
 1

HA Joram

1 Overview
This specification describes how to build a Joram server providing High Availability (HA) by
replicating it on a cluster. Two replication modes are specified: one for a remote client connected to
the HA Joram server and one for a collocated client.

1.1 Remote client mode

In this mode the Joram client is not replicated. Only the Joram server is replicated. There are two
possible architectures depending on whether the remote client is directly connected to the replicated
Joram server or indirectly through a standard Joram server.

1.1.1 Direct connection
The client is directly connected to the replicated Joram server. The HA Joram client layer manages the
JMS connection with the Joram server replicas.

Cluster

Client
host

HA Joram

Client
host

Cluster

Client

HA Joram

Client

Joram server
replicas

HA Joram client

JMS connection

The JMS proxy of the client is deployed on the replicated server. The destinations used by the client
may be deployed on the replicated server or on another server (replicated or not).

Cluster

Client
host

HA Joram

Client

Joram server
replicas

HA Joram client

JMS connection
Host X

Joram server

1.1.2 Indirect connection
A client that needs store and forward facilities must be collocated with a local standard Joram server.
The user proxy is deployed on the collocated Joram server. But the destinations can be deployed on a
remote HA server. In this case the client is not directly connected with the HA server but indirectly
through a standard Joram server.

 2

 Client
host

Joram

Client

Joram client

JMS connection
Cluster

Joram server Joram server
replicas

1.2 Collocated client mode

This mode enables to replicate a client if its execution model is “event-reaction”, i.e. it cyclically
reacts to events (JMS messages) coming from some destinations (in a pushed or in a pulled way).

Only one replicated client is allowed to work at the same time: the one collocated with the active
Joram replica. There is not any HA client layer because the clients are connected to their local server
so the reconnection mechanism is useless.

 Cluster Host 2 Host 1

HA Joram

Client
Replicas

HA Joram

Client replica 1

Joram server
replica 1

Joram client

Client replica 2

Joram server
replica 2

Joram client

Use constraints
The quality of service (QOS) provided by this mechanism is either “Duplicate-okay” or “At-most-
once” depending on whether the client reacts before or after acknowledging the received messages.
For an “Exactly-once” QOS the client must use XA transactions.

Moreover when subscribing to topics, durable subscriptions should be used in order not to lose any
messages when the active replica fails.

2 Replication scheme
The replication strategy is master ownership and eager (synchronous) propagation.

2.1 Master ownership

The master-slave has been chosen for two reasons:
• when a client is remote (not replicated) it cannot use group communication (multicast) with

the HA Joram but a point-to-point protocol like TCP. So the only way to ensure the
consistency of the replicas is to designate one of them to be the front-end responsible for the
connection with the client. The others must be updated by this replica.

• when the client is collocated (replicated), only one replica can be active at once: the master.

 3

2.2 Eager propagation

The eager propagation is necessary to ensure the consistency of the replicated servers. In particular the
messages sent by the client must not be lost. In order to prevent those message losses, the
communication between the master and slaves must be synchronous.

Notice that some “asynchronous propagation” can be implemented in order to improve the
performances. This propagation implies that the client buffers the messages it has sent in order to re-
send them in case of failure. But it is nevertheless necessary to regularly synchronize the replica
updates in order to enable the client to reset its buffer. So it is more a loose synchronous
communication than a real asynchronous one.

Moreover if a message is delivered to any replica, it must also be delivered to every other replica
(atomic delivery requirement: all-or-none).

3 Architecture
The HA Joram is built on top of the HA ScalAgent platform that implements a master ownership with
eager propagation strategy. A HA server is actually a group of servers, one of which is the master
server that coordinates the other slave servers. An external server that communicates with the HA
server is actually connected to the master server.

Each replicated Joram server executes the same code as a standard Joram server except for the
communication with the clients. Two specific modules are defined: one for the HA connections (with
remote clients) and the other for the collocated connections (with collocated clients).

On the client side only the remote clients need to be extended with a HA Joram client module. This
module is responsible for seamlessly reconnecting to the HA server when the connection fails, i.e. to
the same replica in case of a connection failure or to the new master replica if the current one failed.

The collocated clients use the standard Joram client module. If the server replica is the master then the
connection is active enabling the client to use the HA Joram server. If the server replica is a slave then
the connection opening is blocked until the replica becomes the master.

