
TM

Getting Started with
Lutris Enhydra

Copyright © 2000, 2001 by Lutris Technologies, Inc. All rights reserved.

No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written permission from Lutris Technologies, Inc.
No patent liability is assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the author assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of the information contained
herein.

The Lutris and Enhydra logos, Enhydra XMLC, Enhydra Enterprise, and InstantDB are trademarks or registered
trademarks of Lutris Technologies, Inc. All other trademarks, trade names or company names referenced herein
are used for identification only and are the property of their respective owners.

Sun, Sun Microsystems, the Sun logo, Solaris, Forte, Java, JavaScript, Java 2, JDBC, J2EE, iPlanet, and all Sun,
Java, and iPlanet based trademarks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. UNIX® is a registered trademark in the United States and other countries,
exclusively licensed through X/Open Company, Ltd. Windows, WinNT, Win32, and Access are registered
trademarks of Microsoft Corp. InstallShield is a trademark of InstallShield Software Corp. Cygwin is a trademark
of Cygnus Solutions Corp. Oracle is a trademark or registered trademark of Oracle Corp. Sybase is a trademark
of Sybase Corp. Informix is a trademark of Informix Corp. Red Hat Linux is a trademark of Red Hat Corp. Linux
is a registered trademark of Linus Torvalds. Netscape is a registered trademark of America Online, Inc.
PostgreSQL is Copyright © 1996-2000 by PostgreSQL Inc. JBuilder™ and InterBase® are trademarks of
Borland/Inprise. The Bluetooth trademarks are owned by Telefonaktiebolaget L M Ericsson, Sweden. All other
product names mentioned herein are trademarks of their respective owners.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
trademarks. Where those designations appear in this book, and Lutris Technologies, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

Acknowledgements

Lutris Enhydra Development: Jason Abbott, Kyle Clark, Mark Diekhans, Larry Deran, Michael Gardner,
Dick Gemoets, Scott Harrison, Craig Heath, Peter Hearty, Aidan Hosler, Wes Isberg, Andy John, Peter Johnson,
Matthew Kalastro, Ray Kiuchi, Paul Mahar, John Marco, Shawn McMurdo, Ioan Mitrea, Paul Morgan,
Christophe Ney, Robert Pirani, Scott Pirie, Joseph Shoop, Wayne Stidolph, Josh Sugnet, Simon Tuffs, Mike Ward.

Lutris Customer Services: Andy Ames, Debbie Brackeen, Peter Darrah, Jim Dumont, Jason Dunton,
Anne Hopkins, Andrew Longsworth, Lindsey Lonne, Livia Peras, John Powell, Christopher Reed, Jane Richter,
Katrina Seitz, Steve Slany, Daniel Thomas.

Lutris Consulting: Ashley Baumann, David Black, Dennis Chatham, Jon Coyle, Tola Dalton, Jay Gunter,
John Hellier, Donna Karolchik, Bill Karwin, Alyssa Lalanne, Graham Moore, Jim Murphy, Thom Nelson,
Natasha Perry, Kristen Pol, Lisa Reese, Matt Schwartz, Harvey Thompson, Robert Trama, Shiming Shi,
David Simons, Jonathan Webb.

Lutris Marketing: Keith Bigelow, Scott Campbell, Lynda Hall, Holly Hamner, Klaus Krull, Helen Meservey,
Lynn Renshaw, Greg Schwarzer, Gillian Webster, David Young.

Lutris Enhydra Documentation: Teresa Andrews, Ian Evans, Curtis Gavin, Laurel Kline, Michael Maceri,
C. Rand McKinney.

Thanks also to the following Lutris departments: customer service, consulting, finance, legal, IS, marketing,
quality assurance, research and development, sales, technical support, training, and the executive staff.

Printed in the U.S.A.
ENW-US040-35 1E3R1200
0102030405-9 8 7 6 5 4 3 2 1

1200 PACIFIC AVENUE, SUITE 300, SANTA CRUZ, CA 95060 ✦ PHONE 831.471.9753 ✦ FAX 831.471.9754 ✦ http://www.lutris.com

i

Contents

Chapter 1
Introduction 1
What you should already know 1
Conventions used in this book 1
Lutris Enhydra document set. 3

Getting Started 3
Developer’s Guide 4
Wireless Application Developer’s Guide . . . 4

Lutris documentation updates available online . 4
Contacting Lutris Technical Publications 4
Where to find support and training for

Lutris Enhydra 5
Lutris support. 5

Registering your product online 5
Contacting Lutris Technical Support 5
Submitting bug reports to Lutris

Technical Support 5
Lutris training 6

Available training courses 6
Contacting Lutris Education Services . . . 6

Additional Enhydra information available on
Enhydra.org. 6

Enhydra.org mailing lists 7
Mailing list archives 7

Enhydra.org working groups 7
Documentation working group 8

Enhydra.org community documentation . . . 8
Open-source software downloads 8

Acknowledgments 8

Chapter 2
Installation 9
Installation instructions also freely available

online . 9
Lutris Enhydra installation instructions

freely available to Enhydra.org users 9
Why are installation instructions available

in HTML format only?. 9

Chapter 3
Overview 11
What is Enhydra? 11

What’s new in Lutris Enhydra 12
Anatomy of an Enhydra application. 13

Enhydra super-servlet applications 14

Application objects 14
Presentation objects 15

Servlet applications 15
Servlet versus super-servlet applications . 16

Application layers 17
Multiserver runtime component 17

Enhydra Director 18
Multiserver Administration Console 19

Enhydra application framework 19
Presentation Manager. 20
Session Manager. 20
Database Manager. 21

Enhydra tools . 21
Enhydra Application Wizard 21
Extensible Markup Language

Compiler (XMLC) 22
Dynamic recompilation 22

Data Object Design Studio (DODS) 22
Kelp tools. 24

Enhydra Application wizard 24
XMLC Compiler wizard 24
XMLC property pages. 25
Enhydra sample project 25

Chapter 4
Tutorial: Building Enhydra
applications 27

Creating your first application 27
Building the application 29
How it works 30
Directories and files in SimpleApp 31

Configuration files 32
Launching the Admin Console 33

Adding simpleApp to the Admin Console . . 34
Specifying a connection method 35

Starting and stopping an application 36
Using XMLC. 37

Adding a hit counter 37
Understanding the Document Object Model . 39

SPAN and DIV tags 40
Using XMLC from the command line 40

-dump option. 41
-class and -keep options. 41

Enhydra programming 42
Maintaining session state 42

ii

Adding a new page to the application 44
Populating a table 47

Create the table in HTML 47
Programmatically populate the table 47
Rebuild and run the application 49

Adding a business object 49
Connecting the application to a database 51

Creating a database table 51
Establishing a JDBC connection 52

Configuring the application to use JDBC . 54
Configuring the Database Manager 55
Adding data access functionality 56

Using DODS . 58
Running DODS 58
Creating the data layer. 60

Defining the package hierarchy 60
Defining data objects 61
Generating the data layer code 63

Loading the schema 65
Running the DODS-generated scripts . . . 66

Using the DODS data objects 67
Running the application 68

Chapter 5
DiscRack sample application 71
Building and running DiscRack 71
Process and preliminaries for developing

applications . 72
DiscRack requirements definition 73
DiscRack functional specification. 74
Design and storyboard. 74
Developing, testing, and deploying 76

Overview of DiscRack 76
Presentation layer 77

Presentation base class 77
Session data and log in 78

initSessionData() method 79
loggedInUserRequired() method 79
checkForUserLogin() method 79

Event handling 80
Setting the event parameter 80
handleEvent() method 81

HTML pages 82
Maintaining the storyboard 82

URL mapping 83
Removing dummy data 83
Replacing JavaScript 84
Replacing the user interface 84

Populating a list box 85
Populating a form 87

Business layer . 88
Business objects 88
Using data objects 89

Appendix A
Database configurations 91
Driver configuration 91
Oracle . 92
Informix . 92
Sybase . 93
MySQL . 93

Patch . 93
Configuration 94

PostgreSQL . 94
InstantDB . 94
Microsoft SQL Server 95

JTurbo JDBC driver 95
Microsoft Access 95
InterBase . 96

InterClient . 97
Configuration 97

DODS configuration. 97
Application configuration 98

Configuration notes 98
Server name 98
Pathnames 98
Ports . 99
Username and password 99

Appendix B
Multiserver Administration
Console 101

Launching the Admin Console 101
Starting the Admin Console 101

Admin Console display 102
Control frame 103

Applications window103
Admin Console buttons103

Content frame 104
Viewing status information 104

Viewing connections status information .104
Using the Admin Console 105

Adding an application 105
Adding an Enhydra super-servlet

application 105
Adding a single servlet 106

iii

Adding a servlet application configured
as a WAR 107

Specifying a connection method 108
Stopping an application 109
Deleting an application 109
Modifying the configuration of an

application. 110
Debugging an application 110

Saving the state of the Multiserver 111
Stopping and restarting the Multiserver . . . 112

Creating a WAR file. 112
A simple WAR example 112
For more information 113

Index 115

iv

C h a p t e r 1 , I n t r o d u c t i o n 1

1Chapter
Introduction Chapter 1

This book introduces the Lutris® Enhydra™ application server and the Enhydra
development environment. It provides an introductory overview of Enhydra and
explains how to develop an application by using an example to illustrate some of the
key principles of Enhydra applications.

What you should already know
This book assumes you have the following basic skills:

• General understanding of the Internet, the World Wide Web (Web), and
Hypertext Markup Language (HTML).

• Good working knowledge of the Java programming language. Some knowledge
of Java servlets is also helpful.

• Knowledge of basic UNIX commands and the UNIX make utility. This is not
necessary if you are developing your application with the Kelp toolset in an IDE
such as JBuilder.

• Good understanding of relational databases; knowledge of SQL is helpful.

Conventions used in this book
The typographical conventions used in this book are listed in Table 1.1.

Table 1.1 Typographical conventions

Convention Description

Italics Indicates variables, new terms and concepts, and book titles. For example,
• A servlet is a Java class that dynamically extends the functionality of a

Web server.

2 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

C o n v e n t i o n s u s e d i n t h i s b o o k

Fixed-width Used to indicate several types of items. These include:
• Commands that you enter directly, code examples, utility programs,

and options. For example,
• cd mydir
• System.out.println("Hello World");
• make utility
• -keep option

• Java packages, classes, methods, objects, and other identifiers. For
example,
• ErrorHandler class
• run() method
• Session object
Note: Method names are suffixed with empty parentheses, even if the
method takes parameters.
Note: Only specific references to object names are in fixed-width;
generic references to objects are shown in plain text.

• File and directory names. For example:
• /usr/local/bin
Note: UNIX path names are used throughout and are indicated with a
forward slash (/). If you are using the Windows platform, substitute
backslashes (\) for the forward slashes (/).

Fixed-width italic
and
<Fixed-width italic>

Indicates variables in commands and code. For example,
• xmlc [options|optfile.xmlc ...] docfile
Note: Angle brackets (< >) are used to indicate variables in directory paths
and command options. For example,
• -class <class>

Boldface Used for the words Note, Tip, Important, and Warning when they are
used as headings that draw your eye to essential or useful information.

Keycaps Used to indicate keys on the keyboard that you press to implement an
action. If you must press two or more keys simultaneously, keycaps are
joined with a hyphen. For example,
• Ctrl-C.

| (pipe) Used as a separator in menu commands that you select in a graphical user
interface (GUI), and to separate choices in a syntax line. For example,
• File|New
• {a|b|c}
• [a|b|c]

{ } (braces) Indicates a set of required choices in a syntax line. For example,
• {a|b|c}
means you must choose a, b, or c.

[] (brackets) Indicates optional items in a syntax line. For example,
• [a|b|c]
means you can choose a, b, c, or nothing.

Table 1.1 Typographical conventions (continued)

Convention Description

C h a p t e r 1 , I n t r o d u c t i o n 3

L u t r i s E n h y d r a d o c u m e n t s e t

Table 1.2 lists additional conventions used in this book, including the convention
used to describe the Enhydra root directory, platform-related conventions, and so on.

Lutris Enhydra document set
The Lutris Enhydra documentation set is an excellent resource for information about
Enhydra. The documentation set includes the following printed guides.

Note Online versions of these books in both PDF and HTML formats are provided with the
purchase of Lutris Enhydra. These online books, along with additional Enhydra
online documentation, are located in the doc subdirectory of the directory in which
you installed Lutris Enhydra. You can also view the online books and installation
instructions directly from the product CD.

Getting Started

Getting Started with Lutris Enhydra introduces the fundamentals of Enhydra. The
purpose of this book is to introduce Lutris Enhydra and provide a groundwork for

. . . (horizontal
ellipses)

Used to indicate that portions of a code example have been omitted to
simplify the discussion, and to indicate that an argument can be repeated
several times in a command line. For example,
• xmlc [options|optfile.xmlc ...] docfile

plain text Used for URLs and generic references to objects. For example,
• http://www.lutris.com/documentation/index.html
• The presentation object is in the presentation layer.

ALL CAPS Indicates SQL statements. For example:
• CREATE statement

Table 1.2 Additional conventions

Convention Description

Enhydra root
directory

When you install Enhydra, you install the Enhydra executables and
libraries in a directory of your choosing. This directory is referred to as the
Enhydra root directory or <enhydra_root>.

Paths UNIX path names are used throughout and are indicated with a forward
slash (/). If you are using the Windows platform, substitute backslashes (\)
for the forward slashes (/). For example,
• /usr/local/bin

URLs URLs are indicated in plain text and are generally fully qualified. For
example,
• http://www.lutris.com/documentation/index.html

Screen shots Most screen shots reflect the Microsoft Windows look and feel.

Table 1.1 Typographical conventions (continued)

Convention Description

4 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

L u t r i s d o c u m e n t a t i o n u p d a t e s a v a i l a b l e o n l i n e

understanding and working with Enhydra and its associated tools. It includes a
detailed tutorial and an explanation of the Enhydra DiscRack sample application.

Note As part of our commitment to support the Enhydra and open-source communities,
Lutris Technologies has made the latest online version of Getting Started with
Lutris Enhydra available for free viewing and download from the Lutris
Documentation home page at http://www.lutris.com/documentation/index.html.

Developer’s Guide

The Lutris Enhydra Developer’s Guide introduces advanced topics and explores key
features of Enhydra in detail. The purpose of the Developer’s Guide is to provide
developers with the information they need to create and debug sophisticated
Enhydra applications. This guide provides in-depth information on the
Lutris Enhydra development tools:

• Application Wizard
• Multiserver Administration Console
• Kelp tools
• Enhydra™ XMLC
• Data Object Design Studio (DODS)
• InstantDB
• Enhydra Director

Note The Developer’s Guide is available only with the purchase of Lutris Enhydra.

Wireless Application Developer’s Guide

The Lutris Enhydra Wireless Application Developer’s Guide presents information on
wireless technologies and describes how to develop wireless applications with
Enhydra. It includes a detailed tutorial and an explanation of the Enhydra AirSent
wireless sample application.

Note The Wireless Application Developer’s Guide is available only with the purchase of
Lutris Enhydra.

Lutris documentation updates available online
The latest product documentation updates and release notes are available to
registered users from the Lutris Documentation home page at
http://www.lutris.com/documentation/index.html.

Contacting Lutris Technical Publications
We strongly encourage you to send us your feedback because it helps us understand
your needs and makes our documentation even better. You can submit feedback
from the Lutris website at

C h a p t e r 1 , I n t r o d u c t i o n 5

W h e r e t o f i n d s u p p o r t a n d t r a i n i n g f o r L u t r i s E n h y d r a

http://www.lutris.com/documentation/feedback/index.html. You can also submit
feedback by sending email to documentation@lutris.com.

Where to find support and training for Lutris Enhydra
Lutris Enhydra includes a package of products for developing Enhydra applications,
including open-source products. Lutris Technologies, Inc. provides support and
services for Lutris Enhydra.

Note Open-source communities or commercial entities support the other products. For
detailed information on the available support options for those products, please refer
to the appropriate group or company website.

Lutris support

Lutris offers a variety of support programs designed to assist you with your technical
support needs. We can help with installing and using your Lutris product,
developing and debugging your code, maintaining your deployed applications,
providing onsite consulting services, and delivering enterprise-level support. For
more information about any of the Lutris technical support programs, see the Lutris
Support home page at http://www.lutris.com/support/index.html or call Lutris
Customer Service toll-free at 1-877-688-3724, Monday–Friday, 8 a.m.–6 p.m. Pacific
Time (outside of North America, please call 1-831-460-7590).

Registering your product online
Lutris strongly encourages you to register your product online. Registering your
product entitles you to 15 days of free installation support and provides you with the
option of purchasing Lutris Support Services.

To register online, browse to the product registration form that is available at
http://www.lutris.com/register.html.

Contacting Lutris Technical Support
For more information about any of Lutris’ technical support programs, see the Lutris
Support home page at http://www.lutris.com/support/index.html or call Lutris
Customer Service toll-free at 1-877-688-3724, Monday–Friday, 8 a.m.–6 p.m. Pacific
Time (outside of North America, please call 1-831-460-7590). You can also send email
to support@lutris.com.

Submitting bug reports to Lutris Technical Support
To report suspected Lutris Enhydra bugs, fill out the Bug Report form available at
http://lutrisbugs.custhelp.com/cgi-bin/lutrisbugs/people. We recommend that
you choose the Search Bugs link before submitting a bug report so that you can see if
your bug has already been reported. Be sure to include steps-to-reproduce, exact
error messages, and code snippets, if applicable, to help us better evaluate your
report.

6 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

A d d i t i o n a l E n h y d r a i n f o r m a t i o n a v a i l a b l e o n E n h y d r a . o r g

Lutris training

Lutris wants to ensure your success. Our expert trainers guide participants through
hands-on labs designed to provide an intensive learning environment where
participants quickly learn how to maximize Lutris Enhydra in development and
deployment environments.

Available training courses
The following courses are currently offered by Lutris Technologies. For more
information about training offerings, see the Lutris Training home page at
http://www.lutris.com/training/index.html.

Lutris Enhydra Fundamentals
Lutris Technologies currently offers a five-day, instructor-led course titled
Lutris Enhydra Fundamentals. This course is intended primarily for developers,
architects, project managers, IT staff, and consultants who will be using
Lutris Enhydra or are evaluating it for future projects.

Building Wireless Applications
Lutris Technologies currently offers a two-day, instructor-led course titled
Building Wireless Applications with Lutris Enhydra. This course is intended primarily
for Enhydra developers who want to create applications that serve content to
cellphones or other wireless devices.

Lutris Enhydra Database Techniques
Lutris Technologies currently offers a two-day, instructor-led course titled
Database Techniques with Lutris Enhydra. This course is intended primarily for
Enhydra developers working on applications that require existing database platform
support, Java database specialists and DBAs responsible for maintaining the data
layer of an Enhydra application, and evaluators interested in seeing the database
capability available through Enhydra.

Contacting Lutris Education Services
For more information about training offerings, see the Lutris Training home page at
http://www.lutris.com/training/index.html or call Lutris Customer Service
toll-free at 1-877-688-3724, Monday–Friday, 8 a.m.–6 p.m. Pacific Time (outside of
North America, please call 1-831-460-7590). You can also send email to
training@lutris.com.

Additional Enhydra information available on Enhydra.org
You can find a variety of information about open-source Enhydra at the Enhydra
website: http://www.enhydra.org. The Enhydra website is the home of the Enhydra
open-source community, one of Enhydra’s greatest assets. The Enhydra community

C h a p t e r 1 , I n t r o d u c t i o n 7

A d d i t i o n a l E n h y d r a i n f o r m a t i o n a v a i l a b l e o n E n h y d r a . o r g

consists of numerous entities, including community sponsors, technology providers,
users, and of course developers.

Enhydra.org mailing lists

The Enhydra.org website includes archives of the various electronic mailing lists that
serve as the backbone of the Enhydra community, as well as instructions on how to
subscribe to the mailing lists.

Lutris encourages you to join one or more of the following Enhydra email lists:

• Enhydra@enhydra.org

The Enhydra mailing list for developer interaction. The Enhydra project team
monitors this list. It is the ideal place to get answers to your questions from fellow
Enhydra developers.

• Enhydra-daily@enhydra.org

A daily collection of all mail sent to enhydra@enhydra.org is sent to subscribers of
this list.

• Enhydra-digest@enhydra.org

A weekly digest of all mail sent to enhydra@enhydra.org.

• EnhydraEnterprise@enhydra.org

The Enhydra Enterprise mailing list is tailored for those who are developing and
deploying Enhydra applications on a large scale. Here you can find answers to the
more detailed Enhydra questions, such as those on Enterprise Java Beans (EJB)
and the Common Object Request Broker Architecture (CORBA).

• EnhydraEnterprise-digest@enhydra.org

A weekly digest of all mail sent to EnhydraEnterprise@enhydra.org.

• Enhydra-announce@enhydra.org

The mailing list for receiving Enhydra announcements.

For information and instructions on joining one or more of these lists, go to
http://www.enhydra.org/community/mailingLists/index.html.

Mailing list archives
You can search the combined Enhydra mailing list archives at
http://www.enhydra.org/community/mailingLists/index.html.

Enhydra.org working groups

Enhydra working groups bring together developers interested in creating new
Enhydra applications and contributing new technologies or bug fixes for Enhydra.

8 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

A c k n o w l e d g m e n t s

Each working group provides access to the current project source code and to the
project email list. This lets you communicate with the project leaders and other
developers.

For information and instructions on joining one or more of these groups, go to
http://www.enhydra.org/project/workingGroups/index.html.

Documentation working group
The documentation working group is focused on facilitating developer-created
documentation for open-source Enhydra and related technologies. The working
group also provides a central point for documentation discussions and proposals.

Community members are encouraged to submit and collaborate on articles of any
length, on topics of general interest to all Enhydra developers—from beginning to
advanced.

For information and instructions on joining this groups, go to
http://www.enhydra.org/project/workingGroups/index.html.

Enhydra.org community documentation

The Enhydra website also has documentation provided by members of the
community. For more information on this documentation, see
http://www.enhydra.org/software/documentation/enhydra/index.html.

Open-source software downloads

You can download the latest version of open-source Enhydra and other related
software at: http://www.enhydra.org/software/downloads/index.html.

Acknowledgments
As an open-source product, Enhydra benefits from the contributions of many
developers around the world. In particular, Lutris would like to thank the following
people who have contributed information used in some form in this book: Robert
Cadena, G. W. Estep, Rohan Oberoi, Dan Rosner, Peter Speck, and David Trisna.

C h a p t e r 2 , I n s t a l l a t i o n 9

2Chapter
Installation Chapter 2

Complete step-by-step installation instructions for Lutris Enhydra and related
software (including bundled third-party software) are available on the
Lutris Enhydra CD. To begin, refer to the top-level index.html file on the Enhydra CD.

For convenience, we recommend that you print the HTML file containing the
Lutris Enhydra installation instructions prior to installation. (The instructions are
included in a single print-friendly HTML file.) However, you can also follow the
step-by-step installation instructions online (you can toggle back and forth between
the installation program and browser).

Installation instructions also freely available online
The latest Lutris Enhydra installation instructions are freely available from the Lutris
Documentation home page at http://www.lutris.com/documentation/index.html.

Lutris Enhydra installation instructions freely available to
Enhydra.org users

In the spirit of supporting the Enhydra and open-source communities, Lutris
Technologies has made the latest Lutris Enhydra installation instructions freely
available from the Lutris Documentation home page at
http://www.lutris.com/documentation/index.html.

Note The Lutris Enhydra installation instructions are tailored to the installation of
Lutris Enhydra. Open-source Enhydra users will need to substitute filenames and
pathnames appropriately.

Why are installation instructions available in HTML format only?
Previous versions of this book included printed installation instructions. Due to
book-printing schedules, this installation information was usually not as accurate as
the information provided on the Lutris Enhydra CD, which is able to be updated
until just prior to release. Therefore, to ensure that you always receive the latest
installation information, the installation instructions are now available only on the
CD or online in an easy-to-print HTML format.

10 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

W h y a r e i n s t a l l a t i o n i n s t r u c t i o n s a v a i l a b l e i n H T M L f o r m a t o n l y ?

It is our hope that by single-sourcing the installation instructions in print-friendly
HTML and making the latest versions always available online, we are serving our
Lutris Enhydra customers and the Enhydra community in the best possible way.

We hope you agree. Please feel free to send your comments to
documentation@lutris.com.

Thank you,

Lutris Documentation Team

C h a p t e r 3 , O v e r v i e w 11

3Chapter
Overview Chapter 3

This chapter provides a high-level overview of Enhydra, Enhydra applications, and
the tools used to create Enhydra applications. The following topics are covered:

• What is Enhydra?
• Anatomy of an Enhydra application
• Multiserver runtime component
• Enhydra application framework
• Enhydra tools

What is Enhydra?
Enhydra is an application server for running robust and scalable multi-tier Web
applications, and a set of application development tools.

An application server usually operates between a Web server and a database server, and
provides dynamically-generated content for the Web server to send to Web browser
clients.

An Enhydra application is a Java program that runs in Multiserver and uses the Enhydra
application framework at runtime. Figure 3.1, “Enhydra application model,”
illustrates the basic elements of an Enhydra application within the context of the
Enhydra architecture.

12 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

W h a t i s E n h y d r a ?

Figure 3.1 Enhydra application model

As illustrated in Figure 3.1, Enhydra has three parts:

• Multiserver: Runs Enhydra applications either by itself or with a Web server.

• Application framework: Collection of Java classes, which provide the runtime
infrastructure for Enhydra applications.

• Enhydra tools: Use to develop Enhydra applications.

The following sections describe Enhydra and Enhydra applications in more detail.

