

Jalisto – User Manual Page 1 of 35

Jalisto

User Manual

Jalisto – User Manual Page 2 of 35

Table of Contents
Table of Contents...2
Jalisto Overview ... 4
1.1 Overview... 4
1.2 Getting started.. 4
1.3 User modes..5
1.4 Jalisto modules .. 6
1.4.1 Query engine Module... 6
1.4.2 JMX administration Module ... 6
1.4.3 JCA Module.. 6

1.5 Storage solutions.. 6
2 Jalisto core features and configuration.. 8
2.1 Required libraries .. 8
2.2 Configuring Jalisto... 8
2.2.1 Core module options.. 8
2.2.2 Configuration file sample: ... 9

2.3 JalistoFactory, Session and Transaction... 9
2.3.1 Jalisto Factory.. 9
2.3.2 Session...10
2.3.3 Transaction ...10
2.3.4 Code sample ..10

2.4 Meta definition..10
2.4.1 Define a class...10
2.4.2 Schema evolution..12

2.5 Persistent instance to array conversion ...12
2.6 Dealing with persistent instances... 13
2.7 Jalisto OID ..14
2.8 User modes..14
2.8.1 Mono ...14
2.8.2 Multi ..14
2.8.3 Read only... 15

3 Client-server functionalities ..16
3.1 Client’s point of view...16
3.2 Server’s point of view ..16

4 The storage layers ..18
4.1 Storage layer mechanism and configuration ...18
4.2 RAF layers ...18
4.3 RAF-nolog implementations ..18
4.4 RAF-log implementations...19
4.5 Memory implementation ... 20
4.6 How to choose and write a storage implementation .. 20

5 Admin tools and miscellaneous features ..21
5.1 Trace system..21
5.2 Reorganize the datastore ..21

Jalisto – User Manual Page 3 of 35

5.3 Storage recovery..21
5.4 Browse the datastore.. 22

6 Query module.. 23
6.1 Overview of query module features... 23
6.2 How to build a query.. 23
6.3 Execute a query .. 24
6.4 Indexes ... 24

7 JMX Administration... 26
7.1 MBeans... 26
7.1.1 CacheAdmin... 26
7.1.2 ClassDescriptionAdmin ... 26
7.1.3 MemoryAdmin..27

7.2 Run the Jalisto JMX server ..27
7.3 Example.. 28

8 Jalisto internal design aspects.. 29
8.1 The Jalisto page system ... 29
8.2 Cache .. 30
8.2.1 Page cache .. 30
8.2.2 New cache implementation ..31
8.2.3 Cache options ..31

8.3 Customized RandomAccessFile architecture...31
8.3.1 The file headers region... 32
8.3.2 The index region .. 32
8.3.3 Record data region... 33

9 Annex .. 34
9.1 Jalisto configuration properties summary.. 34

Jalisto – User Manual Page 4 of 35

Jalisto Overview

1.1 Overview

Jalisto stands for JAva LIgth STOrage and is a modular low-level object datastore entirely
written in java.

Jalisto is better when used in combination with a high level API (JDO or SDO)
implementation such as Xcalia Intermediation CoreTM.

Jalisto can be used in embedded applications running into mobile device with low limited
memory but it can also be used by any application that needs a simple, pure Java and
efficient data storage for local information (user profiles, non-structured information,
logging and traces…).

Jalisto is build around a core system. The storage layer can be switched, caches can be
plugged, and optional modules are available.
There are currently three available optional modules:

• a query engine,

• a JMX administration framework,

• a JCA compliant layer.

The global architecture is summarized below:

1.2 Getting started

A datastore instance is configured by a single properties file. A user who wants to work on a
specific datastore instance must specify the properties file of this instance.
This file contains datastore’s files paths, datastore’s user mode, and custom Jalisto
properties.

Jalisto – User Manual Page 5 of 35

Jalisto users will mainly use JalistoFactory, Session and Transaction instances.
Session is the main Jalisto interface. It allows creating, retrieving, updating and deleting
objects (known as CRUD operations). Such a session is always user-specific.

A working session is obtained from the JalistoFactory, using the configuration file path as
parameter. This path may be an absolute path, a path relative to the execution directory, or
the name of a file available from the classpath.
An FdbTransaction instance, obtained from the session, will allow the user to demarcate
transactions boundaries around his operations.

1.3 User modes

Jalisto can be use in a mono-user mode, i.e. one client using a unique session on a single
Jalisto instance in a local JVM.
With the multi-user mode, multiple threads in a local JVM can connect on a single Jalisto
instance, using multiple concurrent sessions.
The read-only user mode allows multiple users in a single JVM to read (and only read)
objects. No locks are used, no logging is used, no updates can be committed. This version is
lighter than the two others, and obviously much faster too.
The user mode used to create the datastore instance has no impact on how the datastore
can be used later.

A datastore instance cannot be opened by more than a single Java process. The client-
server architecture allows multiple distant clients to access and work with a remote Jalisto
instance. The server side Java process opens the datastore and works with it.

Jalisto – User Manual Page 6 of 35

The user mode is specified by the “userMode” property in the instance properties file.
Values can be either “mono”, “multi” or “readonly”. See the specific chapter for more detail
about Client-sever mode.

1.4 Jalisto modules

Three optional modules can be used with the Jalisto core system. To read more
information about these optional modules, see specific chapters.

The module’s jar must be added in the runtime classpath to activate its features.