 4

Cluster Host 2 External Host Cluster Host 1

ScalAgent server

Standard Joram server Standard Joram server Standard Joram server

Collocated client application Collocated client application External client application

HA
connection

ScalAgent server
replica 1 (master)

ScalAgent server
replica 2 (slave)

Standard
Joram
client

HA
Joram
client

Standard Joram client Standard Joram client

Collocated
connection

(active)

Collocated
connection
(passive)

Agent server replication channel

HA Agent server communication Standard Joram connection

Collocated Joram connection

HA Joram connection

4 HA ScalAgent platform
4.1 Architecture

A HA server is a group of servers replicated through an active duplication mechanism. All the servers
are active, processing the same notifications in the same order. As a consequence their state are
identical. The duplication coordination is ensured by a master replica. This coordination needs some
specific communication properties such as reliable (synchronous) atomic FIFO multicast, failure
detection and coordinator (master) election. JGroups (http://www.jgroups.org) is a reliable group
communication toolkit written entirely in Java that provides these properties.

A HA server can communicate with other agent servers. Those servers are called “external servers”.
An external server actually communicates with the master replica, the only one which networks
(communication layer) are activated. The slave replicas are not directly accessible by an external
server. Notice that an external server can also be an HA server.

A HA server can also receive notifications from a thread collocated with the master replica.

The following figure presents the architecture of the HA platform. Three servers are displayed. The
first one is a standard server. Its two main components are the Engine that distributes the notifications
to the local agents and the Networks in charge of the communication with other servers. The two other
servers are two replicas from the same HA server. One is the master and the other a slave. They both
own an additional component called HAChannel that ensures the active duplication. The Networks are
only active on the master replica.

http://www.jgroups.org/

 5

Cluster Host 2

Replicated server (slave)

External Host

Standard server

Cluster Host 1

Replicated server (master)

Engine

Networks

HAChannel
(master)

HAChannel
(slave)

Engine

Networks

Engine

Networks

Group communication

HA Agent server communication

Collocated thread

Notification sending

4.2 Communication with external servers

4.2.1 Receive
The network of the external server finds the address of the master server through its configuration file
(a3servers.xml). An external server always communicates with the master server (slave servers are not
directly accessible). So the master HA channel is the unique entry point for the external notifications
which are hence serialized. The master channel multicasts the notifications to all the slave servers. As
the multicast communication is FIFO, every slave channel consumes the notifications in the same
order as the master. The consistency all the replicated servers also implies that the communication is
reliable and atomic (a message will be received by all receivers, or none). Moreover the multicast is
synchronous so the master server network can acknowledge the notification reception as soon as the
notification has been broadcasted.

External server Slave server replica Master server replica

HA Channel
(master)

HA Channel
(slave)

Network

msg

Network

ack

ack
multicast

This communication protocol is
simplified. It is actually more
complex (JGroups).

post(msg)

ack(msg)

Notice that the master can decide to acknowledge the message before having received all the replies.
JGroups allows to wait for the majority of all receivers to respond (mode GET_MAJORITY in
MessageDispatcher).

 6

4.2.2 Send
A HA server can send notifications to an external server. As each server replica reacts to the same
notifications in the same order, each sends the same notifications in the same order. But only the
master channel sends the notification to the external server (through its network). The slaves wait for
the acknowledge in order to destroy the message. This acknowledge is received by the master channel
that multicasts it to the slaves.

 External server Slave server replica Master server replica

HA Channel
(master)

HA Channel
(slave)

Network

msg i

Network

ack i

Engine Engine

msg i
msg i

msg i

ack i
ack i

Notice that the acknowledge propagation could be loosened to an asynchronous broadcast (without
reliability nor ordering). If a replica does not receive the acknowledge and if it becomes the master,
then it will reemit the message to the external server. But as the message has already been received by
the external server, it will be discarded.

4.3 Communication with collocated threads

4.3.1 Receive
A collocated thread can send a notification to an agent, by calling the method directSendTo of the
Channel. The HA channel multicasts the message if it is the master or drops it if it is a slave.

 Slave server replica Master server replica

HA Channel
(master)

HA Channel
(slave)

Collocated
thread

msg i

Engine Engine

msg i

directSendTo(msg i)

msg i

Collocated
thread

directSendTo(msg j)

dropped

4.3.2 Send
A replicated server can send messages to a collocated thread through a message queue (not a JMS
queue, just a Java object that enables two threads to communicate).

Notice that if a collocated thread expects a reply from such a queue it will receive the reply whether
the server is master or not as all the servers (master and slaves) handle the same notifications and
execute the same reactions in the same order. So it is up to the collocated thread to change the
treatment depending on the replica status master/slave.

 7

4.4 Internal communication (Engine)

The HA channel pushes the messages in the local engine. All the replica engines must consume the
messages in the same order. To ensure this, the engine owns two queues: the local and the external
queues. The local queue is where the notifications from the local agents are posted. The external queue
is where the external notifications (from the HA channel) are posted. The engine first gets the
messages from the local queue. If it is empty, it consumes one message from the external queue and
make the recipient local agent react. This agent may post notifications into the local queue. In this case
the engine consumes those notifications, making the local agents react. When the local queue is empty,
it consumes one notification from the external queue etc.

