EasyBeans User's guide

Florent BENOIT, ObjectWeb consortium

Table of Contents

L INtrodUCion tO EJIB3uui ittt et et et et e e e e aeab e aae 1
I @ V= = PP 1
L2, WY EJIB3 2 ettt sttt ettt eaaann 1
1.3 EIB2 VS EIB3 I EOD ...eiiiiiiiiiii ettt ettt et et 1
T o= = T T PP 1

1.4.1. Metadata aNNOLBEIONSevuneiiiiii ettt e et e et e et e e e et eas 1
1.4.2. BUSINESS INEEICEPLOIS . evvtiieiiieeii e et ee et e e e e e e e et e e et s e e e e e et e e et e e san e eean e eanneeanns 2
1.4.3. LifeCyCle INtErCEPOrSuiii e e e e e e e 2
1.4.4. DEPendenCy INJECLIONcieun e e e e e e e e e e e e e e e e e eanaas 2
T o = T (< g o= PSPPSR 2

2. Getting EasyBeans from SVIN FEPROSITONYivuuiiiieiii e e e e e e s e e e e e et e e e e e st s e eanaeeaneens 3

3. USING the EXAMPIES ... e 4
3.1. Compiling the XAMPIEScoviie e 4

TNt Nt O o T 0 1= £ 4
G300 7 00 1 o 1 4
3.2. RUNNING EXAMPIES ...oviiiiiieeii e e e e e e e e et e e e e e e et s e et e e et s e e et e e eaneeenns 4
3.2.1. Statel€SS SESSION DEAN .. eeeii i 4
200 St O =o' 5
3.2.1.2. RUN ThE SEIVEN ..ottt a e 5
3.2.1.3. Deploying the beanccoviiiii e 5
3214 RUNThE ClIENt ..o 5
3.2.2. Stateful SESSION DEAN .. .ceeeviiei e 5
G0 T B T o: T oo 5
3.2.2.2. RUN ThE SEIVEN ..t 6
3.2.2.3. Deploying the beanccouiiiii e 6
3224, RUNThE ClIENt ..o 6
323 ENtity DEAN .eec e 6
T 00 O B T=-o: T oo 6
3.2.3.2. RUN ThE SEIVEN «.iiiiiciii e 7
3.2.3.3. Deploying the beancoouiiii e 7
3.2.34. RUNThE ClIENt .. 7

4, Writing an HEllOWOrTA DEANouiii e e e e 8
T L= (111 (= 0= 8
4.2, Writing the DEaAN'S COURuniiii i e e e e e e 8

4.2.1. Writing the INLEIaCevuiiie i e eees 8
4.2.2. Writing the BUSINESS COUE ... ccvuiiiii i e 8
4.2.3. Defining it as a stateless SeSSioN DEaNccvvvviviii i 8
4.2.4. Packaging the DEANouiiii e 9
4.3. Writing the ClIENt'S COUEcvve i e e 9
4.4, Writing my first business method INtErCEPLOrcouviiiinieii i 10
4.5. Writing my first [ifecycle iNtErCEPLOreii e 10

Chapter 1. Introduction to EJB3

1.1. Overview

EJB3 is included in the next J2EE specification called JAVA EE 5. (http://java.sun.com/javaee/5/
[http://java.sun.com/javaee/5/])

The EJB3 specification is also caled JSR 220, which can be found at http://www.jcp.org/en/jsr/
detail 71d=220

itisdivided in three parts:

1. Corepart

2. Persistence part (Which is the persistence provider)
3. Simplified specification : it contains new features.

The EJB3 persistence provider are plugged into the EJB3 container. The persistence provider avail-
able are Hibernate [http://www.hibernate.org], Speedo [http://speedo.objectweb.org] (An ObjectWeb
product), etc.

1.2. Why EJB3 ?

EJB 2.x were too complex, for example, developer were using tools for making it easier.
» XDoclet (Attribute oriented programming) : http://xdoclet.sourceforge.net
» Hibernate for the persistence part : http://www.hibernate.org

The main focus on this specification is on EoD. This keyword means Ease Of Development. Thisis
done for example by using metadata attribute annotations.

