Yet another brief introduction to Kilim

[A short reflection on the “configuration” problem]
Francois Horn

26/12/2002
Summary

This document presents an alternate presentation of the concepts of the Kilim configuration framework, based on a reflection on what the “configuration problem” is. This document is made of three parts : the first one provides a short introduction to the configuration problem, since the term ''configuration'' is very overloaded and thus often lead to misunderstandings. The second part informally defines the main Kilim concepts, the third one describes the Kilim configuration language. Additional technical information such as the Kilim java interfaces and classes, the XML DTD, are presented in annexes.
1) The “configuration” problem in object oriented systems
It has been stressed by many ''object gurus'' since the 1980’s that a complete object oriented specification of a system should clearly identify for each object :
· its responsability (i.e. the services that it encapsulates and provides through its interface),

· its cooperations (i.e. the services it expects from other objects in order to be able to perform its own tasks).

Enforcing this distinction in software programming leads to a surprisingly deep understanding of the flexibility and maintainability capabilities of applications. This is mainly due to the fact that it greatly clarifies the internal organization of the application and thus helps in understanding the role of all structures and data in each group of cooperating objects that composes it.

This distinction is enforced by some programming environments and tools. Well known examples are environments supporting the CRC methodology (Class-Responsibility-Cooperation) or the paradigm of ''contract programming''. In fact and more generally, this distinction is implicit in many definitions of components and in particular the OMG CCM components (Corba Component Models).

Following this programming approach, Kilim defines the ''configuration problem'' as the specific problem related to the management of the ''object cooperation'' aspects of applications. The terms “configuration information” and “configuration process” thus refer to the various information and tasks required to create, initialize and organize the groups of cooperating objects that will form an application.
Kilim is a framework that provides a generic model, a powerful language and tools (a parser, a runtime, configuration viewers, …) to facilitate, automatize and control the configuration process of arbitrary complex applications.
2) A simple configuration problem example

This section demonstrates through a simple example that the “configuration problem” is a universal problem which can be isolated and handled on its own. It therefore identifies the configurational aspect of a very simple “Electric” application by exhibiting specific configurational interfaces (i.e. interfaces only supporting methods dedicated to configuration). The “Electric” application considered in this document is made of three objects : a lamp, a switch and a block acting as a container for the lamp and the switch. The block provides among other things the top frame used for graphical display.

[image: image1][image: image9.png]
[image: image10.png]
fig n°1 : two views of the Electric application (2 graphical variants for the lamp and switch).
2.1 “functional” interfaces vs “configurational” interfaces
A rather natural way to isolate the functional aspects (from the configurational one) of an application consists in using the transparency principle : one describes the application after making the hypothesis that the right configuration is magically provided by the underlying infrastructure.

A reasonable UML-like static specification corresponding to the application identifies then the 3 following interfaces (shown in the next figure) :
· a Switch interface offering two methods : switchOn() and switchOff(),

· a Lamp interface mainly supporting one single method : receiveCurrent(boolean _cur),

· a Block interface supporting two methods : lightOn() and lightOff(). These 2 methods are just indirections provided by the Block container to the switchOn() and switchOff() methods.

[image: image2]
figure n°2 : the functional interfaces of the application

This ''functional'' specification indicates the services every configured object provides to its environment but it does not indicate how the configuration can be set up in order to make the application work. It expresses how objects interact (cooperate) but does not explain how to install the “groups of cooperating objects”. This must then be done by additional configurational informations and mechanisms
. Most software developpers and programmers introduce them through constructors and/or setters but more complex and sophisticated methods may of course be used.
Two solutions are illustrated in the following pictures. The first one only uses class constructors. Necessary object references are passed through arguments.

[image: image3]
figure n°3 : Configuration is often tackled through the constructors of the implementation classes
This solution introduces however “ordering” constraints on object instantiation : a LampImpl object must be created before a SwitchImpl object which must be instantiated before a BlockImpl object. These constraints applied on the instantiation process are however rather artificial since they do not really reflect real instantiation constraints but binding directives which could be dealt independently in a later configuration step.This is illustrated in the following solution : it minimizes the role of constructors by restricting their action to the parametrization of the attributes necessary/useful at instantiation time (individual resource management for example). All other tasks required by the configuration process at a later stage (binding information for example) are captured by new interfaces which support the configuration specific methods. As a consequence the second solution uses both class constructors and setters such as setSwitch(Switch _sw) and setLamp(Lamp _lmp).

