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Part I. Overview

This part guides you through the basic Massiv ideas quickly. It explains what the Massiv is about,
why we decided to develop it in the way we did and what primary spheres of functionality it offers to
its user. Finally you'll get acquainted with the most fundamental ideas of the Massiv distributed object
model.
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1. Introduction

Nowadays, with the rapid development of the internet, there always emerge new world-wide network
applications. One of them, having its origins just a few years ago, are the massively multiplayer online
games (MMO games). The common feature of these games is that they consist of an imaginative
world that is simulated by one or more servers and of many (up to thousands) players who are connec-
ted to the simulation simultaneously controlling their characters and interacting with the simulated
world in the real time.

The simulation mentioned typically runs 24 hours a day 7 days a week and players can take part from
any corner of the world. After a player disconnects, his character cannot interact with the world any
more, but it keeps its qualities and possessions until the player connects again.

As obvious, development of such a distributed system (especially when the simulation is spread upon
more servers) is an extremely time-consuming task requiring a good financial background and it
seems that only commercial companies could afford to undertake such a difficult development. And
here comes the Massiv to propose a solution to this situation.

The Massiv creates a platform for easier development of the MMO games. It provides functionality to
hide the distribution from the programmer to some extent. It also provides an object model for an effi-
cient simulation. However, the programmer still has to respect that the system is distributed, but still
his situation is much easier, because much work has been already done for him.

There is a significant difference between the Massiv and other existing MMO games. Whereas exist-
ing games usually simulate the world on several servers located in the same cluster (in the same
broadcast domain), the Massiv is designed to run on many servers located anywhere in the world. This
makes the development more difficult, because it brings in new issues such as longer delays, security
or locating object efficiently. The main advantage of this architecture is that it enables more independ-
ent subjects to set up a simulation together without having to be physically in the same location. Thus,
the Massiv should be more open to the non-commercial community.

Note that along with the Massiv Core library (the one this book is all about) this distribution contains
also a demonstration application (we call it simply the Demo). When discussing non-trivial features of
the Core, this book often references the Demo as a real-world example.

Although we talk about a world simulation, a player, etc. throughout this documentation, please note
that the Massiv can have a much more general usage. It is not limited only to games, but you can use
it for anything that conforms to the object model that will be described below.

The goal of this book is to get you acquainted with the Massiv programming as quickly as possible.
However, note that you won't be familiar with every detail and trifle of the Core right after you finish
reading. You also have to use the Massiv Core Reference Guide generated from the source codes and
to make a few experiments to get more experienced before you can start developing a 'real' application
using the Massiv.




2. Architecture
2.1. Types Of Nodes

The Massiv Core library basicaly counts with three types of nodes (note that more Massiv nodes may
run on the same physical node - computer):

* Servers collaborate on the world simulation.

* (lients enable players to connect to the simulation, interact with the imaginative world and
provide them a presentation of the actual state of the world. Note that while the Demo distin-
guishes privileged and unprivileged clients, this distinction is implemented at “application” level,
i.e. it's feature of the Demo, not of the Massiv Core.

e Data service nodes provide dynamic download of binary and textual data that can't be efficiently
represented by an object.

Figure 2.1. Massiv deployment diagram - example
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The picture shows one of many possible deployment diagrams for a Massiv application involving five
servers, four clients and one data service. You can observe several issues from the diagram:

» The servers are located in potentially different broadcast domains (or clusters). The domains are
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graphically represented by bubbles.

* Not each server has an explicit connection to every other server. Virtually they are connected with
each other, but physically not all of these connections are maintained all the time and are reestab-
lished on demand.

* Each client that is connected to the simulation may be connected to at most one server (plus the
data service).

Note

Each Massiv node doesn't of course necessarily have to run on a different computer. But even
for such a local application, the individual processes will communicate via TCP/IP with each
other.

The advantages of the fact that the servers don't have to belong to the same cluster (broadcast domain)
were already mentioned in the introduction.

