EasyBeans User's guide

Florent BENOIT, ObjectWeb consortium

Table of Contents

L INtroduction t0 BEIB3uuiiiiiii e 1
N @ 1= PP 1
1.2. The Advantage of EIB3cocuuiiiiiiiiieiii e e e e e e e 1
1.3 EIB2 VS EJB3: EOD ...couiiiiiiiiie i 1
T4 NEW FEAIUMNESeeiee et e e 1

1.4.1. Metadata ANNOLALIONSeeiieiieeeie e eaees 1
1.4.2. BUSINESS INtEICEPLONS . .vvuiii et e e e e 2
1.4.3. Lifecycle INtErCEptorS ... evee e e 2
1.4.4. Dependency INJECHIONoviiiiiii e e 2
LA5. PEISISIENCE vttt e 2

2. Getting EasyBeans From the SVN REPOSITOIYc..vvvvnieiiiiieiiiieiii e e e e e e 3

3. USING the EXAMPIESuiciiiiei e e e e e e e e 4
3.1. Compiling the EXamMPIESuiiiiceie e e e e 4

TN B o 011~ o £ 4
312, COMPIIE e 4
3.2. RUNNING EXAMPIES ...t e e e an s 5
3.2.1. Stateless SESSION BEANcevvniiiiiiieiciii e 5
G700 W R B =< 11 5
3.2.1.2. RUNNING thE SEIVErieviieii i 5
3.2.1.3. Deploying the Beancocevuiiiiiiieii e 5
3.2.1.4. Running the Clentc.ooviiiiiiiii e 6
3.2.2. Stateful SESSION BEANuuiiiiiiiieeeei e 6
G720 W B 1= 11 o R 6
3.2.2.2. RUNNING the SEIVErieiiicii e 6
3.2.2.3. Deploying the Beancocevuiiiiiiieiii e 6
3.22.4. Running the Clentc.ooveiiiiiiii e e 6
323 ENtity BEaN ..covvieiiiii e 7
G720 1 R B 1= 11 o R 7
3.2.3.2. RUNNING the SEIVErieviiii e 7
3.2.3.3. Deploying the Beancocvvviiiiiiieii e 7
3.23.4. Running the Clientc.oovviiiiiiii e 7
3.2.3.5. Properties for the persitenCeoovvvveviiiiiiiieeie e 8
3.2.4. SECUNLY EXAMPIE ..uiii i e e e 8
T 1 T B 1= o 11 R 8
3.24.2. RUNNING the SEIVEriiviiiii e 8
3.2.4.3. Deploying the Beancocevuiiiiiiieii e 8
3.24.4. Running the Clientc.oovvii i 9

4. Writing a HelloWOorld Deancooouiiii e 10
I B = (U1 (=01 10
4.2. Writing Code for the BEaNocoviiiiii i 10

4.2.1. Writing the INterfaceoveii i 10
4.2.2. Writing the BuSiNESS COOEcccvuiiiiiiiii e e e 10
4.2.3. Defining It as a Stateless Session Beanccvvvvvvivviiiieviinccceceeeeen, 11
4.2.4. Packaging the BEaNcccuiiiiiieiiiici e 11
4.3. Writing the ClIent COUEuiviiiieii e e s 11
4.4. Writing a First Business Method Interceptorccoovvieviiiiiiiici e, 12
4.5. Writing a First Lifecycle INterceptorocuovvviiiiiiiiieie e, 12

5. Configuration filciee e e 14
30 I 1 oo (0o 1o PP 14
32 @1 T 11 = (o] o 14

5.2.1. RMI COMPONENT ...oeniieit e e e e e e e e e e e e eanes 14
5.2.2. Transaction COMPONENEcvvuiiiiieeei e e e e e e e e e e e e et e e e eanaeeeen 15
5.2.3. IMS COMPONENEueieieeieeeei e e et e e e e e e e e e e e e e s e e s e e e eaneeanees 15
5.2.4, HSQL dat@haseovvvvvnieiiiiiii et 15
I N | 2 T @ o 15