The resulting specification shown in figure n°4 thus provides two sets of interfaces : the first one made of the 3 purely “functional” interfaces (often referred as “business” interfaces) : Block, Switch and Lamp. It focuses on the individual responsibility of each object present in the application. The second one made of the 2 interfaces : BlockConfig and SwitchConfig
, does not give any insight on the “functional” role of each object, but isolates a problem on its own which is the configuration problem
.
Classes of concrete components implement both interfaces :
· class BlockImpl implements Block, BlockConfig { }

· class SwitchImpl implements Switch, SwitchConfig { }

· class LampImpl implements Lamp { }

[image: image4]
figure n°4 : Configuration can be isolated in specific configurational interfaces. Constructors of the various implementation classes are only in charge of “local parametrization” used at instantiation time.
2.2 launchers and “configuration files”
The main role of launchers is to isolate the configuration process of an application. The pictures n°3 and n°4 both show the launcher codes under the form of Main classes (containing a single static main method). Both launchers just invoke the various constructors and setters. Both launchers instantiate a lamp, a switch and a block. It should be noted here that the call of provider and transformer methods are subject to dependency rules : they have to respect a given execution order since some constructors and methods require reference to previously instantiated entities.
Configuration files are used to externalize the information required by launchers. The nature of the data that can be stored in these files largely depends on the flexibility of the used programming language and/or the underlying operating system : values of basic properties (restricted to primitive types), names of classes to be loaded and instantiated, etc ….

In fact many applications under-use explicit launchers and configuration files, which results in rigidly hard-coded solutions difficult to understand and to modify. Kilim provides a generic launcher and a powerful language for building flexible and highly reusable configuration files….
3) A brief and informal overview of the Kilim language
There are at least 2 approaches to present the Kilim configuration framework : the first one is a rather abstract approach which focuses on the main abstractions of the underlying configuration model (in fact the underlying component model), the second one is a more pragmatic one which puts the stress on the main linguistic constructions provided by the language. This paper follows the second approach :
3.1 ports, providers and transformers
The primary concepts of the Kilim language are ports, providers and transformers. A port is a variable used to store the interface reference of an object (A port is a variable in the Kilim model used to store the interface reference of an object. A port is characterized by a name, a type (a status and a state as will be seen later). A provider is an abstraction of a language mechanism for obtaining an object reference. The most common form for providers are constructors but many other exist, such as getter methods, static factory methods, methods on repositories such as lookup methods that return a reference to an object (that already exists but that is unknown in the current environment).

Applying this concept to the first specification of the simple problem introduced in the introduction (the one without any setter and in which all references are passed though object constructors) results in the following modelization : the block reference is obtained via a first provider (which is the BlockImpl constructor), the switch reference is obtained with the help of a second provider (which is the SwitchImpl constructor) and the lamp reference is obtained with a third provider (the LampImpl constructor).

A graphical representation is given in figure n° 5 : ports and providers are respectively depicted as circles and triangles. The blue pentagon represent a property (a predefined constant value). Arrows express flows of information : they either indicate that the return value of a provider is assigned to a port or that the value stored in the port is used as an argument of a provider.

[image: image5]
figure n°5 : Kilim ports and providers

This very simple configuration contains 3 ports : Block ref, Switch ref, Lamp ref and 3 providers : the BlockImpl(…), SwitchImpl(…) and LampImpl(…) constructors. It contains moreover a property Color.RED. This example shows the dependency constraints that exist between providers : the block provider uses the result of the switch provider which in turn requires the result of the lamp provider. These dependencies just mirror the fact that the switch reference is an argument of the block constructor (and the lamp reference an argument of the switch constructor), as shown in figure n°6.

Figure n°6 : the configuration process described by figure n°5.

