
EasyBeans User's guide

Florent BENOIT, ObjectWeb consortium

iii

Table of Contents
1. Introduction to EJB3 ..1

1.1. Overview ...1
1.2. The Advantage of EJB3 ... 1
1.3. EJB2 vs EJB3: EoD .. 1
1.4. New Features ... 1

1.4.1. Metadata Annotations ..1
1.4.2. Business Interceptors .. 2
1.4.3. Lifecycle Interceptors .. 2
1.4.4. Dependency Injection .. 2
1.4.5. Persistence .. 2

2. Getting EasyBeans From the SVN Repository .. 3
3. Using the Examples ... 4

3.1. Compiling the Examples .. 4
3.1.1. Requirements ... 4
3.1.2. Compile .. 4

3.2. Running Examples .. 5
3.2.1. Stateless Session Bean .. 5

3.2.1.1. Description ... 5
3.2.1.2. Running the Server .. 5
3.2.1.3. Deploying the Bean .. 5
3.2.1.4. Running the Client ... 6

3.2.2. Stateful Session Bean .. 6
3.2.2.1. Description ... 6
3.2.2.2. Running the Server .. 6
3.2.2.3. Deploying the Bean .. 6
3.2.2.4. Running the Client ... 6

3.2.3. Entity Bean ... 7
3.2.3.1. Description ... 7
3.2.3.2. Running the Server .. 7
3.2.3.3. Deploying the Bean .. 7
3.2.3.4. Running the Client ... 7
3.2.3.5. Properties for the persistence ..8

3.2.4. Security example .. 8
3.2.4.1. Description ... 8
3.2.4.2. Running the Server .. 8
3.2.4.3. Deploying the Bean .. 8
3.2.4.4. Running the Client ... 9

4. Writing a HelloWorld bean ... 10
4.1. Requirements ... 10
4.2. Writing Code for the Bean ... 10

4.2.1. Writing the Interface ... 10
4.2.2. Writing the Business Code ... 10
4.2.3. Defining It as a Stateless Session Bean ...11
4.2.4. Packaging the Bean .. 11

4.3. Writing the Client Code ... 11
4.4. Writing a First Business Method Interceptor .. 12
4.5. Writing a First Lifecycle Interceptor ...12

5. Configuration file .. 14
5.1. Introduction ... 14
5.2. Configuration ... 14

5.2.1. RMI component ... 14
5.2.2. Transaction component .. 15
5.2.3. JMS component ... 15
5.2.4. HSQL database .. 15
5.2.5. JDBC pool .. 15

EasyBeans User's guide

iv

5.2.6. SmartServer component ... 15
5.3. Advanced configuration ... 15

5.3.1. Mapping file ..15
5.3.2. Other configuration file ... 16

6. Smart JNDI factory ... 17
6.1. Introduction ... 17
6.2. Running the client ...17

6.2.1. Initial Context Factory .. 17
6.2.2. Provider URL .. 17

6.3. Example .. 18

1

Chapter 1. Introduction to EJB3
1.1. Overview

EJB3 is included in the next J2EE specification, JAVA EE 5. (http://java.sun.com/javaee/5/ [http://
java.sun.com/javaee/5/])

The EJB3 specification is defined in JSR 220, which can be found at the following location: http://
www.jcp.org/en/jsr/detail?id=220

The publication is published as three separate files:

1. The core

2. The persistence provider

3. The simplified specification, which contains new features

The EJB3 persistence provider is plugged into the EJB3 container. Available persistence providers are:
Hibernate [http://www.hibernate.org], Speedo [http://speedo.objectweb.org] (An ObjectWeb prod-
uct), etc.

1.2. The Advantage of EJB3
EJB 2.x was too complex. Developers were using additional tools to make it easier.

• XDoclet (Attribute oriented programming): http://xdoclet.sourceforge.net

• Hibernate for persistence: http://www.hibernate.org

The main focus for this specification is on Ease Of Development (EoD). One major way this has been
simplified is by using metadata attribute annotations suppported by JDK 5.0.