1.4.1 Query engine Module

The query engine allows executing queries, and maintaining indices on persistent classes’
fields. To deal with Jalisto queries, a query manager is associated to each Jalisto session.
This module associated jar file is “jalisto-query.jar”.

1.4.2 JMX administration Module

This module implements a set of JMX (JSR 3) compliant MBeans to manage and monitor
Jalisto configuration and runtime parameters such as:

• Defined persistent classes’ schemas,

• Internal caches size,

• Runtime memory size.

For more information on JMX, JSR 3 and JSR 160 visit
http://java.sun.com/products/JavaManagement/

1.4.3 JCA Module

This layer allows high level software to use Jalisto as a JCA connector.
NB: The JCA module is still under development and requires additional development and
documentation.

1.5 Storage solutions

Jalisto can use different storage layers. The storage strategy must be selected during the
datastore creation. Once created, this property cannot be changed later.
Writing a new storage layer is possible. A new class implementing
org.objectweb.jalisto.se.api.physical.PluggablePhysicalFileAccess interface must be
supplied.

Jalisto – User Manual Page 7 of 35

The “physicalClass” property in the configuration file must be set in order to specify the
storage implementation class. If nothing is specified, the default storage solution is used,
which is the “RAF nolog” synchronous implementation.

Available storage strategies are:

• Memory: this implementation keeps all persistent data in memory. No files are
created.

• Random Access File (RAF): this implementation uses a customized Java
RandomAccessFile to store data. The random access File strategy has different
flavors:

o Data can be stored within a single file or within multiple files.
o I/Os ca n be synchronous or asynchronous.
o An optional logging mechanism is available to support true ACID

transactions.

Jalisto – User Manual Page 8 of 35

2 Jalisto core features and configuration

2.1 Required libraries

Jalisto is composed of several jar files. These files must be added to the application
classpath. The exact list of files required is dependent on user’s needs.

The list of Jalisto jar files is described here under:

Module
name

Description Jar External
dependencies

Core Jalisto-core.jar
Core Jalisto-core-mono.jar
Core Jalisto-core-tool.jar
Core Global test framework,

core test suite
Jalisto-core-test.jar Junit.jar, jfunc.jar,

jcfe.jar
Query Jalisto-query.jar
JMX Jalisto-jmx.jar Mx4j.jar
JCA Jalisto-jca.jar Connector-1_0.jar
Storage Memory storage Jalisto-storage-memory.jar
Storage Random access file, no

log
Jalisto-storage-raf.jar

Storage Random access file,
synchronous, no log

Jalisto-storage-synraf.jar

Storage Random access file, log Jalisto-storage-raflog.jar

2.2 Configuring Jalisto

Jalisto configuration is done through a Java properties file. There is exactly one properties
file associated with each datastore instance.
The configuration file format is the classical key=value format of Java properties files.

To create a datastore instance, the Jalisto core system needs to know some specific
properties. These properties’ values are specified in a specific properties file.
When the datastore instance is reopened later (during the instantiation of a Session), the
same properties file helps the core system to locate the physical storage files on disk.

NB: all properties have default values, so only specific properties with none-default values
have to be overwritten.

2.2.1 Core module options

Key Description Value type Default

Jalisto – User Manual Page 9 of 35

value
name Give a name to the datastore

instance
String “jalisto”

dbFilesPaths Path(s) of database file(s). These
paths are absolute, or relative to
Jalisto execution directory

Comma-
separated list

<datastore
name>.jalisto

userMode Selection between mono-user,
read-only and multi user modes.

“mono”,
“readonly”,
“multi”

“mono”

trace Enable logging for specified
modules.

Comma-
separated list

Empty list

physicalClass The full class name of the chosen
implementation of the
PluggablePhysicalFileAccess
interface.

String See in
chapter The
storage layers

concurrencyMode If the datastore is in multi-users
mode, specifies an optimistic or
pessimistic concurrency mode.

“optimistic”
or
“pessimistic”

“optimistic”

logFile Path of transaction log file. This
path is absolute, or relative to
Jalisto execution directory

String "<datastore
name>-
log.jalisto"

dbInitialSize Datastore initialization size, in
page count.

int “1000”

oidTableSize Number of ‘logical – physical’
links in oidTable.

int “10000”

2.2.2 Configuration file sample:

name employees
userMode mono
dbFilesPaths employees.jalisto
instancePageSize 100
physicalClass
 org.objectweb.jalisto.se.storage.raf.nolog.asynchr o.PhysicalFileAccessNolog
AsynchroImpl

2.3 JalistoFactory, Session and Transaction

2.3.1 Jalisto Factory
The org.objectweb.jalisto.se.JalistoFactory is the only factory required. This factory allows
to get a working session, and to define metadata. It also allows starting the JMX server, if
the administration module is enabled.

Jalisto – User Manual Page 10 of 35

2.3.2 Session
Session is the main Jalisto user interface to create, retrieve, update, and delete objects.
Such a session is always user-specific.

To obtain a working session, the datastore instance properties file path must be supplied to
the factory. This path may be either an absolute path, a path relative to the runtime
directory or the name of a file available in the classpath.

The “openSession()” method must be called before any other Session methods calls. At the
working session end, the “closeSession()” method must be explicitly called in order to clean
all the system resources used by Jalisto.

2.3.3 Transaction
A Transaction instance, obtained from the Session, will allow the user to demarcate
transactions boundaries around his operations, by calling the traditional begin and
commit/rollback methods.
NB: all sessions, in all user modes, are transactional.