What’s new in Lutris Enhydra

Enhydra 3.5 has a number of new features and enhancements, including:

• Improved application performance with Java 2 v1.3 support (JDK 1.3)

• Support for server-side redirects

• Wireless support enhancements, including:

• XMLC support for VoiceXML, cHTML, and XHTML

For more information on See this topic

Enhydra application architecture “Anatomy of an Enhydra application” on page 13
Multiserver “Multiserver runtime component” on page 17
Application framework “Enhydra application framework” on page 19
Enhydra tools “Enhydra tools” on page 21

C h a p t e r 3 , O v e r v i e w 13

A n a t o m y o f a n E n h y d r a a p p l i c a t i o n

• AirSent sample application, a comprehensive wireless application to illustrate
the capabilities and development methods associated with Enhydra wireless
applications

• Wireless Application Developer’s Guide, detailed documentation focused on
wireless application development

• Enhydra™ Mail Demo, an extensible Enhydra application, illustrates how
messaging can be used with wired and wireless Webs

• Enhydra XMLC 2.0 has significant performance improvements, updated XML and
HTML parsers, and now supports compile time includes using SSI syntax

• Kelp 2.0 has support for Servlet 2.2 and Enhydra Super-servlet applications, added
support for creating WML, XHTML, and cHTML clients, enhanced support for
WML, JSP, and WAR files, and new import and deployment wizards

• DODS 3.0 has improved Java-database type mapping scheme, query class
improvements for complex queries, and improved database code generators

• InstantDB 3.24, companion database to Lutris Enhydra, has foreign key support,
XA-compliant JDBC Drivers (JDBC 2.0), and general performance improvements

• Documentation updates:

• Getting Started with Lutris Enhydra has been updated to reflect changes to
Enhydra and revised for accuracy.

• Developer’s Guide has been updated to reflect changes to Enhydra and revised
for accuracy. The Developer’s Guide also contains new material for DODS and
the Application Wizard.

• Wireless Application Developer’s Guide has been added to provide detailed
information about technologies, design considerations, development tools, and
programing techniques for wireless applications

Please consult the release notes for a comprehensive list of changes and
enhancements.

Anatomy of an Enhydra application
An Enhydra application can be either:

• An Enhydra super-servlet application that uses Enhydra’s own application model
• A servlet application that uses the J2EE servlet application model

These two kinds of applications are similar in many ways, but have some important
differences. Generally, a servlet application has a servlet for each page (HTML,
WML, and so on) in the application. In contrast, a super-servlet application consists
of a single servlet that contains a presentation object for each page.

You can use Enhydra tools such as XMLC and DODS to create both kinds of
applications, and you can run both kinds of applications in any standard servlet
runner, such as the Enhydra Multiserver.

14 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

A n a t o m y o f a n E n h y d r a a p p l i c a t i o n

For a detailed comparision of the two application models, see “Servlet versus
super-servlet applications” on page 16.

Enhydra super-servlet applications

An Enhydra application has, at a minimum:

• A single application object
• One presentation object for each page to be dynamically generated

These objects run in the context of the Enhydra application framework, as described
in “Enhydra application framework” on page 19.

Application objects
The application object is the central hub of an Enhydra application. It is a subclass of
com.lutris.appserver.server.StandardApplication and contains application-wide data,
such as:

• Name of the application

• Status of the application (for example, running/stopped/dead)

• Name and location of the configuration file that initializes the application

• Log channel to use for logging

• References to the application’s session manager, database manager, and
presentation manager (see“Enhydra application framework” on page 19)

Properties
You can add properties (instance variables) to the application object to store
information that needs to be accessible throughout the application. For example, if
your application has a dozen pages that need to share a collection of customer data,
you can make a vector containing the data a property of the application object so all
pages can easily access it.

Methods
Each application object has the following methods:

• startup() starts the application

You can extend this to perform other startup functions, such as reading settings
from the configuration file.

• requestPreprocessor() initializes the Session data structure

You can extend this as needed; for example, to check for HTTP basic
authorization.

In general, application objects do not deal with HTML, handle requests, or otherwise
talk to the network; presentation objects perform these tasks. The next section
describes presentation objects.

C h a p t e r 3 , O v e r v i e w 15

A n a t o m y o f a n E n h y d r a a p p l i c a t i o n

Presentation objects
A presentation object generates dynamic content for one or more pages in an Enhydra
super-servlet application.

When a browser requests a URL that ends in .po, Enhydra passes the request on to
the corresponding presentation object. Enhydra then instantiates and calls the
presentation object. For example, for the URL http://www.foo.com/myapp/Xyz.po,
Enhydra calls the presentation object Xyz.

Note Enhydra only calls a presentation object for URLs with a .po suffix. The Web server
generally serves a static file for other requests.

Presentation objects must implement the interface
com.lutris.appserver.server.httpPresentation.HttpPresentation. This interface has one
method, run(), that Enhydra calls, passing it an HTTP request. Presentation objects
differ from servlets in that they need handle only a single request at a time. No
concurrency control is required.

Enhydra also provides a response object that a presentation object can use to write data
in response to HTTP requests (similar to a servlet’s service() method). Presentation
objects usually handle GET requests (for example, form submissions) and respond by
writing HTML, but they can perform other functions (for example, read files sent by
a POST request).

Servlet applications

In addition to super-servlet applications, you can also create and run standard servlet
applications (sometimes called Web applications) with Enhydra. Servlet applications
conform to the Java servlet API specification, part of the Java 2 Enterprise Edition
(J2EE) specification from Sun Microsystems. It is a popular application model for
interactive Web applications.

For a detailed information on the servlet application model, see
http://java.sun.com/products/servlet/index.html.

In a servlet application, each servlet is responsible for a single page of output
(although this is not required, it is common practice). Each servlet must be a subclass
of javax.servlet.http.HttpServlet, and will generally override the doGet() method, and
possibly other methods, such as init(). The general architecture of a servlet
application is illustrated in Figure 3.2.

Although JavaServer Pages (JSPs) are often used to create the presentation layer of
servlet applications, XMLC is generally better because it provides a cleaner
separation between layout code (such as HTML) and presentation logic code.
Fortunately, you can use XMLC to help generate presentation code for servlet
applications, too.

16 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

A n a t o m y o f a n E n h y d r a a p p l i c a t i o n

Figure 3.2 Servlet application model

Servlet versus super-servlet applications
While the servlet application model and the super-servlet application model are
similar in many ways, they also have some key differences. You can run both kinds
of applications in Enhydra Multiserver, and you can use Enhydra tools such as
XMLC and DODS to help create both kinds of applications.

Since the servlet API performs its own presentation management, there is no need for
the Enhydra Presentation Manager (see “Presentation Manager” on page 20).
Likewise, the servlet API provides session management, so there is no need for the
Enhydra Session Manager (see “Session Manager” on page 20).

One of the key differences in the two application models is how the objects in the
presentation layer are instantiated. In a super-servlet application, each request
creates a new instance of the requested presentation object, and the PO executes in a
single-thread. In contrast, in a servlet application there is only one instance of any
given servlet, and it is multithreaded (one thread for each request). So, POs can have
member variables that are local to each instance, while in a servlet application, any
member variable is global to all threads of the instance of the servlet.

Presentation objects have several features that you cannot take advantage of in a
servlet application:

• Dynamic page recompilation (so you can change page content while an
application is running)

• URL-encoding of session information for cookieless session maintenance

• Automatic setting of MIME-types, for applications that generate multiple
document types (for example, HTML and WML)

C h a p t e r 3 , O v e r v i e w 17

M u l t i s e r v e r r u n t i m e c o m p o n e n t

Additionally, Enhydra has a sophisticated make system, especially tailored to
building XMLC-based applications. You cannot use this system when building
servlet applications.

The Enhydra application framework provides a number of capabilities that are very
useful, including:

• Database management
• Logging

Although these are not part of the standard servlet application model, you can save a
lot of development time by using them; however, your application will then be
dependent on the Enhydra class libraries (contained in enhydra.jar).

Application layers

Regardless of the application model you use, you should divide your application into
three distinct parts or layers for modularity and ease of maintenance:

• The Presentation layer handles how the application is presented to Web browsers
through HTML. In a super-servlet application, this layer consists of presentation
objects (POs); in a servlet application, it consists of servlets.

• The Business layer contains business objects. Business objects contain the
application’s business logic, including algorithms and specialized functions, but
not data access or display functions.

• The Data layer handles the interface with the persistent data source, which is
typically a relational database.

An additional benefit of having a distinct data layer is that you can use the Data
Object Design Studio (DODS) to create your data objects. DODS graphically
creates data objects to populate the data layer, and creates both Java code and SQL
code to create the corresponding tables in the database. For more on DODS, see
“Data Object Design Studio (DODS)” on page 22.

Note The Enhydra application framework only requires that you use an application object
and presentation objects. The business and data classes you create are up to you.

Dividing your application into these three layers minimizes maintenance cost
because it isolates the application’s data layer from the user interface. This, in turn,
lets you change the data layer without affecting the presentation layer.

Multiserver runtime component
Multiserver is the runtime component of Enhydra. It provides the services that an
Enhydra application uses to communicate with the Web server, and performs all
other runtime functions.

To understand Enhydra Multiserver, you need to understand a little about servlets.
A servlet is a Java class that dynamically extends the functionality of a Web server.
Normally, when a browser sends a request to a Web server, the server simply finds

18 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

M u l t i s e r v e r r u n t i m e c o m p o n e n t

the files identified by the requested URL and returns them to the browser. However,
if the browser requests a page constructed by a servlet, the server sends the request
information to a servlet, which constructs the response dynamically and returns it to
the server.

The Java Servlet API is a standard extension to Java and is part of the Java 2
Enterprise Edition (J2EE). Some Web servers support the Servlet API directly, while
others require an adjunct servlet runner, such as JServ for the Apache Web server.
Enhydra 3.0, and later, supports the Servlet API version 2.2.

Each Enhydra application runs as a single servlet, in contrast to a generic servlet
application, which typically has one servlet for each dynamically-generated page.
Enhydra Multiserver is a servlet runner that executes servlets, such as Enhydra
applications, either with a Web server or by itself. Multiserver can run applications in
a small-scale development environment on its own. For a production environment
requiring greater performance, you can use Multiserver in conjunction with a Web
server.

Note Because an Enhydra application is a servlet, it can run in any standards-compliant
servlet runner, not just in Multiserver.

Enhydra Multiserver has a custom class loader for each application (servlet). Because
of this one-to-one correspondence between servlets and class loaders, you can install
and start new applications without stopping the server. To update an existing
application, you simply restart its class loader.

Enhydra Director

Enhydra Director provides superior scalability for applications by distributing the
user load among several Enhydra Multiservers.

The load-balancing algorithm supports session affinity and weighted round-robin
distribution with server failover. Session affinity means that a particular session
instance will always access the same Multiserver instance. The weighted
round-robin, load-balancing scheme takes into account the capacity of each
Multiserver instance and the number of existing connections. Server failover ensures
that if a Multiserver goes down, all application connections are automatically
transferred to another Multiserver instance.

The Enhydra Director uses a new connection method—the Enhydra Director
connection method—and a new set of Web server extension modules. Enhydra
Director works with:

• Apache servers through the Apache Module interface

• Netscape servers through Netscape Application Programming Interface (NSAPI)

• Microsoft servers through the Internet Server Application Programming
Interface (ISAPI)

• Other Web servers through the Common Gateway Interface (CGI)

For more information and installation instructions for Enhydra Director, see the
online documentation installed with Enhydra.

C h a p t e r 3 , O v e r v i e w 19

E n h y d r a a p p l i c a t i o n f r a m e w o r k

Multiserver Administration Console

Enhydra Multiserver provides an Admin Console for managing applications through
a Web browser. The Admin Console lets you:

• Start and stop applications
• Add and remove applications from management
• Modify operational attributes for an application and check its status
• Trace the execution of an application to aid in debugging

The Admin Console is described in more detail in “Multiserver Administration
Console” on page 101.

Enhydra application framework
The Enhydra application framework includes:

• Presentation Manager
• Session Manager
• Database Manager

In general, the application framework includes all the classes in the
com.lutris.appserver.server.* packages, which provide the infrastructure that
Enhydra applications use at runtime.

The general architecture of an Enhydra application in the context of the application
framework is illustrated in Figure 3.3, “Enhydra application and Enhydra
framework.”

Figure 3.3 Enhydra application and Enhydra framework

20 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

E n h y d r a a p p l i c a t i o n f r a m e w o r k

Presentation Manager

The Enhydra Presentation Manager handles the loading and execution of the
presentation objects in an Enhydra application. The Presentation Manager maps
URLs to presentation objects and calls the run() method of the presentation object.

Each Enhydra application has one instance of a Presentation Manager. To increase
performance, the Presentation Manager caches presentation objects and associated
files in memory as necessary. The Presentation Manager also provides the key that
the session manager uses to locate a session. This key is either a cookie or a string
appended to each URL in the application.

Each application has a Presentation Manager that is an instance of the class
com.lutris.appserver.server.httpPresentation.HttpPresentationManager. The
com.lutris.appserver.server.httpPresentation package contains classes and interfaces
that the Presentation Manager and presentation objects use.

Session Manager

The Enhydra Session Manager enables an application to maintain state throughout a
session. A session is defined as a series of requests from the same user (browser client)
during a specified time period. Enhydra provides a general implementation of
session management that you can extend to create more sophisticated state models.

Enhydra maintains user state by creating a Session object for each user. When a user
first makes a request to an application, the Session Manager creates a new Session
object and assigns it a unique session ID. The Session Manager uses the session ID to
retrieve the Session object for subsequent requests. Applications can add user-specific
information to the Session object and then access the Session object from the request
object, as it is passed through the application.

If a user has been idle (has not issued a request to the application) for more than the
period specified in the configuration file, the user’s session becomes invalid, and the
Session Manager releases the corresponding Session object. This makes it possible to
implement security schemes that require users to log in before accessing the
application. In such a scheme, the user enters an appropriate password and gains
access to the rest of the application; however, once the user’s session has been idle for
more than the allowed time, the application requires the user to log in again.

Each application has a Session Manager that is an instance of the class
com.lutris.appserver.server.session.StandardSessionManager. When it is created, the
Session Manager reads the maximum time that a session can persist, the maximum
session idle time, and other related information from the application configuration
file, appName.conf.

The com.lutris.appserver.server.session package contains classes and interfaces that
the Session Manager and the application use for session management.

C h a p t e r 3 , O v e r v i e w 21

E n h y d r a t o o l s

Database Manager

The Enhydra Database Manager controls a pool of database connections for the
application. The Database Manager works with logical databases. A logical database is
an abstraction that hides the differences between different database types. A logical
database uses Java Database Connectivity (JDBC) to communicate with database
servers such as Oracle, Sybase, Informix, Microsoft SQL Server, PostgreSQL,
InterBase, and InstantDB.

The Database Manager is responsible for the state of a database connection, the SQL
statements that are being executed, and the result sets that are in progress.
Specifically, the Database Manager:

• Allocates and releases connections to the logical database
• Allocates object IDs from the logical database
• Creates queries and transactions
• Maintains other database-related information

Each application has a Database Manager that is an instance of the class
com.lutris.appserver.server.sql.StandardDatabaseManager. When it is created, the
Database Manager reads a configuration file that specifies the logical database to use,
the actual database types to which it maps, and other related information.

The com.lutris.appserver.server.sql package contains the classes and interfaces that
the Database Manager and data objects use.

Enhydra tools
Enhydra includes the following tools to help you create applications:

• Enhydra Application Wizard
• Extensible Markup Language Compiler (XMLC)
• Data Object Design Studio (DODS)
• Kelp tools

Enhydra Application Wizard

The Enhydra Application Wizard (appwizard) is a tool with both a command-line and
a graphical user interface. The wizard creates a basic framework for an Enhydra
application. The wizard lets you create and run a new “stub” application in a matter
of minutes, giving your development project a jump-start. For an example of using
the Application Wizard GUI, see “Creating your first application” on page 27.

Note The Application Wizard has changed significantly with the release of
Lutris Enhydra 3.5. Previously, the Application Wizard was a command-line tool,
started by entering newapp with a parameter for the project name. The command for
starting the Application Wizard and the parameters required to run it as a
command-line tool have changed. The basic framework of files and directories
generated by the Application Wizard has changed as well.

22 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

E n h y d r a t o o l s

The Enhydra Application Wizard is also incorporated into the Enhydra Kelp tools, so
you can create a basic framework for an Enhydra application from a graphical
integrated development environment (IDE).

For additional information about the Enhydra Application Wizard, refer to Chapter
2, “Using the Application Wizard to create Enhydra applications,” in the
Developer’s Guide.

Extensible Markup Language Compiler (XMLC)

The Extensible Markup Language Compiler (XMLC) creates a Java object that mirrors the
structure of a eXtensible Markup Language (XML) document. XML, defined by the
World Wide Web Consortium (W3C), is the universal format for structured
documents and data on the Web. XMLC uses the Document Object Model (DOM), a
W3C standard interface, to let programs access and update the content and structure
of XML documents.

Note Although XMLC works with XML documents, this book will focus on its use with
HTML pages.

XMLC lets you separate HTML templates in your application. These templates are
typically created by page designers from Java code, which is usually created by
programmers. This functionality provides increased modularity and eases team
development and application maintenance. Page designers can change the user
interface of the application without requiring any code changes, and the
programmers can change the “back-end” Java code without requiring any changes to
the HTML.

This command-line tool generates a Java class file from a HTML input file. An
application can use the Java class at runtime to change the content or attributes of any
tags with ID or CLASS attributes. For an example using the XMLC, see “Tutorial:
Building Enhydra applications” on page 27.

Dynamic recompilation
XMLC dynamic recompilation lets you change HTML layouts at runtime without
restarting an application. With this feature, you can make any changes to the static
content of HTML pages. The application automatically picks up the changes. As long
as you do not add or change any ID and CLASS attributes of tags in a page, you don’t
have to rebuild and restart the application.

Data Object Design Studio (DODS)

The Data Object Design Studio (DODS), as shown in Figure 3.4, is a graphical tool you
can use to define your data model.

C h a p t e r 3 , O v e r v i e w 23

E n h y d r a t o o l s

Figure 3.4 DODS graphical user interface

Data objects in the DODS data model correspond to tables in the database. Each data
object has attributes, which describe database columns, and reference attributes, which
refer to other data objects. Reference attributes let you create a hierarchy of data
objects (for example, many-to-one or many-to-many relationships).

Once you have defined your data model, the DODS generates all of the code to
implement it. For example:

• SQL code to define the database tables
• Java code to create the corresponding application data objects

For each data object, DODS generates a set of source files. For example, if your data
model includes the definition of an entity named “thing,” then DODS would
generate the following:

• A file named thing.sql containing the SQL CREATE TABLE command to construct
a table in a relational database.

• Java source file defining a data object representing a row in the table.

This class provides a “set” and “get” method for each attribute, methods to handle
caching, and is a subclass of the Enhydra framework class GenericDO. In this
example, the class would be named ThingDO.

• Java source file that defines a query class, which provides SQL query access to the
database table.

The query class returns a collection of ThingDO objects that represent the rows found
in the table matching criteria passed from the application.

When DODS generates source code, it creates a directory structure that matches the
package hierarchy you have designed. DODS creates the make files in each directory,
and runs make on the generated source code. All that is left for you to do is to create a
database using the SQL files, and write the more interesting components of your
application.

For an example using DODS, see “Using DODS” on page 58.

24 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

E n h y d r a t o o l s

Kelp tools

The Kelp tools let you develop Enhydra applications in Borland JBuilder or Oracle
JDeveloper integrated development environments (IDEs).

Note You can use Kelp in place of Enhydra’s shell scripts and make files.

Figure 3.5 shows a general outline of Kelp, as features vary depending on the IDE.
See Chapter 4, “Using Enhydra Kelp,” of the Developer’s Guide for the documentation
included with the Kelp tools for specific features supported by your Java IDE.

Figure 3.5 JBuilder project generated with Kelp

Enhydra Application wizard
The Enhydra Application wizard incorporated into Kelp generates an Enhydra
application that you can develop, run, and debug from within an IDE. The wizard
lets you set the name, directory, and package for your new application. It generates
the files described in “Creating your first application” on page 27. It also generates a
Readme.html file that lists the steps to build and run the new application.

XMLC Compiler wizard
The Compiler wizard lets you set XMLC options, select HTML files to compile, and call
the XMLC compiler from JBuilder.

The wizard also provides a mapping table that maps directories to package names.
This is useful when you keep your HTML files in a directory that does not match the
package name you want to use in the generated DOM classes. For example, the
DiscRack sample project has HTML files in a resources directory that need to be
compiled using the presentation package.

C h a p t e r 3 , O v e r v i e w 25

E n h y d r a t o o l s

XMLC property pages
Property pages give you full control over how XMLC builds DOM classes from HTML
files. The property pages let you customize class-name generation and set XMLC
option files for the entire project, as well as for individual HTML files.

For example, the DiscRack sample includes three XMLC options files: one for the
presentation package and two more for packages that reside within the presentation
package. You can use the XMLC property pages to associate each HTML file in the
resource directories with the appropriate XMLC options file in the presentation
directories.

Enhydra sample project
The Enhydra sample project is an IDE project file that lets you build, debug, and run
your application from within the IDE. The project also demonstrates how to perform
several dynamic page generation tasks using XMLC. When you run the Enhydra
sample project, the pages display the HTML tags and the Java methods required to
perform each task.

26 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 27

4Chapter
Tutorial: Building Enhydra
applications Chapter 4

This chapter describes how to build an Enhydra application from the ground up, and
provides important tips on Enhydra application development. In this tutorial,
you will:

• Use the Application Wizard to create a starting framework
• Use XMLC to expand the application
• Add simple database access

If you are already familiar with the basics of Enhydra, you may want to skip to
Chapter 5, “DiscRack sample application,” for a look at an application with more
advanced features.

Note In this tutorial, you are often instructed to enter commands. On UNIX platforms, you
can enter the commands in any shell. On Windows, you must enter the commands in
a Cygwin shell window.

Creating your first application
The Enhydra Application Wizard (sometimes referred to as appwizard) is a quick
way to get up and running with Enhydra. The Application Wizard generates basic
Java files and directory structures for new applications. For the tutorial, you will use
the Application Wizard GUI.

To create a simple application with the Application Wizard:

1 Create a directory to contain your new application and name it anything you
want. For example:
mkdir myapps

2 Open a shell window and make the new directory the current directory. For
example:
cd myapps

3 Start the Application Wizard GUI by entering appwizard at the command prompt.

Entering appwizard with no arguments brings up the Application Wizard GUI. The
Application Wizard can generate two distinct types of Enhydra projects: a Web

28 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

C r e a t i n g y o u r f i r s t a p p l i c a t i o n

Application, and an Enhydra super-servlet application. For this tutorial, you will
generate a super-servlet application.

Note If the Application Wizard does not start, the path environment variable is not set
correctly. The Lutris Enhydra installation instructions provide information about
setting your path environment variable. The installation instructions are available
in HTML format only on the Lutris Enhydra CD (refer to the top-level index.html)
or the Lutris Documentation home page:
http://www.lutris.com/documentation/index.html.

Figure 4.1 Application Wizard GUI

Note The Application Wizard has changed significantly with the release of
Lutris Enhydra 3.5. Previously, the Application Wizard was a command-line tool,
started by entering newapp with a parameter for the project name. The command for
starting the Application Wizard and the parameters required to run it as a
command-line tool have changed. The basic framework of files and directories
generated by the Application Wizard has changed as well.

4 Use the Application Wizard GUI to generate a simple Enhydra application.

The Application Wizard GUI steps you through the process of generating an
Enhydra project.

1 Select a Generator.

Select SuperServlet from the Generator pull-down menu and click Next.

2 Specify Client type and directory details.

Accept the default client type of HTML. Enter simpleApp for the Project directory
name. Enter simpleapp (note the difference in case) for Package. Set the Root path
to /enhydra/myapps.

3 Specify the copyright material to use.

Click Next to accept the default, No copyright setting.

4 Specify which Supplemental files to generate.

Select Create Makefiles and Create Shell Scripts and click Finish.

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 29

C r e a t i n g y o u r f i r s t a p p l i c a t i o n

The Application Wizard creates a new directory called simpleApp. This directory is
sometimes referred to as the application root directory.

5 Make the application root directory the active directory:
cd simpleApp

6 Browse the application root directory and note the following items created by the
Application Wizard:

• Two make files: config.mk and Makefile

• A readme.html file that contains some simple instructions to build and run the
application

• A source directory, src, containing all the source code for the application

• An input directory, input, containing templates of the configuration files and start
scripts for the application.

The contents of this application root directory are explained in “Directories and files
in SimpleApp” on page 31. In the next section, you will finish building your simple
application.

Building the application

To build the application:

1 In the shell window, enter the make command from the application root directory:
cd /enhydra/myapps/simpleApp
make

This creates two subdirectories in the application root directory:

• classes directory contains the application’s class files
• output directory contains everything needed to run the application

The top-level make file, Makefile, contains directives that tell make to recursively
descend the application directory tree, following the directives of the make file in
each subdirectory. It also has an include directive that references config.mk, which
in turn references <enhydra_root>/lib/stdrules.mk, a large make file shared by all
Enhydra applications.

When you build the application, make compiles the files located in the simpleApp
source directory (simpleApp/src) and creates a corresponding directory structure in
the classes directory. It then combines those classes into a JAR (Java archive) file
and places the JAR file into the output/archive directory, along with the
configuration files needed to run the application.

2 To start the application, enter the following commands in the Enhydra shell
window:
cd output
./start

Note The Multiserver Administration Console provides a GUI for managing
applications. Among other functions, the Admin Console can be used to start and

30 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

C r e a t i n g y o u r f i r s t a p p l i c a t i o n

stop applications. Refer to “Launching the Admin Console” on page 33 for
additional information and usage instructions.

3 To access the application, enter the following URL in your browser’s location field:
http://localhost:9000

The browser will display the Welcome page for the simpleApp application.

