Using Lutris Enhydra with VoiceXML

Authored 2/14/2001 by Bob Bourbonnais for Lutris Technologies, Inc.

Summary

This white paper provides the information you need to get started using Lutris”
Enhydra™ and VoiceXML together. It includes four main sections. The first section
provides a general overview of voice applications and technology, and serves as a
foundation for the more detailed information that follows. The second section provides
more specific information on using Enhydra with VoiceXML. The third section explains
how to create a simple VoiceXML application. Finally, the fourth section includes two
appendixes: one containing the VoiceXML file, Welcome.vxml, used in the simple
VoiceXML application, and the other containing the DTD file, enhydra-voicexm11-0.dtd,
used with the application.

Table of Contents

USING LUTRIS ENHYDRA WITH VOICEXNILceiiieeerieesssesssesssesssesssssssessssssssssssssssssssnsssssssssnssssssssssssssssnsssnssness

SUININIATY .. h bbb bbb bbb a bbb
Table Of CONENESuiuiuiiiirieietetetetcc ettt ettt bbbttt b e aeaenne
OVETVIBW .ot b e b e bbb
HISEOTY oo
Voice APPlication ATChItECTUTEc.covrieiiririeieiieiiecee ettt et
GIAIMIMIAT ... bbb bbb bbb bbb bbb
Data Type Definition fles.........c.cciiiiiririnreieciccccctt ettt et
Understanding how Enhydra and VoiceXML work togetherccccooiiiiiiiiiiccccnes
Using Enhydra XMLC to check VoiceXML against a DTDccccccccooiviniiiniiiiiiiiinneeeeccecccceeae
Using Enhydra XMLC to translate VoiceXML t0 @ DOM........ccccceuiiiiiinnnnineeciciceieet e
DOM AcCeSSOT MELNOMS ...ttt ettt sttt

Overview
This section provides basic information about voice technology and applications.

History

On March 7, 2000, the VoiceXML Forum released the VoiceXML 1.0 specification.
VoiceXML is based on Extensible Markup Language (XML), a metalanguage created by

Copyright © 2001 Lutris Technologies Inc. Page 1 of 12

http://www.voicexml.org/
http://www.voicexml.org/specs/VoiceXML-100.pdf

the World Wide Web Consortium (W3C). XML provides a standardized programming
interface for speech and telephony applications.

During its May 10-12, 2000 meetings, the Voice Browser Working Group of the W3C
agreed to adopt VoiceXML 1.0 as the basis for the development of a W3C dialog markup
language.

Voice Application Architecture

-

Land line, Celular Telephone Yoice Internet YoicexEmL
and Digital phones Switch Portal Server

Voice applications typically require multiple components. For example, as depicted in the
figure, when a consumer uses a telephone to access a voice application, a range of
components are involved in the process. In this case, the telephone dials into a special
telephone number that connects through a telephone switch into a voice portal. (A voice
portal is a hardware device that connects a telephone line to the Internet and provides
speech recognition, text-to-speech, speech recording, and digital sound playback
functionality.) The voice portal then interfaces over the Internet to a VoiceXML server,
which provides the actual application that the user is accessing through the other
interfaces. The VoiceXML server provides VoiceXML to the voice portal and the
business logic and database access. Multiple machines can replace the single Voice XML
server to distribute the layers, the load, and the functionality.

IBM, Nuance, L&H, and SpeechWorks are just some of the providers of voice portal
software. Voice portals are expensive to set up and maintain, which is why so many
third-party companies provide voice portal services. Examples include TellMe, BeVocal,
and Voxeo.

Grammar

Most speech recognizers match up a recorded speech utterance with a list of words. A
grammar defines the way the utterances are matched with the speech-recognition rules.
Because speech recognizers and their grammars existed prior to the VoiceXML
specification, the grammar can map into the specification in different ways, depending on
vendor, voice portal service, and Voice XML emulator. Additional features such as menu
operations are dependent on and tied to the grammar. For this reason, writing VoiceXML
for Enhydra is different from writing VoiceXML for Voxeo, IBM, or TellMe.