As previously indicated, most configurational processes do not only rely on constructors but also use setters (and/or getters). It is the case of the other configuration presented in the paper (the one using empty constructors and setters for initializing the object references).
A transformer is an abstraction of a language mechanism for completing the execution of a provider. The most common form for transformers are setters but many other exist, such as static or non static methods. An important feature of transformers is that they do not return any result (they operate through side effects) and as a consequence their execution cannot be deduced from providers (or other transformers) : most constructors have no argument and none shows any explicit dependancy to a transformer. A transformer must then be explicitly associated to a port. A transformer execution is triggered by events.

2 kinds of events are presently accounted for in Kilim :

· “bind” events that are generated when a port stores a (new) value.

· “unbind” events that are generated when a port is reset to null.

A transformer is then associated to a port and an event kind.

The second configuration corresponds to the figure n°7 (transformers are depicted as grey diamonds).

[image: image6]
figure n°7a : Kilim ports, providers and transformers.
This figure corresponds to the following launcher :

Figure n°7b : the launcher for the second configuration
3. 2 components (instances), slots and plugs

A component (also called an instance of a template [see later]) is the abstraction of a group of objects to be handled “atomically” in the configuration process. A component is mainly a collection of ports, providers, and transformers. Assembling components together is obtained by binding some of their ports.

[image: image7]
figure n°7 : “white box” view and “black box” view of a component
In fact Kilim2 introduces the concepts of Slot and Plug. A Slot is a collection of ports handled “atomically” in the binding process of 2 components through a plug operation. Plugging a component B in a slot A/S (i.e. a slot S defined in component A) consists in binding each port Px of slot A/S to a port in the component B having the same name (i.e. Px).

[image: image8]
Figure n°8 : plugging component B in slot A/S

Components and slots are naming domains and thus define a scope.
2.3 templates.
A template is an externalized representation of the “component view” of a system or a part of a system. A template plays a role similar to a class in java and C++ programming languages. It is an operational description for instantiating and initializing a component (it describes all mechanisms for creation and initialization) or a collection of components. A component is an instance of a template.

Access to all component elements : ports, providers, properties, slots, instances, can be constrained and is defined via an access status that is either ''public'', ''protected'' or ''private''. Access status is handled as in java or C++ languages : a public element is visible and thus referenceable from every part of the system. A protected is only visible and thus referenceable from the template it is defined in (or any of its sub-templates).

The status of providers and transformers are usually “private” or “protected”. This leads to the creation of additional ports which plays in Kilim a role similar to accessor methods in object oriented languages.

Today Kilim provides a XML based language to describe templates (the DTD is described in the annex).
The templates corresponding to the previous example are :

<?xml version=”1.1” ?>

<template name=”example/electric” >

<-- structural definition of the electric application : it is obtained by

 assembling a block component with a switch-and-lamp component. A slot is

 thus defined in the block component.

-->

<instance name=”block” template=”example/block”>

<instance name=”switch-and-lamp” template=”example/switch-and-lamp”>

<plug slot=block/sl instance=”switch-and-lamp” />

</template>

<?xml version=”1.1” ?>
<template name=”example/block”>

<-- structural definitions : a block contains a public port (block-ref) and
 a slot (sl) containing one offered port (switch). It should be noted that
 the port’s role is defined from “a plugged component view”.

-->

<port name=”block-ref” />

<slot name=”sl>

<port name=”switch” status=”public” role=”offered”/>

</slot>

<-- constructive definitions : a provider corresponding to the block ctor

 and a method call triggered when the block is created.

 -->

<provider name=”block-ref-ctor” status=”protected”>

<new><class name=”example.BlockImpl”/></new>

</provider>

<trigger source=”block-ref” event=”bind”>

<set-switch/>

<call name=”setSwitch”>

<block-ref/>

<param type=”example.Switch”><sl/switch-ref></param>

</call>

</trigger>

<-- binding between the structural and the constructive definitions -->

<bind port=”bloc-ref”><block-ref-ctor/></bind>
</template>
<?xml version=”1.1” ?>

<template name=”example/switch-and-lamp”>

<-- structural definitions : a switch-and-lamp only contains a public port

 (switch-ref)