EasyBeans User's guide

5.2.6. SMartServer COMPONENTuuiiriiiri it eeaees 15

5.3. Advanced CONFIQUIBLIONuuuiiiiiieieii e e 15
5.3.1 Mapping file ..o 15

5.3.2. Other configuration filec.ooiiiiiiiii e 16

6. SMAt INDI TACIOMY ..oevtiieei e et e e e eees 17
6.1, INEFOAUCTION ...ttt ettt e e e e eaaans 17

6.2. RUNNING the CHIENLceeeii e 17
6.2.1. Initial Context FaCIONYoviieiiieeeii e 17

6.2.2. Provider URLo..uiiiiiiiiiiiii e 17

B.3. EXAMPIE <. 18

Chapter 1. Introduction to EJB3

1.1. Overview

EJB3 isincluded in the next 2EE specification, JAVA EE 5. (http://java.sun.com/javaee/5/ [http://
java.sun.com/javaee/5/])

The EJB3 specification is defined in JSR 220, which can be found at the following location: http://
www.jcp.org/en/jsr/detail 2id=220

The publication is published as three separate files:

1. Thecore

2. The persistence provider

3. The simplified specification, which contains new features

The EJB3 persistence provider isplugged into the EJB3 container. Available persistence providersare:
Hibernate [http://www.hibernate.org], Speedo [http://speedo.objectweb.org] (An ObjectWeb prod-
uct), etc.

1.2. The Advantage of EJB3

EJB 2.x was too complex. Developers were using additional tools to make it easier.
» XDoclet (Attribute oriented programming): http://xdoclet.sourceforge.net
» Hibernate for persistence: http://www.hibernate.org

The main focusfor this specification is on Ease Of Development (EoD). One major way this has been
simplified is by using metadata attribute annotations suppported by JDK 5.0.

Simplifying EJB development should produce awider range of Java EE developers.

1.3. EJB2 vs EJB3: EoD

The deployment descriptors are no longer required; everything can be accomplished using metadata
annotations.

The CMP (Container Managed Persistence) has been simplified; it isnow morelike Hibernate or JDO.
Programmatic defaults have been incorporated. For example, the transaction model is set to RE-
QUIRED by default. The value needs to be set only if a specific value other than the default value
is desired.

The use of checked exceptions is reduced; the RemoteException is no longer mandatory on each
remote business method.

Inheritance is now alowed; therefore, beans can extend some of the base code.

The native SQL queries are supported as an EJB-QL (Query Language) enhancement.

1.4. New Features

1.4.1. Metadata Annotations

url(http://java.sun.com/javaee/5/)
url(http://java.sun.com/javaee/5/)
url(http://java.sun.com/javaee/5/)
url(http://www.jcp.org/en/jsr/detail?id=220)
url(http://www.jcp.org/en/jsr/detail?id=220)
url(http://www.hibernate.org)
url(http://www.hibernate.org)
url(http://speedo.objectweb.org)
url(http://speedo.objectweb.org)
url(http://xdoclet.sourceforge.net)
url(http://www.hibernate.org)

Introduction to EJB3

1.4.2.

1.4.3.

1.4.4.

1.4.5.

Business Interceptors

The new business interceptors allow the developer to intercept each business method of the bean.
The parameters and the returned values can be changed. For example, an interceptor can be used to
determine the time that a method takes to execute.

Lifecycle Interceptors

In addition to business interceptors, the EJB2 callbacks (such as the ej bAct i vat e() method)
are now defined using annotation. For the ej bAct i vat e() method, this is done with the help of
@PostActivate annotation. This annotation is set on a method that will be called by the container.

Dependency Injection

Dependency injection makesit possible to request that the container inject resources, instead of trying
to get them. For example, with the EJB2 specification, in order to get an EJB, the following code
was used:

try {

Gbj ect o = new Initial Context().|ookup("java: conp/env/ejb/ WEIB");
myBean = Portabl eRenpt eCbj ect. narrom o, Myl nterface. clas);

} catch (Nam ngException e) {

With EJB3 thisis done using only the following code:

|@JB private Mylnterface nyBean; |

If the @EJIB annotation is found in the class, the container will look up and inject an instance of the
bean in the myBean variable.

Persistence

New features are linked to the persistence layer. For example, EJB3 entities are POJO (Plain Old Java
Object). This means that they can be created by using thenew() constructor: new MyEntity();

Al so entities are managed by an EntityManager: entitymanager.persist(entity);

In addition, entities have callbacks available.

Chapter 2. Getting EasyBeans From
the SVN Repository

Anyone can check out source code from the SVN server using the following command (for GUI SVN
client use, configuration values are the same as for command line use):

svn checkout svn://svn.for ge.objectweb.or g/svnr oot/easybeans easybeans

Chapter 3. Using the Examples
3.1. Compiling the Examples

3.1.1. Requirements

Before running the examples, be sure to follow the requirements for compiling and running these
EasyBeans examples.