Data Type Definition files

Data Type Definition (DTD) files are used to define the elements and attributes of
markup languages. Because of the differences between grammars, their associative
changes, and other changes, most voice portal software and sites recommend a specific
DTD. For example, the IBM emulator supports voicexml1-0.dtd, Voxeo supports
nuancevoicexml.dtd, and Tellme supports vxml-tellme.dtd. The Enhydra DTD, enhydra-

Copyright © 2001 Lutris Technologies Inc. Page 2 of 12

http://www-4.ibm.com/software/speech/enterprise/wsvs-vt.html
http://www.nuancecom.com/products/voicewebserver.html
http://www.lhsl.com/telecom/vp
http://www.speechworks.com/productsservices/products/speechworks6/index.cfm
http://www.tellme.com/studio
http://cafe.bevocal.com/
http://www.voxeo.com/
http://www3.software.ibm.com/download

voicexml1-0.dtd, is available in Appendix B. By examining the files and the online help,
you can see that the grammar and even the menu command itself can vary from DTD to
DTD. For example, Nuance doesn’t have the menu command and wants all grammars in
an external file.

Understanding how Enhydra and VoiceXML work together

Enhydra is an application server that can dynamically modify Voice XML documents at
runtime. Enhydra enables a voice application to change VoiceXML documents “on the
fly” as it accesses business logic and database information. In addition, Enhydra supports
multiple simultaneous protocols, including Hypertext Markup Language (HTML),
Wireless Markup Language (WML), compact HTML (cHTML), and Extensible Markup
Language (XML). A single application can support all these different protocols, using the
same business and data layer code—all you have to do is create markup files for each
protocol. In the same way, a voice application can support different types of VoiceXML
and thus different voice portals, with the same business and data layer code.

Using Enhydra XMLC to check VoiceXML against a DTD

Enhydra XMLC™ checks the VoiceXML file (or any markup language files) against a
specified DTD before translating it to a Java Document Object Model (DOM). This
enables VoiceXML developers to check the format before they do their testing.
Otherwise, many VoiceXML developers don’t discover there are format problems until
they run their VoiceXML. The test and fix cycle can be long and arduous with an
emulator, and even longer if developers have to upload their file each time they want to
test it. Enhydra XMLC solves this problem with its built-in format checking.

Using Enhydra XMLC to translate VoiceXML to a DOM

Enhydra XMLC translates VoiceXML (or any other markup language) files to a DOM
Java file. The Document Object Model (DOM) is a World Wide Web Consortium (W3C)
specification. Once created, the DOM is easily accessed and modified from any other
Java file. At runtime, a request to the application server triggers the DOM file to be
converted back into its associated markup language file carrying along any changes the
program made to the DOM.

DOM Accessor methods

In addition to creating the DOM, XMLC can sense ID tags in the markup language and
provide accessor methods in the DOM Java file. This makes it possible to change the
attributes easily. Without the accessor methods, the items can still be modified, using a
more complex DOM-tree walking methodology.

Enhydra extension to the DTD

Because ID tags are required in order to create the accessor methods, ID tags were added
to the Nuance and VoiceXML forum DTD files. The extended DTDs are provided on the
Enhydra website as enhydra-nuance-voicexml.dtd and enhydra-voicexml1-0.dtd at
http://www.enhydra.org/xml/voicexml. (enydra-voicexml1-0.dtd is included as

Copyright © 2001 Lutris Technologies Inc. Page 3 of 12

http://www.w3.org/DOM
http://www.enhydra.org/xml/voicexml

Appendix B.) You can make similar modifications to any DTD when you want XMLC to
be able to add accessor methods.

Creating a simple VoiceXML example

The example you will create in this section dynamically updates the file Welcome.vxml so
that, when accessed, it will tell the current time.

Note: This procedure assumes that you know how to use Enhydra, so it does not explain
all the details involved in each step. You should know how to create an Enhydra super-
servlet application and a simple Wireless Markup Language (WML) application before
you attempt this process. For your convenience, the completed example is provided in the
<enhydra_root>/examples/SimpleVxML directory. The completed example should match
your results for performing steps 1 through 6 in the procedure for creating a simple
VoiceXML example below. To use the provided example, follow the procedure below,
starting with step 7.