Read the Jalisto javadoc to have a complete list of all operations available from
JalistoFactory and Session.

2.3.4 Code sample

Session session = JalistoFactory.getSession("jalist o.properties");
session.openSession();
Transaction tx = session.currentTransaction();

tx.begin();
…
tx.commit();

tx.begin();
…
tx.commit();

session.closeSession();

2.4 Meta definition

2.4.1 Define a class

The Jalisto core system needs the definition of the persistent classes.
All the methods needed to define and remove persistent classes are available from
JalistoFactory and Session.

For each persistent class the following information must be defined:

• The class name

• For each field:

Jalisto – User Manual Page 11 of 35

o The field name
o The field type

Jalisto supports most Java types such as Integer, String, Date, Collection and Map types
(including Vector and HashMap), “link” type for reference to other persistent instances. As
Jalisto is an object datastore, primitive Java type like “int” or “short” are not supported,
and thus must be converted in their related object wrapper type.

All other types will be serialized, so must implement the Serializable interface.

Available Jalisto types are:

• Atomic types:
o DoubleType
o FloatType
o IntegerType
o LongType
o ShortType
o StringType.

• Reference types:
o LinkType
o SerializedType.

• Collection types:
o ArrayType
o CollectionType
o MapType.

JalistoFactory is used to create ClassDescription and FieldDescription instances.
User has to create the ClassDescription with the persistent class fully qualified name, and
to add fields to the class description. For each of them, specify the type name and Jalisto
type. Then the Session is used to actually define the class within the datastore.

All metadata definitions must be done outside transaction boundaries, and no other
concurrent transaction can be started in the meanwhile.
No field has to be defined for the Object unique IDentifier (OID).

ClassDescription meta =
 JalistoFactory.createClassDescription(Book. class.getName());

meta.addField(JalistoFactory.createFieldDescription ("title",
 new StringType()));
meta.addField(JalistoFactory.createFieldDescription ("pages",
 new IntegerType()));
meta.addField(JalistoFactory.createFieldDescription ("price",
 new IntegerType()));
meta.addField(JalistoFactory.createFieldDescription ("author",
 new LinkType()));
meta.addField(JalistoFactory.createFieldDescription ("format",
 new SerializedType()));

session.defineClass(meta);

Jalisto – User Manual Page 12 of 35

The defined class can be deleted. Jalisto system first remove all instances of this class, and
then remove the class definition.

session.removeClass(Book.class.getName());

2.4.2 Schema evolution

The schema evolution feature allows updating an already created schema, in order to
reflect evolutions in persistent classes definition. Fields can be added, renamed and
removed.
When adding a new field to a persistent class, the default field value is null for all existing
class instances.

Schema evolution methods are available from MetaRepository, which can be find via the
“getMetaRepository()” method on working Session. All the schema evolution
functionalities must be called outside transaction boundaries. See the MetaRepository API
to get all detailed informations.

2.5 Persistent instance to array conversion

As Jalisto is a low-level datastore, so there is no “user friendly” mapping layer in the core
package.

Persistent object instances must be manually converted into a primitive form, according to
their class meta-definition.
This primitive form is an object array, or “Object[]”. That array contains all field values, in
the order defined in the class meta-definition. Primitive values must be converted to their
equivalent object wrappers (“int” becomes “Integer”). References to persistent instances
must be replaced by the referenced object’s LogicalOid instance. Others can remain the
same, as long as they are Serializable.

Example:

public class Book {

 private String title;
 private String author;
 private int price;

 public Book() {
 }

...

 public Object[] toArray() {
 Object[] result = new Object[4];
 result[0] = title;
 result[1] = author;

Jalisto – User Manual Page 13 of 35

 result[2] = new Integer(price);
 return result;
 }

 public static Book toBook(Object[] array) {
 Book book = new Book();
 book.setTitle((String) array[0]);
 book.setAuthor((String) array[1]);
 book.setPrice(((Integer) array[2]).intValue ());
 return book;
 }
}

NB: The future release of Jalisto will implement automatic mapping mechanism to avoid
this step.

2.6 Dealing with persistent instances

Once persistent classes are defined, and instances are converted into arrays, dealing with
Jalisto is easy.
All database operations are executed within transaction boundaries.

The user can make data persistent in one or two steps:
Using the “one step” method, user gives the class and the values array, and gets back the
identity of the new persistent instance.
Using the “two steps” method, user first allocates space in the datastore by giving the
instance class, and then gets back the identity. He gives the values array and the identity to
make the values persistent.

// persistent object in one step
Object oid = session.createObject(book.toArray(), B ook.class);

// persistent object in two steps
Object oid = session.makeNewFileOid(Book.class);
...
session.createObject(oid, book.toArray());

To read a persistent instance in its array form, its identity is needed:

Object[] o = session.readObjectByOid(oid);

If the user doesn’t have the oid, he can read all persistent instances’ oids from a given class
by using an extent. The “getExtent()” method return a LogicalOid collection:

Iterator extent = session.getExtent(aClass).iterato r();

NB: if more functionalities are needed to retrieve objects, use query mechanisms (see the
Query module).

To update a persistent instance, user needs its identity, and the new values array:

session.updateObjectByOid(oid, newArrayValue);

Jalisto – User Manual Page 14 of 35

To delete a persistent instance, user just needs the instance’s identity:

session.deleteObjectByOid(oid);

2.7 Jalisto OID

By making instances persistent, or using extents, user gets back Object unique IDentifier,
or oid. The oid is build by the Jalisto internal system, it’s an instance of the LogicalOid
class. It’s a wrapper around a long value.

