
MASSIVMASSIV
Online Games Middleware 



Presentation ContentsPresentation Contents

Introduction

Features supported by the Massiv

The Massiv Core use in the Demo

Evaluation of the project

The Demo



IntroductionIntroduction

Part 1.Part 1.



The Massiv Project TeamThe Massiv Project Team

Project origins date back to November 2001

Supervisor: Ing. Petr Tůma, Dr.

Team members:
Štěpán Vondrák - stoupik@users.sourceforge.net

Marek Vondrák - markoid@users.sourceforge.net

Petr Tovaryš - boovie@users.sourceforge.net

Ondřej Pečta - octa@users.sourceforge.net

Marek Švantner - marekus@users.sourceforge.net

Martin Havlišta - hafik@users.sourceforge.net



The Project GoalsThe Project Goals

Online multiplayer games kit

Online games

Run 24 hours a day

Persistent

Interactive

Thousands of players



Basic CharacteristicsBasic Characteristics

Distributive

The world can be simulated by multiple servers

Object-oriented

The world is built up from objects that can migrate 
among servers

Support for static data

Management and distribution of data that change 
rarely



Who The Massiv Focuses OnWho The Massiv Focuses On

Middleware for non-commercial sphere:

Independent developers – Open Source

Portability

Win32, Linux

Can not assume that servers are deployed to a 
single LAN



The Massiv Project ComponentsThe Massiv Project Components

The Core

Object-oriented distributed system

The library sources

Builder tool

The Demo

Simple exemplary online game

Demonstration of the Core features

Tools used to configure and manage the Demo



The Core FeaturesThe Core Features

Part 2.Part 2.



Distributed ArchitectureDistributed Architecture

Servers scattered over network

Potentially big network latency

Static world partitioning, that would minimalize the 
network traffic, is not assumed

Fully automatic and transparent object distribution

Without the need for manual administration

Three types of „nodes“

Simulation servers, clients, data servers



The Massiv DeploymentThe Massiv Deployment



SecuritySecurity

Data encryption between all node paris

RSA-based authentization

Symmetric encryption while transferring data

Restricted rights of client nodes

Clients can affect simulation state indirectly only, 
via sending requests to special objects



Object ModelObject Model

„Managed objects“
Objects are automatically managed by the system

The classes are written in C++
Special coding instructions are defined

Special data types

Classes described in IDL (Interface Definition 
Language)

Serialization, introspection, RPC

Local objects can be accessed directly

Local garbage collector



MigrationsMigrations

Any object is „owned“ exactly by one node

Object migrations

Primary way of object collaboration

Migrations are addressed by objects

Object = message

Primary way to control simulation

Simulation is driven by events

Migration delivery = event



ReplicationReplication

Usage:

Data transfer due to simulation presentation to 
client nodes

Reduction of network traffic among servers

An object can be replicated to an arbitrary 
node set

Read-only copy of an object (part)

Automatically kept in a consistent state



Migration And Replication GroupsMigration And Replication Groups

Migration and replication groups of objects are 
always handled as a whole

Objects belonging to the same migration group 
are local with respect to each other

Primary way to ensure effeciency in a distributed 
environment with a big network latency

Group membership is dynamic

driven by references to objects:

Dynamic data structures (double-linked list)

Player character together with its inventory



Remote Procedure CallRemote Procedure Call

Implemented on top of object migrations

Asynchronous RPC

Delivery can be scheduled to a particular 
simulation time

Ability to retreive call results (polling)

Synchronous RPC

Does not block deliveries of other events



Other Core FeaturesOther Core Features

Transparent archivation of the simulation 
state (always consistent)

Does not have a negative impact on simulation 
smoothness

Data download on the background

Data can be updated online

Data stored in a tree-like structure

Usage: configuration, presentation content 
(textures, models)

Server load balancing



The Core Features In The DemoThe Core Features In The Demo

Part 3.Part 3.