2.2. Consistency and Failure Resistance

The concept with many servers placed in geographically different locations brings some serious prob-
lems. To keep the simulation running, all participating servers must be up. If any server broke down,
the others shouldn't be able to continue, because the world would immediately become inconsistent
and this inconsistency could not be fixed another way than by restarting all the servers from the last
consistent backup.

Note that no assumptions about the data service have been made; its semantics and usage is defined
by the application using the Core and thus we cannot tell (from the Core's point of view) to what ex-
tent a failure of the data service matters or not.

2.3. Basic Properties Of The Core

This section briefly lists the basic features of the Core. See Section 2.4, “Core Internal Architecture
Survey” for general overview about how these features are achieved. You will also find links to the
relevant chapters there.

*  Object Orientation

The Massiv provides a fully object-oriented interface to its user. It provides its own sophisticated
object model (see Chapter 3, Object Model Introduction for more general information) that
provides fundamentals for implementation of most of the following features.

e Distribution

Because of a large number of players and a potential complexity of the imaginative world it is typ-
ically needed to spread the simulation over more servers. To cope with this, the Massiv comes
with an object migration (enables object to move to another node, either transparently or on de-
mand). The migration is one of the main concepts of the Massiv - even sending messages is imple-
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mented as a migration of message objects.

The main drawback of the simulation distributed over arbitrary locations is the unavoidable per-
formance loss. It is obvious that we could never construct even nearly as efficient system as any-
one who uses a computer cluster. Another disadvantage is an increased number of persisting bugs,
because the complexity of debugging of a system such as Massiv is significant. There also are
greater demands on system administrators - they must be able to behave as an efficient team,
which might be quite difficult because of the distribution all over the world.

Security

The necessity of secure connection between client and server is obvious; it is needed to prevent
players from cheating and other parties from doing harm. But together with the concept of servers
located apart from each other there arises also the requirement of secure connections between
servers and between a server and the data service. Classical MMO games didn't have to implement
the security on this level. This security even more prolonges the communication delays, but cannot
be avoided.

Interactivity

Players must be able to interact with the world in the real time. Also the simuation and presenta-
tion must be real-time.

Persistence

Because the world simulation runs generally continuously, the system must be able to ensure a
world persistence to some extent. In the Massiv, this means that it must be able to generate a game
backup (archive) at any moment and transparently (without giving players a chance to notice). The
persistence in the Massiv ensures that the game always can be returned to the last consistent state.
The frequency of archivations can be determined by administrators of the system. See Chapter 23,
Archivation and Startup for more detail info about the archivation.

Consistency

The Core itself implements complex protocols to ensure various aspects consistent. The Core user
doesn't have to cope with these problems again and thus his situation is much easier. Some of the
consistencies are:

e Consistent Archive

Although the archivation process runs simultaneously on several servers (and each server gen-
erates its own part of the archive), it must be ensured that all objects stored in all archives cor-
respond to their state at the same simulation time.

e Consistent Pointers

Users of the Core can work with special pointers that can refer to objects on other nodes.
However, because objects can migrate freely, it requires additional mechanism to ensure con-
sistency of the reference (pointer) and the referee (object).
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* Consistent Replicas

Replication is a concept of duplication of some object on other servers to reduce the network
communication and thus the latency. However, it must be seen to it that these replicas are in a
consistent state with originals.

»  Time Synchronization

Time synchronization is needed for scheduling events. Obviously all parts of the simulated world
must share the same time.

* Load Balancing

Load balancing makes use of the migration and manages a distribution of objects over servers so
that there is no server that is much more encumbered than the others.

e Data Download

Data service nodes provide a dynamic download of data that are needed by client and server
nodes. The data can be both textual and binary. The data service can be used to distribute config-
uration files to all nodes or to provide data required by the client for the presentation of the world,
such as 3D models and textures.

e Presentation

Presentation itself is not implemented by the Core. However, the Core provides some mechanisms
that can be used to implement it. For example, the replication can be used to replicate the present-
ation-related object to clients . The programmer using the Massiv Core should be careful about
separating the presentation data from the data that is used between servers during the simulation.
This will help to prevent players from cheating and/or causing some inconsistencies in the simu-
lated world.

