

[image: image12.png]Objectiich

The ObjectWeb Consortium
Specification Document

JORM: a Java Object Repository Mapping Framework

Authors:

P. Déchamboux (France Telecom R&D)

Contributors:

R. Basset (France Telecom R&D)

S. Chassandes-Barrioz (INRIA)

Release:
February 19, 2003

Status:
Draft

 REF Status \h
 * MERGEFORMAT Draft

Version:
1.0

 REF Version \h
 * MERGEFORMAT 1.0
JORM Specification

Version: 1.0
Status: Draft
Release: February 19, 2003
Copyright 2001-2003 France Telecom S.A.

28, chemin du vieux chêne, 38243, Meylan Cedex, France.

All rights reserved

TRADEMARKS

All product names mentioned herein are the trademarks of their respective owners.

NOTICE

Any intent of implementing this specification must be signalled to France Telecom. In this respect, the potential implementer should contact the specification leader at jorm-team@objectweb.org.

DISCLAIMER OF WARRANTIES

The specification is provided “as is”. France Télécom makes no representations or warranties, either express or implied, including but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement that the contents of the specification are suitable for any purpose or that any practice or implementation of such contents will not infringe any third party patents, copyrights, trade secrets or other rights.

The specification could include technical inaccuracies or typographical errors. Changes are periodically added to the information therein; these changes will be incorporated into new versions of the specification, if any. France Télécom or any ObjectWeb partners may make improvements and/or changes to the products and or programs described in the specification at any time.

Table of contents

61
Introduction

61.1
Overview

71.2
Scope

71.3
Organisation

71.4
Document Convention

71.5
Acknowledgements

82
Overview

82.1
Definitions

82.1.1
JORM Concepts

92.1.2
JORM Relation to Connectors

102.2
Rationale

112.3
Goals

133
Architecture

133.1
Overview

133.2
Bindings and Accessors for Storage Synchronisation

143.3
Naming Management

143.3.1
Names and Naming Contexts

163.3.2
Bindings, Binders and Class Mappings

163.3.3
Managing References

173.4
Type Management

184
Roles and Scenarios

184.1
Roles

184.1.1
MIM Provider

184.1.2
JORM Deployer

184.1.3
JORM Mapper Provider

184.2
Scenarios

195
The JORM Object Model

195.1
Overview

205.2
Defining Persistent Objects

205.2.1
Standard Classes

215.2.2
Generic Classes

215.3
Defining Persistent Names

215.3.1
Persistent Identifiers

225.3.2
Persistent References

225.4
Illustrating Persistent Definitions

235.4.1
Defining Client

275.4.2
Defining Equipments

306
Introducing Interfaces

306.1
Core JORM Interfaces

306.1.1
PBinding Interface

316.1.2
PClassMapping Interface

336.1.3
PAccessor and PAccessorGen Interfaces

346.1.4
PAccessorGenClass, PIndexedElemFactory and PIndexedElem Interfaces

366.1.5
PMapper Interface

386.2
Naming JORM Interfaces

386.2.1
PName Interface

386.2.2
PNamingContext Interface

406.2.3
PBinder Interface

406.3
Typing JORM Interfaces

417
Life Cycle of Binding Objects

417.1
Overview

417.2
Binding Object at Work

447.3
Performing I/O

468
Representing JORM Definitions

468.1
Java API for manipulating JORM definitions

468.2
XML representation of JORM definitions

468.2.1
Generic part

509
Exceptions

509.1
PException exception

509.2
PExceptionProtocol exception

509.3
PExceptionNaming exception

509.4
PExceptionIO exception

509.5
PExceptionTyping exception

5110
To Do List

52Annexe A.
some annexe !!

53Annexe B.
Related Documents

54Annexe C.
Change History

Table of figures

10Figure 1: MIMs accessing persistent objects using the JORM architecture

14Figure 2: Binding mediation for storing Java persistent objects

15Figure 3: persistent objects belonging to several naming contexts

19Figure 4: Structural mapping performed by JORM bindings (representing persistent objects from the JORM model)

22Figure 5: A telecom operator databases layout

27Figure 6: A mapping to the telecom operator databases

41Figure 7: Life cycle of a DSI

42Figure 8: Life cycle of a PBinding object

45Figure 9: Writing a persistent object

45Figure 10: reading a persistent object

1 Introduction

When programming applications that manage persistent data, two kinds of data instances must be taken into account: storage instances (e.g., database tuples) and execution memory instances (i.e., real world Java objects). Programmers are then faced to managing both kinds of instances that is, organising transfers between the associated memory levels, accommodating formats that are usually different between these levels, and especially translating references.

Storage instances might be stored in databases, file systems, ERP systems, or mainframe transaction processing systems. These data stores are all referred to as Data Stores (DS) that can also support transactions, and that can potentially be federated (objects within a DS can refer to objects within another one).

With respect to memory instances, there are different approaches for object persistency proposed by different specifications. Among them are Java serialisation, EJB CMP Entity Beans, Corba Persistent State Service (COS PSS), or Java Data Objects (JDO). This layer is later referred to as Memory Instance Manager (MIM). Applications managing persistent objects are considered lying upon a MIM.
Using available tools for supporting persistency, developers may choose tools that provides advanced mapping features for storage instances that are stuck either to one of the previous memory management approaches or to a proprietary approach. They may also choose tools that support a standard memory management approach that usually lack of mapping features to particular storage systems. As there may be lots of combinations between approaches at both levels, no software provider can support all of them.
This document describes a middleware layer called JORM that standardise the mediation between these two levels, ensuring a higher level of independence between both levels for developers of persistence solutions.
1.1 Overview

There are two major objectives of the JORM architecture: first, to enable pluggable implementations of DSs into MIMs; and second, to provide a naming framework that allows the federation of DSs in a way that is independent of the involved MIMs.
The JORM persistence architecture defines a common API to support bindings to data stored within heterogeneous DSs such as database systems, mainframe transaction processing, or file systems.
The JORM architecture provides a standard binding view to heterogeneous storage that can be either local or remote. Such bindings can be combined with real world application objects in order to supply persistence to these application objects. Note that no architecture pattern is imposed to that combination. Several approaches can be used here: inheritance, delegation or even byte-code enhancing as proposed by JDO. Moreover, no constraint is imposed on the life cycle of such application objects. Indeed, it differs between MIMs (e.g., it is different between CMP EJB and JDO).

The architecture also provides a standard mechanism to manage persistent references between persistent objects that are potentially of any kind. Objects can be interposed when references are transmitted to the DS to encode/decode (i.e., often called the swizzling / unswizzling process) them as required by this DS.

1.2 Scope

The JORM architecture provides a standard set of contracts between a MIM developer and a JORM provider. These contracts focus on the view of bindings that manage interactions between Java persistent objects managed by a MIM and the associated instances within a DS.

It also provides a standard set of contracts that allow the management of inter-objects references, and further for the federation of DS (i.e., inter-DSs references).

1.3 Organisation

1.4 Document Convention

A Times Roman font is used for describing the JORM architecture.

A courier font is used for code fragments.

1.5 Acknowledgements

2 Overview

This chapter introduces key concepts required to understand the JORM architecture.
2.1 Definitions

2.1.1 JORM Concepts

Data Store (DS)

A DS provides the infrastructure for storing persistent information of an enterprise. A DS exhibits an interface that allows a client to manipulate its persistent data locally or remotely. Examples of DS are:

· file system;

· relational database system;

· object database system.

Data Store Instance (DSI)

This is a data item stored within a DS. A Persistent Name associated to a particular Naming Context uniquely identifies such an item. Examples of data items are:

· a tuple within a relational database;

· a set of tuple within a relational database;

· an object within a object database;

· a file.

Memory Instance Manager (MIM)

This is the software layer that manages the memory instances to which DSIs are projected. This layer usually provides a high level of transparency with respect to the management of this projection (e.g., it hides load/store actions). They also define the life cycle of MI. Examples of such layers are:

· JDO implementations;

· Corba PSS implementation;

· CMP EJB implemenation.

Memory Instance (MI)

This is a Java object that holds the variables that are made persistent. It is a JORM Accessor so that it can cooperate with a binding in order to load/store variables from/to the DS. It could be for example a PersistenceCapable object in a JDO implementation of a MIM.

JORM implementation

A JORM implementation is a collection of classes that implement the JORM contracts. Many approaches can be used to implement JORM, from fully generic bindings to compiled ones. An implementation might be optimized for a particular DS or it might be a more general tool that can adapt to different DSs.

The primary interfaces to the application layers of JORM are PBinding and PMapper, the second one giving access to factories producing binding objects.

JORM Accessor

This is an object that supports an “accessor” pattern (i.e., set_var/get_var methods) for giving access to the variables that contain persistent data within execution memory. It is used by a JORM binding for accessing variables of MIs when loading/storing persistent data. It implements a JORM PAccessor interface as produced from the JORM definition language.

JORM Binding

A JORM binding is a Java object that implements the PBinding interface and is created using a PClassMapping. This is the key concept of JORM as it is the mediator object that organizes data transfers between a DSI and a particular MI within execution memory. Thus the main operations that can be invoked on this object are read (from the DS), and write (to the DS). Before performing these operations, a binding must have been assigned both a Persistent Name that identifies a DSI, and a MI represented by a PAccessor object.

JORM Class Mapping

A class mapping is first a factory of binding. It also has all the information concerning the naming environment of a kind of bindings. This includes the binder associated to the JORM class, the binders associated to instance of generic class for attributes of that kind, and all the naming contexts used to managed the references stored within such persistent object.