3.1.2. Compile

The ant toal is used to build the examples. To compile the examples, use the bui | d. xmi file that
islocated in the exanpl es directory.

Thecommand ant i nstall _all _exanpl es must belaunched inthe exanpl es directory:

$ ant install_all_exanples
Bui | dfile: build.xmn

instal | _al | _exanpl es:
init:

conpi | e:
[javac] Conpiling 7 source files to /home/benoitf/workspace/ easybeans/ out put/exanpl e-cl asses

i nstal | . persi stence:

instal | .war:

[mkdir] Created dir: /honme/benoitf/workspace/ easybeans/ webapps/ st at el ess. war/ VEB- | NF/ cl asses
[copy] Copying 6 files to

/ hone/ benoi t f/ wor kspace/ easybeans/ webapps/ st at el ess. war/ VEB- | NF/ cl asses

[copy] Copying 1 file to /hone/benoitf/workspace/ easybeans/ webapps/ st at el ess. war/ VEEB- | NF
install:

[copy] Copying 5 files to /hone/benoitf/workspace/ easybeans/ ej b3s/ st atel ess. jar

[jar] Building jar: /home/benoitf/workspace/ easybeans/clients/client-stateless.jar

init:

conpi | e:
[javac] Conpiling 3 source files to /hone/benoitf/workspace/ easybeans/ out put/exanpl e-cl asses

i nstal | . persi stence:

install.war:

install:

[copy] Copying 2 files to /home/benoitf/workspace/ easybeans/ ejb3s/stateful.jar
[jar] Building jar: /honme/benoitf/workspace/ easybeans/clients/client-stateful.jar
init:

conpi | e:
[javac] Conpiling 4 source files to /honme/benoitf/workspace/ easybeans/ out put/exanpl e-cl asses

i nstal | . persi stence:

[mkdir] Created dir: /hone/benoitf/workspace/ easybeans/ejb3s/entitybean.jar/META-1 NF
[copy] Copying 1 file to /honme/benoitf/workspace/ easybeans/ejb3s/entitybean.jar/ MVETA-1NF
install.war:

install:

[copy] Copying 4 files to /home/benoitf/workspace/ easybeans/ ej b3s/entitybean.jar

[jar] Building jar: /hone/benoitf/workspace/ easybeans/clients/client-entitybean.jar

init:

conpi | e:
[javac] Conpiling 3 source files to /hone/benoitf/workspace/ easybeans/ out put/exanpl e-cl asses

i nstal | . persi stence:

Using the Examples

instal | . war:

install:

[copy] Copying 2 files to /hone/benoitf/workspace/ easybeans/ ej b3s/ ndb. j ar
[jar] Building jar: /home/benoitf/workspace/ easybeans/clients/client-mdb.jar
init:

conpi | e:
[javac] Conpiling 5 source files to /home/benoitf/workspace/ easybeans/ out put/exanpl e-cl asses

i nstal | . persistence:

instal | .war:

install:

[copy] Copying 4 files to /home/benoitf/workspace/ easybeans/ ej b3s/security.jar

[jar] Building jar: /home/benoitf/workspace/ easybeans/clients/client-security.jar

BUI LD SUCCESSFUL
Total time: 8 seconds

The examplesare copied under theej b3s/ folder of the project and are available for the deployment.

Note

If the EasyBeans server isrunning, it will detect these new applications and deploy them
automatically.

3.2. Running Examples

Each example hasitsown bui | d. xm file; this allows each example to be run independently.

3.2.1. Stateless Session Bean

Thebui | d. xmi filefor thisexampleislocated in the exanpl es/ st at el essbean folder.

3.2.1.1. Description

This exampleis a statel ess session bean. It containsahel | oWbr | d() method that displays text on
the server side. Additionally, it demonstrates the use of EJB3 annotation, such as @Stateless.

Thet r ace() methodisannotated with @A roundinvoke EJB3 annotation. Thismethod will becalled
at each call on a business method. The business methods are defined in the interface implemented by
the SessionBean class.

The signature of the method annotated by @Aroundinvoke when it is defined in the bean class, must
follow this signature:

(private| protected|public) Ooject nmethodNane(Ilnvocati onContext invocati onContext)
throws Exception;

Note

As anew feature of the EJB3, the bean's interface does not need to extend the Remote
interface.

3.2.1.2. Running the Server

If the server is not available, it must be run by following the steps described in Chapter 3, "Running
the EasyBeans Server."