The wrapped long value is composed of 2 parts. First, a value for the instance class, and
second the instance number. When printed, the LogicalOid instance shows these two parts,
with a String like “12.4751” which means “class number 12, instance number 4751”.

2.8 User modes

The user mode is selected via the “userMode” properties in the configuration file. The
“mono” value will run the mono user mode, the “multi” value the multi user mode, and
“readonly” the read-only user mode (on an existing datastore instance). See the specific
chapter for more detail about Client-sever mode.

The user mode used to create the datastore instance has no impact on how the datastore
can be used later. A mono datastore instance can be used in a multi mode, and vice versa,
or with the read-only mode. To do so, the only thing to do is to change the userMode
property in the configuration file.
However, the same instance cannot be used at the same time with different modes.

2.8.1 Mono

Jalisto can be use in a mono-user mode, i.e. one client using a unique session on a single
Jalisto instance in a local JVM.
If several calls in the JVM are made to the “getSession()” factory static method, the same
Session instance will be returned.

2.8.2 Multi

With the multi-user mode, multiple threads in a local JVM can connect on a single Jalisto
instance, using multiple concurrent sessions. Each call to the “getSession()” factory static
method will return a different session.

Both pessimistic and optimistic concurrency modes are available. Jalisto will acquire locks
on objects according to the concurrency mode selected.

Jalisto – User Manual Page 15 of 35

Concurrency mode can be specified with the “concurrencyMode” option. Available values
are “optimistic” and “pessimistic”. The default value is “optimistic”.

NB: whenever a deadlock is detected, a LockException is thrown.

2.8.3 Read only

Once a datastore is created and populated with other user modes, it can be accessed with
the read only mode.
The read-only user mode allows several users in a single JVM to read (and only read)
objects. No locks are managed, no logging is used, no updates can be committed. This
version is lighter than the two others, and obviously much faster too.

Jalisto – User Manual Page 16 of 35

3 Client-server functionalities

A datastore instance cannot be opened by more than a single Java process. The client-
server architecture allows multiple distant clients to access and work with a remote Jalisto
instance.

3.1 Client’s point of view

From the client’s point of view, working with a client-server Jalisto is exactly similar than
working with a local Jalisto instance. Only the properties configuration file is different.

Example:

serverPropertiesFile jalisto.properties
internalFactoryClass org.objectweb.jalisto.se.impl .factory.InternalRemoteFactory
host localhost
port 7777
communicationFactoryClass
org.objectweb.jalisto.se.impl.remote.socket.Communi cationFactorySocketImpl

The only mandatory property is ‘internalFactoryClass’, with the exact value
org.objectweb.jalisto.se.impl.factory.InternalRemoteFactory.

The server properties file path is local to the server execution context.

Key Description Value type Default

value
internalFactoryClass’ Implementation class for the

client Jalisto factory. Value
MUST be set.

String See above

serverPropertiesFile Path to the server datastore
configuration file.

String See above

host Server localization. String “localhost”
port Communication port. int 7777

3.2 Server’s point of view

The server side’s Java process opens the datastore and works with it.

A special launcher runs the server, which listen to specified port clients’ requests.

Jalisto – User Manual Page 17 of 35

A client starts by defining the datastore to use (with the corresponding properties file
path). Then the server instantiate the datastore instance, manage local sessions, and reply
to every further client’s requests.

It’s highly recommended to use multi-user mode for server side datastore instance, but
read-only mode could be very useful to share information without writing permissions
among remote users.

The ServerLauncher (in org.objectweb.jalisto.se.tool package) main method needs 2
arguments to start:
-port <int>: Port to listen. Clients connect to the server at this port. Default value is 7777.
-class <full class name>: Communication factory class. This factory instantiates
implementation classes for the chosen communication protocol. Default value is
org.objectweb.jalisto.se.impl.remote.socket.CommunicationFactorySocketImpl.

Port and communication factory class must be the same on both sides.

Jalisto – User Manual Page 18 of 35

4 The storage layers

4.1 Storage layer mechanism and configuration

The storage is the underlying layer which physically reads and writes information on disk.
Jalisto comes with a switchable storage layer, who allows working with different file
format, storage strategy, and so on.

Jalisto can store information in a single file, or in several files, depending on the
configuration. The physical storage file paths must be specified in the configuration file.
The property is “dbFilesPaths”. The value is a comma-separated list of files’ paths. These
paths can be absolute, or relative to the Jalisto configuration file directory.
The default path list is equal to “<datastore name>.jalisto”. See the configuration section
for more information about Jalisto properties.

In the case of multiple files, the first one in the list will contain Jalisto system’s
information. The second one will contain information about Object Identifiers. Then the
next files will contain persistent instances.
Readers interested in the design of the Storage Layer should go to the Internal Jalisto
Design section.

Examples:

dbFilesPaths ../employees.jalisto

dbFilesPaths C:/dev/datatore/jalisto/jalisto-
sys.jalisto,C:/dev/datatore/jalisto/jalisto-oid.jal isto,D:/jalisto/jalisto-
inst01.jalisto,D:/jalisto/jalisto-inst01.jalisto,D: /jalisto/jalisto-
inst01.jalisto

4.2 RAF layers

RAF is the name for the main Jalisto storage layer implementations. They use a customized
version of the standard java.io.RandomAccessFile.