Figure 4.2 Browser with the simpleApp welcome page loaded

You have just built and run your first Enhydra application.

4 Now press Ctrl-C in the shell window to stop the Enhydra process.

How it works

The application created by the Application Wizard provides a simple example of
how Enhydra works.

Look at the file myapps/simpleApp/src/simpleapp/presentation/Welcome.html, which
contains a few dozen HTML tags. Notice tags such as these:
<center>

The time at the web server is:
1/1/00 00:00:00 (static).

</center>

At runtime, Enhydra replaces the content of the tag with a date. The text in the
ID attribute is just a placeholder; it will never appear at runtime. The period outside
the tag will not be replaced. Thus, the sentence will always end with a period.

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 31

C r e a t i n g y o u r f i r s t a p p l i c a t i o n

Look also at the WelcomePresentation.java file in the same directory. In particular,
notice these lines of code:
WelcomeHTML welcome;
String now;
...
welcome = (WelcomeHTML)comms.xmlcFactory.create(WelcomeHTML.class);
now = DateFormat.getTimeInstance(DateFormat.SHORT).format(new Date());
welcome.getElementTime().getFirstChild().setNodeValue(now);

This code is used for replacing the text inside the tags.

The first couple lines of in the code snippet define welcome as an instance of the
WelcomeHTML class, and now as an instance of the String class. The xmlcFactory in the next
line is used to instantiate your HTML page. Next, the variable now is set to the current
Date formatted as time. The last line of the snippet sets the time element in the
welcome class to the value of now, and returns the value.

When you build the application, the Extensible Markup Language Compiler (XMLC)
finds the tag in the HTML and recognizes the ID attribute with value “time”. It
creates a Java class called WelcomeHTML with a method getElementTime(). The application
uses getElementTime() to modify the text content of the tag.

Note In general, XMLC will create a getElementxxx() method for each tag with ID
attribute value xxx. The xxx in the method name is replaced by the capitalized spelling
of the ID attribute value of the SPAN tag.

At runtime, the application replaces the original text content of the tag with a
string representation of the current date. Then, the call to write(buffer) writes the
document out to the HTTP response, looking something like this:
...
<CENTER>
The time at the web server is: 10:40 AM.
</CENTER>
...

For a more detailed explanation of XMLC, see “Using XMLC” on page 37. For more
information about the Enhydra Application Wizard, see “Enhydra Application
Wizard” on page 21.

Directories and files in SimpleApp

Let’s take a closer look at the directories and files in the simpleApp directory:

• The src directory contains the source code for the application. It contains a
directory, simpleapp, corresponding to the Package name you assigned in the
Applicatin Wizard. The simpleapp directory is divided into three subdirectories for
the business, data, and presentation layers. The business and data directories are
empty in the new application. The presentation directory contains Java, HTML,
and media files.

• The classes subdirectory contains the application’s compiled Java classes in their
package hierarchy and any associated media files, such as .gif files.

32 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

C r e a t i n g y o u r f i r s t a p p l i c a t i o n

• The output subdirectory contains the application’s configuration files, servlet.conf
and simpleApp.conf. It also has an archive directory with a simpleApp.jar file
containing an archived package of everything in the classes directory.

• The input directory contains templates of the configuration files and start script.
Template files have the extension .in. When you build your project from the
application root directory, the templates will overwrite the corresponding files in
the output directory.

The finished Enhydra application includes the JAR file, simpleApp.jar, and the
application configuration file, simpleApp.conf. The make program also copies the
Multiserver configuration file, servlet.conf, and the start script to the output directory
to make it easier to run the application.

Configuration files
The application configuration files contain critical information that determine how
an Enhydra application runs. These files include:

• Multiserver configuration file, servlet.conf, located in the servlet subdirectory

• Application configuration file, which is named <AppName>.conf by default (for
example, simpleApp.conf)

Note The Admin Console is a GUI for managing applications running on the Multiserver.
The Admin Console has its own configuration file, multiserverAdmin.conf.
Additionally, files managed by the Admin Console use the default multiserver
configuration file, multiserver.conf, located in the <enhydra_root> directory.

The start script, which is not a configuration file, specifies the CLASSPATH that the
application will use.

Important If you do not specify a CLASSPATH in this file, the application will use the system
CLASSPATH, which may not be correct.

If you edit the configuration files, you can change the various settings contained in
the files, as explained in the text that follows.

Note The Application Wizard creates “input” versions of the configuration files in the
<app_root>/input directory (for example, simpleApp/input). These are the files that you
should edit. Running make creates “runtime” versions of the files in the
<app_root>/output directory (for example, simpleApp/output). You should not edit the
runtime versions of the files because they will be overwritten each time you build the
project.

The Multiserver configuration file contains information that the Multiserver uses to
run the application, including:

• Name and location of the application configuration file
• Name of the log file and other log file information
• TCP port on which the application will run
• Classname and description of the filter used to log requests made to the server

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 33

L a u n c h i n g t h e A d m i n C o n s o l e

The application configuration file contains the following important
application-specific information:

• CLASSPATH that this application will use

The difference between this CLASSPATH and the one specified in the Multiserver start
script is that this one applies to the application’s own class loader, while the latter
is global in scope for all applications run by that Multiserver instance.

• Class name of the application object

For example:
Server.AppClass = simpleapp.SimpleApp

• Prefix used to derive presentation object class names and paths from URLs

For example:
Server.PresentationPrefix = "simpleapp/presentation"

• Maximum length (in minutes) of a user session and the session idle time

For example:
SessionManager.Lifetime = 60
SessionManager.MaxIdleTime = 2

• Default URL for the application

For example:
Application.DefaultUrl = "WelcomePresentation.po"

When a browser requests the application URL, the Multiserver returns this URL
(typically a presentation object) by default.

Launching the Admin Console
You can use the Admin Console to manage your Enhydra applications, as well as
Java servlets, and Web archives (WAR files). In this Web-based console, you can add
applications to the console, delete them from the console, start or stop applications,
modify application settings, and perform some basic application debugging.

In this section of the tutorial, we will launch the Admin Console from the Enhydra
shell, add the simpleApp applicatin to the console, and then use the Admin Console
to start and stop simpleApp. Using the Admin Console to modify and debug
Enhydra applications—as well as Java servlets and Web archives—is discussed in
Chapter 3, “Using the Multiserver Administration Console,” of the Developer’s Guide.

To launch the Admin Console:

1 Enter the following command in the Enhydra shell at the prompt:
multiserver

2 In your browser, display the Admin Console by entering this URL:
http://localhost:8001/

34 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

L a u n c h i n g t h e A d m i n C o n s o l e

The Admin Console displays a password dialog box. Enter the default user name,
admin, and password, enhydra, to bring up the Admin Console in the browser as
shown in Figure 4.3.

Figure 4.3 Admin Console display

Adding simpleApp to the Admin Console

Follow these steps to add simpleApp to the Multiserver, using the Admin Console:

1 First, copy the file simpleApp.conf from the simpleApp/output/conf directory to
<enhydra_root>/apps/, the central repository for console-managed applications.

You can either do this in the Enhydra shell with the cp command, or by
copy-and-pasting from one folder to another in Windows. For example:
cp simpleApp.conf /usr/local/lutris-enhydra3.5/apps/

2 Next, in the new simpleApp.conf file, locate the server.Classpath variable. Comment
out the first line, and uncomment the second line. Set the variable equal to its new
absolute path, /enhydra/myapps/simpleApp/output/archive/simpleApp.jar, like this:
#server.Classpath[] = ../classes
Server.Classpath[] = "/enhydra/myapps/simpleApp/output/archive/simpleApp.jar"

Close the simpleApp.conf file.

3 In the Admin Console window, click the Add tool to display the Add New
Application/Servlet window.

4 Since simpleApp is an application, select the Application radio button at the top of
the screen.

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 35

L a u n c h i n g t h e A d m i n C o n s o l e

5 Choose simpleApp from the Select Application pull-down menu.

The names in the menu represent applications with configuration files located in
the /<enhydra_root>/app/ directory, but which have not been added to the console.
This list is empty when there are no more files fitting this criteria.

Figure 4.4 Adding simpleApp using the Admin Console

6 Optionally, complete the Description field.

7 Click OK twice to return to the Admin Console.

The Applications window is updated to reflect the new application, with its status
appearing in the content frame.

Specifying a connection method
Now it’s time to specify a connection method.

1 Start by clicking the Connections tab in the content frame.

2 Click Create in the Connections screen to bring up the Add New Connection
dialog box as shown in Figure 4.5.

Figure 4.5 Creating a connection for simpleApp using the Admin Console

3 Choose HTTP for the Connection Method.

You have three choices for Connection Method:

• HTTP for a standard Web connection, typically in a development environment.

36 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

L a u n c h i n g t h e A d m i n C o n s o l e

• HTTPS for a secure Web connection, also in a development environment. This
option is only available if you have configured your Enhydra installation with
Sun's Java Secure Socket Extension Kit. For more information, see Appendix A,
“Using SSL with Enhydra” of the Developer’s Guide.

• Enhydra Director for connection via a Web server. See Chapter 9, “Using
Enhydra Director,” of the Developer’s Guide for further information.

4 Leave the URL Prefix field as is for now.

5 For Port Number, enter 8080.

In reality, you can enter any port number above 1024, as long as it doesn’t conflict
with a connection for another application.

6 Click OK to add the connection and return to the Connections screen.

For detailed information about the connection options, refer to Chapter 3, “Using the
Multiserver Administration Console,” in the Developer’s Guide.

Starting and stopping an application

The newly added application or servlet is in the stopped state. To run your newly
added application,

1 Make sure simpleApp is still selected in the Applications window, and click the Start
button.

When you start simpleApp, the Admin Console makes the URL in the
Connections screen an active link.

2 Click the URL in the Connections screen to open a new browser and display
simpleApp.

The information in the Application screen of the Admin Console updates as you
view and use the application in the browser. Click the Refresh button on the
Application screen to update the displayed session data.

3 To make this addition permanent beyond the current Multiserver session, click the
Save State button.

When you save state, the current session data, including connection data (method,
URL prefix, and port number) and application state (started or stopped) for each
managed application is saved in the multiserver.conf file. The next time you start
the Admin Console, simpleApp will be started by the Admin Console and
included in the list of managed applications.

4 Click the Multiserver Stop button to stop the Multiserver and all managed
applications.

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 37

U s i n g X M L C

Using XMLC
XMLC, the Extensible Markup Language Compiler, was introduced in Chapter 3,
“Overview.” It is a powerful tool that you can use to create applications that have a
clean separation between the user interface and the back-end programming logic.

Note In general, XMLC can work with XML pages, but for practical reasons, the remainder
of this chapter focuses on how it works with HTML pages.

XMLC parses a HTML file and creates a Java object that enables an application to
change the HTML file’s content at runtime, without regard for its formatting. The
Java objects that XMLC creates have interfaces defined by the Document Object
Model (DOM) standard from the World Wide Web Consortium (W3C).

Adding a hit counter

To get a feel for how XMLC works, you are going to extend your application to
display a “hit counter” that shows the number of users who have accessed it.

1 Find the files Welcome.html and WelcomePresentation.java in the presentation directory.

2 Add the following line of HTML to Welcome.html before the closing </CENTER> tag:
<P>Number of hits on this page: no count

The ID attribute tells XMLC to generate an object corresponding to the tag,
so that it can replace the text “no count” at runtime.

3 Add the lines of code shown in bold in the following code sample, to
WelcomePresentation.java.
// Add the following line.
static int hitCount=0; // All Welcome PO's will share this.

public void run(HttpPresentationComms comms)
throws HttpPresentationException, IOException {

HttpPresentationOutputStream out;
WelcomeHTML welcome;
String now;
byte[] buffer;

welcome = (WelcomeHTML)comms.xmlcFactory.create(WelcomeHTML.class);
now = DateFormat.getTimeInstance(DateFormat.SHORT).format(new Date());
welcome.getElementTime().getFirstChild().setNodeValue(now);
// Increment the count and write into the html.
// Add the following line.
welcome.setTextHitCount(String.valueOf(++hitCount));
buffer = welcome.toDocument().getBytes();
comms.response.setContentType("text/html");
comms.response.setContentLength(buffer.length);
out = comms.response.getOutputStream();
out.write(buffer);
out.flush();
}

}

38 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

U s i n g X M L C

4 Build the application by running make from the top-level simpleApp directory. Then
restart Enhydra, either by starting the Admin Console (see “Launching the Admin
Console” on page 33) or by entering the following commands in the shell window.
cd /myapps/simpleApp
make
cd output
./start

Building the application with make runs XMLC on all HTML files in the
application, in this case, just Welcome.html.

5 Test the application by loading http://localhost:9000 in your browser.

The browser will display the Welcome page for the simpleApp application. The
Welcome page should now have a hit counter beneath the redirect link, as shown
in Figure 4.6.

Figure 4.6 Browser displaying the simpleApp Welcome page with a hit counter

The page now displays the number of times it has been accessed.

6 Reload the page several times to verify that it works correctly.

The count should increment each time you access the application.

The application is doing two things:

• Storing the hit count in hitCount, a static property of the Welcome presentation object
• Writing the hit count to the Web page with the setTextHitCount() method

Recall that the Presentation Manager instantiates a presentation object for each
request. So, the WelcomePresentation class is instantiated once per browser request.
Because hitCount is a static property, it is shared by all WelcomePresentation objects and
its value gets incremented by each request.

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 39

U s i n g X M L C

In the same way that it added a getElementTime() method for the tag,
XMLC creates a setTextHitCount() method for the tag. The
application then uses the setTextHitCount() method to write the value of hitCount into
the page, within the corresponding tag.

Note XMLC creates the WelcomeHTML class, but by default it deletes the Java source file.

Understanding the Document Object Model

HTML documents have a hierarchical or tree-like structure that can be modeled in an
object-oriented language like Java. The Worldwide Web Consortium (W3C) standard
for the XML/HTML object model is called the Document Object Model (DOM).

Enhydra applications use the DOM to manipulate HTML content at runtime. For
example, consider the following HTML:
<TABLE>
<TR>

<TD ID="cellOne">Shady Grove</TD>
<TD ID="cellTwo">Aeolian</TD>

</TR>
<TR>

<TD ID="cellThree">Over the River, Charlie</TD>
<TD ID="cellFour">Dorian</TD>

</TR>
</TABLE>

This HTML snippet has a <TABLE> tag that contains <TR> tags, which in turn contain
<TD> tags containing text (or data). This defines a tree-like hierarchy, as illustrated in
Figure 4.7.

Figure 4.7 DOM tree of HTML

Each box or ellipse in this figure is a node in the tree. The node above another node in
the hierarchy is called its parent. The nodes below the parent are called its children.

40 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

U s i n g X M L C

Some nodes (like HTML tags) have attributes (for example, a table cell has a
background color attribute). W3C defines packages and interfaces that mirror the
object hierarchy of nodes in an HTML document. In addition, XMLC includes an API
for changing attribute values.

For example, use code like the following to set the color of one of the table cells:
HTMLTableCellElement cellOne = theDocument.getElementCellOne();
cellOne.setBgColor("red");

In this example, the class HTMLTableElement and the method setBgColor() come from the
W3C packages; getElementCellOne() comes from XMLC.

This code illustrates one important thing that XMLC does—create methods to access
nodes in the DOM. XMLC generates the getElementxxx() methods that return objects
corresponding to tags with ID attributes. You could change the color of a table cell
with the W3C classes alone, but your code would have to traverse the DOM tree, so it
would be more laborious.

SPAN and DIV tags
 and <DIV> are HTML tags that you may not be familiar with. They are typically
used to apply styles using cascading style sheets (CSS). Outside of that, they are
largely ignored by browsers. However, XMLC makes extensive use of them.

• Use the tag to enclose a block of text that you want to replace at runtime.

In general, a tag can enclose any text or inline tag. An inline tag is any tag
that does not cause a line break in the layout; for example, <A> (anchor) or
(bold) tags.

Note Do not use tags to enclose other tags, such as <TABLE> or <P> (paragraph).

• Use the <DIV> tag to enclose block tags, such as <TABLE>, that cause a line break in the
HTML layout.

Using XMLC from the command line

Previously, you ran XMLC implicitly when you built the project with make. To run
XMLC from the command line, you must have the enhydra.jar file in your CLASSPATH.
The make files set the CLASSPATH when they run. You must include enhydra.jar in the
CLASSPATH yourself, before running XLMC from the command line.

Set your CLASSPATH with one of the following commands:

UNIX export CLASSPATH=<enhydra_root>/lib/enhydra.jar:

Windows export CLASSPATH=<enhydra_root>/lib/enhydra.jar\;

For more information on configuring Enhydra, see the installation and configuration
instructions in the CD documentation.

The basic command-line syntax of XMLC is
xmlc -options file.html

where options is a set of command-line options, and file is the name of the input file.

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 41

U s i n g X M L C

There are several dozen command-line options. In this section, we introduce three
immediately useful ones: -dump, -class, and -keep.

-dump option
The -dump option makes XMLC display the DOM tree for a document. This is
primarily useful as a learning tool; once you are familiar with XMLC, you will rarely
use it.

1 Create a new file called Simple.html in the simpleApp/src/simpleapp/presentation
directory.

2 Add the following HTML to it:
<HTML>
<HEAD>
<TITLE>Simple Enhydra Page</TITLE>
</HEAD>
<BODY>
<H1 ID="MyHeading">Ollie Says</H1>
The current time is 00:00:00.
</BODY>
</HTML>

3 Change to the presentation directory and enter this command:
xmlc -dump Simple.html

XMLC displays the following in the shell window:
LazyHTMLDocument:

HTMLHtmlElementImpl: HTML
 HTMLHeadElementImpl: HEAD

HTMLTitleElementImpl: TITLE
LazyText: Simple Enhydra Page

HTMLBodyElementImpl: BODY
HTMLHeadingElementImpl: H1: id="MyHeading"

LazyText: Ollie Says
LazyText: The current time is
LazyHTMLElement: SPAN: id="time"

LazyText: 00:00:00
LazyText: .

Each line shows the DOM object name followed by a colon and then the
corresponding HTML tag. If the tag has attributes, they are listed following the tag
in name/value pairs. For instance, HTMLHeadingElement is the DOM name for the <H1>
tag, and it has an ID attribute with the value “MyHeading.”

The level of indenting shows the object relationships. So, for example, you can see
that the first HTMLHeadingElement is the child of HTMLBodyElement.

-class and -keep options
By default, XMLC creates a class with the same name as the HTML file. So, for
Simple.html, it would create Simple.java. To create a class with a different name, use
the -class option to specify a name for the class that XMLC creates.

By default, XMLC deletes the Java source file that it creates, leaving only the
compiled class file. The source file is useful primarily for understanding how XMLC
and the DOM API works. Use the -keep option to keep the Java source file.

42 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

E n h y d r a p r o g r a m m i n g

1 To create a Java object named SimpleHTML for the HTML file Simple.html and to keep
the Java source file, enter this command:
xmlc -keep -class simpleapp.presentation.SimpleHTML Simple.html

XMLC generates two files: SimpleHTML.java and SimpleHTML.class.

2 Open SimpleHTML.java and look at the generated code.

Within the file, you will find two methods, getElementMyHeading() and
getElementTime(). XMLC recognized the ID attributes of the heading and tags
in Simple.html and generated these methods. Look through the file to get an idea of
the object that XMLC creates for a very simple document.

3 Once you are done looking at SimpleHTML.java and SimpleHTML.class, delete them.

You are done exploring how XMLC works for now, but keep your Simple.html file
because you are going to use it later in this tutorial.

Enhydra programming
This section covers more topics essential to Enhydra application development:

• Maintaining session state
• Adding a new page to the application
• Populating a table
• Adding a business object

Maintaining session state

Because HTTP is a stateless protocol, an application that needs to keep user-specific
information across multiple requests must perform session maintenance. For an
overview of how Enhydra performs session maintenance, see “Session Manager” on
page 20.

Think of the user’s session as a container in which the application can store any
information associated with a particular user. The class that you use as the container
is com.lutris.appserver.server.session.SessionData. It is similar to a hash table in that it
has these methods:

• A set() method to which you pass a string key and an object to store
• A get() method which returns the object, given the string key

Enhydra matches a user to a particular SessionData object with a session key, a very
long randomly-generated character string. When the Enhydra Session Manager first
creates a SessionData object for a user, it generates a session key and stores it in its
internal data structure. Enhydra also gives the session key to the client, either passed
as a cookie or appended to the URL. The next time the client makes a request, the
Session Manager uses the key to find that user’s SessionData object.

Generally, you don’t need to worry about the session key—Enhydra handles all those
details for you “under the hood.” You do, however, need to keep track of the

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 43

E n h y d r a p r o g r a m m i n g

keyword strings that you use to get and set each object you want to save to the
session.

To help you understand session maintenance, you are going to enhance your
application so that the Welcome page displays the number of times a particular user
has accessed it, in addition to the total “hits” on the page. For fun, you’ll also display
the session key on the page.

1 Add these four lines of HTML just before the closing </CENTER> tag in Welcome.html:
<P>Number of hits from you:
no count
<P>Session identifier:
no count

2 Now add this import statement to WelcomePresentation.java:
import com.lutris.util.*;

3 In WelcomePresentation.java, add this member property to the WelcomePresentation
class (just after hitCount):
final String hits = "HITS";

The string “HITS” is the keyword that the application uses to save and recall the
hit count information.

4 Add the following code to the run() method, placing the line beneath the line you
added with the setTextHitCount method.

You can find this code in the SessionMaint.java file located in the
<enhydra_root>/doc/books/getting-started/samples/ directory.
try {

Integer personalHits =
(Integer)comms.session.getSessionData().get(hits);

if(personalHits == null) {
personalHits = new Integer(1);

} else {
personalHits = new Integer(personalHits.intValue() + 1);

}
comms.session.getSessionData().set(hits, personalHits);
// Save personalHits to the user’s session.
welcome.setTextPersonalHitCount(personalHits.toString());
welcome.setTextSessionID(comms.session.getSessionKey());
// Shows the session key value used for session tracking.

} catch (KeywordValueException e) {
comms.response.writeHTML("Session access error" + e.getMessage());

}

This code begins by calling getSessionData().get(hits) to get the value stored for
the keyword string “HITS.” Because SessionData stores only generic
java.lang.Objects, you have to typecast it to Integer. If the object has not been
previously stored in the session, the code creates a new Integer of value 1 (one). If
the object exists, the value is incremented.

The code then saves the Integer object back into the session with
setSessionData().set(hits, personalHits) and writes the value into the Web page
with getSessionKey(). Normally, you would not need to deal with the session key,
but for curiosity’s sake this example shows you how to display it.

44 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

E n h y d r a p r o g r a m m i n g

5 Rebuild and start the application, and access the page with your browser.

The Welcome page displays the total number of hits, as well as the number of hits
from a particular client, as well as the client’s unique Session Identifier, as shown
in Figure 4.8.

Figure 4.8 Browser displaying the simpleApp Welcome page with a Session Identifier

Because you are running the application on your Localhost server, it is not accessible
to any other clients, so these numbers will always be the same. However, if the
application were running on a “real” server, you would see different numbers
depending on how many times you had accessed the page versus the total number of
hits. Notice also that the session ID string always stays the same.

Adding a new page to the application

Next, you are going to add a new page (HTML file and presentation object) to your
application. You’re going to use the little HTML file you created previously,
Simple.html. In addition to learning how to add a page, you’re also going to play
around with the DOM a little bit to become more familiar with it.

To create a new presentation object:

1 Copy the file WelcomePresentation.java and call it SimplePresentation.java.

2 Open SimplePresentation.java and change the name of the class from
WelcomePresentation to SimplePresentation.

3 Remove all the session-related code.

4 Change all the occurrences of WelcomeHTML to SimpleHTML.

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 45

E n h y d r a p r o g r a m m i n g

5 Change the welcome identifier to simple.

Now you have a “stripped down” presentation object. The run() method should
look like this:
public void run(HttpPresentationComms comms)

throws HttpPresentationException, IOException {

HttpPresentationOutputStream out;
SimpleHTML simple;
String now;
byte[] buffer;

simple = (SimpleHTML)comms.xmlcFactory.create(SimpleHTML.class);
now = DateFormat.getTimeInstance(DateFormat.SHORT).format(new Date());
simple.getElementTime().getFirstChild().setNodeValue(now);
buffer = simple.toDocument().getBytes();
comms.response.setContentType("text/html");
comms.response.setContentLength(buffer.length);
out = comms.response.getOutputStream();
out.write(buffer);
out.flush();

}

6 Add these statements at the top of the file, after the other import statements:
import org.w3c.dom.*;
import org.w3c.dom.html.*;

7 Add the following lines just before the last statement in the run() method:
HTMLHeadingElement heading = simple.getElementMyHeading();
heading.setAttribute("align", "center");
Text heading_text = (Text) heading.getFirstChild();
heading_text.setData("Mr. Ollie Otter says:");

This code does the following:

• Gets the HTMLHeadingElement object named MyHeading from the DOM
• Sets its ALIGN attribute to CENTER to center the heading on the page
• Gets the child object of the heading (a Text object)
• Sets a new value for the text string, “Mr. Ollie Otter says:”

You could have done the same thing by putting a tag around the text in the
heading. XMLC would then have generated a setTextMethod() that you could have
called in the code. This example, however, illustrates how to do it with the DOM.

Note This code performs some low-level DOM manipulation that you should normally
not do in your application because it violates the separation of presentation and
business logic. It is only presented here to help explain the DOM.