3.2.1.3. Deploying the Bean

The statel ess session bean must be deployed. If the bean has been installed in the ej b3s folder, this
is done automatically.

Using the Examples

On the server side, the following output should be seen:

[java] INFO Creating container for archive

/ hone/ benoi t f/ wor kspace/ easybeans/ ej b3s/ st at el ess. j ar.

[java] INFO Analyze el apsed during : 95 ns

[java] INFO Binding bean XXX with interface XXX into registry with jndi name XXX
[java] I NFO Enhancenent el apsed during : 105 ns

[java] INFO Container started in : 274 ns

Once thisinformation is displayed on the screen, the container is ready to receive client calls.

3.2.1.4. Running the Client
Once the container has been started, the client can be launched.
Run the client with the following ant command: ant run.client

If the client runs successfully, the following output is displayed:

[java] Calling helloWrld nethod...
[java] Add 1 + 2...
[java] Sum = "3'.

Note

In the client's code, the use of the PortableRemoteObject.narrow() cal is no longer re-
quired.

3.2.2. Stateful Session Bean
Thebui | d. xmi filefor thisexampleislocated in the exanpl es/ st at ef ul bean folder.

3.2.2.1. Description
Thisis an example of a stateful session bean using the Sessi onSynchr oni zat i on interface.
It uses the @Stateful annotation and uses the default transaction model, which is REQUIRED.
3.2.2.2. Running the Server

If the server is not available, it must be run by following the steps described in Chapter 3, "Running
the EasyBeans Server."

3.2.2.3. Deploying the Bean

The stateful session bean must be deployed. It is done automatically if the bean has been installed in
theej b3s folder.

On the server side, the following output should be seen:

[java] INFO Creating container for archive

/ hone/ benoi t f/ wor kspace/ easybeans/ ej b3s/ stateful . jar.

[java] INFO Analyze el apsed during : 89 ns

[java] I NFO Enhancenent el apsed during : 76 nms

[java] INFO Binding bean XXX with interface XXX into registry with jndi name XXX
[java] INFO Container started in : 251 ns

Once this information is displayed on the screen, the container is ready to receive client calls.

3.2.2.4. Running the Client

Once the container has been started, the client can be launched.

Run the client with the following ant command: ant run.client

Using the Examples

If the client runs successfully, the following output is displayed:

[java] Start a first transaction
[java] First request on the new bean
[java] Second request on the bean
[java] Commit the transaction

[java] Start a second transaction
[java] Buy 50 anpunt.

[java] Rollback the transaction
[java] after rollback, value = 30
[java] Request outside any transaction
[java] Check that value = 30

[java] ClientStateful OK Exiting.

3.2.3. Entity Bean

Thebui | d. xm filefor thisexampleislocated in the exanpl es/ ent i t ybean folder.

3.2.3.1. Description

Thisis an example of an entity bean. It describes how to use the new Java Persistence Model of an
EJB3 persistence provider. To access EJB3 entities that are POJO, a statel ess session bean is used.
Itis afacade bean.

The Entity classis aPOJO class annotated with @Entity. The entities classis managed by the persis-
tence provider.

Currently, the persistence provider is supplied by the Hibernate product, but the ObjectWeb Speedo
product should be available soon. Users will have the choice between providers.

This example uses the @Stateful annotation and uses the default transaction model, which is RE-
QUIRED.

The example shows an entity bean using EJB3 Hibernate-prototype persistence provider.
3.2.3.2. Running the Server

If the server is not available, it must be run following the steps described in Chapter 3, "Running the
EasyBeans Server."

3.2.3.3. Deploying the Bean

The entity bean must be deployed. It isdone automatically if the bean hasbeeninstalled intheej b3s
folder.

On the server side, the following output should be seen:

[java] INFO Creating container for archive

/ hone/ benoi t f/ wor kspace/ easybeans/ ej b3s/ enti t ybean. j ar.
[java] I NFO Analyze el apsed during : 95 nms

[java] | NFO Enhancenent el apsed during : 102 ns

[java] I NFO No persistence provider was set, set to val ue
or g. hi bernat e. ej b. H ber nat ePer si st ence.

[java] INFO Hibernate 3.1.1

[java] I NFO Using provided datasource

[java] | NFO RDBMS: HSQ. Dat abase Engine, version: 1.8.0
[...]

[java] INFO Binding bean XXX with interface XXX into registry with jndi name XXX
[java] INFO Container started in : 2010 nms

Once this information is displayed on the screen, the container is ready to receive client calls.