Simplifying EJB development should produce a wider range of Java EE developers.

1.3. EJB2 vs EJB3: EoD
The deployment descriptors are no longer required; everything can be accomplished using metadata
annotations.

The CMP (Container Managed Persistence) has been simplified; it is now more like Hibernate or JDO.

Programmatic defaults have been incorporated. For example, the transaction model is set to RE-
QUIRED by default. The value needs to be set only if a specific value other than the default value
is desired.

The use of checked exceptions is reduced; the RemoteException is no longer mandatory on each
remote business method.

Inheritance is now allowed; therefore, beans can extend some of the base code.

The native SQL queries are supported as an EJB-QL (Query Language) enhancement.

1.4. New Features

1.4.1. Metadata Annotations
Metadata annotations is new. FOr example, to define a stateless session bean, the @Stateless annota-
tion is declared on the bean class.

url(http://java.sun.com/javaee/5/)
url(http://java.sun.com/javaee/5/)
url(http://java.sun.com/javaee/5/)
url(http://www.jcp.org/en/jsr/detail?id=220)
url(http://www.jcp.org/en/jsr/detail?id=220)
url(http://www.hibernate.org)
url(http://www.hibernate.org)
url(http://speedo.objectweb.org)
url(http://speedo.objectweb.org)
url(http://xdoclet.sourceforge.net)
url(http://www.hibernate.org)

Introduction to EJB3

2

1.4.2. Business Interceptors
The new business interceptors allow the developer to intercept each business method of the bean.
The parameters and the returned values can be changed. For example, an interceptor can be used to
determine the time that a method takes to execute.

1.4.3. Lifecycle Interceptors
In addition to business interceptors, the EJB2 callbacks (such as the ejbActivate() method)
are now defined using annotation. For the ejbActivate() method, this is done with the help of
@PostActivate annotation. This annotation is set on a method that will be called by the container.

1.4.4. Dependency Injection
Dependency injection makes it possible to request that the container inject resources, instead of trying
to get them. For example, with the EJB2 specification, in order to get an EJB, the following code
was used:

try {
Object o = new InitialContext().lookup("java:comp/env/ejb/MyEJB");
myBean = PortableRemoteObject.narrow(o, MyInterface.clas);
} catch (NamingException e) {
....
}

With EJB3 this is done using only the following code:

@EJB private MyInterface myBean;

If the @EJB annotation is found in the class, the container will look up and inject an instance of the
bean in the myBean variable.

1.4.5. Persistence
New features are linked to the persistence layer. For example, EJB3 entities are POJO (Plain Old Java
Object). This means that they can be created by using the new() constructor: new MyEntity();

Also entities are managed by an EntityManager: entitymanager.persist(entity);

In addition, entities have callbacks available.

3

Chapter 2. Getting EasyBeans From
the SVN Repository

Anyone can check out source code from the SVN server using the following command (for GUI SVN
client use, configuration values are the same as for command line use):

svn checkout svn://svn.forge.objectweb.org/svnroot/easybeans easybeans

4

Chapter 3. Using the Examples
3.1. Compiling the Examples

3.1.1. Requirements
Before running the examples, be sure to follow the requirements for compiling and running these
EasyBeans examples.

3.1.2. Compile
The ant tool is used to build the examples. To compile the examples, use the build.xml file that
is located in the examples directory.

The command ant install_all_examples must be launched in the examples directory:

$ ant install_all_examples
Buildfile: build.xml

install_all_examples:

init:

compile:
[javac] Compiling 7 source files to /home/benoitf/workspace/easybeans/output/example-classes

install.persistence:

install.war:
[mkdir] Created dir: /home/benoitf/workspace/easybeans/webapps/stateless.war/WEB-INF/classes
[copy] Copying 6 files to
/home/benoitf/workspace/easybeans/webapps/stateless.war/WEB-INF/classes
[copy] Copying 1 file to /home/benoitf/workspace/easybeans/webapps/stateless.war/WEB-INF

install:
[copy] Copying 5 files to /home/benoitf/workspace/easybeans/ejb3s/stateless.jar
[jar] Building jar: /home/benoitf/workspace/easybeans/clients/client-stateless.jar

init:

compile:
[javac] Compiling 3 source files to /home/benoitf/workspace/easybeans/output/example-classes

install.persistence:

install.war:

install:
[copy] Copying 2 files to /home/benoitf/workspace/easybeans/ejb3s/stateful.jar
[jar] Building jar: /home/benoitf/workspace/easybeans/clients/client-stateful.jar

init:

compile:
[javac] Compiling 4 source files to /home/benoitf/workspace/easybeans/output/example-classes

install.persistence:
[mkdir] Created dir: /home/benoitf/workspace/easybeans/ejb3s/entitybean.jar/META-INF
[copy] Copying 1 file to /home/benoitf/workspace/easybeans/ejb3s/entitybean.jar/META-INF

install.war:

install:
[copy] Copying 4 files to /home/benoitf/workspace/easybeans/ejb3s/entitybean.jar
[jar] Building jar: /home/benoitf/workspace/easybeans/clients/client-entitybean.jar

init:

compile:
[javac] Compiling 3 source files to /home/benoitf/workspace/easybeans/output/example-classes

install.persistence:

Using the Examples

5

install.war:

install:
[copy] Copying 2 files to /home/benoitf/workspace/easybeans/ejb3s/mdb.jar
[jar] Building jar: /home/benoitf/workspace/easybeans/clients/client-mdb.jar

init:

compile:
[javac] Compiling 5 source files to /home/benoitf/workspace/easybeans/output/example-classes

install.persistence:

install.war:

install:
[copy] Copying 4 files to /home/benoitf/workspace/easybeans/ejb3s/security.jar
[jar] Building jar: /home/benoitf/workspace/easybeans/clients/client-security.jar

BUILD SUCCESSFUL
Total time: 8 seconds

The examples are copied under the ejb3s/ folder of the project and are available for the deployment.

Note

If the EasyBeans server is running, it will detect these new applications and deploy them
automatically.

3.2. Running Examples
Each example has its own build.xml file; this allows each example to be run independently.

3.2.1. Stateless Session Bean
The build.xml file for this example is located in the examples/statelessbean folder.

3.2.1.1. Description

This example is a stateless session bean. It contains a helloWorld() method that displays text on
the server side. Additionally, it demonstrates the use of EJB3 annotation, such as @Stateless.

The trace() method is annotated with @AroundInvoke EJB3 annotation. This method will be called
at each call on a business method. The business methods are defined in the interface implemented by
the SessionBean class.

The signature of the method annotated by @AroundInvoke when it is defined in the bean class, must
follow this signature:

(private|protected|public) Object methodName(InvocationContext invocationContext)
 throws Exception;

Note

As a new feature of the EJB3, the bean's interface does not need to extend the Remote
interface.

3.2.1.2. Running the Server

If the server is not available, it must be run by following the steps described in Chapter 3, "Running
the EasyBeans Server."

3.2.1.3. Deploying the Bean

The stateless session bean must be deployed. If the bean has been installed in the ejb3s folder, this
is done automatically.

Using the Examples

6

On the server side, the following output should be seen:

[java] INFO: Creating container for archive
/home/benoitf/workspace/easybeans/ejb3s/stateless.jar.
[java] INFO: Analyze elapsed during : 95 ms
[java] INFO: Binding bean XXX with interface XXX into registry with jndi name XXX
[java] INFO: Enhancement elapsed during : 105 ms
[java] INFO: Container started in : 274 ms

Once this information is displayed on the screen, the container is ready to receive client calls.

3.2.1.4. Running the Client

Once the container has been started, the client can be launched.

Run the client with the following ant command: ant run.client

If the client runs successfully, the following output is displayed:

[java] Calling helloWorld method...
[java] Add 1 + 2...
[java] Sum = '3'.