An index had been added to the standard RAF, which maps a String key to a header. This
header contains a physical address and the corresponding data’s length.

4.3 RAF-nolog implementations

Jalisto – User Manual Page 19 of 35

These implementations are based upon the RAF layer. They don’t log accesses to datastore,
so transactions are not ACID, but these implementations are faster than logging
implementations. So if logging is not needed, they could be used.

Two RAF-nolog implementations are available:
With the synchronous implementation, all disk writes are done before the system
completes the commit or rollback.
With the asynchronous implementation, the system just enlists in a thread datastore
operations that have to be written at commit time. This thread will later write in the
datastore these enlisted operations. With this mode the commit process is faster, but at the
end of the commit method call, all informations are not really persisted in the storage on
the hard disk. This asynchronous implementation is “less ACID” than the synchronous one.

The implementation class for the raf-nolog-synchro mode is
org.objectweb.jalisto.se.storage.raf.nolog.synchro.PhysicalFileAccessNologSynchroImpl.
This is the default implementation.
The implementation class for the raf-nolog-asynchro mode is
“org.objectweb.fdb.storage.raf.nolog.asynchro.PhysicalFileAccessNologAsynchroImpl”.

The classes for these nolog implementations are located in the “jalisto-storage-raf.jar” file.
The jalisto-storage-synraf.jar file contains only the synchronous RAF nolog
implementation.

4.4 RAF-log implementations

This implementation is also based upon the RAF layer. Logging functionalities have been
added to the basic implementation, to complete ACID properties. If full logging
functionalities are needed, we strongly recommend to use this implementation.

This layer logs (e.g. duplicates) information and operations in log files. Each persistence
file has a log file, which allows recovering from unitary operations on the RAF file.
Each log file is at the same location and has the same name than the original file, but add
“log” as postfix to the file name.

Operations done during the transaction are written in a transaction log file. So if the system
crash during a transaction, it can cancel the entire transaction during the recovery process.
This transaction log file can be specified within the configuration file with the property
“logFile”, giving the absolute or relative path (relative to configuration file’s directory). The
default value is “<datastore name>-log.jalisto”.

The implementation class for the raf-log-synchro mode is
“org.objectweb.jalisto.se.storage.raf.log.synraf.PhysicalFileAccessLogSynrafImpl”.
The implementation class for the raf-log-asynchro mode is
“org.objectweb.jalisto.se.storage.raf.log.asynraf.PhysicalFileAccessLogAsynrafImpl”.

The implementation classes are located in the jalisto-storage-raflog.jar file.

Jalisto – User Manual Page 20 of 35

4.5 Memory implementation

This implementation keeps all data in memory. No files are created on disk, and when the
JVM exits, all information are lost.

The implementation class for the memory mode is
“org.objectweb.jalisto.se.storage.memory.PhysicalFileAccessMemoryImpl”.

The classes for this implementation are stored in the “jalisto-memory.jar” file.

4.6 How to choose and write a storage implementation

The implementation class is specified in the Jalisto configuration file, with the property
“physicalClass”. The fully qualified class name of a class which implements the
PluggablePhysicalFileAccess interface must be given. The specified class is dynamically
loaded at the execution, so the class must be in the Jalisto execution classpath.

User who wants to write a new storage layer just has to implement the same interface. All
implementation classes must be in the Jalisto execution classpath at runtime. The
configuration property “physicalClass” must be set with fully qualified class name of the
root class of the new implementation.

The default value for the physicalClass property is
“org.objectweb.jalisto.se.storage.raf.nolog.synchro.PhysicalFileAccessNologSynchroImpl”,
which is the implementation for the synchronous nolog RAF storage mode.

Jalisto – User Manual Page 21 of 35

5 Admin tools and miscellaneous features

5.1 Trace system

Jalisto comes with a tracing system, which redirect its outputs to the standard output.
Those traces can be configured in the database configuration file, which contains a list of
the modules to trace. If a module is activated, then all traces from that module will be
displayed.
The trace property in the configuration file is called “trace”. The user must specify modules’
names he wants to trace in a comma-separated list.

Available modules:

Module name Description
Session Session instances.
Cache Caches mechanisms
Oidtable Logical/physical link table.
Logical Allocation and logical management.
Physical Database physical aspects.
Remote Client-server aspects.
Debug More verbose log, for debug purposes.

5.2 Reorganize the datastore

Deleting objects leaves empty “slots” in the datastore, which are re-used for new persistent
objects. But sometimes, the datastore files size will stay larger than what really needed.
The reorganize feature defragments the storage files. Simply call the Session method
“reorganize()” to use this feature.
NB: this method can only be called from a closed session. No other sessions must be active
on the datastore.

5.3 Storage recovery

If system encounters a JVM crash, the datastore files may be corrupted. Recover from a
corrupting crash is possible if a logging I/O implementation was used.
The revovery classes have a main() method, which must be called with the configuration
file path as argument.
NB: it’s highly recommended to save datastore files before trying to recover them.

RecoverBase classes can be found in a chosen implementation sub-package, called
“recover”. So, for the log synchronous implementation, the complete class name is
“org.objectweb.jalisto.se.storage.raf.log.synraf.recover.RecoverBase”. For the

Jalisto – User Manual Page 22 of 35

asynchronous implementation the revorery class is
“org.objectweb.jalisto.se.storage.raf.log.asynraf.recover.RecoverBase”

5.4 Browse the datastore

Jalisto comes with a Datastore viewer tool. This tool display metadata and persistent
instances stored in a given datastore.