Binder

A binder is a particular kind of naming context that manages the associations between persistent names and bindings to which they have been assigned. There is a unique association for each persistent name with a binding. When a new persistent name is assigned to a binding, the old association is removed before the new one is created within the binder.

Persistent Name

This is an entity, represented by a Java object in execution memory, that holds the information that uniquely identifies a persistent object within a particular naming context. It can either translate to a Binding giving access to the associated DSI (using a binder), or to another persistent name in another persistent naming context (recursively).

Persistent Naming Context

This is a persistent entity that keeps the associations between persistent names and their associated bindings or persistent names. It is thus used to resolve persistent names into one of the two cases. Within a persistent naming context, a name always translates to a unique binding or persistent name.

JORM Mapper

A mapper is a Java object that represents the DS encapsulated by JORM. Its main function is to give access to mapping of persistent classes. It keeps the associations between the names of JORM persistent definitions and their associated binder/binding factory.

2.1.2 JORM Relation to Connectors

JORM does not make any assumption about the way connections to the underlying DS are performed. It only proposes a pattern at the mapper level to allocate/release connections. These connections are untyped; this means that they are simple java.lang.Object. This feature is mainly proposed in order to define facilities, such as binders or naming contexts that require the management of persistent data.

Connection

A connection provides connectivity to an underlying DS. This information is necessary for JORM to execute. Such a connection is passed within methods everywhere it is necessary. It is passed as a java.lang.Object. Thus, it is completely independent of the kind of connection interfaces supported. For example, the JCA client connection interface could be used in order to perform resource and transaction management. It does not make any assumption about the transactional capability of the DS: it may either support centralized transactions or distributed ones, or it may not support transaction at all.

2.2 Rationale

Providing systems and tools to map Java objects to persistent objects has concentrated a lot of works for quite a long time, especially with relational database systems as the target persistent store. There are plenty of products that support such a mapping, the most representative of them being TopLink from The Object People or PowerTier from Persistence Software. They are usually provided as autonomous systems and cover a wide range of functions (e.g., cache management or concurrency policies). Furthermore, they follow the black-box principle, hiding most of their internals.

The first goal of the JORM architecture is to provide a consistent set of interfaces to access heterogeneous DSs, being also independent of the client view of such persistent Java objects (i.e., MIM). By using the JORM architecture, it is not necessary for MIM providers to customise their products for each type of DS.

[image: image1.wmf]

Memory Instance

Managers supporting the

JORM interface

JORM Mappers

encapsulating Data Stores

Figure 1: MIMs accessing persistent objects using the JORM architecture

This architecture enables a DS provider to provide a standard data access interface for storing persistent objects. The JORM implementation can then be plugged into a MIM for providing infrastructure to store objects into a particular DS.

Likewise, a MIM provider needs to implement once the coupling with JORM and then exploits multiple DSs (e.g., a RDBMS, an OODBMS, or an LDAP repository).

As a middleware system, JORM aims at providing a standard interface for accessing persistent objects within various DS as persistent Java objects, also called MI. It thus concentrates on the binding chain between a DSI and a MI, providing the management of typed I/Os; this Java object is called a binding. A binding organises the structural projection of persistent objects to a particular DS when performing I/Os.

The second goal of the JORM architecture is to provide a naming framework to manage references between persistent objects stored within DSs. This means that using the JORM architecture, one can implement the relevant objects, called persistent naming contexts, to organise the translation of references between DSIs (i.e., swizzling/unswizzling process). This can be done independently of the client view of JORM objects. This means that MIs do not need to be modified when managing references between DSIs stored within the same or different DSs.

Furthermore, the structural projection organised by bindings do not need to be changed when federating DSs. This means that bindings are also independent of the management of names, especially when organising such a federation.

Figure 1 shows that an application context can simultaneously use several MIMs (for example, JDO instances and EJB entity beans) that can map to several DSs. This allows MIs to reference each other, even if managed by different MIMs, leading to require DSs to be able to support such references. This is what can be organized using the JORM naming framework.

2.3 Goals

There two major goals that JORM is targeted to: managing the mapping to various kinds of DSs and managing persistent names to identify persistent objects and to support references between them. These goals decline in more details as follows:

· Providing a standard set of interfaces that defines a framework for mapping Java objects to persistent objects stored within potentially heterogeneous Data Stores.

· Designing this framework in order to be independent of the approach for managing Java objects that represent persistent objects. This means that it should be able to support MIM such as JDO or EJB.

· Designing this framework to support most kinds of Data Stores, covering systems like RDBMS, OODBMS, LDAP directories, or merely file systems.

· Ensuring that the framework should be able to deploy on a wide range of devices like computers (from high-end servers to PC), PDA, or smart cards.

· Providing a standard set of interfaces that defines a naming framework, which should support any kind of persistent names such as relational primary keys, OODBMS identifiers, or LDAP Distinguish Names.

· Ensuring that the naming framework can support inter-DSs references (be they local to a server or distributed among servers). This means that this framework should enable any kind of DSs federation.

Having these goals in mind, it is important to know some of the function related to persistency support that JORM does not address:

· There is no provision for concurrency control. This function must be managed outside JORM even if bindings are the ideal place to add this support.

· There is no provision for caching support even if binders within the naming framework are tightly related to this aspect, and is the ideal place to support advanced caching techniques.

· There is no provision for consistency control between memory instances and their representatives within the data store. Upper layer transaction managers may support this feature for example.

· There is no provision for associative access (i.e., content-based lookups of objects). This function is under definition within the scope of another project. Its definition considers JORM as the framework within which it should integrate.

There are probably other functions that can be sited here but the above ones seem to be the most sensitive ones with respect to JORM goals.

3 Architecture

This chapter presents the JORM concepts in details and explains the interactions that may occur between them. It mainly focuses on the two key concepts manipulated by JORM: bindings and names.

3.1 Overview

The mapper is the root object that gives access to JORM functions. It is usually tied to a DS for which it manages synchronisation between MIs and DSIs. Several mappers can execute simultaneously within a JVM – possibly on several DSs or on the same one.

A mapper gives access to binders that generate bindings. One binder is attached to each persistent class defined within JORM. There are two cases when generating bindings:

· A DSI exists and a binding is requested in order to a MI to synchronise with it. This corresponds to a bind operation that associates a name to this binding, the binding being thus activated.

· No DSI exists. Then a binding is requested in order to create a new DSI. This corresponds to an export operation on this binding that creates a new name.

A binding is a mediator object that provides typed synchronisations (i.e., I/Os) between a MI and a DSI. There are mainly two synchronisation actions: read and write. They are typed, as they support a particular JORM structure (defined by a JORM class – see section 4) of the persistent object to be stored as well as the way to map this structure to the associated DSI. Thus, this is the Java object where the mapping occurs, when performing I/O operations.

Before being able to perform synchronisations, a binding must be assigned a persistent name. This name is a Java object that designates the DSI to which it is bound. Symmetrically, it must also be assigned an “accessor” object to gives access to the state variables of the MI to which it is bound. Having both assignments done, the JORM synchronisation chain is fully functional.

3.2 Bindings and Accessors for Storage Synchronisation

The basic architecture principle that governs JORM consists in interposing mediation objects between a MI and its associated DSI called “binding” objects. This object gives access to a DSI through a unique interface and requires an “accessor” object to access the MI. As shown in Figure 2, there are two interfaces that articulate these two levels: PAccessor and PBinding. Finally, in order to identify the DSI it represents, a binding object holds a persistent identifier, which is a Java object whose type is PName. The next section details persistent names.

The binding objects support the PBinding interface that is unique, whatever the DS is. Thus, this is the portability interface proposed by JORM. While supporting this interface, a binding object hides the means to access the DS. For example, it can use SQL statements, submitted through JDBC, in order to load/store Java persistent fields.

A binding is usually used by the MIM that controls the synchronisation points. For example, such synchronisation points may occur when demarcating transaction boundaries, which can be done at the MIM level or in upper layers.

[image: image2.wmf]

Data

Store

JVM

PBinding

Memory

Instance

DSI

PAccessor

 read, write, exist, …

MAPPER

PName

interface

object

«

composed of

» relationship

Java interface invocation

DS I/O invocation

identifier name

Figure 2: Binding mediation for storing Java persistent objects

The synchronisation methods of a binding object use a PAccessor interface in order to access the MI persistent fields. Two kinds of accessor interface can be proposed to a binding, such a binding being allowed to support either one of them or both:

· Generic accessors: they support an interface composed of generic setter and getter methods (i.e., paSet and paGet) for accessing fields. The paGet method returns the value of a persistent field as an Object, using the name of this field passed as a String parameter. The paSet method assigns an Object value to a field whose String name is passed in parameter along with the value.

· Static accessors: they support an interface composed of field-specific setter and getter (i.e., paSetXxx and paGetXxx for field named XXX). The paGetXxx method returns the value of field named xxx. This value has the exact type of the field as defined by the translation table between JORM types and their Java counter part. For example, it can return a Java int value. The paSetXxx method does the symmetric action by assigning a truly typed value to the xxx field.

While static accessors should not raise exception (they are fully typed interfaces with respect to bindings), generic ones can as they are interpreted.

3.3 Naming Management

The persistent framework assumes that each DSI that represents a memory persistent object (i.e., a MI) has at least one persistent name allowing its identification within its DS. Such a name is strongly dependent of the underlying DS. It may be composed of application related information like primary keys with RDBMS. It may be system-managed identifiers (independent of user data) like in OODBMS. The objective of the framework is not to make any assumption about the way names are managed. This means that the framework should support any kinds of names.

