
JOTM-BTP: a BTP extension for JOTM

Jeff Mesnil

December 5, 2002

Abstract

This guide describes the BTP extension of JOTM.

Contents

1 Introduction 2

2 Prerequisites 2
2.1 Ant . 3
2.2 Tomcat . 3
2.3 Axis . 3
2.4 JOTM . 3

3 Installing JOTM-BTP 3
3.1 From a package . 3
3.2 From CVS . 4

4 Ant commands 4
4.1 Compile and build JOTM-BTP 4
4.2 Generate Javadoc . 5
4.3 Generate Documentation . 5
4.4 Clean JOTM-BTP . 5
4.5 Source Structure . 6
4.6 Distribution Structure . 6

5 BTP Demonstration 6
5.1 Scenario . 7
5.2 Installation . 7

5.2.1 JOTM and JOTM-BTP 7
5.3 Deployment . 7

5.3.1 Web Services deployment 8
5.3.2 web.xml modification 8

5.4 Run the demonstration . 8
5.5 From CVS . 9

1

6 JOTM-BTP architecture 9
6.1 Design goals . 9

6.1.1 Client-side Design . 10
6.1.2 Server-side Design . 10
6.1.3 BTP implementation design 10

6.2 Example: Message flow of CONTEXT + APLLICATION
MESSAGE . 10

6.3 Examples . 11
6.3.1 Participant code example 11
6.3.2 Deployment descriptor for Axis 12
6.3.3 Client code example 13

6.4 XML marshalling and unmarshalling 14
6.5 Cohesive coordinators (composers) 14

7 Contacts 14

1 Introduction

This guide describes JOTM-BTP, the BTP extension of JOTM. It was con-
tributed by Pierre-Yves Gibello and Xavier Spengler of ExperLog.
BTP (Business transaction Protocol) is a standard defined by the OASIS
Consortium. BTP goal is to define XML-based technology for business
transactions on the Internet. Business to business interactions on the In-
ternet pose unique challenges; including transactions that span multiple
enterprises and long lasting transactions. The interdependent workflows
among multiple trading partners, which drive business transactions, need to
be coordinated to ensure that the outcome of the transaction is reliable.
If you have any questions or comments on this BTP extension, do no hesitate
to let us (mailto:jotm@objectweb.org) know.

2 Prerequisites

In order to install or use this extension, you will need a few Java application
which you may already have:

• Ant 1.5

• Tomcat 4.0.4

• Axis 1.0

• JOTM 1.0.x

2

http://www.experlog.com/
http://www.oasis-open.org/committees/business-transactions/
http://www.oasis-open.com/
http://www.oasis-open.com/
mailto:jotm@objectweb.org

2.1 Ant

JOTM-BTP uses Ant (version 1.5) for its build process.
Ant can be downloaded from http://jakarta.apache.org/ant/. See the
documentation of Ant to set it up (http://jakarta.apache.org/ant/manual/).

2.2 Tomcat

Tomcat is the web container developed by Apache/Jakarta. JOTM-BTP
uses Tomcat 4.0.4. which can be downloaded from http://jakarta.apache.
org/tomcat/. See the documentation of Tomcat 4.0.4 to set it up (http:
//jakarta.apache.org/tomcat/tomcat-4.0-doc/).
JOTM-BTP build process relies on the CATALINA HOME environment prop-
erty which has to be set to the directory where tomcat is installed:

$ export CATALINA_HOME=<path_to_tomcat_directory>

2.3 Axis

Axis is a project of Apache/XML which implements the SOAP (Simple Ac-
cess Object Protocol). JOTM-BTP uses Axis 1.0 which can be downloaded
from http://xml.apache.org/axis/releases.html. Once Axis package
has been downloaded and unzipped, copy the webapps/axis/ directory into
the $CATALINA HOME/webapps/ directory. JOTM-BTP build process ex-
pects to find axis webapp in the $CATALINA HOME/webapps/ directory. If it
doesn’t, build process will fail.

2.4 JOTM

To download and install JOTM, please refer to JOTM installation guide.