8 Edit Makefile in the presentation directory and add the new files to the CLASSES and
HTML_CLASSES variables to make them look like this:
CLASSES = \

RedirectPresentation \
WelcomePresentation \
SimplePresentation

HTML_CLASSES = \
WelcomeHTML \
SimpleHTML

46 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

E n h y d r a p r o g r a m m i n g

When you run make in the presentation directory, the HTML_CLASSES variable is passed
to the XMLC -class option to create the specified classes. This is what you did
when you ran XMLC from the command line, using the -class option. The Lutris
convention is to create fooHTML class for a file foo.html. This convention is defined in
the following file:
<enhydra_root>/lib/stdrules.mk

9 Save all files and run make in the presentation directory to build the package.

By default, packages are generated in the classes subdirectory off of the
application root directory, simpleApp in this example. Look in the
classes/simpleapp/presentation directory to see the generated class files.

To create a link from the Welcome page to your new page:

1 Add the following HTML at the bottom of Welcome.html:
Go to Simple Page

2 If you have not already done so, stop your Multiserver by pressing Ctrl-C in the
shell window, and build the application from the top level:
cd /enhydra/myapps/simpleApp
make
cd output
./start

3 Now access the application from your browser, as you did before.

4 Click the Go to Simple Page link to view the SimplePresentation PO.

The Simple presentation object has only a heading and the current time. You’re
going to make this page more interesting in the next section.

Figure 4.9 Browser displaying the simpleApp Simple presentation object

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 47

E n h y d r a p r o g r a m m i n g

Populating a table

Another common task in Web application development is populating an HTML table
with dynamic data. This section discusses populating a table using a static String
array as the data source. In a later section, you will modify the code to get data from
a database.

Follow these steps to populate a table:

• Create the table in HTML
• Programmatically populate the table
• Rebuild and run the application

Create the table in HTML
In the Simple.html file, create an HTML table with a template row and an ID attribute.

1 Edit the file presentation/Simple.html in your simpleApp project.

2 Add the HTML shown below just before the end of the <BODY> tag.

Note If you don’t want to type in all this HTML, you can copy and paste it from
<enhydra_root>/doc/books/getting-started/samples/TableCode.html.
<H2 align=center>Disc List</H2>
<TABLE border=3>

<TR>
<TH>Artist</TH> <TH>Title</TH> <TH>Genre</TH>
<TH>I Like This Disc</TH>

</TR>
<TR id=TemplateRow>

<TD>Van Halen</TD>
<TD>Fair Warning</TD>
<TD>Good Stuff</TD>
<TD>Yes</TD>

</TR>
</TABLE>

This HTML contains a table with a single “template” row (in the second <TR> tag).
Notice that both this row and the tags enclosing the cell contents have ID
attributes. This is called a template row, because it is used as a model from which you
construct further rows of the table.

Programmatically populate the table
To programmatically populate the table, edit the presentation object corresponding
to Simple.html. In the following steps, you will add code to Simple.java to iteratively
replace the HTML table elements with text from an array of strings.

1 Copy the file <enhydra_root>/doc/books/getting-started/samples/TableCode.java. into
your application’s presentation directory and rename it SimplePresentation.java.

Note If you like, you can save your old SimplePresentation.java to SimplePresentation.sav
for future reference.

48 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

E n h y d r a p r o g r a m m i n g

2 Now, look at your new SimplePresentation.java.

In addition to the standard features of a presentation object, the first thing you’ll
notice in this code is a member property that is an array of strings representing the
content the application will use to populate the table. This array takes the place of
a database result set for this example:
String[][] discList =

{ { "Felonious Monk Fish", "Deep Sea Blues", "Jazz", "Yes" },
{ "Funky Urchin", "Lovely Spines", "Techno Pop", "Yes" },

 { "Stinky Pups", "Shark Attack", "Hardcore", "No" } };

The next new section of code gets the document objects for the table elements:
HTMLTableRowElement templateRow = simple.getElementTemplateRow();
HTMLElement artistCellTemplate = simple.getElementArtist();
HTMLElement titleCellTemplate = simple.getElementTitle();
HTMLElement genreCellTemplate = simple.getElementGenre();
HTMLElement likeThisDisc = simple.getElementLikeThisDisc();

The next section of code removes the ID attributes from these objects. The reason
for this is that the DOM requires that each ID in the document to be unique. When
you make a copy of the table row, you would otherwise have duplicate IDs.

The removeAttribute() method removes the attribute with the specified name:
templateRow.removeAttribute("id");
artistCellTemplate.removeAttribute("id");
titleCellTemplate.removeAttribute("id");
genreCellTemplate.removeAttribute("id");
likeThisDisc.removeAttribute("id");

Then, a call to getParentNode() gets a reference to the table document object, which
you’ll be using later:
Node discTable = templateRow.getParentNode();

Next comes the heart of the code, a for loop that iterates through each “row” in the
“result set,” puts text in each cell in the table row, and then appends a copy (or
clone) of the row to the table:
for (int numDiscs = 0; numDiscs < discList.length; numDiscs++) {

simple.setTextArtist(discList[numDiscs][0]);
simple.setTextTitle(discList[numDiscs][1]);
simple.setTextGenre(discList[numDiscs][2]);
simple.setTextLikeThisDisc(discList[numDiscs][3]);
discTable.appendChild(templateRow.cloneNode(true));

}

That last statement is crucial: The cloneNode() method creates a copy of the Node
object that calls it; in this case, templateRow. The boolean argument true determines
if it copies only the node itself or the node and all its children, and their children,
and so on. In this example, the argument is true because you want to copy the row
and its child nodes (the table cells and the text inside them).

Finally, removeChild() removes the template row from the table. This ensures that
the “dummy data” in the template does not show up in the runtime page.
discTable.removeChild(templateRow);

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 49

E n h y d r a p r o g r a m m i n g

Rebuild and run the application
Now rebuild the application and load the page in your browser.

1 If you have not already done so, stop your Multiserver by pressing Ctrl-C in the
shell window, and build the application from the top level:
cd /enhydra/myapps/simpleApp
make
cd output
./start

2 Now access the application from your browser, as you did before.

3 Click the Go to Simple Page link to view the new SimplePresentation PO.

The Simple presentation object now includes a Disc List table, as shown in Figure
4.10.

Figure 4.10 Simple PO with a programmatically populated Disc List table

Adding a business object

So far, your application has three objects: the SimpleApp application object, and two
presentation objects, Welcome and Simple. Now, you are going to add a business object
that you will use in the following sections. This will not change what the application
displays.

The business object represents a list of discs. This is not terribly useful, but it does
illustrate a basic role of business objects as you proceed.

50 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

E n h y d r a p r o g r a m m i n g

To add a business object:
1 Create a new file called SimpleDiscList.java in the business directory,

simpleApp/src/simpleapp/business. Because SimpleDiscList.java is in your
application’s business package, the first line in the file will be:
package simpleapp.business;

2 Add the following lines (cut and paste the array initializer from the Simple class,
but be sure to add the underscore (_) in front of the identifier discList) in the body
of the run method:
public class SimpleDiscList {

String[][] _discList =
{ { "Felonious Monk Fish", "Deep Sea Blues", "Jazz", "Yes" },
 { "Funky Urchin", "Lovely Spines", "Techno Pop", "Yes" },
 { "Stinky Pups", "Shark Attack", "Hardcore", "No" } };
public SimpleDiscList() {

}
public String[][] getDiscList() {
 return _discList;
}

}

3 To ensure that this file gets compiled when you build the project, edit the make
file, Makefile, in the business directory and add the name of the file to the CLASSES
variable:
CLASSES = \
SimpleDiscList

This make file is automatically included by the top-level make file, so this simple
coding is all you have to do to add the file to the project. Make sure the file
compiles by entering make in the business directory.

4 Now, back in the presentation directory, edit SimplePresentation.java as follows:

1 Import the new class:
import simpleapp.business.SimpleDiscList;

2 Add these two lines to create an instance of your new business object, and call it
getDiscList() method. These lines take the place of the static array initializer in
the previous section.
SimpleDiscList sdl = new SimpleDiscList();
String[][] discList = sdl.getDiscList();

5 Rebuild and test your application.

You won’t see anything different, but you have extracted some functionality out of
the presentation object into the new business object. This will come in handy in an
upcoming section, when you replace the static array with a real database query. In
that case, you won’t have to change your presentation class because the business
object provides a buffer between it and the data layer.

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 51

C o n n e c t i n g t h e a p p l i c a t i o n t o a d a t a b a s e

Connecting the application to a database
Enhydra uses Java Database Connectivity (JDBC), a standard Java API, to
communicate with databases. Enhydra can connect to any JDBC-compliant database,
such as Oracle, Sybase, Informix, Microsoft SQL Server, PostgreSQL, and InstantDB.

Before you can proceed to connect the application to a database, you are going to take
a brief detour to lay some groundwork. In particular, you are going to:

• Create the database table used by the application

• Establish and test the JDBC connection to your database

• Configure Enhydra’s Database Manager to connect to your database
through JDBC

Important For this section of the tutorial, it is assumed that you have installed InstantDB and set
the CLASSPATH environment variable to include the InstantDB JAR files. Refer to the
Lutris Enhydra CD for installation instructions. If you choose to use a different
database, you must edit the CLASSPATH accordingly.

Creating a database table

The remainder of this section requires the existence of a specific table in your
database, so you need to create that table before proceeding. This section tells you
how to create a table in your InstantDB database.

Note Most databases provide a tool for directly executing SQL statements. For example,
InstantDB provides ScriptTool and Oracle supplies SQL*Plus. It is important to note,
however, that the SQL format varies from database to database. The SQL sample
provided for this part of the tutorial works with InstantDB, and may not work with
other databases.

To create a table in InstantDB:

1 Create a new directory called data for your database.
cd /enhydra/myapps
mkdir data

2 Copy the sample properties file, sample.prp, from the InstantDB Examples directory
into your data directory, and rename it simpleApp.prp. You can do this from the
command line with a command like the following:
cd /data
cp /idb/Examples/sample.prp simpleApp.prp

3 Copy the tutorial_create_idb.sql SQL file located in the samples directory
<enhydra_root>/doc/books/getting-started/samples, into your data directory. For
example, the copy command might look like the following:
cp /usr/local/lutris-enhydra3.5/doc/books/getting-started/samples/tutorial_create_idb.sql

This SQL file contains a CREATE TABLE statement to create a simple table,
LE_TUTORIAL_DISCS, and some INSERT statements to populate the table with
data. This is the table you are going to use in the following sections of this tutorial.

52 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

C o n n e c t i n g t h e a p p l i c a t i o n t o a d a t a b a s e

4 From the command line, enter the following command to run the ScriptTool using
the tutorial_create_idb.sql file as input to create the LE_TUTORIAL_DISCS table.
java org.enhydra.instantdb.ScriptTool tutorial_create_idb.sql

Look in the data directory and notice the changes. New directories have been
created, including a tables directory.

Note The samples directory contains a SQL file for Oracle databases. Here is the
command to create a table in Oracle using SQL*Plus and the supplied SQL file:
SQL> @<enhydra_root>/doc/books/getting-started/samples/tutorial_create.sql

5 Use InstantDB’s DBBrowser to verify that the table was created correctly.

1 Enter the following command to start DBBrowser:
java -Xms16m -Xmx32m org.enhydra.instantdb.DBBrowser

2 In DBBrowser, click Browse to select a database. Locate and select simpleApp.prp
and click Open.

3 Click Connect to connect to the database.

4 Select LE_TUTORIAL_DISCS from the Tables column, and click Submit to
query the database.

The default query is SELECT * FROM LE_TUTORIAL_DISCS, and DBBrowser
should display the following table data in response.
Rockin Apps,Enhydra Orchestra,Rock and Roll,1
Beethoven Symphony No.9,LA Philharmonic,Classical,1
Material Girl,Madonna,Modern Rock,0

5 Click Disconnect to disconnect from the simpleApp database, and then close
DBBrowser.

Note The samples directory contains a SQL file, tutorial_create.sql, that works with Oracle
databases. Here is the command for Oracle SQL*Plus:
SQL> @<enhydra_root>/doc/books/getting-started/samples/tutorial_create.sql

If you are using a database other than InstantDB, see your database documentation
for instructions on how to execute a SQL file or create tables.

Establishing a JDBC connection

Before you can create a database application, you need to establish a JDBC
connection from your system to the database server, which may be running on a
different system. This section tells you how to write and execute a simple standalone
program to establish a JDBC connection to the database server. Starting with a
standalone program lets you isolate any problems that may occur. If you have
already configured JDBC on your system, you can skip this section.

In our simple program, we will do the following:

• Load the JDBC driver
• Get a database connection using the appropriate connection string
• Create a statement object

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 53

C o n n e c t i n g t h e a p p l i c a t i o n t o a d a t a b a s e

• Run a query
• Print the results

For the program to run, you must have installed and configured your database, and
created the LE_TUTORIAL_DISCS table.

Note This example works specifically with InstantDB. If you want to adapt the program to
work with another database, you will need to change the driver information in the
program, as well as the connection string. Refer to Appendix A, “Database
configurations,” for configuration information for other databases.

Windows The Cygnus tools require the JDBC driver to be on the C drive, so make sure the
JDBC driver library is on that drive.

To use this program:
1 Create a jdbcTest directory for the test program and make it the current directory.

For example, to create the new directory in the tmp directory for your database, you
might use the following commands:
cd /enhydra/myapps/data/tmp
mkdir jdbcTest
cd jdbcTest

2 Copy JDBCTest.java from the samples directory into the new directory using the cp
command. For example,
cp usr/local/lutris-enhydra3.5/doc/books/getting-started/samples/JDBCTest.java

Look at the program code to verify the JDBC driver and connection string. The
JDBC driver and the connection string are shown in bold in the following code
sample from the program.
import java.sql.*;

public class JDBCTest {
public static void main(String[] args){

Connection con = null;
Statement stmt = null;
ResultSet rs = null;

// Load the driver, get a connection, create statement, run query, and print.
try {

// To test with a different database, replace JDBC driver information below
Class.forName("org.enhydra.instantdb.jdbc.idbDriver");
/* To test with a different database, provide appropriate connection data

 (e.g., database connection string, username, and password) */
con = DriverManager.getConnection(

"jdbc:idb:/enhydra/myapps/data/simpleApp.prp");
stmt = con.createStatement();
rs = stmt.executeQuery("SELECT * FROM LE_TUTORIAL_DISCS");
rs.next();
System.out.println("Title = " + rs.getString("title") +

" -- Artist = " + rs.getString("artist"));
 con.close();

}
catch(ClassNotFoundException e) {

System.err.println("Couldn't load the driver: "+ e.getMessage());
}
catch(SQLException e) {

System.err.println("SQLException caught: " + e.getMessage());
}

}
}

54 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

C o n n e c t i n g t h e a p p l i c a t i o n t o a d a t a b a s e

3 Edit the JDBCTest.java, if necessary, to update the connection string.

These appear in the call to getConnection(), the second statement in the try block
(see the previous code example).

4 Compile the file using the javac command:
javac JDBCTest.java

5 Run the program:
java JDBCTest

If you have populated the table as instructed previously, you will see the
following in the shell window:
main SELECT * FROM LE_TUTORIAL_DISCS
Title = Rockin Apps -- Artist = Enhydra Orchestra
Database simpleApp is shutting down...
Database simpleApp shutdown complete.

If there was an error, you will see some exception messages in the shell window that
should help you isolate the problem. Refer to your database JDBC documentation,
and confirm your database driver and connection string information. The Enhydra
mailing list is also a useful resource. See “Enhydra.org mailing lists” on page 7 for
additional information about mailing lists.

Configuring the application to use JDBC
To make the JDBC classes available to your Enhydra application, you must put the
JDBC driver in the CLASSPATH system variable. It is a good idea to set the CLASSPATH in
your application’s start script. This prevents conflicts in the event that you have
multiple applications using different drivers. This also makes your application more
portable.

There are two copies of the start script: the template start.in is located in the
application’s input directory, and start is in the output directory. As with
configuration files, building the application overwrites the start script in the output
directory with the template file. Therefore, set the CLASSPATH in the script located in the
input directory.

Note Enhydra has its own class loader, so if you put the JDBC driver in the CLASSPATH by
specifying it in the application’s configuration file, the driver will not work.

To put JDBC drivers in the CLASSPATH for your application:

1 Edit the file simpleApp/input/start.in and add the following lines at the beginning
of the section titled “Build up classpath:”
CLASSPATH=”<JDBC_LIB>”
export CLASSPATH

where <JDBC_LIB> is the JDBC driver library (generally a .jar or .zip file), including
the file path. For example:
CLASSPATH=/idb/Classes/idb.jar\;/idb/Classes/jta-spec1_0_1.jar

Be careful not to put any blank spaces in this line because they will prevent the
script from working properly.

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 55

C o n n e c t i n g t h e a p p l i c a t i o n t o a d a t a b a s e

Note For ease of maintenance and greater portability, it is desirable to make the path to
your JDBC driver library a variable. This can save time if you change drivers and
need to update your CLASSPATH. The DiscRack and AirSent example projects both use
variables for the path to a JDBC driver library. The example projects are located in the
<enhydra_root>/examples directory.

Configuring the Database Manager

Now that you have verified your JDBC connection, you need to provide the database
connection parameters to your simpleApp application. You do this in the application
configuration file, simpleApp.conf. In this section, you will edit the template file,
simpleApp.conf.in. The make utility copies this file to the output/conf directory after
every build.

1 Open simpleApp/input/conf/simpleApp.conf.in in a text editor.

2 Add the following lines to the bottom of the file:
#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "simpleApp"
DatabaseManager.DefaultDatabase = "simpleApp"
DatabaseManager.Debug = "false"
DatabaseManager.DB.simpleApp.ClassType = "Standard"
DatabaseManager.DB.simpleApp.JdbcDriver = "org.enhydra.instantdb.jdbc.idbDriver"
DatabaseManager.DB.simpleApp.Connection.Url =
"jdbc:idb:/enhydra/myapps/data/simpleApp.prp"
DatabaseManager.DB.simpleApp.Connection.User = ""
DatabaseManager.DB.simpleApp.Connection.Password = ""
DatabaseManager.DB.simpleApp.Connection.MaxPoolSize = 30
DatabaseManager.DB.simpleApp.Connection.AllocationTimeout = 10000
DatabaseManager.DB.simpleApp.Connection.Logging = false
DatabaseManager.DB.simpleApp.ObjectId.CacheSize = 20
DatabaseManager.DB.simpleApp.ObjectId.MinValue = 99

Note This is an example of the configuration file for InstantDB. For information on
using your application with other databases, see Appendix A, “Database
configurations.”

3 Verify that all the items shown in italics match your connection parameters as
follows:

• Verify that the Databases[] and DefaultDatabase entries are set to simpleApp.

• Ensure simpleApp is used for the database ID attribute. For example, in the line
DatabaseManager.DB.simpleApp.ClassType = "Standard", simpleApp is the database ID
attribute. Refer to Appendix A, “Database configurations,” for addtional
information.

• Verify the JDBC driver entry. This example uses the driver for InstantDB:
org.enhydra.instantdb.jdbc.idbDriver

• Verify the connection string. This example uses a connection string for
InstantDB:
jdbc:idb:/enhydra/myapps/data/simpleApp.prp

56 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

C o n n e c t i n g t h e a p p l i c a t i o n t o a d a t a b a s e

Note Make sure there is a carriage return at the end of the file; this is required for the file
to work properly.

4 Save and close the configuration file.

5 Build the application and propagate your changes by running make from the
application root directory, simpleApp. For example:
cd /enhydra/myapps/simpleApp
make

Adding data access functionality

Now that you have laid the groundwork, you are ready to add data access to
simpleApp. This section describes how to add a simple data object with embedded SQL
that replaces the static array used in “Populating a table” on page 47. The next
section, “Using DODS,” describes how to build a “real” data layer for the application
using DODS.

First, you are going to create a data object that queries the database.

1 Copy the file SimpleDiscQuery.java from
<enhydra_root>/doc/books/getting-started/samples to your data layer (that is, the
simpleApp/src/simpleapp/data directory).

2 To ensure that SimpleDiscQuery.java gets compiled when you build the project, edit
the make file in the data directory and add the name of the file to the CLASSES
variable:
CLASSES = \
SimpleDiscQuery

There should not be spaces after the slash (\), just a carriage return.

3 Take a look at SimpleDiscQuery.java. In particular, notice the import statement right
at the top:
import java.sql.*;

This tells you right away that this class is going to use JDBC. In addition to the
constructor, there is only one other method, query(), where the object performs
most of its real work. The constructor has essentially one statement:
connection = Enhydra.getDatabaseManager().allocateConnection();

This statement tells the Enhydra Database Manager to allocate a database
connection. Then, the query() method calls executeQuery on the connection to
execute the SQL query statement:
resultSet = connection.executeQuery("SELECT * FROM LE_TUTORIAL_DISCS");

The remainder of the code in query() iterates through the result set returned by the
SELECT statement, and returns it in the form of a Vector, vResultSet, consisting of a
Vector, vRow, for each row in the result set. Although each row is known to contain
only four elements (because there are four columns in the table), the number of
rows is unknown in general, which is why the method returns a Vector.

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 57

C o n n e c t i n g t h e a p p l i c a t i o n t o a d a t a b a s e

However, you will recall that the presentation object Simple expects the data to be
in the form of a two-dimensional array of Strings. So, the SimpleDiscList needs to
perform some conversion. Edit the file for the business object you created
previously, SimpleDiscList.java:

4 Find the file <enhydra_root>/doc/books/getting-started/samples/SimpleDiscList.java.

You can simply replace your old SimpleDiscList.java with this file, or if you prefer,
you can make the changes manually:

• Add two import statements at the top:
import simpleapp.data.SimpleDiscQuery;
import java.util.*;

• Add a member variable corresponding to the data object:
SimpleDiscQuery _sdq;

• Replace the body of the getDiscList() method with the code in the new file. It
converts the Vector of Vectors returned by query() to a two-dimensional String
array that the presentation object expects.

Notice that you did not have to change the presentation object at all. The data
object provides a buffer between the presentation object and the data object.

5 Now, build the application from the top level, using the make command.
cd /enhydra/myapps/simpleApp
make

6 When you get the application to compile, try running it.

The Disc List table in your Simple presentation object should now contain data
from your database, as shown in Figure 4.11.

Figure 4.11 Simple PO with a Disc List table generated from the database

58 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

U s i n g D O D S

You’ve just created your first database query page. Notice that the discs displayed in
the table have the values from the database, not the static array.

Using DODS
The Data Object Design Studio (DODS) is a graphical object-relational mapping tool
that generates SQL code to create tables in a database and the corresponding
application code to access the tables. DODS creates code that is specific to different
databases, so you don’t have to learn the nuances of each database. DODS also
handles common issues such as transactions and data integrity. DODS is most useful
when you are creating a database from scratch, or when you are free to modify the
database schema, as explained in “Loading the schema” on page 65.

In the previous section, we created a table, LE_TUTORIAL_DISCS, for information
about music selections (discs). In this section, we will build on this theme, using
DODS to create a database schema and corresponding data objects that associate an
“owner” with each “disc.” This theme will be further developed in Chapter 5,
“DiscRack sample application.”

Note You are not required to use DODS when you develop an Enhydra database
application, but it does significantly simplify the process.

Running DODS

This section introduces DODS and gives you a preview of the database schema that
we will create in the following section.

1 Start DODS by entering the following command:
dods

You will see the DODS graphical interface.

2 Open the DODS file for the DiscRack project by choosing File|Open and selecting
<enhydra_root>/examples/DiscRack/discRack.doml.

As shown in Figure 4.12, you can expand the directories in the lower left panel to
see the package hierarchy for the data model.

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 59

U s i n g D O D S

Figure 4.12 DODS with the DiscRack.doml loaded

The DODS window has three subpanels:

• At the top, the object panel shows the entity-relationship model. Each data object
(corresponding to a table in the database) is represented by a box with a name
inside. Relationships between data objects are shown by red lines between the
boxes.

• In the lower left, the package panel displays the package hierarchy in the current
data model, with a directory for each object/table in the data model, and a blue
dot signifying objects in each package.

• In the lower right, the attribute panel shows the attributes (properties or columns)
of the selected data object. Each attribute is represented by a row in the grid, with
various information associated with the attribute, such as the data type or whether
null values are allowed, indicated in columns of the grid.

The schema of the DiscRack database is pictured in Figure 4.12. DODS shows the
features common to both the database schema and the object model. For example, the
disc data object has title and artist fields, that are the properties (members) of the
Java class, as well as the columns of the corresponding database table.

DODS creates Java code for object operations and SQL code for database operations
(for example, the one-to-many relationship between person and discs).

Figure 4.13 DiscRack object-model/schema

Login
Password
FirstName

LastName

Person

Title

Artist
Genre
Owner

isLiked

Disc

1 *

60 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

U s i n g D O D S

Creating the data layer

Now you are going to create the data layer for your application from scratch. DODS
provides a means to design a data model and then generate the corresponding
data-layer classes for an application that uses the Enhydra application framework.
DODS also generates the SQL code to create the requisite tables in your database.

The data model in this section will be used for the DiscRack application data layer
(see Chapter 5, “DiscRack sample application”) with a slight change in the package
naming.

Creating the data layer with DODS consists of the following tasks:

• Defining the package hierarchy
• Defining data objects
• Generating the data layer code

Defining the package hierarchy
Defining the package hierarchy within DODS establishes the file structure for the
source files that DODS generates.

1 Create a new data model by choosing File|New.

DODS closes any open data model file and starts a new one containing a single
package, named “root” by default.

2 Using the Database menu, select your database type.

For example, if you are using Oracle, choose Database|Oracle. This ensures that
the SQL statements that DODS generates have the correct syntax for your
database. For this example, select Standard JDBC for InstantDB.

3 Now create the package hierarchy:

• Change the name of the root package.

In the lower left panel, select the root folder, then choose Edit|Package. Type
the name of this application, simpleApp, in the dialog box, then press Enter.

• Add the data package by selecting the simpleApp folder and choosing Insert|
Package. Type data, then press Enter.