3.3.1 Names and Naming Contexts

There are two concepts that organise naming management within the JORM framework: names and naming contexts. A name is an object that implements the PName interface. It identifies a persistent object within a particular naming context. A naming context is an object that implements the PNamingContext interface. It associates an entity to each name it manages, where persistent names are unique within a naming context (i.e., there is only one association involving a persistent name within a naming context, which is not always the case for associated entities).

The example of Figure 3, which describes a situation that is already a complex one, presents DSIs that are stored within two Data Stores named DS1 and DS2 (a DSI always belongs to only one DS). It also shows fives naming contexts named PNC1..PNC5. DSIs may have names within several naming contexts. For example, DSIs of PNC3 have also names within PNC5, where PNC3 and PNC5 are naming contexts that are local to DS2. Furthermore, DSIs may have name that are valid beyond its DS. This is the case for DSIs of PNC2 that have also names within PNC4, which federates DSIs of two DSs.

[image: image3.wmf]

DSI

Persistent Naming

Contexts

Data Stores

PNC 1

PNC 2

PNC 3

PNC 4

PNC 5

DS 1

DS 2

Figure 3: persistent objects belonging to several naming contexts

Names and naming contexts are tied together. The naming context manages a naming domain, which corresponds to the valid names for which an association with the entity it designates can be registered within a naming context. There are essentially three operations that govern name management:

1. export: this operation allows the creation of an association between an entity (e.g., another name) and a name within this naming context. The entity is a parameter of this operation that yields the name designating it within this naming context. The behaviour of this operation depends on the naming context semantics. For example, it can look up for the an existing association involving this entity; then it yields the existing associated name or create a new one if no association exist. It can otherwise systematically create a new name, having the entity designated through different names within this naming context. In either case, name creation always occurs when calling export.

2. resolve: this operation is used to look up the entity designated through a particular name within this naming context. The name is a parameter of this operation that yields the associated entity if any exists. If this name is a composed one, the operation yields the sub-name of this one.

3. unexport: this operation is used to remove an association within this naming context. It takes a name as parameter and removes the association with the entity it designates within this naming context if any exists.

The export operation is always invoked on a PNamingContext object while the resolve and the unexport operations can be invoked either on a PNamingContext object or on a PName itself.

3.3.2 Bindings, Binders and Class Mappings

Having introduced naming management, the final goal when dealing with persistent names is to set up a binding in order to perform I/Os with the corresponding DSI. The creation of bindings is performed using a class mapping. A class mapping is an object that implements the PClassMapping interface. It has mainly two roles within the framework:

1. This is a factory that produces binding objects (implementing PBinding). It is the starting point in the life cycle of a binding object (see section 6 for more details).

2. This is a binder, which is a particular kind of naming context, that keeps the association between a persistent name and the binding object (there is always a unique binding per persistent name within a binder) that gives access to its associated DSI (a binding can be seen as a special kind of name, whereas it is not persistent). This binder role is delegated to an actual binder that implements the PBinder interface, inheriting from the PNamingContext one. A binder can also be seen as a means to introduce caching mechanisms.

Within the framework of a mapper, which is tied to a particular DS, there is at least one class mapping and binder for each JORM class stored within this DS. This is mandatory as this is the only means to establish bindings with DSIs of a persistent class.

A binder is a special kind of naming context, as this is always the end of a naming chain. This is why resolving a name within this naming context always yields this exact name.

3.3.3 Managing References

Persistent names have been presented as a means to identify DSI within different contexts. One reason for having different contexts comes from the need of using names in order to deal with references between DSIs. Indeed, the scope of a reference can be larger than a simple persistent class. Such a scope may cover several persistent classes within a DS; this is the case when naming contexts are used to deal with polymorphism. It may also cover several persistent classes within several DSs; this is the case when using naming contexts to federate DSs, as exemplified by PN4 in Figure 3.

As the framework argues for openness concerning federation/distribution of DSs, naming context is the feature that guarantees it. Indeed, users of the framework can assign (specialised) naming contexts to each reference field of a particular persistent class, although mappers should provide default ones.

When a persistent object is written to its DS (i.e., invocation of write on a binding object), fields that hold references are stored in three steps:

· First, the binding object, using the relevant getter method, asks the MI for a persistent name designating the referred object.

· Second, it exports this name within the naming context associated with the corresponding field of this persistent class.

· Third, it requests this naming context to encode the resulting name (i.e., the one yielded by the previous export operation) into the relevant structure as required by the projection into the DS.

When a persistent object is read from a DS, the revert process occurs: decoding the storage structure that has been read, resolving the resulting name within the naming context associated to the field, and then passing it to the MI through the relevant setter method.

This mechanism allows the introduction of any kind of reference semantics between DSIs, be they stored into co-located DSs or into distributed ones, activating MIs of referrer and referee into the same process or into distributed ones.

3.4 Type Management

Persistent objects are defined by persistent classes, which are composed of typed fields (see section 5 for more details about the object model). When assigning a reference to a persistent object as the value of a field of another persistent object, type verification may occur. Even if Java enforces some kind of static typing, there are many situations where typing is poor and the relation between Java typing mechanism and persistence typing is not always straightforward. This is especially true when dealing with “generic classes” like collections and the kind. Furthermore, in case of federation of DSs, typing should be enforced in a larger context, potentially involving distributed JVMs.

In order to be able to perform type checking, typing information must be carried along with persistent names. Type verification can then occur when names are assigned as references, that is when a binding is going to store them. This occurs just before the binding ask for the encoding of a persistent name. It is verified against the type associated to the field of the corresponding class: the type of the reference must verifies the “isa” relationship with respect to the type of this field, as defined by the isa method of PType interface.

As types are heavily related to names, one type space, as defined by the PTypeSpace interface, is associated to each mapper and it can be shared between them. As naming contexts do not always share type spaces, when a name is exported into another naming context of another mapper, its type must be present in the type space of this destination naming context. If it is not present, it must be defined within this space, which means that its complete definition must be imported from the type space of the original naming context into the destination one. An object type in JORM is completely defined by a class name and the super classes of this class, recursively.

A type space can be combined with the meta-information repository (see section 6.3) that contains the whole descriptions of classes, as it defines a sub-part of this repository.

4 Roles and Scenarios

The JORM framework can be implemented in many different ways. This may impact the development phase of JORM application, as well as the deployment one. For example, using a compiled approach, the developer could merge the MI and the binding into a single object. With an interpreted approach, MI and binding will always be two distinct objects.

4.1 Roles

The JORM architecture defines three distinct roles in a persistent application development and deployment life cycle. It establishes some contracts that the different roles must respect in order to consistently execute the framework implementation. The following sections define these roles.

4.1.1 MIM Provider
The MIM Provider must implement MIs. Each MI must provide a class that implements the relevant “accessor” interface; this interface should comply with the associated JORM class. This interface is either a generic one (i.e., with generic setters/getters), or a static one (i.e., with field-specific setters/getters like for Java beans). The MI implementation is also in charge to request a binding from a mapper and to implement its own synchronisation policy using this binding (i.e., mainly using read and write operations).
4.1.2 JORM Deployer

The Deployer takes one or more XML files defining JORM classes and naming context classes used for persistent references, and deploys the JORM classes in a specific operational environment. This operational environment consists in a mapper and a specific DS. Deployment may lead to code generation depending on the implementation of the JORM framework.
The Deployer is in charge of two tasks: providing additional mapping information, and associating naming contexts to reference fields, or binders to class mapping.

The additional mapping information may be name translation between names of JORM classes and tables for relational databases. This information is thus related to a particular mapper and is specified within the XML file into dedicated sections of JORM definition files.

Naming information may also be associated to classes. This consists in associating binder classes to JORM classes or naming context classes to reference fields.

4.1.3 JORM Mapper Provider
The Mapper Provider implements the JORM framework in order to build operational mappers like object/relational mapper, object/file mapper, etc. Such an implementation provides the operational mapper that supports the mapping mechanism to a particular DS as well as tools dedicated to its deployment. The Mapper Provider can be a DS provider or someone that have a deep understanding of both the JORM framework and the DS mechanisms in order to define the relevant mapping rules.

4.2 Scenarios

5 The JORM Object Model

The JORM object model has been designed to be as close as possible to the Java object model. The main difference concerns the support of generic classes, which Java has not.

5.1 Overview

JORM organises the transfers of persistent data between the JVM (i.e., MIs) and a data store (i.e., DSIs). These transfers are under the control of JORM bindings. These bindings perform the relevant mapping of Java structures to persistent structures that are specific to a particular DS. In order to do that, bindings must be aware of the type of objects that is stored.

The JORM object model specifies the types of entities it can store. All entities described by this model are objects. There are three kinds of type: abstract classes, classes and generic classes. There is no notion of values, dependent objects, or second-class objects in the model (this should be provided by higher level layer such as the MIM). All objects have a name that uniquely identifies them within a particular context (e.g., such a context can be an entire database, or a table).

[image: image4.wmf]

DATA STORE

JVM

Persistent Capable Java Objects

(aka JORM Memory Instances)

Structural

Mapping

JORM Binding Objects

Usual Transient Java Objects

Figure 4: Structural mapping performed by JORM bindings (representing persistent objects from the JORM model)

This persistent object model is also independent of any persistency model. Among persistency models, there are “persistency by reach ability” (objects are made persistent as soon as they are reachable from a “root” persistent object), “class-attached persistency” (all object of a particular class are persistent), “explicit per object persistency” (objects are explicitly made persistent using a dedicated command like “makePersist”). All these models can be supported with JORM although it is the role of upper layers using JORM to implement them. Conversely, this is the role of the mapper to be as neutral as possible with respect to the model supported by the underlying DS.

