
 1 

1 The Repository Model 

1.1 Compliance Levels 

This specification is divided into two compliance levels and a set of 
additional optional features which repositories of either level may 
support. Level 1 provides for read functions and level 2 adds 
additional write functions. The functional division is as follows: 

Level 1 includes: 

• Retrieval and traversal of nodes and properties 

• Reading the values of properties 

• Transient namespace remapping 

• Export to XML/SAX 

• Query facility with XPath syntax 

• Discovery of available node types 

• Discovery of access control permissions 

Level 2 adds: 

• Adding and removing nodes and properties 

• Writing the values of properties 

• Persistent namespace changes 

• Import from XML/SAX 

• Assigning node types to nodes 

Optional: 

Any combination of the following features may be added to an 
implementation of either level. 

• Transactions 

• Basic Versioning to support a linear version model 

• Full Versioning to support branching, merging, baselines and 
activities 

• Observation (Events) 

• Locking 

• SQL syntax for query 

Formatted: Bullets and Numbering



 2 

1.2 Workspaces 

A content repository is composed of a number of workspaces. Each 
workspace contains a single rooted tree of items. In the simplest 
case a repository will consist of just one workspace. In more 
complex cases a repository will consist of more than one 
workspace. 

Workspaces are the entities into which applications and users login. 
Workspaces are also the objects responsible for query and define 
the scope of the queries that they execute. Therefore, care should 
be taken to define workspaces to include the scope in which 
applications need to query. 

1.2.1 Single Workspace Repositories 

A repository with only a single workspace consists of a single tree 
of nodes and properties. The example at the beginning of this 
section (4 The Repository Model) describes a single workspace 
repository. 

Since a given workspace contains at most one node with a given 
UUID, in this case, there is at most one node with a given UUID in 
the repository as a whole. 

The following diagram depicts a single workspace repository: 

 

 

 

 

 

 

 

 

 

 

 

 

The small circles represent nodes. The arrows point from parent to 
child and are labeled with the name of the child. The name of the 
root node is actually the empty string though, for clarity, it is 
indicated here with the string “[root]”. The numbers within the 
nodes represent the UUIDs of the nodes. For example, the UUID of 

[root] 

a 

c d 

b 

WS 

Repository 

00 

01 02 

03 



 3 

the root node / is 00 and the UUID of /a/d is 03. The node /a/c is 
not referenceable and therefore does not have a UUID. 

1.2.2 Workspaces and Basic Versioning 

In repositories that support basic versioning, a repository is 
assumed to have a single operational workspace and a version 
workspace for querying the version store. The operational store is 
used for most update operations and for general querying of 
current content. 

A workspace identifier can be obtained from the repository for the 
version store that presents all of the versions of all nodes in the 
repository. This workspace is read-only to query the versions and 
version histories in the version store. As such, multiple workspace 
operations defined in the next section are not supported. 

1.2.3 Multiple Workspaces and Corresponding Nodes 

Any repository can potentially support multiple workspaces. In 
implementations that support the full versioning system, a 
repository can have multiple workspaces other than the version 
workspace that can share corresponding changes between 
workspaces. In these repositories, a node in one workspace may 
have corresponding nodes in other workspaces. A node's 
corresponding node is defined as follows: 

• A node's corresponding nodes are those with the same 
correspondence identifier. 

• The correspondence identifier of a referenceable node is its 
UUID. 

• The correspondence identifier of a non-referenceable node 
with at least one referenceable ancestor is the pair 
consisting of the UUID of its nearest referenceable ancestor 
and its relative path from that ancestor. 

• The correspondence identifier of a non-referenceable node 
with no referenceable ancestor is its absolute path. 

Recall also that (as stated in Error! Reference source not found. 
Error! Reference source not found.) if a repository has a 
workspace with a referenceable root node then all its workspaces 
must have referenceable root nodes and those root nodes must all 
have the same UUID. 

Apart from having the same correspondence identifier, 
corresponding nodes need have nothing else in common. They can 
have entirely different properties and child nodes, for example. 

While a node may have a corresponding node in another 
workspace, it is not required to. 

Formatted: Bullets and Numbering

Formatted: Normal

Formatted: Bullets and Numbering

Deleted: repositories

Deleted: In repositories that 
have multiple workspaces, 



 4 

Note that there is still at most one node with a given UUID per 
workspace. 

The update method, 

Node.update(String srcWorkspace) 

causes this node and its subtree to be replaced by a clone of this 
nodes corresponding node and its subtree in srcWorkspace. 

For more details on corresponding nodes and the update method 
see 7.1.8 Updating and Cloning Nodes across Workspaces. 



 5 

 

1.2.3.1 Example 

The following diagram shows a schematic of a two-workspace 
repository. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here we see two workspaces, WS1 and WS2. The dotted lines indicate 
corresponding nodes. For example, the node /a in WS1 corresponds 
to /m in WS2 because both have a UUID of 01. Similarly, /b in WS1 
corresponds with /b in WS2. In these cases, because the nodes are 
referenceable, their paths and names are not relevant in 
determining their correspondence. 

On the other hand, /a/c in WS1 corresponds with /m/c in WS2 
because they have the same relative path (namely, c) from their 
nearest referenceable corresponding ancestors (namely, /a and /m 
in WS1 and WS2 respectively). 

Note there can also be nodes (such as /a/d in WS1) that exist in one 
workspace but not in the other. 