3 Installing JOTM-BTP

JOTM-BTP is available under two configurations:

• a package including jars and examples: jotm-btp-x.y.tgz where x.y
is the version of JOTM-BTP

• from CVS

3.1 From a package

JOTM-BTP package can be downloaded from JOTM SourceForge page
(http://debian-sf.objectweb.org/projects/jotm/).
To install JOTM-BTP from a package, unzip the file with gunzip and tar
on Unix systems and winzip on Windows.
This will create a new directory jotm-btp-x.y/.

3

http://jakarta.apache.org/ant/
http://jakarta.apache.org/ant/manual/
http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP/
http://xml.apache.org/axis/releases.html
http://www.objectweb.org/jotm/doc/
http://debian-sf.objectweb.org/projects/jotm/

3.2 From CVS

CVS provides network-transaparent source control for groups of developers
(more info at http://www.cyclic.com).
Working with CVS allows you to do things like cvs status or cvs diff and
any other read-only CVS command.
To get JOTM from CVS, type:

$ cvs -d :pserver:anonymous@cvs.objectweb.org:/cvs/JOTM login
$ CVS password: [type Enter]
$ cvs -d :pserver:anonymous@cvs.objectweb.org:/cvs/JOTM co -P jotm-btp

This will create a working repository of JOTM in the jotm-btp/ directory.

4 Ant commands

If you’ve retrieved JOTM-BTP from CVS, you’ll have to build it and create
a distribution before using it.
JOTM-BTP relies on Ant for its build process.
All Ant commands are to be typed in the jotm-btp/ directory (i.e. in the
same directory than the build.xml file).
To have a list and descriptions of all Ant available targets for JOTM, type:

$ ant -projecthelp

Before executing any Ant commands, be sure that:

• CATALINA HOME has been set

• Axiz webapp has been placed in the webapps/ directory of Tomcat

• The relative path to JOTM distribution is correct in jotm-btp/build.properties
(by default, the path is correct if you’re using both JOTM and JOTM-
BTP form CVS. Otherwise, you may have to change it)

Ant messages will warn you if one of these 3 conditions is not met.

4.1 Compile and build JOTM-BTP

This step is necessary only if you have modified JOTM-BTP source code or
you’ve retrieved source files from CVS.
You just have to type:

$ ant dist

This will compile all JOTM-BTP source files and create all the jar files.
A working version of JOTM-BTP is now available in the output/dist/
subdirectory (the so-called distribution directory of JOTM-BTP).

4

http://www.cyclic.com

4.2 Generate Javadoc

To generate JOTM-BTP Javadoc, simply type:

$ ant jdoc

Javadoc pages are now browsable from the output/dist/jdoc/ subdirec-
tory.

4.3 Generate Documentation

JOTM-BTP documentation is written in LaTeX.
We use pdflatex tool to generate PDF files and latex2html to generate
HTML files. Since these two tools may not be installed on your system,
it’s up to you to inform Ant that it’ll have the tools to perform document
generation.
PDF (resp. HTML) generation is triggered by pdlatex (resp. latex2html)
property on the command line. What’s more, for HTML generation a shell
script, doc2html, is used. So for the moment, you can generate HTML
documentation only from Linux. Sorry... (Anyway, documentation is still
available online at http://www.objectweb.org/jotm/doc/ in both PDF
and HTML format).

• If you’ve pdflatex on your system, you can ask Ant to generate PDF
documentation by typing

$ ant doc -Dpdflatex=1

• If you’ve latex2html and you’re on Linux, you can ask Ant to generate
HTML documentation by typing

$ and doc -Dlatex2html=1

Of course, you can also do both

$ and doc -Dpdflatex=1 -Dlatex2html=1

Generated document is put in the output/dist/doc/ directory.

4.4 Clean JOTM-BTP

To remove files generated during compilation or build process, type:

$ ant clean

You’ll start from a clean working directory again.