Persistent objects supported by JORM are supposed to be uniquely identified by a persistent name. Such names can be managed either by the underlying DS (e.g., an OODBMS usually associates persistent names to objects transparently), or by JORM users independently of the underlying DS. In this later case, names are part of the JORM object structure and must be defined as such (e.g., a primary key within a RDBMS).

5.2 Defining Persistent Objects

JORM supports two kinds of persistent objects: tuple objects and collection objects. A tuple object is composed of a set of fields. These fields are accessed using their named “accessor” methods that can be either generic (i.e., set(fieldname, val) / get(fieldname)) or field-specific (i.e., setField(val) / getField()). Persistent standard classes define tuple objects.

A collection object is composed of a set of indexed elements. An indexed element has a value, which is the value of the element, and potentially an index that specifies the position of this element within that collection. This index is usually dependent of the structure represented by that collection (e.g., lists, trees, etc). Persistent generic classes define collection objects.

5.2.1 Standard Classes

A standard class defines a persistent object that is defined as a tuple that can eventually be identified; a persistent name may be defined for that object. Such a tuple type is a set of couples composed of a field name and a field type. Examples of class definitions are presented in section 5.4.

A field type belong to one of the three following kinds:

· A primitive type that is essentially one of those defined by Java. In extension, these are boolean, byte, char, short, int, long, float, and double that correspond to Java primitive types and their object equivalent (Boolean, Byte, Character, Short, Integer, Long, Float, and Double from the java.lang package), and string, date, time, timestamp, BigDecimal and serialized that respectively maps to Java classes java.lang.String, java.util.Date, java.math.BigDecimal and java.io.Serializable.

· A persistent class, which means that the value of the field is a persistent name that references a tuple object.

· A persistent generic class, which means that the value of the field is a persistent name that references a collection object. There is no collection object apart those referenced from standard persistent objects.

A persistent class may be abstract, which means that no DSI can be created using it. It is used to factorised definitions between different non-abstract classes. An abstract class is not required to define a name while it is mandatory for classes.

A class is always declared as belonging to a schema, which is equivalent to the package concept in Java.

Persistent objects are always created within a persistent class, be it generic (see next section) or not. Unlike abstract ones, classes are required to define a name (i.e., its storage structure) for their objects. Any class must have only one name definition per mapping. Section 5.3 gives more details about the definition of name structure.

A class may inherit from other classes. Multiple-inheritance is supported among abstract classes, as well as between a class and some abstract classes (i.e., a class may derive several abstract classes). Just single-inheritance is supported among classes (i.e., a class may derived at most one other class.

5.2.2 Generic Classes

A generic class defines persistent collection object of typed elements. Such a collection object is assumed to have no element duplicate. This is the role of generic class implementations to guarantee this constraint. There are two phases when defining completely a generic class (examples of generic class are presented in section 5.4).

Like standard classes, generic classes also belong to a package.

First, like for fields of classes, it defines the type of elements that it may store. This type may be one of those introduced by the three kinds of types presented in section 5.2.1.

In the first phase, a generic class defines a collection of any kind of elements that may be indexed. This index enables to support different kinds of collection objects like sets (no index), lists (the index is the position of the elements within this list), or binary trees (many possibilities for representing the position within the tree). An index is either a simple typed value, or a tuple of typed values. The type of such values is restricted to scalar types (byte, char, short, int, or long) and the string type. As generic classes support collections with no duplicate, the values of indexes of elements must support a partial order, where different element values may share the same index.

The second phase corresponds to the definition of a field within a persistent class whose type is a generic class. At this point, the type of elements of the collection is given. Furthermore, the structure of the name used to reference the collection must also be defined at this level.

5.3 Defining Persistent Names

Persistent names have two roles in JORM although they are heavily related to each other. First, names are used to identify persistent objects and second, they are used as references to identified persistent objects.

The underlying DS may manage identifiers, in which case they are said to be system-managed. This means that the identifier exchanged between the binder and the DS is a DS-specific object.

5.3.1 Persistent Identifiers

Binders, that are associated with each persistent class (standard or generic), manage object identifiers. The persistent structures into which such a name must be stored need to be defined within the class definition.

For standard classes, a name may be defined just as a value of an abstract type (system (see above)), a basic type (byte, char, short, int, long, or string), or as a composite name. A composite name is a tuple of fields whose type is one of the basic ones presented above. Furthermore, such fields may be linked to the ones that are defined as the persistent object fields (mapping of the name fields to application fields).

For generic classes, the identifier structure is defined when defining a class field that has a generic class type. The name structure has a similar definition as for standard classes, except that there is no field definition associated with a generic class that could be reused for name definition.

5.3.2 Persistent References

Names representing persistent object references (i.e., values used for fields whose type is a standard class or a generic class) may differ from object identifiers. Indeed, when federating databases, a class field may refer to object stored within different heterogeneous DSs. This means that the reference cannot be restricted to identifiers of objects of a particular class projection within a particular DS. This is the role of the naming context associated with that reference to manage names that give access to a larger naming context (e.g., a union of binders attached to different DSs).

Defining a reference name is not different from defining an identifier name. As defined in section 5.3.1, this is either a simple value or a tuple value, with the same restrictions on values as for identifier definitions.

5.4 Illustrating Persistent Definitions

In order to illustrate the capability of the model described above as well as the way to use it, an example involving objects stored within two databases is developed hereafter. The considered example depicted in Figure 5, which mimics databases of a telecom operator information system, assumes that there are two DSs, each storing a part of the persistent objects.

[image: image5.wmf]

identifier

lastName

firstNames

equipments

Client

{(pos, value)

}

FirstNameList

lineDesc

leaseDevices

phoneNumber

Equipments

Client DB

(RDBMS)

Equipement DB

(OODBMS)

Figure 5: A telecom operator databases layout

There are two databases in this example: the first one stores the description of clients while the second one stores the description of equipments deployed at clients home. The focus is put on two entities of the IS: clients and equipments, where clients refer to their equipments.

The XML document format used hereafter is defined in section 8, in order to express and exchange JORM definitions.

Classes are usually defined in two parts. The first part defines mapping-independent information that is, the set of fields that composes the state of the tuple objects as well as generic classes that are used to define referenced collection objects. It also contains the definition of the structure of names (identifiers or references) that are associated with primitive fields, which can be hidden at the user level. For instance, a reference to a class C could be define by a name composed of two integer fields: a classid field and a objid field, being able to support polymorph references.

The second part concentrates on mapping information that is specific to each kind of DS. Mapping information is usually defined at several levels: at the class level, be it generic or not, and at the field level, which can be either a primitive field, a field that is part of a name (a reference or an identifier) or an index field of a generic class.

The following sub-sections illustrate the way JORM classes along with their mapping definitions are described. The Client JORM class is first defined followed by the Equipments one.

5.4.1 Defining Client
Client common definition

As said before, a client is defined in two steps. The fields representing a client are first defined, which is common information about a client, whatever the database it is stored into. Then, it defines a mapping to a relational database, or to any other supported kind of DS.

<jorm>

<package "com.telco" />

<class name="Client" abstract="FALSE" id="Client">

<namedef id="ID.n1">

<field-ref name="clid" />

</namedef>

<field name="clid">

<primitive-type type="int" id="identifier" />

</field>

<field name="lastName">

<primitive-type type="string" size="50" id="lastName" />

</field>

<field name="firstNames">

<reference-type>

<gen-class-ref gen-class-name="array"

shared="FALSE" id="firstNames.array">

<scalar-field name="array_id">

<primitive-type type="int"

id="firstNames.array_id" />

</scalar-field>

<scalar-field name="pos">

<primitive-type type="int"

id="firstNames.pos" />

</scalar-field>

<namedef id="firstNames.ID.N1">

<field-ref name="array_id" />

</namedef>

<index>

<field-ref name="pos" />

</index>

<primitive-type type="string" size="30"

id="firstNames.ELEM" />

</gen-class-ref>

<namedef id="REF.firstNames.N1">

<field-ref name="clid" />

</namedef>

</reference-type>

</field>

<field name="equipments">

<reference-type>

<class-ref class-name="com.telco.Equipements"

shared="TRUE" />

<namedef id="REF.equipments.N1">

<field-ref field-name="eq_ref" />

</namedef>

<reference-type>

</field>

<scalar-field name="eq_ref">

<scalar-type type="string" size="16" id="eq_ref" />

</scalar-field>

</class>

<!-- mapping sections here: see below... -->

</jorm>

A client is composed of four fields that are visible at the application level:

1. identifier that is an int uniquely identifying a client and that is application-specific: this means that it corresponds to a primary key in the relational world.

2. lastName that is a string representing the last name of this client.

3. firstNames that refers to an array of string representing the ordered set of first names of this client.

4. equipements that refers to an object representing the equipments that are used by a client.

These four fields are made visible at the application level of JORM by an accessor interface that exhibits accesses to them, be it generic or static.

Let us then take the two fields that reference other persistent objects; firstNames references an array collection object and equipements references an Equipments tuple object. Apart from specific typing information that is required in both cases, they both define the structure of the two names that represent these references:

1. the name that defines the reference to the Equipements tuple object is also composed of one field, which is the eq_ref hidden field defined along with the other application fields.

