
Joram 5.8
User’s Guide

Last modified 10/24/12 by ScalAgent D.T. release 5.8.0



Joram 5.8  User's Guide

Contents
Contents................................................................................................2

Figures ..................................................................................................6

1.Installation..........................................................................................8

1.1.Requirements...................................................................................................................... 8

1.2.Getting Joram binary distribution.....................................................................................8

1.3.Running a Joram server.....................................................................................................9

2.Using samples..................................................................................10

2.1.Compiling JORAM samples.............................................................................................10

2.2.Running Joram samples..................................................................................................10

2.2.1.The classic sample....................................................................................................10

2.2.2.The chat sample........................................................................................................12

2.2.3.The distributed sample.............................................................................................13

2.2.4.The dotcom demo.....................................................................................................14

2.2.5.The perfs samples.....................................................................................................16

2.3.Using scripts..................................................................................................................... 17

2.3.1.First step.................................................................................................................... 17

2.3.2.Launching a JORAM platform..................................................................................17

2.3.3.Launching a JORAM client.......................................................................................17

2.3.4.Running the classic samples using script files......................................................17

2.4.Administration through XML scripts...............................................................................19

2.4.1.Classic sample administration using XML script...................................................19

3.Administration Guide........................................................................20

3.1.Introduction....................................................................................................................... 20

3.2.Administration concepts..................................................................................................20

3.2.1.Overall view...............................................................................................................20

3.2.2.User............................................................................................................................ 21

3.2.3.Destinations...............................................................................................................22

3.3.Platform configuration.....................................................................................................23

3.3.1.Centralized configuration.........................................................................................24

3.3.2.Distributed configuration.........................................................................................25

3.3.3.Stopping a server......................................................................................................26

 - 2 -



Joram 5.8  User's Guide

3.3.4.Dynamic configuration.............................................................................................26

3.3.5.Logging configuration..............................................................................................29

3.4.High level administration.................................................................................................29

3.4.1.Administration “session”.........................................................................................30

3.4.2.Managing a user........................................................................................................31

3.4.3.User connectivity......................................................................................................32

3.4.4.Managing a destination.............................................................................................33

3.4.5.Managing a Queue....................................................................................................36

3.4.6.Managing a Topic......................................................................................................36

3.4.7.Managing the platform..............................................................................................36

3.5.Message interceptors.......................................................................................................38

3.5.1.Managing client interceptors....................................................................................38

3.5.2.Managing server interceptors..................................................................................39

3.6.JMX administration of Joram...........................................................................................42

3.7.Scripts XML....................................................................................................................... 42

3.7.1.Administrator connection.........................................................................................42

3.7.2.Naming....................................................................................................................... 43

3.7.3.User and connectivity...............................................................................................43

3.7.4.Destination................................................................................................................. 44

3.7.5.Destination security and naming.............................................................................44

3.7.6.Example..................................................................................................................... 45

4.Specialized  destinations.................................................................46

4.1.Dead Message Queue.......................................................................................................46

4.1.1.Introduction...............................................................................................................46

4.1.2.Managing a Dead Message Queue...........................................................................49

4.1.3.Running the “Dead Message Queue” sample.........................................................50

4.2.Hierarchical Topic.............................................................................................................51

4.2.1.Hierarchical topic......................................................................................................51

4.2.2.Managing a Hierarchical Topic.................................................................................53

4.2.3.Running the topic tree sample.................................................................................54

4.3.Clustered Topic................................................................................................................55

4.3.1.Introduction...............................................................................................................55

4.3.2.Managing a clustered topic......................................................................................56

4.3.3.Running the “Clustered Topic” Sample..................................................................57

4.3.4.Using XML Scripts.....................................................................................................59

4.4.Clustered Queue...............................................................................................................60

4.4.1.Introduction...............................................................................................................60

4.4.2.Managing a clustered queue....................................................................................62

 - 3 -



Joram 5.8  User's Guide

4.4.3.Running the “Clustered Queue” Sample................................................................63

4.4.4.Using XML Scripts.....................................................................................................65

4.5.SchedulerQueue...............................................................................................................66

4.5.1.Introduction...............................................................................................................66

4.5.2.Using a schedulerQueue..........................................................................................67

4.6.Acquisition and distribution ...........................................................................................67

4.6.1.Introduction...............................................................................................................67

4.6.2.Configuring an acquisition destination...................................................................68

4.6.3.Configuring a distribution destination....................................................................69

4.6.4.Setting properties......................................................................................................69

4.6.5.Required libraries......................................................................................................69

4.6.6.Mail acquisition / distribution...................................................................................70

4.6.7.URL acquisition (collector).......................................................................................72

4.6.8.JMX acquisition (monitoring)...................................................................................73

4.6.9.JMS acquisition / distribution bridge.......................................................................75

4.6.10.AMQP acquisition / distribution bridge.................................................................80

4.6.11.AMQP acquisition / distribution proxy..................................................................83

4.6.12.Acquisition / distribution with PHP scripts...........................................................86

4.7.FTPQueue.......................................................................................................................... 87

4.7.1.Introduction...............................................................................................................87

4.7.2.Managing a FTPQueue..............................................................................................88

4.7.3.Using a FTPQueue destination................................................................................89

4.7.4.Running the sample..................................................................................................89

5.Using a collocated server................................................................91

5.1.Introduction....................................................................................................................... 91

5.2.Configure a collocated server.........................................................................................91

5.3.Start a collocated server..................................................................................................91

5.4.Connect to the collocated server....................................................................................92

5.4.1.Create local connections..........................................................................................92

5.4.2.Connect the administration module........................................................................92

5.5.Stop the collocated server...............................................................................................92

5.6.Start the embedding Java application............................................................................92

6.Working with sources distribution...................................................94

6.1.Getting Joram sources.....................................................................................................94

6.1.1.Getting a packaged version of Joram......................................................................94

6.1.2.Getting Joram from SVN...........................................................................................94

6.1.3.Directory structure and description.........................................................................94

6.2.Compiling and shipping Joram.......................................................................................95

 - 4 -



Joram 5.8  User's Guide

6.2.1.Compiling Joram.......................................................................................................95

6.2.2.Generating the javadoc.............................................................................................98

6.2.3.Generating a distribution..........................................................................................98

6.2.4.Cleaning..................................................................................................................... 98

 

 - 5 -



Joram 5.8  User's Guide

Figures 
Figure 1 - Classic samples configuration............................................11

Figure 2 - Chat sample configuration..................................................12

Figure 3 - Distributed sample configuration.......................................13

Figure 4 - Dotcom sample configuration.............................................14

Figure 5 - Web Server's interface........................................................15

Figure 6 - Inventory Server's and Control Server's interfaces............15

Figure 7 - Customer Server's interfaces.............................................16

Figure 8 - Delivery Server's interface..................................................16

Figure 9 - Applications exchanging data through messaging............20

Figure 10 - Joram platform and clients...............................................21

Figure  11  -  A  client  connected  to  a  server  “through”  a  standard 
ConnectionFactory..............................................................................22

Figure  12  -  A  client  accessing  a  server  destination”through”  a 
standard Destination...........................................................................23

Figure 13 - JConsole view...................................................................42

Figure 14 - Messages on a queue sent to a DMQ................................47

Figure 15 - Dead message queue sample...........................................51

Figure 16 - A Hierarchical topic..........................................................52

Figure 17 - A distributed Hierarchical topic.......................................53

Figure 18 - Topic tree sample.............................................................54

Figure 19 - A clustered topic...............................................................55

Figure 20 - Cluster sample configuration............................................58

Figure 21 - A cluster of queues balancing heavy deliveries...............61

 - 6 -



Joram 5.8  User's Guide

Figure 22 - The mail sample................................................................71

Figure 23 - A JORAM client communicating with a XMQ client.........75

Figure 24 - 2 Joram clients communicating through the JMS bridge 80

Figure 25: Distribution to an AMQP server using a distribution queue
............................................................................................................. 80

Figure  26:  Acquisition  from an  AMQP  server  using  an  acquisition 
queue...................................................................................................81

Figure 27: Distribution to an AMQP client using a distribution queue
............................................................................................................. 83

Figure 28: Distribution to an AMQP client using a distribution queue
............................................................................................................. 83

Figure 29: File transfert through a FTP Queue...................................88

Figure 30: File acquisition from a FTP Queue.....................................88

 - 7 -



Joram 5.8  User's Guide

1. Installation
  Joram 5.8 basically includes:

 A messaging server (or MOM), providing the messaging functionalities: basically hosting 
and routing the messages exchanged by the client applications. It includes either a JMS 
service and an AMQP service.

 A JNDI compliant naming server, distributed (since release 4.1) persistent and reliable.
 Client classes allowing applications to access the MOM functionalities. Those interfaces 

are defined by the JMS 1.1 specifications.
 Samples illustrating the various features provided by Joram.
 JCA 1.5 connector allowing deployment in J2EE platform.

In option it provides:

 A WebConsole based on GWT and JMX,
 An eclipse plugin for architecture design,
 A JMS / JMX connector,
 An AMQP compliant provider, etc.

1.1. Requirements
Joram can run on a wide variety of platform, a typical hardware and software platform is:

Hardware requirements
 Year 2000 compliant 32-bit Intel based PC hardware (or equivalent)
 256 Mb RAM, 5 Gb disk,
 Communication hardware supporting TCP/IP

Software requirements
 Operating system: Linux, Windows 2000 and XP, Windows 7, etc.
 Connectivity: TCP/IP.
 Java environment: JDK 1.5 and later.

1.2. Getting Joram binary distribution
The packages are downloadable from the following location: 

 http://forge.ow2.org/project/showfiles.php?group_id=4  .

For release x.y.z, the following tar file provided:

 joram-release-x.y.z.tgz,  including the client and server libraries, as well as the 
javadoc and the samples sources.

This package is expanded by UNIX users with the gunzip and tar commands; Windows users 
can use the 7-Zip utility.

The distribution is expanded in a joram-x.y.z/ directory. It includes the following directories:

 doc/

 - 8 -

http://forge.ow2.org/project/showfiles.php?group_id=4


Joram 5.8  User's Guide

 samples/
o bin/…
o config/…
o src/joram/…

 ship/
o lib/
o licenses/

1.3. Running a Joram server
To run a server you have just to launch the fr.dyade.aaa.agent.AgentServer class with 2 
parameters, the first one is the unique identifier of the server and the second one is the path of 
storage directory. For example:

java -cp …  fr.dyade.aaa.agent.AgentServer 0 ./s0

During  its  first  initialisation  the  server  will  be  configured  according  to  the  a3servers.xml 
configuration file (see below) then the configuration will be kept in the storage directory.

<?xml version="1.0"?>
<config>
  <server id="0" name="S0" hostname="localhost">
    <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
             args="root root"/>
    <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService" 
             args="16010"/>
    <service class="fr.dyade.aaa.jndi2.server.JndiServer"
             args="16400"/>
  </server>
</config>

A simple « a3servers.xml » configuration file

The «a3servers.xml»  configuration file  above simply defines a  centralized Joram JMS server 
including a JNDI service, the JMS service is listening on TCP port 16010 and the JNDI service on 
TCP port 16400. The chapter  3.3 which describes more precisely the configuration of a Joram 
platform.

 - 9 -



Joram 5.8  User's Guide

2. Using samples
This chapter describes the samples provided with JORAM and for each, the architecture of the 
underlying platform. The samples are provided with the JORAM distributions under the samples/ 
directory. It’s a good way to verify the correctness of Joram installation.

The  samples/src/joram directory includes the samples codes of JORAM clients. Compiling 
and launching are done with the ant command.

Configuration  files  are  located  in  the  samples/config directory.  They might  be edited and 
adapted to your environment. For more information, please refer to the administration part of this 
document (chapter 3Administration Guide). This directory contains:

 a3config.dtd, the DTD for server configuration.

 a3debug.cfg, a default logger configuration file used by all samples.

 XML configuration files for centralized and distributed server architecture: 
centralized_a3servers.xml, distributed_a3servers.xml, etc.

 OSGi configuration file (Felix implementation) used by the various implementation:
o config.properties : A simple configuration running Joram's JMS and JNDI services.

o config_amqp.properties : A configuration running the Joram's AMQP service.

o config_bridge.properties : The configuration used with the JMS bridge samples.

o config_console.properties : A configuration with bundles needed to start the Web 
console.

o config_stomp.properties : A configuration allowing the use of Stomp protocol.

 jndi.properties, a default configuration file for JNDI’s clients.

The samples/bin directory provides Unix and Windows script files for launching JORAM servers 
and clients if you don’t want to use ant targets. 

All examples creates a samples/run where logging files and the persistence root (if any) of each 
server are created. Current configuration files are copied in this directory. When starting a platform 
with a new configuration, or when a clean platform is expected, this directory should be removed.

2.1. Compiling JORAM samples
The Joram samples need to be compiled. Under the samples/src/joram directory, simply type:

ant clean compile

This creates a samples/classes/joram/ directory holding the compiled classes. For removing 
this directory, type:

ant clean

 - 10 -



Joram 5.8  User's Guide

2.2. Running Joram samples
2.2.1. The classic sample

The  JMS  API  provides  a  separate  domain  for  each  messaging  approach,  point-to-point or 
publish/subscribe:

 The point-to-point domain is built around the concept of queues, senders and receivers.
 The  publish/subscribe domain  is  built  around  the  concept  of  topic,  publisher  and 

subscriber
 Additionally JMS provides an unified domain with common interfaces that enable the use 

of queue and topic. This domain is defines the concept of producers and consumers.

This sample demonstrates the different messaging domains of JMS, point-to-point with a sender, 
a receiver and a queue browser, publish/subscribe with a subscriber and a publisher, and unified 
with messages producers and consumers.

The classic sample uses a very simple configuration (centralized) made of one server hosting a 
queue and a topic. The server is administratively configured for accepting connections requests 
from the anonymous user.

The  platform  is  run  in  non  persistent  mode  (The  “Transaction”  property  is  set  to 
“fr.dyade.aaa.util.NullTransaction” in a3servers.xml configuration file).

Figure 1 - Classic samples configuration

Running the demo with Ant:
 For starting the platform:

ant reset single_server
 As  defined  in  the  configuration  file  (run/a3servers.xml)  it  launches  a  Joram  server 

without  persistency.  It  creates  a  ConnectionManager,  a  TCP/IP  entry  point  and  a 
JndiServer  (port  16400);  the  ConnectionManager  defines  a  default  administrator 
(username “root”, password “root”). The reset target is used to removes all out-of-date 
data in the run directory.

 For running the admin code:
ant classic_admin

 This client connects to the Joram’s server, then creates 2 JMS destinations (a 
queue  and  a  topic)  and  an  anonymous  user.  It  defines  3  different 
ConnectionFactory, one for each messaging domain.

 Each administered objects is then bound in JNDI.
 The corresponding code is in the ClassicAdmin.java file of the classic directory.

 - 11 -



Joram 5.8  User's Guide

 Optionally you can use the classic_adminxml Ant target, it does the same job 
using XML scripts rather than the programmatic API (the corresponding script is in 
the joramAdmin.xml file of the classic directory).

 Normally JMS is used through the unified messaging domain:
o It uses the common ConnectionFactory “cf”, and the Destination “queue” 

or “topic” retrieved from JNDI.
o For  running  the  consumer  sample,  type  ”ant  consumer_queue”  or  ”ant 

consumer_topic”. It continuously reads  messages sent to the queue or the topic.
o For  running  the  producer  sample,  type  “ant  producer_queue”  or  “ant 

producer_topic”. It sends 10 messages to the queue, and 10 messages to the 
topic.

 Using the point-to-point messaging domain:
o It uses the QueueConnectionFactory “qcf”, and the Queue “queue” retrieved 

from JNDI.
o For  running  the sender  sample,  type “ant sender”;  each  time,  it  sends 10 

messages to the defined queue.
o For running the browser sample, type “ant browser”; it allows to look messages 

on queue without removing them.
o For running the receiver sample, type “ant receiver”; each time, it consumes 

10 messages from the queue. If there is not enough messages, it stops until new 
messages are produced.

 Using the publish/subscribe messaging domain:
o It  uses the  TopicConnectionFactory “tcf”,  and the  Topic “topic” retrieved 

from JNDI.
o For running the subscriber sample, type “ant subscriber”. It subscribes to the 

defined topic, and then receives all messages later published on this topic.
o For  running  the  publisher  sample,  type  “ant publisher”.  It  publishes  10 

messages on the topic.

2.2.2. The chat sample

The chat sample uses a very simple configuration (centralized) made of one server hosting a 
single queue. The server is administratively configured for accepting connections requests from 
the anonymous user.

The  platform  is  run  in  non  persistent  mode  (property  “Transaction”  is  set  to 
“fr.dyade.aaa.util.NullTransaction” in a3servers.xml configuration file).

Figure 2 - Chat sample configuration

Running the demo:

 For starting the platform:
ant reset single_server

 For running the admin code:

 - 12 -



Joram 5.8  User's Guide

ant chat_admin
 This client connects to the Joram’s server, and then creates a topic 

and an anonymous user. It defines a  TopicConnectionFactory. Each 
administered objects is then bind in JNDI.

 To start a chat client, type “ant chat1”. It launches a chat client with user1 speudo, then 
each message typed at console is sent to the topic, and each message published on the 
topic is written to the console.

 To start a second chat client, type “ant chat2”. It simply launches a chat client with 
user2 speudo.

2.2.3. The distributed sample

The distributed sample illustrates Joram under a distributed architecture. Its configuration involves 
three servers. The clients producing messages (sender and publisher) connect to server 0. The 
clients consuming the messages (receiver and subscriber) connect to server 2. The destinations 
they interact with are deployed on server 1. The platform is run in persistent mode. The provided 
configuration locates all three servers on “localhost” host.

Figure 3 - Distributed sample configuration

Running the demo:

 Starting the configuration, type “ant reset servers”. It cleans the run directory the launches 
the 3 servers. You can start separately each servers by typing:
ant reset
ant server0
ant server1
ant server2

 Running the admin code:
ant archi_admin

 Running the producers:
ant archi_sender
ant archi_pub

 Running the consumers:

 - 13 -



Joram 5.8  User's Guide

ant archi_receiver
ant archi_sub

2.2.4. The dotcom demo

The dotcom demo simulates what could be a commercial transaction involving many participants:

 Web server: server on which a customer order items.
 Customer server: centralizes the processing of the orders.
 Inventory server: checks if the items ordered are available.
 Billing server: centralizes the processing of the bank references.
 Control server: checks the bank references of the customers.
 Delivery server: receives the order ready for delivery.

The next  picture  shows the actors  of  this  simulation and the destinations through which they 
interact. The provided architecture is centralized. The platform runs in persistent mode.

Figure 4 - Dotcom sample configuration

Scenario:

1. A customer buys an item on a web site. The Web Server publishes the order on a topic to which 
the Customer Server, the Inventory Server and the Billing Server have subscribed.

2. The Inventory Server checks if the item ordered is available and sends his answer back to the 
Customer Server. The Billing Server forwards the order to the Control Server who will check the 
bank references of the customer and send his answer back to the Billing Server. Then, the 
Billing Server forwards that answer to the Customer Server. 

3. If the order has been validated by both Inventory Server and Billing Server, the Customer Server  
forwards it to the Delivery Server for delivery.

Running the demo:

 Starting the configuration:

 - 14 -



Joram 5.8  User's Guide

ant reset single_server
 Running the admin:

ant dotcom_admin
 Running the servers:

ant webServers
 Running the client:

ant webClient

The dotcom sample’s GUI:

A GUI allows to interact  with  the demo. Each time a server  receives a message,  its  window 
appears. 

The WebServer's  interface simulates the choice the user has to make between items: shoes, 
socks, trousers, shirt and hat. He must select one and then Send the order or set an Other order. 
The  Send  button  must  be  pressed  after  the  last  order.  It  commits  all  previous  orders.  For 
cancellation, the Cancel button rollsback the orders. The Quit button sends the quit command to 
the other participants, closes the connections of the Web Server and terminates the program. Quit 
doesn't kill the middleware, thus it is possible to simply restart the application without having to 
relaunch the Agent server and the Admin.

Figure 5 - Web Server's interface

The  Inventory and  Control  Servers  windows  allow to  simulate  the  work  of  those  servers  by 
validating or not the order they received.

Figure 6 - Inventory Server's and Control Server's interfaces

According to the results of previous controls, the Customer Server either will be able to ask for 
delivery, or won't.

Figure 7 - Customer Server's interfaces

Finally, if sent by the Customer Server, the order reaches the Delivery Server.

 - 15 -



Joram 5.8  User's Guide

Figure 8 - Delivery Server's interface

2.2.5. The perfs samples

The perfs samples have been developed for checking Joram’s performances. What is actually 
measured is the messages mean travel time (travel from the producer to the consumer).  The 
configuration used is centralized, made of one queue and one topic. For testing PTP and Pub/Sub 
modes, the available clients are a Sender, a Publisher, a Receiver and a Subscriber. 

These clients,  as provided, are non transactional,  subscriber  is non durable. Of  course these 
parameters may be changed for testing various configurations. Tests might be run on a persistent 
platform or a non persistent one.

The receiver and subscriber  samples produce a PerfsFile file containing the mean messages 
travel time (computed for groups of 10 messages in the PTP case, 50 messages in the Pub/Sub 
case). 

Starting the platform:

 Persistent platform:
ant reset server0

 Or non persistent platform:
ant reset single_server

 Running the admin code:
ant perfs_admin

Testing the PTP mode:

 Running the receiver:
ant perfs_receiver

 Running the sender:
ant perfs_sender

Testing the Pub/Sub mode:

 Running the subscriber:
ant perfs_sub

 Running the publisher:
ant perfs_pub

2.3. Using scripts
In the previous sections, it has been explained how to launch the provided samples through Ant 
targets. It  is  also possible to use the script  files located in the  samples/bin  directory. This 
section explains how to use those scripts.

2.3.1. First step

The first step consists in fixing the JAVA_HOME and the JORAM_HOME environment variables. 
The  JAVA_HOME  property  value  must  point  to  your  Java  installation  directory.  The 
JORAM_HOME value must point to your JORAM directory (the directory actually containing the 
samples/ sub-directories).

 - 16 -



Joram 5.8  User's Guide

2.3.2. Launching a JORAM platform

Launching a JORAM platform with the scripts has the same effects as using the Ant targets.

Depending on the script, it will set the appropriate configuration: copy the rigth a3servers.xml 
and jndi.properties from config/ directory in the created run/ directory, etc.

Those scripts are:

 single_server.[sh/bat] :  copies  the  config/centralized_a3servers.xml 
file as  a3servers.xml and  config/jndi.properties in  run directory.  If  not 
already done, creates the run/ directory. Then launches the non persistent server 0.

 server.[sh/bat] x :  copies  distributed_a3servers.xml as  a3servers.xml 
and  jndi.properties as  jndi.properties if  not already done, creates the  run/ 
directory if it does not exist, and launches the persistent server x.

 clean.[sh/bat] : deletes the a3servers.xml and jndi.properties files, deletes 
the run/ directory.