The DemoThe Demo

An exemplary 3D application

Uses all features provided by the Core

Examples of basic problems, that have to be 
dealt with while writing an online distributed 
game, principles and their solutions in the 
Massiv environment

Not a basis for a real online game



3D Map3D Map

Virtual world consists of a map, the players 
move on

The map is split to rectangular sectors
Each sector can be owned by a different server

Sectors are not data objects but managed 
objects

Terrain modification in the real time (hills, valleys)

The changes are presented to clients by object 
replication 



Sector (1)Sector (1)

Elevation map (hills, valleys)

Divided to 8x8 rectangular tile map

Each tile has its own properties (grass, rock, ...)

Owns entities

Moveable: player characters, sheep

Decorations: trees, grass, buildings



Sector (2)Sector (2)

Sector and all owned entities form a single 
migration group

All operations done within the boundaries of a 
single sector are local and fast

Sector can directly manipulate with owned entities

Sector migration to a remote server transfers 
owned entities as well



Moving EntitiesMoving Entities

Inside the sector like in a non-distributed 
application

To a different sector

The entity is unlinked from the current sector

The migration group of the sector is split

The entity migrates to the other sector

Once delivered the entity is linked to the new 
sector

The migration group of the entity is merged with the 
migration group of the new sector



ReplicationReplication

Each game object is implemented by two 
classes

Public class – is replicated to clients
Holds data that need be interpreted by clients to present 
the simulation state to users

Private class
Internal object logic

This separation allows to
Transfer the minimum data to clients

Improve security
Client applications do not see structure, nor contents, of 
server-only objects



Sectors And EntitiesSectors And Entities

Entity ClientEntity

Sector ClientSector

Entity ClientEntity

Replication group
for clients

Migration group



Project EvaluationProject Evaluation

Part 4.Part 4.



Advantages And Disadvantages Advantages And Disadvantages 
Of The Object ModelOf The Object Model

Pros

Use of C++ – high effeciency

Generality of the model

Not limited to online games only

Cons

Because of potential high network latency among 
servers the most recent copies of objects are not 
available – if a server crashes the application must 
be restarted from the latest archive



What Went A TreatWhat Went A Treat

Abstract model of messaging

No difference between an object and a message

An easy implementation of RPC

The full use of C++ and STL

Many additional features that were not 
originally planned to implement

Synchronous RPC and managed exceptions

Garbage collector



What Did NotWhat Did Not

Innacurate Draft

A lot of changes during the development stage

Debugging

Standard (local) debugging techniques can not be 
used to debug distributed systems

Many additional features that were not 
originally planned



The Demo PresentationThe Demo Presentation

Part 5.Part 5.



The Demo PresentationThe Demo Presentation

Data download

Motion prediction

Editor

Console

Chat



Data downloadData download

All static data (textures, models) implemented 
as data objects

Allows to run clients with no (preinstalled) data

Data are downloaded when they are needed (the 
download speed can be set up)

When certain data object is not available (has not 
been downloaded yet) a proxy object is used.



EditorEditor

Allows to do online:
Edit height map (model terrain)

Modify terrain properties (materials)

Add, delete and move entities

Change object properties (decoration models)

Editor is accessible to privileged clients only 
(administrators)



Motion PredictionMotion Prediction

Data from servers transferred to clients 
infrequently (several times per second only

Client predicts entity motion in order to 
improve visual impression (motion 
smoothness)



Entity ReplicationEntity Replication

Public part: ClientEntity
Position in the map

Type (player character, sheep, decoration, ...)

Model tags
Determines what model will be drawn to present the entity

Private part: Entity
Linkage to the current sector

Data used for entity navigation



Sector ReplicationSector Replication

Public part: ClientSector
Elevation map and tile materials

Explict list of owned entities is not required
Entities are replicated automatically because they belong 
to ClientSector's replication group

Private part: Sector
Explicit list of owned entities

Only map portions are replicated to clients
Periodic requests to replicate sectors in the 
player's neighborhood; cancelled when the client 
disconnects


