EasyBeans User's guide

Florent BENOIT, ObjectWeb consortium

Table of Contents

1. Introduction to EJB3
1.1. Overview

1.2. The Advantage Of EJB3ccouiiiiiiiiii i e e e e e e e e e e e e e e e eeen
1.3 EIB2 VS EIB3: EOD ..ottt ettt et e
O T T -

0 RV = = o = v AN) 0= {0 R PP

1.4.2. Busin

eSS g1 = o (0] £ PR PUPTPRPPRPRN

1.4.3. LifeCyCle INEICEPLOIS .. cvve et e e e e e e e e e e e eanaeees
1.4.4. DEPendenCy INJECHION ... ccuuiiei i e e e e e e e e e et e e e e eaneee
T o = T (< g o= PSPPSR
2. Getting EasyBeans From the SVN REPOSITONYcvvvuiiiiiieiiiieiii e ee e e e e e e e e eaens

3. Using the Examples

3.1. Compiling the EXAMPIESuuiiiiieiii e e e e e e e

3.1.1. Requi

[0S 10101 PP

G300 7 00 1 o 1

T2 o 10 T o o o] o) =
3.2.1. StAtEl€SS SESSION BEAN ...cvviiiiiiiii i
200 St O =o'

3.2.1.2. RUNNING the SEIVEN ...civiiiii e

3.2.1.3. Deploying the BEaNccuuiiiiiiii i e e

3.2.1.4. RUNNING the CHENtoiiiiiie e e e e e

3.2.2. Statef

U1 ISTSS s Lo T = 1= [

G0 T B T o: T oo

3.2.2.2. RUNNING the SEIVENcoviiiii e e

3.2.2.3. Deploying the BEaNccuuiiiiici e e

3.22.4. RUNNING the CHENtoiiiici e e e

T T 01112 = = o N
T 00 O B T=-o: T oo

3.2.3.2. RUNNING the SEIVENcoviiiii e

3.2.3.3. Deploying the BEaNccuuiiiiiii e

3.2.3.4. RUNNING the CHENtoiiiiii e e e e

4. Writing @ HEIOWOITA DEAN ... e e e e e e e e ees
T L= (111 (= 0=
4.2, Writing Code for the BEANciuuiiii i e
4.2.1. Writing the INLEIaCevuiiie i e eees
4.2.2. Writing the BUSINESS COE ... cevuiiiiiieiieec e e e e e e e
4.2.3. Defining It as a Stateless SeSSION BEANovvviieiiiieiiiieeei e e
4.2.4. Packaging the BEaNcccuiiiiiiiiii e e

4.3. Writing the CHENt COOEiviniiiii e e e e e e e e e e eanees
4.4, Writing a First Business Method INtErCEPLOrcvuuieiuieiiii e e e
4.5. Writing a First Lifecycle INtErCeptorovvniii e

Chapter 1. Introduction to EJB3

1.1. Overview

EJB3 isincluded in the next 2EE specification, JAVA EE 5. (http://java.sun.com/javaee/5/ [http://
java.sun.com/javaee/5/])

The EJB3 specification is defined in JSR 220, which can be found at the following location: http://
www.jcp.org/en/jsr/detail 2id=220

The publication is published as three separate files:

1. Thecore

2. The persistence provider

3. Thesimplified specification, which contains new features

The EJB3 persistence provider isplugged into the EJB3 container. Available persistence providersare:
Hibernate [http://www.hibernate.org], Speedo [http://speedo.objectweb.org] (An ObjectWeb prod-
uct), etc.

1.2. The Advantage of EJB3

EJB 2.x was too complex. Developers were using additional tools to make it easier.
» XDoclet (Attribute oriented programming): http://xdoclet.sourceforge.net
» Hibernate for persistence: http://www.hibernate.org

The main focusfor this specification is on Ease Of Development (EoD). One major way this has been
simplified is by using metadata attribute annotations suppported by JDK 5.0.

Simplifying EJB development should produce awider range of Java EE developers.