When starting a new persistent server, the clean script must be executed in order to remove any 
existing persistence root which may alter the way the server starts. When re-starting a stopped or 
crashed persistent  server,  the  clean script  should  not  be called in order  to keep the needed 
persistence root.

2.3.3. Launching a JORAM client

The jmsclient script may be used for launching a client. It takes as argument the class of the client 
to execute. For example, for launching the classic sender class:

jmsClient classic.ClassicSender

Of course, this supposes that the samples have been compiled (and that the JORAM platform has 
been administered for the classic samples, either by running the  ClassicAdmin client,  or by 
using the administration graphical tool).

2.3.4. Running the classic samples using script files

The example below use '.sh' scripts on a Linux platform; if you use a Windows™ platform you may 
use the corresponding '.bat'  scripts.  All  theses scripts  need the definition of  JAVA_HOME and 
JORAM_HOME environment variable:

• Set JAVA_HOME to the directory where JDK is installed. 

• Set  JORAM_HOME to the directory that you installed Joram (the directory containing the 
ship and samples directories.

First cleans the persistence directory and configuration settings, then launches the server.

$> cd $JORAM_HOME/bin
$> ./clean.sh
== Cleaning the persistence directories and configuration settings ==

$> ./single_server.sh
== Launching a non persistent server#0 ==
AgentServer#0 started: OK

You can create all needed administered objects through the ClassicAdmin class.

$> ./jmsclient.sh classic.ClassicAdmin
== Launching the classic.ClassicAdmin client ==

 - 17 -



Joram 5.8  User's Guide

Classic administration...
Admin closed.

Then you can  send  or  receive  messages  using the  Sender/Receiver  or  Publisher/Subscriber 
classes; for example:

$> ./jmsclient.sh classic.Sender
== Launching the classic.Sender client ==

Sends messages on the queue...
10 messages sent.

$> ./jmsclient.sh classic.Receiver
== Launching the classic.Receiver client ==

Requests to receive messages...
Msg received: Test number 0
Msg received: Test number 1
Msg received: Test number 2
Msg received: Test number 3
Msg received: Test number 4
Msg received: Test number 5
Msg received: Test number 6
Msg received: Test number 7
Msg received: Test number 8
Msg received: Test number 9

10 messages received.

You can launch the administration GUI JAMT using the admin.sh (respectively admin.bat) script:

$> ./admin.sh
== Launching the graphical administration tool ==

2.4. Administration through XML scripts
There is three way to deploy Joram's administered objects: the administration API, the graphical 
administration tool (JAMT) and now the XML scripting capability. 

This feature use the AdminModule to execute the corresponding XML script. The script allows 
describing the administration connection, creating and binding administered objects (see chapter 
3.7 Scripts XML).

2.4.1. Classic sample administration using XML script

The ant target  classic_adminxml uses the  AdminModule main static method to execute the 
administration script, this script is equivalent to the ClassicAdmin code.

$> ant classic_adminxml
Buildfile: build.xml

init:

 - 18 -



Joram 5.8  User's Guide

classic_adminxml:
     [copy] Copying 1 file to C:\cygwin\home\freyssin\owjoram\joram\samples\run

BUILD SUCCESSFUL
Total time: 3 seconds

In the script (see file samples/src/joram/classic/joramAdmin.xml) we described:

• The connection to Joram's configuration: a default TCP connection with hostname, port, 
username and password.

• The connection factory and the JNDI binding:

• an unified TCPConnectionFactory named “cf”,

• a QueueTCPConnectionFactory named “qcf”

• and TopicTCPConnectionFactory named “tcf”.

• The anonymous user.

• The destinations with their JNDI binding and security settings: a queue and a topic with 
freereader and freewriter settings.

 - 19 -



Joram 5.8  User's Guide

3. Administration Guide
3.1. Introduction

JORAM provides a messaging platform allowing distributed applications to exchange data through 
message communication (Figure 9).

Figure 9 - Applications exchanging data through messaging

The messaging system takes care of distributing the data produced by an application to another 
application. Applications do not need to know each other, or to be present at the same time.

In  order  to  provide  a  standardized  way  to  access  its  messaging  functionalities,  JORAM 
implements the set of classes and methods defined by the JMS API. JMS “client” applications may 
then, without any modification, use JORAM messaging platform.

This document presents how to configure and start the underlying messaging platform, and how to 
administer it so that it is usable by standard JMS clients.

3.2. Administration concepts
3.2.1. Overall view

A Joram messaging platform is  constituted by one or  many servers,  interconnected,  possibly 
running on remote nodes (Figure 10).

 A Joram server is a Java process providing the messaging functionalities, and hosting 
messaging destinations.

 A Joram JMS client is a Java process using the messaging functionalities through the 
JMS interfaces. In order to do so it connects to a Joram server.

 - 20 -



Joram 5.8  User's Guide

Figure 10 - Joram platform and clients

The goal of administration is to start and configure the messaging platform so that it provides all 
the features  needed by the “client”  applications.  It  is  also to  administer  this  platform  so  that 
standard JMS clients can access it and use it for their messaging operations.

The basic administration tasks are creating and deleting physical destinations on the messaging 
platform, setting or removing user’s access to this platform.

To have the platform usable by standard JMS clients, the administration phase also consists in 
creating the  javax.jms.ConnectionFactory and  javax.jms.Destination administered 
objects (see JMS specification, §4.2), and to bind those instances to a JNDI compliant naming 
server.

3.2.2. User

A user access to a JORAM platform is fully described by:

 server parameters (such as host name and port number), identifying to which server of the 
platform the user will connect;

 a protocol, used for the client – server communication (usually TCP, might be “local”, for 
collocated client and server);

 a user identification (name and password).

The actual  “physical”  connection is wrapped by a  javax.jms.Connection instance. A JMS 
Connection is  created  by  calling  the  createConnection method  on  a 
javax.jms.ConnectionFactory instance.  It  is  this  ConnectionFactory instance  which 
wraps the server and communication protocol parameters. This standard object allows to isolate 
clients  from  the  proprietary  parameters  needed  for  opening  a  connection  with  a  messaging 
platform (Figure 11).

 - 21 -



Joram 5.8  User's Guide

Figure 11 - A client connected to a server “through” a standard ConnectionFactory

A connection is opened by calling the ConnectionFactory.createConnection method. You 
can  either  use the method specifying an explicit  user  identity (login  name and password)  or 
assume the default identity (login “anonymous”, password “anonymous”). The default identity may 
be adjusted client side by setting the JoramDfltLogin and JoramDfltPassword properties.

If  the user  identification (either  anonymous – anonymous,  or  name – password)  is   unknown 
server  side,  the  createConnection methods  won’t  succeed  and  will  throw  a 
JMSSecurityException.

Allowing a client access to the platform requires then:

1. to create the appropriate ConnectionFactory instance wrapping the parameters of a server 
of the plaform, and of the communication protocol;

2. to bind this instance in a name space such as JNDI server so that users may later retrieve it;
3. to set the client as a user on this server.

3.2.3. Destinations

Client  applications exchange messages not  directly but through destinations.  A destination is, 
server  side,  an  instance  of  an  object  receiving  messages  from  producers  and answering  to 
consuming requests from consumers. As shown on Figure 12, a destination may be deployed on 
any server of a configuration, whatever the servers the clients are connected to.

Server-side  physical  destinations  are  “represented”  client  side  by  javax.jms.Destination 
instances.  A  Destination instance  wraps  the  parameters  of  the  corresponding  physical 
destination, and allows clients to be isolated from the proprietary parameters of a physical server 
side destination (Figure 12).

 - 22 -



Joram 5.8  User's Guide

Figure 12 - A client accessing a server destination”through” a standard Destination

A destination might either be a “queue” or a “topic”.  Messaging semantics is what makes the 
difference (check any documentation about message-oriented-middleware or the JMS spec §5 
and §6): 

• Queue: each messages is read only by a single client.

• Topic:  All  clients  that  have  previously  subscribed  to  this  topic  are  notified  of  the 
corresponding message.

Beyond this main characteristic, each destination may have a particular semantic; Joram supply 
many specific destinations : hierarchical or clustered destinations, bridge, etc.

The creation of a destination is then a three steps process:

1. first, creating the physical destination on a given server of the platform,

2. second, creating the corresponding  javax.jms.Destination instance wrapping the 
parameters of the server side destination,

3. third, binding the Destination instance in a name space such as a JNDI server, so that 
clients may then retrieve it.

Once retrieved, a destination allows clients to perform operations according to their access rights.  
A client set as a READER will  be able to request messages from the destination (either as a 
subscriber to a topic, or as a receiver or browser on a queue). A client set as a WRITER will be 
able to send messages to the destination.

Dead Message Queue (DMQ)
The Dead Message Queue (DMQ) is a particular queue used to store the dead messages. A dead 
message is a message that can not be delivered for various reasons (see chapter 4.1). The DMQ 
can be configured at different levels: server, destination, etc.

3.3. Platform configuration
Configuring a JORAM messaging platform consists in defining the number of servers that will  
constitute  it,  where  they  will  run,  and  in  defining  services  each  will  provide.  The  minimal 
configuration is a single server configuration. A platform configuration is described by an XML 
configuration file.

A dynamic configuration feature is available since Joram 4.2 , it allows to modify a Joram platform 
at run-time by adding and removing servers.

Server services
The services a server may host are:

 - 23 -



Joram 5.8  User's Guide

 A  connection  manager  service,  managing  the  connection  requests  from  “external” 
clients.  This  service  may  also  authorize  the  connection  of  an  administrator  client, 
authenticated by a name and a password. It is required on any server accepting at least a 
client connection. At the platform level at least one server must accept an administrator 
connection, meaning that at least one server must host a connection manager service 
authorizing an administrator connection.

 A TCP proxy service, allowing TCP clients to connect to the server. This service takes as 
argument a port number, defining on which port the TCP connection requests should be 
made.

 A JNDI service, listening to a given port, providing a naming server to clients for binding 
and retrieving administered objects. It is required on one of the platform servers if clients 
and administrators intend to use JORAM’s naming server. If this service is provided by 
none of the platform’s servers, that means that clients and administrators do not intend to 
use JNDI, or that they will use an other JNDI implementation than the one provided by 
JORAM.

3.3.1. Centralized configuration

The example below sets  a configuration made of  one server  running on host  localhost.  This 
server, identified by the number 0, is named s0. It provides a connection manager service allowing 
an administrator identified by root – root to connect, and a TCP proxy service listening on port 
16010. A JNDI service is also provided, listening to JNDI requests on port 16400.

<?xml version="1.0"?>
<config>
  <property name=”Transaction” value=”fr.dyade.aaa.util.NullTransaction”/>
  <server id="0" name="S0" hostname="localhost">
    <service
     class="org.objectweb.joram.mom.proxies.ConnectionManager"
     args=”root root”/>
    <service 
     class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
     args="16010"/>
    <service class="fr.dyade.aaa.jndi2.server.JndiServer"
     args="16400"/>
  </server>
  </config>

The above platform is non persistent, meaning that if it crashes and is then re-started, pre-crash 
data is lost. To have a platform able to retrieve its pre-crash state when re-starting, it should run in 
persistent mode. If message persistence is required, this is the mode to use (see below).

In order to allow a standard JNDI access to administrators and clients, a jndi.properties file 
is provided. It must be accessible to the administrators and clients through their classpath. 

For the above configuration, this file looks as follows:

java.naming.factory.initial fr.dyade.aaa.jndi2.client.NamingContextFactory
java.naming.factory.host localhost
java.naming.factory.port 16400

It allows retrieving the naming context through:

javax.naming.Context jndiCtx = new javax.naming.InitialContext();

Running a platform
The  configuration  file  is  named  a3servers.xml,  and  it  must  be  accessible  through  the 
classpath. Then, the server is launched by typing:

 - 24 -



Joram 5.8  User's Guide

java fr.dyade.aaa.agent.AgentServer 0 ./s0

Configuring a persistent server
In  order  to  configure  a  persistent  server  you have  to  change the  Transaction property in 
a3servers.xml configuration  file.  For  example  you  may  use  fr.dyade.aaa.util.NTransaction 
class.

When such a persistent server is stopped or crashes, there are two options when re-starting it:

 Either it is expected to resume the operations it was involved in before the crash, in which 
case the persistence directory s0 should not be deleted; it may happen that a Lock file in 
this directory remains and should be removed.

 Or  it  is  a  bright  new server  that  is  expected  to  start,  in  which  case  the  persistence 
directory s0 should be totally removed.

3.3.2. Distributed configuration

A distributed configuration made of three persistent server (as on figure 2) looks as follows:

<?xml version="1.0"?>
<config>
  <property name=”Transaction” value=”fr.dyade.aaa.util.NTransaction”/>
  <domain name="D1"/>
  <server id="0" name="S0" hostname="localhost">
    <network domain="D1" port="16301"/>
    <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
             args="root root"/>
    <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
             args="16010"/>
    <service class="fr.dyade.aaa.jndi2.server.JndiServer"
             args="16400"/>
  </server>
  <server id="1" name="S1" hostname="host1">
  <network domain="D1" port="16301"/>
    <service class="org.objectweb.joram.mom.proxies.ConnectionManager"/>
    <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
             args="16010"/>
  </server>
  <server id="2" name="S2" hostname="host2">
    <network domain="D1" port="16301"/>
    <service class="org.objectweb.joram.mom.proxies.ConnectionManager"/>
  </server>
</config>

This configuration is made of 3 persistent servers, each running on a given node (host0, host1 and 
host2).  All  are  part  of  the  same  domain  (multiple  domains  might  be  needed  for  very  large 
configurations). The server 0 of the configuration provides the same services as server 0 of the 
previous centralized configuration. Server 1 allows TCP connection on its local 16010 port,  no 
administrator  access,  and no JNDI  server.  Server  2  allows  client  connections  (thanks  to  the 
connection manager service) but the TCP protocol is not supported (the protocol might then be 
“local”).

The jndi.properties file needed by administrators and clients should look as follows:

java.naming.factory.initial fr.dyade.aaa.jndi2.client.NamingContextFactory
java.naming.factory.host host0

 - 25 -



Joram 5.8  User's Guide

java.naming.factory.port 16400

Running a platform
Each  host  on  which  a  server  of  the  configuration  will  run  must  have  a  copy  of  the 
a3servers.xml file, and this copy must be accessible through the classpath.

Then, the servers of the configuration are launched one by one:

 On node 0:
java fr.dyade.aaa.agent.AgentServer 0 ./s0

 On node 1:
java fr.dyade.aaa.agent.AgentServer 1 ./s1

 On node 2:
java fr.dyade.aaa.agent.AgentServer 2 ./s2

Warning: Be  careful,  removing  the  persistence  directory  of  one  server  in  a  distributed 
configuration may cause damages.

3.3.3. Stopping a server

A method is provided for stopping a given server  of  the administered JORAM platform. If  the 
server  to  stop  is  the  server  to  which  the  administrator  is  connected,  the  admin  session  is 
automatically terminated and closed.

Stopping server 0:

AdminModule.stopServer(0);

3.3.4. Dynamic configuration

The dynamic configuration feature is available from the Joram version 4.2. It allows to modify a 
Joram platform at run-time by adding and removing servers. As the servers can be gathered into 
several domains you can also add and remove domains. 

Adding a new server
You can dynamically configure your Joram platform by adding new Joram servers. This is a two 
steps operation: 

1. define the new server in the platform configuration using the Joram administration API 

2. start the new server 

Let's take an example in order to illustrate how it works. This simple scenario starts from a very 
simple Joram platform configuration that contains only one server called S0. This configuration is 
defined in Joram user guide (chapter 3.3.1). 

<?xml version="1.0"?> 
<config> 
  <property name="Transaction" value="fr.dyade.aaa.util.NullTransaction"/> 
  <server id="0" name="S0" hostname="localhost"> 
    <service class="org.objectweb.joram.mom.proxies.ConnectionManager" args="root 
root"/> 
    <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService" 
args="16010"/> 
    <service class="fr.dyade.aaa.jndi2.server.JndiServer" args="16400"/> 
  </server> 
</config>

 - 26 -



Joram 5.8  User's Guide

Server definition

The definition of  a new server  is  programmatically done using the class  AdminModule from 
Joram's administration API (package org.objectweb.joram.jms.admin). 

import org.objectweb.joram.client.jms.admin.AdminModule;

First you need to connect the AdminModule to the Joram server S0: 

AdminModule.connect("localhost", 16010, "root", "root", 60);

In order to define a new server you must specify in which domain the server is added. As the initial 
configuration  doesn't  define  any  domain,  you  have  to  add  a  first  domain  to  the  platform 
configuration. 

A domain is defined by three parameters: 

1. its name (unique inside a platform) 

2. the name of an existing server that will be the first server belonging to this domain. When 
this server already belongs to a domain, it becomes the router between this domain and 
the new domain. 

3. the port used by the first server to communicate with the other servers from this domain 
(none at the beginning) 

The following code adds the domain  D0 that contains the server  S0.  The port  used by  S0 to 
communicate inside D0 is 17770. 

AdminModule.addDomain("D0", "S0", 17770);

Once the domain D0 is added you can add a new server S1 into this domain. A server is defined 
by five parameters: 

1. the identifier of the server (unique inside a platform) 

2. the address or name of the host where the server is running 

3. the name of the domain where the server is added 

4. the port used by the server to communicate with other servers inside the domain 

5. its name (may be not unique) 

AdminModule.addServer("localhost", 1, "D0", 17771, "S1");

Now the server  S1 has been added you need to get the overall configuration of the platform in 
order to start S1. 

String platformConfig = AdminModule.getConfiguration();

The configuration is returned as a String which content is: 

<?xml version="1.0"?>
<!DOCTYPE config SYSTEM "a3config.dtd">

<config>

  <domain name="D0" network="fr.dyade.aaa.agent.SimpleNetwork"/>

  <server hostname="localhost" id="1" name="S1">
    <network domain="D0" port="17771"/>
    <service class="org.objectweb.joram.mom.proxies.ConnectionManager" args="root 
root"/>
  </server>

 - 27 -



Joram 5.8  User's Guide

  <server hostname="localhost" id="0" name="S0">
    <network domain="D0" port="17770"/>
    <service class="org.objectweb.joram.mom.proxies.ConnectionManager" args="root 
root"/>
    <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService" 
args="16010"/>
    <service class="fr.dyade.aaa.jndi2.server.JndiServer" args="16400"/> 
  </server>

</config>

As you can see, the initial platform configuration has been extended with the definition of a new 
domain D0 and a new server S1. 

Store this configuration into a file  a3servers_updated.xml. This file is necessary to start the 
new server S1. 

File platformConfigFile = new File("a3servers_updated.xml");
FileOutputStream fos = new FileOutputStream(platformConfigFile);
PrintWriter pw = new PrintWriter(fos);
pw.println(platformConfig);
pw.flush();
pw.close();
fos.close();

Server start

The server S1 is started in the same way as described in Joram user guide (see 3.3.2, running a 
platform): 

1. copy the file  a3servers_updated.xml  in  the  directory where  you want  to  start  S1 and 
rename it to a3servers.xml. You also need to put the DTD file a3config.dtd in the 
same directory. 

1. customize the configuration of  S1 by modifying the file  a3servers.xml. For example, 
you can add services (e.g. distributed JndiServer). 

2. start the server with the following commands: 

  cd <S1_Running_Dir>
  java fr.dyade.aaa.AgentServer 1 ./s1

Removing a server
This is a two steps operation: 

1. stop the server 

2. remove the server from the platform configuration using the Joram administration API 

Notice that you can also remove it first from the configuration and then stop it. 

Server stop

To stop a server you need to specify the identifier of the server. Notice that this operation is not  
synchronous, i.e. the server is asynchronously stopped. The server may still be running a while 
after the method stopServer returned. 

AdminModule.stopServer(1);

Server removal

To remove a server from the platform configuration, you need to give the identifier of the server. 
This operation destroys all the pending messages sent to the removed server through the whole 
platform. 

 - 28 -



Joram 5.8  User's Guide

AdminModule.removeServer(1);

You can also remove a domain even if it is not empty. In this last case, the servers inside this 
domain are also removed. So you have to stop them. 

AdminModule.removeDomain("D0");

This last operation removes the domain D0 but not the server S0 because it is used to make the 
dynamic configuration. 

When you manipulate configurations with multiple domains by removing servers and/or domains, 
be careful not to split your platform into several parts. 

3.3.5. Logging configuration

JORAM  uses  Monolog (see  http://monolog.ow2.org/)  for  logging.  Monolog  is  an  API  which 
abstracts log operations from their implementation.

Logging is configured in an a3debug.cfg file. It has to be in the classpath of the client and of the 
server (the server’s process as well as the client’s might be logged).

The a3debug.cfg configuration file defines the appenders used to log. By defaults, it logs on the 
standard output but a file is usable instead.

This file also defines all the categories which are available for logging. These categories are:

 Agent  logs (categories  starting  with  fr.dyade.aaa.agent):  these  categories  log  what 
happens in the low level messaging platform.

 MOM logs (categories starting with org.objectweb.joram.mom): these categories log what 
happens in a JORAM server, more particularly:

 in the server’s proxies (org.objectweb.joram.mom.Proxy),
 in the server’s destinations (org.objectweb.joram.mom.Destination).
 JORAM  logs (org.objectweb.joram.client.jms.Client  category):  this  category  logs  JMS 

client operations.
 JNDI logs (fr.dyade.aaa.jndi2): this category logs all JNDI operations, more particularly:
 in JNDI’s server side (fr.dyade.aaa.jndi2.server),
 in JNDI’s client side (fr.dyade.aaa.jndi2.client).

3.4. High level administration
When the messaging platform has been configured and started, the situation looks as follows:

 one or many interconnected servers run;
 each server may provide services for connecting and administering.

At that point an administrator client needs to connect to the platform and further configure it for 
allowing JMS clients to access and use it.

This administrator works either through a Java application using proprietary JORAM administration 
methods (described in this section), or through a web admin interface documented separately.

When the administration process is performed by a Java application, it uses JORAM’s proprietary 
administration methods and objects. Those objects are:

 org.objectweb.joram.client.jms.admin.AdminModule
 org.objectweb.joram.client.jms.admin.AdminHelper
 org.objectweb.joram.client.jms.admin.User
 org.objectweb.joram.client.jms.Queue
 org.objectweb.joram.client.jms.Topic

And the various connection factory objects located in:

 - 29 -

http://monolog.ow2.org/


Joram 5.8  User's Guide

 org.objectweb.joram.client.jms.local
 org.objectweb.joram.client.jms.tcp

Exceptions describing failing administration requests are of this class:

 org.objectweb.joram.client.jms.admin.AdminException

3.4.1. Administration “session”

Administration  operations  (calls  to  administration  methods)  may  be  performed  within  an 
administration  “session”.  Such  a  session  is  started  when  an  administration  connection  is 
established with the JORAM platform to administer.