2. the name that defines the reference to the firstNames collection object is composed of one field, which is the identifier field itself. This means that the same information item (i.e., the identifier field) that identifies the Client object is used in order to reference the "array" object. Furthermore, the definition of this array collection object is completed:

· Its identifier is defined as the array_id field.

· Its index is defined as the pos field.

· The type of its elements is defined as strings with a maximum length of 30.

It must be noticed that the completion of the definition of generic classes is a task that is as heavy as a class. It is always defined within the framework of the class where it is used.

RDBMS mapping of Client
The mapping section defined for this example concerns relational databases and defines a projection within a mapping project named proj1. Indeed, other projection could be defined either for the same kind of DS (i.e., RDBMS), or for other DSs within the framework of other projects. This means that projects are used in order to differentiate projections. For example, this could be useful because clients exist in several relational databases with slightly different projections (e.g., different table names or different column names).

<mapping project-name="proj1">

<rdb-class-mapping-rule.R1 link-end="Client">

<rdb-table-spec name="TCLIENT" />

<rdb-column-spec link-end="clid" name="ID" type="INTEGER" />

<rdb-column-spec link-end="lastName" name="LASTNAME" />

<rdb-column-spec link-end="eq_ref" name="EQ_REF" />

<id-namedef link-end="ID.N1" />

<ref-namedef link-end="REF.firstNames.N1" />

<ref-namedef link-end="REF.equipments.N1" />

</rdb-class-mapping-rule.R1>

<rdb-gen-class-mapping-rule.R1 link-end="firstNames.array">

<rdb-table-spec name="TFIRSTNAMES" />

<rdb-column-spec link-end="firstNames.array_id" name="CLIENTID"

type="INTEGER" />

<rdb-column-spec link-end="firstNames.pos" name="POS" />

<rdb-column-spec link-end="firstNames.ELEM" name="FIRSTNAME" />

<id-namedef link-end=" firstNames.ID.N1" />

</rdb-gen-class-mapping-rule.R1>

</mapping>

The first mapping rule used (i.e., the rdb-class-mapping-rule.R1 rule) defined class-related mapping information. In this case, it defines the name of the table within which it is stored (i.e., the TCLIENT table) as well as the mapping of each fields that are mapped for this projection (here clid, lastName, and eq_ref). This set of fields to be mapped is defined as those that have a primitive type and those defined by the names used into the class definition (identifier and references). In the previous example, the first set is composed of clid and lastName, while the second set is composed of clid (requested by two names: ID.N1 and REF.firstNames.N1) and eq_ref (requested by the REF.equipments.N1 name). Notice that this two sets overlap. Anyway, the global set is merely the union of both sets defined previously.

The firstNames field is defined as a reference to a collection object belonging to a generic class. The interesting thing here is that clid is used again as the name holding this reference. This means that a unique stored value is used as the identifier for a Client object as well as a reference to an array object. Even if it has no specific stored representation, the array reference is passed to the application level through the PAccessor interface. Although it is stored within the same DS in the example, no assumption is made on whether it is stored within the same DS or another one. This semantics is only carried by the naming context associated with this reference.

Furthermore, the mapping of the instantiation of the array generic class used for the firstNames field needs to be defined. This is the purpose of the nested mapinfo section defined within the elemmap of this field. It defines mapping information at the class level (i.e., the classmap section), specifying that these arrays are stored into the TFIRSTNAMES table with an int identifier that is mapped to the CLIENTID column of INTEGER SQL type. Then, two field elements are mapped: the value of an array element, whose name is the keyword elem, mapped to the FIRSTNAME column, and the unique index field, whose name is composed of the keyword index and the name of the particular index field (there may be several of them), mapped to the POS column.

Finally, the equipments field refers to Equipments objects that are stored within a second database in this example, which is an OODBMS. In this case, a reference value is a string, which is used by the interposed naming context to federate the client database with the equipment one. As the OODBMS has its own support for object identifiers, the naming context that manages this reference, which is stored as a string within the RDBMS, should be capable of converting it to a system-specific identifier as managed by the OODBMS. This conversion would be necessary when one needs to create a binding to an Equipment object that requires a PName encapsulating the system-specific identifier.

[image: image6.wmf]

phoneNumber

lineDesc

leaseDevices

phoneNumber

lineDesc

leaseDevices

phoneNum

ber

lineDesc

leaseDevices

TCLIENT

ID LASTNAME EQUIPMENTS

TFIRSTNAMES

CLIENTID POS FIRSTNAME

RDBMS

C_equipments

phoneNumber

lineDesc

leaseDevices

OODBMS

identifier

lastName

firstNames

equipments

phoneNumber

lineDesc

leaseDevices

PName

PName

Memory

Instances

PBinding

PBinding

PName

PBinding

firstName[]

Figure 6: A mapping of the telecom operator databases

5.4.2 Defining Equipments
Equipments common definition

Then, equipments can be defined as follows:

<jorm>

<class name="Equipments">

<field name="phoneNumber">

<primitive-type type="string" size="12">

</field>

<field name="lineDesc">

<reference-type>

<class-ref class-name="com.telco.Line" />

<namedef id="">

<system/>

</namedef>

</reference-type>

</field>

<field name="leaseDevices">

<reference-type>

</reference-type>

</field>

</class>

</jorm>

string phoneNumber;

Line lineDesc;

set<Devices> leaseDevices;

mapinfo odb:proj1 {

...

}

}

An equipments object is composed of three fields that are visible at the application level:

1. phoneNumber that is string defining the phone number associated to the equipments of associated client.

2. lineDesc that is a reference to another object that describes the kind of line installed for this client.

3. leaseDevices that refers to a set of references to objects representing the devices that have been leased to this client.

Again, all three fields should be materialised at the application level, and accessed through the associated accessor interface.

OODBMS mapping of Equipments

The mapinfo section defined in the example concerns object-oriented databases and defines a projection that is named proj1. Both Client and Equipments are mapped with the same project because they will be used in conjunction within the context of the same application.

mapinfo odb:proj1 {

classmap {

map: C_equipments

name: system;

}

elemmap(lineDesc) {

name: system;

}

elemmap(leaseDevices) {

name: system;

}

}

It shows that all names used to defined Equipments are system-managed. This means that these are names managed by the underlying DS (an OODBMS in this case), and that the storage type to which they are translated are DS-specific (i.e., Java classes from the DS interface). Furthermore, there is few mapping information: the JORM class is mapped to the OODBMS C_equipments class, and fields still have the same name in their mapping.

6 Introducing Interfaces

In order to explain the functioning of the JORM framework, mainly represented by bindings, the main interfaces are sketched within this section. It also defines potential exceptions that may be raised by these methods.

6.1 Core JORM Interfaces

6.1.1 PBinding Interface

interface PBinding {

void bind(PName pn) throws PExceptionNaming;

boolean exist(Object conn) throws PExceptionIO, PexceptionNaming, PExceptionProtocol;

PName export(Object conn) throws PExceptionIO, PExceptionNaming, PExceptionProtocol;

PAccessor getPAccessor();

PAccessorGen getPAccessorGen();

PClassMapping getPClassMapping();

PName getPName();

byte getStatus();

void init(PClassMapping pcm) throws PExceptionProtocol;

void read(Object conn) throws PExceptionIO, PExceptionNaming, PExceptionProtocol;

void setPAccessor(PAccessor pa) throws PExceptionProtocol;

void setPAccessorGen(PAccessorGen pa) throws PExceptionProtocol;

void unbind() throws PexceptionNaming;

void unexport(Object conn) throws PExceptionIO, PExceptionNaming, PExceptionProtocol;

void write(Object conn) throws PExceptionIO, PExceptionNaming, PexceptionProtocol, PExceptionTyping;

}

As explained previously, a binding object must be linked with two entities in order to execute correctly: a PAccessor object that represents the MI, and a PName object that represents the DSI. Both links may be null. All methods that potentially require an access to the underlying DS for executing must be passed a PConnection in parameter.

The PAccessor link is controlled with two methods: setPAccessor and getPAccessor. setPAccessor is used to establish the link or to remove it (i.e., by setting it to null). getPAccessor is used to retrieve the current associated PAccessor object. Such a PAccessor may be a generic one. In order to differentiate both cases, two specific methods (i.e., setPAccessorGen and getPAccessorGen) are provided where explicit cast has to be used when calling them.

The PName link is controlled by three methods: bind, unbind, and getPName. bind establishes the link with a DSI through the given PName, the association being registered within the associated binder in order to guarantee uniqueness. unbind removes the link with a DSI and deletes the association within the binder. getPName is used to retrieve the current associated PName object.

The export method is a composite function that first creates a new name (using the associated binder) for a new DSI, and that binds it to this binding object.

The getStatus method can be used to know the current state of a binding object (see Figure 9 for information about potential state).

The read and write methods are used to perform I/Os with the underlying DS. Depending on the state of a binding, the write method may lead to execute a create, a delete or a write action (see Figure 8 above) at the DS level. The exist method may be used to verify the designated DSI actually exists within the DS before reading it. It can be useful in order to avoid exception when reading a DSI.

