
EasyBeans Test Suite's Guide

Eduardo STUDZINSKI ESTIMA DE CASTRO, ObjectWeb consortium
Gisele PINHEIRO SOUZA, ObjectWeb consortium

iii

Table of Contents
1. Goal ..1
2. Description of the source tree .. 2
3. Getting EasyBeans From the SVN Repository .. 4
4. Building the suite from source ... 5

4.1. Requirements ... 5
4.2. Building the suite ... 5
4.3. Test suite main ant targets .. 5

4.3.1. JavaDoc .. 5
4.3.2. Compile .. 5

5. Running the suite .. 6
5.1. Requirements ... 6
5.2. Using Ant ..6

6. How to write a test ..7
6.1. Requirements ... 7
6.2. Writing the test class code ..7
6.3. TestNG Annotations .. 8

6.3.1. @Configuration ..8
6.3.2. @Test .. 8

6.4. Helper Classes ..8
6.5. Writing the XML configuration file: ...9
6.6. Additional Information ...9

7. How to contribute? .. 10
7.1. JavaDoc comment convention ... 10
7.2. Code convention ... 10
7.3. Methodology for writing tests ... 10
7.4. Adding a test suite .. 10
7.5. Submmiting a contribution ... 10

8. Current conformance test results .. 11

1

Chapter 1. Goal
The test suite objective is to verify that the EasyBeans conforms with the EJB3 specification. The suite
is under construction and everyone that wants to contribute is welcome. Anyone can write or add tests
cases according to the guidelines below.

This test suite is designed for EasyBeans; however, with a few adaptations, it could work with others
application servers.

2

Chapter 2. Description of the source
tree

The test suite contains:

• build.xml - ant file to build, install and run the tests.

• tests-common.xml - ant file with the common definitions for all ant files.

• tests-functions.xml - ant file with common functions for all ant files.

• src directory - contains the source files.

• lib directory - contains the libraries used in the tests.

• conf directory - contains the files used to configure the tests.

• examples directory - contains the examples files.

The source directory contains all test cases as well as the auxiliary classes used to make the tests.
These sources are divided in packages by functionality. The src/java folder has the package
org.objectweb.easybeans.tests which contains the follows packages:

• annotations - tests cases for verifying the annotations.

• common - contains all support classes to do the tests.

• asserts - contains alternative assert classes that are used during the tests.

• core - contains the classes that extends the server features.

• db - contains the classes that manipulates the database.

• ejbs - contains the beans that are used in the tests.

• enhancer - contains the classes that are used to test the enhancer.

• exception - contains exceptions used during the test.

• helper - contains the helper classes.

• inheritance - contains the classes that are used in the inheritance tests.

• interceptors - contains the classes that are used in the interceptor tests.

• interfaces - contains the common interfaces that are used by different classes (beans, test class
and others).

• resources - contains the classes that are used in the resource tests.

• deploymentdesc - tests cases for verifying the deployment descriptor.

• enhancer - tests cases for verifying the enhancer.

• inheritance - tests cases for verifying the inheritance.

• interceptors - tests cases for verifying the interceptors.

• transaction - tests cases for verifying the transaction.

Description of the source tree

3

• taglets - contains javadoc tags used to format correctly the documentation.

The file src/java/testng_conformance.xml makes possible to run all tests in the same
time. However, it is possible to execute a group of tests individually by using the XML file available
in each test case package.

4

Chapter 3. Getting EasyBeans From
the SVN Repository

Anyone can check out source code from the SVN server using the following command (for GUI SVN
client use, configuration values are the same as for command line use):

svn checkout svn://svn.forge.objectweb.org/svnroot/easybeans easybeans

5

Chapter 4. Building the suite from
source
4.1. Requirements

First, all the requirements used in Developer's Guide building chapter [http://wiki.easybeans.org/xwi-
ki/bin/Main/Documentation] need to be checked.

4.2. Building the suite
The build.xml file which is at the root of the tests folder will be used.

In the tests folder of the project (named EasyBeans by default), the command ant install needs
to be launched.

Note

The command ant -p could be used to list the targets that are available.

Once the command has been run successfully, output and tests/output folders are created and
each one contains a subfolder classes. The output/classes contains the EasyBeans Server
classes and the tests/output/classes contains the classes used by the test suite. Furthermore,
the binaries(.jar) used with EasyBeans Server are installed in the ejb3s folder.

ant clean.classes is used to clean the generated classes.

4.3. Test suite main ant targets

4.3.1. JavaDoc
Javadoc of Test Suite can be generated by using ant javadoc

The resulting documentation will be available in the tests/output/javadoc folder.