The org.objectweb.jalisto.se.tool.JalistoViewer class can be found in the jalisto-core-tool.jar
file. User just has to call the main() method of this class.

Options are available:

• only display metadata,

• show all instances,

• show only specified instances,
...

Call the main() method without argument to print help.

RAF storage implementations provide a lower-level viewer. It works only if there are not
multiple storage files. This viewer displays the low–level customized random access file.
User can see the Jaslito system’s persistent objects, the pages, the oids, … This is a very
technical view of the storage.
User has to call the main() method of org.objectweb.jalisto.se.storage.RecordsFileInspector
class. The configuration file path is the only argument to give.

Jalisto – User Manual Page 23 of 35

6 Query module

Jalisto-query is an independent module which uses the Jalisto core system.

The query module goal is to allow users to create and execute queries to access persistent
data. If user’s project doesn’t need more access facility than those already available in core
(extent mechanism to get the oids), this module can be kept away from the classpath and
minimize the footprint in memory.

All Jalisto query classes can be found in jalisto-query.jar file. This jar file must be present
in the application execution classpath. If not, an exception will be raised when the Jalisto
system will dynamically load the query manager class.

6.1 Overview of query module features

Users have to instantiate a new query manager from the Session. This query manager is the
factory to build queries.
The Jalisto query system proposes an object-oriented query framework for Java that is
based on APIs instead of declarative strings.

The programmer adds constraints to that query object using the query API, which allows
navigation on the class’s fields.
Parameters can be defined on the query. Their values have to be completed before
execution.
Query’s execution gives back to the user a set of results.

Indexes can be defined on persistent class fields to speed queries’ execution, by using an
index manager from the query manager.

6.2 How to build a query

The query manager is a factory for new queries. It is available from the current Jalisto
working Session.
Once the query is build, it must be constrained with a persistent class. The query will be
executed only on instances of this persistent class.
More constraints can be put on fields, using navigation with the “descend” method. With
these constraints, a binary tree is build. All these operations could be done outside
transaction boundaries.
See the APIs for a complete feature list.

Example:

QueryManager queryManager = session.getQueryManager ();

Jalisto – User Manual Page 24 of 35

Query query = queryManager.query();
query.constrain(Book.class);
Constraint c1 = query.descend("title").constrain(“t he hours”).equal();
Constraint c2 = query.descend("price").constrain(ne w Integer(15)).equal();
c1.and(c2);

Navigation can be used to create constraints on a linked instance fields. To do so, the
“descend” method must be called several times. An error in the navigation will be detected
at execution time.
Parameters can also be used. The values of these parameters have to be filled just before
execution.

QueryParameter titleParameter = new QueryParameter("title");
QueryParameter lastNameParameter = new QueryParamet er("lastName");

Constraint c1 = query.descend("title").constrain(ti tleParameter).equal();
Constraint c2 = query.descend("author").descend("la stName").
 constrain(lastNameParameter).equal();
Constraint c3 = query.descend("price").constrain(ne w Integer(15)).lower();
(c1.or(c2)).and(c3);

6.3 Execute a query

Before query execution, a transaction must be started.
The “execute()” query method must be called, which returns a collection, basically an
Iterator. This iterator contains Jalisto QueryResultWrappers instances. Each of these
wrappers contains the identity and value of a valid query result.

tx.begin();
ObjectSet results = query.execute();
while (results.hasNext()) {
 QueryResultWrapper resultWrapper = (QueryResult Wrapper) results.next();
 LogicalOid loid = resultWrapper.getLogicalOid ();
 Object[] value = resultWrapper.getValue();
}
tx.commit();

If query parameters are used, values must be bound to them. The binding operation can be
done outside of transaction boundaries.

query.bind("title", “the hours”);
query.bind("lastName", “Cunningham”);

6.4 Indexes

Indexes can be built on any persistent class field. Indexes store a field instances’ values, so
execute a query with a filter on an indexed field is a lot faster than on a regular field.

Jalisto – User Manual Page 25 of 35

An index manager is needed to define indexes. The index manager is available from the
current query manager. The meta-description of the persistent class will be needed too,
which are available from the MetaRepository (See Session API).
Then, inside transaction boundaries, an index can be build, giving the index of the field.

IndexManager indexManager = queryManager.getIndexMa nager();
ClassDescription meta =
 session.getMetaRepository().getMetaData(Boo k.class.getName());

tx.begin();
Index index = indexManager.buildIndexOnField(meta, meta.getIndex(“title”));
tx.commit();

Indexes have a BTree structure, with nodes and leaves. Theses nodes and leaves are stored
in storage pages. For each index, on each field, the node size can be customized, as the page
size where nodes and leaves will be stored.
For instance, if an index on employee’s first name is build, there will be a lot a data
associated to each first name. Reduce the leaf page size will speed up the execution.
If an index on a key field is build, with a unique instance for each value, it will be better to
increase the leaf page size.
The node page size, and the node size in the internal BTree structure, can also be adjusted.

All these customizations must be done before index creation in meta-description of the
class.