6.1.2 PClassMapping Interface

public interface PClassMapping extends PBinder {

final static byte CLEANUP_REMOVEALL = 1;

final static byte CLEANUP_REMOVEDATA = 2;

final static byte CLEANUP_DONOTHING = 3;

PBinding createPBinding();

String getClassName();

PClassMapping getGenClassMapping() throws UnsupportedOperationException;

PClassMapping getGenClassMapping(String fn) throws UnsupportedOperationException;

MetaObject getMetaInfo();

PBinder getPBinder();

PMapper getPMapper();

PNamingContext getPNamingContext() throws UnsupportedOperationException;

PNamingContext getPNamingContext(String fn) throws UnsupportedOperationException;

void init(PMapper mapper, MetaObject metaclass) throws PExceptionProtocol, PExceptionTyping;

void initMappingStructures(Object conn, byte cleanup) throws PExceptionProtocol, PExceptionIO;

void removeMappingStructures(Object conn, boolean contentonly) throws PExceptionProtocol, PExceptionIO;

void setGenClassMapping(PClassMapping pcm) throws UnsupportedOperationException;

void setGenClassMapping(String fn, PClassMapping pcm) throws UnsupportedOperationException;

void setPBinder(PBinder pb) throws PExceptionTyping;

void setPNamingContext(PNamingContext pnc) throws PExceptionTyping, UnsupportedOperationException;

void setPNamingContext(String fn, PNamingContext pnc) throws PExceptionTyping, UnsupportedOperationException;

}
Objects that implement the PClassMapping interface hold all information that is related to the mapping of a particular class of persistent objects, be it a tuple class or a collection class (generic class).

First, there is a group of methods that is used by a mapper when a class mapping is registered (this is done by calling PMapper.map as described in Figure 7): it is composed of init, initMappingStructures, and removeMappingStructures:

· The init method verifies the compatibility between the PClassMapping object proposed to be taken into account and the involved PMapper. It verifies that all PClassMapping associated to generic class references have been set and recursively calls init on them. It then assigns this mapper to itself as well as the meta-information associated to this class if requested. It also verifies that all information necessary to manage references (binder and naming contexts) have been properly set and are conform to what required with respect to names structure.

· The other two methods, initMappingStructures and removeMappingStructures, are used to initialise the structures within the DS that are required to store the persistent class involved in this mapping. This is done recursively for the PClassMapping of generic class fields.

A second group of methods is used to initialise a PClassMapping before it is mapped within a mapper. It is composed of the following setter methods:

· The setPBinder method assigns the actual PBinder to which the PClassMapping delegates its PBinder role. It is mandatory for a PClassMapping to be functional.

· The two setGenClassMapping are used to assign the PClassMapping associated to a field that references a generic class, or to the elements of a generic class instance that are generic class instances themselves. Such PClassMapping are mandatory for all references of this kind.

· The two setPNamingContext are used to assign the PNamingContext associated to a field that holds a reference, or to the elements of a generic class instance that are references. They are mandatory for all references.

A third group of methods are mainly getters that given access to information item that are associated with a PClassMapping:

· getClassName yields that fully qualified name of the JORM class. For PClassMapping associated to generic class instances, it yields the fully qualified name of the generic class.

· The two getGenClassMapping give access to relevant PClassMapping associated to references to generic class instances.

· getMetaInfo yields the MetaObject associated to this PClassMapping. It can be either a Class or a GenClass (see section 8.1).

· getPBinder yields the actual PBinder introduced above.

· getPMapper yields the PMapper into which the persistent class is actually mapped.

· The two getPNamingContext give access to relevant PNamingContext that are associated to references managed within this persistent class.

Finally, the remaining method, createPBinding, corresponds to the role of PBinding factory of a PClassMapping.

6.1.3 PAccessor and PAccessorGen Interfaces

interface PAccessor {

Object getMemoryInstance();

}

interface PAccessorGen extends PAccessor {

boolean paGetBooleanField(String fn);

byte paGetByteField(String fn);

char paGetCharField(String fn);

short paGetShortField(String fn);

int paGetIntField(String fn);

long paGetLongField(String fn);

float paGetFloatField(String fn);

double paGetDoubleField(String fn);

String paGetStringField(String fn);

java.util.Date paGetDateField(String fn);

java.io.Serializable paGetSerializedField(String fn);

PName paGetRefField(String fn);

void paSetBooleanField(String fn, boolean value);

void paSetByteField(String fn, byte value);

void paSetCharField(String fn, char value);

void paSetShortField(String fn, short value);

void paSetIntField(String fn, int value);

void paSetLongField(String fn, long value);

void paSetFloatField(String fn, float value);

void paSetDoubleField(String fn, double value);

void paSetStringField(String fn, String value);

void paSetDateField(String fn, java.util.Date value);

void paSetSerializedField(String fn, java.io.Serializable value);

void paSetRefField(String fn, PName value);

}

The PAccessor and PAccessorGen interfaces give access to tuple-structured MIs (represented by normal persistent classes) associated to binding objects. PAccessor merely provides a getter method for retrieving the corresponding MI. PAccessorGen extends this interface by providing getter/setter methods for each type supported by the JORM data model, which take the name of the field to be accessed as a parameter. This corresponds to a dynamic (i.e., interpreted) approach where field matching is done at execution time.

Class-specific accessor interfaces can also be provided and implemented, which corresponds to a more static approach where field matching is done at compile time. Such an interface would look like the following one:

 interface PersonAccessor extends PAccessor {

java.util.Date paGetBirthDate();

String paGetName();

void paSetBirthDate(java.util.Date value);

void paSetName(String value);

}

This example depicts a person class that has two fields called name and birthDate. Two accessor methods are provided for each field, ensuring that these methods carry field values with the relevant type. Binding object supports both kinds of accessor interfaces.

6.1.4 PAccessorGenClass, PIndexedElemFactory and PIndexedElem Interfaces

interface PIndexedElemFactory {

PIndexedElem createPIndexedElem();

}

interface PAccessorGenClass extends PAccessor, PIndexedElemFactory {

void paAdd(PIndexedElem elem,Object conn) throws PExceptionIO;

boolean paDeltaSupported();

int paGetNbElem();

Iterator paIterator();

void paSetNbElem(int nbelem);

}

interface PIndexedElem {

final static byte ELEM_CREATED = 1;

final static byte ELEM_DELETED = 2;

final static byte ELEM_MODIFIED = 3;

final static byte ELEM_UNMODIFIED = 4;

byte getElemStatus();

boolean pieGetBooleanElem() throws PExceptionTyping;

byte pieGetByteElem() throws PExceptionTyping;

byte pieGetByteIndexField(String fn) throws PExceptionTyping;

char pieGetCharElem() throws PExceptionTyping;

char pieGetCharIndexField(String fn) throws PExceptionTyping;

short pieGetShortElem() throws PExceptionTyping;

short pieGetShortIndexField(String fn) throws PExceptionTyping;

int pieGetIntElem() throws PExceptionTyping;

int pieGetIntIndexField(String fn) throws PExceptionTyping;

long pieGetLongElem() throws PExceptionTyping;

long pieGetLongIndexField(String fn) throws PExceptionTyping;

float pieGetFloatElem() throws PExceptionTyping;

double pieGetDoubleElem() throws PExceptionTyping;

String pieGetStringElem() throws PExceptionTyping;

String pieGetStringIndexField(String fn) throws PExceptionTyping;

Date pieGetDateElem() throws PExceptionTyping;

Serializable pieGetSerializedElem() throws PExceptionTyping;

Object pieGetRefElem() throws PExceptionTyping;

void pieSetBooleanElem(boolean value) throws PExceptionTyping;

void pieSetByteElem(byte value) throws PExceptionTyping;

void pieSetByteIndexField(String fn, byte value) throws PExceptionTyping;

void pieSetCharElem(char value) throws PExceptionTyping;

void pieSetCharIndexField(String fn, char value) throws PExceptionTyping;

void pieSetShortElem(short value) throws PExceptionTyping;

void pieSetShortIndexField(String fn, short value) throws PExceptionTyping;

void pieSetIntIndexField(String fn, int value) throws PExceptionTyping;

void pieSetLongIndexField(String fn, long value) throws PExceptionTyping;

void pieSetFloatElem(float value) throws PExceptionTyping;

void pieSetDoubleElem(double value) throws PExceptionTyping;

void pieSetStringElem(String value) throws PExceptionTyping;

void pieSetStringIndexField(String fn, String value) throws PExceptionTyping;

void pieSetDateElem(Date value) throws PExceptionTyping;

void pieSetSerializedElem(Serializable value) throws PExceptionTyping;

void pieSetRefElem(Object value) throws PExceptionTyping;

}

The PAccessorGenClass and PIndexedElem interfaces give access to collection-structured MIs (represented by generic persistent classes) associated to binding objects. The first interface defines the requested behaviour of generic class MI with respect to the PBinding that will use it. The second define the behaviour of elements stored within such a MI that is also used by this PBinding. Like PAccessor interfaces presented previously, PAccessorGenClass merely a getter/setter access pattern relevant to the collection structure.

The getter part is materialised by three methods: paGetNbElem, paDeltaSupported, and paIterator. PBinding objects use the paGetNbElem method in order to know how many valid elements belong to this generic class instance. This is the exact number of elements that will remain within the associated DSI after write completion. Then, the method specifies if the MI manages the status of each of its elements with respect to their lifecycle (flags ELEM_CREATED, ELEM_DELETED, ELEM_MODIFIED, ELEM_UNMODIFIED define each of the state for this lifecycle). This means that calling PIndexElem.getElemStatus provides a valid answer to the PBinding using it. Finally, the method yields an Iterator that gives access to all elements stored within the generic class MI.