-->

<port name=”switch-ref” status=”public”/>

<port name=”lamp-ref” status=”protected”/>

<-- constructive definitions : two providers corresponding to the switch
 ctor and to the lamp ctor. A method call triggered when the switch is

 created.
 -->

<provider name=”switch-ref-ctor” status=”protected”>

<new><class name=”example.SwitchImpl”/></new>

</provider>

<provider name=”lamp-ref-ctor” status=”protected”>

<new>

<class name=”example.LampImpl”/>

<param type=”int”>

<property name=”color” type=”int”>1</property>

</param>

</new>

</provider>

<trigger source=”switch-ref” event=”bind”>

<call name=”setLamp”>

<switch-ref/>

<param type=”example.Lamp”><lamp-ref></param>

</call>

</trigger>

<-- binding between the structural and the constructive definitions -->

<bind port=”switch-ref”><switch-ref-ctor/></bind>
</template>
The Kilim ADL supports a notion of template inheritance which allows the definition of a new template by adding new elements and/or overriding already existing elements

The DTD of the Kilim XML-based configuration language
Kilim implementation provides a validating XML parser built on top of Jaxp. The used DTD is the following :
<?xml version="1.0" encoding='ISO-8859-1'?>

<!-- -->

<!-- Copyright (C) 2002 Kelua SA -->

<!-- -->

<!-- This library is free software; you can redistribute it and/or -->

<!-- modify it under the terms of the GNU Lesser General Public -->

<!-- License as published by the Free Software Foundation; either -->

<!-- version 2 of the License, or (at your option) any later version. -->

<!-- -->

<!-- This library is distributed in the hope that it will be useful, -->

<!-- but WITHOUT ANY WARRANTY; without even the implied warranty of -->

<!-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -->

<!-- Lesser General Public License for more details. -->

<!-- -->

<!-- You should have received a copy of the GNU Lesser General Public -->

<!-- License along with this library; if not, write to the Free Software -->

<!-- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -->

<!-- -->

<!-- -->

<!-- Contact: kilim@objectweb.org -->

<!-- -->

<!-- -->

<!-- kilim_template.dtd: DTD for Kilim Template descriptions. -->

<!-- A template description may contain any number of Named elements. -->

<!ELEMENT template (port | bind | trigger | provider | transformer | property |
 instance | slot | plug)* >

<!ATTLIST template

 name CDATA #IMPLIED

 extends CDATA #IMPLIED

>

<!ELEMENT type (#PCDATA) >

<!ELEMENT property (#PCDATA) >

<!ATTLIST property

 name CDATA #IMPLIED

 status (private | protected | public) #IMPLIED

 type (byte | char | short | int | long | float | double | boolean | string) #REQUIRED

>

<!ELEMENT bind (reference | call | new | get | array | property | class | null)+ >

<!ATTLIST bind

 port CDATA #REQUIRED

>

<!ELEMENT trigger (reference | call | new | get | set | array)+ >

<!ATTLIST trigger

 source CDATA #REQUIRED

 event (bind | unbind) #REQUIRED

>

<!ELEMENT reference EMPTY>

<!ATTLIST reference

 target CDATA #REQUIRED

>

<!ELEMENT provider (call | new | get | array | property | class | null)>

<!ATTLIST provider

 name CDATA #REQUIRED

 status (private | protected | public) #IMPLIED

>

<!ELEMENT transformer (call | new | get | set | array)>

<!ATTLIST transformer

 name CDATA #REQUIRED

 status (private | protected | public) #IMPLIED

>

<!ELEMENT null EMPTY>

<!ELEMENT call ((reference | call | new | get | array | property | class | event-
 source), param*)>

<!ATTLIST call

 method CDATA #REQUIRED

 static (true | false) #IMPLIED

>

<!ELEMENT param (reference | call | new | get | array | property | class | null |
 event-source)>

<!ATTLIST param

 name CDATA #IMPLIED

 type CDATA #REQUIRED

>

<!ELEMENT new ((reference | call | new | get | class | event-source), param*)>

<!ELEMENT get (reference | call | new | get | array | property | class | event-source)>

<!ATTLIST get

 field CDATA #REQUIRED

 static (true | false) #IMPLIED

>

<!ELEMENT set ((reference | call | new | get | array | property | class | event-source),
 value)>

