutris Enhydra
	Lutris support
	Registering your product online
	Contacting Lutris Technical Support
	Submitting bug reports to Lutris Technical Support

	Lutris training
	Available training courses
	Contacting Lutris Education Services

	Additional Enhydra information available on Enhydra.org
	Enhydra.org mailing lists
	Mailing list archives

	Enhydra.org working groups
	Documentation working group

	Enhydra.org community documentation
	Open-source software downloads

	Acknowledgments

	2: Using the Application Wizard to create Enhydra applications
	Application Wizard generators
	Web Application generator
	Enhydra SuperServlet generator

	Using the Application Wizard command-line interface
	Generator options

	Using the Application Wizard GUI

	3: Using the Multiserver Administration Console
	Overview
	Multiserver architecture
	Connection methods
	Enhydra class loader

	Launching the Admin Console
	Viewing application status
	Understanding the Application tab
	Enhydra super-servlet Application Status window
	Servlet Status window
	WAR Status window

	Understanding the Connections tab

	Starting an application
	Stopping an application
	Adding an application
	Adding an Enhydra super-servlet application
	Preparing the configuration files
	Adding the application in the console window

	Adding a single servlet
	Adding a Web application archive
	Connecting the new application
	Removing a connection

	Deleting an application
	Modifying an application
	Modifying configuration files by hand
	Multiserver configuration file
	Admin Console configuration file
	Enhydra application configuration file
	Changing the console username and password

	Modifying configuration files in the console
	Application tab
	Sessions tab
	Database tab
	Advanced tab
	Servlet tab
	WAR tab

	Finalizing application modifications

	Monitoring traffic to the application
	The active event list
	Debugging event details
	Request tab
	Trace tab
	Response tab

	Saving the current state of the console
	Creating a WAR file

	4: Using Enhydra Kelp
	Introduction
	Kelp features

	Using the wizards
	Using the Enhydra Application wizard
	Using the XMLC Compiler wizard
	Using the Deployment wizard
	Using the Enhydra Import wizard
	Using the Enhydra Application wizard

	Using the Property pages
	XMLC project property page
	Enhydra Deployment property page
	XMLC node property page
	Enhydra Template node property page

	Setting project properties
	Paths page
	Output path
	Source subtab
	Required libraries subtab

	Build page
	Generate source to output path option

	Run page
	Main class option
	Application parameters option

	Kelp sample projects
	Deploying the Web application

	Debugging Enhydra applications
	Working with the Kelp source code
	Kelp working group

	5: Enhydra XMLC
	Introduction
	Why use XMLC?
	XMLC and markup languages
	XML

	Document Object Model
	Example DOM tree
	DOM implementations

	How to use XMLC
	Simple XMLC example

	Using the XMLC command
	Command syntax
	Changing the Java class name
	Example

	Saving the Java source-code file
	Example

	Modifying URLs
	Example

	Specifying the HTML parser
	Example

	Deleting mock-up data
	Example

	Diagnosing problems
	Example

	Using an options file
	Options file format
	Example

	Using XMLC metadata files

	Using XMLC to generate Web pages
	DynaCat sample application
	Building DynaCat
	Running DynaCat
	Writing the generated HTML output files

	Populating a table
	About the catalog page
	Populating the table

	Populating forms
	About the form page
	Text fields
	Check boxes
	Radio buttons
	Text areas
	List boxes

	Manipulating JavaScript
	Compile-time includes
	Syntax

	Using XMLC with Enhydra
	Using the Enhydra make system
	Example

	Automatically recompiling with XMLC
	Instantiating pages with xmlcFactory
	Setting up the application class directory structure
	Specifying how document classes are updated
	Adding XMLC logging to track the recompilation

	XMLC reference
	XMLC command-line options
	XMLCUtil class
	DOM classes and methods
	DOM objects
	DOM Java interfaces

	6: Using the Data Object Design Studio
	Using the DODS graphical user interface
	Running with parameters
	Data Object editor
	Attribute editor
	Query classes
	Querying a view