4.3.2. Compile
In the tests folder of the project (named EasyBeans by default), the command ant compile needs
to be launched.

Once the command has been run successfully, output and tests/output folders are created and
each one contains a subfolder classes. The output/classes contains the EasyBeans Server
classes and the tests/output/classes contains the classes used by the test suite.

url(http://wiki.easybeans.org/xwiki/bin/Main/Documentation)
url(http://wiki.easybeans.org/xwiki/bin/Main/Documentation)
url(http://wiki.easybeans.org/xwiki/bin/Main/Documentation)

6

Chapter 5. Running the suite
5.1. Requirements

First, all the requirements used in building chapter need to be checked.

5.2. Using Ant
In the tests folder of the project (named EasyBeans by default), the following three commands need
to be used:

1. ant install

It will install the binaries required by the test suite in the folder ejb3s.

2. ant run.server or run.server.debug (Server debug mode)

Then, EasyBeans server will be launched. When the following message is received, next step needs
to be done:

[java] INFO: Waiting requests...

3. ant tests.conformance

All tests will be run and a report will be produced. The report will be available in tests/out-
put/reports/conformance folder.

Note

After using ant tests.conformance, the JUnit Report format could be generated using
the command ant report.junit.format. The output file junit-noframes.html
will be available in tests/output/reports/conformance folder.

7

Chapter 6. How to write a test
The example shows the basis of a test with all steps used to build a EasyBeans test.

6.1. Requirements
This example only requires Java 5 knowledges.

6.2. Writing the test class code
This example tests if a business method can be invoked from a bean, and if the bean can return an
Integer value without modifications.

The source code(TestExample.java) can be found in the tests/examples folder of the
project (named EasyBeans by default):

package org.objectweb.easybeans.tests.examples;

import static org.objectweb.easybeans.tests.common.helper.EJBHelper.getBeanRemoteInstance;
import static org.testng.Assert.assertEquals;

import org.objectweb.easybeans.tests.common.ejbs.base.ItfExample;
import org.objectweb.easybeans.tests.common.ejbs.stateless.containermanaged.SLSBExample;
import org.testng.annotations.Configuration;
import org.testng.annotations.Test;

/**
* This is an example of a EasyBeans Test Suite Class.
* @reference It is used to specify the document that the tests cover. Example:
* JSR220-PROPOSED FINAL
* @requirement It is used to specify the classes and files needed to run the
* tests. Exampe: EasyBeans must be running and the bean
* org.objectweb.easybeans.tests.common.ejbs.stateless.containermanaged.SFSBExample
* must be deployed.
* @setup It is used to specify the classes and files needed to run the test.
* @author Eduardo Studzinski Estima de Castro
* @author Gisele Pinheiro Souza
*/
public class TestExample {

/**
* Constant.
*/
private static final Integer INPUT = new Integer(1);

/**
* Bean used in tests.
*/
private ItfExample<Integer> bean;

/**
* Gets a new bean instance used during the tests.
* @throws Exception if an error occurs during the setup.
*/
@Configuration(beforeTestMethod = true)
public void setup() throws Exception {
// Gets a bean instance.
bean = getBeanRemoteInstance(SLSBExample.class, ItfExample.class);
}

/**
* Indicates the test description. Example: Tests if the bean can return a
* value without modifications.
* @input It is used to specify the classes and files needed to run the
* test. Example: Integer value.
* @output It is used to specify the classes and files needed to run the
* test. Example: The same input integer.
* @throws Exception if an error occurs during the test.
*/
@Test
public void test00() throws Exception {
// Output value, it must be the same as the input.
Integer output = bean.getValue(INPUT);

How to write a test

8

// Test if input and output are equal.
assertEquals(INPUT, output, "The input and output values should be equal.");
}
}

6.3. TestNG Annotations
There are two mainly annotations in TestNG: @Configuration and @Test.

6.3.1. @Configuration
This annotation is used to make any method a setup or a teardown method. In addition, the @Config-
uration makes unnecessary to follow any naming convention in method names. The mainly properties
that could be used are:

• afterTest - if true, the method will be run after each test.

• afterTestClass- if true, the method will be run after all the tests in the test class.

• beforeTestClass- if true, the method will be run after the test class instantiation and before
tests methods.

• beforeTestMethod- if true, the method will be run before any test method.

In the example, the method setup() will request a new bean instance before any test method.