5

http://www.objectweb.org/jotm/doc/

4.5 Source Structure

When you retrieve JOTM-BTP source, the structure of your jotm-btp/
directory is the following one:

• GettingStarted.txt - a reminder of the main Ant targets for JOTM-
BTP

• README.txt - the usual README file

• build.xml - the main Ant build file used by JOTM-BTP

• build.properties - configuration of Ant properties are done in this
file

• doc/ - all documentation sources are in this directory (e.g. install.tex
from which this guide has been generated)

• externals/ - some external libraries used by JOTM (which are not
part of JOTM, Tomcat or Axis)

• src/ - source code of JOTM-BTP

• demo/ - JOTM-BTP demonstration (based on booking of hotel and
flight) source code

4.6 Distribution Structure

Once you’ve built JOTM-BTP (i.e. in the output/dist/ subdirectory) or
if you retrieved it from its package, the ditribution structure of JOTM-BTP
is the following:

• README.txt - still the usual README file

• doc/ - this directory may contain PDF and HTML version of the
various documentation files (see section 4.3)

• demo/ - JOTM-BTP demonstration (binary files, Javadoc)

• jdoc/ - Javadoc of JOTM-BTP

• lib/ - JOTM-BTP library directory (it contains JOTM-BTP jar file
and some other used jar files)

5 BTP Demonstration

Once you have a distribution of JOTM-BTP, one handy way to be sure that
it is working is to run the demonstration (which is in the demo/ directory of
the distribution).

6

5.1 Scenario

The BTP demonstration is based on a common transaction example: a travel
agency which books both one hotel and one flight in the same transaction.
The demonstration is composed of 3 Web services:

• TravelAgency

• HotelReservation

• FlightReservation

The TravelAgency will contact both HotelReservation and FlightReservation
to book them in the same transaction. If a problem occurs (such as no more
place in the hotel or in the flight), the transaction will be rolled back for
both. Otherwise, a reservation will be kept for both of them under the same
transaction ID.

In addition to the travel agency client, there are two other servlets which
can be used to supervise SOAP messages, transaction messages, hotel and
flight reservation,...

5.2 Installation

Before installing the demonstration, you’ll need to have a correct installation
of both Tomcat and Axis (see section 2).

5.2.1 JOTM and JOTM-BTP

First, copy into $CATALINA HOME/webapps/axis/WEB-INF/lib/ directory:

• Jar files from JOTM distribution (in $JOTM HOME/lib/ directory):

– jotm.jar

– jotm jrmp stubs.jar

– jonas timer.jar

• Jar files from JOTM-BTP distribution:

– jotm-btp.jar

– kxml2.jar

5.3 Deployment

Still into $CATALINA HOME/webapps/axis/WEB-INF/lib/ directory, copy:

• demo/btp-demo.jar

Copy into $CATALINA HOME/webapps/axis/:

• demo/btp.html

7

5.3.1 Web Services deployment

You can find in the demo/ directory 2 .wsdd files (deploy.wsdd and undeploy.wsdd).
deploy.wsdd (resp. undeploy.wsdd) is used to deploy (resp. undeploy) our
Demonstration Web Service into Axis.

To deploy, in the demo/ directory, type:

$ java org.apache.axis.client.AdminClient deploy.wsdd

See Axis documentation to set the CLASSPATH before deploying (so you
can find the AdminClient class).

After deployment, start Tomcat and browse at http://localhost:8080/axis/
to check for the deployment status (3 web services, respectively called Trav-
elAgency, HotelReservation and FlightReservation should be deployed).

5.3.2 web.xml modification

The last step is to modify axis/WEB-INF/web.xml file to add description of
our demonstration servlets:

• insert into this file the content of demo/btp-web.xml, between the last
servlet and the first servlet-mapping tags.

Finally restart Tomcat (to take into account our new servlets).

5.4 Run the demonstration

Start at the url: http://localhost:8080/axis/btp.html. This page will
give you 3 links

• the Travel Agency Booking, a travel agency client that books a flight
and a hotel

• the Travel Agency Viewer, a servlet to see what happens on the
participant side (hotel and flight bookings)

• the transaction coordinator admin servlet to monitor the transactions

You can first book a flight and a hotel using the TravelAgencyServlet, then
look at what happens at both the transaction coordinator level (Superi-
orServlet) and transaction participants level (ParticipantServlet) during
the booking process.

To simulate a transaction failure, check the Transaction failure simulation...
box in the TravelAgencyServlet home page (will cause one of the participants
to reject the ”prepare” call, then the decider will cancel both participants).