ClassDescription meta =
session.getMetaRepository().getMetaData(aClass.getN ame());
IndexDescription indexDescription =
 meta.getFieldDescription(meta.getIndex(fiel dName)).getIndexDescription();
indexDescription.setNodeSize((short)6);
indexDescription.setNodePageSize((short)20);
indexDescription.setLeafPageSize((short)50);

Jalisto – User Manual Page 26 of 35

7 JMX Administration

Jaslito-jmx is an independent module which uses Jalisto core system, based upon MX4J
implementation.
The JMX module goal is to provide administration MBeans to help users to configure,
monitor and manage Jalisto datastore instances.

All JMX module classes can be found in jalisto-jmx.jar file. This jar file must be present in
the application execution classpath. If not, an exception will be raised when user will try to
start the JMX server. The MX4J jars must also be available in the classpath.

See the following reference URLs:
http://java.sun.com/products/JavaManagement/
http://mx4j.sourceforge.net/

7.1 MBeans

All Jalisto MBeans are dynamic and are independent from the chosen JMX
implementation. They extend the abstract class JalistoAbstractDynamicMBean. This class
helps programmers to implement new dynamic MBeans.

Jalisto MBean server, which launches the Jalisto MBeans, implements the interface
MBeanServer.
To support a new JMX implementation, a new MBeanServer implementation has to be
written and added to the JalistoMbeanServerFactory.

If new MBeans are written, they will need to be added in each server implementation
launch process.

7.1.1 CacheAdmin

This MBean allows administrators to monitor Jalisto caches’ size.
It displays the caches’ size in real time, and administrators can adjust their maximum size.
Administrators can also switch the “keepInMemory” property, which tells if the read pages
are cleaned at the transaction commit/rollback.

7.1.2 ClassDescriptionAdmin

This MBean helps administrators to define, read, modify and delete metadatas. It provides
methods to define or remove a class description, and add or remove fields from a given
description.

Jalisto – User Manual Page 27 of 35

7.1.3 MemoryAdmin

This MBean only has read values, to trace classical Java runtime attributes: the free
memory size and the total memory size. This MBean also returns the used memory size,
which is equals to: total memory – free memory.

7.2 Run the Jalisto JMX server

To use functionalities provided by Jalisto JMX framework, the internal JMX server must
be launch.
To do so, the “launchJMXServer()” method from the JalistoFactory must be called. Use the
session or the configuration path as method parameter to indicate which datastore to
manage.

The distribution also includes a test server used to demonstrate Jalisto administration
capabilities. To launch this test server:

cd jmx
ant run.test-server

Then use your favorite web browser and connect to http://localhost:8082 to display Jalisto
JMX console:

Jalisto – User Manual Page 28 of 35

7.3 Example

Once Jalisto JMX server is launched, it’s possible to use tool to graphically edit the
Mbean’s properties.
In this example, we use EJTools (www.ejtools.org) to trace the page cache’s size:

Jalisto – User Manual Page 29 of 35

8 Jalisto internal design aspects

8.1 The Jalisto page system

Jalisto stores objects by groups instead of individually. Those groups are constituted
depending on the type of data to write, and on their number. Those groups are called
‘pages’.
When an instance is read from the database, the whole page that contains this instance is
read at the same time. Consequently, a « neighbor » instance will be read more quickly in
the same transaction.
In a similar way, when a persistent instance is modified, the whole page where it resides
will be written into the database.

At a first glance this system can seem costly, as this page-granularity could be considered
too coarse-grained. In fact, modifying a single element in a page is quite rare. Experiences
based on various benchmarks proved using such a page-based system dramatically increase
the overall performance.
Furthermore, the user can customize the page size, to tailor the database to the actual
application needs. However, default values are those which resulted in best performance in
our benchmarks, for a typical persistent data model.

…

Instance 10

Instance 09

Instance 2

Instance 1

Instance Page

…

null

null

Info page 1

Info page 0

System Page

…

loid4 <-> poid4

loid3 <-> poid3

loid2 <-> poid2

loid1 <-> poid1

Oid Page

…

Instance 3

null

Instance 2

Instance 1

Instance Page

Jalisto – User Manual Page 30 of 35

Four page types exist in Jalisto:
« Instances pages » only contain persistent instances. If user’s transactions work with only
a limited number of instances, it is recommended to reduce the size of those pages.
The “logical-to-physical link pages” (or ‘OID’ pages) contain the links between logical
object identities and their physical address into the datastore. These pages are read very
often.
The “metadata pages” contain information about the persistent classes into the datastore.
They are read in memory during the datastore instantiation, and kept there during the
whole execution runtime.
The “system pages” contain internal informations about other pages allocations. They are
read quite rarely, because most of these informations will be kept in memory once read.

Each page size can be configured in the Jalisto database configuration file. This size is
equal to the number of data the page can contain. Consequently, a small size is
recommended for the two later page types.

Key Description Value type Default

value
dbInitialSize Datastore initialization size, in

page count.
int “1000”

oidTableSize Number of ‘logical – physical’
links in oidTable.

int “10000”

oidPageSize Number of ‘logical – physical’
links per page.

int “50”

classPageSize Number of metadatas per page. int “10”
instancePageSize Number of instances per page. int “200”
pageCacheSize Transactional readed page cache

size, in page count.
int “20”

systemPageSize Number of system informations
per page.

int “10”

8.2 Cache

Jalisto uses a low level cache for data pages, and a high level cache for object.

The current cache implementation is a LRU cache. Objects are stored within a LRU cache,
to speed up further access. If the number of objects grows up over the cache maximal size,
the oldest ones are discarded. If an object is modified, it is removed from the cache and
becomes a “strong reference”.