4 Similarly, create disc and person directories as subdirectories of the data directory.

Recall that package names in Java begin with a lowercase letter. The package panel
(in the lower left of the window) should now look like this:

Figure 4.14 Package heirarchy

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 61

U s i n g D O D S

Defining data objects
Data objects in the DODS data model correspond to tables in the database. The
attributes defined for data objects describe database columns.

1 Select the person package in the lower left pane, then choose Insert|Data Object.

You will see the Data Object Editor dialog box:

Figure 4.15 DODS Data Object Editor dialog box

2 Change the data object defaults as follows:

• In the Class tab, type Person in the Name field.
• In the Package tab, select the person package.
• In the DataBase tab, type Person in the db Table Name field.

Note that the class name starts with an uppercase letter (Person), while the
package name is lowercase (person).

3 Leave the rest of the default values and click OK.

You now have a Person data object in your data model. Later, when you generate
the data layer with the Build All command, DODS will generate the code to create
a Person table in the database. DODS will also create a Person object that you can
incorporate into your application.

4 Select the disc package in the lower left pane, then choose Insert|Data Object.

5 In the Data Object Editor dialog box, change the defaults as follows:

• In the Class tab, type Disc in the Name field.
• In the Package tab, select the disc package.
• In the DataBase tab, type Disc in the db Table Name field.

6 Leave the rest of the default values and click OK.

You now have a Disc data object in your data model.

7 Add the login attribute to the Person data object:

1 Select the Person data object (indicated by a blue dot in the simpleApp data
model), and click Insert|Attribute to open the Attribute Editor dialog box, as
shown in Figure 4.16.

62 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

U s i n g D O D S

Figure 4.16 DODS Attribute Editor dialog box

2 In the General tab, type login in the Name field.

3 In the Java tab, select String from the Java Type pull-down list to set the data
type. String is the default Java data type.

Note When a Java data type is selected from the Java Type pull-down list in the Java
tab, the corresponding database type is assigned for the db Type field in the
Database tab. For example, when you selected String in the Java tab, the
db Type field was set to VARCHAR.

4 In the Database tab, leave the db Type as VARCHAR and select Can Be
Queried.

5 Leave the rest of the default values and click OK.

Notice that the login attribute appears in the attribute panel in the lower right of
the DODS window (see Figure 4.12 on page 59). The fields show the different
options you can set in the Attribute Editor. For example, the yellow Q symbol
means the data object can be queried. Move the cursor over the other symbols to
see what they represent.

8 Repeat the previous step to add the following three more attributes (with Java
Type String and db Type VARCHAR) to the Person data object:

• password
• firstname
• lastname

Tip You can use the Add Attribute button on the toolbar to open the Attribute Editor
dialog box.

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 63

U s i n g D O D S

9 Add the following three attributes (with Java Type String and db Type
VARCHAR) to the Disc data object, as described in the previous steps:

• title
• artist
• genre

10 Define the owner attribute for the Disc data object.

Adding the owner attribute is a little more complicated than the previous attribute
additions because there is a one-to-many relationship between Person and Disc
based on the owner attribute.

1 Select the Disc data object and choose Insert|Attribute to open the Attribute
Editor dialog box.

2 In the General tab, type owner in the Name field.

3 In the Java tab, select simpleapp.data.person.PersonDO from the Java Type
pull-down list.

4 In the Database tab, select Can Be Queried and Referenced DO Must Exist
options.

5 Click OK to close the Attribute Editor dialog box.

You will notice a red arrow in the interface between the Disc object and Person
object showing that Disc uses Person. Notice that the attribute pane displays icons
indicating that the owner attribute has an object reference and a referential
constraint.

11 Define the isLiked attribute for the Disc data object.

1 Select the Disc data object and choose Insert|Attribute to open the Attribute
Editor dialog box.

2 In the General tab, type isLiked in the Name field.

3 In the Java tab, select boolean from the Java Type pull-down list.

4 In the Database tab, select Can Be Queried.

5 Click OK to close the Attribute Editor dialog box.

You have now defined the data objects Person and Disc.

Generating the data layer code
To finish this exercise, save and build the data model.

1 Select File|Save to save the data model file.

Save the data model as simpleApp.doml in the top-level application directory (for
example, /enhydra/myapps/simpleApp).

Note DODS stores the data model specification in a .doml file. DOML stands for Data
Object Meta Langauge. The specification has an XML-like syntax.

Now that you have defined all the data objects, DODS is ready to generate and
compile the code. The Build All command causes DODS to overwrite the existing

64 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

U s i n g D O D S

data directory with all the new information from the data model, so if you want to
save your old data layer code, copy it to another directory.

2 Select File|Build All to open the Destroy and Create New DODS Directory dialog
box.

1 Select the data directory of your simpleApp project (for example,
/enhydra/myapps/simpleApp/simpleApp/data).

Important Navigate to the directory that contains the business, data, and presentation
directories. For example, navigate to /enhydra/myapps/simpleApp/src/simpleapp
(simpleapp will be displayed in the Look In field). Single-click the data directory
to select it; do not double-click the data directory.

2 Choose the Re/Create Directory button.

You will see the following warning:

Figure 4.17 DODS Re/Create Directory warning box

3 Click Yes, and begin the build.

DODS aligns the directory structure in the GUI with the directory structure in the
project, generates Java and SQL files, and then runs make to build the data layer. As
it proceeds, DODS displays messages in a dialog box. For example:

Figure 4.18 DODS Build All message dialog box

If the build is successful, you will see the message DODS BUILD COMPLETE. If the build
fails, look at the messages in the output screen. Verify that the paths of the files are
correct. You can also search the .doml file for clues, because it is easy to read.

DODS generates the following files and subdirectories in the data directory:

• disc and person directories, which contain the Java code for the disc and person data
objects, respectively, and an SQL file defining the corresponding database table

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 65

U s i n g D O D S

• create_tables.sql and drop_tables.sql files, which contain standard SQL statements
to create and remove the disc and person tables from a database, respectively

• Two make files—Makefile and config.mk

• classes directory, which is initially empty

Each data object directory contains Java source files to create four classes. For
example, the person data object directory contains personDO, personDOI, personQuery, and
personDataStruct. The data object and the query classes are the most commonly used
classes.

DODS also generates make files for the data layer. This lets you compile the data
layer independently or along with the entire project. The empty classes directory is
used only if you compile the data layer separately.

The next step in the process is to run the SQL script that DODS generated to create
the tables in the database. You will do this in the next section.

Loading the schema

Figure 4.19 illustrates the complete schema generated by DODS:

Figure 4.19 DiscRack database schema generated by DODS

Notice there are some differences from the original database schema:

• DISC and PERSON tables have two additional fields, OID and VERSION

• There is a third table, OBJECTID, that contains one column, NEXT, with a single
row

The OID column is the primary key for each table created by DODS. The application
code generated by DODS ensures that every row has a value of OID that is unique
within the database. Whenever a new row is added to a table, the application
generates a unique object ID to put in the OID column. It uses the OBJECTID table to
keep track of the next object ID to be assigned.

DODS application code uses the VERSION column in each table to ensure that the
data an application is updating is accurate. Because many users can be accessing the
database simultaneously, a record can change between the time an application
retrieves it and when the application attempts to change the record.

OBJECTID

NEXT

PERSON

OID
VERSION
LOGIN
PASSWORD
FIRSTNAME
LASTNAME

DISC

OID
VERSION
ARTIST
TITLE
GENRE
OWNER

1

*

ISLIKED

66 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

U s i n g D O D S

Every time an application updates a row, it increments the VERSION column in the
database. The application qualifies updates on both the VERSION and OID
columns—if it finds that there are no rows that have the expected values, then it
knows that another process has changed the row it is trying to update, and it throws
an exception. You can catch the exception in your application code to handle such
situations appropriately.

Running the DODS-generated scripts
To load the SQL scripts that DODS creates, follow these steps:

1 Open the create_tables.sql file in the <simpleApp_root>/simpleApp/data directory.

The file contains the SQL CREATE TABLE commands to create the PERSON,
DISC, and OBJECTID tables:
/* This SQL was generated for a Standard database. */
create table Person
(
/* class Person */

login VARCHAR(32) DEFAULT "" NOT NULL ,
password VARCHAR(32) DEFAULT "" NOT NULL ,
firstname VARCHAR(32) DEFAULT "" NOT NULL ,
lastname VARCHAR(32) DEFAULT "" NOT NULL ,
oid DECIMAL(19,0) NOT NULL PRIMARY KEY,
version INTEGER NOT NULL

);

/* This SQL was generated for a Standard database. */
create table Disc
(
/* class Disc */

title VARCHAR(32) DEFAULT "" NOT NULL ,
artist VARCHAR(32) DEFAULT "" NOT NULL ,
genre VARCHAR(32) DEFAULT "" NOT NULL ,
owner DECIMAL(19,0) NOT NULL REFERENCES Person (oid) ,
isLiked INTEGER DEFAULT 0 NOT NULL ,
oid DECIMAL(19,0) NOT NULL PRIMARY KEY,
version INTEGER NOT NULL

);

create table objectid(
next DECIMAL(19,0) NOT NULL

);

Note DODS may generate SQL files that are not fully compatible with your database
server. You may have to edit the file manually to remove extraneous text that may
be causing errors when reading the file. For example, for Oracle, you may have to
remove extra blank lines.

2 If necessary, edit create_tables.sql to work for your database.

The samples directory (<enhydra_root>/doc/books/getting-started/samples/) contains
a create_tables.sql file that has been edited to work with InstantDB. The following
changes were needed for the file work with InstantDB :

1 Add the following lines to the top of the file to load the JDBC driver and open
the database:
d org.enhydra.instantdb.jdbc.idbDriver;
o jdbc:idb=<database_path>;

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 67

U s i n g D O D S

For <database_path> enter the location of your database properties file. For
example, /enhydra/myapps/data/simpleApp.prp.

2 Put an e before each SQL statement. For example, create table Disc becomes
e create table Disc.

3 Replace double quotes ("") with single quotes ('').

4 Add the following line at the end of the file to close the database:
c close;

You can configure many things about the SQL that DODS generates in the
configuration file <enhydra_root>/dods/dods.conf. For example, by default DODS
generates C-style comments, but you can change the style of comments if your
database requires a different format.

3 Load the tables into the database.

For InstantDB, the command to load the SQL file using ScriptTool is:
java org.enhydra.instantdb.ScriptTool create_tables.sql

For Oracle, the command for SQL*Plus is:
SQL> @<simpleApp_root>/simpleApp/data/create_tables.sql

4 Add some dummy data to the database for testing purposes.

For InstantDB, use ScriptTool and the supplied tutorial_insert_idb.sql file (located
in <enhydra_root>/doc/books/getting-started/samples) to add data to the database:
java org.enhydra.instantdb.ScriptTool tutorial_insert_idb.sql

For Oracle, use SQL*Plus and the supplied tutorial_insert.sql:
SQL> @/<enhydra_root>/doc/books/getting-started/samples/tutorial_insert.sql

Note The supplied files tutorial_insert_idb.sql and tutorial_insert.sql contain some
sample data, including one person and three discs.

Using the DODS data objects

Now all you need to do is modify the business object, SimpleDiscList, to use the DODS
data objects instead of the simplified object, SimpleDiscQuery.java, you created
previously.

1 Replace SimpleDiscList.java in your application’s business directory with
SimpleDiscList_DODS.java from the <enhydra_root>/doc/books/getting-started/samples/
directory. Rename the file SimpleDiscList.java.

2 Look at the code in the new SimpleDiscList object and compare it to the code in
SimpleDiscList.java in the samples directory.

68 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

U s i n g D O D S

The main difference between the old and new objects is in the getDiscList()
method. Here is the heart of the method from the new object:
...
try {

DiscDO[] discArray;
DiscQuery dquery = new DiscQuery();
discArray = dquery.getDOArray();
String result[][] = new String[4][discArray.length];
for(int i=0; i< discArray.length; i++) {

result[i][0] = (String)discArray[i].getTitle();
result[i][1] = (String)discArray[i].getArtist();
result[i][2] = (String)discArray[i].getGenre();
result[i][3] = discArray[i].getIsLiked() ? "Yes" : "No";

}
}
return result;
...

The code in the new object uses the DiscQuery and DiscDO objects in the data.disc
package to get data from the database.

• DiscQuery provides a set of methods for querying the DISC table. By default, it
performs the equivalent of SELECT * FROM DISC. It has methods that you can
use to qualify the query (the WHERE clause of the SELECT statement) and
order the result set. The getDOArray() method returns an array of DiscDO objects
returned from the query.

• The DiscDO object is the basic data object representing a row of data from the
DISC table. It has getter and setter methods for each column in the table. The
previous code only uses the getter methods getTitle(), getArtist(), getGenre(),
and getIsLiked(). The getIsLiked() method returns a boolean value, while the
other methods return a string. For the sake of consistency, the getIsLiked()
method performs some simple logic to translate the boolean value to the
appropriate string.

Running the application
Now we will recompile and run the simpleApp application.

1 Build the application from the top level, using the make command. For example:
cd /enhydra/myapps/simpleApp
make

2 Start Enhydra, either by starting the Admin Console (see “Launching the Admin
Console”) or by entering the following commands in the shell window.
cd output
./start

3 Test the application by loading http://localhost:9000 in your browser.

The Disc List table in your Simple presentation object should now contain data
from the Disc table in your database.

C h a p t e r 4 , T u t o r i a l : B u i l d i n g E n h y d r a a p p l i c a t i o n s 69

U s i n g D O D S

Figure 4.20 Simple PO with data from DODS data objects

If you don’t see this page, check the following:

1 Look in the simpleApp.conf file in the output directory to make sure that the database
settings are listed correctly.

2 Check the output displayed in the shell window for errors when you start the
Multiserver. If the database settings are in simpleApp.conf and the JDBC driver is in
the application’s CLASSPATH, there should be no errors listed when Multiserver
starts.

3 Re-run the JDBC connection test to verify that the database is correct and JDBC is
working.

4 For Oracle databases, try putting the wrong password into the application
configuration file. Multiserver should start, but the application will return an SQL
exception and a stack trace.

5 Make sure you do not have any extraneous JVMs running. Sometimes, the class
loader can fail to find the correct classes if it picks up an old CLASSPATH from a
running JVM.

70 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

C h a p t e r 5 , D i s c R a c k s a m p l e a p p l i c a t i o n 71

5Chapter
DiscRack sample application Chapter 5

This chapter introduces the DiscRack application, and uses it as a comprehensive
example to illustrate key concepts of Enhydra application development.

Building and running DiscRack
Enhydra includes the DiscRack application, which is installed in the
<enhydra_root>/examples/DiscRack directory. Throughout this chapter, this top-level
directory containing DiscRack is referred to as <DiscRack_root>.

To build and run DiscRack, you need to make the following modifications to the
installed files:

1 Open config.local.mk.in in <DiscRack_root> and set the ENHYDRA_DIR and JDKDIR
variables to your Enhydra root directory and JDK directory respectively.

2 Copy config.local.mk.in to config.local.mk in the <DiscRack_root> directory.

3 Open the application configuration template file, discRack.conf.in, in
<DiscRack_root>/discRack and make sure all Database Manager configuration
settings are correct. See “Configuring the Database Manager” on page 55 and
Appendix A, “Database configurations.”

4 Build the application by entering the make command from the <DiscRack_root>
directory.

Building the application will generate all the classes and packages for the
DiscRack application.

Note The DiscRack database and corresponding application data layer are identical to
the those created in Chapter 4, “Tutorial: Building Enhydra applications,” with the
exception of package naming. This database schema is loaded for you by default,
using an InstantDB database. Alternatively, you can use the Microsoft Access
database in <DiscRack_root>/discRack/data/discRack.mdb, with the appropriate
changes to the Database Manager configuration settings in the application
cofiguration file. Refer to Appendix A, “Database configurations,” for additional
information about using Microsoft Access with your application.

5 To use the default InstantDB database, copy the InstantDB JAR files, idb.jar and
jta-spec1_0_1.jar, into the <DiscRack_root>/lib directory.

The InstantDB drivers are loaded by the DiscRack start script.

72 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

P r o c e s s a n d p r e l i m i n a r i e s f o r d e v e l o p i n g a p p l i c a t i o n s

6 To run DiscRack, enter the following commands:
cd <DiscRack_root>/output
./start

7 To access the application, enter the URL http://Localhost:5555 in your browser
location field.

Your browser displays the following screen:

Figure 5.1 Browser displaying the DiscRack Login presentation object

Play around with the application to get a sense for how it works:

• Click the Register button to add yourself as a user, then add some discs to your
inventory.

• Try viewing your inventory and editing one of the discs.

Process and preliminaries for developing applications
Before discussing the workings of the DiscRack application, it is useful to understand
how you go about developing an Enhydra application in general. You can adapt the
traditional software development process to Enhydra application development to
ensure that:

• The application does what it is supposed to do.
• You complete the project in a timely and cost-effective manner.
• The application is easy to maintain and upgrade.

An in-depth discussion of software methodology is beyond the scope of this book,
but it is helpful to understand the basic principles and how they apply to the simple
DiscRack application, so that you can reap the benefits when developing a more
complex, real-world application.

C h a p t e r 5 , D i s c R a c k s a m p l e a p p l i c a t i o n 73

P r o c e s s a n d p r e l i m i n a r i e s f o r d e v e l o p i n g a p p l i c a t i o n s

The following process is loosely based on Lutris Technologies’ Structured Delivery
Process (SDP), a rigorous methodology that Lutris developed over the course of many
projects. This simplified process may be suitable for small projects. For information
on methodology for large, team-development projects, see the SDP information on
the Lutris Web site at http://www.lutris.com.

A simplified Enhydra application development process consists of these steps:

• Requirements definition

As specifically as possible, create a statement of what the application is supposed
to accomplish. This statement essentially defines the high-level goals of the
application.

• Functional specification

Outline how the application solves the problem(s) stated in the requirements
definition.

• Design and storyboard

Design the presentation, data, and business layers of the application, then create
the storyboard.

• Development and testing

Code and test the application.

• Deployment

Package the application and install it in its operational environment.

This abbreviated methodology illustrates the key aspects of the development
process. Complex, real-world applications generally call for a more comprehensive
process that includes project milestones, cost analysis, documentation, and so on. The
following sections illustrate these abbreviated steps.

DiscRack requirements definition

The Otter family needs a way to track their compact disc collections. Each family
member has a CD collection, and they sometimes get mixed up: Otters forget who
owns what. They decide that an Enhydra application would be the perfect way to
help them manage their CDs. After some discussion, they arrive at a brief
requirements definition:

DiscRack will let each user keep track of his or her individual CD inventory by
adding, modifying, and deleting CDs as needed. The application will keep track of
all the pertinent information about each CD, including artist and title.

74 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

P r o c e s s a n d p r e l i m i n a r i e s f o r d e v e l o p i n g a p p l i c a t i o n s

DiscRack functional specification

Briefly, DiscRack will meet its requirements as follows:

• Maintain a list of users and passwords

To access their CD inventory, users must log in with a user name and password.

• Allow new users to sign up by entering their name, a user name, and a password.

• Once logged in, a user can see his or her CD inventory and:

• Add new CDs to the inventory.
• Edit existing CD entries.
• Delete an existing entry, with a confirmation prompt.

• The information that will be displayed for each CD includes artist, title, genre, and
whether or not the user likes the CD.

Design and storyboard

The bulk of this step consists of the engineering design for the application, including
the design of database schema and corresponding data layer, business logic, and
presentation logic. The user interface design can be largely encapsulated by a
storyboard.

A storyboard is a visual way of describing a user’s navigation paths through the
application. It provides an outline of the application’s user interface, and a
framework from which the rest of the application design can proceed.

A conceptual storyboard, which is largely an application flowchart, is sometimes
referred to as a site map, in contrast to a mocked-up HTML storyboard. This book
refers to both as a storyboard. The storyboard for DiscRack is shown in Figure 5.2.

You can see from the storyboard that there are five HTML pages in the application.
You can also see that the DiscCatalog page that shows the CD inventory is the central
page in the application. The first page the user sees will always be the Login page; the
last page will always be the Logout page.

DiscRack includes a working storyboard (or application “mockup”) in the resources
directory. It is a set of static HTML pages that illustrate how the application works.
To see the storyboard, load this file in your browser:
<DiscRack_root>/discrack/resources/personMgmt/Login.html

This displays the DiscRack login page.

• Click the Login button to log in and see the disc catalog.
• Click the Sign Up button to display the Signup page.
• Click around on the links to can see the rest of the storyboard.

The flow of the HTML pages follows Figure 5.2. Of course, none of the back-end logic
is activated—all the HTML is static. But the storyboard gives you a good feel for how
the application works.

C h a p t e r 5 , D i s c R a c k s a m p l e a p p l i c a t i o n 75

P r o c e s s a n d p r e l i m i n a r i e s f o r d e v e l o p i n g a p p l i c a t i o n s

Figure 5.2 DiscRack Storyboard

Valid Login?

Welcome/Login Page

Signup Page

No

Confirm Delete
(JavaScript Dialog)

Logout/Thanks Page

Edit/Add Page

Edit
Populate form with data

DiscCatalog (Main) Page

Delete

Log out

Add

Yes

76 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

O v e r v i e w o f D i s c R a c k

Developing, testing, and deploying

To finish the application process, the remaining steps include developing, testing,
and finally deploying.

When you build an application from the top level, the make files create an output
directory containing the configuration files and the start script. Also, there will be a
lib directory with a .jar file that contains all the class files for the application, along
with any other files (for example, GIFs or stylesheets).

To deploy the application, you need to copy these files to the server on which you
want the application to run, and make the appropriate changes to the configuration
files to reflect the new location. Of course, Enhydra must be installed on this server,
and you need to have any ancillary libraries (such as your database’s JDBC driver)
available.

The rest of this chapter describes the DiscRack application itself.

Overview of DiscRack
The basic DiscRack application consists of 23 classes in 9 packages. The fundamental
package structure and class functions for DiscRack are described in Table 5.1:

Table 5.1 DiscRack Application Overview

Class or package name Description

discRack package
DiscRack Application object
DiscRackException Simple base exception class

Presentation layer/package
BasePO Abstract base class for all presentation objects
DiscRackSessionData Container for session data
ErrorHandler Class to handle exceptions not caught elsewhere in the

application
DiscRackPresentationException Presentation layer exception class
presentation.personMgmt package Package that contains the Register and Login classes for

managing presentation related to the PERSON table
presentation.discMgmt package Package that contains the Edit and DiscCatalog classes for

managing presentation related to the DISC table

Business layer/package
DiscRackBusinessException Business layer exception class
business.person package Package that contains two classes:

• Person, which represents a person
• PersonFactory, which has a single method that returns the

Person object for a user name

C h a p t e r 5 , D i s c R a c k s a m p l e a p p l i c a t i o n 77

P r e s e n t a t i o n l a y e r

The six HTML files are in the resources directory. These correspond to the five HTML
pages shown in the storyboard, plus an error page that appears when an error occurs
that is not handled by an exception.

Presentation layer
The presentation layer includes all of the HTML, Java, and JavaScript that defines the
user interface of the application.

Presentation base class

All of the presentation objects in DiscRack are derived from a common base class,
BasePO, which is an implementation of the Enhydra interface HttpPresentation. This
interface has one method, run(), which takes the HTTP request as a parameter.

A presentation base class enables the application to group common functionality in
one place. Notice that BasePO is an abstract class, so it cannot be instantiated itself,
only subclassed. Also, some of its methods are declared abstract, so subclasses must
implement them.

BasePO has methods to handle some of the key tasks for DiscRack:

• User log in and session maintenance

• Event handling and calling the HTML generation methods in the subclass
presentation objects

Note It is important to realize that you are not required to use a base presentation class. An
alternative is to use the Enhydra Application object to perform common tasks.

The central method in BasePO is run(), which makes method calls to perform session
maintenance and event handling:

business.disc package Package that contains two classes:
• Disc, which represents a disc
• DiscFactory, which has methods to return a Disc object for

an ID or for the owner’s name.

Data layer
Described in “Loading the schema” on page 65.

WAP layer/package
The DiscRack example application for Lutris Enhydra
includes presentation templates and code for wireless access.
These additional presentation templates and code comprise
what is referred to as wireless profiles. Refer to Appendix C,
“Using the DiscRack wireless profiles,” in the
Wireless Application Developer’s Guide for additional
information about DiscRack’s wireless profiles.

Table 5.1 DiscRack Application Overview (continued)

Class or package name Description

78 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

P r e s e n t a t i o n l a y e r

public void run(HttpPresentationComms comms) throws Exception {
// Initialize new or get the existing session data
initSessionData(comms);
// Check if the user needs to be logged in for this request.
if(this.loggedInUserRequired()) {

checkForUserLogin();
}
// Handle the incoming event request
handleEvent(comms);

}

Every time a client browser requests a presentation object URL, the application calls
run(). Its logic is very simple:

• Initialize or get the existing session data by calling initSessionData().

• If this presentation object requires a log in (as determined by
loggedInUserRequired(), an abstract method implemented by each presentation
object), then call checkForUserLogin() to determine if the user has already logged in.
If not, then redirect the browser to the login page.

• Call handleEvent() to handle the current event and determine what HTML to
generate.

Each of these methods is explained in the following sections.

The run() method has one parameter, comms, that is an object containing information
about the HTTP request. Its member properties include application, exception, request,
response, session, and sessionData. These six properties provide all of the information
for the request.

For example, you can retrieve session data with getComms().sessionData.get() and
query string parameters with getComms().request.getParameter().

Session data and log in

The basics of Enhydra session maintenance were introduced in “Maintaining session
state” on page 42. In contrast to the way session information was handled in that
example, DiscRack stores all its session information in a single DiscRackSessionData
object and saves that object in the user’s session.

DiscRackSessionData is a simple container class containing methods to get and set these
member properties:

• A Person object that represents the user

• A string, called userMessage, for error messages such as “Please choose a valid disc
to edit”

There are several advantages of keeping session data in one object:

• It centralizes control of session information.