8

http://localhost:8080/axis/btp/TravelAgencyServlet
http://localhost:8080/axis/btp/ParticipantServlet
http://localhost:8080/axis/btp/ParticipantServlet

5.5 From CVS

Since all these tasks are really tedious, if you’re using CVS version of JOTM-
BTP, there is a simpler way to do.
In jotm-btp/ directory, type:

$ ant demo.jar
$ ant demo.copy

It will create the btp-demo.jar jar files and copy all the needed jars in
axis/WEB-INF/lib/ directory.

Then, you still have to manually insert content of demo/btp-web.xml into
axis/WEB-INF/web.xml.

Start Tomcat.

In jotm-btp/ directory, type:

$ ant demo.deploy

That’s it!
You can now try the demonstration from htpp://localhost:8080/axis/btp.html.

6 JOTM-BTP architecture

Now that we’ve seen an example of JOTM-BTP, let see what is JOTM-BTP.

6.1 Design goals

At the beginning of JOTM-BTP, the goals were:

• to Apache Axis as the target deployment platform, and JOTM as the
transaction manager

• to provide a simple way (as transparent as possible to the end user,
i.e. as simple as JTA and XA) to implement and deploy BTP-enabled
web services, on both the client and the server side.

• to be as little intrusive as possible wrt JOTM: current implementation
of JOTM-BTP did not require any modification of JOTM. (JOTM is
embedded in some of our web services - those with a coordinator role
- as the transaction manager we rely on, and that’s it!).

9

6.1.1 Client-side Design

On the client side, JOTM-BTP provides a simple API to exchange BTP and
Application messages with web services. For example, it provides methods to
perform begin(), confirm transaction(), etc. without having to build,
marshal, send, receive and unmarshal XML messages nor to have a fine
understanding of BTP messages).

6.1.2 Server-side Design

On the server side, the programmer just has to extend some of our utilitary
classes (for example, Participant to implement a BTP-enabled participant,
which is the equivalent to a Resource in JOTM or a XAResource in JTA),
and to deploy it as a Web Service on Apache Axis.
The programmer has to implement callbacks, that inform him of transaction-
related events (like transaction boundaries) - so he doesn’t have to cope with
BTP, just with his application logic.

6.1.3 BTP implementation design

Java classes are provided for each BTP Message (eg. CONTEXT, CONTEXT-REPLY,
ENROL, ENROLLED,...), as well as Related Groups (message compounds, like
CONTEXT + APPLICATION).

The main Roles defined in the BTP specification (like Participant, Decider
or SubCoordinator) are implemented as java classes, to be deployed as Web
Services on Axis. Some embeds a JOTM transaction manager (like Decider
or Subcoordinator, that can create and manage transactions), some don’t
(like Participant, that has some BTP capabilities to be enrolled in a trans-
action as a resource, but can’t create and manage its own transactions).

The transaction-related messages between a coordinator and a participant
are undertaken by a “BTP Resource” object, enrolled in JOTM as a Resource,
and exchanging XML messages with the participant it represents under the
control of the transaction manager (eg. a prepare() call on the resource
results in a PREPARE BTP message to be sent to the participant, etc.).

6.2 Example: Message flow of CONTEXT + APLLICA-
TION MESSAGE

• The Terminator sends a transaction context + application messages to
some Participants, which are BTP-enabled web services. The CONTEXT
informs the participants that they have to enrol themselves in a trans-
action (the CONTEXT was obtained from a previous BEGIN issued by the
terminator).

10

• The participants extract transaction information from the Context
(mainly ”superior-address” and ”Transaction-Id”), then determine the
address of the Coordinator they have to ENROL in, and send an ENROL
message.

• The Coordinator has an embedded JOTM transaction manager: upon
receipt of the ENROL message, it creates a local Resource and registers
it on JOTM.

• The Resource handles all the XML communication (BTP messages)
with the Participant, in reaction to the JOTM transaction manager’s
decisions.

Figure 1: on the left, the terminator; on the right, the coordinator; at the
bottom, the participants

6.3 Examples

Note: the sample code below does not exactly reflect our current (prototype)
APIs, but what we have is very near from what we propose here. Of course,
it is subject of changes, and comments are welcome.