Caches are totally configurable in size and cleaning percent. Setting a size ‘0’ to a cache
totally disable it. By default, the high level object cache is disabled.

8.2.1 Page cache

Jalisto – User Manual Page 31 of 35

Jalisto uses a cache mechanism for his pages. At the end of the transaction, after all
modifications have been committed, there are two available behaviors:
The first one, the default behavior, consists in keeping information in memory. So we put
back in cache the old modified pages, and keep the read pages.
The second one consists in dropping all pages.

User can choose the preferred behavior with the configuration option “keepInMemory”,
selecting the value “yes” if he wants to keep the data between transaction boundaries, or
“no” if he wants to drop them.

User can also choose the page cache size with the option “pageCacheSize”. Default value is
“20”. Jalisto uses internal system page, so the page cache will not only contain instance
pages.

8.2.2 New cache implementation

A new cache implementation can be plug in Jalisto system. The new cache must implement
the JalistoCache API. The implementation cache is specified with the properties file.

8.2.3 Cache options

Key Description Value type Default

value
keepInMemory Specifies if the database must

keep read pages in memory
between two transactions.

“yes” or “no” “yes”

cacheClass JalistoCache implementation
class for all caches.

String See above

objectCacheSize Transactional object instance
cache, in object count.

int “0”

pageCacheSize Transactional clean page cache
size, in page count.

int “20”

cacheClearPourcent Clean percent for a full cache. Int, from 0 to
100

“20”

8.3 Customized RandomAccessFile architecture

The file consists of three regions, each with its own format.

Jalisto – User Manual Page 32 of 35

The records file format

8.3.1 The file headers region

This first region holds the two essential headers needed to access records in our file. The
first header, called the data start pointer, is a long that points to the start of the record
data. This value tells us the size of the index region. The second header, called the num
records header, is an int that gives the number of records in the database. The headers
region starts on the first byte of the file and extends for
FILE_HEADERS_REGION_LENGTH bytes. We'll use readLong() and readInt() to
read the headers, and writeLong() and writeInt() to write the headers.

8.3.2 The index region

Each entry in the index consists of a key and a record header. The index starts on the first
byte after the file headers region and extends until the byte before the data start pointer.
From this information, we can calculate a file pointer to the start of any of the n entries in
the index. Entries have a fixed length -- the key data starts on the first byte in the index
entry and extends MAX_KEY_LENGTH bytes. The corresponding record header for a given
key follows immediately after the key in the index. The record header tells us where the
data is located, how many bytes the record can hold, and how many bytes it is actually

Jalisto – User Manual Page 33 of 35

holding. Index entries in the file index are in no particular order and do not map to the
order in which the records are stored in the file.

8.3.3 Record data region

The record data region starts on the location indicated by the data start pointer and
extends to the end of the file. Records are positioned back-to-back in the file with no free
space permitted between records. This part of the file consists of raw data with no header
or key information. The database file ends on the last block of the last record in the file, so
there is no extra space at the end of the file. The file grows and shrinks as records are added
and deleted.
The size allocated to a record does not always correspond to the actual amount of data the
record contains. The record can be thought of as a container -- it may be only partially full.
Valid record data is positioned at the start of the record.

Jalisto – User Manual Page 34 of 35

9 Annex

9.1 Jalisto configuration properties summary

Key Description Value type Default

value
cacheClass JalistoCache implementation class

for all caches.
String See above

cacheClearPourcent Clean percent for a full cache. Int, from 0 to
100

“20”

classPageSize Number of metadatas per page. int “10”
concurrencyMode If the datastore is in multi-users

mode, specifies an optimistic or
pessimistic concurrency mode.

“optimistic”
or
“pessimistic”

“optimistic”

dbFilesPaths Path(s) of database file(s). These
paths are absolute, or relative to
Jalisto execution directory

Comma-
separated list

<datastore
name>.jalisto

dbInitialSize Datastore initialization size, in page
count.

int “1000”

dbInitialSize Datastore initialization size, in page
count.

int “1000”

host Server localization. String “localhost”
instancePageSize Number of instances per page. int “200”
internalFactoryClass’ Implementation class for the client

Jalisto factory. Value MUST be set.
String See above

keepInMemory Specifies if the database must keep
read pages in memory between two
transactions.

“yes” or “no” “yes”

logFile Path of transaction log file. This
path is absolute, or relative to
Jalisto execution directory

String "<datastore
name>-
log.jalisto"

name Give a name to the datastore
instance

String “jalisto”

objectCacheSize Transactional object instance
cache, in object count.

int “0”

oidPageSize Number of ‘logical – physical’ links
per page.

int “50”

oidTableSize Number of ‘logical – physical’ links
in oidTable.

int “10000”

oidTableSize Number of ‘logical – physical’ links
in oidTable.

int “10000”

pageCacheSize Transactional readed page cache
size, in page count.

int “20”

pageCacheSize Transactional clean page cache size, int “20”

Jalisto – User Manual Page 35 of 35

in page count.
physicalClass The full class name of the chosen

implementation of the
PluggablePhysicalFileAccess
interface.

String See in
chapter The
storage layers

port Communication port. int 7777
serverPropertiesFile Path to the server datastore

configuration file.
String See above

systemPageSize Number of system informations per
page.

int “10”

trace Enable logging for specified
modules.

Comma-
separated list

Empty list

userMode Selection between mono-user,
read-only and multi user modes.

“mono”,
“readonly”,
“multi”

“mono”