1.3. EJB2 vs EJB3: EoD

The deployment descriptors are no longer required; everything can be accomplished using metadata
annotations.

The CMP (Container Managed Persistence) has been simplified; it isnow morelike Hibernate or JDO.
Programmatic defaults have been incorporated. For example, the transaction model is set to RE-
QUIRED by default. The value needs to be set only if a specific value other than the default value
is desired.

The use of checked exceptions is reduced; the RemoteException is no longer mandatory on each
remote business method.

Inheritance is now alowed; therefore, beans can extend some of the base code.

The native SQL queries are supported as an EJB-QL (Query Language) enhancement.

1.4. New Features

1.4.1. Metadata Annotations

url(http://java.sun.com/javaee/5/)
url(http://www.jcp.org/en/jsr/detail?id=220)
url(http://www.jcp.org/en/jsr/detail?id=220)
url(http://www.hibernate.org)
url(http://speedo.objectweb.org)
url(http://xdoclet.sourceforge.net)
url(http://www.hibernate.org)

Introduction to EJB3

1.4.2.

1.4.3.

1.4.4.

1.4.5.

Business Interceptors

The new business interceptors allow the developer to intercept each business method of the bean.
The parameters and the returned values can be changed. For example, an interceptor can be used to
determine the time that a method takes to execute.

Lifecycle Interceptors

In addition to business interceptors, the EJB2 callbacks (such as the ej bAct i vat e() method)
are now defined using annotation. For the ej bAct i vat e() method, this is done with the help of
@PostActivate annotation. This annotation is set on a method that will be called by the container.

Dependency Injection

Dependency injection makesit possible to request that the container inject resources, instead of trying
to get them. For example, with the EJB2 specification, in order to get an EJB, the following code
was used:

try {

Gbj ect o = new Initial Context().|ookup("java: conp/env/ejb/ WEIB");
myBean = Portabl eRenpt eCbj ect. narrom o, Myl nterface. clas);

} catch (Nam ngException e) {

With EJB3 thisis done using only the following code:

|@JB private Mylnterface nyBean; |

If the @EJIB annotation is found in the class, the container will look up and inject an instance of the
bean in the myBean variable.

Persistence

New features are linked to the persistence layer. For example, EJB3 entities are POJO (Plain Old Java
Object). This means that they can be created by using thenew() constructor: new MyEntity();

Al so entities are managed by an EntityManager: entitymanager.persist(entity);

In addition, entities have callbacks available.

Chapter 2. Getting EasyBeans From
the SVN Repository

Anyone can check out source code from the SVN server using the following command (for GUI SVN
client use, configuration values are the same as for command line use):

svn checkout svn://svn.for ge.objectweb.or g/svnr oot/easybeans easybeans

Chapter 3. Using the Examples

3.1. Compiling the Examples

3.1.1.

3.1.2.

Requirements

Before running the examples, be sure to follow the requirements for compiling and running these
EasyBeans examples.

Compile

The ant toal is used to build the examples. To compile the examples, use the bui | d. xmi file that
islocated in the exanpl es directory.

Thecommand ant i nstall _all _exanpl es must belaunched inthe exanpl es directory:

Bui | dfi |l e: /home/ benoitf/workspace/ easybeans/ exanpl es/ bui | d. xm

i nstal | _al | _exanpl es:

init:

[mkdir] Created dir: /home/benoitf/workspace/ easybeans/output/dist/clients

[mkdir] Created dir: /home/benoitf/workspace/ easybeans/ out put/dist/ejbjars

[mkdir] Created dir: /honme/benoitf/workspace/ easybeans/clients

conpi | e:

[javac] Conpiling 5 source files to /honme/benoitf/workspace/ easybeans/ out put/cl asses
i nstal | . persi stence:

install:

[copy] Copying 4 files to /hone/benoitf/workspace/ easybeans/ ej b3s/ st atel ess. jar

[jar] Building jar: /home/benoitf/workspace/ easybeans/clients/client-stateless.jar
init:

conpi | e:

[javac] Conpiling 3 source files to /honme/benoitf/workspace/ easybeans/ out put/cl asses
i nstal | . persi stence:

install:

[copy] Copying 2 files to /home/benoitf/workspace/ easybeans/ ejb3s/stateful.jar

[jar] Building jar: /honme/benoitf/workspace/ easybeans/clients/client-stateful.jar
init:

conpi | e:

[javac] Conpiling 4 source files to /honme/benoitf/workspace/ easybeans/ out put/cl asses
i nstal | . persi stence:

[mkdir] Created dir: /honme/benoitf/workspace/ easybeans/ej b3s/entitybean.jar/MVETA-1 NF
[copy] Copying 1 file to /honme/benoitf/workspace/ easybeans/ejb3s/entitybean.jar/ MVETA-1 NF
install:

[copy] Copying 4 files to /home/benoitf/workspace/ easybeans/ ej b3s/entitybean.jar
[jar] Building jar: /hone/benoitf/workspace/ easybeans/clients/client-entitybean.jar
BUI LD SUCCESSFUL

Total tinme: 4 seconds

The examplesare copied under theej b3s/ folder of the project and are available for the deployment.

Note

If the EasyBeans server isrunning, it will detect these new applications and deploy them
automatically.

3.2. Running Examples

3.2.1.

Each example hasitsown bui | d. xm file; this allows each example to be run independently.

Stateless Session Bean

Thebui | d. xm filefor thisexampleislocated in the exanpl es/ st at el essbean folder.

Using the Examples

3.2.1.1. Description

This example is a statel ess session bean. It containsahel | oWbr | d() method that displays text on
the server side. Additionally, it demonstrates the use of EJB3 annotation, such as @Stateless.

Thet r ace() methodisannotated with @A roundinvoke EJB3 annotation. Thismethod will becalled
at each call on a business method. The business methods are defined in the interface implemented by
the SessionBean class.

The signature of the method annotated by @Aroundinvoke when it is defined in the bean class, must
follow this signature:

(private| protected|public) Ooject nmethodNane(lnvocati onContext invocati onContext)
t hrows Exception;

Note

As anew feature of the EJB3, the bean's interface does not need to extend the Remote
interface.

3.2.1.2. Running the Server

If the server is not available, it must be run by following the steps described in Chapter 3, "Running
the EasyBeans Server."

3.2.1.3. Deploying the Bean

The stateless session bean must be deployed. If the bean has been installed in the ej b3s folder, this
is done automatically.

On the server side, the following output should be seen:

[java] INFO Creating container for archive

/ hone/ benoi t f/ wor kspace/ easybeans/ ej b3s/ st at el ess. j ar.

[java] INFO Analyze el apsed during : 95 ns

[java] INFO Binding bean XXX with interface XXX into registry with jndi name XXX
[java] I NFO Enhancenent el apsed during : 105 ns

[java] INFO Container started in : 274 ns

Once thisinformation is displayed on the screen, the container is ready to receive client calls.

3.2.1.4. Running the Client

3.2.2.

Once the container has been started, the client can be launched.
Run the client with the following ant command: ant run.client

If the client runs successfully, the following output is displayed:

[java] Calling helloWrld nethod...
[java] Add 1 + 2...

[java] Sum= "3'.

Note

In the client's code, the use of the PortableRemoteObject.narrow() call is no longer re-
quired.

Stateful Session Bean

Thebui | d. xrmd filefor thisexampleislocated in the exanpl es/ st at ef ul bean folder.

Using the Examples

3.2.2.1. Description
Thisis an example of a stateful session bean using the Sessi onSynchr oni zat i on interface.
It uses the @Stateful annotation and uses the default transaction model, which is REQUIRED.
3.2.2.2. Running the Server

If the server is not available, it must be run by following the steps described in Chapter 3, "Running
the EasyBeans Server."

3.2.2.3. Deploying the Bean

The stateful session bean must be deployed. It is done automatically if the bean has been installed in
theej b3s folder.

On the server side, the following output should be seen:

[java] INFO Creating container for archive

/ hone/ benoi t f/ wor kspace/ easybeans/ ej b3s/ stateful . jar.