This is especially helpful when multiple presentation objects access the same
session data.

C h a p t e r 5 , D i s c R a c k s a m p l e a p p l i c a t i o n 79

P r e s e n t a t i o n l a y e r

• It is type-safe.

Because Session.getSessionData() returns a generic Object, if you store session data
separately, you will have to cast each item to the appropriate type, which can lead
to runtime errors that are hard to debug.

• It facilitates session data maintenance.

If there is a large amount of session data, you can periodically clean up the
unneeded data. For example, say you wanted to store an array of hundreds of
discs in the user’s session to speed access, but you didn’t necessarily want leave it
there until they log out. With a session data object, you could easily implement a
method to clean up unneeded data in the session.

initSessionData() method
The first thing each presentation object does is to call initSessionData(). The main
portion of this method is shown here:
Object obj = getComms().sessionData.get(DiscRackSessionData.SESSION_KEY);
if(null != obj) {

this.mySessionData = (DiscRackSessionData)obj;
} else {

this.mySessionData = new DiscRackSessionData();
getComms().sessionData.set(DiscRackSessionData.SESSION_KEY, this.mySessionData);

}

The first statement in this code snippet gets the session data object, using the session
key “DiscRackSessionData.” If the session data object exists, it gets typecast to
DiscRackSessionData; otherwise, the code creates a new DiscRackSessionData object and
saves it to the user’s session with set().

loggedInUserRequired() method
BasePO has an abstract method called loggedInUserRequired() that returns a boolean
value, which indicates whether a user is required to be logged in to access the
associated page. Thus, every presentation object is required to implement this
method.

In BasePO.run(), if this method returns true, then checkForUserLogin() is called.

checkForUserLogin() method
The checkForUserLogin() method determines if a user has a valid login. If not, then it
redirects the browser to the Login page:
...
Person user = getUser();
if (null == user) {
...

throw new ClientPageRedirectException(LOGIN_PAGE);
}
...

Several statements that write debug messages to a log channel have been removed
from this code for clarity.

80 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

P r e s e n t a t i o n l a y e r

The call to getUser() is really just a call to getSessionData().getUser(), which retrieves
the Person object saved in the current session. If the user has not logged in, or the
session has timed out, then this method returns null, and the code will throw a
ClientPageRedirectException with the URL to the Login page as the argument to the
constructor.

When a client browser is redirected by a ClientPageRedirectException, any parameters
from a query string that were available to the original presentation object are lost. So
if you want to pass an error message, you must put the information in the user’s
session or directly into the query string of the redirected URL.

Event handling

While you could create a separate presentation object for each task in an application,
in many cases it makes sense to have a single presentation object handle multiple
events. For example:

• Edit presentation object responds to four events—showing the add page, showing
the edit page, actually adding a disc to the database, and deleting a disc from the
database.

• Login presentation object handles three events—show page, login, and logout.

Note In this context, an “event” refers to the task a user is performing.

Setting the event parameter
DiscRack keeps track of the event it is processing with the event parameter, which is
sent in the query string of a request. For example, this URL specifies the event
showAddPage:
http://Localhost:8000/discMgmt/Edit.po?event=showAddPage

DiscRack illustrates several techniques for setting the event:

• showAddPage event is defined in the DiscCatalog.html page by the JavaScript onClick
event handler of the Add a New Disc button.

This calls the JavaScript function showAddPage(), which explicitly adds the event to
the URL requested:
document.location='Edit.po?event=showAddPage'

This function is defined in presentation/discMgmt/DiscCatalogScript.html, not the
DiscCatalog page, as explained in “Replacing JavaScript” on page 84.

• add event (to add a disc to the database) is defined in the Edit.html page by a
hidden form field:
<input type="hidden" name="event" value="add" id="EventValue">

When the user clicks the Add button, event=add is added to the form submission
request along with the other form data the user entered.

C h a p t e r 5 , D i s c R a c k s a m p l e a p p l i c a t i o n 81

P r e s e n t a t i o n l a y e r

• exit event is defined in the DiscCatalog.html page by the second form’s ACTION
attribute:
"../personMgmt/Exit.html"

At compile time, this URL, as explained in “URL mapping” on page 83, is replaced
by:
'../personMgmt/Login.po?event=logout'

Although DiscRack does not demonstrate it, you can also set the event when you
throw a PageRedirectException. You use this exception to transfer control from one
presentation object to another. To specify an event, add this string to the URL string
passed to the constructor of PageRedirectException:
"?event=someEvent"

handleEvent() method
Once the event is set, the handleEvent() method of BasePO performs the actual event
handling:
String event = getComms().request.getParameter(EVENT);
String returnHTML = null;

if (event == null || event.length() == 0) {
returnHTML = handleDefault();

} else {
returnHTML = getPageContentForEvent(event);

}
getComms().response.writeHTML(returnHTML);

This method gets the event parameter from the request query string and calls the
appropriate event handler. If it does not find event in the request query string, it calls
handleDefault(), which is an abstract method and so must be implemented by all
BasePO subclasses. Otherwise, it calls getPageContentForEvent(), which returns the string
content for the specific event and PO.

This method contains the following three lines:
Method method = this.getClass().getMethod(toMethodName(event), null);
String thePage = (String)method.invoke(this, null);
return thePage;

This code uses reflection (defined in the java.lang.reflect package) to call the method
in the presentation object corresponding to the current event. Reflection lets you call a
method whose name is defined at runtime.

The call to toMethodName() returns a string, handleXxx, where Xxx is the current event (for
example, handleShowAddPage for showAddPage). The call to method.invoke() then calls this
method.

Reflection allows BasePO to call methods in its subclasses without knowing in advance
the names of the methods. This scheme works as long as the presentation object code
follows the appropriate naming conventions:

For every event “foo,” there must be a method handleFoo() in the presentation
object class that needs to handle that event.

82 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

P r e s e n t a t i o n l a y e r

HTML pages

You will find the HTML pages for DiscRack in the <discRack_root>/discRack/resources
directory. Keeping the HTML pages there rather than in the presentation directory
cleanly separates the HTML files from the Java files. Although this is superfluous for
small applications, it is a key advantage for large applications with a graphic design
team and a programming team.

The make files in the presentation layer control how the application uses the HTML
files. There are a total of three make files in the presentation layer—one in the top
level and one in each subdirectory.

To keep the HTML files in a directory separate from the presentation classes, the
make files use the HTML_DIR directive, which specifies the relative path to the directory
containing the HTML files. For example, in presentation/Makefile, you’ll see:
HTML_DIR = ../resources

And in presentation/discMgmt/Makefile:
HTML_DIR = ../../resources/discMgmt

The make rules will also find any HTML files in the presentation directories (for
example, discMgmt/DiscCatalogScript.html).

The HTML_CLASSES directive indicates the names of the class files that XMLC creates, as
explained in “Adding a new page to the application” on page 44.

Notice there is a presentation/media directory that contains only one make file. This
directory mirrors the final package structure for the .jar file. A line in the make file
copies the .gif into the finished .jar file:
JAR_INSTALL = \ ../../resources/media/*.gif

Maintaining the storyboard

The storyboard is initially just a mockup of the application. But with a few simple
steps, you can maintain a working storyboard throughout the entire development
process. This capability becomes particularly important for large applications created
by a team of programmers and graphic designers. Each team can work on their part
of the application separately from the other.

After the graphic designers complete their work, you can then replace the old, “mock
up” user interface with the new improved interface, which may include enhanced
graphics, JavaScript special effects, stylesheets, and so on. An example of doing this
is illustrated in “Replacing the user interface” on page 84.

In addition to keeping the HTML files separate from the Java code, as described in
the previous section, there are three steps you must follow during development to
maintain the storyboard:

1 Define rules to map URLs like Login.html to Login.po
2 Remove dummy data from the HTML files
3 Replace JavaScript, if necessary

C h a p t e r 5 , D i s c R a c k s a m p l e a p p l i c a t i o n 83

P r e s e n t a t i o n l a y e r

Each of these steps is described in detail in the following sections.

URL mapping
In the working storyboard, as in any static HTML pages, hyperlinks reference other
HTML pages. That is, the URLs in hyperlinks end in .html. However, in the working
application, links to dynamic pages reference presentation object URLs that end in
.po. So, you need to do something to convert the “normal” URLs in the storyboard to
.po URLs.

You do this by using the XMLC -urlmapping option to map URLs from one form to
another. You use this option like this:
-urlmapping oldURL newURL

To use this option in the make process, you must create an XMLC options file, and
then identify the file in the make file with the XMLC_HTML_OPTS_FILE directive. For
example:
XMLC_HTML_OPTS_FILE = options.xmlc

The presentation/discMgmt/options.xmlc file contains the lines:
-urlmapping 'Edit.html' 'Edit.po'
-urlmapping 'DiscCatalog.html' 'DiscCatalog.po'
-urlmapping '../personMgmt/Exit.html' '../personMgmt/Login.po?event=logout'

When XMLC compiles the files in this directory, it replaces occurrences of the first
string (for example, Edit.html) with the second string (for example, Edit.po) in
hyperlink URLs and FORM ACTION attributes.

Removing dummy data
HTML files often contain “dummy” data to make the storyboard pages look more
representative of their actual runtime appearance. You need to remove this dummy
data from the production application.

Look in presentation/discMgmt/options.xmlc again. In particular, look at the last line:
-delete-class discardMe

The -delete-class option tells XMLC to remove any tags (and their contents) whose
CLASS attribute is discardMe. For example, if you look in
resources/discMgmt/DiscCatalog.html, you see this HTML:
<tr class="discardMe">

<td>Sonny and Cher</td>
<td>Greatest Hits</td>
<td>Boring Music</td>
<td>Not</td>

</tr>

It’s not that we don’t like Sonny and Cher, however, the CLASS attribute in the table
row definition marks the row for deletion.

Unlike ID, the value of a CLASS attribute does not have to be unique in the page. You
can remove all of the dummy in the application with the same discardMe value.

84 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

P r e s e n t a t i o n l a y e r

Replacing JavaScript
In addition to replacing URLs, you often need to replace JavaScript in the storyboard
with JavaScript to be used in the “real” application. For example,
resources/DiscCatalog.html contains the following script:
<SCRIPT id="DummyScript">
<!--
function doDelete()
{

document.EditForm.action='DiscCatalog.html';
if(confirm('Are your sure you want to delete this disc?')) {

document.EditForm.submit();
}

}
function showAddPage()
{

document.location='Edit.html';
}
//-->
</SCRIPT>

These functions help to keep the storyboard working. At runtime, though, the
application needs to use the “real” functions, which are defined in
presentation/DiscCatalogScript.html. For example:
...
function showAddPage()
{

document.location='Edit.po?event=showAddPage';
}
...

Because XMLC views JavaScript as a comment, the URL mapping option will not
work on this URL inside the JavaScript function. So, you have to replace it at runtime
with the following code in DiscCatalog.java:
DiscCatalogHTML page = new DiscCatalogHTML();
HTMLScriptElement script = new DiscCatalogScriptHTML().getElementRealScript();
XMLCUtil.replaceNode(script, page.getElementDummyScript());

This is an example of replacing a node with a node from another document. This
implementation uses the XMLCUtil class.

Note Because this action happens at runtime, it may have a slight affect on performance. If
performance is critical, you may want to replace the JavaScript in the final deployed
version of the application.

Maintaining the storyboard seems like additional unnecessary work, but it is worth
the effort when your HTML is evolving in parallel with the Java code. As an example
of the power of a working storyboard, you can exchange the HTML in DiscRack from
the basic HTML to designed HTML.

Replacing the user interface
Once the graphic design is completed, you can replace the user interface of the
application with its final version. DiscRack includes a resources_finished directory
containing “finished” versions of the HTML pages, along with graphics and a
stylesheet.

C h a p t e r 5 , D i s c R a c k s a m p l e a p p l i c a t i o n 85

P r e s e n t a t i o n l a y e r

To replace the original storyboard resources with the “finished” resources:

1 Rename the resources directory to resources_old.

2 Rename the resources_finished directory to resources.

3 Edit the JAR_INSTALL directive in <DiscRack_root>/discRack/presentation/media/Makefile
by removing the two comment symbols (#) and adding a continuation character (\)
after the first line so that it looks like this:
JAR_INSTALL = \
../../resources/media/*.gif \
../../resources/media/*.css \
../../resources/media/*.jpg

This ensures that the new .jpeg graphics files and the stylesheet file are included in
the packaged application .jar file.

4 Rebuild the presentation package by entering the following commands from the
directory <DiscRack_root>/discRack/presentation:
make clean
make

The make clean command removes all the old classes so that make will completely
rebuild the application from scratch.

5 Now, restart and access the application. You see the new and improved user
interface:

Figure 5.3 Browser displaying the DiscRack Login presentation object with updated graphics

Populating a list box

The DiscCatalog page illustrates how to populate a SELECT list box, which is a
common task. First, look at the HTML for the SELECT tag in DiscCatalog.html:

86 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

P r e s e n t a t i o n l a y e r

<SELECT id="TitleList" Name="discID">
<OPTION selected VALUE="invalidID">Select One</OPTION>
<OPTION id="templateOption">Van Halen: Van Halen One</OPTION>
<OPTION class="discardMe">Sonny and Cher: Greatest Hits</OPTION>
<OPTION class="discardMe">Sublime: 40 oz. to Freedom</OPTION>
</SELECT>

Now look in DiscCatalog.java for the code that populates the list box.
HTMLOptionElement templateOption = page.getElementTemplateOption();
Node discSelect = templateOption.getParentNode();

The first line retrieves the DOM object corresponding to the template OPTION tag. The
second line calls getParentNode() to get the container SELECT tag. Because the SELECT tag
has an ID attribute, this line could have also been:
Node discSelect = page.getElementTitleList();

Then, following some code for populating the table, there is one line to remove the
template row.
templateOption.removeChild(templateOption.getFirstChild());

The other OPTION tags contain CLASS="discardMe", which causes XMLC to remove those
items at build time, as explained in “Removing dummy data” on page 83.

Then, within the for loop that iterates over the discs belonging to the current user, the
following lines actually populate the list box:
HTMLOptionElement clonedOption = (HTMLOptionElement)

templateOption.cloneNode(true);
clonedOption.setValue(currentDisc.getHandle());
Node optionTextNode =

clonedOption.getOwnerDocument().createTextNode(currentDisc.getArtist()
+ ": " + currentDisc.getTitle());

clonedOption.appendChild(optionTextNode);
discSelect.appendChild(clonedOption);

The first line copies (clones) the template option element into a DOM object of type
HTMLOptionElement. The second line sets the value attribute to the value returned by
getHandle(), which is the disc’s OBJECTID, an unique identifier.

The third (very long) line creates a text node consisting of artistName: titleName.
Finally, the last two lines append the text node to the option node, and then append
the option node to the select node.

The resulting runtime HTML will look something like this:
<SELECT name='discID' id='TitleList'>
<OPTION value='invalidID' selected>Select One</OPTION>
<OPTION value='1000001'>Funky Urchin: Lovely Spines</OPTION>
<OPTION value='1000021'>The Seagulls: Screaming Fun</OPTION>
</SELECT>

Although this example might seem obscure, it is fairly short, and you can extend its
basic functionality to handle more complex situations. For example, you can modify
it to set the default selection based on a second query.

C h a p t e r 5 , D i s c R a c k s a m p l e a p p l i c a t i o n 87

P r e s e n t a t i o n l a y e r

Populating a form

When a user chooses a disc from the list box and clicks the Edit Disc button, the
browser displays a form. As shown in Figure 5.3, the edit form is populated with the
existing values for that disc. The user can then edit the values and submit them back
to the database.

Figure 5.4 DiscRack disc edit form

Here is the HTML for the form elements in Edit.html. The TABLE tags have been
omitted for clarity:
<INPUT TYPE="hidden" NAME="discID" VALUE="invalidID" ID="DiscID">
Artist: <input name="artist" id="Artist" >
Title: <input name="title" id="Title" >
Genre: <input name="genre" id="Genre" >
Do you like this disk?
<input TYPE="checkbox" name="like" CHECKED ID="LikeBox">
<INPUT TYPE="submit" VALUE="Save This Disc Info">

In Edit.java, the event-handling method handleDefault() calls showEditPage() with a
null parameter to populate the form with the selected disc’s values. Ordinarily, the
only request parameter (other than the event type) is the disc ID, accessed by this
statement:
String discID = this.getComms().request.getParameter(DISC_ID);

These statements also access the other request parameters, but ordinarily they are
null (but see the error-handling case discussed later):
String title = this.getComms().request.getParameter(TITLE_NAME);
String artist = this.getComms().request.getParameter(ARTIST_NAME);
String genre = this.getComms().request.getParameter(GENRE_NAME);

Then, a call to findDiscByID() retrieves a Disc data object that has that ID:
disc = DiscFactory.findDiscByID(discID);

88 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

B u s i n e s s l a y e r

Next, there is a series of if statements that check the values of title, artist, genre, and
isLiked, which are normally null. Therefore, the following statements are executed
(the surrounding if statements are not shown for brevity):
page.getElementDiscID().setValue(disc.getHandle());
page.getElementTitle().setValue(disc.getTitle());
page.getElementArtist().setValue(disc.getArtist());
page.getElementGenre().setValue(disc.getGenre());
page.getElementLikeBox().setChecked(disc.isLiked());

These statements use XMLC calls to set the value attributes of the form elements; the
values are retrieved from the Disc object.

When the user finishes editing and clicks Save this Disc Info, handleEdit() processes
the changes. This method calls saveDisc(), which attempts to save the new values:

• If successful, it redirects the client to the DiscCatalog page.
• If any of the new values are null, though, saveDisc() throws an exception.

The catch clause then calls showEditPage() with an error string and request parameters.

Note ClientPageRedirectException is a subclass of java.lang.Error, so it is not caught by the
catch clause when that statement is thrown.
try {

saveDisc(disc);
throw new ClientPageRedirectException(DISC_CATALOG_PAGE);

} catch(Exception ex) {
return showEditPage("You must fill out all fields to edit this disc");
}

The result is that when a user tries to edit a disc and delete some of the values, the
edit page redisplays, maintaining all the non-null form element values and restoring
the previous values to the null-valued form elements. The page also displays the
error string.

Business layer
The DiscRack business layer is simple, consisting primarily of:

• Two packages—Disc and Person
• Two corresponding factory classes—DiscFactory and PersonFactory.

A factory is an object whose primary role is to create other objects.

Business objects

The business objects Disc and Person are largely wrappers for the corresponding data
layer classes, DiscDO and PersonDO, with get and set methods for each property in the
data objects (or column in the database tables). For example, Disc has getArtist() and
setArtist() methods.

The objects in the business layer perform all the interfacing with the data layer. So, if
the data layer needs to change, nothing in the presentation layer is affected.
Conversely, if the presentation layer changes, nothing in the data layer is affected.

C h a p t e r 5 , D i s c R a c k s a m p l e a p p l i c a t i o n 89

B u s i n e s s l a y e r

DiscFactory has two static methods:

• findDiscsForPerson() returns an array of Disc objects that belong to the Person object
specified as the method’s argument.

• findDiscByID() returns the single Disc object that has the ID specified in the
method’s argument.

PersonFactory has one static method, findPerson(). It returns a Person object that has the
user name specified in the method’s argument. If the method finds more than one
person in the database, then it writes an error message to the log channel and throws
an exception.

Using data objects

To help understand how DiscRack uses the DODS data layer code, look at the
findPerson() method in PersonFactory. The comments have been removed from this
code for brevity.
public static Person findPerson(String username)
throws DiscRackBusinessException
{

try {
PersonQuery query = new PersonQuery();
query.setQueryLogin(username);
query.requireUniqueInstance();
PersonDO[] foundPerson = query.getDOArray();
if(foundPerson.length != 0) {

return new Person(foundPerson[0]);
} else {

return null;
}

} catch(NonUniqueQueryException ex) {
...

First, this method instantiates a new PersonQuery object. PersonQuery is a data layer
object used to construct and execute a query on the person table. It has a number of
setQueryxxx() methods for qualifying the query parameters (that is, setting the values
to be matched in the WHERE clause of the SELECT statement). For example, the above
code calls setQueryLogin() with username as a parameter to set the value to be matched
in the LOGIN column.

Next, the method calls requireUniqueInstance(), which indicates that the query is to
return a single row, and will throw an exception otherwise. Then, it calls getDOArray(),
which executes the query, returning an array of PersonDO objects. Finally, the method
returns a single Person object returned by the query; if the query did not return any
rows, it returns null.

90 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

A p p e n d i x A , D a t a b a s e c o n f i g u r a t i o n s 91

AAppendix
Database configurations Appendix A

This appendix provides information on connecting Enhydra applications to specific
database types. In general, you need to add the database configuration information
to the application configuration file (e.g., simpleApp.conf). Configurable items in the
code snippets that you need to specify, such as path names or database identifier, are
enclosed in brackets and italicized (for example, <path_name> or <database_id>).

Note In general, Lutris supports the latest releases of the following databases. A
comprehensive list of certified platforms is provided on the Lutris website at
http://www.lutris.com/support/platform.html.

Driver configuration
Important Enhydra connects to databases using a JDBC driver. Enhydra has its own class

loader, but the JDBC driver must be loaded by the system class loader. Therefore, it is
important to specify the path to the JDBC driver in your system CLASSPATH and not in
the Enhydra application’s CLASSPATH.

A common way to specify the path to the JDBC driver is to save the driver in a lib
directory in the project and define the CLASSPATH in the start script. To do this, follow
these steps:

1 Create a lib directory in the top level of your project and copy your JDBC driver to
this directory.

2 Edit your application’s start file template, start.in, (in the <appName>/input
directory) to place the driver in your CLASSPATH. For example:
...
#
Build up classpath.
#
CLASSPATH="../lib/idb.jar\;../lib/jta-spec1_0_1.jar"
APPCP="${ENHYDRA_LIB}${PS}../classes"
...

3 Build the project with make, which will copy the start script to the directory
<appName>/output. Use this script to start your application.

Be careful to keep the right driver with your application. For example, there are
multiple versions of the Oracle JDBC driver, classes111.zip. When your application
goes into production, make sure that the project administrator knows to reference the
correct driver when the database is upgraded in the future.

92 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

O r a c l e

Oracle
This section presents an example of an Oracle configuration, where <database_id> is
your database identifier.
#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "<database_id>"
DatabaseManager.DefaultDatabase = "<database_id>"
DatabaseManager.Debug = "false"
DatabaseManager.DB.<database_id>.ClassType = "Oracle"
DatabaseManager.DB.<database_id>.JdbcDriver = "oracle.jdbc.driver.OracleDriver"
DatabaseManager.DB.<database_id>.Connection.Url =

"jdbc:oracle:thin:@<server_name>:<port#>:<db_instance>"
DatabaseManager.DB.<database_id>.Connection.User = "<user>"
DatabaseManager.DB.<database_id>.Connection.Password = "<password>"
DatabaseManager.DB.<database_id>.Connection.MaxPreparedStatements = 10
DatabaseManager.DB.<database_id>.Connection.MaxPoolSize = 30
DatabaseManager.DB.<database_id>.Connection.AllocationTimeout = 10000
DatabaseManager.DB.<database_id>.Connection.Logging = false
DatabaseManager.DB.<database_id>.ObjectId.CacheSize = 20
DatabaseManager.DB.<database_id>.ObjectId.MinValue = 1

The driver used here is the Oracle thin driver, and <db_instance> is the name of the
Oracle database instance.

Informix
This section presents an example of an Informix configuration, where <database_id> is
your database identifier.
#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "<database_id>"
DatabaseManager.DefaultDatabase = "<database_id>"
DatabaseManager.Debug = "false"
DatabaseManager.DB.<database_id>.ClassType = "Informix"
DatabaseManager.DB.<database_id>.JdbcDriver = "com.informix.jdbc.IfxDriver"
DatabaseManager.DB.<database_id>.Connection.Url =

jdbc:informix-sqli://<hostname>:<port#>:INFORMIXSERVER=<db_instance>;
user=<user>;password=<password>

DatabaseManager.DB.<database_id>.Connection.User = "<user>"
DatabaseManager.DB.<database_id>.Connection.Password = "<password>"
DatabaseManager.DB.<database_id>.Connection.MaxPreparedStatements = 10
DatabaseManager.DB.<database_id>.Connection.MaxPoolSize = 30
DatabaseManager.DB.<database_id>.Connection.AllocationTimeout = 10000
DatabaseManager.DB.<database_id>.Connection.Logging = false
DatabaseManager.DB.<database_id>.ObjectId.CacheSize = 20
DatabaseManager.DB.<database_id>.ObjectId.MinValue = 1

A p p e n d i x A , D a t a b a s e c o n f i g u r a t i o n s 93

S y b a s e

Sybase
This section presents an example of a Sybase configuration, where <database_id> is
your database identifier.
#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "<database_id>"
DatabaseManager.DefaultDatabase = "<database_id>"
DatabaseManager.Debug = "true"
DatabaseManager.DB.<database_id>.ClassType = "Sybase"
DatabaseManager.DB.<database_id>.JdbcDriver = "com.sybase.jdbc2.jdbc.SybDriver"
DatabaseManager.DB.<database_id>.Connection.Url =

"jdbc:sybase:Tds:<hostname>.sybase.com:7100"
DatabaseManager.DB.<database_id>.Connection.User = "<name>"
DatabaseManager.DB.<database_id>.Connection.Password = "<password>"
DatabaseManager.DB.<database_id>.Connection.MaxPoolSize = "2"
DatabaseManager.DB.<database_id>.Connection.AllocationTimeout = "2"
DatabaseManager.DB.<database_id>.Connection.Logging = "true"
DatabaseManager.DB.<database_id>.Connection.MaxPreparedStatements = "2"
DatabaseManager.DB.<database_id>.ObjectId.CacheSize = 2
DatabaseManager.DB.<database_id>.ObjectId.MinValue = 1

MySQL
MySQL is an open source database that is lightweight and fast.