Note

In the client's code, the use of the PortableRemoteObject.narrow() call is no longer re-
quired.

3.2.2. Stateful Session Bean
The build.xml file for this example is located in the examples/statefulbean folder.

3.2.2.1. Description

This is an example of a stateful session bean using the SessionSynchronization interface.

It uses the @Stateful annotation and uses the default transaction model, which is REQUIRED.

3.2.2.2. Running the Server

If the server is not available, it must be run by following the steps described in Chapter 3, "Running
the EasyBeans Server."

3.2.2.3. Deploying the Bean

The stateful session bean must be deployed. It is done automatically if the bean has been installed in
the ejb3s folder.

On the server side, the following output should be seen:

[java] INFO: Creating container for archive
/home/benoitf/workspace/easybeans/ejb3s/stateful.jar.
[java] INFO: Analyze elapsed during : 89 ms
[java] INFO: Enhancement elapsed during : 76 ms
[java] INFO: Binding bean XXX with interface XXX into registry with jndi name XXX
[java] INFO: Container started in : 251 ms

Once this information is displayed on the screen, the container is ready to receive client calls.

3.2.2.4. Running the Client

Once the container has been started, the client can be launched.

Run the client with the following ant command: ant run.client

Using the Examples

7

If the client runs successfully, the following output is displayed:

[java] Start a first transaction
[java] First request on the new bean
[java] Second request on the bean
[java] Commit the transaction
[java] Start a second transaction
[java] Buy 50 amount.
[java] Rollback the transaction
[java] after rollback, value = 30
[java] Request outside any transaction
[java] Check that value = 30
[java] ClientStateful OK. Exiting.

3.2.3. Entity Bean
The build.xml file for this example is located in the examples/entitybean folder.

3.2.3.1. Description

This is an example of an entity bean. It describes how to use the new Java Persistence Model of an
EJB3 persistence provider. To access EJB3 entities that are POJO, a stateless session bean is used.
It is a facade bean.

The Entity class is a POJO class annotated with @Entity. The entities class is managed by the persis-
tence provider.

Currently, the persistence provider is supplied by the Hibernate product, but the ObjectWeb Speedo
product should be available soon. Users will have the choice between providers.

This example uses the @Stateful annotation and uses the default transaction model, which is RE-
QUIRED.

The example shows an entity bean using EJB3 Hibernate-prototype persistence provider.

3.2.3.2. Running the Server

If the server is not available, it must be run following the steps described in Chapter 3, "Running the
EasyBeans Server."

3.2.3.3. Deploying the Bean

The entity bean must be deployed. It is done automatically if the bean has been installed in the ejb3s
folder.

On the server side, the following output should be seen:

[java] INFO: Creating container for archive
/home/benoitf/workspace/easybeans/ejb3s/entitybean.jar.
[java] INFO: Analyze elapsed during : 95 ms
[java] INFO: Enhancement elapsed during : 102 ms
[java] INFO: No persistence provider was set, set to value
org.hibernate.ejb.HibernatePersistence.
[java] INFO: Hibernate 3.1.1
[java] INFO: Using provided datasource
[java] INFO: RDBMS: HSQL Database Engine, version: 1.8.0
[...]
[java] INFO: Binding bean XXX with interface XXX into registry with jndi name XXX
[java] INFO: Container started in : 2010 ms

Once this information is displayed on the screen, the container is ready to receive client calls.

3.2.3.4. Running the Client

Once the container has been started, the client can be launched.

Using the Examples

8

The client is run with the following ant command: ant run.client

If the client runs successfully, the following output is displayed:

[java] Employee with id 1 = Florent
[java] Employee with id 2 = Whale

3.2.3.5. Properties for the persistence

These properties are defined in the META-INF/persistence.xml file.

3.2.3.5.1. JDBC Dialect

By default, the dialect used to communicate with the database is set to HSQL as it is embedded in
EasyBeans.

This dialect configuration is done with the following properties:

<property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect" /> <property
name="toplink.target-database" value="HSQL"/>

3.2.3.5.2. Database (tables)

By default, the tables are created and database is empty after loading the entity beans.