The  utility  class  for  managing  administrator  sessions  is 
org.objectweb.joram.client.jms.admin.AdminModule.

TCP administrator connection
Such a connection is opened as follows:

AdminModule.connect(“host1”, 16010, “root”, “root”, 60);

This connects an application to a JORAM server running on “host1” and listening to port 16010 
through the TCP protocol. It will work if the target server on “host1” provides the following services:

  <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
           args="root root"/>
  <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
           args="16010"/>

The last parameter of the connecting method (60), is the timer in seconds during which connecting 
to the server is attempted. This timer will  be useful  is the server is not yet started when the 
administration code is launched.

It is also possible to establish a “default” TCP connection to the server running on “localhost” and 
listening to port 16010 as follows:

AdminModule.connect(“root”, “root”, 60);

If the connecting request finally fails because the server is not reachable, the methods throw a 
ConnectException.  If  the  administrator  identification  is  incorrect,  the  methods  throw  an 
AdminException.

Disconnecting the administrator
The administration session ends by calling:

AdminModule.disconnect();

Any  call  to  any  administration  method  outside  the  AdminModule.connect() and 
AdminModule.disconnect() boundaries will fail (a ConnectException will be thrown).

3.4.2. Managing a user

User identity
Users  are  manipulated  through  the  helper  class  User from  package 
org.objectweb.joram.jms.admin.  An instance of  this  class represents a given user  and 
provides methods for administering it.

 - 30 -



Joram 5.8  User's Guide

Creating a user
The creation of an user is done through the create method of the User administration class:

 User.create(String name, String password) is a static method setting a user 
with  a  given  identification  (name,  password)  and  creating  the  corresponding  User 
instance.  The  user  is  defined  on  the  server  the  administrator  is  connected  to  (local 
server).

 User.create(String name, String password, int server) is similar to the 
previous method, except that it creates the user on the given server.

 User.create(String  name,  String  password,  int  server,  String 
identity, Properties prop) is  a  static  method  setting  a  user  with  a  given 
identification  on  a  given  server,  and  creating  the  corresponding  User instance. The 
identity  class  name  and  user's  properties  (server  side  interceptors  for  example)  are 
specified in parameters.

User user = User.create(“name”, “pass”, server, SimpleIdentity, prop);

An AdminException is thrown if the user creation fails server side or if the server is not part of 
the platform.

A ConnectException is thrown if the admin connection with the server is closed or lost.

Updating a user identity
The user's parameters can be update though the  update method of  the  User administration 
class:

 User.update(String  newName,  String  newPass):  updates  the  user 
identification.

user.update(“newName”, “newPass”);

An AdminException is thrown if the user has been deleted server side, or if its new identification 
is already taken on its server.

A ConnectException is thrown if the admin connection with the server is closed or lost.

Deleting a user
An user can be deleted though the delete method of the User administration class:

 User.delete(): deletes the user server-side.
user.delete();

The request is not effective if the user has already been deleted server side.

A ConnectException is thrown if the admin connection with the server is closed or lost.

3.4.3. User connectivity

A given user accesses the JORAM platform by connecting to a given server (set when actually 
creating the user, last section). The connection might be of different kinds:

 either a TCP or SSL connection;
 or intra-vm connection (documented in 5Using a collocated server).

The javax.jms.ConnectionFactory class is meant to determine to which server and through 
which protocol a client application will connect when calling the createConnection method.

Creating a ConnectionFactory instance for the TCP protocol
 TcpConnectionFactory.create(String  host,  int  port):  static  method 

creating a ConnectionFactory instance for accessing a server running on a given host 
and listening to a given port.

 - 31 -



Joram 5.8  User's Guide

 TcpConnectionFactory.create(): static method creating a  ConnectionFactory 
instance for accessing the server the administrator is connected to.

ConnectionFactory cnxFact =  TcpConnectionFactory.create(
“localhost”, 16010);

 QueueTcpConnectionFactory.create(String host, int port): static method 
creating a  QueueConnectionFactory instance for  accessing a server  running on a 
given host and listening to a given port.

 QueueTcpConnectionFactory.create():  static  method  creating  a 
QueueConnectionFactory instance  for  accessing  the  server  the  administrator  is 
connected to.

 TopicTcpConnectionFactory.create(String host, int port): static method 
creating a  TopicConnectionFactory instance for  accessing a server  running on a 
given host and listening to a given port.

 TopicTcpConnectionFactory.create():  static  method  creating  a 
TopicConnectionFactory instance  for  accessing  the  server  the  administrator  is 
connected to.

 XATcpConnectionFactory.create(String  host,  int  port):  static  method 
creating a  XAConnectionFactory instance for accessing a server running on a given 
host and listening to a given port.

 XATcpConnectionFactory.create():  static  method  creating  a 
XAConnectionFactory instance  for  accessing  the  server  the  administrator  is 
connected to.

 XAQueueTcpConnectionFactory.create(String  host,  int  port):  static 
method  creating  a  XAQueueConnectionFactory instance  for  accessing  a  server 
running on a given host and listening to a given port.

 XAQueueTcpConnectionFactory.create():  static  method  creating  a 
XAQueueConnectionFactory instance for  accessing the server  the administrator  is 
connected to.

 XATopicTcpConnectionFactory.create(String  host,  int  port):  static 
method  creating  a  XATopicConnectionFactory instance  for  accessing  a  server 
running on a given host and listening to a given port.

 XATopicTcpConnectionFactory.create():  static  method  creating  a 
XATopicConnectionFactory instance for  accessing the server  the administrator  is 
connected to.

Setting the factory parameters
The following parameters may be set on a factory:

 Connecting timer:  time (in  seconds)  during which connecting is  attempted in  case  of 
failures. 

 Transaction pending timer:  time (in  seconds)  during which a  transacted JMS session 
might be inactive before being automatically rolled back.

 Connection pending timer: time (in milliseconds) between two “ping” requests sent by the 
connection to the server; a connection is kept alive server side during twice the value of 
this parameter.

Those  parameters  are  accessible  through  a  FactoryParameters  object  (class 
FactoryParameters in  package  org.objectweb.joram.client.jms),  obtainable  by 
calling the getParameters() method on the factories.

When a client detects a connection failure, it automatically tries to reconnect every 2 seconds, 
during the period defined by the connecting timer parameter. 

3.4.4. Managing a destination

Destinations are manipulated through the classes  org.objectweb.joram.jms.Queue  and 
org.objectweb.joram.jms.Topic. An instance of one of these classes represents a given 

 - 32 -



Joram 5.8  User's Guide

destination  and  provides  methods  for  administering  it.  Specialized  destination  management 
requires additional classes (see specific documentation: 4Specialized  destinations).

Creating a destination: Queue or Topic
A destination can be created through the create method of the Queue or Topic administration 
class:

 Queue.create(int server): static method creating a queue on a given server, and 
creating the corresponding Queue instance.

 Queue.create()is similar to the previous method, except that it creates the queue on 
the server the administrator is connected to (local server).

 Topic.create(int server): static method creating a topic on a given server, and 
creating the corresponding Topic instance.

 Topic.create()is similar to the previous method, except that it creates the topic on the 
server the administrator is connected to (local server).

Queue queue = Queue.create();
Topic topic = Topic.create();

An AdminException is thrown if the destination deployment fails server side, or if the server is 
not part of the platform.

A ConnectException is thrown if the admin connection with the server is closed or lost.

Creating a destination with a specified name
When creating a destination, queue or topic, you can specify an internal name1; if a destination 
exists with the specified name it is returned to the user, in the contrary case it is created and 
registered in the internal naming service.

 Queue.create(int server, String name)
Queue.create(String name): creates a queue on the given or default server with the 
specified name. If the named queue already exists it is simply returned.

 Topic.create(int server, String name)
Topic.create(String name): creates a topic on the given or default server with the 
specified name. If the named topic already exists it is simply returned.

Setting Properties
Destination’s options are normally set using properties at queue/topic creation time. After creation 
the properties of the destination can be changed with the appropriate administration command: 
setProperties, or by using the corresponding MBean queue/topic component.

AdminReply reply = destination.setProperties(prop);

Many options are available depending of the destination real type, the following options is available 
for all destinations:

 "period": defines the time in millisecond to run tasks at regular interval: cleaning of out-of-
date messages, etc.

Setting free access on a destination
 Destination.setFreeReading(): grants the READ right to all on the destination.

dest.setFreeReading();

 Destination.setFreeWriting(): grants the WRITE right to all on the destination.
dest.setFreeWriting();

 An  AdminException is  thrown if  the destination has been deleted 
server side. A ConnectException is thrown if the admin connection 
with the server is closed or lost.

1 Not a JNDI's name.

 - 33 -



Joram 5.8  User's Guide

Unsetting free access on a destination
 Destination.unsetFreeReading():  removes  the  READ  right  to  all  on  the 

destination.
dest.unsetFreeReading();

 Destination.unsetFreeWriting():  removes  the  WRITE  right  to  all  on  the 
destination.

dest.unsetFreeWriting();

 An  AdminException is  thrown if  the destination has been deleted 
server side. A ConnectException is thrown if the admin connection 
with the server is closed or lost.

Setting a right for a user on a destination
 Destination.setReader(User  user):  sets  a  given  user  as  a  reader  on  the 

destination.
dest.setReader(user);

 Destination.setWriter(User  user):  sets  a  given  user  as  a  writer  on  the 
destination.

dest.setWriter(user);

 An AdminException is thrown if the destination or the user does not 
exist  server  side.  A  ConnectException is  thrown  if  the  admin 
connection with the server is closed or lost.

Unsetting a right for a user on a destination
 Destination.unsetReader(User user): unsets a given user as a reader on the 

destination.
dest.unsetReader(user);

 Destination.unsetWriter(User user):  unsets  a  given user  as  a  writer  on the 
destination.

dest.unsetWriter(user);

 An AdminException is thrown if the destination does not exist server 
side. A ConnectException is thrown if the admin connection with the 
server is closed or lost.

Getting the access rights
 Destination.isFreelyReadable(): returns true if the READ right is granted to all 

on the destination.
 Destination.isFreelyWriteable(): returns true if the WRITE right is granted to 

all on the destination.
 Destination.getReaders(): returns a List of users granted with the READ right on 

the destination.
 Destination.getWriters(): returns a  List of users granted with the WRITE right 

on the destination.
 An AdminException is thrown if the destination does not exist server 

side. A ConnectException is thrown if the admin connection with the 
server is closed or lost.

Handling the DMQ setting (see chapter Erreur : source de la référence
non trouvée)

 Destination.setDMQ(DeadMQueue):  sets  the given Dead Message Queue as the 
default DMQ for the destination.

 - 34 -



Joram 5.8  User's Guide

 Destination.getDMQ(): returns the default Dead Message Queue instance set for the 
destination, null if none.

 An AdminException is thrown if the destination does not exist server 
side. A ConnectException is thrown if the admin connection with the 
server is closed or lost.

Deleting a destination
 Destination.delete(): deletes the destination.

dest.delete ();

The request is not effective if the destination does not exist server side. A ConnectException is 
thrown if the admin connection with the server is closed or lost.

3.4.5. Managing a Queue

Getting the state
 Queue.getPendingMessages():  returns  the  number  of  messages  on  the  queue 

waiting to be delivered.
 Queue.getPendingRequests():returns the number of “receive” requests on the queue 

waiting for matching messages.
 An  AdminException is  thrown if  the queue does not  exist  server 

side. A ConnectException is thrown if the admin connection with the 
server is closed or lost.

Handling the queue threshold
The threshold value determine the maximum number of times a message can be denied. It allows 
to avoid an erroneous message to be delivered infinitely; the guilty message is then forwarded to 
the Dead Message Queue if any (deleted otherwise). 

 Queue.setThreshold(int threshold): sets the threshold value for the queue. 
 Queue.getThreshold(): returns the threshold value set on the queue (-1 for none). 

 An  AdminException is  thrown if  the queue does not  exist  server 
side. A ConnectException is thrown if the admin connection with the 
server is closed or lost.

Handling the queue limit
A maximum number of undelivered messages can be set for the queue. Additional messages are 
forwarded to the Dead Message Queue if any (deleted otherwise).

 Queue.setNbMaxMsg(int nbMaxMsg):  sets  the  maximum  number  of  undelivered 
messages for the queue (-1 for no limit). 

 Queue.getNbMaxMsg(): returns the maximum  number of undelivered messages value 
set on the queue (-1 for none). 

3.4.6. Managing a Topic

A topic manages subsciptions. Subscription can be retrieved from User objects.

Getting the state
 Topic.getSubscriptions(): returns the number of active subscriptions on the topic.
 Topic.getSubscriberIds(): returns the list of user's proxy ids registered.

 An AdminException is thrown if the topic does not exist server side. 
A  ConnectException is  thrown  if  the  admin  connection  with  the 
server is closed or lost.

 - 35 -



Joram 5.8  User's Guide

3.4.7. Managing the platform

Methods are also provided for getting information about how the platform has been configured. 
Data is available at the platform, server, destination and user levels.

Getting the servers of the platform
 AdminModule.getServersIds(): returns a  List containing the identifiers of all the 

servers involved in the monitored JORAM platform.
 A ConnectException is thrown if the admin connection to the server 

is closed or lost.

Handling default DMQ settings
 AdminModule.getDefaultDMQ(int serverId): returns the  DeadMQueue instance 

representing the default DMQ of a given server, null if none.
 An AdminException is thrown if the target server does not belong to 

the platform. A ConnectException is thrown if the admin connection 
to the server is closed or lost.

 AdminModule.getDefaultDMQ() is  similar  to  the  previous  method,  except  that  it 
returns the default DMQ of the server the administrator is connected to.

 A ConnectException is thrown if the admin connection to the server 
is closed or lost.

 AdminModule.getDefaultThreshold(int  serverId):  returns  the  default 
threshold value of a given server.

 An AdminException is thrown if the target server does not belong to 
the platform. A ConnectException is thrown if the admin connection 
to the server is closed or lost.

 AdminModule.getDefaultThreshold()  is  similar  to the previous method, except 
that it returns the default threshold of the server the administrator is connected to.

 A ConnectException is thrown if the admin connection to the server 
is closed or lost.

Getting the destinations
 AdminModule.getDestinations(int  serverId):  returns  a  List containing 

Destination instances representing all the destinations deployed on a given server.
 An AdminException is thrown if the target server does not belong to 

the platform. A ConnectException is thrown if the admin connection 
to the server is closed or lost.

 AdminModule.getDestinations() is similar to the previous method, except that it 
returns the destinations of the server the administrator is connected to.

 A ConnectException is thrown if the admin connection to the server 
is closed or lost.

Getting the users
 AdminModule.getUsers(int serverId): returns a List containing User instances 

representing all the users set on a given server.
 An AdminException is thrown if the target server does not belong to 

the platform. A ConnectException is thrown if the admin connection 
to the server is closed or lost.

 AdminModule.getUsers() is similar to the previous method, except that it returns the 
users of the server the administrator is connected to.

 A ConnectException is thrown if the admin connection to the server 
is closed or lost.

 - 36 -



Joram 5.8  User's Guide

3.5. Message interceptors
To be able  to  intercept  or  transform  data of  messages that  applications attempt  to  send  on 
destinations  or  get  from  them,  you  can  use  message  interceptors.  There  are  two  types  of 
interceptors:

• The JMS client interceptor: Configured on the ConnectionFactory the JMS client interceptor 
allows to intercept each message sent or receive through the client connection (see section 
3.5.1).  The  messages  are  handled  in  the  client's  context  before  the  sending  or  after  the 
receiving.

• The server interceptor:  Such an interceptor  can be used to handle messages during their 
transit  in  the  MOM (see  section  3.5.2).  The  messages  are  handled  in  the  server's  secure 
context, only the authorized users can manage this feature.

The architecture is designed for flexibility then you can chain as many interceptors objects as you 
want. Using a chain you can achieve complex patterns and add functionality by composition.

Sample features you can do with an Interceptor are for example:

• Logging, auditing or validating messages

• Alerts,

• Filtering,

• Content enrichment and tagging,

• and many other cases according to your imagination. 

3.5.1. Managing client interceptors

JORAM allows special objects called interceptors to intercept and handle each message entering 
or exiting the client context through a configured connection.

Writing an interceptor
Writing an interceptor is quite easy, just create a class that implements the MessageInterceptor2 
interface. This interface defines a unique method  handle, The method parameters are the JMS 
message  and  the  current  session.  This  method  does not  return  values  and  must  not  throw 
exceptions.  By convention, the implementation can modify the original message or the current 
runtime context.

public interface MessageInterceptor {
  public void handle(Message pMessage, Session pSession);
}

Configuring a ConnectionFactory with interceptors
The interceptor chain is activated on each message sent or received by the configured session.  
For a sent message the processing is done before the transfer, for a received message it is done 
between the recceipt of the message client side and the return to the message consumer.

Normally  the  interceptors  chains  are  configured  at  the  creation  of  the  ConnectionFactory 
administered object. It can be achieved either through the administration API or the XML scripting 
langage. The configuration is done on the FactoryParameters of ConnectionFactory by adding (or 
removing) individually each interceptor.

Using administration API:

  public void addInInterceptor(String pInterceptorClassName);

2 Package org.objectweb.joram.client.jms

 - 37 -



Joram 5.8  User's Guide

  public boolean removeInInterceptor(String pInterceptorClassName);
  
  public void addOutInterceptor(String pInterceptorClassName);
  public boolean removeOutInterceptor(String pInterceptorClassName);

In order to configure the interceptors of a destination in a XML script you simply have to add the 
definition of the interceptor's chains in the ConnectionFactory declaration. For example:   

<ConnectionFactory name="…" className="…">
  …
  <inInterceptors>
    <interceptor className="interceptor IN classname #1"/>
    <interceptor className="interceptor IN classname #2"/>
  </inInterceptors>

 <outInterceptors>
    <interceptor className="interceptor OUT classname #1"/>
    <interceptor className="interceptor OUT classname #2"/>
 </outInterceptors>
 …
</ConnectionFactory>

3.5.2. Managing server interceptors

JORAM allows some special objects called Interceptors to handle messages during their transit in 
the MOM3, there are two types of  interceptors:

• An user's  interceptors  (see  “Configuring  interceptors  on user's  connections”)  receives  each 
message that’s entering or exiting the server.

• A  destination's  interceptor  (see  “Configuring  interceptors  on  destination”)  receives  each 
messages sent to this destination.

Interceptors can read and also write into the messages. This enables filtering, transformation or 
content enrichment, for example adding a property into the message. Also Interceptors can stop 
the Interceptor chain by simply returning false to their intercept method invocation, in this case the 
transmission of the message is stopped.

Writing an interceptor
Writing an interceptor is quite easy, just create a class that implements the MessageInterceptor4 
interface.

public interface MessageInterceptor {
  boolean handleMessage(Message msg);
}

The only method to implement is handleMessage, this method returns a boolean result. If it is true 
the server continue to process the interceptor chain, if it is false the server stops executing the 
chain and removes the message (the message is sent to the corresponding DMQ if any). 

The method parameter is a Message5 object containing both the header and the payload of the 
corresponding message.

Each interceptor can observe the state of the message and modify it. From the JORAM server 
point of view the interceptors are stateless, If you need to keep datas, you must do it yourself.

3 It exists also a mechanism allowing the definition of interceptors client-side.
4 Package org.objectweb.joram.mom.util
5 Package org.objectweb.joram.shared.messages

 - 38 -



Joram 5.8  User's Guide

All  interceptors class must  be accessible  by the class loader of  the JORAM server  (possibly 
dynamically load in the case of a server running on OSGi). 

Configuring interceptors on destination
The interceptor chain is activated on each message that reaches the destination. This processing 
is done before storing the message for a queue destination or before forwarding the message for 
a topic one.

Initial configuration

The interceptor chains can be simply configured at the creation of a the destination using either 
the administration API or the XML scripting language. It only needs to defines the corresponding 
property  (jms_joram_interceptors)  with  the  comma  separated  list  of  the  classname  of  your 
interceptors.

Using administration API, you simply have to call the appropriate create method of the Queue or 
Topic administration class with a properties object defining the  jms_joram_interceptors property. 
For example for a Queue:

Properties properties = new Properties();
properties.setProperty(“jms_joram_interceptors”,
                       “interceptors classname list”);

Queue.create(…, properties, …);

In order to configure the interceptors of a destination in a XML script you simply have to add the 
definition of the “jms_joram_interceptors” property in the destination declaration. For example for a 
Queue:

<Queue name="queue">
  <property name="jms_joram_interceptors" value="interceptors class name list"/>
...
</Queue>

Administration changes

Once the destination is created you can always change the interceptor's chains, adding a list of 
interceptors,  removing  or  replacing  some  of  them.  The  Queue  and  Topic  class  of  the 
administration API offer the following methods:

public String getInterceptors();
public void addInterceptors(String interceptors);
public void removeInterceptors(String interceptors);
public void replaceInterceptor(String newInterceptor, String oldInterceptor);

An  AdminException is  thrown  if  the  destination  does  not  exist  on  the  server  side.  A 
ConnectException is thrown if the admin connection with the server is closed or lost.

Configuring interceptors on user's connections
There is two distinct chains of interceptors. The first one “interceptors_in” handles each message 
that’s entering the server (result of a send method on a connection from the selected user). The 
second one “interceptors_out” handles each message that’s exiting the server (result of a receive 
method on a connection from the selected user). These two interceptor chains are configurable for 
each user.

Initial configuration

The  interceptor  chains  can  be  simply  configured  at  the  creation  of  a  user  using  either  the 
administration API or  the XML scripting language. It  only needs to defines the corresponding 
property (jms_joram_interceptors_in or jms_joram_interceptors_out) with the comma separated 
list of the classname of your interceptors.