/**
* Gets a new bean instance used during the tests.
* @throws Exception if an error occurs during the setup.
*/
@Configuration(beforeTestMethod = true)
public void setup() throws Exception {
// Gets a bean instance.
bean = getBeanRemoteInstance(SLSBExample.class, ItfExample.class);
}

6.3.2. @Test
This annotation is used to define a method that will be run as a test and it is not necessary follow
any naming convention. In the example, the method test00() has the annotation and it will be a
test case:

@Test
public void test00() throws Exception {
...
}

If it is necessary to disable this test, the enabled property could be used:

@Test(enabled = false)
public void test00() throws Exception {
...
}

6.4. Helper Classes
To make easier the test development, some helper classes are available in the package
org.objectweb.easybeans.tests.common.helper

In the example, the EJBHelper class is used to get a bean instance:

bean = getBeanRemoteInstance(SLSBExample.class, ItfExample.class);

How to write a test

9

The method getBeanRemoteInstance() is used to a remote access of a bean and the method
getBeanLocalInstance() is used to a local access of a bean. They need two parameters:

1. The bean class;

2. The bean interface;

6.5. Writing the XML configuration file:
Once the test class is defined, it is necessary to write the XML configuration file for TestNG. The
following example indicates that the tests inside the package org.objectweb.easybeans.tests.examples
must be run:

<!DOCTYPE suite SYSTEM "http://beust.com/testng/testng-1.0.dtd">
<suite name="Test Suite Example" verbose="1">
<test name="Test Example">
<packages>
<package name="org.objectweb.easybeans.tests.examples"/>
</packages>
</test>
</suite>

The TestNG XML configuration file also supports the classes/class tags that define which class-
es must be run. This following example indicates that only the tests in the TestExample class must
be run:

<!DOCTYPE suite SYSTEM "http://beust.com/testng/testng-1.0.dtd">
<suite name="Test Suite Example" verbose="1">
<test name="Test Example">
<classes>
<class name="org.objectweb.easybeans.tests.examples.TestExample"/>
</classes>
</test>
</suite>

6.6. Additional Information
Additional information about TestNG could be found in www.testng.org [http://www.testng.org].

url(http://www.testng.org)
url(http://www.testng.org)

10

Chapter 7. How to contribute?
Anyone can contribute to the tests according with the follow guideline. Contributions are welcome.

7.1. JavaDoc comment convention
The test classes respect a comment convention that has some custom tags. The custom tags are:

• @reference - used in class comment. It is used to specify the document that the tests cover.

• @requirement - used in class comment. It is used to specify the classes and files needed to run the
tests.

• @setup - used in class comment. It is used to specify the items that must be set up before the test
execution.

• @input - used in method comment. It is used to specify the test inputs.

• @output - used in method comment. It is used to specify the test expected outputs.

7.2. Code convention
The Test Suite and the EasyBeans has the same code convention. You can see the convention
details in EasyBeans code convention [http://www.easybeans.org/doc/developerguide/en/integrated/
developerguide.html#code_convention].

7.3. Methodology for writing tests
• It is highly recommended the use of inheritance and generics types to avoid code duplication.

The tests must be independents, so after a test execution everything must be clear. It makes possible
to run the same test many times without problems.

• In the test methods, the try/catch is used only when the exception is expected.

7.4. Adding a test suite
The first thing needed is defining where the test classes should be in. After that, the TestNG XML file
must be created to run the tests. Each package has a XML file to run all package tests. In addition, an
entry for each test package is needed in the file src/java/testng_conformance.xml.

In the tests/examples folder of the project (named EasyBeans by default), there is a TestNG
XML file example called testng_xml:

<!DOCTYPE suite SYSTEM "http://beust.com/testng/testng-1.0.dtd">
<suite name="Test Suite Example" verbose="1">
<test name="Test Example">
<packages>
<package name="org.objectweb.easybeans.tests.examples"/>
</packages>
</test>
</suite>

7.5. Submmiting a contribution
The submmition has the same rule that the EasyBeans contributions. You can see
details in EasyBeans contribution [http://www.easybeans.org/doc/developerguide/en/integrated/
developerguide.html#contributing].

url(http://www.easybeans.org/doc/developerguide/en/integrated/developerguide.html#code_convention)
url(http://www.easybeans.org/doc/developerguide/en/integrated/developerguide.html#code_convention)
url(http://www.easybeans.org/doc/developerguide/en/integrated/developerguide.html#code_convention)
url(http://www.easybeans.org/doc/developerguide/en/integrated/developerguide.html#contributing)
url(http://www.easybeans.org/doc/developerguide/en/integrated/developerguide.html#contributing)
url(http://www.easybeans.org/doc/developerguide/en/integrated/developerguide.html#contributing)

11

Chapter 8. Current conformance test
results

The EasyBeans tests results will be available as soon as possible.