This configuration is done with the following properties:

<property name="hibernate.hbm2ddl.auto" value="create-drop"/> <property name="toplink.ddl-gen-
eration" value="drop-and-create-tables"/>

In order to keep data in database, this property should be changed.

3.2.4. Security example
The build.xml file for this example is located in the examples/security folder.

3.2.4.1. Description

This example illustrates the use of different Java EE 5.0 annotations which are linked to the security
part.

The annotations used by the example are:

• @DeclareRoles which is used to declare the roles used by an EJB component.

• @RolesAllowed which list the authorized roles in order to call a method.

• @DenyAll which deny the call to the method (for every roles).

• @RunAs which set a new identity when calling other EJBs.

3.2.4.2. Running the Server

If the server is not available, it must be run following the steps described in Chapter 3, "Running the
EasyBeans Server."

3.2.4.3. Deploying the Bean

The security bean example must be deployed. It is done automatically if the bean has been installed
in the ejb3s folder.

Using the Examples

9

On the server side, the following output should be seen:

[java] 10/16/06 5:24:50 PM (I) ContainersMonitor.scanNewContainers : Creating container for
archive /home/benoitf/workspace/easybeans/ejb3s/security.jar.
[java] 10/16/06 5:24:50 PM (I) JContainer3.start : Analyze elapsed during : 124 ms
[java] 10/16/06 5:24:50 PM (I) JContainer3.start : Enhancement elapsed during : 99 ms
[java] 10/16/06 5:24:50 PM (I) JContainer3.start : Container started in : 363 ms
[java] 10/16/06 5:24:50 PM (I) ContainersMonitor.scanNewContainers : Creating container for
archive /home/benoitf/workspace/easybeans/ejb3s/mdb.jar.
[java] 10/16/06 5:24:50 PM (I) JContainer3.start : Analyze elapsed during : 4 ms
[java] 10/16/06 5:24:51 PM (I) JContainer3.start : Enhancement elapsed during : 287 ms
[java] 10/16/06 5:24:51 PM (I) JContainer3.start : Container started in : 544 ms

Once this information is displayed on the screen, the container is ready to receive client calls.

3.2.4.4. Running the Client

Once the container has been started, the client can be launched.

The client is run with the following ant command: ant run.client

If the client runs successfully, the following output is displayed on the client's side:

run.client:
[java] Oct 16, 2006 5:27:03 PM
org.objectweb.carol.util.configuration.ConfigurationRepository init
[java] INFO: No protocols were defined for property 'carol.protocols', trying with default
protocol = 'jrmp'.
[java] Calling methods that everybody can call...
[java] Call a bean with run-as in order to have 'admin' role...
[java] Access denied as expected (method is denied)

And on the server:

[java] someRolesAllowed() called
[java] -> Caller is 'Principal[EasyBeans/Anonymous]'.
[java] for run-as bean, caller is Caller is 'Principal[EasyBeans/Anonymous]
[java] onlyAdminAllowed() called
[java] -> Caller is 'Principal[admin]'.
[java] someRolesAllowed() called
[java] -> Caller is 'Principal[admin]'.

10

Chapter 4. Writing a HelloWorld bean
4.1. Requirements

This example illustrates the basics of an EJB3 application, showing all the steps used to build and
run the EJB.

The only addtional information required is to know how to run the server.

4.2. Writing Code for the Bean
The HelloWorld bean is divided into two parts: the business interface, and the class implementing
this interface.

4.2.1. Writing the Interface
The interface declares only one method: helloWorld()

package org.objectweb.easybeans.tutorial.helloworld;

/**
* Interface of the HelloWorld example.
* @author Florent Benoit
*/
public interface HelloWorldInterface {

/**
* Hello world.
*/
void helloWorld();

}

Note

Even if this interface is used as a remote interface, it does not need to extend
java.rmi.Remote interface.