 - 39 -



Joram 5.8  User's Guide

Using administration API,  you simply have to  call  the appropriate  create  method of  the User 
administration  class  with  a  properties  object  defining  the   jms_joram_interceptors_in  and 
jms_joram_interceptors_out properties:

Properties properties = new Properties();
properties.setProperty(“jms_joram_interceptors_in”,
                       “interceptors classname list”);
properties.setProperty(“jms_joram_interceptors_out”,
                       “interceptors classname list”);

User.create(…, properties);

In order to configure the interceptors of  an user in a XML script  you simply have to add the 
definition of the “jms_joram_interceptors_in” and/or “jms_joram_interceptors_out” properties in the 
user declaration:

<User name="anonymous" password="anonymous">
  <property name="jms_joram_interceptors_in"
            value="interceptors classname list"/>
  <property name="jms_joram_interceptors_out"
            value="interceptors classname list"/>

  …
</User>

Administration changes

Once  the  user  is  created  you  can  always  change  the  interceptor's  chains,  adding  a  list  of  
interceptors, removing or replacing some of them. The User class of the administration API offers 
the following methods:

public String getInterceptorsIN();
public void addInterceptorsIN(String interceptors);
public void removeInterceptorsIN(String interceptors);
public void replaceInterceptorIN(String newInterceptor, String oldInterceptor);

public String getInterceptorsOUT();
public void addInterceptorsOUT(String interceptors);
public void removeInterceptorsOUT(String interceptors);
public void replaceInterceptorOUT(String newInterceptor, String oldInterceptor);

An  AdminException is  thrown  if  the  user  agent  does  not  exist  on  the  server  side.  A 
ConnectException is thrown if the administration connection with the server is closed or lost.

Running a test
Have a look to the JORAM tests suite, src/joram/interceptors.

Run all interceptors tests: ant tests.interceptors 

Run a single target: ant interceptors.testXXX

3.6. JMX administration of Joram
You can configure your Joram server to export some MXBean, so you can monitor and handle it  
through a JMX console. This example is designed in a JDK 1.5 environment with the integrated 
JMX 1.2 implementation. 

 - 40 -



Joram 5.8  User's Guide

To launch a Joram server with JMX capabilities enabled, you just have to fix the environment 
variable MXServer; for example typing -DMXServer=com.scalagent.jmx.JMXServer in the 
command line.

In order to allow a remote access to theses beans, you may either declare the JMXRIHttpService 
(com.scalagent.jmx.JMXRIHttpService class) in a3servers.xml configuration file or use 
a  standard  adapter.  For  example,  if  using  JDK1.5,  you  can  declare 
-Dcom.sun.management.jmxremote in the command line and then use the jconsole graphical 
tool to browse the beans:

At starting you there is two nodes added in the MBean's tree: 

• The  first  one,  named  AgentServer,  describes  the  ScalAgent  platform:  domains  and 
networks, engine and agents. 

• The second one, named Joram, allows the handling of Joram's users and destinations. 

3.7. Scripts XML
This feature allows to execute administration operation using an XML script. It is possible to create 
and bind in JNDI connection factories, destinations and users. The complete DTD is available in 
SVN and examples are available with the samples.

3.7.1. Administrator connection

There is three different elements allowing to establish the administration connection:

• LocalAdminModule establishes a connection with a colocated JMS provider, it needs to 
define the login and password attributes.

• TcpAdminModule establishes a connection with a remote JMS provider, additionally to 
login and password it needs to define the hostname (default “localhost”) and listen port  
(default 16010) of the Joram's TCP service.

 - 41 -

Figure 13 - JConsole view



Joram 5.8  User's Guide

• SSLAdminModule establishes a connection with a remote JMS provider using SSL, it 
needs the same attributes than a TcpAdminModule.

  <TcpAdminModule host="localhost" port="16010" name="root" password="root">
    <property name="connectingTimer" value="60"/>
  </TcpAdminModule>

Additionally  you  can  add  property elements  to  configure  the  factory's  parameters  of  the 
underlying connection factory (see example above).

3.7.2. Naming

If you want to register created objects in a JNDI's repository you have to declare an InitiallContext 
element defining properties (see example at the end of this section):

• java.naming.factory.initial,

• java.naming.factory.host and 

• java.naming.factory.host.

3.7.3. ConnectionFactory

There is three different elements allowing to define a ConnectionFactory:

• LocalConnectionFactory defines a connection factory to a colocated JMS provider.

• TcpConnectionFactory defines  a  connection  factory to  a  remote  JMS provider,  it 
needs to define the hostname (default “localhost”) and listen port (default 16010) of the 
Joram's TCP service.

• SSLConnectionFactory defines a connection factory to a remote JMS provider using 
SSL, it needs the same attributes than a TcpConnectionFactory.

A  ConnectionFactory element  can  be  named  (name  attribute)  for  later  use  in  the  script 
(building of clustered destination's for example). It can be completed by:

• property elements to configure the factory's parameters of this  connection factory,

• inInterceptors or outInterceptors to define the list of interceptors.

Example:
  <TcpConnectionFactory name="cf" host="localhost" port="16010">
    <property name="queueMessageReadMax" value="10"/>
    <property name="topicAckBufferMax" value="5"/>
    <outInterceptors>
    <interceptor className="classic.Interceptor"/>
    </outInterceptors>
    <jndi name="cf"/>
  </TcpConnectionFactory>

3.7.4. User 

A  user  definition  is  a  simple  XML  element,  you  must  at  least  define  name  and  password 
properties:

• name: the name of the user needed for later use in the script (handling of destination's 
rights for example).

 - 42 -



Joram 5.8  User's Guide

• login, password: login and password for user, if the login is not fixed the name is used 
by default.

• serverId: unique identifier of location server. If not set the user is created on the server 
the administrator is connected.

• dmq, threshold: Dead Message Queue settings for the user.

property

• Additional  properties  can  be  defined  for  user.  Each  property  is  an  element  with  two 
attributes: name and value.

3.7.5. Destination

The syntax allows to create queue, topic and Dead Message Queue, specialized destinations can 
be deployed specifying the MOM's implementation class of the destination:

Queue
A queue definition defines some optional properties, it can be completed by properties, naming or 
security elements:

• name: the Joram's internal name for the queue.

• serverId:  unique identifier of  location server.  If  not set  the queue is created on the 
server the administrator is connected.

• dmq, threshold:  Dead Message Queue settings for the queue.

• nbMaxMsg: Maximum of pending messages in the queue.

• className: the real class name of the MOM's destination. By default a simple queue, 
org.objectweb.joram.mom.dest.Queue.

Topic
A topic definition defines some optional properties, it can be completed by properties, naming or  
security elements:

• name: the Joram's internal name for the topic.

• serverId: unique identifier of location server. If not set the topic is created on the server 
the administrator is connected.

• parent:  the internal name of the hierarchical parent of this topic.

• className:  the real class name of the MOM's destination. By default a simple topic, 
org.objectweb.joram.mom.dest.Topic.

Destination security 
Destination element can be completed by security settings:

• freeReader: Grants the read right to all users on this destination.

• freeWriter: Grants the write right to all users on this destination.

• reader: Sets a user as a potential reader on the destination, the user name is given in the 
attribute user.

• writer: Sets a user as a potential writer on the destination, the user name is given in the 
attribute user.

 - 43 -



Joram 5.8  User's Guide

Naming
The  jndi sub-element allows to register the destination in JNDI context, the symbolic name is  
given in the name attribute.

Properties
Additional  properties  can  be  defined  for  destinations,  each  property  is  set  by an  property 
element with two attributes: name and value.

3.7.6. Example

In  the example below (from  the classic  sample)  we first  define an administration connection 
through TCP to the local host on port 16010. The administrator's login is “root” and the password 
is “root”.

Remark: as their values are the default ones, these parameter's definitions can be omitted.

A TCPConnectionFactory (localhost:16010) is defined and bind in JNDI (name “cf”).

A user named “anonymous is created (password “anonymous”), then a queue named “queue” and 
a topic named “topic” are created. All these objects are created on the default server. The Read 
and write right are granted for all, the queue is bind in JNDI with the name “queue”, and the topic  
with the name “topic”.

<JoramAdmin>
  <TcpAdminModule host="localhost" port="16010" name="root" password="root">
    <property name="connectingTimer" value="60"/>
  </TcpAdminModule>
  
  <InitialContext>
    <property name="java.naming.factory.initial"
              value="fr.dyade.aaa.jndi2.client.NamingContextFactory"/>
    <property name="java.naming.factory.host" value="localhost"/>
    <property name="java.naming.factory.port" value="16400"/>
  </InitialContext>

  <TcpConnectionFactory name="cf" host="localhost" port="16010">
    <jndi name="cf"/>
  </TcpConnectionFactory>
  
  <User name="anonymous" password="anonymous"/>

  <Queue name="queue">
    <freeReader/><freeWriter/>
    <jndi name="queue"/>
  </Queue>
  
  <Topic name="topic">
    <freeReader/><freeWriter/>
    <jndi name="topic"/>
  </Topic>
</JoramAdmin>

 - 44 -



Joram 5.8  User's Guide

3.8. OSGi Commands
Administration commands are now available in Joram. These commands are packages in three 
additional bundles: shell-a3, shell-mom and shell-jndi.

3.8.1. A3 commands

The  shell-a3 bundle give access to commands allowing to administrate the A3 server on which 
Joram is running.

• [joram:a3:]close : This commands stops the Joram and exits the server application.

• [joram:a3:]engineLoad :  This  commands  returns  the  average  number  of  pending 
messages over the last minute.

• [joram:a3:]garbageRatio :  This  commands  gives  the  garbage  ratio  when  the  NG 
transaction mode is set.

• [joram:a3:]info [options...] : This commands shows numerous information about the 
server, the network (in the case of clustering) and/or the transactional persistence manager. 
Options:

◦ -eng : Shows info about the engine

◦ -ngt : Shows info about the transactional persistence manager

◦ -net : Shows info about the network (in the case of clustering)

◦ By default, the commands shows info about all of it if available.

• [joram:a3:]restartServer : Stops and restarts Joram

• [joram:a3:]startServer : Starts Joram

• [joram:a3:]stopServer : Stops Joram

3.8.2. MOM commands

The  shell-mom bundle offers  commands allowing to monitor  and administrate the destination, 
subscriptions and users.

• [joram:mom:]clear (queue <name> | subscription <username> <sub. Name> : 
Clears all pending messages of the queue or suscription.

• [joram:mom:]create (queue|topic) <name> [options] :  Creates a new queue or 
topic. Options:

◦ -sid : ID of the server on which the destination must be deployed.

◦ -ext : Extension class of the destination.

• [joram:mom:]create user <name>  : Creates a new user. The command prompts for a 
password.

• [joram:mom:]delete (topic|queue|user) <name> : Deletes a destination or a user.

• [joram:mom:]deleteMsg  (queue  <queue  name>|subscription  <user  name> 
<sub. name>) <msg id> : Delete a pending message from a queue or a subscription.

• [joram:mom:]help [<command name>] : Displays usage information about the specified 
MOM command. If no command is given, lists all MOM commands.

• [joram:mom:]info  (queue <name>  | topic  <name> |  subscription <user 
name> <sub. name>)  : Gives info about the destination or subscription.

• [joram:mom:]list (destination | topic | queue | user | subscription 
<user name>) : Lists all destinations, topics, queues, users or user's subscriptions.

 - 45 -



Joram 5.8  User's Guide

• [joram:mom:]lsMsg (queue <queue name>|subscription <user name> <sub. 
name>) [[first]:[last]] :  Lists  the pending messages in the given interval  if  any, all 
otherwise.

• [joram:mom:]ping : Tells whether Joram is running.

• [joram:mom:]queueLoad <queue name>: Gives the average queue load.

• [joram:mom:]receiveMsg : Not yet implemented.

• [joram:mom:]sendMsg : Not yet implemented.

• [joram:mom:]subscriptionLoad <user name> <sub. name> :  Gives  the  average 
subscription load.

3.8.3. JNDI commands

The shell-jndi bundle give access to the joram:jndi:list command. This commands lists all 
records in the naming context, giving useful info about the registered destinations and connection 
factories.

 - 46 -



Joram 5.8  User's Guide

4. Specialized  
destinations

4.1. Dead Message Queue
4.1.1. Introduction

Any queue can be a dead message queue. In fact, a dead message queue is a classic queue, but 
used in a particular way: its purpose is to collect dead messages. A dead message is a message 
located server side and considered as undeliverable for various reasons. The reason can be:

 the target destination does not exist,
 the sender does not have the writing right on the target destination,
 the message expires before it is delivered,
 the message is constantly denied by the consuming client,
 the maximum number of messages in the queue has been reached,
 the message has been deleted on the queue.

An application may also consider a message it got has to be sent to the DMQ. This “manual” 
sending is allowed to any application.

The Figure 14 shows an example of DMQ usage. A DMQ has been set as the DMQ of a given  
queue. This queue receives a message from a producer and tries to deliver it to a consumer. This 
consumer keeps denying the received message. When the number of delivery attempts overtakes 
a given threshold value, the message is removed from the queue and sent to the DMQ.

 - 47 -



Joram 5.8  User's Guide

Figure 14 - Messages on a queue sent to a DMQ

Creating and setting a dead message queue
As any destination, a dead message queue may be deployed on any server of the configuration, 
even if it is intended to log dead messages of destinations located on other servers.

The setting of a dead message queue may take place at various levels. A dead message queue 
may be set as the dead message queue for:

 the destinations and users on a given server (it is then considered as the default DMQ for 
this server),

 a given destination,
 a given user.

A threshold value may also be set. If set, this value is the number of times a message may be 
delivered to a consumer before being considered as undeliverable. Its setting takes place at the 
same levels as for DMQs:

 as the default value for the queues and subscribers of a given server,
 for a queue,
 for a user.

The  settings  for  a  given  destination  and  a  given  user  precede the  default  settings  (see  the 
scenarios). No setting means that message is indefinitely delivered, even to failing consumers.

Scenarios
1. the target destination does not exist: the produced messages are sent to the producer’s DMQ if 

set, or to the default producer server’s DMQ if set.
2. the target destination is not writable: the produced messages are sent to the producer’s DMQ if  

set, or to the default producer’s server’s DMQ if set, or to the destination’s DMQ if set, or to the 
default destination’s server’s DMQ if set.

 - 48 -



Joram 5.8  User's Guide

3. a message expires on a queue: it is sent to the queue’s DMQ if set or to the queue’s server’s 
default DMQ if set.

4. a message on a queue reaches the maximum delivery attempts: it is sent to the queue’s DMQ if  
set, or to the queue’s server’s default DMQ if set; the threshold value is the queue’s one if set, or 
the queue’s server’s default one if set.

5. a message for a given subscriber expires: it is sent to the subscriber’s DMQ if set, or to the 
subscriber’s server’s default DMQ if set.

6. a message for a given subscriber reaches the maximum delivery attempts:  it  is  sent  to the 
subscriber’s DMQ if set, or to the subscriber’s server’s default DMQ if set; the threshold value is  
the subscriber’s one if set, or the subscriber’s server’s default one if set.

Watching a dead message queue
Accessing a dead message queue through a JMS client means that the DMQ has preliminary 
been bound in  a name space  like  JNDI,  as  any “normal”  destination.  Also,  watching a  dead 
message queue requires a JMS client granted with a READ access on it.

The client may consume or browse the queue. Remember DMQ is a “normal” queue, the only 
difference is the origin of the messages. It can even log its own messages as dead messages on 
other DMQs.

Dead messages carry special properties describing why they were considered as “dead”. Those 
properties are:

 JMS_JORAM_ERRORCOUNT,  this property is mapped to an integer telling the number of 
consecutive errors which happened. 

 JMS_JORAM_ERRORCODE_X, with 1 ≤ X ≤ ERRORCOUNT returns the error code of the 
error number X.

 JMS_JORAM_ERRORCAUSE_X,  with  1  ≤  X  ≤  ERRORCOUNT is  mapped  to  a  string 
detailing the error. This can be one of the following:

 Deleted destination,  if  the  target  destination  of  the  message 
could not be found,

 Destination is not writable,  if  the target  destination of  the 
message did not accept the sender as a WRITER,

 Expired at XXX, if the message expired before delivery. The  XXX 
stands for a long number holding the date when the message expired.

 Undeliverable  after  X  tries,  if  the  number  of  delivery 
attempts of the message overtook the threshold. The X is replaced by 
the threshold value.

 Message deleted by an admin, if the message being dead is the 
result  of  an  admin  deletion  with  queue.deleteMessage(String 
msgId) or queue.clear() methods.

 Queue full,  if  the  queue  has  reached  its  maximum  number  of 
messages.

 Unexpected error, if there was an unexpected error, for example a 
connection problem while using a mail queue.

The JMSXDeliveryCount property is also available for getting the number of delivery attempts 
of the message, including the delivery to the DMQ consumer. All those properties are available 
trough the dedicated Message methods. A typical check can be as following:

// Getting a dead message through a DMQ consumer:
Message deadM = (Message) deadMconsumer.receive();

int errorCount = deadM.getIntProperty("JMS_JORAM_ERRORCOUNT");
for (int i = 1; i <= errorCount; i++) {
  System.out.println(deadM.getIntProperty("JMS_JORAM_ERRORCODE_" + i));
  System.out.println(deadM.getIntProperty("JMS_JORAM_ERRORCAUSE_" + i));

 - 49 -



Joram 5.8  User's Guide

  // Do specific things if the message has expired.
  if(deadM.getIntProperty("JMS_JORAM_ERRORCODE_" + i) == 

MessageErrorConstants.EXPIRED) {
    ...
  }
}

4.1.2. Managing a Dead Message Queue

Creating a dead message queue
A dead message queue is basically a "normal" queue:

 Queue.create(int server): creates a queue on a given server, and instantiates the 
corresponding Queue object.

 Queue.create() is  similar  to  the previous  method,  except  that  it  creates  the dead 
message queue on the server the administrator is connected to.

Queue dmq = Queue.create(0);

 An  AdminException is  thrown  if  the  destination  deployment  fails 
server  side,  or  if  the  server  is  not  part  of  the  platform.  A 
ConnectException is thrown if the admin connection with the server 
is closed or lost.

Setting a dead message queue
 AdminModule.setDefaultDMQ(int serverId, Queue dmq): sets a given DMQ as the default 

DMQ for the destinations and users on a given server (set DMQ as null for unsetting it).
 AdminModule.setDefaultDMQ(Queue dmq) is similar to the previous method except that it 

sets the DMQ on the server the administrator is connected to.
AdminModule.setDefaultDMQ(0, dmq);

 A ConnectException is thrown if the admin connection to the server 
is closed or lost. An  AdminException is thrown if the server is not 
known in the platform, or if the DMQ has been deleted server side.

 Destination.setDMQ(Queue dmq): sets a given DMQ as the DMQ for the destination (set 
DMQ as null for unsetting it).

 User.setDMQ(Queue dmq): sets a given DMQ as the DMQ for the user (set DMQ as null 
for unsetting it).

topic.setDMQ(dmq);
user.setDMQ(null);

 An AdminException is thrown if the destination or the user has been 
deleted server  side.  A  ConnectException is  thrown if  the admin 
connection to the server is closed or lost.

Setting a threshold value
 AdminModule.setDefaultThreshold(int serverId, int threshold): sets a given value as the 

default  threshold for  the queues and users on a given server  (set  threshold to -1 for 
unsetting it).

 AdminModule.setDefaultThreshold(int threshold) is similar to the previous method except 
that it sets the threshold on the server the administrator is connected to.

AdminModule.setDefaultThreshold(0, 5);

 A ConnectException is thrown if the admin connection to the server 
is closed or lost. An  AdminException is thrown if the server is not 
known in the platform.

 Queue.setThreshold(int threshold): sets a given value as the threshold for the queue.

 - 50 -



Joram 5.8  User's Guide

 User.setThreshold(int threshold): sets a given value as the threshold for the user.
queue.setThreshold(5);
user.setThreshold(-1);

 An  AdminException is  thrown if  the queue or  the user  has been 
deleted server  side.  A  ConnectException is  thrown if  the admin 
connection to the server is closed or lost.

4.1.3. Running the “Dead Message Queue” sample

The dead message queue sample simulates various cases where messages are considered as 
undeliverable. It involves a message producer, a failing consumer, and a DMQ watcher actually 
consuming the messages on the DMQ.

The next picture shows the DMQ configuration. The configuration used is centralized and the 
server run in non persistent mode

Figure 15 - Dead message queue sample

Running the demo:

 Start the platform:
ant reset single_server

 Run the admin code:
ant dmq_admin

 Launch the watcher:
ant dmq_watcher

 Launch the producer and the consumer:
ant dmq_client

 - 51 -



Joram 5.8  User's Guide

4.2. Hierarchical Topic
4.2.1. Hierarchical topic

Introduction
The JMS specification allows topics to have a hierarchical structure such as the one shown in 
Figure 16. The interest of such a structure is to allow a subscriber to specifically choose the type 
of information it is interested in, by allowing it to subscribe to the corresponding subtopic. To the 
contrary, a subscriber may want to get all the sub information by subscribing to the topic root or 
father.

Figure 16 - A Hierarchical topic

Example

The example of Figure 16 shows a hierarchy of news. A subscriber to the Tennis topic would only 
get the news concerning tennis, whereas a subscriber to the Sports topic would get the news 
concerning tennis and soccer and sports in general. Also, a subscriber to the Business topic would 
get business information only, whereas a subscriber to the News topic will get the business related 
news, the sports related news, and news in general.

Creation

Creating such a hierarchy requires first to create the topics that will constitute it, then to notify each 
topic of the hierarchy it is part of.

Each topic of the hierarchy may be bound in a name space such as JNDI, so that clients may then 
retrieve them. Access rights are managed individually, on each topic of the hierarchy.

Distributed deployment

To be noted, a hierarchy may be spread over many servers (Figure 17). A distributed architecture 
introduces flexibility and availability. If server 1 is down, for example, the News and Business leafs 
of the hierarchy would go on working. Subscribers to the news and to the business would get 
information related to news and business (News subscribers would get nothing related to sports 
until server 1 is started again).

 - 52 -



Joram 5.8  User's Guide

Figure 17 - A distributed Hierarchical topic

4.2.2. Managing a Hierarchical Topic

Creating a hierarchical topic
Creating a hierarchical topic requires first to create all the topics of the hierarchy. If we consider 
the example shown on figure 6:

Topic news = Topic.create(0);
Topic business = Topic.create(0);
Topic sports = Topic.create(0);
Topic tennis = Topic.create(0);
Topic soccer = Topic.create(0);

The hierarchy needs then to be constructed.  Topics  are linked two by two with the following 
method:

 Topic.setParent(Topic father): sets a given topic as the father of an other topic.

Going back to our example:

business.setParent(news);
sports.setParent(news);
tennis.setParent(sports);
soccer.setParent(sports);

An AdminException is thrown if one of the topics has been deleted server side, or is already 
part of a cluster, or if the son parameter already has a father. A ConnectException is thrown if 
the admin connection with the server is closed or lost.

Modifying a hierarchy
A hierarchy might be modified either by adding a new branch, or by modifying the existing ones, or  
by removing the existing ones. The following method is provided:

 Topic.unsetParent(): unsets the father of the topic.

 - 53 -



Joram 5.8  User's Guide

For example, for unsetting the link between the sports related informations and the general news:

sports.unsetParent();

Subscribers to the sports topic would still get the tennis and soccer news, but subscribers to 
the news topic would not get anything related to sports.