Note Although some older versions of MySQL may work with Enhydra without problems,
versions 3.22 and earlier do not support transactions. Because of this, you have to
make a small patch to the Enhydra code to use MySQL.

Patch
Prior to version 3.23, MySQL does not support transactions, and therefore does not
support autocommit. To use MySQL versions 3.22 and earlier, you have to make a
small change to the code and rebuild Enhydra. You will need to change the file
com/lutris/appserver/server/sql/standard/StandardDBConnection.java and comment out
one line, as shown below:
public void setAutoCommit(boolean on) throws SQLException {

validate();
logDebug("ignores set auto commit: " + on);
// connection.setAutoCommit(on);

}

You must then rebuild this Enhydra package. For details, see the Enhydra mailing list
archive.

94 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

P o s t g r e S Q L

Configuration
This section presents an example of a MySQL configuration, where <database_id> is
your database identifier.
#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = <database_id>
DatabaseManager.DefaultDatabase = <database_id>
DatabaseManager.Debug = true
DatabaseManager.DB.<database_id>.ClassType = Standard
DatabaseManager.DB.<database_id>.Connection.User = <username>
DatabaseManager.DB.<database_id>.Connection.Password = <password>
DatabaseManager.DB.<database_id>.Connection.MaxPoolSize = 5
DatabaseManager.DB.<database_id>.Connection.AllocationTimeout = 10000
DatabaseManager.DB.<database_id>.Connection.Logging = true
DatabaseManager.DB.<database_id>.ObjectId.CacheSize = 1024
DatabaseManager.DB.<database_id>.ObjectId.MinValue = 100
DatabaseManager.DB.<database_id>.JdbcDriver = org.gjt.mm.mysql.Driver
DatabaseManager.DB.<database_id>.Connection.Url =

"jdbc:mysql://<hostname>:<port#>/<db_instance>"

PostgreSQL
Note Although other versions are available commercially, Lutris supports the open-source

version of PostgreSQL for the Linux operating system for use with Enhydra.

PostgreSQL is a popular open-source database used with Enhydra. However, as
explained in “Loading the schema” on page 65, DODS requires a special column
named OID in each table. However, OID is a reserved word in PostgreSQL.
Fortunately, the column names used for OID and VERSION are configurable.

To configure these names, add the following lines to your application configuration
file:
DatabaseManager.ObjectIdColumnName = "<ColName_for_ObjectId>"
DatabaseManager.VersionColumnName = "<ColName_for_Version>"

where <ColName_for_ObjectId> and <ColName_for_Version> are the column names you
want to use instead of OID and VERSION.

InstantDB
To use an InstantDB database with an Enhydra application

1 In the application configuration file <appName>/<appName>.conf (sometimes, by
convention, <appName>/<appName>.conf.in) set the following line:
DatabaseManager.DB.<database_id>.Connection.Url = "jdbc:idb:<propFile>.prp"

where <propFile> is the full path to the database properties file, and <database_id> is
the database identifier used in the configuration file.

2 In the same configuration file, identify the JDBC driver with the line:
DatabaseManager.DB.<database_id>.JdbcDriver = "org.enhydra.instantdb.jdbc.idbDriver"

A p p e n d i x A , D a t a b a s e c o n f i g u r a t i o n s 95

M i c r o s o f t S Q L S e r v e r

3 Add the path to idb.jar to the setting for CLASSPATH in the application’s start script,
in <appName>/start.

Note On Windows, database files must be on the C drive, due to limitations with the
Cygnus tools.

Microsoft SQL Server
The exact configuration settings for connecting to MS SQL server depend on the
JDBC driver you are using. We do not recommend using the JDBC-ODBC bridge
with MS SQL Server.

JTurbo JDBC driver

We certified the JTurbo 2.0 JDBC driver, and the configuration settings for this are:
JTurbo 2.0 JDBC Driver for MS SQL server
DatabaseManager.Databases [] = "my_db"
DatabaseManager.DefaultDatabase = "my_db"

DatabaseManager.DB.my_db.ClassType = "Standard"
DatabaseManager.DB.my_db.JdbcDriver = "com.inet.tds.TdsDriver"

NOTE: substitute your server's IP address for 10.0.0.18 below
Substitute the port your DB is listening on for 1433 below
DatabaseManager.DB.my_db.Connection.Url = "jdbc:inetdae:10.0.0.18:1433?database=my_db"

DatabaseManager.DB.my_db.Connection.User = "<user_name>"
DatabaseManager.DB.my_db.Connection.Password = "<password>"

If you are using another JDBC driver, you need to determine the driver package, for
the DatabaseManager.DB.my_db.JdbcDriver setting, and connection string, for
DatabaseManager.DB.my_db.Connection.Url setting.

Microsoft Access
Microsoft Access is not a true SQL database server; as such, it is suitable for
development and testing, but not for a production database. Access does not have a
JDBC driver. However, Access does support ODBC, and there is a JDBC-ODBC
bridge in the Sun JDK, which enables Access to work with Enhydra.

Because Access cannot read-in files containing SQL commands, you must create
tables in the Access GUI. See the Access documentation for more information. For the
DiscRack example, you can also use the Access database provided in
<enhydra_root>/examples/DiscRack/discRack.mdb.

You can test the ODBC access alone using the test program in “Establishing a JDBC
connection” on page 52. Use the driver and connect strings from the configuration
file listed here. If you encounter problems, be sure your data values are valid.

96 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

I n t e r B a s e

To use Enhydra with Access:

1 Register the database as an ODBC data source:

1 Go to Start|Settings|Control Panel and click ODBC Data Sources.

2 Click the Add button in the dialog box that comes up.

3 Select the Microsoft Access Driver in the Create New Datasource dialog box
and click Finish.

The ODBC Microsoft Access Setup dialog box appears.

4 Choose a name, like discRack, for the Data Source Name. Under Database, click
the Select button, browse to the *.mdb file, select it, and click OK.

2 Place database information in the application’s configuration file, as shown in the
example below. Replace <data_source> with the name you chose for Data Source
Name in the preceding step.

Note You don’t have to place the JDBC driver in the application’s CLASSPATH because the
ODBC/JDBC bridge is in the JDK and thus is already in the system’s CLASSPATH.

This section presents an example of an Access configuration, where <database_id> is
your database identifier.
#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "<database_id>"
DatabaseManager.DefaultDatabase = "<database_id>"
DatabaseManager.Debug = "false"
DatabaseManager.DB.<database_id>.ClassType = "Standard"
DatabaseManager.DB.<database_id>.JdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver"
DatabaseManager.DB.<database_id>.Connection.Url = "jdbc:odbc:<data_source>"
DatabaseManager.DB.<database_id>.Connection.User = "Admin"
DatabaseManager.DB.<database_id>.Connection.Password = ""
DatabaseManager.DB.<database_id>.Connection.MaxPreparedStatements = 10
DatabaseManager.DB.<database_id>.Connection.MaxPoolSize = 30
DatabaseManager.DB.<database_id>.Connection.AllocationTimeout = 10000
DatabaseManager.DB.<database_id>.Connection.Logging = false
DatabaseManager.DB.<database_id>.ObjectId.CacheSize = 20
DatabaseManager.DB.<database_id>.ObjectId.MinValue = 1

InterBase
InterBase® is an efficient and powerful RDBMS engine. Its vendor, Borland/Inprise,
has released InterBase version 6.0 as an open-source product. See
http://www.interbase.com for more information and product downloads.

A p p e n d i x A , D a t a b a s e c o n f i g u r a t i o n s 97

I n t e r B a s e

InterClient

The JDBC driver for InterBase is called InterClient.™ The InterClient system includes
an all-Java thin client, and a server-side daemon (also known as a service on
Microsoft Windows NT) called InterServer. This daemon accepts JDBC connection
requests and in turn connects to the InterBase RDBMS daemon. The three processes
(JDBC client, InterServer daemon, InterBase daemon) can run all on separate hosts,
all on the same host, or in any other combination.

InterClient is a class 3 JDBC driver in that it has a separate daemon on the server to
serve JDBC connections; however, it also matches the definition of a class 4 driver
because the client component can connect only to one DBMS back-end, InterBase.

InterClient is installed separately from InterBase. On Windows, InterClient is
commonly installed in:
C:\Program Files\Borland\InterClient\interclient.jar

Depending on the version of InterClient, it might instead be installed in:
C:\Program Files\InterBase Corp\InterClient\interclient.jar

Find the JAR file and append its location to your system CLASSPATH environment
variable on the client host where you run Java applications.

Different versions of InterClient are available.

• InterClient version 1.50x works only with JDK 1.1x.
• InterClient version 1.51x works only with JDK 1.2.x.

Whichever version of InterClient you use, you must use the matching version of
InterServer.

Configuration

You need to configure both the dods.conf and your <application>.conf to support
InterClient.

DODS configuration
You should apply the following configuration edits to dods.conf to make the
Standard_JDBC database class match InterBase features. This is necessary because
there is not yet a specific com.lutris.appserver.server.sql.interbase package in the
Enhydra sources.
Database.OidDbType.Standard_JDBC= "DECIMAL(9,0)"
Database.BitType.Standard_JDBC= "SMALLINT"
Database.TimeType.Standard_JDBC= "DATE"
Database.TimestampType.Standard_JDBC= "DATE"
Database.OnCascadeDelete.Standard_JDBC= true
Database.StringQuoteCharacter.Standard_JDBC= '
Database.StringMatch.Standard_JDBC= "LIKE"
Database.StringWildcard.Standard_JDBC= "%"

98 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

I n t e r B a s e

Application configuration
This section presents an example of an Interbase configuration, where <database_id> is
your database identifier.
#--
Database Manager Configuration
InterBase / InterClient
#--
DatabaseManager.Databases[] = "<database_id>"
DatabaseManager.DefaultDatabase = "<database_id>"
DatabaseManager.Debug = "false"
DatabaseManager.DB.<database_id>.ClassType = "Standard"
DatabaseManager.DB.<database_id>.JdbcDriver = "interbase.interclient.Driver"
DatabaseManager.DB.<database_id>.Connection.Url =

"jdbc:interbase://loopback/<path_to_database>"
DatabaseManager.DB.<database_id>.Connection.User = "sysdba"
DatabaseManager.DB.<database_id>.Connection.Password = "masterkey"

Configuration notes

The JDBC driver class is interbase.interclient.Driver.

Server name
The general URL format for InterClient JDBC connections is as follows:
jdbc:interbase://servername/<path_to_database>

where <path_to_database> is the full path to the database file, including the name of the
database (for example, /usr/local/data/inventory.gdb).

The servername is the hostname or IP address of the server running InterServer, the
server-side daemon that accepts JDBC connection requests. If your Enhydra
application runs on the same host where InterServer runs, you can use the special
servername loopback.

Pathnames
The <path_to_database> is an absolute path to the InterBase database file on the server
where the InterBase RDBMS server runs. InterBase does not have abstract handles to
databases, like some database products do (for example, Oracle SIDs or BDE aliases).
You must specify the real path to the database. You cannot use mapped drives or
NFS filesystems in this path.

Notice the literal slash character (/) following the server name. If the absolute path
starts with a slash character (/), then you should have a pair of slash characters (//)
together. For example:
jdbc:interbase://servername//usr/local/data/inventory.gdb

If the server is a Windows host, the path starts with a drive letter identifier:
jdbc:interbase://servername/C:/data/inventory.gdb

If InterServer runs on a different host than the InterBase RDBMS server, you must
specify this host in the path to database, with the following syntax:
jdbc:interbase://<interserver_host>/<interbase_host>:<path_to_database>

A p p e n d i x A , D a t a b a s e c o n f i g u r a t i o n s 99

I n t e r B a s e

Tip Slash (/) and backslash (\) characters within path names are interchangeable to
InterBase; the InterBase daemon translates these characters as needed to match the
convention on the server platform. It is easier to use slashes in code, however,
because escape sequences are required to represent backslashes in code.

Ports
InterBase does not take a port number argument in connection strings. InterClient
and InterServer always communicate using the TCP/IP service named interserver,
which defaults to port 3060. InterServer and InterBase always communicate using the
TCP/IP service named gds_db , which defaults to port 3050. These services and port
numbers are registered with IANA.

Username and password
The username sysdba and its default password masterkey are used in the example
configuration above, but for security reasons it is recommended that you: (a) change
the default sysdba password on your InterBase server, and (b) create a non-superuser
login in the InterBase password database, and use that login for general database
access.

100 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

A p p e n d i x B , M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 101

BAppendix
Multiserver Administration
Console Appendix B

The Enhydra Multiserver Administration Console, also called the Admin Console, is
a built-in component of the Multiserver itself. The Multiserver is a servlet runner that
runs Enhydra applications, Java servlets, and JavaServer Pages (JSPs). The
Multiserver can accept direct HTTP requests or requests forwarded from a Web
server by Enhydra Director. It has controls that allow you to add, remove, start, stop,
configure, and monitor your applications.

An Enhydra Multiserver installation typically consists of a directory containing
applications, a configuration file called multiserver.conf, and a script to start the
Multiserver. The Admin Console, which is actually just another Enhydra application
running on the Multiserver, gives you access to the server and allows you to set
properties defined in multiserver.conf.

For additional information, see Chapter 3, “Using the Multiserver
Administration Console,” of the Developer’s Guide.

Launching the Admin Console
The Admin Console is an Enhydra application that allows you to add, remove, and
configure applications to run with Enhydra.

Starting the Admin Console

To launch the Admin Console, follow these steps:

1 Type the following command at the command prompt to start the Multiserver:
<enhydra_root>/bin/multiserver

where enhyra_root is the root of your Enhydra installation. Invoking the
multiserver command without giving it a multiserver.conf as an argument brings
up the server in the default installation.

Note If the Admin Console does not start, the path environment variable is not set
correctly. The Lutris Enhydra installation instructions provide information about
setting your path environment variable. The installation instructions are available
in HTML format only on the Lutris Enhydra CD (refer to the top-level index.html)

102 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

A d m i n C o n s o l e d i s p l a y

or the Lutris Documentation home page:
http://www.lutris.com/documentation/index.html.

2 In your browser, display the console by entering this URL:
http://localhost:8001/

3 The console displays a password dialog box, as shown in Figure B.1. To get
started, enter the default user name, admin, and password, enhydra. See Chapter 3,
“Using the Multiserver Administration Console,” of the Developer’s Guide for
information on changing these settings.

The Admin Console appears in your Web browser as shown in Figure B.1,
“Admin Console display.”

Figure B.1 Admin Console display

Admin Console display
As shown in Figure B.1, “Admin Console display,” the Admin Console is divided
into two frames:

• The control frame on the left contains the console buttons and the Applications list
box (or window).

The Applications window contains a list of all the applications, servlets, and Web
archives (WARs) available in the Enhydra Multiserver. The console buttons below
the Applications window initiate operations on the selected application.

Control Frame Content Frame

Applications
list box

Admin
Console
buttons

A p p e n d i x B , M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 103

A d m i n C o n s o l e d i s p l a y

• The content frame on the right displays information about the application that is
currently selected in the Applications window. Some Admin Console functions
are accessed from the content frame to display information or to request input.

Note There are two kinds of Web applications:

• Enhydra super-servlet applications, created with Enhydra development tools
• Servlet applications, otherwise known as WAR files (see “Creating a WAR file” on

page 112)

Control frame

As shown in Figure B.1, “Admin Console display,” the control frame has two
components, an Applications window and the console buttons. Both components are
described in the following sections.

Applications window
The Applications window contains a list of all applications currently available in the
Enhydra Multiserver. You will see three sample applications that are initially
available:

• Welcome application
• Javadoc servlet
• WarExample Web archive.

Admin Console buttons
Table B.1 describes the function of each button in the control frame (see Figure B.1 on
page 102).

Table B.1 Admin Console buttons

Button Description

Start Starts the application currently selected in the Applications window.
Unavailable when the selected application is already running.

Stop Stops the application that is selected in the Applications window.
If the application has active users, you are prompted to verify that you
want the application stopped.

Add Adds an application to the Enhydra Multiserver.
Delete Removes the selected application from the Enhydra Multiserver.
Modify Modifies the configurable attributes of the selected application.
Debug Invokes the debugging utility for the selected application.

When you click this button, the debugging control panel displays.
Save State Saves the state of the Enhydra Multiserver.
Multiserver Stop Stops the Enhydra Multiserver.

104 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

V i e w i n g s t a t u s i n f o r m a t i o n

Content frame

As shown in Figure B.1, the content frame displays information relevant to the
current activity of the Multiserver, typically showing Status, Modify, or Debug
windows with their various tab sections. The information you see in these screens
varies with the type of application (Enhydra application, servlet, or Web archive),
and with the specifics of the current task.

Viewing status information
To display status information about an application, select its name in the
Applications list box (See Figure B.1 on page 102). The Status window appears in the
content frame, containing an Applications tab and a Connections tab. Figure B.2
shows a portion of the Status window for the sample Welcome application.

Note The elements of the screen will be somewhat different for a servlet or WAR.

The Application tab contains information about the application including its
CLASSPATH, session manager status, database manager status, and traffic statistics.

Figure B.2 Status display for an application

Viewing connections status information
Click the Connections tab to display connection status information for the
application. Connections represent channels for requests coming into the application.
For example, an application could be receiving direct HTTP requests on port 8000
and requests coming from a Web server via an Enhydra Director connection on port
8020. Figure B.3 shows an example of the connection status display for an application
receiving direct HTTP requests.

A p p e n d i x B , M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 105

U s i n g t h e A d m i n C o n s o l e

Figure B.3 Connection status display for a running application

Using the Admin Console
This section describes how to use the Admin Console to work with your Enhydra
applications and servlets. This section provides information on:

• Adding an application
• Stopping an application
• Deleting an application
• Modifying the configuration of an application
• Debugging an application
• Saving the state of the Multiserver

Adding an application

This section describes how to add an Enhydra super-servlet application, a single
servlet, or a servlet application set up as a Web Archive (WAR) to the list of
applications running on the server.

Note A WAR is a collection of servlets bound together for convenient administration.
Using the Admin Console, you can add a WAR to the Multiserver in just a few steps.
For convenience, we recommend that you bundle your servlets into a WAR and add
them all in one process—see “Adding a servlet application configured as a WAR” on
page 107.

Adding an Enhydra super-servlet application
Follow these steps to add an Enhydra application to the Multiserver:

1 Copy the application’s configuration file from the application’s root directory to
/<enhydra_root>/apps/. For example:
cp simpleApp.conf /usr/local/lutris-enhydra3.5b1/apps/

2 In the new simpleApp.conf file, locate the server.Classpath variable. Comment out
the first line, and uncomment the second line. Set the server.Classpath variable
equal to the new absolute CLASSPATH.
#server.Classpath[] = ../classes
Server.Classpath[] = "/enhydra/myapps/simpleApp/output/archive/simpleApp.jar"

Then save and close the configuration file.

106 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

U s i n g t h e A d m i n C o n s o l e

3 Click the Add button to display the Add New Application/Servlet dialog box, and
select the Application radio button if it’s not already selected.

Figure B.4 Add New Application/Servlet dialog box

4 Select the name of your application from the pull-down list.

An application’s name only appears in the list if its configuration file is in the
<enhydra_root>/apps directory, and if it has not already been added to the
Multiserver.

Optionally, enter a description.

5 Click OK to add your application to the Multiserver.

Adding a single servlet
This section describes how to use the Admin Console to add a single servlet to the
Multiserver.

Note We recommend that you set up your servlet application as a WAR file. The following
instructions, however, explain how to add a servlet not set up as a WAR file.

1 Click the Add button to display the Add New Application/Servlet dialog box, and
select the Servlet radio button.

Figure B.5 Add New Servlet dialog box

A p p e n d i x B , M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 107

U s i n g t h e A d m i n C o n s o l e

2 In the fields provided, enter:

• Name of the servlet
• Name of the class to instantiate for the servlet
• Any additional classpaths required for the servlet
• Root of the servlet’s file system on disk
• Any initial arguments for the servlet (optional)
• Description of the servlet (optional)

3 Click OK to add your application to the Multiserver.

Adding a servlet application configured as a WAR
This section describes how to use the Admin Console to add a WAR file to the
Multiserver. For information on creating a WAR, see “Creating a WAR file” on
page 112.

1 Click the Add button to display the Add New Application/Servlet dialog box, and
select the WAR radio button.

Figure B.6 Add New WAR dialog box

2 In the fields provided, enter:

• Name of the archive, not necessarily the file name.

• Doc Root—path to the root directory of the Web archive after it’s unzipped.

• Session Timeout—period of time, in seconds, for which the session may remain
idle before timing out.

• War Expanded—leave selected; all WARs must be expanded in this release.

• War Validated—leave selected; see Tomcat documentation for details.

• Invoker Enabled—select if you want to use /servlets/* syntax.

• WarDir Persistent—select if you want to save the work directory after the
termination of the current Multiserver session. The work directory is where the
Multiserver saves compiled JSPs. If you stop the Multiserver with Ctrl-C, you
may want to manually remove the work directory before restarting the server
to avoid reuse of previously compiled JSPs.

108 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

U s i n g t h e A d m i n C o n s o l e

• Description—plain English description of this archive.

3 Click OK to finish adding the WAR to the Multiserver.

Specifying a connection method
Once you have added your application, you must establish a connection method for
the item you’ve just added. To do that, follow these steps:

1 With the application selected in the Applications list box, click the Connections tab
in the content frame.

Figure B.7 Live connection in the Connections tab

2 Click Create in the Connections tab section to display the Add New Connection
dialog box.

Figure B.8 Add New Connection dialog box

3 For Connection Method, choose

• HTTP for a standard Web connection, typically in a development environment.

• HTTPS for a secure Web connection, also in a development environment. This
option is only available if you have configured your Enhydra installation with
Sun's Java Secure Socket Extension Kit. For more information, see Appendix A,
“Using SSL with Enhydra” of the Developer’s Guide.

• Enhydra Director for connection via a Web server. See Chapter 9, “Using
Enhydra Director,” of the Developer’s Guide for further information.

4 Enter a URL Prefix to define the portion of the URL that precedes the application.
For example, the demonstration uses an URL prefix of /examples, making the full
URL to the application http://localhost/examples.

A p p e n d i x B , M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 109

U s i n g t h e A d m i n C o n s o l e

5 For Bind Address, enter an IP address if you want to bind to only one of the
available IP addresses on a a given machine. If no IP address is specified, the
server binds the given port for all IP addresses on the machine.

6 For Port Number enter an unused port number. Note that you must be root to
bind to ports numbered below 1024 on UNIX systems. You may want to check that
a given port is not already in use with the UNIX command netstat. The highest
valid port number is 65535.

7 If your connection method is EnhydraDirector, three new configuration options are
available: Session Affinity, Authentication Key, and HTTP Server URL. Session
Affinity specifies whether Director will attempt to preserve session affinity in your
application. Authentication Key, which specifies the password for the application
if it was configured to use authentication in enhydra_director.conf, and HTTP
Server URL, which specifies the URL of the application as set in
enhydra_director.conf, are optional.

8 Click OK to return to the Status window.

9 To start the application, make sure it is selected in the Applications window, and
click the Start button.

10 Click Save State to add the item permanently to the Multiserver. This overwrites
the Multiserver’s configuration file, multiserver.conf.

Stopping an application

To modify or delete an application, you must first stop it. To do so, select the
application’s name in the Applications list box, and click the Stop button.

In some situations, such as when users are still connected, you will be prompted to
confirm your decision.

Deleting an application

When you remove an application from the Multiserver, you are not deleting the
application or its configuration file from your computer. You are simply removing it
from the Multiserver’s configuration file.

Follow these steps to delete an application from the Multiserver:

1 Select the application in the Applications window.

2 Click the Stop button to stop the application.

3 Click the Delete button to delete it from the current session of the Multiserver.

4 Click the Save State button to overwrite the Multiserver configuration file and
make the change permanent.

110 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

U s i n g t h e A d m i n C o n s o l e

Modifying the configuration of an application

To modify an application, you must first stop it by using the Stop button. You can
then edit parameters for the application. In the case of an Enhydra application, you
can edit the application’s configuration file using the Admin Console.

Use the following steps to modify the configuration of an application in Multiserver:

1 Select the application in the Applications window.

2 Click the Modify button.

The Content frame displays the Modify window, as shown in Figure B.9.

Figure B.9 Modify Configuration window

The Modify Configuration window features tabs that you can use to modify the
application or servlet. If you are modifying an application, you can choose from
among four tabs. Use the:

• Application tab to add additional CLASSPATHs for the application or servlet
• Sessions tab to modify Session Manager parameters
• Database tab to modify the database connection.
• Advanced tab to modify the application’s default URL.

If you are modifying a servlet, there is only one tab—the Servlet tab. You can use the
Servlet tab to modify the configuration options for the servlet, which are the same
options that you specify when adding the servlet.

For more information about the available configuration parameters, see Chapter 3,
“Using the Multiserver Administration Console,” of the Developer’s Guide.

Debugging an application

The debugging tool that comes with the Enhydra Multiserver is not a debugger in the
classic sense of allowing you set breakpoints and step through your code. It is
actually a traffic “snooper” that lets you see the requests going into your application
and the responses being sent back. This capability can be very helpful for debugging
HTTP-related issues when it is not always clear what is in the request coming from
the client.

A p p e n d i x B , M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 111

U s i n g t h e A d m i n C o n s o l e

Use the following steps to debug an application running in the Multiserver:

1 Select the desired application in the Applications window.

2 Click the Debug button to display the debugging control panel, as shown in Figure
B.10

Figure B.10 Debugging control panel

As shown in Figure B.10, the scrolling area in the window shows the active event
list. You can use the debugging buttons as follows:

• Click the Pause button to pause the debugging function, which stops the
accumulating of events in the scroll list.