Notice that this mechanism implies that the local agents don’t indefinitely send notifications to each
other. The notifications from the external queue would never be consumed.

 Local
queue

External
queue

Agent

React(m1)

pop

Engine

Push(m3)

Push(m4)

pop

pop

React(m3)

React(m4)

pop

React(m2)

HA Channel

Push(m1, m2)

4.5 Failure and master election

The multicast communication layer (JGroups) is responsible for the failure detection (based on time-
out) and the master election. All the replicas belong to a group. When a replica fails, a new view of the
group is sent to each replica. In particular, this view indicates the replica that is the new master (group
coordinator). The atomicity of the multicast ensures that the remaining replicas are consistent.

4.6 Replica configuration

 8

4.6.1 Services
The services are only started on the master replica (not on the slaves). When a slave replica becomes
the master, it starts its services.

A service is specified by a Java class that defines a method called init with one boolean parameter
firstTime indicating if the service is started for the first time or not. When the first master replica starts
the service, the boolean firstTime is true. When a slave replica becomes master and starts, the boolean
firstTime is false.

Some services may deploy agents the first time they are started. If the first master replica fails during
the initialization it is necessary to stop all the replicas and start again in order to ensure that all the
agents have been deployed. Moreover the agents deployed by this service must be instantiated with a
reserved identifier in order not to interfere with the identifiers generated by the replicas.

4.6.2 Networks
The declared networks must be the same for all the replicas. However, each network replica may have
a different port value.

4.6.3 Configuration descriptor
One new element is added in the configuration DTD (a3config.dtd): cluster. The element cluster
defines a replicated server. It owns two attributes: the identifier and the name of the HA server (seen
by the other servers).

Each replica is defined as a standard server except that the server identifier and name are defined at the
cluster level. The identifier defined at the server level identifies the replica inside the cluster (two
clusters can share the same replica identifiers).

<config>
 <domain name="D1"/>

 <cluster id="0" name="s0">
 <server id="0" hostname="localhost">
 <network domain="D1" port="16301"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="2560"/>
 </server>
 <server id="1" hostname="localhost">
 <network domain="D1" port="16302"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="2561"/>
 </server>
 <server id="2" hostname="localhost">
 <network domain="D1" port="16303"/>
 <service class="org.objectweb.joram.mom.proxies.ConnectionManager"
 args="root root"/>
 <service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
 args="2562"/>
 </server>
 </cluster>
</config>

 9

4.7 Replica startup

4.7.1 Replicas startup synchronization
If the replicas are started all at once, all of them may think that they are masters. In order to avoid this
situation (more than one master), each replica is told the number of replicas that must initially join the
cluster. As long as this number is not reached, the replicas cannot start.

4.7.2 Starting parameters
The starting parameters are:

• identifier of the HA server
• storage path name
• identifier of the replica
• the environment property nbClusterExpected specifies the number of replicas initially

expected in the cluster.

The command line to start the replica 1 of the HA agent server 0 is:
> java –DnbClusterExpected=3 AgentServer 0 s0 1

4.7.3 Dynamically adding a replica
When a view change shows that a new member joined the group, the master must send its state
(agents) to the new member. The master’s state may be bulky, so it is asynchronously transferred to
the new slave. In parallel the master may multicast notifications. These notifications cannot be
delivered to the newly registered agents because those agents may have references to still unknown
agents. So they are kept undelivered until the new replica state is wholly updated.

 Slave server replica Master server replica

HA Channel
(master)

HA Channel
(slave)

agent 0

Engine Engine

msg i
msg i

agent i

registerAgent

agent i+1 registerAgent
agent n

Push(msg i)

Notice that the undelivered notifications list may grow very fast during the state transfer. So an
optimization is to do the state transfer in two steps:

• transfer all the agents and forget the arriving messages but mark the agents that have been
modified by these messages

• re-transfer the modified agents and transfer the arriving messages

 10

4.8 Master election

The master replica is defined to be the first server in the group list. When a replica receives a view
change that shows that it is the first server, it decides to become the new master and starts its networks
and services.

Network partitions
The handling of network partitions is not yet specified.

4.9 Connection from an external server to a replica

When a server decides to connect itself to a replicated server, it loads the configuration descriptor of
the replicated server (cluster) and tries to connect each replica. Only the master replica accepts the
connection demands. So the first replica that accepts the connection is the master.

An optimization is that a slave replica replies to the external server with the reference (host, port) of
the master server.

