
DocV1.wsrp

WSRP service

The Web Service for Remote Portals (WSRP) is a specification defined by the
OASIS group. It allows to query portlets hosted on a remote portlet container.
Due to the use of web service (WSDL/SOAP), the deployed portlets and the
client portal could be implemented in different language. Indeed, it is possible to
use a .Net portal to query portlets hosted on a J2EE portlet container.

The WSRP service is composed of two parts :

• The WSRP consumer : the web service client
• The WSRP producer : the web service server

To generate the Java files associated with the WSDL one we used the wsdl4j
package.

• WSRP producer

The producer API is not a Java one but a Web Services one. The WSRP protocol
lets you define 4 interfaces to be exposed as Web Services Port. Two of this
interfaces are mandatory while two are optional. We have decided, that our
implementation will have to support all of them.

It is intended that the implementation of this service will leverage the portlet
container one, and will therefore allow JSR 168 portlets to be reached by WSRP
consumers.

It is also intended that any implementation of that service will implement the
entire stack of optimization defined in the WSRP specifications.

Note that the WSRP protocol is like the JSR 168 one, it defines a 2 phases
process :

Protocol access Business logic Render Markup
WSRP performBlockingInteraction()getMarkup()
Portlet API processAction() render()

You can refer to the implementation documentation for that service to find more

eXo Wiki - DocV1 - wsrp

- 1 -

http://www.exoplatform.com/xwiki/bin/view/DocV1/wsrp


information about what tool were used. You will just find here a short
presentation of the 4 WSRP Ports.

• Service Description Operations : This interface allows the consumer to get
all the necessary information about a producer. Of course this contains
the portlet lists and all their meta-data.

ServiceDescription = getServiceDescription(RegistrationContext,
desiredLocales )

• Registration Operations : some producer, and our implementation is one
of those, need a registration from Consumers. Here are the three
methods defined by the interface :

RegistrationContext = register(RegistrationData);RegistrationState =
modifyRegistration(RegistrationContext, RegistrationData);ReturnAny =
deregister(RegistrationContext);

• Markup Operations : this is the interface that allows to access both the
portlet business logic and their generated markup. There are four
methods in that interface :

MarkupResponse = getMarkup(RegistrationContext, PortletContext,
RuntimeContext, UserContext, MarkupParams);BlockingInteractionResponse =
performBlockingInteraction(RegistrationContext, PortletContext,
RuntimeContext, UserContext, MarkupParams, InteractionParams);ReturnAny
= initCookie(RegistrationContext);ReturnAny = releaseSessions
(RegistrationContext, sessionIDs);

• Portlet Management Operations : this port introduces some advanced
features of the WSRP protocol like cloning a portlet. From the JSR 168
point of view it simply means to associate a new set of preferences to
that portlet but with the value of the cloned portlet. Here are the
methods

PortletDescriptionResponse = getPortletDescription(RegistrationContext,
PortletContext, UserContext, desiredLocales );PortletContext =
clonePortlet(RegistrationContext, PortletContext,
UserContext);DestroyPortletsResponse = destroyPortlets
(RegistrationContext, portletHandles);PortletContext =
setPortletProperties (RegistrationContext, PortletContext, UserContext,
PropertyList);PropertyList = getPortletProperties (RegistrationContext,
PortletContext, UserContext, names);PortletProperties DescriptionRespons
e = getPortletPropertyDescription(RegistrationContext, PortletContext,
UserContext, desiredLocales );

Of course the direct access to those interfaces is hidden to you by the eXo portal

eXo Wiki - DocV1 - wsrp

- 2 -



and the eXo platform has implemented a WSRP Consumer portlet which is a
JSR 168 portlet that acts as a proxy to any remote WSRP portlet. For more
information on that portlet, which uses the Consumer service, just have a look in
the portlets related documentation.

• WSRP consumer

The consumer service manages the set of available producers and the
information about them. It also abstract the real access to the WSRP layer. The
java API used by the eXo platform consumer was originally taken from the
WSRP4J project. Some improvements to that API have been made. Note that
the implementation has been completely re-writen and once again use of IoC has
been introduced.

This service is used by our Consumer JSR 168 portlet.

The main entry point is the ConsumerEnvironment class. As usual it can be
injected in any component or looked up with the service locator.

eXo Wiki - DocV1 - wsrp

- 3 -



This set of interfaces is just a convenient way to sort all the different producers
the consumer interacts with. That is why the ConumerEnvironment class is
mainly an access to several repositories (ProducerRegistry, UserRegistry,
PortletDriverRegistry...).

Once the consumer client (think of our JSR 168 portlet) has looked up the correct
PortletDriver object using the several registries, it can interact with the remote
WSRP portlet.

eXo Wiki - DocV1 - wsrp

- 4 -



Most of the WSRP ports are accessed using the PortletDriver. Only the
ProducerRegistry references (via the Producer object) the
getServiceDescription() port.

DocV1.wsrp (en)
CrÃ©ateur: XWiki.exo Creation Date: 2005/02/09 22:09
Dernier Auteur: XWiki.exo Last Modification Date: 2005/02/15 23:10
Copyright 2004 (c) Auteurs des pages

eXo Wiki - DocV1 - wsrp

- 5 -

http://www.exoplatform.com/xwiki/bin/view/DocV1/wsrp