*  Auxiliary utilities

The Massiv also provides number of external utilities that can be useful to system administrators.
For example, there is a generator of configuration files, generator of RSA keys, tools for work
with volumes/archives and others. See Chapter 25, Auxiliary Utilities for more information about
external tools.

2.4. Core Internal Architecture Survey

The following picture tries to give you an idea about the Massiv internal structure. It doesn't even
hope to present a complete or exact information; a graph that would represent it would be very diffi-
cult and it won't be shown in this book (the Core user doesn't need to know it). The picture shows only
the most significant Massiv modules and to what layers they approximately (the Massiv doesn't have a
strict layered architecture) belong.
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Figure 2.2. Survey of the internal architecture of the Core

Object Management
) v
S 5 a
AL 2 .
N w o S
S 2 & = c S th S
21z | 5 s|s|8|s|e|e
< v O et 2 g = c )
el2l2|g s | 5| 8|S|=2|0
g 3] — (24 (<] — L — (3] a
A 4+ [ wnv (@)} - e [a'a] (] —
S| > == | | ¢ o k=
v o o @] = ) =z ° < =
£ V) () (a4 0 =
o — o - )
= < 3 18 N
@) O 3,
£
(]
T
Node Management System Messages ; o
172 (@)
.a g
Network Layer 2|3

Physical Network

The following modules are involved in the previous image:

*  Network Layer

The special network layer enables to communicate over the network using an interface similar to
the standard iostreams. It is a more simple way than using standard sockets libraries. See also Ap-
pendix A, Network Layer.

o System Messages

System messages are simple serializable objects that can be sent between nodes. Most subsystems
of the Core use them to communicate over network instead of lower-level networking interface.

*  Node Management

Node manager stores information about all known nodes and status of nodes connected to the sim-
ulation. System message delivery algorithms cooperate with the node manager when delivering
the messages.

*  Registry

The registry is a persistent database that is used for the Massiv configuration as well as for storing
statistical values, etc. See also Chapter 19, Registry.
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Logger

The logger enables to log messages, filtering them according to several criteria and sending them
to potentially more destinations. It was one of the most significant tools for debugging the Massiv.
See also Chapter 20, Logger Library.

Object Searching

Because objects in the Massiv can transparently move to other network nodes, a facility that
would be able to localize a given object in the simulation is necessary. It is also needed to have a
mechanism able to give objects new identificators so that there are no collisions in the whole sys-
tem. The Object Searching and IDs module accomplishes this task. See also Section 4.4, “Object
Identification”.

Migration

The migration means moving Massiv objects to other nodes, either transparently or on demand.
For more information see Chapter 6, Migration.

Replication

The replication enables to create a Massiv object replicas on other nodes, which improves the net-
work throughput. Some operations can be performed on replicas instead of accessing the original
object over the network. See also Chapter 7, Replication.

Archivation

The archivation is responsible for storing the actual state of simulation. The task is non-trivial, be-
cause all servers participating in the simulation must store the state transparently and relatively to
the same time. See Chapter 23, Archivation and Startup.

Load Balancing

The load balancing module tries to avoid the situation when some servers are overloaded, whereas
others are idle. It should transparently migrate some objects from the idle servers. See also Ap-
pendix B, Load Balancing.

Garbage Collector

The garbage collector destroys all Massiv objects that are not needed any more. We do not specify
now what this exactly means; refer to Section 5.4, “Garbage Collector”.

RPC

RPC stands for remote procedure call. It enables to call methods of objects that are located on oth-
er network nodes in a simple way. See also Chapter 8, Remote Procedure Call.

Data Service

The data service manages all simulation data (models, textures, etc.) in a tree hierarchy, where, for
example, a specific texture can be replaced by its ascendant temporarily. This enables even players
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with a modem connection to download all data dynamically while they are already playing. See
Chapter 24, Data Service.