3.2.3.4. Running the Client

Once the container has been started, the client can be launched.

Using the Examples

The client is run with the following ant command: ant run.client

If the client runs successfully, the following output is displayed:

[java] Enployee with id 1 = Florent
[java] Enployee with id 2 = Wale

3.2.3.5. Properties for the persistence
These properties are defined in the META- | NF/ per si st ence. xni file.
3.2.3.5.1. JDBC Dialect

By default, the dialect used to communicate with the database is set to HSQL as it is embedded in
EasyBeans.

This dialect configuration is done with the following properties:

<property name="hibernate.dialect" value="org.hibernate.dialect. HSQLDialect" /> <property
name="toplink.target-database" value="HSQL"/>

3.2.3.5.2. Database (tables)
By default, the tables are created and database is empty after loading the entity beans.
This configuration is done with the following properties:

<property name="hibernate.hbm2ddl.auto" value="create-drop"/> <property name="toplink.ddl-gen-
eration” value="drop-and-create-tables'/>

In order to keep data in database, this property should be changed.

3.2.4. Security example
Thebui | d. xm filefor thisexample islocated in the exanpl es/ securi ty folder.

3.2.4.1. Description

This example illustrates the use of different Java EE 5.0 annotations which are linked to the security
part.

The annotations used by the example are:

» @DeclareRoles which is used to declare the roles used by an EJB component.
» @RolesAllowed which list the authorized rolesin order to call a method.

» @DenyAll which deny the call to the method (for every roles).

* @RunAswhich set anew identity when calling other EJBs.

3.2.4.2. Running the Server

If the server is not available, it must be run following the steps described in Chapter 3, "Running the
EasyBeans Server."

3.2.4.3. Deploying the Bean

The security bean example must be deployed. It is done automatically if the bean has been installed
inthe ej b3s folder.

Using the Examples

On the server side, the following output should be seen:

[java] 10/16/06 5:24:50 PM (1) Contai nershnitor.scanNewContainers : Creating container for
ar chi ve / home/ benoi t f/ wor kspace/ easybeans/ ej b3s/ security.jar.

[java] 10/16/06 5:24:50 PM (1) JContainer3.start : Analyze el apsed during : 124 ns

[java] 10/16/06 5:24:50 PM (1) JContainer3.start : Enhancenment el apsed during : 99 ns
[java] 10/16/06 5:24:50 PM (1) JContainer3.start : Container started in : 363 ns

[java] 10/16/06 5:24:50 PM (1) Contai nershnitor.scanNewContainers : Creating container for
ar chi ve / home/ benoi t f/ wor kspace/ easybeans/ ej b3s/ ndb. j ar.

[java] 10/16/06 5:24:50 PM (1) JContainer3.start : Analyze el apsed during : 4 ns

[java] 10/16/06 5:24:51 PM (1) JContainer3.start : Enhancenent el apsed during : 287 ns
[java] 10/16/06 5:24:51 PM (1) JContainer3.start : Container started in : 544 ns

Once thisinformation is displayed on the screen, the container is ready to receive client calls.

3.2.4.4. Running the Client

Once the container has been started, the client can be launched.
The client isrun with the following ant command: ant run.client

If the client runs successfully, the following output is displayed on the client's side:

run.client:

[java] Cct 16, 2006 5:27:03 PM

or g. obj ect web. carol . util.configuration.Configurati onRepository init

[java] INFO No protocols were defined for property 'carol.protocols', trying with default
protocol = "jrnp'.

[java] Calling nmethods that everybody can call...

[java] Call a bean with run-as in order to have 'admin' role...

[java] Access denied as expected (nethod is denied)

And on the server:

[java] soneRol esAl |l owed() called

[java] -> Caller is 'Principal [EasyBeans/ Anonynous]'.

[java] for run-as bean, caller is Caller is 'Principal[EasyBeans/ Anonynous]
[java] onl yAdni nAl |l owed() called

[java] -> Caller is 'Principal[admn]".

[java] soneRol esAl |l owed() called

[java] -> Caller is 'Principal[admn]".

Chapter 4. Writing a HelloWorld bean

4.1. Requirements

This example illustrates the basics of an EJB3 application, showing all the steps used to build and
run the EJB.

The only addtional information required is to know how to run the server.

4.2. Writing Code for the Bean

4.2.1.

4.2.2.

The HelloWorld bean is divided into two parts: the business interface, and the class implementing
thisinterface.