By simplifying EJB development, there should have awider range of Java EE developers.

1.3. EJB2 vs EJB3 : EoD

The deployment descriptors are no longer required. All stuff can be done by using metadata annota-
tions.

The CMP (Container Managed Persistence) has been simplified. Thisis more like Hibernate or JDO.

Programmatic defaults : For example, the transaction model is set to REQUIRED by default. The
developer setsthe value only if he doesn't want use this specific value.

Reduction of the use of checked exceptions : The RemoteException is not mandatory anymore on
each remote business methods.

Inheritance is now alowed, so beans can extends some base code.

The native SQL queries are supported as an EJB-QL (Query Language) enhancement.

1.4. What's new

1.4.1. Metadata annotations

M etadata annotationsis new : To define a statel ess session bean, the @Statel ess annotation is declared

ontha hean-clace
onthePeaR-Cirass:

1

url(http://java.sun.com/javaee/5/)
url(http://www.jcp.org/en/jsr/detail?id=220)
url(http://www.jcp.org/en/jsr/detail?id=220)
url(http://www.hibernate.org)
url(http://speedo.objectweb.org)
url(http://xdoclet.sourceforge.net)
url(http://www.hibernate.org)

Introduction to EJB3

1.4.2.

1.4.3.

1.4.4.

1.4.5.

Business interceptors

Interceptors are new in EJB3. It's allow the developper to intercept each business method of the bean.
The parameters can be changed and the returned values too. In order to know the time that a method
takes for its execution, it can be done with thiskind of interceptor.

Lifecycle interceptors

In addition to business interceptors, the EJB2 callbacks, likeej bAct i vat e() method, are now de-
fined by using annotation. For ej bAct i vat e() method, this is done with the help of @PostActi-
vate annotation. This annotation is set on a method which will be called by the container.

Dependency injection
Dependency injectionisanew feature. It allowsto request that the contai ner inject resourcesinstead of

trying to get them. For example, with the previous specification, in order to get an EJB, the following
code was used :

try {

Gbj ect o = new Initial Context().|ookup("java: conp/env/ejb/ WEIB");
myBean = Portabl eRenpt eCbj ect. narrom o, Myl nterface. clas);

} catch (Nam ngException e) {

Now, thisis done by using only this code :

|@JB private Mylnterface nyBean; |

If the @EJB annotation is found in the class, the container will lookup and inject an instance of the
bean in the myBean variable.

Persistence

New things are linked to the persistence layer. For example EJB3 entities are POJO (Plain Old Java
Object). It means that they can be created by using the new() constructor : new MyEntity();

Al so entities are managed by an EntityManager. ie : entitymanager.persist(entity);

Entities have call backs available too.

Chapter 2. Getting EasyBeans from
SVN repository

Anyone can checkout source code from the SVN server. To do this, the following command should
be used (For GUI SVN client use, configure it appropriately):

svn checkout svn://svn.for ge.objectweb.or g/svnr oot/easybeans easybeans

Chapter 3. Using the examples

3.1. Compiling the examples

3.1.1. Requirements

Before trying to run the examples, the requirements in order to compile and run EasyBeans have to
be followed.

3.1.2. Compile

The ant tool is used to build the examples. Thistime, the bui | d. xm filethat isused islocated in
theexanpl es directory.

Thecommandant install_al | _exanpl es needsto belaunchedintheexanpl es directory :

Bui | dfi |l e: /home/ benoitf/workspace/ easybeans/ exanpl es/ bui | d. xm

i nstal | _al | _exanpl es:

init:

[mkdir] Created dir: /home/benoitf/workspace/ easybeans/output/dist/clients

[mkdir] Created dir: /home/benoitf/workspace/ easybeans/ out put/dist/ejbjars

[mkdir] Created dir: /honme/benoitf/workspace/ easybeans/clients

conpi | e:

[javac] Conpiling 5 source files to /honme/benoitf/workspace/ easybeans/ out put/cl asses
i nstal | . persi stence:

install:

[copy] Copying 4 files to /hone/benoitf/workspace/ easybeans/ ej b3s/ st atel ess. jar

[jar] Building jar: /home/benoitf/workspace/ easybeans/clients/client-stateless.jar
init:

conpi | e:

[javac] Conpiling 3 source files to /honme/benoitf/workspace/ easybeans/ out put/cl asses
i nstal | . persi stence:

install:

[copy] Copying 2 files to /home/benoitf/workspace/ easybeans/ ejb3s/stateful.jar

[jar] Building jar: /honme/benoitf/workspace/ easybeans/clients/client-stateful.jar
init:

conpi | e:

[javac] Conpiling 4 source files to /honme/benoitf/workspace/ easybeans/ out put/cl asses
i nstal | . persi stence:

[mkdir] Created dir: /honme/benoitf/workspace/ easybeans/ej b3s/entitybean.jar/MVETA-1 NF
[copy] Copying 1 file to /honme/benoitf/workspace/ easybeans/ejb3s/entitybean.jar/ MVETA-1 NF
install:

[copy] Copying 4 files to /home/benoitf/workspace/ easybeans/ ej b3s/entitybean.jar
[jar] Building jar: /hone/benoitf/workspace/ easybeans/clients/client-entitybean.jar
BUI LD SUCCESSFUL

Total tinme: 4 seconds

The examplesare copied under theej b3s/ folder of the project and are available for the deployment.

Note

If EasyBeans server is running, it will detect these new applications and deploy them
automatically.

3.2. Running examples

Each example hasitsown bui | d. xi filein order to be independent from each other.

3.2.1. Stateless session bean

Thebui | d. xml filetouseisinexanpl es/ st at el essbean folder.

Using the examples

3.2.1.1. Description

This example is a stateless session bean. It contains an hel | oWbr | d() method which displays a
text on the server side. Also, it demonstrates the use of EJB3 annotation like @Statel ess.

Thet r ace() methodisannotated with @A roundinvoke EJB3 annotation. Thismethod will becalled
at each call on a business method. The business methods are defined in the interface implemented by
the SessionBean class.

The signature of the method annotated by @A roundinvoke when it is defined in the bean class, needs
to follow this signature :

(private| protected|public) Ooject nmethodNane(lnvocati onContext invocati onContext)
t hrows Exception;

Note

As a new feature of the EJB3, the bean's interface doesn't need to extend anymore the
Remote interface.

3.2.1.2. Run the server

If the server is not available, it needsto be run by following the steps described in this guide.

3.2.1.3. Deploying the bean

The statel ess session bean needs to be deployed. It is done automatically if the bean hasbeen installed
inej b3s folder.

On the server side, the following output should be seen :

[java] INFO Creating container for archive

/ hone/ benoi t f/ wor kspace/ easybeans/ ej b3s/ st at el ess. j ar.

[java] INFO Analyze el apsed during : 95 ns

[java] INFO Binding bean XXX with interface XXX into registry with jndi name XXX
[java] I NFO Enhancenent el apsed during : 105 ns

[java] INFO Container started in : 274 ns

If these informations are on the screen, it means that the container is ready to receive client calls.

3.2.1.4. Run the client

3.2.2.

As the container has been started, the client can be launched.
The client is run with the following ant command : ant run.client

If the client runs successfully, the following output is displayed :

[java] Calling helloWrld nethod...
[java] Add 1 + 2...
[java] Sum= "3'.

Note

In the client's code, the use of PortableRemoteObject.narrow() call is not required any-
more.

Stateful session bean

Thebui | d. xm filetouseisinexanpl es/ st at ef ul bean folder.

3.2.2.1. Description

This example is astateful session bean using the Sessi onSynchr oni zat i on interface.

5

Using the examples

It uses the @Stateful annotation and use the default transaction model which is REQUIRED.

3.2.2.2. Run the server

If the server is not available, it needsto be run by following the steps described in this guide.

3.2.2.3. Deploying the bean

The stateful session bean needs to be deployed. It is done automatically if the bean has been installed
inej b3s folder.