[java] INFO Analyze el apsed during : 89 ns

[java] I NFO Enhancenent el apsed during : 76 nms

[java] INFO Binding bean XXX with interface XXX into registry with jndi name XXX
[java] INFO Container started in : 251 ns

Once this information is displayed on the screen, the container is ready to receive client calls.

3.2.2.4. Running the Client

Once the container has been started, the client can be launched.
Run the client with the following ant command: ant run.client

If the client runs successfully, the following output is displayed:

[java] Start a first transaction
[java] First request on the new bean
[java] Second request on the bean
[java] Commit the transaction

[java] Start a second transaction
[java] Buy 50 anount.

[java] Rollback the transaction
[java] after rollback, value = 30
[java] Request outside any transaction
[java] Check that value = 30

[java] dientStateful OK Exiting.

3.2.3. Entity Bean

Thebui | d. xm filefor thisexampleislocated in the exanpl es/ ent i t ybean folder.

3.2.3.1. Description

Thisis an example of an entity bean. It describes how to use the new Java Persistence Model of an
EJB3 persistence provider. To access EJB3 entities that are POJO, a statel ess session bean is used.
It is afacade bean.

The Entity classis aPOJO class annotated with @Entity. The entities classis managed by the persis-
tence provider.

Currently, the persistence provider is supplied by the Hibernate product, but the ObjectWeb Speedo
product should be available soon. Users will have the choice between providers.

This example uses the @Stateful annotation and uses the default transaction model, which is RE-
QUIRED.

Using the Examples

The example shows an entity bean using EJB3 Hibernate-prototype persistence provider.

3.2.3.2. Running the Server

If the server is not available, it must be run following the steps described in Chapter 3, "Running the
EasyBeans Server."

3.2.3.3. Deploying the Bean

The entity bean must be deployed. It is done automatically if the bean hasbeeninstalledintheej b3s
folder.

On the server side, the following output should be seen:

[java] INFO Creating container for archive

/ home/ benoi t f/ wor kspace/ easybeans/ ej b3s/ enti tybean. jar.
[java] INFO Analyze el apsed during : 95 ns

[java] INFO Enhancenent el apsed during : 102 ns

[java] INFO No persistence provider was set, set to value
or g. hi bernat e. ej b. Hi ber nat ePer si st ence.

[java] INFO Hibernate 3.1.1

[java] INFO Using provided datasource

[java] INFO RDBMS: HSQL Database Engine, version: 1.8.0
[...
[java] INFO Binding bean XXX with interface XXX into registry with jndi name XXX
[java] INFO Container started in : 2010 ns

Once thisinformation is displayed on the screen, the container is ready to receive client calls.

3.2.3.4. Running the Client

Once the container has been started, the client can be launched.
The client isrun with the following ant command: ant run.client

If the client runs successfully, the following output is displayed:

Fl or ent
Whal e

[java] Enployee with id 1
[java] Enployee with id 2

Chapter 4. Writing a HelloWorld bean

4.1. Requirements

This example illustrates the basics of an EJB3 application, showing all the steps used to build and
run the EJB.

The only addtional information required is to know how to run the server.

4.2. Writing Code for the Bean

4.2.1.

4.2.2.

The HelloWorld bean is divided into two parts: the business interface, and the class implementing
thisinterface.

Writing the Interface

Theinterface declares only one method: hel | oWor | d()

package org. obj ect web. easybeans. tutori al . hel | oworl d;

/**

* Interface of the Hell owrld exanple.
* @ut hor Florent Benoit

>/

public interface Hell oWrldlnterface {

/**

* Hello world.

>/

voi d hel | oworl d();

}

Note

Even if this interface is used as a remote interface, it does not need to extend
j ava. rm . Renot e interface.

Writing the Business Code

The following code implements the existing interface:

package org. obj ect web. easybeans. tutorial . hel | oworl d;

/**

* Business code for the Hellowrld interface.