A  ConnectException is thrown if  the admin connection with the server is closed or lost. An 
AdminException is thrown if the topic has been deleted server side or does not have a father.

Also, removing a topic of the hierarchy removes the links this topic was involved in. For example,  
by calling:

sports.delete();

the  tennis and  soccer topics  become  independent.  News  subscribers  won’t  get  anything 
related to tennis or soccer.

Getting info about cluster or hierarchy
 Topic.getClusterFellows(): returns a List of Topic instances representing other 

topics part of a same cluster.
 Topic.getHierarchicalFather(): returns a Topic instance representing the topic 

set as hierarchical father.

An  AdminException is  thrown  if  the  topic  does  not  exist  server  side.  A 
ConnectException is thrown if the admin connection with the server is closed or lost.

4.2.3. Running the topic tree sample

The topic tree sample illustrates the use of  a hierarchical  topic.  A producer produces various 
informations  destinated to  the leafs  of  a  hierarchical  topic:  news,  business,  sports,  tennis.  A 
consumer subscribes to all these leafs. Its subscription to the news will get all the messages. Its  
subscription  to  the  business  information  will  only  get  the  messages  related  to  business.  Its 
subscription to the sports will get all the sports-related messages, and its subscription to the tennis 
news will only get the messages about tennis.

The next picture shows the topic tree configuration. The configuration used is centralized and the 
server run in non persistent mode.

Figure 18 - Topic tree sample

Running the demo:

 For starting the platform:

 - 54 -



Joram 5.8  User's Guide

ant reset single_server
 For running the admin code:

ant tree_admin
 For launching the consumer:

ant tree_consumer
 To start the producer:

ant tree_producer

4.3. Clustered Topic
4.3.1. Introduction

A non hierarchical  topic  might  also  be distributed among many servers.  Such  a topic,  to  be 
considered as a single logical topic, it made of topics representatives, one per server. Figure 19 
shows such a topic located on three servers.

Such an architecture allows a publisher to publish messages on a representative of the topic. In 
the example shown in  Figure 19, the publisher works with the representative on server 1. If  a 
subscriber subscribed to any other representative (on server 2 in our example),  it  will  get the 
messages produced by the publisher.

Figure 19 - A clustered topic

Added value
This  special  feature  introduces  more  flexibility  and  availability  to  Publish/Subscribe 
communication. If server 0 is down, for example, the other representatives of the topic would go 
on working. The publisher would successfully send its messages to the representative on server 1, 
and a subscriber to the representative on server 2 would go on getting those messages.

Whereas a regular topic totally depends on the server it is deployed on, a clustered topic still partly 
works when some (not all) of  the servers it is deployed on are down.

 - 55 -



Joram 5.8  User's Guide

Creation and configuration
Creating a clustered topic requires first to create all its representatives. When it is done, each 
representative must be notified of the cluster it is part of.

Each clustered topic representative must be bound in a name space such as JNDI, so that clients 
may then retrieve them. Clients do not access the single logical topic, but a given representative of 
the cluster. Access rights are managed individually, on each topic of the cluster.

4.3.2. Managing a clustered topic

Creating a cluster
Creating a cluster requires first to create all the topics of the cluster. If we consider the example 
shown on figure 8:

Topic topic0 = Topic.create(0);
Topic topic1 = Topic.create(1);
Topic topic2 = Topic.create(2);

The cluster needs then to be constructed. Topics are linked two by two with the following method:

 Topic.addClusteredTopic(Topic addedTopic): adds a given topic to a cluster by 
joining it to a topic already belonging to the cluster, or chosen as the initiator of the cluster.

Going back to our example:

topic0.addClusteredTopic(topic1);
topic0.addClusteredTopic(topic2);

An AdminException is thrown if one of the topics has been deleted server side, or if one of the 
topics is part of a hierarchy. If the joining topic is already part of a cluster the command is silently 
ignored. 

A ConnectException is thrown if the admin connection with the server is closed or lost.

Modifying a cluster
A cluster might be modified either by adding a new topic to it, or by removing a topic from it. The 
following method is provided:

 Topic.removeFromCluster(): notifies a given topic to leave the cluster it is part of.

For example, for removing the representative on server 2 from the cluster:

topic2.removeFromCluster();

A  ConnectException is thrown if  the admin connection with the server is closed or lost. An 
AdminException is thrown if the topic has been deleted server side, or is not part of any cluster.

This  method  is  similar  to  removing  the  topic  representative  through  the  Topic.delete() 
method, except that it does not remove the topic. It simply becomes independent.

Using clustered JNDI's object
An  object  representing  the  cluster,  and  which  may  be  bound  to  a  JNDI  server,  should  be 
instantiated once the cluster is set server side. This object wraps the information allowing a given 
client application to access the right topic of the cluster according to the server it connects to.

The ClusteredTopic object  may be handled either through the administration API or  the XML 
scripting capabilities.

Let assume that there is three existing clustered topics topic0 (server 0), topic1 (server 1) and 
topic2 (server  2),  and  the  corresponding  ConnectionFactory  cf0,  cf1  and  cf2.  The 

 - 56 -



Joram 5.8  User's Guide

ClusterConnectionFactory and ClusterTopic objects allow to handle the clustered objects  as a 
whole through a single object; each object is registered with a property specific to its location.

ClusterConnectionFactory clusterCF = new ClusterConnectionFactory();
clusterCF.addConnectionFactory(“server0”, cf0);
clusterCF.addConnectionFactory(“server1”, cf1);
clusterCF.addConnectionFactory(“server2”, cf2);
ictx.rebind(“clusterCF”, clusterCF);

ClusterTopic clusterTopic = new ClusterTopic();
clusterTopic.addDestination(“server0”, topic0);
clusterTopic.addDestination(“server1”, topic1);
clusterTopic.addDestination(“server2”, topic2);
ictx.rebind(“clusterTopic”, clusterTopic);

These objects can be registered in JNDI, then retrieved by a JMS client. When the client creates 
the  JMS  connection  through  the  clustered  ConnectionFactory,  the  connection  is  established 
depending  of  the  “location”  JVM  property6.  Then  the  client  can  create  the  Session  and  the 
MessageConsumer;  the physical  topic used will  also depend of  the “location”  property so the 
connection and the topic will formed a coherent pair.

ConnectionFactory cf = ictx.lookup(“clusterCF”);
Topic clusterTopic = ictx.lookup(“clusterTopic”);
..
Connection cnx =  cf.createConnection(...);
Session session = cnx.createSession(...);
MessageConsumer consumer = Session.createConsumer(clusterTopic);

Setting the access rights
Access rights to the cluster may be set individually, for each topic. They may also be set for the 
whole cluster, using the same methods. Simply, instead of manipulating  Topic instances, you 
have to manipulate the ClusterTopic instance.

clusterTopic.setFreeReading();
clusterTopic.setFreeWriting();

4.3.3. Running the “Clustered Topic” Sample

This sample illustrates the use of Joram’s clustered topic. A clustered topic is a group of topics  
deployed on different servers behaving as a unique “logical” topic. This sample configuration is 
made of 3 servers, each server hosting a topic part of the cluster. The platform is run in persistent 
mode. The provided configuration locates all three servers on “localhost” host.

6 This property must be fixed according to the client needs; if it is not fixed the location is randomly set for later 
usage. 

 - 57 -



Joram 5.8  User's Guide

Figure 20 - Cluster sample configuration

This sample code is located in the samples/src/joram/cluster/topic directory. In order to 
run the demo described below you must go to the samples/src/joram directory.

The publisher connects to a server and publishes messages on the local topic of this server. The 
subscriber connects to a server and subscribes to the local topic of this server. You can either fix 
dynamically the server used for the connection (giving its identification 0, 1 or 2 when ant prompt 
for it) or use a randomly chosen server (using the '-' key at prompt).

Running the demo
 For compiling the sample code:

ant clean compile
 For starting the configuration:

ant reset servers

 For running the administration code:

ant topic_cluster_admin

or

ant topic_cluster_adminxml

 For running a subscriber:

ant topic_cluster_subscriber

 For running a publisher

ant topic_cluster_publisher

Scenario:

When you launch a publisher on any server, all subscribers receives the messages sent.

 - 58 -

JMS

JMS

Server 2Publisher

Subscriber

Server 1

Topic

Server 0

Topic

Topic

Subscriber

JMS



Joram 5.8  User's Guide

4.3.4. Using XML Scripts

The XML scripting facility allows to create and bind in JNDI clustered ConnectionFactory and 
Destination. 

ClusterConnectionFactory
A ClusterConnectionFactory is defined through a ClusterCF element. It is made up of a set of  
predefined ConnectionFactory element pointed out by their names. It can be completed by a JNDI 
declaration.

First  we  have  to  define  each  ConnectionFactory,  one  for  each  server  of  the  cluster.  The 
declaration below defines three ConnectionFactory (TcpConnectionFactory by default), cf0 allows 
the connection to server #0, cf1 to server #1 and cf2 to server #2. Each ConnectionFactory can be 
bound individually in JNDI.

  <ConnectionFactory name="cf0">
    <tcp host="localhost" port="16010"/>
    <jndi name="cf0"/>
  </ConnectionFactory>
  
  <ConnectionFactory name="cf1">
    <tcp host="localhost" port="16011"/>
    <jndi name="cf1"/>
  </ConnectionFactory>
  
  <ConnectionFactory name="cf2">
    <tcp host="localhost" port="16012"/>
    <jndi name="cf2"/>
  </ConnectionFactory>

Second we can define the ClusterConnectionFactory associating each ConnectionFactory with a 
location property7.  The declaration above defines a ClusterConnectionFactory made up of three 
TcpConnectionFactory named cf0, cf1 and cf2. The resulted ConnectionFactory is bound in JNDI 
with the name clusterCF.

  <ClusterCF>
    <ClusterElement name="cf0" location="server0"/>
    <ClusterElement name="cf1" location="server1"/>
    <ClusterElement name="cf2" location="server2"/>
    <jndi name="clusterCF"/>
  </ClusterCF>

ClusterTopic
A clustered topic is made up of a set of Topic elements; each destination needs to be  created 
separately. It can be completed by a JNDI declaration.

  <Topic name="topic0" serverId="0">
    <jndi name="topic0"/>
  </Topic>
  <Topic name="topic1" serverId="1">
    <jndi name="topic1"/>
  </Topic>

7 This property allows to choose the right association between the ConnectionFactory and the representative of 
clustered destinations (see paragraph “Using clustered JNDI's object”).

 - 59 -



Joram 5.8  User's Guide

  <Topic name="topic2" serverId="2">
    <jndi name="topic2"/>
  </Topic>

The destinations must be linked in the cluster. The declaration below defines a ClusteredTopic 
made up of three Topic objects named topic0, topic1 and topic2. The location property allows to 
associate each Topic object with the corresponding ConnectionFactory of the clusterCF object 
(see paragraph “Using clustered JNDI's object” above). The resulted queue is bound in JNDI with 
the name clusterTopic.

  <ClusterTopic>
    <ClusterElement name="topic0" location="server0"/>
    <ClusterElement name="topic1" location="server1"/>
    <ClusterElement name="topic2" location="server2"/>
    <freeReader/>
    <freeWriter/>
    <jndi name="clusterTopic"/>
  </ClusterTopic>

4.4. Clustered Queue
4.4.1. Introduction

The clustered queue feature provides a load balancing mechanism. A clustered queue is a cluster 
of queues (a given number of queue destinations, knowing each other), exchanging messages 
depending on their load. The figure 9 shows an example of a cluster made of two queues. An 
heavy producer accesses its local  queue (queue 0) and sends messages.  The queue is also 
accessed by a consumer but requesting few messages. It quickly becomes loaded and decides to 
forward messages to the other queue (queue 1) of its cluster, which is not under heavy load. Thus, 
the consumer on queue 1 also gets messages, and messages on queue 0 are consumed in a 
quicker way.

 - 60 -



Joram 5.8  User's Guide

Figure 21 - A cluster of queues balancing heavy deliveries

Basic mechanism
Each queue of a cluster periodically re-evaluates its load factor and sends the result to the other 
queues of  the cluster.  When a queue hosts  more messages than it  is  authorized to do, and 
according to the load factors of the cluster, it distributes the extra messages to the other queues.  
When a queue is requested to deliver messages but is empty, it requests messages from the 
other queues of the cluster. This mechanism guarantees that no queue is hyper-active while some 
others are lazy, and tends to distribute the work load among the servers involved in the cluster.

Creation and configuration
Creating a cluster of queues consists first in setting the cluster’s parameters for load-balancing, 
then in creating the queues one by one, and finally in linking them as part of a same cluster. The 
needed configuration parameters are:

 a period of time before activating an automatic revaluation of the queues’ load factor;
 a number of messages above which a queue is considered as over-loaded;
 a number of pending “receive” requests above which an empty queue requests messages 

from the other cluster queues;
 a period of time during which a queue which requested something from the cluster queues 

should not do it again.

Access rights to the cluster may be managed individually, for each queue, or for the whole cluster. 

4.4.2. Managing a clustered queue

Setting the clustered queue parameters
Prior to creating the cluster, the following parameters must be set individually for each queue of  
the cluster8:

8 Each queue can have a different configuration depending of the characteristics of the server, or the number of 
producer/consumer, etc.

 - 61 -



Joram 5.8  User's Guide

 “period”: period in ms between two activations of the load factor evaluation routine for the 
queue;

 “producThreshold”: number of messages above which a queue is considered loaded, a 
load factor evaluation launched, messages forwarded to other queues of the cluster;

 “consumThreshold”:  number  of  pending  “receive”  requests  above  which  a  queue will 
request messages from the other queues of the cluster;

 “autoEvalThreshold”: set to “true” for requesting an automatic revaluation of the queues’ 
thresholds values according to their activity;

 “waitAfterClusterReq”: time (in ms) during which a queue which requested something from 
the cluster is not authorized to do it again.

Properties are set in a java.util.Properties instance. For example:

java.util.Properties prop = new java.util.Properties();
prop.setProperty(“period”, “10000”);
prop.setProperty(“producThreshold”, “60”);
prop.setProperty(“consumThreshold”, “2”);
prop.setProperty(“autoEvalThreshold”, “true”);
prop.setProperty(“waitAfterClusterReq”, “500”);

Creating the clustered queues
Creating a clustered queue consists first in creating the queues that will be part of it. For a cluster  
of three queues, let’s create queue0, queue1 and queue2 and servers 0, 1 and 2 through the 
Queue.create method.

String className = “org.objectweb.joram.mom.dest.ClusterQueue”;

Queue queue0 = Queue.create(0, “queue0”, className, prop);
Queue queue1 = Queue.create(1, “queue1”, className, prop);
Queue queue2 = Queue.create(2, “queue2”, className, prop);

The next step consists in clustering the queues. Queues are linked two by two using Queue class 
with the following method:

 addClustered(Queue addedQueue): adds a given queue to a cluster by joining it to a 
queue already belonging to the cluster, or chosen as the initiator of the cluster.

Going back to our example:

queue0.addClusteredQueue(queue1);
queue0.addClusteredQueue(queue2);

An  IllegalArgumentException is  thrown  by  this  latest  method  if  one  of  the  queues 
parameters is not a valid Joram queue. An AdminException is thrown if one of the queues does 
not exist server side, or if the joining queue is already part of a cluster. A ConnectException is 
thrown if the connection with the server is lost.

Using clustered JNDI's object
An  object  representing  the  cluster,  and  which  may  be  bound  to  a  JNDI  server,  should  be 
instantiated once the cluster is set server side. This object wraps the information allowing a given 
client application to access the right queue of the cluster according to the server it connects to.

The ClusteredQueue object may be handled either through the administration API or the XML 
scripting capabilities.

Let assume that there is three existing clustered queues queue0 (server 0),  queue1 (server 1) 
and  queue2 (server  2),  and the corresponding ConnectionFactory  cf0,  cf1  and  cf2.  The 
ClusterConnectionFactory and ClusterQueue objects allow to handle the clustered objects as a 
whole through a single object; each object is registered in the clustered object with a property 
specific to its location.

 - 62 -



Joram 5.8  User's Guide

ClusterConnectionFactory clusterCF = new ClusterConnectionFactory();
clusterCF.addConnectionFactory("server0", cf0);
clusterCF.addConnectionFactory("server1", cf1);
clusterCF.addConnectionFactory("server2", cf2);
ictx.rebind("clusterCF", clusterCF);

ClusterQueue clusterQueue = new ClusterQueue();
clusterQueue.addDestination("server0", queue0);
clusterQueue.addDestination("server1", queue1);
clusterQueue.addDestination("server2", queue2);

These objects can be registered in JNDI, then retrieved by a JMS client. When the client creates 
the  JMS  connection  through  the  clustered  ConnectionFactory,  the  connection  is  established 
depending  of  the  “location”  JVM  property9.  Then  the  client  can  create  the  Session  and  the 
MessageConsumer; the physical queue used will also depend of the “location” property so the 
connection and the queue will formed a coherent pair.

ConnectionFactory cf = ictx.lookup(“clusterCF”);
Queue queue = ictx.lookup(“clusterQueue”);
..
Connection cnx =  cf.createConnection(...);
Session session = cnx.createSession(...);
MessageConsumer consumer = Session.createConsumer(queue);

Setting the access rights
Access rights to the cluster may be set individually, for each queue. They may also be set for the  
whole cluster, using the same methods. Simply, instead of manipulating Queue instances, simply 
manipulate the ClusterQueue instance. For example:

clusterQueue.setFreeReading();
clusterQueue.setFreeWriting();

4.4.3. Running the “Clustered Queue” Sample

This sample illustrates the use of Joram's clustered queues. A cluster queue is a group of queues 
deployed on different servers and handling the load-balancing. 

This  sample configuration is  made of  three servers,  each server  hosting a queue part  of  the 
cluster. The platform is run in persistent mode. The provided configuration locates all three servers 
on “localhost” host.

This sample code is located in the samples/src/joram/cluster/queue directory. In order to 
run the demo described below you must go to the samples/src/joram directory.

Running the demo:
 Starting the configuration:

ant reset servers

 Running the administration code: ant queue_cluster_admin.
o This target creates and configures a cluster with 3 queues as described above.

 Running the consumers using the target queue_cluster_consumer.
o This target  launches a message consumer connected to one of  the server,  it 

indefinitely consumes messages on the corresponding queue.  

9 This property must be fixed according to the client needs; if it is not fixed the location is randomly set for later 
usage. 

 - 63 -



Joram 5.8  User's Guide

 Running the producers using the target queue_cluster_producer.
o This target launches a message producer connected to one of the server, it sends 

1000 messages to the corresponding queue.
 Using the queue_cluster_consumer or queue_cluster_producer targets you can 

either fix dynamically the server used for the connection (giving its identification 0, 1 or 2 
when ant prompt for it) or use a randomly chosen server (directly press the return key at 
prompt).

In order to view the load-balancing mechanism we can run two different scenarios.

Scenario 1:

In this scenario there is three message consumers, one for each queue of the cluster. Messages 
are all sent to queue0, the load-balancing mechanism dispatches them between the queues, then 
the consumers.

 Launching three consumers on queue0, queue1 and queue2:

“ant queue_cluster_consumer”  then type '0'.

“ant queue_cluster_consumer”  then type '1'.

“ant queue_cluster_consumer”  then type '2'.

 Launching multiples  producers on queue0:

“ant queue_cluster_producer”  then type '0'.

“ant queue_cluster_producer”  then type '0'.

“ant queue_cluster_producer”  then type '0'.

Scenario 2:

In this scenario there is only two message consumers listening on queue0 and queue1. Messages 
are sent  on queue1 and queue2, messages produced to queue2 by the second producer are 
dispatched between the two consumers by the load-balancing mechanism.

 Launching two consumers on queue0 and queue1

“ant queue_cluster_consumer”  then type '0'.

“ant queue_cluster_consumer”  then type '1'.

 Launching two producers on queue1 and queue2

“ant queue_cluster_producer”  then type '1'.

“ant queue_cluster_producer”  then type '2'.

4.4.4. Using XML Scripts

The XML scripting facility allows to create and bind in JNDI clustered ConnectionFactory and 
Destination.

ClusterConnectionFactory
A ClusterConnectionFactory is defined through a ClusterCF element. It is made up of a set of  
predefined ConnectionFactory element pointed out by their names. It can be completed by a JNDI 
declaration.

  <ConnectionFactory name="cf0">
    <tcp host="localhost" port="16010"/>
    <jndi name="cf0"/>
  </ConnectionFactory>
  
  <ConnectionFactory name="cf1">

 - 64 -



Joram 5.8  User's Guide

    <tcp host="localhost" port="16011"/>
    <jndi name="cf1"/>
  </ConnectionFactory>
  
  <ConnectionFactory name="cf2">
    <tcp host="localhost" port="16012"/>
    <jndi name="cf2"/>
  </ConnectionFactory>

The  declaration  below  defines  a  ClusterConnectionFactory  JNDI's  object  made  up  of  three 
TcpConnectionFactory named cf0, cf1 and cf2. Each ConnectionFactory is bound in the cluster 
with a key depending of its location. The resulted ConnectionFactory is bound in JNDI with the 
name clusterCF. 

  <ClusterCF>
    <ClusterElement name="cf0" location="server0"/>
    <ClusterElement name="cf1" location="server1"/>
    <ClusterElement name="cf2" location="server2"/>
    <jndi name="clusterCF"/>
  </ClusterCF>

ClusterQueue
A clustered destination is made up of a set of Queue or Topic elements; each destination needs to 
be  created separately then linked. It can be completed by a JNDI declaration.

  <Queue name="queue0" serverId="0"
         className="org.objectweb.joram.mom.dest.ClusterQueue">   
    <property name="period" value="10000"/>
    <property name="producThreshold" value="50"/>
    <property name="consumThreshold" value="2"/>
    <property name="autoEvalThreshold" value="false"/>
    <property name="waitAfterClusterReq" value="1000"/>
    <jndi name="queue0"/>
  </Queue>

  <Queue name="queue1" serverId="1"
         className="org.objectweb.joram.mom.dest.ClusterQueue">
    <property name="period" value="10000"/>
    <property name="producThreshold" value="50"/>
    <property name="consumThreshold" value="2"/>
    <property name="autoEvalThreshold" value="false"/>
    <property name="waitAfterClusterReq" value="1000"/>
    <jndi name="queue1"/>
  </Queue>

  <Queue name="queue2" serverId="2"
         className="org.objectweb.joram.mom.dest.ClusterQueue">
    <property name="period" value="10000"/>
    <property name="producThreshold" value="50"/>
    <property name="consumThreshold" value="2"/>
    <property name="autoEvalThreshold" value="false"/>

 - 65 -



Joram 5.8  User's Guide

    <property name="waitAfterClusterReq" value="1000"/>
    <jndi name="queue2"/>
  </Queue>

The declaration below defines a ClusteredQueue made up of three Queue objects named queue0, 
queue1 and queue2. Each queue is bound in the cluster with a key according to its location 10. The 
location property allows to associate each Topic object with the corresponding ConnectionFactory 
of  the clusterCF object  (see  paragraph  “Using  clustered  JNDI's  object”  above).  The  resulted 
queue is bound in JNDI with the name clusterQueue.