Writing the Interface

Theinterface declares only one method: hel | oWor | d()

package org. obj ect web. easybeans. tutori al . hel | oworl d;

/**

* Interface of the Hell owrld exanple.
* @ut hor Florent Benoit

>/

public interface Hell oWrldlnterface {

/**

* Hello world.

>/

voi d hel | oworl d();

}

Note

Even if this interface is used as a remote interface, it does not need to extend
j ava. rm . Renot e interface.

Writing the Business Code

The following code implements the existing interface:

package org. obj ect web. easybeans. tutorial . hel | oworl d;

/**

* Business code for the Hellowrld interface.

* @ut hor Fl orent Benoit

*/

public class Hell oWrl dBean i npl ements Hel | oworldlnterface {

/**

* Hello world inplenmentation.

*/

public void helloWrld() {
Systemout.printin("Hello world !");

}

}

Note

At this moment, the bean is not an EJB; thisis only a class implementing an interface.

10

Writing a Helloworld bean

4.2.3.

4.2.4.

Defining It as a Stateless Session Bean

Now that the EJB code has been written, it is time to define the EJB application.
This bean will be astatel ess session bean, thus the class will be annotated with @Statel ess annotation.

In addition, the interface must be a remote interface to be available for remote clients. Thisis done
by using the @Remote annotation.

package org. obj ect web. easybeans. tutorial . hel | oworl d;

i nport javax.ejb.Renote;
i nport javax.ejb. Statel ess;

/**

* Busi ness code for the Hellowrld interface.

* @ut hor Fl orent Benoit

*/

@5t at el ess

@Renot e(Hel | oWor | dl nt er f ace. cl ass)

public class Hell owr| dBean inpl ements Hel | oworldlnterface {

/**

* Hello world inplenmentation.

*/

public void helloWrld() {
Systemout.printin("Hello world !");

}

}

Note

If aclass implements a single interface, this interface is defined as alocal interface by
default.

Packaging the Bean

Thetwo classes (Hel | oWor | dI nt er f ace and Hel | oWbr | dBean) must be compiled.

Then, afolder named ej b3s/ hel | owor | d. j ar/ must be created and classes placed in thisfolder.
They will be deployed and loaded automatically.

4.3. Writing the Client Code

The client can access the business interface directly and can call the methods of the bean directly.

package org. obj ect web. easybeans. tutorial . hel | oworl d;

i mport j avax. nani ng. Cont ext ;
i mport javax.namning.|nitial Context;

/**

* Client of the helloworld bean.
* @ut hor Florent Benoit

>/

public final class Cient {

/**

* JNDI nane of the bean.

*/

private static final String JND _NAME =

"org. obj ect web. easybeans. tutorial . hel | owor| d. Hel | oWor | dBean"
+ "_" + Hell oWworldinterface.cl ass. get Name() + "@wenote"

/**

* Wility class. No public constructor
*/

private Cient() {

}

11

Writing a Helloworld bean

/**

* Main met hod.

* @aram args the argunments (not required)

* @hrows Exception if exception is found.

*/

public static void main(final String[] args) throws Exception {
Context initial Context = new Initial Context();

Hel | oWor | dl nterface businessltf =
(Hel l oWorl dl nterface) initial Context.|ookup(JNDI _NAME);

Systemout.printin("Calling helloWrld nmethod...");
busi nessltf. hel |l oWrld();
}

}

Note

The client does not call the PortableRemoteObject.narrow() method. Also, no create()
method is required.

4.4. Writing a First Business Method Intercep-

tor

An interceptor can be defined in the bean class or in another class. In this example, it will be defined
in the bean's class. A business interceptor is defined by using the @AroundInvoke annotation.

The following interceptor will print the name of the method that is invoked. Of course, this can be
extended to do more stuff.

/**

* Dummy interceptor.

* @araminvocati onContext contains attributes of invocation

* @eturn nethod's invocation result

* @hrows Exception if invocation fails

>/

@\r oundl nvoke

public Object intercept(final InvocationContext invocationContext) throws Exception {
System out.println("Intercepting method '" + invocati onContext.get Met hod(). get Name()
+ L)

try {

return invocationContext.proceed();

} finally {

System out.println("End of intercepting.");

}

}

A Caution

Don't forget to call the pr oceed() method on the invocationContext object. Else, the
invocation is broken.

4.5. Writing a First Lifecycle Interceptor

The bean can be notified of some lifecycle events, for example when a bean is created or destroyed.