* @ut hor Fl orent Benoit

*/

public class Hell oWrl dBean i npl ements Hel | oworldlnterface {

/**

* Hello world inplenmentation.

*/

public void helloWrld() {
Systemout.printin("Hello world !");

}

}

Note

At this moment, the bean is not an EJB; thisis only a class implementing an interface.

Writing a Helloworld bean

4.2.3.

4.2.4.

Defining It as a Stateless Session Bean

Now that the EJB code has been written, it is time to define the EJB application.
This bean will be astatel ess session bean, thus the class will be annotated with @Statel ess annotation.

In addition, the interface must be a remote interface to be available for remote clients. Thisis done
by using the @Remote annotation.

package org. obj ect web. easybeans. tutorial . hel | oworl d;

/**

* Business code for the Hellowrld interface.

* @ut hor Fl orent Benoit

*/

@5t at el ess

@Renot e(Hel | oWor | dl nt er f ace. cl ass)

public class Hell oWrl| dBean inplements Hel | oworldlnterface {

/**

* Hello world inplenmentation.

*/

public void helloWrld() {
Systemout.printin("Hello world !");

}

}

Note

If aclass implements a single interface, this interface is defined as alocal interface by
default.

Packaging the Bean

Thetwo classes (Hel | oWor | dI nt er f ace and Hel | oWbr | dBean) must be compiled.

Then, afolder named ej b3s/ hel | owor | d. j ar/ must be created and classes placed in thisfolder.
They will be deployed and loaded automatically.

4.3. Writing the Client Code

The client can access the business interface directly and can call the methods of the bean directly.

package org. obj ect web. easybeans. tutori al . hel | oworl d;

i mport j avax. namni ng. Cont ext ;
i mport javax.naming.|nitial Context;

/**

* Client of the helloworld bean.
* @ut hor Florent Benoit

>/

public final class Cient {

/**

* JNDI nane of the bean.

*/

private static final String JND _NAME =

"org. obj ect web. easybeans. tutori al . hel | owor| d. Hel | oWr | dBean"
+ "_" + Hell oWorldinterface.cl ass. get Name() + "@wenote"

/**

* Wility class. No public constructor
*/

private Cient() {

}

[**

* Main met hod.

* @aram args the arguments (not required)

Writing a Helloworld bean

* @hrows Exception if exception is found.

*/

public static void main(final String[] args) throws Exception {
Context initial Context = new Initial Context();

Hel | oWor | dl nterface businessltf =
(Hel l oWorl dl nterface) initial Context.|ookup(JND _NAME);

System out.printin("Calling helloWrld nmethod...");
busi nessltf. hell oWrld();

}
}

Note

The client does not call the PortableRemoteObject.narrow() method. Also, no create()
method is required.

4.4. Writing a First Business Method Intercep-
tor

An interceptor can be defined in the bean class or in another class. In this example, it will be defined
in the bean's class. A business interceptor is defined by using the @AroundInvoke annotation.

The following interceptor will print the name of the method that is invoked. Of course, this can be
extended to do more stuff.

/**

* Dummy interceptor.

* @araminvocati onContext contains attributes of invocation

* @eturn nethod's invocation result

* @hrows Exception if invocation fails

>/

@\r oundl nvoke

public Object intercept(final InvocationContext invocationContext) throws Exception {
System out.println("Intercepting method '" + invocati onContext.get Met hod(). get Name()
NERE

try {
return invocationContext.proceed();

} finally {

System out.println("End of intercepting.");
}
}

A Caution

Don't forget to call the pr oceed() method on the invocationContext object. Else, the
invocation is broken.

4.5. Writing a First Lifecycle Interceptor

The bean can be notified of some lifecycle events, for example when a bean is created or destroyed.

In the following example, a method of the bean will received an event when an instance of the bean
isbuilt. Thisis done by using the @PostConstruct annotation.

Llifecycleinterceptors of abean may be defined in another class.

/**

* Notified of postconstruct event.

>/

@ost Const ruct

public void notified() {

System out. println("New i nstance of this bean");

}

10