 <ClusterQueue>
    <freeReader/>
    <freeWriter/>
    <ClusterElement name="queue0" location="server0"/>
    <ClusterElement name="queue1" location="server1"/>
    <ClusterElement name="queue2" location="sserver2"/>
    <jndi name="clusterQueue"/>
  </ClusterQueue>

4.5. SchedulerQueue
4.5.1. Introduction

A scheduler queue is a standard JMS queue extended with a timer behaviour. When a scheduler 
queue receives  a  message  with  a  property called  'scheduleDate'  (typed as  a  long)  then the 
message is not available for delivery before the date specified by the property. 

The scheduler queue feature is available since the Joram version 4.3.14. 

4.5.2. Using a schedulerQueue

Create a scheduler queue
A scheduler queue is created by using the Joram administration API, calling the Queue creation 
method create from the class org.objectweb.joram.client.jms.Queue. 

queue = Queue.create(0, "schedulerQ", Queue.SCHEDULER_QUEUE, null);

Schedule a message
Scheduling a message requires to add a property called "scheduleDate" to the message. The 
value is the message delivery date typed as a long.

The following example shows how to schedule a message for 5 seconds later. 

      long scheduleDate = System.currentTimeMillis() + 5000L;
      TextMessage msg = session.createTextMessage("hello");
      msg.setLongProperty("scheduleDate", scheduleDate);
      producer.send(msg);

A scheduled message is visible in the list of message of the queue but it cannot be delivered 
before its schedule date is reached (it is close to the use of a selector on all the receive requests  
verifying that the scheduled date is less than the current one).

10 This key must be the same that the key used for the corresponding ConnectionFactory.

 - 66 -



Joram 5.8  User's Guide

Cancel a scheduled message
You can cancel a previously scheduled message by removing it from the scheduler queue. This 
removal operation can be performed through the Joram administration API.

      queue.deleteMessage(msg.getJMSMessageID());

4.6. Acquisition and distribution 
4.6.1. Introduction

Joram provides the ability to inject messages in the "JMS world" using non-JMS sources like an 
email  account  or  a  JMX  server.  That's  the  acquisition part.  The  acquisition  destination  will 
periodically search for new items to acquire and make them available as messages.

On  the  other  hand,  custom  destinations  are  also  available  for  distribution,  which  means 
distributing JMS messages outside the JMS world (e-mail, ftp, …). The distribution destination will 
forward every message handled to the corresponding recipient.

For example, using an e-mail account you can:

● forward Joram's messages to this external email account using distribution

● import  emails  from this  external  account and turn  them into Joram's  messages using 
acquisition

Acquisition and distribution are available for queues and topics, so we have respectively:

• Acquisition queue:

    Queue queue = Queue.create(0, "queue", Queue.ACQUISITION_QUEUE, prop);

• Acquisition topic:

    Topic topic = Topic.create(0, "topic", Topic.ACQUISITION_TOPIC, prop);

• Distribution queue:

    Queue queue = Queue.create(0, "queue", Destination.DISTRIBUTION_QUEUE, prop);

• Distribution topic:

    Topic topic = Topic.create(0, "topic", Destination.DISTRIBUTION_TOPIC, prop);

The acquisition and distribution destinations are available since the Joram version 5.3.2.

4.6.2. Configuring an acquisition destination

A set of properties is used to configure the acquisition destinations:

• acquisition.className – Mandatory property which indicates the acquisition class to use, 
depending on what content is acquired by the destination.

• acquisition.period – Tells the period between two acquisitions, default is 0 (no periodic 
acquisition)

• persistent11 - Tells if produced messages will be persistent, default is true (JMS default).

11 The persistent, expiration and priority properties are normally handled by the AMQP and JMS bridge 
depending of the properties of the incoming message. Therefore you do not normally need to set them when you 
configure such a bridge.

 - 67 -



Joram 5.8  User's Guide

• expiration11 - Tells the life expectancy of produced messages, default is 0 (JMS default 
time to live).

• priority11 - Tells the JMS priority of produced messages, default is 4 (JMS default).

• acquisition.max_msg – Tells the maximum gap between the message number send by the 
handler and the message number processed by the acquisition queue, default is 20. Over, stop 
the acquisition.

• acquisition.min_msg – Tells gap the below which restarts the acquisition, default is 10.

• acquisition.max_pnd – Tells the maximum number of pending messages on the acquisition 
queue, defalult is 20.

• acquisition.min_msg – Tells the minimum number of pending messages on the acquisition 
queue, default is 10.

As the acquisition period can be null, the destination exists in two modes which will affect the way 
this acquisition destination will react to messages sent to it:

In  periodic mode (period > 0),  a message with non-null  properties will  be treated as a new 
configuration for the destination, and ignored otherwise.

In request mode, a message received will launch an acquisition process with the given message 
properties or use the last known properties if empty.

Destination mode can be changed using the "period" property.

Alternatively, the acquisition destination can work as an acquisition daemon which will be notified 
at any time a new message is coming. In this case, the previous acquisition.period property 
is inoperative. This acquisition method is useful in cases where the acquisition message is not 
acquired by polling it.

For example, the JMS acquisition bridge works this way because it sets up a MessageListener on 
a foreign JMS destination and as a consequence it will be notified whenever a new message is 
received.

The fact that the acquisition destination is a daemon or not depends on the class specified by the 
acquisition.className property. For now, the acquisition daemon destinations available are 
the JMS bridge  and the AMQP bridge.

The  two  thresholds  limiting  the  number  of  pending  messages  in  queue  and  the  number  of 
messages in the engine allow to control the flow and to avoid the engine overflow.

You can start or stop the acquisition destination's with an admin command.

AdminCommandReply reply = (AdminCommandReply)  
    AdminModule.processAdmin(dest.getName(),
                             AdminCommandConstant.CMD_START_HANDLER, properties);

AdminCommandReply reply = (AdminCommandReply) 
    AdminModule.processAdmin(dest.getName(),
                             AdminCommandConstant.CMD_STOP_HANDLER, properties);

4.6.3. Configuring a distribution destination

A set of properties is used to configure the distribution destinations:

• distribution.className – Mandatory property which indicates the distribution class to 
use, according to the kind of distribution wanted.

 - 68 -



Joram 5.8  User's Guide

As a distribution queue will  hold messages that  can't  be distributed properly (if  an exception 
occurred during the initial distribution), two specific properties are useful when using a distribution 
queue instead of a distribution topic:

• period – Tells the time to wait before another distribution attempt. Default is 0, which means 
there won't be other attempts.

• distribution.batch –  If set to true, the queue will try to distribute each time every waiting 
message, regardless of distribution errors. This can lead to the loss of message ordering, but will 
prevent a blocking message from blocking every following message. When set  to false,  the 
distribution process will stop on the first error. Default is false.

4.6.4. Setting properties

The  properties  of  the  destination  can  be  set  with  the  appropriate  administration  command: 
setProperties.

AdminReply reply = destination.setProperties(prop);

You can update the properties of the acquisition handler, by sending JMS message containing the 
properties. The acquisition queue/topic transmit the properties to the acquisition module and the 
module set properties to the handler.

4.6.5. Required libraries

As you can see in the previous sections, a class name must be specified as a property to specify 
the way acquisition or distribution is done. So, for the acquisition or distribution destination to work 
properly, this class must be accessible at runtime. This means that additional bundles must be 
installed and started when JORAM is running over OSGi. In order to do this, you can customize 
the  file  config.properties before  launching  the  Joram  server  to  modify  the 
felix.auto.start property or the felix.auto.deploy.dir property. Additional details can 
be found in the config.properties file or on the felix website: http://felix.apache.org/site/index.html.

For  example,  for  the mail  destinations  to  work,  you need to  install  the  bundle  joram-mom-
extensions-mail.jar. There are multiple examples of such config.properties files in the 
samples/config directory.

4.6.6. Mail acquisition / distribution

Introduction
Using an e-mail account, mail destinations allow you to:

● forward Joram's messages to this external email account using distribution

● import  emails  from this  external  account and turn  them into Joram's  messages using 
acquisition

The mail acquisition class name is  com.scalagent.joram.mom.dest.mail.MailAcquisition and the 
mail distribution class name is com.scalagent.joram.mom.dest.mail.MailDistribution. Both of these 
classes are located in the joram-mom-extensions-mail.jar bundle.

Mail acquisition properties
In addition to common acquisition properties, the following parameters must be set:

 popServer - the DNS name or IP address of the POP server;
 popUser - the login name for the email account;
 popPassword - the password for the email account;
 expunge - allows to remove or not email on the server.

    

 - 69 -

http://felix.apache.org/site/index.html


Joram 5.8  User's Guide

    Properties prop = new Properties();    
    prop.setProperty("acquisition.className",

"com.scalagent.joram.mom.dest.mail.MailAcquisition");
    prop.setProperty("acquisition.period", "30000");
    prop.setProperty("popServer", popServer);
    prop.setProperty("popUser", popUser);
    prop.setProperty("popPassword", popPassword);
    prop.setProperty("expunge", "false");

Remark:  The  current  mechanism  does  not  allow  the  use  of  protocol  other  than  POP.  The 
transformation is currently hard-coded it should be interesting to configure it.

Mail distribution properties
In addition to common distribution properties, the following parameters must be set:

 smtpServer - the DNS name or IP address of the SMTP server;
 from - the email address of the sender;
 to, cc, bcc - a comma separated list of recipients;
 subject - the subject of outgoing message;

 selector - additionally a selector can be added to filter the forwarded messages.

    Properties prop = new Properties();
    prop.setProperty("distribution.className",

"com.scalagent.joram.mom.dest.mail.MailDistribution");
    prop.setProperty("smtpServer", smtpServer);
    prop.setProperty("from", from);
    prop.setProperty("to", to);
    prop.setProperty("subject", "JORAM MAIL");
    prop.setProperty(“selector”, “”);

Remark: The current mechanism does not allow the use of protocol other than SMTP. It could be 
interesting to allow the overloading of the default sending parameters by message properties.

Running the sample
This sample illustrates the use of Joram's e-mail acquisition and distribution destinations. It uses a 
mail topic to send email to a predefined account, and a mail queue to receive email from this 
identical account.

This sample configuration is made of a unique server located on “localhost” host. The platform is 
run in non-persistent mode.

Before running the sample, you must change two properties file defining the mail configuration. 
Theses files are pop.properties and smtp.properties, they are located in the  joram/samples/config 
directory.

 - 70 -



Joram 5.8  User's Guide

Figure 22 - The mail sample

Running the demo: in the joram/samples/src/joram directory.

 Compiling the samples:

ant clean compile

 Starting the configuration:

ant reset extended_server

 Running  the  administration  code  in  a  new  console:  this  target  creates  a 
TcpConnectionFactory, an 'anonymous' user, a mail distribution topic for outgoing mail 
and a mail acquisition queue for incoming mail.
ant mail_admin

 Running the producer: this target sends 5 messages on the mail topic. Theses messages 
will be forwarded using the SMTP protocol to the predefined mail account.
ant mail_producer

 Running the consumers: this target launches a message listener on the mail queue. At 
defined interval the queue will scan the mail account to get new email, then forwards them 
to the listener. 
ant mail_consumer

4.6.7. URL acquisition (collector)

Introduction
URL acquisition queue and topic  are  special  destinations usable to  collect  a  document  on a 
specified URL.

They can be used to periodically :

● import a file from an URL to a Joram's message and store it in this queue.

● import a file from an URL to a Joram's message and forward to each subscribers.

The URL acquisition class name is com.scalagent.joram.mom.dest.collector.URLAcquisition and 
is located in the joram-mom-extensions-collector.jar bundle.

 - 71 -

Mail Account

JMS producer
(anonymous, anonymous)

JMS producer
(anonymous, anonymous)

JMS producer
(anonymous, anonymous)

JMS consumer
(anonymous, anonymous)

JMS consumer
(anonymous, anonymous)

JMS consumer
(anonymous, anonymous)Server 0

MailQueueMailTopic



Joram 5.8  User's Guide

Setting the configuration parameters
In addition to common acquisition parameters (4.6.2), some extra properties are used by the URL 
acquisition destination:

 collector.url - locates the element that will be collected.
 collector.type  -  indicates  the  type  of  the  generated  message.  Default  is 

Message.BYTES.

Creating the destination
A  monitoring  destination  is  created  as  any  acquisition  destination  by  using  the  Joram 
administration API with the previously defined properties.

For example using org.objectweb.joram.client.jms.Queue class:

Properties prop = new Properties();
prop.setProperty("expiration", "0");
prop.setProperty("persistent", "true");
prop.setProperty("acquisition.period", "10000");
prop.setProperty("acquisition.className", 

"com.scalagent.joram.mom.dest.collector.URLAcquisition");
prop.setProperty("collector.url", url);
prop.setProperty("collector.type", "" + Message.BYTES);

Queue queue = Queue.create(0, "CollectorQueue", Queue.ACQUISITION_QUEUE, prop);

This method allows to specify the location server, an internal name, the implementation class and 
the configuration properties for the new URL acquisition queue/topic.

Running the sample
The sample shows how to collect a file from an URL and store it in the collector queue.

A consumer consumes the message and prints the file.

A producer send message to the collector queue to update some properties.

Running the demo: in the joram/samples/src/joram directory.

 Compile the samples:

ant clean compile

 Start the configuration, this sample needs the joram-mom-extensions-collector.jar bundle 
so we use the extended_server ant target:

ant reset extended_server

 Run the administration code: this target  creates a ConnectionFactory, an 'anonymous' 
user, a collector queue and a collector topic. The collector queue is configured to collect 
the URL only when triggered by a sent message, the initial configuration of the collector 
topic is to collect the file http://www.gnu.org/licenses/lgpl-2.1.txt every 5 seconds.
ant collector_admin

 You can alternatively configure this sample using an XML administration script (see the 
joramAdmin.xml file in the collector directory).
ant collector_adminxml

 Run the collector: this target connects to the collector queue or topic in order to be notified 
regularly about the collected file.
ant consumer_queue or ant consumer_topic

 Run the trigger: this target sends a message to the collector queue asking the queue to 
collect the file http://www.gnu.org/licenses/lgpl-3.0.txt.
ant collector_trigger

 - 72 -

http://www.gnu.org/licenses/lgpl-3.0.txt
http://www.gnu.org/licenses/lgpl-2.1.txt


Joram 5.8  User's Guide

4.6.8. JMX acquisition (monitoring)

Introduction
A monitoring acquisition destination is  an acquisition destination configured to transform  JMX 
informations into JMS messages. 

It works in 2 modes:

 If  the  acquisition.period attribute  is  set  (value  greater  than  0)  the  destination 
periodically scans the selected JMX attributes and generates a message with the value of 
these attributes.

 In  the other  case,  the user  sends to  the destination a  message with  the list  of  JMX 
attributes to scan and the destination creates a message with these values, or use the last 
known JMX attributes.

If the destination is a queue, each message is delivered to a unique consumer, if it is a topic all 
subscribers receive it.

This topic is based on JMX monitoring so you must enable JMX monitoring to use it. See JMX
administration of Joram in order to do it.

The JMX acquisition class name is org.objectweb.joram.mom.dest.MonitoringAcquisition and is 
directly located in the  joram-mom-core.jar bundle, so you don't  need to provide additional 
bundles for the JMX acquisition destination to work (contrary to other acquisition destinations).

Setting the parameters
Additionally to common acquisition parameters (4.6.2), properties are used to indicate the list of 
JMX attributes that will be monitored. The property key is the name of the MBean and the value is  
a comma separated list of attributes to monitor for this MBean. The '*' character is allowed to 
monitor every parameter of the MBean.

 Accessing  multiple  MBeans  is  possible  using  wildcard  characters,  as  defined  in  the 
javax.management.ObjectName class. See here for JDK6 details.

Example setting monitoring properties:

Properties props = new Properties();
props.put("acquisition.className", 

"org.objectweb.joram.mom.dest.MonitoringAcquisition");
props.put("acquisition.period", "5000");
props.put("Joram#0:type=Destination,name=queue", 

"NbMsgsDeliverSinceCreation,NbMsgsReceiveSinceCreation,PendingMessageCou
nt,NbMsgsSentToDMQSinceCreation");
props.put("Joram#0:type=Destination,name=topic",

"NbMsgsDeliverSinceCreation,NbMsgsReceiveSinceCreation,NbMsgsSentToDMQSi
nceCreation");

Example sending a message to the destination:

Message msg = sess.createMessage();
msg.setStringProperty("Joram#0:type=Destination,name=*",

"NbMsgsReceiveSinceCreation,NbMsgsSentToDMQSinceCreation");

Creating a monitoring destination
A  monitoring  destination  is  created  as  any  acquisition  destination  by  using  the  Joram 
administration API with the previously defined properties.

For example using org.objectweb.joram.client.jms.Queue class:

Queue mQueue = Queue.create(0, "MonitoringQueue",

 - 73 -

http://download.oracle.com/javase/6/docs/api/javax/management/ObjectName.html


Joram 5.8  User's Guide

                            Queue.ACQUISITION_QUEUE,
                            props);

This method allows to specify the location server, an internal name, the implementation class and 
the configuration properties for the new queue.

Running the sample
The sample shows how to monitor a single queue, it uses the well-known classic sample.

Running the demo: in the joram/samples/src/joram directory.

 Compile the samples:

ant clean compile

 Start the configuration:

ant reset single_server

 Run the administration code of the classic sample.  This target creates, configures and 
registers a ConnectionFactory, an 'anonymous' user, a queue and a topic:
ant classic_admin

 Run the administration code of the monitoring sample. This target creates 2 monitoring 
destinations, a queue and a topic. The queue is configured to reply to request, the topic is 
configured to periodically sends JMX information about the queue and topic of the classic 
sample each 5 seconds.
ant monitoring_admin

 You can alternatively configure this sample using an XML administration script (see the 
joramAdmin.xml file in the monitoring directory).
ant monitoring_adminxml

 The  'monitoring_monitor'  target  subscibes  to  the  monitoring  topic  in  order  to  be 
notified regularly about the parameters of the destinations named “queue” and “topic”.
ant monitoring_monitor

 The '' target sends a message to the monitoring queue asking for the parameters of all 
destinations defined in the server.
ant monitoring_diagnose

 In the other  hand you can use the ant  targets  of  the classic  sample to produce and 
consume messages on the 2 destinations (see The classic sample).
ant producer_queue
ant consumer_queue
ant producer_topic
ant consumer_topic

You can launch multiple times the producer and the consumer to see the monitored parameters 
evolve.

4.6.9. JMS acquisition / distribution bridge

Introduction
The JMS acquisition/distribution bridge allows a JORAM client application to communicate with a 
JMS destination hosted by a foreign JMS server (let’s call it XMQ) in a completely standard way.

The link between JORAM and the  XMQ heterogeneous platforms is provided by a specifically 
configured  service  called  JMSConnectionService,  and  connected  to  a  XMQ destination  as  a 
standard (JMS 1.1) client application (as illustrated by Figure 23).

 - 74 -



Joram 5.8  User's Guide

Figure 23 - A JORAM client communicating with a XMQ client

If  the  JORAM bridge  destination  is  a  distribution  destination,  the  JORAM client  can  send  a 
message to the bridge destination, and the message will be forwarded to the XMQ destination.

If the JORAM destination is an acquisition destination, it will automatically subscribe to the XMQ 
destination, so messages reaching XMQ destination will be forwarded to the bridge destination. 
Eventually it can be consumed as a regular message on the bridge destination.

From the JORAM client  perspective,  the target  destination is  a  JORAM destination accessed 
through the JMS interfaces. It is a fully standard client. The facts that the messages it produces 
finally reach the XMQ destination, and that the messages it consumes originally come from the 
XMQ destination, are totally transparent to the JORAM user.

Acknowledgment policy

Acknowledgements are managed between the JORAM client and the JORAM bridge destination, 
and between the JORAM bridge destination and the XMQ destination, independently.

In fact, the only possible case of message denying between the JORAM bridge destination and the 
XMQ platform occurs when the JMS message delivered by the XMQ destination appears not to be 
readable and thus can not be converted into a JORAM JMS message. 

This situation will likely evolve towards the “poison” message scenario, where a JMS client rolls 
back its session each time it receives the redelivered failing message. In order to avoid this, it is  
hoped that XMQ provides a way to log such messages into a dead message queue. If this feature 
is available, XMQ should be configured to do so.

Once  a  message  delivered  by the  XMQ destination  has  been successfully  converted  into  a 
JORAM JMS message, the delivery is acknowledged. XMQ does not hold the message any more, 
it is JORAM which is now responsible for safely distributing it.

Finally, denying a message between the JORAM client  and the bridge acquisition destination 
works the same way as between any JORAM client and JORAM destination. The message is 
available again for delivery, or logged to a dead message queue if any. In all cases the message 
stays  on  the  JORAM  platform,  the  XMQ destination  is  not  notified  of  the  JORAM  client 
acknowledgements or denials.

 - 75 -

JORAM client

XMQ

Dest

Joram server

Dest

Joram server

Dest

JMS 1.1JMS 1.1JMS 1.1

JM
S

 1.1
JM

S
 1.1

XMQ client



Joram 5.8  User's Guide

Message selection

As for acknowledgements, message selection is handled separately between a JORAM client and 
the  JORAM  bridge  acquisition  destination  it  interacts  with,  and  between  the  JORAM  bridge 
destination and the XMQ destination. Selectors set-up is done at different times. The selector used 
to filter the messages on the XMQ destination is set at administration time, when configuring the 
JORAM bridge destination.

The  selector  used  by  the  JORAM  client  is  set  as  a  standard  selector,  when  creating  the 
MessageConsumer instance.

Connection failure handling

From an architectural point of view, the  XMQ server might be seen as a JORAM server of  a 
JORAM distributed configuration. It might happen that the JMS connection between the JORAM 
bridge destination and the XMQ platform breaks. This case is processed as any connection failure 
case between two JORAM servers.  An automatic reconnection process is launched when the 
failure is detected (through the setting of a  javax.jms.ExceptionListener by the JORAM 
bridge  destination).  When  the  JORAM  bridge  destination  finally  reconnects,  the  pending 
messages or requests are re-routed to the XMQ platform. 

As a consequence, disconnections between JORAM and XMQ are totally transparent to the user, 
as disconnections between JORAM servers of a distributed JORAM platform.

The reconnection process is as follows:

1. first step: 30 connection trials, one per second;
2. second step: 55 connection trials, one every 5 seconds;
3. last step: infinite connection trials, one every minute.