<!ATTLIST set

 field CDATA #REQUIRED

 static (true | false) #IMPLIED

>

<!ELEMENT value (reference | call | new | get | array | property | class | null | event-

 source)>

<!ELEMENT class EMPTY>

<!ATTLIST class

 name CDATA #REQUIRED

>

<!ELEMENT event-source EMPTY>

<!ELEMENT instance (port | bind | trigger | provider | transformer | property | instance | slot | plug)*>

<!ATTLIST instance

 name CDATA #REQUIRED

 template CDATA #IMPLIED

 status (private | protected | public) #IMPLIED

>

<!ELEMENT array (reference | call | new | get | array | property | class | null | event-

 source)* >

<!ATTLIST array

 type CDATA #REQUIRED

>

<!ELEMENT port (type)? >

<!ATTLIST port

 name CDATA #REQUIRED

 status (private | protected | public) #IMPLIED

 role (offered | required) #IMPLIED

 arity CDATA #IMPLIED

>

<!ELEMENT slot (port)* >

<!ATTLIST slot

 name CDATA #REQUIRED

 status (private | protected | public) #IMPLIED

>

<!ELEMENT plug (name-mapping)* >

<!ATTLIST plug

 instance CDATA #REQUIRED

 slot CDATA #REQUIRED

>

<!ELEMENT name-mapping EMPTY>

<!ATTLIST name-mapping

 external CDATA #REQUIRED

 internal CDATA #REQUIRED

>
No « configuration » information

Lamp

+receiveCurrent(boolean _current):void

Switch

+switchOn():void

+switchOff():void

Block

+lightOn():void

+lightOff():void

public LampImpl(Color _color);

public SwitchImpl(Lamp _lamp);

public BlockImpl(Switch _sw);

public class Main {

 public static final main(String[] a) {

 Lamp lp=new LampImpl(….)

 Switch sw=new SwitchImpl(lp);

 Block bl=new BlockImpl(sw);

 ……..

}

public interface Lamp {

 public void receiveCurrent(boolean _current);

}

public interface Switch {

 public void switchOn();

 public void switchOff();

}

public interface Block {

 public void lightOn();

 public void lightOff();

}

public LampImpl(Color _color);

public SwitchImpl();

public BlockImpl();

public class Main {

 public static final main(String[] a) {

 Lamp lp=new LampImpl(….)

 Switch sw=new SwitchImpl();

 sw.setLamp(lp);

 Block bl=new BlockImpl();

 bl.setSwitch(sw);

 ……..

}

public interface SwitchConfig {

 public void setLamp(Lamp _lp);

}

public interface BlockConfig {

 setSwitch(Switch _sw);

}

public interface Lamp {

 public void receiveCurrent(boolean _current);

}

public interface Switch {

 public void switchOn();

 public void switchOff();

}

public interface Block {

 public void lightOn();

 public void lightOff();

}

Block ref.

Switch ref.

Lamp ref.

P

P

P

Color.RED

BlockImpl(…)

SwitchImpl(…)

LampeImpl(…)

Lamp lp=new LampImpl(Color.RED);

Switch sw=new SwitchImpl(lp);

Block bl=new BlockImpl(sw);

………….

Component A

P1

P2

P3

Block ref.

Switch ref.

Component B

P4

P5

P1

P2

P3

Color.RED

Slot S

setLamp()

setSwitch()

T

T

Block ref.

Switch ref.

Lamp ref.

P

P

P

Color.RED

BlockImpl()

SwitchImpl()

LampeImpl(…)

LampeImpl(…)

SwitchImpl()

BlockImpl()

Color.RED

P

P

P

Lamp ref.

Switch ref.

Block ref.

lp=new LampImpl(Color.RED);

sw=new SwitchImpl();

sw.setLamp(lp);

bl=new BlockImpl();

bl.setSwitch(sw);

 ……..

T

T

setSwitch()

setLamp()

� These methods are the ones that must be added when abandoning the transparency principle

� In practice and to be more precise, constructors should be also considered to entirely capture the configuration aspect

� There is a complementary relation between the two sets of interfaces. In particular any new repartition of “functional” responsabilities between the objects usually results in the definition of new object cooperations and as a consequence in the definition of new configuration mechanisms. The couples (functional interface, configuration interface) show in a quite simple way the complementarity ''responsability-cooperation'' relationships which underlies the diffuse but omnipresent coupling between the functional and the configurational architectures of the application.