*  Account Management
It manages creation of client accounts.
»  Time Synchronization

The time synchronization is responsible that the simulation time on all participating servers does
not differ too much. For more information, see Chapter 18, Simulation Time.

*  Helper Utilities

A set of auxiliary utilities useful for the Massiv simulation administrators. For more information
see Chapter 25, Auxiliary Utilities.
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3. Object Model Introduction

The purpose of this chapter is to give the reader an overview of the Massiv object model and to make
him familiar with the basic principles that will be described in the second part of the book in detail.

The Massiv defines and implements its own distributed object model built on top of the C++ object
model. The model can be separated into two independent parts:

Object model design - what can be done with the objects and how.

Mapping to the C++ object model and discussion of implementation issues.

3.1. Object Model Design Goals

At the early development stages the team had to carefully clarify what the basic model design goals
were, what could be done with objects, how and to what extent the object manipulation would be sup-
ported (automated) by the Massiv Core. The generic C++ object model had to be extended to allow
implementation of new features that were not supported by the standard but were required to satisfy
our distributed object model goals. The usage of the new model should have been as close to the
standard model as possible. We were certainly inspired by some existing challenging middlewares but

also found many of their principles useless and impractical for purposes of MMO games and so de-
veloped our own techniques which we believe to be really novel.

The following design goals were taken into consideration:

Unique object identification

Objects must be uniquely identifiable (addressable) through out the distributed object space. The
identification of an object never changes and does not depend on the object's current location. Ob-
ject identifications are not recycleable, they are persistent and can be passed to other nodes.

Location transparency

Objects can migrate. Effect of an operation should not depend on the relevant object's current loc-
ation. The Core must be able to localize an object even if it migrates. The Core must be able to mi-
grate objects not only in consequence of user requests. The actual migration operation must be
transparent to the user and the Core must not require the user to participate in the migration pro-
cess (cooperate with the Core).

Automatic persistency

The Core must be able to automatically serialize objects and perform consistent backups. Objects
can point to other objects and such pointers are persistent too.

Automatic replication

11
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Any object can be replicated to other nodes. The Core must be able to gain access to either origin-
al object (primary replica) or its replica (secondary replica).

»  Flexible object migration and replication granularity

Objects can be optionally grouped into migration and replication groups. The Core ensures that
the groups will always be processed as an aggregate (objects from the same migration group will
always be located on the same node). Groups can be changed at run-time and the way of how they
are defined must respect the dynamic nature of the changes. The definition should be automatic,
possibly driven by object pointers.

*  Object to object migration as a primary way of object collaboration

Object migration is the only directly supported way of data exchange between objects and object
interaction. Migrations are addressed by objects. This is basically an agent model, where agents
(objects) migrate in order to accomplish their tasks. Once delivered to an object, a callback is
called on the delivered object. Almost everything else (RPC and messaging, for example) can be
built on top of the object migration.

*  Automatic object management

Objects can be dynamically created and automatically accessed from all nodes. This includes even
short time living objects. There is no need to discriminate between local "unmanaged" objects and
the objects managed by the Core. A form of automatic (non-cooperative) garbage collector is es-
sential in this kind of environment.

o Simplicity, scalability and efficiency

The proposed object model should be easy to use and as efficient as possible.

3.2. Object Model Mapping to C++

As can be easily seen, the design goals presented above require non-trivial extensions to the underly-
ing run-time and/or language. For example, in order to ensure that objects can migrate transparently,
the Core must be able to automatically serialize objects, create object instances, etc. Since objects can
point to remote objects (due to the transparent migration the determination of what is local and remote
would be volatile), the Core have to have a concept of general persistent pointers. Such pointers must
be able to reliably reference any object managed by the distributed model, regardless if it is local or
remote (local native pointers can not be used at all). The mapping to the C++ language has to be
straightforward and error prone. The Core has to be able to dereference such pointers and detect po-
tential errors (such as invalid references, etc.).