Cautions with ObjectMessage messages

The bridge must rebuild a new JMS message from the incoming or outgoing message. When 
using an ObjectMessage the class of the object contained in the message must be accessible 
otherwise an exception is thrown.

Required libraries

The JMS bridge acquisition class name is org.objectweb.joram.mom.dest.jms.JMSAcquisition and 
the  JMS  bridge  distribution  class  name  is  org.objectweb.joram.mom.dest.jms.JMSDistribution. 
Both of these classes are located in the joram-mom-extensions-jmsbridge.jar bundle.

Additionally, as these classes work as clients of the XMQ server, you need to provide bundles: 

 all XMQ client jars;
 a jms.jar library compatible with the XMQ JMS implementation;
 the client jars of the used JNDI server;

This means the following bundles when XMQ is Joram:

 joram-client-jms.jar
 joram-shared.jar (already present in server)
 geronimo-jms_1.1_spec.jar
 jndi-client.jar
 jndi-shared.jar (already present in server)

JMS connection service
The JMS bridge destinations rely on a particular JORAM service which purpose is to maintain a 
valid connection with the foreign XMQ server (or possibly multiple servers). This service must be 
declared in the a3servers.xml file, as any other JORAM service (see a3servers.xml configuration 
file below).

<?xml version="1.0"?>
<config>
  <property name="Transaction" value="fr.dyade.aaa.util.NTransaction"/>
  <server id="0" name="S0" hostname="localhost">
    <service class="org.objectweb.joram.mom.proxies.ConnectionManager"

 - 76 -



Joram 5.8  User's Guide

             args="root root"/>
    <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService" 
             args="16010"/>
    <service class="org.objectweb.joram.mom.dest.jms.JMSConnectionService"
             args="jndi_url/?name=cnx1&cf=cfName&jndiFactoryClass=com.xxx.yyy&user
=user1&pass=pwd1&clientID=clientID"/>
    <service class="fr.dyade.aaa.jndi2.server.JndiServer" args="16400"/>
  </server>
</config>

The arguments of the JMSConnectionService service are used to configure the way we can 
access the XMQ server. The arguments which can be provided are a list of URL separate by a 
blank space, in order:

• jndi_url is the JNDI URL which was used to bound the XMQ JMS ConnectionFactory.

• name represent the connection name, this is used for routing the messages.

• cf is the name of the connection factory name of XMQ.

• jndiFactoryClass is the factory of the XMQ jndi.

• user  that should be used by the bridge destination for opening a connection to  XMQ. If  not 
provided, the connection will be opened with default identification.

• pass that should be used by the bridge destination for opening a connection to  XMQ. If  not 
provided, the connection will be opened with default password.

• clientID is provided if XMQ requires the setting of such an identifier on its client connection, this 
is used for the connection API method setClientID.

For example the URL used in the corresponding Joram sample where XMQ is another Joram is:

“scn://localhost:16400/?name=cnx&cf=foreignCF&jndiFactoryClass=fr.dyade.aaa.jndi2.
client.NamingContextFactory”

JMS bridge properties
In addition to common acquisition parameters (4.6.2), or common distribution parameters (4.6.3), 
the following properties are required for setting the bridge destination:

 jms.DestinationName - JNDI name used to bound the XMQ JMS destination.

The following properties are optional:

 jms.Selector  - selector  expression  used  for  filtering  messages  on  the  XMQ 
destination (acquisition only).

 jms.DurableSubscriptionName – If  the  XMQ destination is a topic,  this property 
sets the name of the durable subscription created. If absent, the subscription will not be 
durable and messages published when connection with XMQ server is failing will be lost 
(acquisition only).

 jms.ConnectionUpdatePeriod  – Minimal  period  in  milliseconds  between  two 
requests to the JMS connection service. Default value is 5000.

Administration
Bridge  destinations  can  be  created  either  through  the  administration  API  or  an  XML  script, 
examples below comes from the Joram's samples:

 file samples/src/joram/bridge/BridgeAdmin.java for the administration API
 file samples/src/joram/bridge/joramAdmin.xml for the XML scripts.

Using administration API

The code below describes the creation of a JMS distribution queue with a remote queue named 
“queue”.

 - 77 -



Joram 5.8  User's Guide

  // Setting the bridge queue properties
  Properties prop = new Properties();
  prop.setProperty("jms.DestinationName", "queue");
  prop.setProperty("distribution.className", 
                   "org.objectweb.joram.mom.dest.jms.JMSDistribution");
  // Creating a Queue bridge on server 1:
  Queue bridgeQueue = Queue.create(1, Queue.DISTRIBUTION_QUEUE, prop);

The code below describes the creation of  a JMS acquisition topic with a remote topic named 
“topic”.

  // Setting the bridge topic properties
  prop = new Properties();
  prop.setProperty("jms.DestinationName", "topic");
  prop.setProperty("acquisition.className", 
                   "org.objectweb.joram.mom.dest.jms.JMSAcquisition");
  // Creating a Topic bridge on server 1:
  Topic bridgeTopic = Topic.create(1, Topic.ACQUISITION_TOPIC, prop);

The code below describes how to add a bridge connection with JMS servers.

  AdminModule.connect(....);
  AdminModule.addJMSBridgeConnection(0, "jndi_url/?name=cnx&cf=cfName&jndiFactory
Class=com.xxx.yyy&user=user1&pass=pass1&clientID=clientID");
  AdminModule.disconnect();

You can set a list of urls separate by a blank space: 

  "jndi_url/?name=cnx1&cf=cfName&jndiFactoryClass=com.xxx.yyy&user=user1&pass=pwd1
&clientID=clientID1 jndi_url/?name=cnx2&cf=cfName&jndiFactoryClass=com.xxx.yyy&use
r=user2&pass=pwd2&clientID=clientID2"

Using XML scripts

This description below is iso-functional to the code allowing the creation of the JMS distribution 
queue and JMS acquisition topic (see above).

  <Queue name="bridgeQueue" serverId="1"
         className="org.objectweb.joram.mom.dest.DistributionQueue">
    <property name="jms.DestinationName" value="queue"/>
    <property name="distribution.className" 
              value="org.objectweb.joram.mom.dest.jms.JMSDistribution"/>
  </Queue>
 
  <Topic name="bridgeTopic" serverId="1"
         className="org.objectweb.joram.mom.dest.AcquisitionTopic">
    <property name="jms.DestinationName" value="topic"/>
    <property name="acquisition.className" 
              value="org.objectweb.joram.mom.dest.jms.JMSAcquisition"/>
  </Topic>

  <JMSBridgeConnection serverId="0" urls="jndi_url/?name=cnx&cf=cfName&jndiFactor
yClass=com.xxx.yyy&user=user1&pass=pwd1&clientID=clientID"/>

Steps
In order to be able to bind the foreign JMS provider administered objects, a naming server is the  
first thing to start. And in order to be able to successfully deploy a JORAM bridge destination, the 

 - 78 -



Joram 5.8  User's Guide

foreign JMS administered objects must have been bound. As a consequence, the start-up steps 
are as follows:

1. start a JNDI server
2. create the foreign JMS administered objects, binding them to the JNDI server
3. configure JORAM by adding a JMSConnectionService in the a3servers.xml file
4. start and administer JORAM

Running the sample
A  live  demo  of  this  sample  is  available  on  Joram  website  documentation: 
http://joram.ow2.org/doc/tutorials/bridge/bridge.htm.

The demo shows the use of a JMS bridge distribution queue and a JMS bridge acquisition topic 
(see Figure 24).

Running the demo: in the joram/samples/src/joram directory.

1. Starting a classic JORAM server which will work as the XMQ server. The classic sample (2.2.1) 
is used to achieve this:
ant reset single_server

2. Administering the XMQ JMS server, binding its administered objects.
ant classic_admin

3. Starting the Joram server containing the JMS bridge and the additional JMS client bundles.
ant bridge_server

4. Administering this Joram bridge server using the administration API:
ant bridge_admin
or the XML script:
ant bridge_adminxml

5. Sending messages to the bridge queue which will forward them to XMQ server:
ant bridge_producer

6. Consuming the messages on the foreign JMS destination:
ant consumer_queue

And on the opposite way:

7. Starting a consumer on the bridge topic
ant bridge_consumer

8. Sending messages to the topic on XMQ server and checking the previously launched consumer 
acquire them correctly:
ant producer_topic

Figure 24 - 2 Joram clients communicating through the JMS bridge

 - 79 -

http://joram.ow2.org/doc/tutorials/bridge/bridge.htm


Joram 5.8  User's Guide

4.6.10. AMQP acquisition / distribution bridge

Introduction
Similarly to the JMS bridge (see previous section), there is acquisition and distribution modules 
allowing to communicate with an AMQP compliant (v0.9.1) broker.

The AMQP acquisition class name is  org.objectweb.joram.mom.dest.amqp.AmqpAcquisition and 
the AMQP distribution class name is org.objectweb.joram.mom.dest.amqp.AmqpDistribution. Both 
of these classes are located in the joram-mom-extensions-amqp.jar bundle.

An AMQP queue name must be provided to the JORAM destination to communicate with the 
AMQP world. This destination must have been previously created on the AMQP server. In the 
distribution mode the AMQP default exchange is used.

AMQP connection service
The AMQP destinations rely on a particular JORAM service which purpose is to maintain a valid 
connection with the AMQP server (or possibly multiple servers). This service must be declared in 
the a3servers.xml file, as any other JORAM service (see a3servers.xml configuration file below).

 - 80 -

Figure 25: Distribution to an AMQP server using a distribution queue

Figure 26: Acquisition from an AMQP server using an acquisition queue



Joram 5.8  User's Guide

<?xml version="1.0"?>
<config>
  <property name="Transaction" value="fr.dyade.aaa.util.NTransaction"/>

  <server id="0" name="S0" hostname="localhost">
    <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
             args="root root"/>
    <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService" 
             args="16010"/>
    <service class="org.objectweb.joram.mom.dest.amqp.AmqpConnectionService"
             args="amqp://localhost:5672/?name=server1"/>
    <service class="fr.dyade.aaa.jndi2.server.JndiServer" args="16400"/>
  </server>
</config>

The arguments of the AmqpConnectionService service are used to configure the host and port of 
the listen socket for the AMQP server. If none is provided, the default host and port are localhost  
and 5672 (IANA assignment for AMQP).

Administration
Bridge destinations can be created either through the administration API or an XML script.

Using administration API

In addition to common acquisition parameters (4.6.2), or common distribution parameters (4.6.3), 
the following properties are required to set the AMQP bridge destination:

 amqp.QueueName – The name of the AMQP queue with which we want to interact. This 
queue must have been created previously on the AMQP server.

 amqp.ConnectionUpdatePeriod –  Minimal  period  in  milliseconds  between  two 
requests to the AMQP connection service. Default value is 5000.

 amqp.Queue.DeclarePassive –  If  true  declare  a  queue passively;  i.e.,  check  if  it 
exists but do not create it. If false the queue is created if it does not exist. The following 
parameters are used. Default value is true.

 amqp.Queue.DeclareExclusive –  If  true  we  are  declaring  an  exclusive  queue 
(restricted to this connection). Default value is false.

 amqp.Queue.DeclareDurable – If true we are declaring a durable queue (the queue 
will survive a server restart). Default value is true.

 amqp.Queue.DeclareAutoDelete – If  true we are declaring an “autodelete” queue 
(server will delete it when no longer in use). Default value is false.

Example creating an AMQP acquisition queue:

Properties prop = new Properties();
prop.setProperty("acquisition.className",
                 "org.objectweb.joram.mom.dest.amqp.AmqpAcquisition");
prop.setProperty("amqp.QueueName", "amqpQueue");
prop.setProperty("amqp.ConnectionUpdatePeriod", "1000");
prop.setProperty("amqp.Queue.DeclarePassive", "true");
queue = Queue.create(0, "queue", Queue.ACQUISITION_QUEUE, prop);

The code below describes how to add a bridge connection with AMQP servers.

AdminModule.connect(....);
AdminModule.addAMQPBridgeConnection(0, "amqp://localhost:5672/?name=serv1");
AdminModule.disconnect();

You can set a list of amqp url separate by a space: 

 - 81 -



Joram 5.8  User's Guide

"amqp://user:pass  @host1  :5672/?name=serv1  amqp://user:pass@host2:5678/?
name=serv2"

Using XML scripts

This description below is iso-functional to the code allowing the creation of the JMS distribution 
queue and JMS acquisition topic (see above).

<Queue name="bridgeQueue" serverId="0"
       className="org.objectweb.joram.mom.dest.DistributionQueue">
  <property name="amqp.QueueName" value="amqpQueue"/>
  <property name="distribution.className" 

value="org.objectweb.joram.mom.dest.amqp.AmqpDistribution"/>
  <freeWriter/>
  <jndi name="bridgeQueue"/>
</Queue>
 
<Topic name="bridgeTopic" serverId="0"
       className="org.objectweb.joram.mom.dest.AcquisitionTopic">
  <property name="amqp.QueueName" value="amqpQueue"/>
  <property name="acquisition.className" 

value="org.objectweb.joram.mom.dest.amqp.AmqpAcquisition"/>
    <freeReader/>
    <freeWriter/>
    <jndi name="bridgeTopic"/>
</Topic>
  
<AMQPBridgeConnection serverId="0" 

urls="amqp://user:pass@host1:5672/?name=serv1 amqp://host2:5672/?
name=serv2"/>

4.6.11. AMQP acquisition / distribution proxy

Introduction
The AMQP proxy allows a JORAM client application to communicate with an AMQP client through 
acquisition and distribution modules.

The  ProxyAMQP  acquisition  class  name  is  com.scalagent.jorammq.mom.dest.proxyamqp.  
ProxyAmqpAcquisition and  the  ProxyAMQP  distribution  class  name  is 
com.scalagent.jorammq.mom.dest.proxyamqp.ProxyAmqpDistribution. Both of these classes are 
located in the jorammq-mom-extensions-proxyamqp.jar bundle.

It  is  not  compulsory  to  indicate  destination  properties  descibes  in  the  following  (Setting  the
parameters). If none is set, the default fanout exchange is used to transmit messages both for  
acquisition module and distribution module.

 - 82 -

mailto:pass@host1


Joram 5.8  User's Guide

AMQPService
The ProxyAMQP destinations rely on a particular JORAM service which purpose is to maintain a 
valid connection with the AMQP destinations. This service must be declared in the a3servers.xml 
file, as any other JORAM service (see a3server.xml configuration below).

<?xml version="1.0"?>
<config>
  <property name="Transaction" value="fr.dyade.aaa.util.NTransaction" />

  <server id="0" name="s0" hostname="localhost">
    <service class="fr.dyade.aaa.agent.AdminProxy" args="7890"/>
    <service class="org.objectweb.joram.mom.proxies.ConnectionManager" 

args="root root"/>
    <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService" 

args="2560"/>
    <service class="fr.dyade.aaa.jndi2.server.JndiServer" args="16400"/>
    <service class="org.ow2.joram.mom.amqp.AMQPService" args="5672" />
  </server>
</config>

The argument of the AmqpService service is used to configure the port of the listen socket for the 
AMQP server. If none is provided, the default port is 5672 (IANA assignment for AMQP).

Setting the parameters
In addition to common acquisition parameters (4.6.2), the following properties could be used for 
configuring the acquisition destination: (all are optional)

 ProxyAmqp.Acquisition.DestinationName  – the name of  the amqp  destination 
which we want to connect to. Default value is “amq.fanout”.

 ProxyAmqp.Acquisition.ConnectionUpdatePeriod  –  the  minimal  period  in 
milliseconds between two requests to the AMQP service. Default value is 5000.

 ProxyAmqp.Acquisition.Routing – indicate the routing key used to bind the queue 
to direct exchanges and topic exchanges. Default value is “”.

 ProxyAmqp.Acquisition.Headers – indicate the headers values used to bind the 
queue to headers exchanges. Defalut value is null.

 - 83 -

Figure 28: Distribution to an AMQP client using a distribution queue
Figure 27: Distribution to an AMQP client using a distribution queue



Joram 5.8  User's Guide

 ProxyAmqp.Queue.DeclareExclusive – indicate if the acquisition queue is exclusive 
(restricted to this connection). Default value is false.

 ProxyAmqp.Queue.DeclareDurable – indicate if the acquisition queue is durable (the 
queue will survive a server restart). Default value is true.

 ProxyAmqp.Queue.DeclareAutodelete – indicate if  the acquisition queue is auto-
delete (server will delete it when no longer in use). Default value is false. 

Example creating a ProxyAMQP acquisition queue:

Properties prop = new Properties();

prop.setProperty(ProxyAmqpAcquisition.DESTINATION_NAME_PROP, "amq.direct");
prop.setProperty(ProxyAmqpAcquisition.ROUTING_PROP, "routing.jms");
prop.setProperty("acquisition.className", 
"com.scalagent.jorammq.mom.dest.proxyamqp.ProxyAmqpAcquisition");
    

Queue queue = Queue.create(0, Queue.ACQUISITION_QUEUE, prop);

Similarly to the acquisition destination, there are optional parameters which can be set in addition 
to common distribution parameters (4.6.3) for configuring the distribution destination.

 ProxyAmqp.Distribution.DestinationName – the name of the amqp destination 
which we want to conect to. Default value is “amq.fanout”.

 ProxyAmqp.Distribution.DestinationType – the  type  of  the  amqp  exchange 
which  we  want  to  connect  to.  Default  valut  is  “fanout”.  Possible  values  are  “direct”,  
“fanout”, “topic” and “headers”

 ProxyAmqp.Distribution.ConnectionUpdatePeriod – the  minimal  period  in 
milliseconds between two requests to the AMQP service. Default value is 5000. 

 ProxyAmqp.Distribution.Routing – indicate  the  routing  key  used  to  send 
messages to direct exchanges and topic exchanges. Default value is null.

 ProxyAmqp.Distribution.Headers – indicate  the  headers  values  used  to  send 
messages to headers exchanges. Defalut value is null.

 ProxyAmqp.Exchange.DeclareDurable –  indicate  if  the exchange is  durable  (the 
queue will survive a server restart). Default value is true.

 ProxyAmqp.Message.Immediate – indicate  if  the  message  must  be  delivered 
immediately (all routed queue must have active consumer). Default value is false.

 ProxyAmqp.Message.Mandatory – indicate if the message must be routed (at least 
one binding queue match); default value is true.

Example creating a ProxyAMQP distribution queue:

Properties prop = new Properties();

prop.setProperty(ProxyAmqpDistribution.DESTINATION_NAME_PROP, "Exchange");
prop.setProperty(ProxyAmqpDistribution.DESTINATION_TYPE_PROP, "direct");
prop.setProperty(ProxyAmqpDistribution.ROUTING_PROP, "routing.amqp");
prop.setProperty("distribution.className", 
"com.scalagent.jorammq.mom.dest.proxyamqp.ProxyAmqpDistribution");
    

Queue exchange = Queue.create(0, Queue.DISTRIBUTION_QUEUE, prop);

 - 84 -



Joram 5.8  User's Guide

Running the sample
The sample show how to use ProxyAMQP acquisition and distribution queues.

Running the demo: in the jorammq-samples/src/main/java

 Compile the samples:
ant clean compile

 Start the configuration:

ant amqp_server

 Run  the  administration  code.  This  target  creates,  configures  and  registers a 
ConnectionFactory, an 'anonymous' user, an acquisition queue and a distribution queue: 

ant proxyamqp_admin

 Server is ready, use following target to send and receive messages:

o for sending messages to distribution queue: 

ant proxyamqp_jms_producer

o for receiving messages from distribution queue: 

ant proxyamqp_amqp_receiver

o for sending messages  to acquisition queue: 

ant proxyamqp_amqp_producer

o for receiving messages from acquisition queue: 

ant proxyamqp_jms_receiver

4.6.12. Acquisition / distribution with PHP scripts

Introduction
It is possible to exchange messages with Joram application using PHP scripts. Two messaging 
protocols are available:

 AMQP: using the AMQP proxy
 STOMP: using the JASP tool (Joram Access to STOMP Protocol) 

AMQP protocol
Required libraries

To send amqp messages with PHP script, you must install the pecl extension to AMQP, available 
to download at this adress :http://pecl.php.net/package/amqp. If not already yet, you also need to 
download rabbitmq-c client library. You can find further information about installing these libraries 
on the PHP manual: http://www.php.net/manual/en/amqp.installation.php.

At the end of installation, check in the configuration file  php.ini  if  AMQP is in the extension list: 
extension = amqp.so

Libraries needed by the proxy AMQP are same as indicated previously (see  4.6.5)  more  the 
proxyamqp bundle.

Creating the destination

Destinations used are those of proxyamqp, no additional parameters are needded. AMQP queues 
and exchanges can be created by Joram application or PHP scripts.

Running the sample

The sample show how to send messages with PHP and receive them with JMS ans vice versa.

Running the demo: in jorammq-samples/src/main/java

 - 85 -

http://www.php.net/manual/en/amqp.installation.php
http://pecl.php.net/package/amqp


Joram 5.8  User's Guide

 Compile the samples:
ant clean compile

 Start the configuration: 
ant amqp_server

 Run  the  administration  code.  This  target  creates,  configures  and  registers a 
ConnectionFactory, an 'anonymous' user, an acquisition queue and a distribution queue: 

ant proxyamqp_admin
 Server is ready, use following target to send and receive messages:

o  for sending messages from PHP: 
ant php.amqp_sender

o for receiving messages from PHP: 
ant proxyamqp_jms_receiver

o for sending messages froml Joram: 
ant proxyamqp_jms_producer

o for receiving messages from Joram:
ant php.amqp_receiver

STOMP protocol
Required libraries

To send STOMP messages with PHP scripts,  you must  install  the pecl  extension to STOMP 
available to download at this adress: http://pecl.php.net/package/stomp. At the end of installation, 
chack in the configuration fil php.ini if STOMP is in the extension list: extension = stomp.so

To send and receive STOMP messages with a Joram application, you need the JASP bundle.

Creating the destination

Destinations used to send/receive STOMP messages are default Joram queues. To exchange 
messages with stomp protocol, a socket on port 61613 is used and the destination is indicated by 
name or AgentId (“queue” or '”#0.0.1026” in the sample).

Running the sample

Running the demo: in joram/samples/src/joram

 Compile the samples: 
ant clean compile

 Start the configuration: 
ant stomp_server

 Run  the  administration  code.  This  target  greates,  configures  and  registers  a 
TcpConnectionFactory,  an 'anonymous' user, a queue and a topic: 
ant classic_admin

 Server is ready, use following target to send and receive messages:
o for sending messages from PHP:

ant php.stomp_sender
o for receiving messages from PHP: 

ant jms.stomp_receiver
o for sending messages froml Joram: 

ant jms.stomp_sender
o for receiving messages from Joram:

ant php.stomp_receiver

 - 86 -

http://pecl.php.net/package/stomp


Joram 5.8  User's Guide

4.7. FTPQueue
4.7.1. Introduction

Ftp queue is special destinations usable to transfer file by FTP. It wraps the FTP transfer of a file  
through a message exchange. The sender starts the transfer by sending a JMS message, the 
receiver is notified of the transfer completion by a JMS message.