[root] 

a 

c d 

b 

WS1 

Repository 

[root] 

m 

 c 

b 

WS2 

00 

01 

01 02 

00 

02 

03 

Formatted: Bullets and Numbering



 6 

1.3 Versioning 

Support for versioning is an optional feature. The versioning system 
is built on top of the system of workspaces and referenceable nodes 
described above. There are two levels of versioning available - a 
basic versioning model for supporting versioning common to most 
content management systems and a full versioning model to 
support branching and merging between multiple workspaces and 
more advanced features such as baselines and activities. 

In a repository that supports versioning, either with the basic 
versioning model or full versioning model, a workspace may contain 
both versionable and nonversionable nodes. A node is versionable if 
and only if it has been assigned the mixin type mix:versionable, 
otherwise it is nonversionable. Repositories that do not support 
versioning will simply not provide this mixin type, whereas 
repositories that do support versioning must provide it. The type 
mix:versionable is a subtype of mix:referenceable, so if a node 
is versionable it is automatically also referenceable and thus has a 
UUID. 

Being versionable means that at any given time the node's state 
can be saved for possible future recovery. This saved state is called 
a version and the action of saving it is called checking in. 

Versions exist as part of a version history. Version histories contain 
all previous versions of the node. Version histories are accessible 
from any node associated with that version history. In addition, all 
the versions of a node can be accessed from the version history. 

The basic versioning model provides a simple model of version 
control. Version histories provide a linear list of versions ordered in 
chronological order of creation date. Versions are limited to a single 
workspace for update operations on nodes. No branching or 
merging of versions is supported. 

The full versioning model provides a more sophisticated model of 
versioning somewhat similar to those found in source code control 
systems. In this model within a version history, the versions form a 
version graph that describes the predecessor/successor relations 
among versions of a particular versionable node. These version 
graphs can be shared between multiple workspaces to allow 
concurrent update and development of nodes with interfaces to 
support merging the changes between workspaces. 

Version histories and their contained versions are stored in version 
storage. There is one version storage per repository. This version 
storage is accessed through a separate version workspace for 
querying all versions of all nodes. In the full versioning model, the 
version store may be exposed in each workspace as a special 
protected subtree below the node 

Deleted: active versions of 

Deleted: Within 

Deleted: , though it is 



 7 

/jcr:system/jcr:versionStorage for backward compatibility with 
JSR-170. 

1.3.1.1 Relation Between Nodes and Version Histories in the Full 
Versioning Model 

In the full versioning model, the relationship between nodes and 
version histories is built on the notion of correspondence via UUID. 
The details are as follows: 

• Each set of corresponding versionable nodes (nodes with the 
same UUID) share the same version history. 

• In a given workspace, there is at most one versionable node 
per version history (this follows directly from the fact that 
there is at most one node from each correspondence set per 
workspace). 

• Given a particular workspace, there may be version histories 
for which that particular workspace does not contain a 
corresponding versionable node. 

• A workspace may contain nonversionable nodes, which, of 
course, never have corresponding version histories. 

• When a new versionable node is created (i.e., the first 
instance in the repository as whole) a version history for 
that node is automatically created in version storage. 

• If a versionable node is cloned to another workspace, it 
maintains the same UUID and the new corresponding 
versionable node remains associated with the original's 
version history. 

• Note that since all versionable nodes are by definition 
referenceable, there is no need to include the qualification 
involving relative paths to the nearest versionable node (or 
root node) as in the discussion of update, above. 

Deleted: .

Deleted: The



 8 

1.3.1.2 Example 

The following diagram illustrates a possible repository architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This diagram shows a repository that supports versioning and 
contains two workspaces. The version storage is represented by the 
area in the bottom. It contains a version history for each 
versionable node in the repository. The versionable nodes in the 
workspaces are shown in various shadings. The nonversionable 
nodes are shown in white. 

[root] 

a 

c d 

b 

WS1 

Repository 

[root] 

m 

 c 

b 

WS2 

00 

01 

01 02 

00 

02 

00 01 02 

Version Storage 

03 

Formatted: Page break before



 9 

All versionable nodes are referenceable, though not all 
referenceable nodes are versionable (for example the node 03 in 
WS1 is referenceable, because it has a UUID, but it is not 
versionable). Both WS1 and WS2 also contain nonreferenceable nodes 
(the nodes c below 01). 

In the diagram the version histories are represented by stacked 
circles of differing shades. Each versionable node shares its version 
history with its corresponding node in the other workspace. 

At any given time a particular workspace may hold nodes based on 
various versions stored in version storage. In the diagram, WS1 
holds nodes based on the “light gray” version of the nodes 00, 01 
and 02. WS2, in contrast, has nodes based on the “dark gray” 
version of 00, the “light gray” version of 01 and the “dotted” 
version of 02. 

Note that for the purposes of illustration, each version history is 
depicted as containing three versions. This is a simplification; in an 
actual system the version histories of distinct nodes may differ. 
Furthermore, in this picture, parent child relations within the 
version storage are not shown. See 8.2 Versioning for a more 
detailed description. 


	1 The Repository Model
	1.1 Compliance Levels
	1.2 Workspaces
	1.2.1 Single Workspace Repositories
	1.2.2 Workspaces and Basic Versioning
	1.2.3 Multiple Workspaces and Corresponding Nodes
	1.2.3.1 Example


	1.3 Versioning
	1.3.1.1 Relation Between Nodes and Version Histories in the Full Versioning Model
	1.3.1.2 Example