6.3.1 Participant code example

public class DemoParticipant

11

extends org.objectweb.jotm.btp.roles.Participant {

public void enrolled(String transactionid) {
System.out.println("Just enrolled in "

+ transactionid);
}

public int prepare(String transactionid) {
System.out.println("Requested to prepare transaction "

+ transactionid);
return Participant.VOTE_PREPARED;

}

public boolean confirm(String transactionid) throws Exception {
System.out.println("Requested to confirm transaction "

+ transactionid);
return true;

}

public boolean cancel(String transactionid) throws Exception {
System.out.println("Requested to cancel transaction "

+ transactionid);
return true;

}

public void contradiction(String transactionid) {
}

public String applicationMessage(String transactionid,
org.objectweb.xml.util.XElement message) {

System.out.println("Got an application message: "
+ message.toString());

return "<greetings>Hello World !</greetings>";
}

}

6.3.2 Deployment descriptor for Axis

<deployment
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<!-- Demo Participant -->
<service name="BtpDemoService" provider="java:RPC">

12

<parameter name="scope" value="Application"/>
<parameter name="className" value="DemoParticipant"/>
<parameter name="allowedMethods" value="messages"/>

</service>

<!-- Decider (the transaction manager) -->
<service name="Decider" provider="java:RPC">
<parameter name="scope" value="Application"/>
<parameter name="className"

value="org.objectweb.jotm.btp.roles.Decider"/>
<parameter name="allowedMethods" value="messages"/>

</service>
</deployment>

6.3.3 Client code example

import org.objectweb.jotm.btp.client.BtpClient;
import org.objectweb.jotm.btp.messages.*;

....

String deciderAddr =
"http://localhost:8080/axis/services/TravelAgency";

String participantAddr =
"http://localhost:8080/axis/services/HotelReservation";

// Begin the transaction
BtpClient client = new BtpClient();
BtpMessage context = client.begin(deciderAddr);

if(context != null && context.getType() == BtpMessage.CONTEXT) {

// Build application message
ApplicationMessage app =

new ApplicationMessage("<greetings>Hi there !</greetings>");

// Send it along with the context to the participant
BtpMessage replyContext =

client.sendCtxApp(participantAddr, (Context)context, app);

}

// Confirm the transaction
BtpMessage outcome =

13

client.confirmTransaction(deciderAddr, (Context)context);

...

6.4 XML marshalling and unmarshalling

• Each Java class that represents a BTP message has a toXml() method
that generates its XML form

• The unmarshalling of messages relies on a MessageParser static class:
currently based on XmlPull, it relies on a 3rd-party XML parser (XPP)
to parse XML, and builds up BTP message classes depending on which
BTP message it recognizes in the XML flow.

6.5 Cohesive coordinators (composers)

JOTM does not support cohesive transactions (a ”cohesive” transaction
can be confirmed if a subset of the involved resources - the ”confirm set” -
answers positively to the PREPARE request).
Cohesion is then currently supported by JOTM-BTP using a hack : the
”BTP Resource” (i.e., the JOTM Resource that is registered in the TM)
always confirms the PREPARE request for all resources that do not belong to
the confirm set.

7 Contacts

If you have some trouble to install JOTM-BTP, any questions or if you want
to contribute, do not hesitate to contact us (mailto:jotm@objectweb.org).

14

mailto:jotm@objectweb.org

	Introduction
	Prerequisites
	Ant
	Tomcat
	Axis
	JOTM

	Installing JOTM-BTP
	From a package
	From CVS

	Ant commands
	Compile and build JOTM-BTP
	Generate Javadoc
	Generate Documentation
	Clean JOTM-BTP
	Source Structure
	Distribution Structure

	BTP Demonstration
	Scenario
	Installation
	JOTM and JOTM-BTP

	Deployment
	Web Services deployment
	web.xml modification

	Run the demonstration
	From CVS

	JOTM-BTP architecture
	Design goals
	Client-side Design
	Server-side Design
	BTP implementation design

	Example: Message flow of CONTEXT + APLLICATION MESSAGE
	Examples
	Participant code example
	Deployment descriptor for Axis
	Client code example

	XML marshalling and unmarshalling
	Cohesive coordinators (composers)

	Contacts