In the following example, a method of the bean will received an event when an instance of the bean
isbuilt. Thisis done by using the @PostConstruct annotation.

Llifecycleinterceptors of abean may be defined in another class.

/**
* Notified of postconstruct event.
*
/
@ost Const ruct
public void notified() {

12

Writing a Helloworld bean

System out. println("New i nstance of this bean");

}

13

Chapter 5. Configuration file

5.1. Introduction

EasyBeans is configured with the help of an XML configuration file. The XML configuration fileis
an easy-to-understand configuration file.

Hereis an example of aconfiguration file:

<?xm version="1.0" encodi ng="UTF-8"?>
<easybeans xm ns="http://org. obj ect web. easybeans. server">

<!-- Define conponents that will be started at runtime -->
<conponent s>

<!-- RM/JRW w || be used as protocol |ayer -->

<rm >

<pr ot ocol name="jrnp" port="1099" hostname="| ocal host" />
</rm >

<!-- Start a transaction service -->

<tm/>

<!-- Start a JMS provider -->
<j ms port="16030" hostname="| ocal host" />

<l-- Creates an enbedded HSQLDB dat abase -->
<hsql db port="9001" dbName="j dbc_1">

<user name="easybeans" password="easybeans" />
</ hsql db>

<!-- Creates a JDBC pool with jdbc_1 JNDI nane -->
<j dbcpool j ndi Name="j dbc_1" user name="easybeans"
passwor d="easybeans"

ur | ="j dbc: hsql db: hsql : // 1 ocal host: 9001/ j dbc_1"
driver="org. hsql db. j dbcDriver" />

<!-- Start smartclient server with a link to the rnmi conponent-->
<smart-server port="2503" rm ="#rm" />
</ conponent s>

</ easybeans>

By default, an easybeans- def aul t . xm fileisused. To change the default configuration, user
hasto provide afile named easybeans. xm which can be found in a classloader/CLASSPATH.

5.2. Configuration

5.2.1.

Each element defined inside the <components> element are components

Note that some elements are required only for the standalone mode. When EasyBeans run inside
JOnAS, IMS, RMI, HSQL, and JDBC pools are configured through JOnAS server.

RMI component

The RMI configuration is done by using the <rmi> element.
In order to run EasyBeans with multiple protocols, <protocol> element can be added more than once.
The hostname and port attributes are configurable.

Protocols could be "jrmp, jeremie, iiop, cmi”. The default isjrmp.

Note

Some protocols may require some libraries that are not packaged by default in Easy-
Beans.

14

Configuration file

5.2.2.

5.2.3.

5.2.4.

5.2.5.

5.2.6.

Transaction component

The Transaction Component is defined by the <tm> element.

A timeout attribute can be defined on this element. It isthe transaction timeout (in seconds). By default
it is 60 seconds.

Thedefault implementation used i sthe implementation provided by JOTM [http://jotm.objectweb.org]
objectweb project.

JMS component

The IMS component is used for IMS Message Driven Beans. Attributes are the port number and the
hostname.

The default implementation used is the implementation provided by JORAM [http://
joram.objectweb.org] objectweb project.

HSQL database

An embedded database can be run by EasyBeans. Available attributes are the port number and the
database name. The <hsgldb> may be duplicated in order to run several HSQL DB instances.

Users are defined through the <user> element.

JDBC pool

Thiscomponent allowsto bind JDBC datasourceinto JINDI. Thejndi namethat will be usedisprovided
by the jndiName attribute.

Required attributes are username, password, url and driver.

Optiona attributes are poolMin, poolMax and pstmtMax. It alows to set the minimum size of the
pooal, the maximum size and the size of the prepared statement cache.

SmartServer component

Thiscomponent isused by the Smart INDI factory onthe client side. Thisallowsthe client to download
missing classes. The client can be run without a big jar file providing all classes. Classes are loaded
on demand.

Note

There is a chapter about the Smart factory.

5.3. Advanced configuration

5.3.1.

This configuration file can be extended to create and set properties on other classes.
Mapping file

In order to know that rmi isthe Carol Component, tm the JOTM component, jmsthe Joram component,
there is a mapping file. This file is named easybeans- mappi ng. xm and it is located in the

org.objectweb.easybeans.server package.

Hereis an extract of theeasybeans- mappi ng. xni file.

15

url(http://jotm.objectweb.org)
url(http://jotm.objectweb.org)
url(http://joram.objectweb.org)
url(http://joram.objectweb.org)
url(http://joram.objectweb.org)

Configuration file

5.3.2.