5 HA Joram

5.1 Remote client mode

5.1.1 Reliable connection
The connection between a remote client and a HA Joram server must be reliable, i.e. it must not lose
any messages. Messages are asynchronously sent and received in order to optimize the throughput
between the client and the server.

The reliability of the communication is already ensured by the underneath protocol: TCP. But the TCP
connection can be closed for two reasons:

• network failure
• Joram replica server failure

So the Joram HA connection layer must re-implement part of the TCP reliability mechanism by
acknowledging messages and ensuring re-emission in case of failure.

5.1.2 Connection opening
The Joram client opens a TCP connection with the active Joram server replica and sends its user name
and its user password. The server creates a connection context in order to handle the reliability. This
context contains a connection identifier, the input and output messages counters and the output
message queue filled by the agent that represents the Joram user (called proxy agent). The connection
identifier is returned to the client in order to enable him to reconnect if the TCP connection fails.

5.1.3 Connection closure
The connection can be closed:

• by a closure order from the client
• after an idleness period detected by the server

 11

Idle connection detection
A connection is declared idle if no message has been received for a specified time (timeout). The
client is responsible for sending “keep-alive” messages in order to ensure that the connection stays
open even if there is no Joram message to send.

5.1.4 Connection replication
The connection context is updated by the proxy agent. These updates occur when:

• The connection is opened
• An input message or an acknowledge is received from the client
• An output message is pushed (through the output message queue) by the proxy agent to the

client
• The connection is closed

Each update is performed inside a reaction of the proxy agent. As the agent platform is replicated, the
connection contexts are seamlessly replicated.

5.1.5 Master startup
The HA Joram master is automatically started by the HA ScalAgent platform. Each replica declares a
service called “TcpProxyService” responsible for activating the TCP entry point. This service is
started when a replica becomes master. Hence as soon as the HA platform has elected a new master
server, the Joram master is started.

5.1.6 Recovering a failed connection
The HA Joram client owns the list of the replicas provided by the HA Joram server. When the client
detects that the connection failed it tries to reconnect first to the same replica. If the reconnection fails
for a specified time it switches to the next replica from the list and retries to connect. The client loops
through the replicas list until it manages to connect to one of them.

Once the TCP connection is established with the replica, the client reopens the Joram connection by
sending its user name, user password and the connection identifier. Then it reemits the
unacknowledged messages. The server discards the messages already received and also reemits its
unacknowledged messages. The client discards the messages already received.

The connection may have been closed by an idleness timeout. In this case the client gets a error: the
high availability is broken.

5.2 Collocated client mode

A collocated client is connected to a Joram server through a collocated connection. This connection
has two behaviors depending on whether the Joram server is master or not.

Master behavior
If the Joram server is the master then the connection works like a standard collocated connection with
replication of the JMS requests.

The connection context is replicated in order to enable each Joram server replica to process the JMS
requests. But it is not recovered after a failure.

 12

Slave behavior
If the Joram server is a slave then the collocated connection opening must block until the replica
becomes the master. When the connection is opened it is not possible to recover an already existing
connection because the collocated client is not replicated. So a new connection must be opened.

Contrary to the remote client mode that has almost no recovery stage (except the message reemission),
this mode needs to clean the user proxy from the connection, subscription and transaction contexts that
have been created by the replication of former collocated connections.

6 Mixing HA and load balancing
The HA mechanism can be easily mixed with the load balancing policy based on clustered
destinations (already provided by Joram). The load is balanced between several HA servers. Each
element of a clustered destination is deployed on a separate HA server.

Each of these clustered destinations (queues and topics) can be deployed on se HA servers.

The following figure shows an example of a destination called QA which is clustered for load
balancing on two servers S1 and S2. Those two servers are replicated for HA on two hosts: S1 on
(Host1, Host3) and S2 on (Host2, Host4).

Cluster Host 4 Cluster Host 2 Cluster Host 1 Cluster Host 3

Joram server
S1 replica 1

Joram server
S2 replica 1

QA QA’

Joram server
S1 replica 2

Joram server
S2 replica 2

QA QA’

Clustered destination (load balancing)

Replicated server (HA)

Replicated server S1

Replicated server S2

	Overview
	Remote client mode
	Collocated client mode

	Replication scheme
	Master ownership
	Eager propagation

	Architecture
	HA ScalAgent platform
	Architecture
	Communication with external servers
	Communication with collocated threads
	Internal communication (Engine)
	Failure and master election
	Replica configuration
	Replica startup
	Master election
	Connection from an external server to a replica

	HA Joram
	Remote client mode
	Collocated client mode

	Mixing HA and load balancing

