
DocV1.PortalRequestLifecycle

Portal request lifecycle

Let's describe how our Java Server Faces based portal works. This section gives
an overview of the eXo portal achitecture, how we use JSF and the way the
portal interacts with the portlet container. We focus on the request lifecycle which
goes through the filter phase, the reconstitute request tree phase, the decode
phase and finally, the render phase.

The eXo portal is composed of many portlet WARs and a master eXo portal
WAR (several in case of multi portal instances). The eXo portal module is
responsible for checking the security, decoding the request, loading the user
configuration, building the jsf tree, and distpatching the request to the portlet
container. When all the portlets located in the requested page are rendered, the
portal returns an aggregated page to the client.

The lifecycle of the exoportal can be seen as :

eXo Wiki - DocV1 - PortalRequestLifecycle

- 1 -

http://www.exoplatform.com/xwiki/bin/view/DocV1/PortalRequestLifecycle

Note that the eXo portal does not use the entire JSF lifecycle, therefore some
phases are not showned in the diagram.

• Portal initialization

When the web server is started or the eXo web arvchive (WAR) is deployed, the
PortalContextListener (You can find the configuration of this listener in web.xml)
will catch the start event and run the checking code for eXo tables, the default
groups and the default users. If the anonymous and admin users are missing, the
listener will look up the organization service, to create the missing user.

• Portlet Initialization

When the webserver is started or a portlet war is dropped into the portlet
deployed directory, the PortletApplicationListener (You can find the configuration
of this listener in portlet.war/WEB-INF/web.xml or default-web.xml) will catch the
start event, it will lookup for the portlet container service and register the
application with the portlet container if a portlet.xml file is present.

• Request processing

After the server is started and that all the initialization has been done. The portal

eXo Wiki - DocV1 - PortalRequestLifecycle

- 2 -

is ready to receive the first request. There is a very simple rule to handle the
request : any dynamic request must go though the portal and be treated by the
filter , the jsf servlet controller and the portlet container. For a static resource
request, such as an image file, the request can be handled by the default servlet
of portal or the default servlet of the portlet; only depending on the context path
of the request.

• Filter phase. When a request is sent to the portal, it will be first handle by
either a PublicRequestFilter or a PrivateRequestFilter (you can find the
configuration of those 2 filters in exo/WEB-INF/web.xml) depending on
the url type. We currently define 2 types of url, public and private. The
public url has the form /portal/faces/public… and the private url has the
form /portal/faces/private… Both public and private paths you saw in 2
url are virtual paths and they are defined in the web.xml. The role of
filter is to check the Owner Context. If the owner context,
portal:ctx=user, does not match with the current user context or no user
context exists in the session, the filter will destroy the jsf tree in the
session, reload the user context according the request, and store the
user context in the session.

• Reconstitute JSF tree phase. After the filter phase, the request is forwarded
to the FacesServlet. The FacesServlet will get the Lifecycle instance
and will execute the faces lifecycle. One important phase in the faces
lifecycle is the process reconstitute part. It will check for a tree id in the
session - id associated with the request tree - and will reconstruct the
component tree if the two trees are not the same. With exo, you always
make the request to the same URL so the jsf tree is always cached in
session. The JSF tree is destroyed and reconstructed only when the
request user context does not match with the one in the session (done
in the filter phase). Note that the exo jsf tree is constructed based on the
owner-config.xml, owner-navigation.xml and owner-pages.xml
configuration file of the user, basically you will have a ui component tree
that reflects those xml files.

• JSF Decode phase. The next phase of the faces cycle is the decode
phase or apply request phase. In this phase, the JSF implementation
iterates over the components in the component tree and calls each
component's decode() method. That method extracts information from
the request and stores it in the component.

The UIPorlet decode() will do 3 main tasks :

• Check for the "change mode"Â€? event : if the event is detected
and the request component id matches the current UIPorlet
component id, it will raise an event and will delegate it to the
PortletActionListnenter class. The listener will reset the mode in the
UIPortlet Component.

• Check for the "change window"Â€? state event: if the event is
detected and that the request component id matches the current
UIPorlet component id, it will raise an event and will delegate it to

eXo Wiki - DocV1 - PortalRequestLifecycle

- 3 -

the PortletActionListnenter class. The listener will reset the window
state in the UIPortlet Component.

• Check for the portlet action type: According the portlet spec, we
have 2 types of action : one is the action type and the other one is
the render type. If the type is action , the processAction(..) method
of the portlet will be called and then the render(....) method is
called. If the type is render, only the render(..) method is called. It is
mandatory that the processAction(..) has to be called before any
render(..) method is called. The reason for this requirement is
because a portlet can process an action and send a message to
another portlet. Indeed, it would not make any sense if the
render(...) method of the other portlet has already been called.

Once again we can see how JSF technology fits very well with portlet technology,
by defining many process phase. This way, it will make sure that each
processAction(..) of each portlet will be called first and each render(..) method of
each portlet will be called in the render phase

• JSF Render phase. Finally the Render phase creates the html page by
calling the methods encodeBegin(..) encodeChildren(..) and
encodeEnd(..) of the root component. The parent UIComponent will
control the render phase of its children. With the eXo portal jsf tree, the
root component is UIPortal component.

In UI Portlet Renderer, since the UIPortlet has no children, only encodeBegin(..)
is required to be called. We create the RenderInput object, it contains all the
information of the request, and delegates it to the portlet container. The portlet
container will then invoke the method render(..) and return an OutputObject.
Then the portal renders the portlet header and the portlet body using the content
returned by the portlet container in the Output object. Note that in the portal page
you have many portlets but each request only targets one portlet. Therefore, the
parameter map sent to the container is cached as a parameter map in the
associated UIPortlet object. Only the portlet you send request to use
HttpServletRequest parameter map or a parameter map produced by the
processAction() method. All of those steps are processed in the decode phase.

DocV1.PortalRequestLifecycle (en)
CrÃ©ateur: XWiki.benjamin.mestrallet Creation Date: 2005/02/09 16:22
Dernier Auteur: XWiki.benjamin.mestrallet Last Modification Date: 2005/02/15
22:55
Copyright 2004 (c) Auteurs des pages

eXo Wiki - DocV1 - PortalRequestLifecycle

- 4 -

http://www.exoplatform.com/xwiki/bin/view/DocV1/PortalRequestLifecycle