Before you begin

The following example uses IBM’s WebSphere Voice Server™ SDK to test the
SimpleVXML application. The Voice Server SDK is freely available from IBM with
your registration in the IBM developers program. The Voice Server SDK has the
following system requirements:

m Pentium 366 MHz processor

= 128 MB RAM

m 200 MB disk space

m Microsoft™ Windows NT™ compatible 16-bit full-duplex sound card

m Microsoft Windows NT Workstation or Server 4.0 (English language
version only), with Service Pack 6a or later applied

m Sun Java Runtime Environment (Sun JRE) 1.3.0 (included in the SDK,
but must be installed prior to the IBM WebSphere Voice Server SDK
software)

For complete system requirements and more information , go to the WebSphere Voice
Server SDK page at http://www-4.ibm.com/software/speech/enterprise/ep_12.html.

To create a simple VoiceXML example:
1) Use the Enhydra Application Wizard (appwizard) to create a simple WML
super-servlet application named SimpleVXML.

a) Select Enhydra Super-Servlet from the Generator pull-down menu
and click Next.

b) Select WML from the Client type pull-down menu.
c) Enter SimplevxmL for the Project directory name.

Copyright © 2001 Lutris Technologies Inc. Page 4 of 12

http://www-4.ibm.com/software/speech/enterprise/ep_12.html

d) Enter simplevxml (note the difference in case) for Package and
click Finish.

For more information, refer to Chapter 2, “Using the Application Wizard to create
Enhydra applications” in the Developer’s Guide.

2) Delete the Welcome.wn1 file from the project and add the Welcome.vxm1 file
from Appendix A.

3) Update WelcomePresentation.java in the
<SimpleVXML_root>/src/simplevxml/presentation directory.

e) Change all instances of WelcomeWML to WelcomeVoiceXML.

f) Ensure the DateFormat class is using a SHORT format.

4) Update Makefile inthe <SimpleVXML_root>/src/simplevxml/presentation
directory to include the VOICEXML_DIR and the VOICEXML_CLASSES.
a) Remove the following lines:

WML_CLASSES = WelcomeWML
WML_DIR = .

b) Add the following lines:

VOICEXML_DIR = .
VOICEXML_CLASSES = WelcomeVoiceXML

c¢) Remove the following line:
XMLC_WML_OPTS_FILE = options.xmlc

5) Remove options.xmlc from the
<SimpleVXML_root>/src/simplevxml/presentation directory.

6) Add the following lines to the end of the config.mk file in
<SimpleVXML_root> to include the voicexml.mk file from Enhydra 1ib
directory.
ifneq ($(wildcard $(ENHYDRA_DIR)/Tib/voicexml.mk),)

include $(ENHYDRA_DIR)/1ib/voicexml.mk
endif

7) Enter make in <SimpTleVXML_root> to compile build the application.

8) Enter the following commands to start the application:

cd output
./start

9) Install the IBM Emulator available from
http://www6.software.ibm.com/dl/websphere02/wsvsvrdk-p (62.1 MB).
Note: You will need to join the IBM developer program to get the free
download.

Copyright © 2001 Lutris Technologies Inc. Page 5 of 12

http://www6.software.ibm.com/dl/websphere02/wsvsvrdk-p

10) Modify your path to point to the /bin directory created when you installed
the IBM software.

11) Access the demo from the command line by entering
vsaudio http://localhost:9000/, where 9000 is the specified port.

Notice that the time changes, showing that the field has been updated from within the
application.

Appendix A Welcome.vxml

This appendix contains the welcome.vxml file used in the previous section, “Creating a
simple VoiceXML example.”

<?xml version="1.0"7>

<IDOCTYPE vxml
PUBLIC "-//ENHYDRA//DTD VXML 1.0 + Enhydra Ids//EN"
"http://www.enhydra.org/xml/voicexml/enhydra-voicexml1-0.dtd">

<vxml version="1.0">
<form>
<bTock>Welcome to voice XML from Lutris Technologies</block>
<bTock>The time is now </block>
<block id="time">00:00:00</block>
</form>
</vxml>

Appendix B enhydra-voicexmli1-0.dtd

This appendix contains the enhydra-voicexml1-0.dtd file that is referred to in previous
sections of this white paper.