4.2.2. Writing the Business Code
The following code implements the existing interface:

package org.objectweb.easybeans.tutorial.helloworld;

/**
* Business code for the HelloWorld interface.
* @author Florent Benoit
*/
public class HelloWorldBean implements HelloWorldInterface {

/**
* Hello world implementation.
*/
public void helloWorld() {
System.out.println("Hello world !");
}

}

Note

At this moment, the bean is not an EJB; this is only a class implementing an interface.

Writing a HelloWorld bean

11

4.2.3. Defining It as a Stateless Session Bean
Now that the EJB code has been written, it is time to define the EJB application.

This bean will be a stateless session bean, thus the class will be annotated with @Stateless annotation.

In addition, the interface must be a remote interface to be available for remote clients. This is done
by using the @Remote annotation.

package org.objectweb.easybeans.tutorial.helloworld;

import javax.ejb.Remote;
import javax.ejb.Stateless;

/**
* Business code for the HelloWorld interface.
* @author Florent Benoit
*/
@Stateless
@Remote(HelloWorldInterface.class)
public class HelloWorldBean implements HelloWorldInterface {

/**
* Hello world implementation.
*/
public void helloWorld() {
System.out.println("Hello world !");
}

}

Note

If a class implements a single interface, this interface is defined as a local interface by
default.

4.2.4. Packaging the Bean
The two classes (HelloWorldInterface and HelloWorldBean) must be compiled.

Then, a folder named ejb3s/helloworld.jar/ must be created and classes placed in this folder.
They will be deployed and loaded automatically.

4.3. Writing the Client Code
The client can access the business interface directly and can call the methods of the bean directly.

package org.objectweb.easybeans.tutorial.helloworld;

import javax.naming.Context;
import javax.naming.InitialContext;

/**
* Client of the helloworld bean.
* @author Florent Benoit
*/
public final class Client {

/**
* JNDI name of the bean.
*/
private static final String JNDI_NAME =
"org.objectweb.easybeans.tutorial.helloworld.HelloWorldBean"
+ "_" + HelloWorldInterface.class.getName() + "@Remote"

/**
* Utility class. No public constructor
*/
private Client() {
}

Writing a HelloWorld bean

12

/**
* Main method.
* @param args the arguments (not required)
* @throws Exception if exception is found.
*/
public static void main(final String[] args) throws Exception {
Context initialContext = new InitialContext();

HelloWorldInterface businessItf =
(HelloWorldInterface) initialContext.lookup(JNDI_NAME);

System.out.println("Calling helloWorld method...");
businessItf.helloWorld();
}

}

Note

The client does not call the PortableRemoteObject.narrow() method. Also, no create()
method is required.

4.4. Writing a First Business Method Intercep-
tor

An interceptor can be defined in the bean class or in another class. In this example, it will be defined
in the bean's class. A business interceptor is defined by using the @AroundInvoke annotation.

The following interceptor will print the name of the method that is invoked. Of course, this can be
extended to do more stuff.

/**
* Dummy interceptor.
* @param invocationContext contains attributes of invocation
* @return method's invocation result
* @throws Exception if invocation fails
*/
@AroundInvoke
public Object intercept(final InvocationContext invocationContext) throws Exception {
System.out.println("Intercepting method '" + invocationContext.getMethod().getName()
+ "'.");
try {
return invocationContext.proceed();
} finally {
System.out.println("End of intercepting.");
}
}

Caution

Don't forget to call the proceed() method on the invocationContext object. Else, the
invocation is broken.

4.5. Writing a First Lifecycle Interceptor
The bean can be notified of some lifecycle events, for example when a bean is created or destroyed.

In the following example, a method of the bean will received an event when an instance of the bean
is built. This is done by using the @PostConstruct annotation.

Llifecycle interceptors of a bean may be defined in another class.

/**
* Notified of postconstruct event.
*/
@PostConstruct
public void notified() {

Writing a HelloWorld bean

13

System.out.println("New instance of this bean");
}

14

Chapter 5. Configuration file
5.1. Introduction

EasyBeans is configured with the help of an XML configuration file. The XML configuration file is
an easy-to-understand configuration file.