• Click the Resume button to resume the debugging function.

• Click the Clear button to clear the list of events.

• Click the Finish button to halt debugging and close the popup window.

3 Make three to five requests to your application using a browser. The active event
list in the scrolling lower portion of the debugger window will list the requests as
they come in. The method name is captured for each request.

4 Click the name of the response type—GET in the above example—to display the
Debug window in the content frame, with its tab sections of Request, Trace,
Sessions, and Response. Use this information as needed in monitoring, debugging,
or modifying your application.

Saving the state of the Multiserver

When you add or delete applications or servlets with the Console, you are changing
the current configuration of the Multiserver. If you want the changes to be retained,
you must save the configuration.

Scrolling area

Debugging buttons

112 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

C r e a t i n g a W A R f i l e

Use the following steps to write the current configuration to the Multiserver
configuration file:

1 Click the Save State button.
2 Click OK in the Confirmation dialog box.

Stopping and restarting the Multiserver

Stopping the Multiserver terminates all running applications as well as the Admin
Console itself.

• Click the Multiserver Stop button in the control frame, then click OK to confirm.

• To restart the Multiserver, return to the Enhydra shell and proceed as directed in
“Launching the Admin Console” on page 101.

Creating a WAR file
This section describes how to set up the directory structure of a WAR file to deploy
Java servlets, JSPs, and static content. Under the Servlet 2.2 API, JSPs and servlets are
assembled into a directory structure referred to as a Web application archive, or
WAR. When the WAR is finished, you can compress it into a file with a .war
extension. Once set up, it can be moved from server to server without further
configuration. A good way to understand how to construct a WAR is to look at a
simple example.

A simple WAR example

Suppose you want to deploy a JSP called Hello.jsp and a servlet called Hello.java. Set
up the following directory structure:
/tmp/webApp

myJspDir
Hello.jsp

WEB-INF
classes

Hello.class
web.xml

The directory structure begins with a document root directory that has an arbitrary
name, in this case, webApp. The JSP page can be placed either in the document root
directory or in any of its subdirectories. In this example, it is placed in an arbitrary
subdirectory named myJspDir. WEB-INF, the one required subdirectory, contains the
configuration file web.xml and a directory called classes which in turn contains the
compiled servlet classes. If you are only using JSPs, you do not need a classes
subdirectory. The Multiserver adds the classes directory to its CLASSPATH, so the server
automatically finds servlets placed in that directory.

The last required file, web.xml, contains deployment information like name mappings,
parameters, and default file mappings. The web.xml file in this simple example
contains the following essentially empty file:

A p p e n d i x B , M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 113

C r e a t i n g a W A R f i l e

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<!-- configuration options would go here -->

</web-app>

Once you register your Web application with the Multiserver, you access the above
pages with the following URLs:

• http://<your_host>/myPrefix/myJspDir/Hello.jsp
• http://<your_host>/myPrefix/servlet/Hello

The http://<your_host> section of the URL represents your host machine. When you
configure the Multiserver to run the servlet, you tell it that the path to the document
root is /tmp/webApp, and the URL prefix is some arbitrary string like /myPrefix.
Therefore, every request with the prefix myPrefix is forwarded to the Multiserver
which in turn runs your application.

The remainder of the URL for the JSP page corresponds to the directory structure.
You can put HTML files in the same directory and request them in a similar manner.
Calls to the servlet require the reserved word “servlet” in the URL. When the servlet
server sees it, it knows to look for the corresponding class in the classes subdirectory
of the WEB-INF directory.

For more information

For a somewhat more complex example, see the WarExample application that ships with
Enhydra. Beyond that, Sun’s Servlet 2.2 specification provides more information
about configuring a WAR, containing both instructions and examples. You can
download it from http://java.sun.com/products/servlet/download.html.

For a more in-depth discussion on using the Admin Console with WAR files, see
Chapter 3, “Using the Multiserver Administration Console” in the Developer’s Guide.

114 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

I n d e x 115

Index

Symbols
sign in code 85
\ characters in code 85

A
Access databases 95
accessing data 56

dynamically 47
in database tables 58

accessing DiscRack 72
Add New Application/Servlet dialog box 106, 107
adding

business objects 49
data objects 56, 61
dates 30
links 46
new pages to applications 44
presentation objects 44, 80

Admin Console. See Multiserver Administration
Console

allocateConnection() method 56
allocating database connections 56
Apache servers 18
application architecture (Enhydra) 13
application configuration file 32, 33
application development tools 11
application files

generating 29
application flowchart 74
application framework 12, 17

described 19
application objects 14
application root directory 29
application server 11

See also Enhydra
application URLs 33
Application Wizard 24

creating applications with 27
overview 21, 30
running 27

applications 11
accessing database tables 58
adding pages 44
adding to Multiserver console 105
building 76, 85
configuring for JDBC 54
connecting to databases 51
counting user hits 37, 43

creating 21, 27, 58
designing 73, 74
developing 17, 24, 42, 72
installing 18
maintaining state 20
managing 19
optimizing 17
reconfiguring 110
removing dummy data from 83
removing from Multiserver 109
running 29, 32, 103
securing 20
support for large scale 7
testing 76
updating 18
viewing default URL 110
viewing information about 103

appwizard utility 21
archives (Enhydra.org mailing list) 7
arrays 47, 57
Attribute Editor dialog box 61
attribute panel (DODS) 59
attributes 23, 40

changing 103
displaying data object 59
removing 48

B
base classes 77
BasePO class 76, 77, 79

event handling with 81
bug reports 5
Build All command 63
building DiscRack 71
building Enhydra applications 27, 76, 85
builds, failing 64
business layer 17

DiscRack application 88
business logic 74
business objects 17, 88

adding 49
button events 80

C
cache 20
cascading style sheets 40
centering headings 45

116 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

changing
attributes 103
database connections 110
HTML pages at runtime 22

checkForUserLogin() method 78, 79
class loaders 18

CLASSPATH for 33
class option 41
classes 19

deriving for sample applications 77
DiscRack application 76
generating Java 22
package mapper for 24

classes111.zip 91
CLASSPATH 33

adding JDBC driver to 54
database connections and 91
setting 32, 40

cloneNode() method 48
columns 59
command-line tools 21
comment symbols 85
Common Gateway Interface (CGI) 18
compiler 22

running XML 37, 40
compiling 24
configuration files 32

application 32, 33
deployment and 76
editing 32
Multiserver configuration 32
multiserver.conf 32
multiserverAdmin.conf 32
servlet.conf 32

configurations
Web archives 112, 113

configuring
Database Manager 55
databases 91-99
DiscRack 71
JDBC drivers 54

connection strings 55
connections 18, 21, 51

allocating 56
changing 110
displaying status 104
establishing JDBC 52
setting JDBC driver for database 91
setting parameters for 55
support for ODBC 95

Connections tab (Multiserver) 104
contacting

Lutris Documentation 4
Lutris Technical Support 5

Lutris Training 6
Content Frame (Multiserver)

described 104
continuation characters 85
Control Frame (Multiserver)

buttons described 103
conventions

documentation 1
for Enhydra root directory 3
for screen shots 3
for URLs 3
UNIX pathnames 3

creating
applications 21, 27
business objects 49
data objects 56, 61
database applications 58
database tables 47, 51, 58
links 46
object models 60
presentation objects 44, 80

D
data 14

accessing 56
accessing dynamically 47
getting session 78
initializing for Session objects 14
removing dummy 83
replacing at runtime 40

data integrity 58
data layer 17

designing 74
DiscRack application 65, 89
example for creating 60

data layer classes 88
Data Object Design Studio. See DODS
Data Object Editor dialog box 61
data object models 59

creating 60
data objects 17, 23, 89

associating with database schema 58
creating 56, 61
getting 79

data sources 17, 96
database applications 58
database configurations 91-99

Access-specific 95
Informix-specific 92
InstantDB-specific 94
InterBase-specific 96
MS SQL Server-specific 95
MySQL-specific 93

I n d e x 117

Oracle-specific 92
PostgreSQL-specific 94
Sybase-specific 93

Database Manager 21
configuring 55

database schema 58
designing 74
generated for DiscRack 65

databases 23
allocating connections for 56
changing connections 110
configuring 91-99
connecting to 21, 51, 55, 91
creating tables for 47, 51, 58
mapping tables to 58
populating tables for 47

dates
adding 30

debugging 19, 110
debugging tool (Multiserver) 103, 110
DefaultUrl setting 33
delete-class option 83
deleting

applications in Multiserver console 109
attributes 48
dummy data 83

deployment process
defined 73
described 76

design and storyboard process 73
designing applications 73, 74
designing HTML pages 22
developing applications 17, 24, 42, 72
development and testing process

defined 73
described 76

development tools 11
Director 18
directories

needed for deployment 76
relative paths to 82
setting up for Web archives 112

directory mapper 24
Disc class 88
disc package 77
discardMe option 83, 86
DiscCatalog.java 86
DiscCatalogScript.html 84
DiscFactory class 89
discMgmt package 76
DiscRack application 25

business layer 88
data layer 60, 65, 89
deployment process for 76

development and testing process for 76
event handling in 80, 81
functional specification for 74
HTML pages for 82
logging in 78, 79
overview 76
populating 85
populating forms for 87
presentation layer 77
removing dummy data 83
replacing JavaScript 84
replacing the user interface 84
requirements definition for 73
running 68, 72
schema generated for 65
setting up 71
storyboard for 75, 82
URL mapping 83
welcome page 72

DiscRack class 76
DiscRack directory 71
DiscRack login page 74
discRack package 76
discRack.mdb 71
DiscRackBusinessException class 76
DiscRackException class 76
DiscRackPresentationException class 76
DiscRackSessionData class 76, 78
displaying

administration console 33, 102
connection status 104
data object models 59
default URLs 110
DiscRack storyboard 74
package hierarchies 59

DIV tag 40
Document Object Model

defined 22
displaying 41
overview 39

Document Object Model classes
building 25
mapping packages to 24

documentation 4
conventions 1
updates and release notes 4

documentation set 3
DODS 17

accessing data-specific objects 67
main window described 59
overview 22, 58
running generated SQL scripts 66
starting 58

DOM. See Document Object Model

118 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

.doml files 63
downloading

Enhydra open-source software 8
drivers 91
dump option 41
duplicate IDs 48
dynamic recompilation 22

E
edit forms 87
Edit presentation object 80
Edit.html 87
Edit.java 87
editing configuration files 32
Enhydra

accessing source code for 7
detailed installation instructions (on CD) 9
documentation set 3
downloading open-source software 8
dynamic recompilation feature 22
HTML installation instructions 9
mailing lists 7
new features and enhancements 12
online documentation 4
online installation instructions (HTML file) 9
overview 11
prerequisites for using 1
product registration 5
reporting bugs 5
root directory conventions 3
runtime component 17
sample project for 25
support for large scale applications 7
technical support 5
training courses 6
website (Enhydra.org) 6
working groups (Enhydra.org) 7

Enhydra applications
adding pages 44
adding to Multiserver console 105
architecture described 13
building 76, 85
configuring for JDBC 54
connecting to databases 51
counting user hits 37, 43
creating 21
defined 11
designing 73, 74
developing 17, 24, 42, 72
framework described 19
installing 18
maintaining state 20
managing 19

optimizing 17
reconfiguring 110
removing dummy data from 83
removing from Multiserver 109
required objects 17
running 29, 32, 103
securing 20
setting default URL for 33
testing 76
tutorial for building 27
updating 18
viewing default URL 110
viewing information about 103

Enhydra CD
detailed installation instructions 9

Enhydra Database Manager 21
Enhydra Director 18
Enhydra Presentation Manager 20
Enhydra Session Manager 20
Enhydra tools 12, 21
enhydra.jar 40
Enhydra.org 6

community documentation 8
free online installation instructions 9
mailing list archives 7
mailing lists 7
working groups 7

error messages (DiscRack) 78
ErrorHandler class 76
events 80, 81
executeQuery() method 56
executing generated SQL scripts 66
executing queries 56
Extensible Markup Language Compiler 24

command-line syntax for 40
overview 22
running 37, 40

eXtensible Markup Language. See XML

F
factory 88
failover 18
files 15, 23

generating application 29
needed for deployment 76

findPerson() method 89
flowchart 74
forms 87
functional specification

defined 73
described 74

functions. See methods

I n d e x 119

G
generating

application files 29
Java classes 22
SQL code 58

get() method 42
getElementTime() method 31
getParentNode() method 48
getSessionKey() method 43
graphical user interfaces 74, 84
graphics files 76, 82

including in applications 85

H
handleDefault() method 87
handleEvent() method 78, 81
headings 45
hidden form fields 80
hit counters 37

accessing information for 43
hitCount property 38
hits property 43
HTML

online Enhydra installation instructions 9
HTML forms 87

manipulating content at runtime 39
HTML pages 15, 82

adding 44
adding dates 30
adding links 46
centering headings 45
changing at runtime 22
designing 22
timestamping 31

HTML tables 47, 48
HTML tags

overview 30
removing attributes 48

HTML templates 22
HTML_CLASSES variable 46
HTML_DIR directive 82
HttpPresentation interface 15
httpPresentation package 20
HttpPresentationManager class 20
hyperlinks 83

adding to HTML pages 46

I
id attributes 48
IDE sample project 25
idle 20

images 76, 82
including in applications 85

Informix databases 21
configuring 92

initializing Session objects 14
initSessionData() method 79
inline tags 40
installation

online instructions (HTML file) 9
installing Enhydra applications 18
instance variables 14
InstantDB databases 21

configuring 94
InterBase databases 21

configuring 96
InterClient JDBC driver 97

InterClient (InterBase JDBC driver) 97
interfaces 74, 84
invalid user sessions 20

J
Java class generation 22
Java Database Connectivity. See JDBC
Java Servlet API 18
Java source files 41
Java2 Enterprise Edition (J2EE) 18
JavaScript 84
JBuilder

developing applications with 24
JDBC 21

JTurbo driver 95
JDBC classes 54
JDBC compatibility 51
JDBC configurations 54, 91
JDBC connections 52
JDBC-ODBC bridge 95
JDeveloper

developing applications with 24
JServ 18
JTurbo JDBC driver 95

K
keep option 41
Kelp tools 22, 24

L
large scale applications 7
launching

Multiserver Administration Console 101
lib directory 76, 91

120 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

libraries 76
Lifetime setting 33
links 83

adding to HTML pages 46
list boxes 85
load balancing 18
load distribution 18
loading SQL scripts 66
locating sessions 20
log files 32
loggedInUserRequired() method 78, 79
logical database (defined) 21
login attributes 61
Login presentation object 80
logins 20, 78

checking for valid 79
DiscRack application 78, 79

Lutris documentation 4
Lutris technical support 5

M
mailing lists (Enhydra.org) 7
mailing lists Enhydra.org)

archives 7
maintaining storyboards 82, 84
maintaining user sessions 43
maintenance 17
make 32
make clean command 85
make command 29
make files 24, 29, 65

usage example 82
managing applications 19
managing presentation objects 20
mapping

packages to directories 24
tables to databases 58
URLs to presentation objects 20, 83

mapping table 24
mapping tool 58
MaxIdleTime setting 33
methods 14, 40
Microsoft Access databases 95
Microsoft servers 18
Microsoft SQL Server databases 21, 95
Modify Configuration window 110
modifying

attributes 103
database connections 110

mouse events 80
MS SQL Server databases 95
Multiserver

load distribution with Director 18

overview 17
stopping 46

Multiserver Administration Console 19
adding/deleting applications 105, 109
button descriptions 103
configuration file 32
debugging with 110
display described 103, 104
launching 101
overview 101
reconfiguring applications 110
saving state 111
starting 101
stopping 103

multiserver command 101
Multiserver configuration file 32
multiserver.conf 32
multiserverAdmin.conf 32
MySQL databases

configuring 93

N
Netscape servers 18
new features 12
newapp. See appwizard

O
object models 59

creating 60
object panel (DODS) 59
objects 17, 88
ODBC connections 95
online

documentation 3, 4
installation instructions (HTML file) 9
registration 5

open source databases 93, 94
options 25
options.xmlc 83
Oracle databases 21

configuring 92
Oracle JDBC driver 91
output directory 32, 76
owner attribute 63

P
package names 60
package panel (DODS) 59
packages

DiscRack application 76

I n d e x 121

mapping 24
setting up hierarchy for 60
viewing hierarchy 59

parameters 78
passwords 20

Multiserver 34, 102
pathnames

UNIX 3
paths 33
persistent data sources 17
Person class 88
person package 76
PersonFactory class 89
personMgmt package 76
.po files 15
populating

forms 87
list boxes 85
tables 47

ports 32
PostgreSQL databases 21

configuring 94
presentation layer 17

DiscRack application 77
presentation logic 74
Presentation Manager 20
presentation objects 15

accessing same session 78
creating 44, 80
deriving class names for 33
managing 20
mapping URLs to 83

PresentationPrefix setting 33
product registration 5
programming tutorial 42
properties 14

displaying data object 59
property pages 25

Q
queries 21, 23, 89

generating statements for SQL 58
loading SQL scripts for 66
running 56

query() method 56

R
rebuilding applications 85
reconfiguring applications/servlets 110
reference attributes 23
reflect package 81
reflection 81

registering Enhydra 5
relative paths 82
release notes 4
removeAttribute() method 48
removeChild() method 48
removing

applications in Multiserver console 109
attributes 48
dummy data 83

replacing
JavaScript 84
URLs at runtime 84
user interfaces 84

reporting bugs 5
requestPreprocessor() method 14
requests 15, 18, 20

identifying user sessions for 42
requirements definition

defined 73
described 73

resources 85
resources directory 74, 82
resources_finished directory 84
response objects 15
result sets 56
round-robin distribution 18
run() method 15, 20

usage example for 77
running

applications 29, 32, 103
DiscRack 72
generated SQL scripts 66
Multiserver Administration Console 101
queries 56
sample applications 68

runtime component (Enhydra) 17

S
sample project 25

running 68
saving Multiserver state 111
scalability 18
schema. See database schema
screen shot conventions 3
security 20
SELECT tag 85
server class 19
servers 11, 17, 18

establishing connections to 52
Servlet API 18
servlet runners 18
servlet.conf 32

122 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

servlets
adding to Multiserver console 105
defined 17
presentation objects vs. 15
reconfiguring 110
removing from Multiserver 109
viewing information about 103

session affinity 18
session data 78
session idle time 33
session IDs 20
session keys 42

getting 43
Session Manager 20

changing parameters for 110
Session objects 20

initializing data structure 14
session package 20
SessionData class 42
sessions

defined 20
getting data objects for 79
getting data specific to 78
locating 20
maintaining 43
maintaining state 42
storing information for 78
timing out 20

set() method 42
setTextHitCount() 39
setting connection parameters 55
shell scripts 24
simpleApp directory 31
SimpleDiscQuery.java 56
site map 74
Sonny and Cher 83
source code, accessing 8
source directory 29
source files 23, 41
SPAN tag 30, 40
sql package 21
SQL queries 23, 89

generating statements for 58
running 56

SQL scripts 66
StandardApplication class 14
StandardDatabaseManager class 21
StandardSessionManager class 20
start script 32, 76
starting

Application Wizard 27
Data Object Design Studio 58
Enhydra applications 29, 32, 103
Multiserver Administration Console 101

startup functions 14
startup() method 14
state 20, 21

maintaining session 42
saving Multiserver 111

stdrules.mk 46
stopping applications in Multiserver 103
stopping Multiserver 46, 103
storyboards 73

maintaining 82, 84
Structured Delivery Process (SDP) 73
stylesheets 76

example 84
including in applications 85

submitting bug reports 5
subscribing to Enhydra mailing lists 7
support 5
Sybase databases 21

configuring 93
system CLASSPATH 91

T
tables 23

accessing 58
creating 47, 51, 58
getting document object references for 48
mapping to databases 58
populating 47

TCP ports 32
technical support 5
template directory 29
templates 22
testing applications 76
text, replacing at runtime 40
timestamps 31
timing out 20
tools 12, 21
training courses 6
transaction patch 93
transactions 21, 58
tutorial 27
typographical conventions 1

U
Uniform Resource Locators. See URLs
UNIX pathnames 3
updating applications 18
URL

conventions 3
urlmapping option 83
URLs 18

displaying default 110

I n d e x 123

mapping to presentation objects 20, 83
obtaining paths from 33
replacing at runtime 84
setting default application 33

user interface 74, 84
user names (Multiserver) 34, 102
user sessions

See also sessions
accessing 42
viewing length of 33

users 20
getting number of hits for 37, 43

V
valid login scripts 79
Vectors 56
viewing

administration console 33, 102
connection status 104
data object models 59
default URLs 110
DiscRack storyboard 74
package hierarchies 59

W
WAR. See Web archives
Web applications 11, 19

adding pages 44
building 76, 85
counting user hits 37, 43
creating 21, 27
designing 73, 74
developing 17, 24, 42, 72

installing 18
maintaining state 20
managing 19
optimizing 17
reconfiguring 110
removing from Multiserver 109
running 29, 32, 103
securing 20
setting default URL for 33
testing 76
updating 18
viewing default URL 110
viewing information about 103

Web archives
configuring 112, 113

Web browsers 19
Web servers 17, 18
website (Enhydra) 6
weighted round-robin distribution 18
working groups

Enhydra.org 7
World Wide Web. See Web
wrapper classes 88

X
XML compiler

command-line syntax for 40
overview 22
running 37, 40

XML Compiler wizard 24
XML documents 22
XMLC option files 25
XMLC property pages 25

124 G e t t i n g S t a r t e d w i t h L u t r i s E n h y d r a

	Getting Started with Lutris�Enhydra
	Contents
	1: Introduction
	What you should already know
	Conventions used in this book
	Lutris�Enhydra document set
	Getting Started
	Developer’s Guide
	Wireless Application Developer’s Guide

	Lutris documentation updates available online
	Contacting Lutris Technical�Publications
	Where to find support and training for Lutris�Enhydra
	Lutris support
	Registering your product online
	Contacting Lutris Technical�Support
	Submitting bug reports to Lutris Technical�Support

	Lutris training
	Available training courses
	Contacting Lutris Education�Services

	Additional Enhydra information available on Enhydra.org
	Enhydra.org mailing lists
	Mailing list archives

	Enhydra.org working groups
	Documentation working group

	Enhydra.org community documentation
	Open-source software downloads

	Acknowledgments

	2: Installation
	Installation instructions also freely available online
	Lutris Enhydra installation instructions freely available to Enhydra.org users
	Why are installation instructions available in HTML format only?

	3: Overview
	What is Enhydra?
	What’s new in Lutris�Enhydra

	Anatomy of an Enhydra application
	Enhydra super-servlet applications
	Application objects
	Presentation objects

	Servlet applications
	Servlet versus super-servlet applications

	Application layers

	Multiserver runtime component
	Enhydra Director
	Multiserver Administration Console

	Enhydra application framework
	Presentation Manager
	Session Manager
	Database Manager

	Enhydra tools
	Enhydra Application Wizard
	Extensible Markup Language Compiler (XMLC)
	Dynamic recompilation

	Data Object Design Studio (DODS)
	Kelp tools
	Enhydra Application wizard
	XMLC Compiler wizard
	XMLC property pages
	Enhydra sample project

	4: Tutorial: Building Enhydra applications
	Creating your first application
	Building the application
	How it works
	Directories and files in SimpleApp
	Configuration files

	Launching the Admin Console
	Adding simpleApp to the Admin Console
	Specifying a connection method

	Starting and stopping an application

	Using XMLC
	Adding a hit counter
	Understanding the Document Object Model
	SPAN and DIV tags

	Using XMLC from the command line
	-dump option
	-class and -keep options

	Enhydra programming
	Maintaining session state
	Adding a new page to the application
	Populating a table
	Create the table in HTML
	Programmatically populate the table
	Rebuild and run the application

	Adding a business object

	Connecting the application to a database
	Creating a database table
	Establishing a JDBC connection
	Configuring the application to use JDBC

	Configuring the Database Manager
	Adding data access functionality

	Using DODS
	Running DODS
	Creating the data layer
	Defining the package hierarchy
	Defining data objects
	Generating the data layer code

	Loading the schema
	Running the DODS-generated scripts

	Using the DODS data objects
	Running the application

	5: DiscRack sample application
	Building and running DiscRack
	Process and preliminaries for developing applications
	DiscRack requirements definition
	DiscRack functional specification
	Design and storyboard
	Developing, testing, and deploying

	Overview of DiscRack
	Presentation layer
	Presentation base class
	Session data and log in
	initSessionData() method
	loggedInUserRequired() method
	checkForUserLogin() method

	Event handling
	Setting the event parameter
	handleEvent() method

	HTML pages
	Maintaining the storyboard
	URL mapping
	Removing dummy data
	Replacing JavaScript
	Replacing the user interface

	Populating a list box
	Populating a form

	Business layer
	Business objects
	Using data objects

	A: Database configurations
	Driver configuration
	Oracle
	Informix
	Sybase
	MySQL
	Patch
	Configuration

	PostgreSQL
	InstantDB
	Microsoft SQL Server
	JTurbo JDBC driver

	Microsoft Access
	InterBase
	InterClient
	Configuration
	DODS configuration
	Application configuration

	Configuration notes
	Server name
	Pathnames
	Ports
	Username and password

	B: Multiserver Administration Console
	Launching the Admin Console
	Starting the Admin Console

	Admin Console display
	Control frame
	Applications window
	Admin Console buttons

	Content frame

	Viewing status information
	Viewing connections status information

	Using the Admin Console
	Adding an application
	Adding an Enhydra super-servlet application
	Adding a single servlet
	Adding a servlet application configured as a WAR
	Specifying a connection method

	Stopping an application
	Deleting an application
	Modifying the configuration of an application
	Debugging an application
	Saving the state of the Multiserver
	Stopping and restarting the Multiserver

	Creating a WAR file
	A simple WAR example
	For more information

	Index