<L--
- A DTD for Voice Extensible Markup Language
- as currently supported by the Lutris Enhydra Platform
- based on the official v1.0 VXML DTD
- Copyright (c) 2000 VoiceXML Forum (AT&T, IBM, Lucent Technologies, Motorola)
- http://www.vxml.org
- The Lutris VXML DTD is Copyright (C) 2001 Lutris Technologies, Inc.
- http://www.lutris.com
- We needed to create this extension to allow ID tagging of entities
- Last revised 2/12/2001 by Bob Bourbonnais <bob.bourbonnais@lutris.com>
- Use:
- <IDOCTYPE vxml PUBLIC "-//ENHYDRA//DTD VXML 1.0 + Enhydra Ids//EN"
- "http://www.enhydra.org/xml/voicexml/enhydra-voicexml1-0.dtd">
- $Revision: 1.1.2.5 §
-->
C<IENTITY % enhydraid "id 1D #IMPLIED">

CIENTITY % audio "#PCDATA | audio | enumerate | value" >

Copyright © 2001 Lutris Technologies Inc. Page 6 of 12

http://localhost:9000/

CLENTITY % boolean "(true|false)" >

CLENTITY % content.type "CDATA">

CLENTITY % duration "CDATA" >

CIENTITY % event.handler "catch | help | noinput | nomatch | error"” >

CIENTITY % event.name "NMTOKEN" >

CLENTITY % event.names "NMTOKENS" >

CVENTITY % executable.content
"%audio; | assign | clear | disconnect | exit | goto | if | prompt |
reprompt | return | script | submit | throw | var " >

CLENTITY % expression "CDATA" >

CLENTITY % field.name "NMTOKEN" >

CIENTITY % field.names "NMTOKENS" >

CLENTITY % integer "CDATA" >

CLENTITY % item.attrs

"name %field.name; #IMPLIED
cond %expression; #IMPLIED
expr %expression; {fFIMPLIED " >

CLENTITY % uri "CDATA"™ >

CLENTITY % cache.attrs
"caching (safe|fast) #IMPLIED
fetchhint (prefetch|safe|stream) fFIMPLIED
fetchtimeout %duration; #IMPLIED " >

CLENTITY % next.attrs

"next suri; #IMPLIED

expr %expression; {fIMPLIED " >
CTENTITY % submit.attrs

"method (get|post) 'get'

enctype scontent.type; "application/x-www-form-
urlencoded’

namelist %field.names; ##IMPLIED" >
CIENTITY % tts "break | div | emp | pros | sayas" >

CIENTITY % variable "block | field | var" >

<h-- Root -

<TELEMENT vxm]
(%event.handler; | form | link | menu | meta |
property | script | var)+ >

CTATTLIST vxm]

application %uri; F#IMPLIED
base suri; #FIMPLIED
lang CDATA #IMPLIED
version CDATA #FREQUIRED >
<TELEMENT meta EMPTY >
CTATTLIST meta
name NMTOKEN fFIMPLIED
content CDATA #REQUIRED
http-equiv ~ NMTOKEN #IMPLIED
%enhydraid; >
<= Dialogs -
CLENTITY % input "dtmf | grammar" >
CIENTITY % scope "(document | dialog)" >

<TELEMENT form
(%input; | %event.handler; | filled | initial | object | link | property
record | subdialog | transfer | %variable;)* >
CIATTLIST form
id ID #FIMPLIED

Copyright © 2001 Lutris Technologies Inc. Page 7 of 12

scope hscope; 'dialog' >
CTELEMENT menu
(%audio; | choice | %event.handler; | prompt | property)* >

IATTLIST menu

id ID #IMPLIED
scope %scope; "dialog"’
dtmf sboolean; "false' >

<ITELEMENT choice (%audio; | grammar | %tts;)* >
CTATTLIST choice
%scache.attrs;

dtmf CDATA #FIMPLIED
event %event.name; FIMPLIED
fetchaudio %uri; J#IMPLIED

%next.attrs;
%enhydraid; >

<l-- Prompts -

<VELEMENT prompt (%audio; | %tts;)* >
CTATTLIST prompt

bargein %boolean; #IMPLIED
cond %expression; HIMPLIED
count %integer; #IMPLIED
timeout %duration; JFIMPLIED

%enhydraid; >
{IELEMENT enumerate (%audio; | %tts;)*>
<TELEMENT reprompt EMPTY >

<l-- Fields -

CTELEMENT field

(%audio; | %event.handler; | filled | %input; | link | option | prompt |
property)* >
CTATTLIST field

hitem.attrs;

type CDATA fFIMPLIED
slot NMTOKEN #IMPLIED
modal %boolean; 'false'