On the server side, the following output should be seen :

[java] INFO Creating container for archive

/ home/ benoi t f/ wor kspace/ easybeans/ ej b3s/stateful .jar.

[java] INFO Analyze el apsed during : 89 ns

[java] INFO Enhancenent el apsed during : 76 s

[java] INFO Binding bean XXX with interface XXX into registry with jndi name XXX
[java] INFO Container started in : 251 ns

If these informations are on the screen, it means that the container is ready to receive client calls.

3.2.2.4. Run the client

Asthe container has been started, the client can be launched.
The client isrun with the following ant command : ant run.client

If the client runs successfully, the following output is displayed :

[java] Start a first transaction
[java] First request on the new bean
[java] Second request on the bean
[java] Commit the transaction

[java] Start a second transaction
[java] Buy 50 anpunt.

[java] Rollback the transaction
[java] after rollback, value = 30
[java] Request outside any transaction
[java] Check that value = 30

[java] ClientStateful OK Exiting.

3.2.3. Entity bean

Thebui | d. xm filetouseisinexanpl es/ enti t ybean folder.

3.2.3.1. Description

Thisexampleis an entity bean.

It describes how to use the new Java Persistence Model of an EJB3 persistence provider. To access
EJB3 entities which are POJO, a statel ess session bean is used. It is afacade bean.

The Entity classis a POJO class annotated with @Entity. The entities class are managed by the per-
sistence provider.

Currently the persistence provider is provided by the Hibernate product, but ObjectWeb Speedo prod-
uct should be used sooner. Users will have the choice between providers.

It It uses the @Stateful annotation and use the default transaction model which is REQUIRED.

This example shows the use of an entity bean and using EJB3 persistence provider which isin this
prototype Hibernate. In a next version, the ObjectWeb Speedo product will provide an EJB3 persis-
tence provider, so users will have the choice between these providers.

Using the examples

3.2.3.2. Run the server
If the server is not available, it needsto be run by following the steps described in this guide.
3.2.3.3. Deploying the bean

The entity bean needsto be deployed. It isdone automaticaly if the bean hasbeeninstalledinej b3s
folder.

On the server side, the following output should be seen :

[java] INFO Creating container for archive

/ hone/ benoi t f/ wor kspace/ easybeans/ ej b3s/ enti t ybean. j ar.
[java] INFO Analyze el apsed during : 95 nms

[java] | NFO Enhancenent el apsed during : 102 ns

[java] INFO No persistence provider was set, set to val ue
or g. hi bernat e. ej b. H ber nat ePer si st ence.

[java] INFO Hibernate 3.1.1

[java] I NFO Using provided datasource

[java] | NFO RDBMS: HSQ. Dat abase Engine, version: 1.8.0
[...]

[java] INFO Binding bean XXX with interface XXX into registry with jndi name XXX
[java] INFO Container started in : 2010 nms

If these informations are on the screen, it means that the container is ready to receive client calls.

3.2.3.4. Run the client

Asthe container has been started, the client can be launched.
The client is run with the following ant command : ant run.client

If the client runs successfully, the following output is displayed :

Fl or ent
Whal e

[java] Enployee with id 1
[java] Enployee with id 2

Chapter 4. Writing an HelloWorld bean

4.1. Requirements

This example shows the basis of an EJB3 application with all steps used to build and run the EJB.

The only thing to know is how to run the server.

4.2. Writing the bean's code

4.2.1.

4.2.2.

4.2.3.

The Helloworld bean is divided in two parts. the business interface and the class implementing this
interface.

Writing the Interface

Theinterface declares only one method, hel | oWbr I d() :

package org. obj ect web. easybeans. tutori al . hel | oworl d;

/**

* Interface of the Hell owrld exanple.
* @ut hor Florent Benoit

>/

public interface Hell oWrldlnterface {

/**

* Hello world.

>/

voi d hel | oworl d();

}

Note

Even if this interface is used as a remote interface, it doesn't need to extend
j ava. rm . Renot e interface.

Writing the business code

The following code implements the existing interface :

package org. obj ect web. easybeans. tutorial . hel | oworl d;

/**

* Business code for the HelloWwrld interface.