The setter part is symmetrical and also uses three methods: paSetNbElem, createPIndexedElem, and paAdd. The generic class PBinding first calls the paSetNbElem method in order to signal to the MI the number of elements retrieved from the DSI that will be passed through the paAdd method. The MI can then prepare the relevant amount of memory before loading the elements. Then, a PIndexedElem is created for each element that has been read from the DSI, using the createPIndexedElem method (the PAccessorGenClass also acts as a PIndexedElemFactory). Finally, the paAdd method is called in order to add this new element to the associated MI.

The PIndexedElem interface gives access to three information items: the lifecycle status of the element within its generic class MI, the value of its index, and its own value. When using a PIndexedElem, a generic class PBinding object just requires a getter for the element status while both a getter and a setter are provided for accessing the index and the value of the elements. There is one couple of methods for each type supported by either the index or the value.

6.1.5 PMapper Interface

public interface PMapper {

String getMapperName();

String getMappingName();

PTypeSpace getPTypeSpace();

PClassMapping lookup(String classname);

void map(Object conn, PClassMapping pcm, byte cleanup) throws PExceptionIO, PExceptionProtocol, PExceptionTyping;

void map(Object conn, PClassMapping pcm, byte cleanup, boolean loadmeta) throws PExceptionIO, PExceptionProtocol, PExceptionTyping;

void setMapperName(String mappername);

void setMappingName(String mappingname);

void setMetaInfoManager(Manager m);

void setParser(Parser p);

void setPTypeSpace(PTypeSpace pts);

void unmap(String classname) throws PException;

}

The main role of a PMapper is that of a registry of persistent class mappings. Thus, it maintains an association between the fully qualified name of a JORM class and its PClassMapping. The management of this association is done through the lookup, map, and unmap methods:

· lookup searches a PClassMapping associated to the class name provided as a parameter. If none is found, it yields null.

· The two map methods are used to define an association. They mainly differs at their parameters level, which enable to control the initialisation of the DS hosting structures or the loading of meta-information related to the mapped class.

· unmap merely attempts to unregister the PClassMapping associated to a JORM class name.

[image: image7.wmf]PMapper:

PClassMapping:

DS:

GenClass PClassMapping:

init

CREATE META-INFORMATION

initMappingStructures

removeMappingStructures

REMOVE DATA AND HOSTING STRUCTURES

CREATE HOSTING STRUCTURES

 init (recursively)

initMappingStructures (recursively)

removeMappingStructures

REMOVE DATA AND HOSTING STRUCTURES

CREATE DATA AND HOSTING STRUCTURES

Figure 7: Mapping a persistent class within a PMapper

map is the most important function of this group, and its functioning is described in more details in the preceding sequence diagram.

Then there is a group of getter/setter methods (i.e., get/setMapperName, get/setMappingName, and get/setPTypeSpace) that are respectively used to define and retrieve the name of the mapper (specific to a kind of DS such as RDB, OODB, LDAP, FILE, etc), the name of a mapping (defining a particular mapping to the kind of DS defined previously), and the PTypeSpace associated to the mapper in order to perform type verification at runtime.

Finally, there are two setter methods that are used to assign both a Parser and a meta-information Manager (i.e., respectively setParser and setMetaInfoManager) that work together in order to load meta-information associated to a mapped JORM class at mapping time.

6.2 Naming JORM Interfaces

6.2.1 PName Interface

interface PName {

boolean codingSupported(short codingtype);

Object encodeAbstract();

byte encodeByte();

char encodeChar();

int encodeInt();

long encodeLong();

short encodeShort();

String encodeString();

PName export(PConnection pc, PNamingContext pnc);

PNamingContext getPNamingContext();

PType getType();

Object resolve(PConnection pc);

void unexport(PConnection pc);

}

A persistent name is mainly carrier object for two information items: identification data and typing data that is accessible using the getPType method. The semantics of this information is defined by the naming context of the persistent name, as a persistent name only exists within a naming context. The PName interface reflects a part of the naming context behaviour by providing the methods of naming context that can be directly performed from a persistent name. For understanding encodeXXX methods as well as resolve and unexport methods, see next section describing naming context.

In the same way, bind is a shortcut of the bind method of the PBinder interface. It is only supported by persistent names that are related to a binder and not to a simple naming context.

The export method is used to construct name chains that are of particular interest when federating centralised or distributed DSs. It associates a name within another naming context to the given name.

6.2.2 PNamingContext Interface

interface PNamingContext {

static final int CTBYTE = 1;

static final int CTCHAR = 2;

static final int CTSHORT = 3;

static final int CTINT = 4;

static final int CTLONG = 5;

static final int CTSTRING = 6;

static final int CTABSTRACT = 7;

PName decodeAbstract(Object en);

PName decodeByte(byte en);

PName decodeChar(char en);

PName decodeInt(int en);

PName decodeLong(long en);

PName decodeShort(short en);

PName decodeString(String en);

Object encodeAbstract(PName pn);

byte encodeByte(PName pn);

char encodeChar(PName pn);

int encodeInt(PName pn);

long encodeLong(PName pn);

short encodeShort(PName pn);

String encodeString(PName pn);

PName export(PConnection pc, Object entity);

boolean isCodingTypeSupported(int ct);

Object resolve(PConnection pc, PName pn);

void unexport(PConnection pc, PName pn);

}
A PNamingContext object associates an entity to a persistent name. This entity can usually be another persistent name belonging to another naming context. Such associations are managed through three methods:

· export sets up an association by providing a persistent name for a given entity within a naming context. As said before, a new name with a new association may be created each time export is called even with the same entity. It may also enforce that a unique persistent name is associated to a particular entity.

· unexport removes the association that involves a particular persistent name given as a parameter.

· resolve permits to lookup an association that involves a persistent name given as a parameter. It yields the entity associated to this persistent name.

The second role of a naming context is to define the coding of persistent names in order to be able to store them with a particular structure supported by the underlying DS. The JORM persistent framework considers mainly five types to code persistent names for storage: byte, char, short, int, long, String, and Object. The six first types are JORM storage types. The last one is used when the mapped DS has some abstraction for names (this is the case for OODBMSs), or for supporting primary key names. The coding process is implemented by two symmetric methods encodeXXX and decodeXXX that are specialised for each XXX storage type. The encodeXXX method encodes a persistent name into an XXX value whereas decodeXXX decodes an XXX value in order to re-generate the relevant persistent name within a naming context.

A naming context supports at least one coding type. It may also support several of them. The isCodingTypeSupported method is used in order to determine if a particular coding type is supported.

6.2.3 PBinder Interface

interface PBinder extends PNamingContext {

PBinding bind(PConnection pc, PBinding pb, PName pn);

PBinding createPBinding();

PType getType();

PBinder getPBinderGC();

PBinder getPBinderGC(String attrname);

PBinding initPBinding(PBinding pb);

void unbind(PConnection pc, PBinding pb);

}

The binder acts as a binding object factory as well as a naming context that associates a binding object to a persistent name. These two roles are reflected in the PBinder interface.

The factory part is represented by createPBinding and initPBinding methods: the first method actually creates a new binding object, while the second one merely initialises an existing binding object. This results in binding objects with the same state (i.e., NotBoundNoAcc state in Figure 9). The latest method is useful especially when binding objects are merged into a single object with other functions.

The bind and unbind methods are used to associate, respectively dissociate, a binding object to a persistent name within a binder. The export method inherited from the PNamingContext interface has to be used when needing to associate a binding object with a new persistent name. This is the only means that may lead to the creation of new DSIs.

The getPType method yields the PType defining the class of a binder. Finally, the getPBinderGC method is used to retrieve the binders associated to generic classes involved in fields of that type within a class.

As introduced in the previous section, there are special interfaces for dependent objects. This is the case for PBinder that is derived into PBinderDep in order to support PBindingDep. As a link to the object it depends on must be enforced for PBindingDep object, for all methods that create or initialise binding objects, the PBinding of this object is given as a parameter. The methods that are concerned are bind, createPBinding and initPBinding. The original methods must throw the UnsupportedOperationException in the case of PBinderDep.

6.3 Typing JORM Interfaces

7 Life Cycle of Binding Objects

This section specifies the life cycle for binding objects of the JORM framework. It especially focuses on the functions provided by a binding object, and the interactions that occur with other JORM entities such as binders, naming contexts, type contexts and so on.

7.1 Overview

Binding objects represent Data Store Instances. As such, their life cycle intrinsically defines the life cycle of DSI. This life cycle is very simple as a DSI may exist in the DS or not (i.e., valid or invalid state as shown in Figure 8). This is the only assumption made by the framework about DSI. Then is minimal set of actions that should be supported by a DS is composed of create, delete, exist, read, and write. It must be noticed that all these actions assume that an identifier name is known for the related DSI, even for the create action.

[image: image8.wmf]

Invalid DSI

create

remove

Valid DSI

read, write, exist

exist

Figure 8: Life cycle of a DSI

Identifier names are managed apart from DSI. This means that such an identifier must have been created before the create action is performed to the DS. In certain situations, identifier management is closely related to storage management. In such cases, DSI may be created at the identifier creation time; the previous create action does not performing any job.

The role of a binding object is to hide the management of identifier names and of DSIs. The way life cycle of names and associated DSIs relate to the life cycle of binding objects is explained in the remainder of this section.

7.2 Binding Object at Work

Binding is the central JORM feature for accessing persistent object from memory. This section explains in deeper details the functioning of binding objects and their related entities. It follows by introducing the graph defining the states that can be taken by a binding object, as well as the transitions that occur when actions are performed.