%enhydraid; >
<IELEMENT option (#/PCDATAY* >
CTATTLIST option

dtmf CDATA #IMPLIED
value CDATA #IMPLIED
%enhydraid;>
<VELEMENT var EMPTY >
<IATTLIST var
name %field.name; {ffREQUIRED
expr %expression; HIMPLIED

%enhydraid;>
CIELEMENT initial (%audio; | %event.handler; | link | prompt | property)* >
<IATTLIST dinitial
%item.attrs;
%enhydraid; >
<TELEMENT block (%executable.content;)* >
<IATTLIST block
%item.attrs;
%enhydraid; >
<TELEMENT assign EMPTY >

Copyright © 2001 Lutris Technologies Inc. Page 8 of 12

CIYATTLIST assign

name %field.name; {REQUIRED
expr %expression; #REQUIRED
%enhydraid; >
<IVELEMENT clear EMPTY >
CTATTLIST clear
namelist %field.names; #fIMPLIED
%enhydraid; >
CTELEMENT value EMPTY >
CITATTLIST value
class CDATA #IMPLIED
expr %expression; #REQUIRED
mode (tts|recorded) "tts"
recsrc Buri; #IMPLIED

%enhydraid; >

<l-- Events

CTENTITY % event.handler.attrs

"count %integer; #IMPLIED

cond %expression; #IMPLIED">
<IJELEMENT catch (%executable.content;)* >
CIYATTLIST catch

event %event.names; #fREQUIRED

%event.handler.attrs;
%enhydraid; >
<VELEMENT error (%executable.content;)* >
CIATTLIST error
%event.handler.attrs;
%enhydraid; >

<IELEMENT help (%executable.content;)* >

TATTLIST help
%event.handler.attrs;
%enhydraid; >
CTELEMENT Tink (dtmf | grammar)* >
CTATTLIST Tlink
%cache.attrs;
snext.attrs;
fetchaudio puri; #IMPLIED
event %event.name; FIMPLIED
%enhydraid; >
CTELEMENT noinput (%executable.content;)* >
CTATTLIST noinput
%event.handler.attrs;
%enhydraid; >
<ITELEMENT nomatch (%executable.content;)* >
<IATTLIST nomatch
%event.handler.attrs;
%enhydraid; >

<IVELEMENT throw EMPTY >
CIYATTLIST throw

event %event.name; FREQUIRED

%enhydraid; >

<h-- Audio Output
CTELEMENT audio (%audio; | %tts;)* >
CYATTLIST audio

src puri; #IMPLIED

Copyright © 2001 Lutris Technologies Inc.

Page 9 of 12

%cache.attrs;

%enhydraid;
<IELEMENT break

IATTLIST break
msecs
size
%enhydraid;
CTELEMENT div
TATTLIST div
type
%enhydraid;
<TELEMENT emp
CIATTLIST emp
level

>

EMPTY >

%integer; #IMPLIED
(none|small|medium|large) #fIMPLIED
>

(%audio; | %tts;)* >

CDATA #IMPLIED
>
(%audio; | %tts;)* >

(strong | moderate | none | reduced) "moderate" >

{IELEMENT pros (%audio; | %tts;)* >
CTATTLIST pros
rate CDATA F#IMPLIED
Vol CDATA F#IMPLIED
pitch CDATA fFIMPLIED
range CDATA #IMPLIED
%enhydraid; >
<IELEMENT sayas (#/PCDATAY* >
CIYATTLIST sayas
sub CDATA fFIMPLIED
class CDATA ##IMPLIED
phon CDATA fFIMPLIED
%enhydraid; >
<h-- Audio Input -->
<TENTITY % key "CDATA" >
CVENTITY % grammar.attrs
"%cache.attrs;
scope %scope; F#IMPLIED
src uri; ##IMPLIED
type CDATA #FIMPLIED " >
<TELEMENT dtmf (#/PCDATAY* >
CIATTLIST dtmf
%grammar.attrs;
%enhydraid; >
<IELEMENT grammar (fPCDATA)Y* >
CIYATTLIST grammar
%grammar.attrs;
%enhydraid; >
<TELEMENT record
(%audio; | %event.handler; | filled | grammar | prompt | property)* >
CTATTLIST record
%item.attrs;
type CDATA fFIMPLIED
beep %boolean; 'false'
maxtime %duration; #IMPLIED
modal %boolean; "true'
finalsilence %duration; ##IMPLIED
dtmfterm %boolean; "true'
%enhydraid; >
<l-- Call Control -->

Copyright © 2001 Lutris Technologies Inc.