* @ut hor Fl orent Benoit

*/

public class Hell owr| dBean inplements Hel | oworldlnterface {

/**

* Hello world inplenmentation.

*/

public void helloWrld() {
Systemout.printin("Hello world !");

}

}

Note

At this moment, the bean is not an EJB, thisis only aclass implementing an interface.

Defining it as a stateless session bean

Now that the code of the EJB has been written, it's the time to define the EJB application.

8

Writing an HelloWorld bean

4.2.4.

This bean will be a statel ess session bean, so the class will be annotated with @Statel ess annotation.

And the interface needs to be available for remote clients, so it will be aremote interface. Thisisdone
by using the @Remote annotation.

package org. obj ect web. easybeans. tutorial . hel | oworl d;

/**

* Busi ness code for the HelloWrld interface.

* @ut hor Florent Benoit

*/

@t at el ess

@Renot e(Hel | oWor | dl nter face. cl ass)

public class Hell oWrl dBean inplenments Hell oWrldlnterface {

/**

* Hello world inplenmentation.

*

/

public void helloWrld() {
Systemout.printin("Hello world !'");
}

}

Note

If aclass implements a single interface, this interface is defined as a local interface by
defaullt.

Packaging the bean

Thetwo classes (Hel | oWor | dI nt er f ace and Hel | oWor | dBean) have to be compiled.

Then, afolder named ej b3s/ hel | owor | d. j ar/ needs to be created and classes have to go in
thisfolder. They will be deployed and loaded automatically.

4.3. Writing the client's code

The client access directly to the business interface and can call directly the methods of the bean.

package org. obj ect web. easybeans. tutori al . hel | oworl d;

i mport j avax. nani ng. Cont ext ;
i mport javax.naming.|nitial Context;

/**

* Client of the helloworld bean.
* @ut hor Florent Benoit

*/

public final class Cient {

/**

* JNDI nane of the bean.

>/

private static final String JND _NAME =

"org. obj ect web. easybeans. tutori al . hel | owor| d. Hel | oWr | dBean”
+ "_" + Hellowbrldinterface.cl ass. get Name() + "@Renote"

/**

* Wility class. No public constructor
>/

private Cient() {

}

/**

* Main nethod.

* @aram args the argunments (not required)

* @hrows Exception if exception is found.

>/

public static void main(final String[] args) throws Exception {
Context initial Context = new Initial Context();

Hel | oWor | dl nterface businessltf =

Writing an HelloWorld bean

(Hel l oWorl dl nterface) initial Context.|ookup(JND _NAME);

Systemout.printin("Calling helloWrld nmethod...");
busi nessltf. hel |l oWrld();

}
}

Note

Theclient doesn't call PortableRemoteObject.narrow() method. Also, no create() method
isrequired.

4.4. Writing my first business method intercep-

tor

An interceptor can be defined in the bean class or in another class. In this example, it will be defined
in the bean's class. A business interceptor is defined by using the @AroundInvoke annotation.

The following interceptor will print the name of the method that is invoked. Of course, this can be
extended to do more stuff.

/**

* Dummy interceptor.

* @araminvocati onContext contains attributes of invocation

* @eturn nethod's invocation result

* @hrows Exception if invocation fails

>/

@\r oundl nvoke

public Object intercept(final InvocationContext invocationContext) throws Exception {
System out.println("Intercepting method '" + invocati onContext.get Met hod(). get Name()
Pl

try {
return invocationContext.proceed();
} finally {
System out. println("End of intercepting.");
}
}
s Caution

Don't forget to call the pr oceed() method on the invocationContext object. Else, the
invocation is broken.

4.5. Writing my first lifecycle interceptor

The bean can be notified of some lifecycle events. For example when abean is created or destroyed.

In the following example, a method of the bean will received an event when an instance of the bean
isbuilt. Thisis done by using the @PostConstruct annotation.

Llifecycleinterceptors of abean can be defined in another class.

/**

* Notified of postconstruct event.

>/

@ost Const ruct

public void notified() {

System out. println("New i nstance of this bean");

}

10