	DODS projects
	Code generation
	One-to-many relationships
	Many-to-many relationships
	Creating the tables
	Using the DO classes to create data
	Using the Query classes to retrieve data
	Using the DO classes to delete data
	Using comparison operators
	Using QueryBuilder for advanced queries
	Using QueryBuilder without Query classes
	Debugging queries using QueryBuilder
	Caching tables in memory

	7: Using InstantDB
	Introduction
	Configuring your system
	Creating a new database
	Viewing a database
	Using the InstantDB JDBC driver
	Database URLs
	JDBC result sets

	Using InstantDB with Enhydra
	General procedure
	Running the DiscRack application with InstantDB
	Creating the DiscRack database
	Configuring DiscRack

	Using properties files
	Format
	Database directories
	Using paths relative to the properties file
	Using absolute or relative paths
	Defining partitions

	Tuning properties
	Logging and debugging properties
	Transaction and recovery properties
	Recovery

	Date, time, and currency properties
	String-handling properties

	Using the InstantDB sample applications
	commsql
	ScriptTool
	Format of input file
	Example

	dump
	JDBCAppl and DBBrowser
	Applet security and JavaScript compatibility

	SQLBuilder

	InstantDB data types
	Numeric types
	Auto-incrementing

	Decimal and numeric types
	DATE data types
	Formatting dates
	Timestamps
	Date functions
	Interpreting two-digit dates

	CURRENCY type
	BINARY type
	Strings
	Case-insensitive comparisons
	Using SMALLCHAR
	String literals
	String functions

	8: Using PostgreSQL
	Introduction
	Features
	Where to find PostgreSQL documentation

	Using PostgreSQL with Enhydra
	Using DODS
	Running DiscRack
	Creating the DiscRack database
	Configuring DiscRack to run with PostgreSQL

	9: Using Enhydra Director
	Overview of Director
	Installing and configuring Director
	System requirements
	Windows NT and 2000
	Solaris
	Linux

	Preparation
	Using Director with Apache
	Files
	Procedure
	Configuring Director
	Troubleshooting

	Using Director with iPlanet Web Server
	Installation
	Configuring Director for iPlanet
	Troubleshooting

	Using Director with Internet Information Server (IIS)
	Installation
	Procedure
	Configuring Director for IIS
	Troubleshooting

	Building Director DLLs from source code
	Building Director for iPlanet
	Building Director for IIS

	Configuring your application
	Configuring your application with the Multiserver Administration Console
	Configuring your application by editing multiserver.conf

	Load balancing with Director
	Editing enhydra_director.conf

	Optimizing Director performance
	Load balancing HTTP requests and Enhydra
	Separating static and dynamic content
	Scaling up
	Limitations of Director and session affinity

	Increasing performance for Director and Apache on Linux
	Hardware considerations
	Tuning the Linux OS
	Tuning the Apache Web Server

	TCP TIME_WAIT problem
	Solving the TIME_WAIT threshold

	A: Using SSL with Enhydra
	System requirements
	Background
	Installation and configuration
	Step 1: Install Enhydra
	Step 2: Download and install JSSE JAR files
	Step 3: Configure Make
	Step 4: Edit the Java security file
	Step 5: Generate or install your X509 certificates
	Generating your private key
	Generating a certificate request
	Submitting your certificate request
	Importing a certificate

	Modifying your application
	Configuration file in detail

	For more information on Java and SSL

	B: XMLC metadata file schema
	Structure
	Tag reference
	<compatibility>
	<compileOptions>
	<deleteElement>
	<document>
	<documentClass>
	<domEdits>
	<html>
	<htmlTagSet>
	<htmlTag>
	<htmlAttr>
	<implements>
	<javaCompiler>
	<javacOption>
	<parser>
	<urlMapping/>
	<urlRegExpMapping/>
	<xcatalog>
	<xmlc>

	C: DOML file syntax
	Structure
	Tag reference
	<doml>
	<database>
	<package>
	<table>
	<column>
	<javadoc>
	<referenceObject>
	<type>
	<initialValue>

	Sample DOML file

	Index