Page 10 of 12

CTELEMENT disconnectEMPTY >
<IELEMENT transfer
(%audio; | %event.handler; | dtmf | filled | grammar | prompt |
property)* >
<TATTLIST transfer
hitem.attrs;

dest %uri ; #IMPLIED
destexpr %expression; #IMPLIED
bridge %boolean; 'false'
connecttimeout %duration; #IMPLIED
maxtime %duration; #IMPLIED

%enhydraid; >

<h-- Control Flow -

CTENTITY % if.attrs
"cond %expression; #REQUIRED" >
CVELEMENT if (%executable.content; | elseif | else)* >
CYATTLIST if
%if.attrs;
%enhydraid; >
<IELEMENT elseif EMPTY >
CYATTLIST elseif
%if.attrs;
%enhydraid; >

<IELEMENT else EMPTY >
<IELEMENT exit EMPTY >
CIATTLIST exit
expr %expression; HIMPLIED
namelist %field.names; ##IMPLIED >

<TELEMENT filled (%executable.content;)* >
CTATTLIST filled

mode (any|all) "all"
namelist %field.names; #IMPLIED
%enhydraid; >
<IELEMENT goto EMPTY >

<IATTLIST goto
%cache.attrs;
wnext.attrs;

fetchaudio suri; F#IMPLIED
expritem %expression; HIMPLIED
nextitem %field.name; IMPLIED
%enhydraid; >

<TELEMENT param EMPTY >

CTATTLIST param
name NMTOKEN #REQUIRED
expr %expression; {fFIMPLIED
value CDATA F#FIMPLIED
valuetype (data|ref) 'data’
type CDATA fFIMPLIED

%enhydraid; >
<VELEMENT return EMPTY >
CTATTLIST return
namelist %field.names; #IMPLIED
event %event.name; FIMPLIED
%enhydraid; >
<TELEMENT subdialog
(%audio; | %event.handler; | filled | param | prompt | property)* >
IATTLIST subdialog

Copyright © 2001 Lutris Technologies Inc. Page 11 of 12

%item.attrs;

src %uri; #REQUIRED
%cache.attrs;
fetchaudio %uri; J#IMPLIED

%submit.attrs;
%enhydraid; >
CTELEMENT submit EMPTY >
CTATTLIST submit
%cache.attrs;
%next.attrs;
fetchaudio puri; #IMPLIED
%submit.attrs;
%enhydraid; >

<l-- Miscellaneous -

<IELEMENT object

(%audio; | %event.handler; | filled | param | prompt | property)* >
CIATTLIST object

hitem.attrs;

hcache.attrs;

classid %uri ; #IMPLIED
codebase puri; #IMPLIED
data Buri; #IMPLIED
type CDATA fFIMPLIED
codetype CDATA ##IMPLIED
archive %uri ; #IMPLIED

%enhydraid; >
<ITELEMENT property EMPTY >
CIATTLIST property
name NMTOKEN #REQUIRED
value CDATA #FREQUIRED
%enhydraid; >
<IELEMENT script (#fPCDATA)Y* >
CTATTLIST script
src Buri; #IMPLIED
charset CDATA J#IMPLIED
%cache.attrs;
%enhydraid; >

Copyright © 2001 Lutris Technologies Inc. Page 12 of 12

	Using Lutris Enhydra with VoiceXML
	Summary
	Table of Contents
	Using Lutris Enhydra with VoiceXML	1
	History
	Voice Application Architecture
	Grammar
	Data Type Definition files

	Understanding how Enhydra and VoiceXML work together
	Using Enhydra XMLC to check VoiceXML against a DTD
	Using Enhydra XMLC to translate VoiceXML to a DOM
	DOM Accessor methods
	Enhydra extension to the DTD

	Creating a simple VoiceXML example
	Before you begin
	To create a simple VoiceXML example:

	Appendix A Welcome.vxml
	Appendix B enhydra-voicexml1-0.dtd