Here is an example of a configuration file :

<?xml version="1.0" encoding="UTF-8"?>
<easybeans xmlns="http://org.objectweb.easybeans.server">
<!-- Define components that will be started at runtime -->
<components>
<!-- RMI/JRMP will be used as protocol layer -->
<rmi>
<protocol name="jrmp" port="1099" hostname="localhost" />
</rmi>

<!-- Start a transaction service -->
<tm />

<!-- Start a JMS provider -->
<jms port="16030" hostname="localhost" />

<!-- Creates an embedded HSQLDB database -->
<hsqldb port="9001" dbName="jdbc_1">
<user name="easybeans" password="easybeans" />
</hsqldb>

<!-- Creates a JDBC pool with jdbc_1 JNDI name -->
<jdbcpool jndiName="jdbc_1" username="easybeans"
password="easybeans"
url="jdbc:hsqldb:hsql://localhost:9001/jdbc_1"
driver="org.hsqldb.jdbcDriver" />

<!-- Start smartclient server with a link to the rmi component-->
<smart-server port="2503" rmi="#rmi" />
</components>
</easybeans>

By default, an easybeans-default.xml file is used. To change the default configuration, user
has to provide a file named easybeans.xml which can be found in a classloader/CLASSPATH.

5.2. Configuration
Each element defined inside the <components> element are components

Note that some elements are required only for the standalone mode. When EasyBeans run inside
JOnAS, JMS, RMI, HSQL, and JDBC pools are configured through JOnAS server.

5.2.1. RMI component
The RMI configuration is done by using the <rmi> element.

In order to run EasyBeans with multiple protocols, <protocol> element can be added more than once.

The hostname and port attributes are configurable.

Protocols could be "jrmp, jeremie, iiop, cmi". The default is jrmp.

Note

Some protocols may require some libraries that are not packaged by default in Easy-
Beans.

Configuration file

15

5.2.2. Transaction component
The Transaction Component is defined by the <tm> element.

A timeout attribute can be defined on this element. It is the transaction timeout (in seconds). By default
it is 60 seconds.

The default implementation used is the implementation provided by JOTM [http://jotm.objectweb.org]
objectweb project.

5.2.3. JMS component
The JMS component is used for JMS Message Driven Beans. Attributes are the port number and the
hostname.

The default implementation used is the implementation provided by JORAM [http://
joram.objectweb.org] objectweb project.

5.2.4. HSQL database
An embedded database can be run by EasyBeans. Available attributes are the port number and the
database name. The <hsqldb> may be duplicated in order to run several HSQLDB instances.

Users are defined through the <user> element.

5.2.5. JDBC pool
This component allows to bind JDBC datasource into JNDI. The jndi name that will be used is provided
by the jndiName attribute.

Required attributes are username, password, url and driver.

Optional attributes are poolMin, poolMax and pstmtMax. It allows to set the minimum size of the
pool, the maximum size and the size of the prepared statement cache.

5.2.6. SmartServer component
This component is used by the Smart JNDI factory on the client side. This allows the client to download
missing classes. The client can be run without a big jar file providing all classes. Classes are loaded
on demand.

Note

There is a chapter about the Smart factory.

5.3. Advanced configuration
This configuration file can be extended to create and set properties on other classes.

5.3.1. Mapping file
In order to know that rmi is the CarolComponent, tm the JOTM component, jms the Joram component,
there is a mapping file. This file is named easybeans-mapping.xml and it is located in the
org.objectweb.easybeans.server package.

Here is an extract of the easybeans-mapping.xml file.

url(http://jotm.objectweb.org)
url(http://jotm.objectweb.org)
url(http://joram.objectweb.org)
url(http://joram.objectweb.org)
url(http://joram.objectweb.org)

Configuration file

16

<?xml version="1.0" encoding="UTF-8"?>
<easybeans-mapping xmlns="http://easybeans.objectweb.org/xml/ns/mapping">

<class name="org.objectweb.easybeans.component.Components"
alias="components" />

<package name="org.objectweb.easybeans.component.carol">
<class name="CarolComponent" alias="rmi">
<attribute name="portNumber" alias="port" />
</class>
<class name="Protocol" alias="protocol" />
</package>

...