As explained in previous sections of this specification document, the binding object is the main JORM abstraction: it provides standard I/O functions that hide the heterogeneity of underlying DSs. This is the exact place where the mapping between MIs and their associated DSIs occurs. The binding object thus relates an MI with a DSI. It requires two companion objects in order to do that: a PAccessor object that represents the MI, and a PName object that represents the DSI.

The life cycle of a binding object mainly depends of its relation to these two companion objects. Not considering I/O-related ones, the methods of the PBinding interface can then be sorted into two categories: those that manage the relation with the PAccessor object, and those that manage the relation with the PName object. These two sets are defined below:

· Managing PAccessor relationship: setPAccessor and setPAccessorGen are the two methods for managing this link. Both methods may activate two transitions in Figure 9: setPA (when calling setPAccessor or setPAccessorGen with a non-null PAccessor parameter), and unsetPA (when calling setPAccessor or setPAccessorGen with a null PAccessor parameter).

· Managing PName relationship: bind, unbind, export and unexport are the three methods for managing this link. They all have an associated transition in Figure 9.

[image: image9.wmf]NoAccessor (nR, nW, nE)

ActiveForIO

NotBoundNoAcc (nR, nW, nUE, nE)

NotBound (nR, nW, nUE)

NewToWrite (nR, nUS)

DelToWriteNoAcc (nR, nE)

DelToWrite (nR)

write

setPA

unsetPA

read

bind

unexport

bind

setPA

unsetPA

write

setPA

unbind

unexport

setPA

write

unsetPA

unbind

bind

bind

unexport

unbind

unbind

unsetPA

unexport

unbind

unbind

unsetPA

write

export

setPA

bind

setPA

unbind

bind

bind

unsetPA

export

export

unexport

export

setPA

Figure 9: Life cycle of a PBinding object
In order to understand PBinding functioning in more details, the seven different states of the life cycle of this object (as depicted in Figure 9) are explained below, as well as the transitions that can occur between them.

This state are represented within the PBinding interface by some constants as follows:

interface PBinding {

static final byte LIFECYCLE_ACTIVEFORIO;

static final byte LIFECYCLE_DELTOWRITE;

static final byte LIFECYCLE_DELTOWRITENOACC;

static final byte LIFECYCLE_NEWTOWRITE;

static final byte LIFECYCLE_NOACC;

static final byte LIFECYCLE_NOTBOUND;

static final byte LIFECYCLE_NOTBOUNDNOACC;

...

}

In Figure 9, boxes represent states with their name inside. Arrows represent transitions whose names are carried by these arrows. Notice that state names are often followed of terms into brackets. These terms are nR, nW, and nU. This correspond to calls that raise exception: nR means no call to read possible, nW means no call to write possible, and nU means no call to unexport possible.

NotBoundNoAcc state

This is the first valid state of a PBinding object. It occurs just after such an object has been created, using either the createPBinding or the initPBinding methods from the PBinder interface.

It has no associated PName at this time, and there is only one way for assigning such a PName: calling bind that leads to the NoAcc state. export cannot be called at this point because some binders requires to access the memory instance through the PAccessor, which is not available here, in order to build the new name.

It has no associated PAccessor at this time, and assigning one such object leads to the NotBound state.

Calling unbind or assigning a null PAccessor has no effect in this state, whereas calling read, write or unexport raise some exceptions.

NotBound state

In this state, a binding object has an associated PAccessor object but no associated PName object. If the PAccessor object is set to null, it goes back to the NotBoundNoAcc state.

It has no associated PName at this time, and there are two ways for assigning such a PName: calling export that leads to the NewToWrite state, and calling bind that leads to the ActiveForIO state.

Calling unbind or assigning a non-null PAccessor has no effect in this state (except changing the PAccessor object for the last case), whereas calling read, write or unexport raise some exceptions.

NoAcc state

In this state, a PName object has been assigned to a binding object. This is a persistent name of a DSI that should exist.

It has no associated PAccessor at this time, and assigning one such object leads to the ActiveForIO state.

Calling unbind gets the binding back in the NotBoundNoAcc state, while assigning a null PAccessor has no effect in this state. The read or write methods cannot be called from this state: they raise some exceptions.

Finally, the unexport method can be called and leads to the DelToWriteNoAcc state. Indeed, there is no need of a PAccessor to start removing a DSI.

ActiveForIO state

This is the state where a binding is fully functional with respect to I/O functions. Indeed, read and write can be called any time while the binding stay in this state. In the same way, changing the PName associated to the binding (calling bind) or its PAccessor does not change the state either.

Calling unbind gets the binding back to the NotBound state.

Calling unexport, which is the first step for removing a DSI, leads to the DelToWrite state.

NewToWrite state

This second state preparing the DSI creation is the state from which a DSI can be really created within its DS. Calling the write method actually does this. After such a call, the binding reaches the ActiveForIO state.

Calling unbind, like calling unexport, leads to the NotBound state. Only setting the PAccessor to null and calling the read method are forbidden from this state: it raises an exception.

DelToWriteNoAcc state

This is one of the two states (with DelToWrite) that prepare the deletion of a DSI. This is always a call to unexport that leads to one of these two states, although not all calls to unexport lead to one of them. This is the case when unexport is called from the creation state (i.e., NewToWrite).

As soon as write is called, the corresponding DSI is removed from its DS. While performing this deletion, the binding also makes a transition into the NotBoundNoAcc state. The same transition occurs if unbind is called. Notice that the DSI has not been deleted.

Assigning a null PAccessor, like calling unexport one more time, have no effect on this state. Assigning a non-null PAccessor just moves the binding in the other deletion state, DelToWrite.

read or export cannot be called from this state: they raise an exception.

Calling bind makes the binding leaving this state and reaching the NoAcc state. Indeed, the binding designates a new DSI, thus it must get back to a standard behaviour for this DSI (i.e., there is no reason to stay in the deletion state for this new DSI).

DelToWrite state

This is the other deletion state. Like in the previous one, as soon as write is called, the corresponding DSI is removed from its DS. While performing this deletion, the binding also makes a transition into the NotBound state. The same transition occurs if unbind is called. Notice that the DSI has not been deleted either.

Assigning a non-null PAccessor, like calling unexport one more time, have no effect on this state. Assigning a null PAccessor just moves the binding in the other deletion state, DelToWriteNoAcc.

read cannot be called from this state: it raises an exception.

Calling bind makes the binding leaving this state and reaching the ActiveForIO state, while calling export leads to the NewToWrite state.

7.3 Performing I/O

[image: image10.wmf]

PBinding:

DSI:

PAccessor:

MI:

PName:

MARSHALL FIELD

paGetField

ACTUAL FIELD GETTING

export

encode

WRITE ALL FIELDS TO DS

Only performed for

reference field

Figure 10: Writing a persistent object

[image: image11.wmf]

PBinding:

DSI:

PAccessor:

MI:

PName:

READ ALL FIELDS FROM DS

UNMARSHALL FIELD

paSetField

ACTUAL FIELD SETTING

decode

Only performed for

reference field

Figure 11: Reading a persistent object

8 Exceptions

There are five exceptions defined by JORM. There is an “abstract” one, called PException, from which all others derive.

8.1 PException exception

8.2 PExceptionProtocol exception

8.3 PExceptionNaming exception

8.4 PExceptionIO exception

8.5 PExceptionTyping exception

9 To Do List

Annexe A. some annexe !!

Annexe B. Related Documents

Annexe C. Change History

This appendix outlines the significant changes during the evolution of these specifications.

C.1. Changes since Draft 0.1

[image: image12.png]_1075180967.doc

Client

Client DB (RDBMS)

FirstNameList

{(pos, value)(

Equipments

lineDesc

leaseDevices

phoneNumber

identifier

lastName

firstNames

equipments

Equipement DB (OODBMS)

_1075707752.doc

PBinding:

DSI:

PAccessor:

MI:

PName:

MARSHALL FIELD

paGetField

ACTUAL FIELD GETTING

export

encode

WRITE ALL FIELDS TO DS

Only performed for reference field

_1094579712.doc

JORM Mappers encapsulating Data Stores

Memory Instance Managers supporting the JORM interface

_1075184454.doc

Invalid DSI

Valid DSI

create

remove

read, write, exist

exist

_1075707711.doc

PBinding:

DSI:

PAccessor:

MI:

PName:

READ ALL FIELDS FROM DS

UNMARSHALL FIELD

paSetField

ACTUAL FIELD SETTING

decode

Only performed for reference field

_1065937728.doc

DSI

Persistent Naming

Contexts

Data Stores

PNC 1

PNC 2

PNC 3

PNC 4

PNC 5

DS 1

DS 2

_1075102803.doc

TCLIENT

ID LASTNAME EQUIPMENTS

TFIRSTNAMES

CLIENTID POS FIRSTNAME

RDBMS

C_equipments

phoneNumber

lineDesc

leaseDevices

phoneNumber

lineDesc

leaseDevices

phoneNumber

lineDesc

leaseDevices

phoneNumber

lineDesc

leaseDevices

OODBMS

identifier

lastName

firstNames

equipments

phoneNumber

lineDesc

leaseDevices

firstName[]

PName

PName

Memory Instances

PBinding

PBinding

PBinding

PName

_1061899408.doc

Data Store

JVM

MAPPER

PBinding

interface

object

PName

PAccessor

 read, write, exist, …

Memory Instance

DSI

« composed of » relationship

Java interface invocation

DS I/O invocation

identifier name

_1061283062.doc

DATA STORE

JVM

Persistent Capable Java Objects (aka JORM Memory Instances)

Structural Mapping

JORM Binding Objects

Usual Transient Java Objects