<?xm version="1.0" encodi ng="UTF-8"?>
<easybeans- mappi ng xm ns="htt p://easybeans. obj ect web. or g/ xn / ns/ mappi ng" >

<cl ass name="or g. obj ect web. easybeans. conponent . Conponent s"
al i as="conponents" />

<package name="or g. obj ect web. easybeans. conponent . carol ">
<cl ass name="Car ol Conponent” alias="rm">

<attribute name="portNunmber" alias="port" />

</ cl ass>

<cl ass nanme="Protocol " alias="protocol" />

</ package>

</ easybeans- mappi ng>

Note

this mapping file is referenced by the easybeans configuration file by using the XML
namespace : xmlns="http://org.objectweb.easybeans.server”.

Each element configured within this namespace will use the mapping done in the
org.objectweb.easybeans.server package.

Users can use their own mapping by providing afile in a package. The name of the the file needs to
be xxx-mapping.xml with xxx being the name of the element which will use this namespace.

Example : For the element <easybeans xmIns="http://org.objectweb.easybeans.server">, the resource
searched in the classloader is org/objectweb/easybeans/server/easybeans-mapping.xml.

Other configuration file

EasyBeans could be configured through other configuration filesasit usesaPOJO configuration. then,
you could configure it with the Spring Framework component or other frameworks/toals.

16

Chapter 6. Smart JNDI factory

6.1. Introduction

The smart factory provided by EasyBeans is a factory alowing to download some classes from the
server.

It is useful when developing heavy clients.

In order to run the clients, devel oper hasto provide allsthe classes used to compile the client code and
add asmall jar file (less than 50kB) to add to the CLASSPATH.

Required libraries for running aclient are :

» Theclient's code (used at compile time)

» The Interface of the Beans that are accessed. (used at compile time)
e The Java EE API used by the client (used at compile time)

» Thesmart factory provided by theow_easybeans_conponent _snartclient. | ar jarfile.

6.2. Running the client

6.2.1.

6.2.2.

The smart factory is configured through two properties.

Initial Context Factory

The first property is the Initial ContextFactory name. The smart
factory has the name
or g. obj ect web. easybeans. component . smartcl i ent. spi . Smart Cont ext Fact ory.

This property can be set as a System property :

* by using -
Djava.naming.factory.initial=org.objectweb.easybeans.component.smartclient.spi. SmartContextFactory

e Or by using System.setProperty(Context.INITIAL_CONTEXT_FACTORY,
or g. obj ect web. easybeans. conponent . snmartcl i ent. spi . Smart Cont ext Fact ory)

It can also be used as a parameter when creating an Initial Context :

Hasht abl e<String, Object> env = new Hashtabl e<String, Object>();

env. put (Cont ext . | NI TI AL_CONTEXT_FACTCRY,

or g. obj ect web. easybeans. conponent . smart cl i ent. spi . Smart Cont ext Factory) ;
return new | nitial Context(env);

Provider URL

This property isused in order to know the remote address and the remote port.

By default, this property is set (if not defined) to smart://localhost:2503
The port number needs to match the port defined in the EasyBeans configuration file.

This property can be set by using :

|Hasht abl e<String, Object> env = new Hashtabl e<String, Object>();

17

Smart INDI factory

env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,

or g. obj ect web. easybeans. conponent . smartcl i ent. spi . Smart Cont ext Factory);
env. put (Cont ext . PROVI DER_URL, "smart://| ocal host:2503");

return new | nitial Context(env);

6.3. Example

Hereisthe output on the client side when this factory isenabled :

[java] Cct 17, 2006 5:38:13 PM

or g. obj ect web. easybeans. conponent . smartclient. spi. Snart Cont ext Fact ory get | ni ti al Cont ext
[java] INFO Initializing Smart Factory with rembte URL 'smart://|ocal host: 2503".
[java] Cct 17, 2006 5:38:13 PM

or g. obj ect web. easybeans. conponent . smartclient. spi. Snart Cont ext Fact ory get | ni ti al Cont ext
[java] INFO Cot renpte PROVIDER URL 'rm:/ /Il ocal host: 1099 .

[java] Downl oaded 'xxx' classes, 'xxx' resources for a total of 'xxx' bytes and it took

' XXX' 1B,

And on the server side:

[java] 10/17/06 5:38:13 PM (I) Smartd ient EndPoi nt Conponent . handl eReadPr ovi der URLRequest
Provi der URL asked by client : 'rm://local host:1099'.

18