Figure 29: File transfert through a FTP Queue

The sender send the URL information file to the destination FTPQueue. This destination gets the 
file, stores it in the local directory and generates a message who contain the URI localisation of the 
transferred file (Figure 29 above).

The Consumer receive a message  who contain the URI localisation of the file (Figure 30 below).

 - 87 -

FTP Queue

URI

Client

Send file
(URL)

Site 1

Site 2

FTP

URL

Figure 30: File acquisition from a FTP Queue

FTP Queue

URI

Client

URI

receive

URI

Site 1



Joram 5.8  User's Guide

4.7.2. Managing a FTPQueue

Setting the FTPQueue parameters

The options are set using properties at FTPQueue creation time.

 user: the user name for the FTP.
 pass: the user password for FTP.
 path:  the  local  directory  to  store  the  file  transferred.  Default  is  the  running  directory 

(path=null).
 ftpImplName: The implementation of the FTP transfer, we provide two implementations:

o the default one based on JDK URL:
com.scalagent.joram.mom.dest.ftp.TransferImplRef

o the second is based on JFTP:
com.scalagent.joram.mom.dest.ftp.TransferImplJftp

The user and pass options are optional, because you can set this information in the sender URL 
request, like this: 

msg.setStringProperty("url", "ftp://user:pass@host/file;type=i");

Creating the FTPQueue
A FTPQueue is created by using the Joram administration API, calling the Queue creation method 
create from the class org.objectweb.joram.client.jms.Queue.

prop = new Properties();
prop.setProperty("user", "my_FTP_name"); // optional
prop.setProperty("pass", "my_FTP_pass"); // optional
prop.setProperty("path", "the_local_path"); // optional
Queue queue = Queue.create(0, "ftpQueue", 
"com.scalagent.joram.mom.dest.ftp.FtpQueue", prop);

This method allows to specify the location server, an internal name, the implementation class and 
the configuration properties for the new FTPQueue.

4.7.3. Using a FTPQueue destination

Sending a message
Specify the fileName and user / password if the administrator don't set.

TextMessage msg = sess.createTextMessage();
msg.setText("transfer " + fileName);
if (user != null && pass != null)
  msg.setStringProperty("url", "ftp://user:pass@host/fileName;type=i");
else
  msg.setStringProperty("url", "ftp://host/fileName;type=i");
msg.setLongProperty("crc", new File(fileName).length());
msg.setBooleanProperty("ack", false);

When the FTPQueue destination receive the message, it run a task to get the file specify by the 
URL and store this file in a local directory. The sending message is drop and a new message 
containing the URI file location is generate and store in the FTPQueue.

4.7.4. Running the sample

The sample shows how to get the “welcome.msg” file  from  ftp.kernel.org.

 - 88 -

ftp://ftp.kernel.org/


Joram 5.8  User's Guide

Running the demo: in the joram/samples/src/joram directory.

 Compile the samples:

ant clean compile

 Start the configuration and run the server, this sample needs the joram-mom-extensions-
ftp.jar bundle so we use the extended_server ant target:

ant reset extended_server

 Run the administration code: this target  creates a ConnectionFactory, an 'anonymous' 
user and a FTPQueue with user=anonymous and pass=anonymous.
ant ftp_admin

 Run  the  producer:  this  target  send  a  message  to  the  FTPQueue  with  this  URL 
“ftp://ftp.kernel.org/welcome.msg”.
ant ftp_producer

 Run the receiver: this target connects to the FTPQueue and consume the message and 
print the file URL, crc and ack..
ant ftp_receiver

 - 89 -



Joram 5.8  User's Guide

5. Using a collocated 
server

5.1. Introduction
A collocated Joram server is a standard Joram server running inside the same process (JVM) as 
one or more Joram clients. If your Java application needs to start such an embedded server you 
must configure this server, start it inside your application and connect your JMS clients to it.

A collocated Joram server can be part of a distributed configuration of multiples collocated or not 
servers, it can eventually be reach by other client through the TCP protocol.

5.2. Configure a collocated server
A collocated server is configured exactly like a non-collocated server, i.e. you don't need to declare 
any extra services to use a collocated server. 

A typical configuration would be: 

<?xml version="1.0"?>
<config>
  <property name=”Transaction” value=”fr.dyade.aaa.util.NullTransaction”/>
  <server id="0" name="S0" hostname="localhost">
    <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
             args=”root root”/>
    <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
             args="16010"/>
  </server>
</config>

Notice that: 

• in the above configuration, the collocated server can also be accessed from remote clients 
through the TCP protocol. If you don't need the TCP access point you can remove the 
service TcpProxyService. 

• you can  include a  collocated server  inside a  distributed Joram platform:  a  collocated 
server is a server just like any other. 

5.3. Start a collocated server
A collocated server must be pro grammatically started inside the same process as your Java client 
application. 

The following code starts the server #0: 

 - 90 -



Joram 5.8  User's Guide

fr.dyade.aaa.agent.AgentServer.init((short) 0, "./s0", null);
fr.dyade.aaa.agent.AgentServer.start();

The method init initializes the server with three parameters: 

1. its identifier: 0 

2. the directory where its persistent state is stored: ./s0 

3. the monolog logger factory: leave it to null if you want the server to configure it itself. 

The method start actually starts the server. 

You  can  also  initialize  and  start  a  server  by calling  the  method  AgentServer.main which 
aggregates the initialization and the start into a single operation: 

String args[] = {"0", "./s0"};
fr.dyade.aaa.agent.AgentServer.main(args);

5.4. Connect to the collocated server
5.4.1. Create local connections

The class LocalConnectionFactory enables you to create local connections to the collocated 
server:

import org.objectweb.joram.client.jms.local.*;

ConnectionFactory cnxFact = LocalConnectionFactory.create();

In the same package you can find several  factories that you can use to create more specific 
connections: <XA><Topic|Queue>LocalConnectionFactory.

5.4.2. Connect the administration module

The class  AdminModule provides a method  collocatedConnect that must be called before 
doing administration operations through the collocated server. 

import org.objectweb.joram.client.jms.admin.*;

AdminModule.collocatedConnect(“root”, “root”);

5.5. Stop the collocated server
If you need to stop the collocated server without stopping the entire embedding Java application 
you must call the method stop provided by the class AgentServer: 

fr.dyade.aaa.agent.AgentServer.stop();

You can then restart the server with the following code: 

fr.dyade.aaa.agent.AgentServer.start();

 - 91 -



Joram 5.8  User's Guide

5.6. Start the embedding Java application
You must ensure that the classpath contains: 

• the jar files expected by a Joram server: joram-mom-core.jar, Jcup.jar, etc.

• the directory where the a3servers.xml configuration file is located.

 - 92 -



Joram 5.8  User's Guide

6. Working with sources 
distribution

6.1. Getting Joram sources

6.1.1. Getting a packaged version of Joram

The packages are downloadable from the following location: 

 http://forge.ow2.org/project/showfiles.php?group_id=4  .

For release x.y.z, the following tar file is provided:

 joram-release-x.y.z-src.zip, including the client and server sources.

A  package  is  expanded  by  UNIX  users  with  the  gunzip and  tar commands;  Windows 
developers can use the Winzip utility.

6.1.2. Getting Joram from SVN

JORAM SVN page is located at:  http://forge.ow2.org/plugins/scmsvn/index.php?group_id=4. The 
module to extract is joram. A snapshot is regularly generated by bamboo continuous integration 
tool and can be downloaded at:

http://bamboo.ow2.org/artifact/JORAM-ANT/JOB1/build-latest/Releases/release/target

6.1.3. Directory structure and description

Joram sources distribution
The distribution is expanded in a joram-x.y.z/ directory. It includes the following directories:

 a3/

 assembly/

 conf/

 jndi/
o client/
o server/
o shared/

 joram/
o client/
o jca/
o mom/
o security/
o shared/

 - 93 -

http://bamboo.ow2.org/artifact/JORAM-ANT/JOB1/build-latest/Releases/release/target
http://forge.ow2.org/plugins/scmsvn/index.php?group_id=4
http://forge.ow2.org/project/showfiles.php?group_id=4


Joram 5.8  User's Guide

o tools/

 licenses/

 samples/
o bin/…
o config/
o src/

 joram/…

a3/ directory
Contains the sources of the agent platform, foundation of Joram server.

conf/ directory
Contains the configuration used to launch Joram on the OSGi platform Felix.

jndi/ directory
Contains the sources of Joram's JNDI (server, client and shared classes).

joram/ directory
Contains the sources of Joram server (mom), client and shared classes. You can also find here 
the JCA connector, jaas security and a tool to access Joram with the STOMP protocol.

licenses/ directory
Contains the LGPL header displayed on top of each source file, as well as the licences of the 
external softwares provided in the distribution.

samples/ directory
Contains the Joram samples sources, configuration files, UNIX and Windows scripts for launching 
JORAM servers and clients (how to use them is explained in chapter 2Using samples).

6.2. Compiling and shipping Joram
JORAM distribution is ready for compiling with Apache  Maven tool. Maven can be downloaded 
from http://maven.apache.org/. Documentation is available at the same location.

6.2.1. Compiling Joram

The best way to build Joram is:

• Open a console and go to Joram main directory

• mvn clean install (see result below)

$ mvn clean install
[INFO] Scanning for projects...
[INFO] ------------------------------------------------------------------------
[INFO] Reactor Build Order:
[INFO]
[INFO] JORAM
[INFO] JORAM :: a3

 - 94 -

http://maven.apache.org/
http://felix.apache.org/site/index.html


Joram 5.8  User's Guide

[INFO] JORAM :: a3 :: common
[INFO] JORAM :: a3 :: rt
[INFO] JORAM :: a3 :: osgi
[INFO] JORAM :: jndi
[INFO] JORAM :: jndi :: shared
[INFO] JORAM :: jndi :: server
[INFO] JORAM :: jndi :: client
[INFO] JORAM :: joram
[INFO] JORAM :: joram :: shared
[INFO] JORAM :: joram :: mom
[INFO] JORAM :: joram :: mom :: core
[INFO] JORAM :: joram :: client
[INFO] JORAM :: joram :: client :: jms
[INFO] JORAM :: joram :: client :: JCA 1.5 connector
[INFO] JORAM :: joram :: mom :: extensions
[INFO] JORAM :: joram :: mom :: extensions :: collector
[INFO] JORAM :: joram :: mom :: extensions :: jmsbridge
[INFO] JORAM :: joram :: mom :: extensions :: mail
[INFO] JORAM :: joram :: mom :: extensions :: scheduler
[INFO] JORAM :: joram :: mom :: extensions :: ftp
[INFO] JORAM :: joram :: security
[INFO] JORAM :: joram :: tools
[INFO] JORAM :: joram :: tools :: jasp
[INFO] JORAM :: licenses
[INFO] JORAM :: conf
[INFO] JORAM :: assembly
[INFO] JORAM :: joram :: samples
[INFO]

…

…

[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary:
[INFO]
[INFO] JORAM ............................................. SUCCESS [0.141s]
[INFO] JORAM :: a3 ....................................... SUCCESS [0.015s]
[INFO] JORAM :: a3 :: common ............................. SUCCESS [1.797s]
[INFO] JORAM :: a3 :: rt ................................. SUCCESS [2.672s]
[INFO] JORAM :: a3 :: osgi ............................... SUCCESS [0.797s]
[INFO] JORAM :: jndi ..................................... SUCCESS [0.016s]
[INFO] JORAM :: jndi :: shared ........................... SUCCESS [0.765s]
[INFO] JORAM :: jndi :: server ........................... SUCCESS [1.422s]
[INFO] JORAM :: jndi :: client ........................... SUCCESS [0.860s]
[INFO] JORAM :: joram .................................... SUCCESS [0.000s]
[INFO] JORAM :: joram :: shared .......................... SUCCESS [1.859s]
[INFO] JORAM :: joram :: mom ............................. SUCCESS [0.000s]
[INFO] JORAM :: joram :: mom :: core ..................... SUCCESS [3.016s]
[INFO] JORAM :: joram :: client .......................... SUCCESS [0.000s]

 - 95 -



Joram 5.8  User's Guide

[INFO] JORAM :: joram :: client :: jms ................... SUCCESS [3.031s]
[INFO] JORAM :: joram :: client :: JCA 1.5 connector ..... SUCCESS [1.313s]
[INFO] JORAM :: joram :: mom :: extensions ............... SUCCESS [0.015s]
[INFO] JORAM :: joram :: mom :: extensions :: collector .. SUCCESS [0.688s]
[INFO] JORAM :: joram :: mom :: extensions :: jmsbridge .. SUCCESS [1.172s]
[INFO] JORAM :: joram :: mom :: extensions :: mail ....... SUCCESS [0.906s]
[INFO] JORAM :: joram :: mom :: extensions :: scheduler .. SUCCESS [0.984s]
[INFO] JORAM :: joram :: mom :: extensions :: ftp ........ SUCCESS [1.422s]
[INFO] JORAM :: joram :: security ........................ SUCCESS [0.016s]
[INFO] JORAM :: joram :: tools ........................... SUCCESS [0.015s]
[INFO] JORAM :: joram :: tools :: jasp ................... SUCCESS [1.000s]
[INFO] JORAM :: licenses ................................. SUCCESS [0.219s]
[INFO] JORAM :: conf ..................................... SUCCESS [0.047s]
[INFO] JORAM :: assembly ................................. SUCCESS [8.500s]
[INFO] JORAM :: joram :: samples ......................... SUCCESS [1.797s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 34.969s
[INFO] Finished at: Mon Nov 08 14:15:22 CET 2010
[INFO] Final Memory: 69M/165M
[INFO] ------------------------------------------------------------------------

This creates a target/ directory for each sub-module where you can find compiled classes and 
the produced artifact.

This also creates a ship/ directory where you can find a Joram distribution similar to what you 
can obtain by downloading a binary version on Joram's website.

You can also compile only one sub-module using the previous method in the right directory.

For example, compiling jndi client:

$ cd jndi
$ cd client
$ mvn clean install
[INFO] Scanning for projects...
[INFO]
[INFO] ------------------------------------------------------------------------
[INFO] Building JORAM :: jndi :: client 5.4.1.54-SNAPSHOT
[INFO] ------------------------------------------------------------------------
[INFO]

…

…

[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 2.187s
[INFO] Finished at: Mon Nov 08 14:22:04 CET 2010
[INFO] Final Memory: 8M/20M

 - 96 -



Joram 5.8  User's Guide

[INFO] ------------------------------------------------------------------------

6.2.2. Generating the javadoc

Joram uses a maven profile to easily build the javadoc:

mvn install -P doc

This creates the target/apidocs/ folder containing the whole javadoc.

6.2.3. Generating a distribution

There is another maven profile available to create a complete distribution of Joram:

mvn install -P release

The produced files are copied in the release/target/ directory, they are equivalent to the ones 
available for download on Joram's web server.

Remark:  This  command  only  works  when  the  Joram  folder  comes  from  the  SVN  as  the 
release/ directory is not included in the Joram sources distribution.

6.2.4. Cleaning

To remove the generated classes and libraries:

mvn clean

This removes all target/ directories present in the project and the ship/ directory containing an 
expanded Joram distribution.

 - 97 -


	1. Installation
	1.1. Requirements
	Hardware requirements
	Software requirements

	1.2. Getting Joram binary distribution
	1.3. Running a Joram server

	2. Using samples
	2.1. Compiling JORAM samples
	2.2. Running Joram samples
	2.2.1. The classic sample
	Running the demo with Ant:

	2.2.2. The chat sample
	2.2.3. The distributed sample
	2.2.4. The dotcom demo
	2.2.5. The perfs samples

	2.3. Using scripts
	2.3.1. First step
	2.3.2. Launching a JORAM platform
	2.3.3. Launching a JORAM client
	2.3.4. Running the classic samples using script files

	2.4. Administration through XML scripts
	2.4.1. Classic sample administration using XML script


	3. Administration Guide
	3.1. Introduction
	3.2. Administration concepts
	3.2.1. Overall view
	3.2.2. User
	3.2.3. Destinations
	Dead Message Queue (DMQ)


	3.3. Platform configuration
	Server services
	3.3.1. Centralized configuration
	Running a platform
	Configuring a persistent server

	3.3.2. Distributed configuration
	Running a platform

	3.3.3. Stopping a server
	3.3.4. Dynamic configuration
	Adding a new server
	Server definition
	Server start

	Removing a server
	Server stop
	Server removal


	3.3.5. Logging configuration

	3.4. High level administration
	3.4.1. Administration “session”
	TCP administrator connection
	Disconnecting the administrator

	3.4.2. Managing a user
	User identity
	Creating a user
	Updating a user identity
	Deleting a user

	3.4.3. User connectivity
	Creating a ConnectionFactory instance for the TCP protocol
	Setting the factory parameters

	3.4.4. Managing a destination
	Creating a destination: Queue or Topic
	Creating a destination with a specified name
	Setting Properties
	Setting free access on a destination
	Unsetting free access on a destination
	Setting a right for a user on a destination
	Unsetting a right for a user on a destination
	Getting the access rights
	Handling the DMQ setting (see chapter Erreur : source de la référence non trouvée)
	Deleting a destination

	3.4.5. Managing a Queue
	Getting the state
	Handling the queue threshold
	Handling the queue limit

	3.4.6. Managing a Topic
	Getting the state

	3.4.7. Managing the platform
	Getting the servers of the platform
	Handling default DMQ settings
	Getting the destinations
	Getting the users


	3.5. Message interceptors
	3.5.1. Managing client interceptors
	Writing an interceptor
	Configuring a ConnectionFactory with interceptors

	3.5.2. Managing server interceptors
	Writing an interceptor
	Configuring interceptors on destination
	Initial configuration
	Administration changes

	Configuring interceptors on user's connections
	Initial configuration
	Administration changes

	Running a test


	3.6. JMX administration of Joram
	3.7. Scripts XML
	3.7.1. Administrator connection
	3.7.2. Naming
	3.7.3. ConnectionFactory
	Example:

	3.7.4. User
	property

	3.7.5. Destination
	Queue
	Topic
	Destination security
	Naming
	Properties

	3.7.6. Example

	3.8. OSGi Commands
	3.8.1. A3 commands
	3.8.2. MOM commands
	3.8.3. JNDI commands


	4. Specialized destinations
	4.1. Dead Message Queue
	4.1.1. Introduction
	Creating and setting a dead message queue
	Scenarios
	Watching a dead message queue

	4.1.2. Managing a Dead Message Queue
	Creating a dead message queue
	Setting a dead message queue
	Setting a threshold value

	4.1.3. Running the “Dead Message Queue” sample

	4.2. Hierarchical Topic
	4.2.1. Hierarchical topic
	Introduction
	Example
	Creation
	Distributed deployment


	4.2.2. Managing a Hierarchical Topic
	Creating a hierarchical topic
	Modifying a hierarchy
	Getting info about cluster or hierarchy

	4.2.3. Running the topic tree sample

	4.3. Clustered Topic
	4.3.1. Introduction
	Added value
	Creation and configuration

	4.3.2. Managing a clustered topic
	Creating a cluster
	Modifying a cluster
	Using clustered JNDI's object
	Setting the access rights

	4.3.3. Running the “Clustered Topic” Sample
	Running the demo

	4.3.4. Using XML Scripts
	ClusterConnectionFactory
	ClusterTopic


	4.4. Clustered Queue
	4.4.1. Introduction
	Basic mechanism
	Creation and configuration

	4.4.2. Managing a clustered queue
	Setting the clustered queue parameters
	Creating the clustered queues
	Using clustered JNDI's object
	Setting the access rights

	4.4.3. Running the “Clustered Queue” Sample
	Running the demo:

	4.4.4. Using XML Scripts
	ClusterConnectionFactory
	ClusterQueue


	4.5. SchedulerQueue
	4.5.1. Introduction
	4.5.2. Using a schedulerQueue
	Create a scheduler queue
	Schedule a message
	Cancel a scheduled message


	4.6. Acquisition and distribution
	4.6.1. Introduction
	4.6.2. Configuring an acquisition destination
	4.6.3. Configuring a distribution destination
	4.6.4. Setting properties
	4.6.5. Required libraries
	4.6.6. Mail acquisition / distribution
	Introduction
	Mail acquisition properties
	Mail distribution properties
	Running the sample

	4.6.7. URL acquisition (collector)
	Introduction
	Setting the configuration parameters
	Creating the destination
	Running the sample

	4.6.8. JMX acquisition (monitoring)
	Introduction
	Setting the parameters
	Creating a monitoring destination
	Running the sample

	4.6.9. JMS acquisition / distribution bridge
	Introduction
	Acknowledgment policy
	Message selection
	Connection failure handling
	Cautions with ObjectMessage messages
	Required libraries

	JMS connection service
	JMS bridge properties
	Administration
	Using administration API
	Using XML scripts

	Steps
	Running the sample

	4.6.10. AMQP acquisition / distribution bridge
	Introduction
	AMQP connection service
	Administration
	Using administration API
	Using XML scripts


	4.6.11. AMQP acquisition / distribution proxy
	Introduction
	AMQPService
	Setting the parameters
	Running the sample

	4.6.12. Acquisition / distribution with PHP scripts
	Introduction
	AMQP protocol
	Required libraries
	Creating the destination
	Running the sample

	STOMP protocol
	Required libraries
	Creating the destination
	Running the sample



	4.7. FTPQueue
	4.7.1. Introduction
	4.7.2. Managing a FTPQueue
	Creating the FTPQueue

	4.7.3. Using a FTPQueue destination
	Sending a message

	4.7.4. Running the sample


	5. Using a collocated server
	5.1. Introduction
	5.2. Configure a collocated server
	5.3. Start a collocated server
	5.4. Connect to the collocated server
	5.4.1. Create local connections
	5.4.2. Connect the administration module

	5.5. Stop the collocated server
	5.6. Start the embedding Java application

	6. Working with sources distribution
	6.1. Getting Joram sources
	6.1.1. Getting a packaged version of Joram
	6.1.2. Getting Joram from SVN
	6.1.3. Directory structure and description
	Joram sources distribution
	a3/ directory
	conf/ directory
	jndi/ directory
	joram/ directory
	licenses/ directory
	samples/ directory


	6.2. Compiling and shipping Joram
	6.2.1. Compiling Joram
	6.2.2. Generating the javadoc
	6.2.3. Generating a distribution
	6.2.4. Cleaning