</easybeans-mapping>

Note

this mapping file is referenced by the easybeans configuration file by using the XML
namespace : xmlns="http://org.objectweb.easybeans.server".

Each element configured within this namespace will use the mapping done in the
org.objectweb.easybeans.server package.

Users can use their own mapping by providing a file in a package. The name of the the file needs to
be xxx-mapping.xml with xxx being the name of the element which will use this namespace.

Example : For the element <easybeans xmlns="http://org.objectweb.easybeans.server">, the resource
searched in the classloader is org/objectweb/easybeans/server/easybeans-mapping.xml.

5.3.2. Other configuration file
EasyBeans could be configured through other configuration files as it uses a POJO configuration. then,
you could configure it with the Spring Framework component or other frameworks/tools.

17

Chapter 6. Smart JNDI factory
6.1. Introduction

The smart factory provided by EasyBeans is a factory allowing to download some classes from the
server.

It is useful when developing heavy clients.

In order to run the clients, developer has to provide alls the classes used to compile the client code and
add a small jar file (less than 50kB) to add to the CLASSPATH.

Required libraries for running a client are :

• The client's code (used at compile time)

• The Interface of the Beans that are accessed. (used at compile time)

• The Java EE API used by the client (used at compile time)

• The smart factory provided by the ow_easybeans_component_smartclient.jar jar file.

6.2. Running the client
The smart factory is configured through two properties.

6.2.1. Initial Context Factory
The first property is the InitialContextFactory name. The smart
factory has the name
org.objectweb.easybeans.component.smartclient.spi.SmartContextFactory.

This property can be set as a System property :

• by using -
Djava.naming.factory.initial=org.objectweb.easybeans.component.smartclient.spi.SmartContextFactory

• Or by using System.setProperty(Context.INITIAL_CONTEXT_FACTORY,
org.objectweb.easybeans.component.smartclient.spi.SmartContextFactory)

It can also be used as a parameter when creating an InitialContext :

Hashtable<String, Object> env = new Hashtable<String, Object>();
env.put(Context.INITIAL_CONTEXT_FACTORY,
org.objectweb.easybeans.component.smartclient.spi.SmartContextFactory);
return new InitialContext(env);

6.2.2. Provider URL
This property is used in order to know the remote address and the remote port.

By default, this property is set (if not defined) to smart://localhost:2503

The port number needs to match the port defined in the EasyBeans configuration file.

This property can be set by using :

Hashtable<String, Object> env = new Hashtable<String, Object>();

Smart JNDI factory

18

env.put(Context.INITIAL_CONTEXT_FACTORY,
org.objectweb.easybeans.component.smartclient.spi.SmartContextFactory);
env.put(Context.PROVIDER_URL, "smart://localhost:2503");
return new InitialContext(env);

6.3. Example
Here is the output on the client side when this factory is enabled :

[java] Oct 17, 2006 5:38:13 PM
org.objectweb.easybeans.component.smartclient.spi.SmartContextFactory getInitialContext
[java] INFO: Initializing Smart Factory with remote URL 'smart://localhost:2503'.
[java] Oct 17, 2006 5:38:13 PM
org.objectweb.easybeans.component.smartclient.spi.SmartContextFactory getInitialContext
[java] INFO: Got remote PROVIDER_URL 'rmi://localhost:1099'.

...
[java] Downloaded 'xxx' classes, 'xxx' resources for a total of 'xxx' bytes and it took
'xxx' ms.

And on the server side :

[java] 10/17/06 5:38:13 PM (I) SmartClientEndPointComponent.handleReadProviderURLRequest :
Provider URL asked by client : 'rmi://localhost:1099'.