We did not want to implement a completely new language or modify an existing one too much, so we
decided to implement all the needed extensions in pure C++. This results in fact that the model itself
is tightly coupled with the C++ language and the new features are accessible through regular language
constructs. Application objects that should be managed by the Core must be written (implemented) in
a "standardized" way enforced by the model. The rest of the book describes this in detail.

12
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3.3. Object Model Basics

The model allows to implement serializable objects that would be managed, persistent, could migrate,
safely reference each other, be replicated, garbage collected, etc. Migration and replication groups of
objects are defined implicitly as transitive closures of persistent pointers that are treated, for purposes
of migration/replication group enumeration, as if they were bidirectional. The introspection API al-
lows to access object metainformation at run-time. This is utilized by the Core for implementation of
the features above but could be used by an application too. The object to object migration is a primary
way of object collaboration. The RPC is built on top of migrations.

3.3.1. Properties

One of the key features the Core provides is the automatic data serialization. There is a set of pre-
defined primitive types that must be used by the user instead of the native C++ types because the latter
do not implement the serialization interface. These types are called the properties and are derived
from Massiv: :Core: : Property. These properties can be simple integers, floats, strings or com-
plex compound types that were built from other properties. If their structure can be changed at run-
time they are called containers. Currently arrays, dictionaries and sets have been implemented. Con-
tainers always hold stored properties by value and are strongly typed (i.e. array of integers, array of
pointers, set of strings, etc.). Any property is serializable without an user's assistance.

Generally, properties can by hierarchized into tree-like dynamic structures (properties can be added/
removed at run-time). Each property maintains a reference to the owner property and various replica-
tion related attributes. When property value changes, the write operation is propagated to the root of
the tree and the owner properties are thus notified that the value has changed. This allows an efficient
replication of the whole hierarchy as only the subtrees that have been modified since the last replica-
tion update need be serialized. A property hierarchy can be enumerated at run-time.

Note

When talking about a hierarchy of properties, we do not mean some dynamic tree-like struc-
ture managed by the programmer. The programmer uses standard constructs - classes with
propertie,s container properties, etc. Because of the way the property types are implemented,
the Core knows everything about property hierarchy - it can easily determine list of properties
that are members of an object or a container, which object or container owns given property,
etc. And that's the hierarchy that we talk about. The hierarchy can change at run-time, because

properties can be added and removed from containers.

3.3.2. Objects

The Core allows to define objects that will be fully managed by the Core on the application level. Any
such object is a special kind of property and must be derived from Massiv: :Core: :Object (ora
subclass). Managed objects can contain other properties as their data members, including managed
objects, or can inherit from other managed objects. Multiple inheritance is allowed too as far as
Massiv::Core: :Object is inherited exactly once. The structure of managed objects, mainly the
inheritance hierarchy and data members, must be described in external . 1d1 files. IDL files are used
to generate helper classes that are utilized by the Core to perform automatic object instantiation, seri-
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alization and the like. See Chapter 9, Introduction to IDL for more information about the IDL.

Managed objects can be classified according to the type of their usage, instantiation and lifetime.

*  Objects with a pointer semantics

They are often instantiated as "stand-alone" (addressable, on the heap) objects. Such objects have
their unique identification (Massiv: :Core: :ObjectId), can migrate and can be referenced
by persistent pointers. They are often accessed through pointers only and are destroyed by the
garbage collector.

*  Objects with a value semantics

They are instantiated on the stack, owned by other objects or containers. Such objects are not ad-
dressable, can not migrate and can not be referenced. They are used as "value objects". Their life
time corresponds to the lifetime of the owner object or, if instantiated simply on the stack, stand-
ard scoping rules.

e Throwable objects

Managed exceptions objects, exceptions thrown by application code or the Core itself. The Core is
able to manage and propagate them to caller nodes during remote calls.

Note

Under special circustances, objects with the value semantics can be instantiated also as "stand-
alone" objects and objects with pointer semantics can be instantiated on the stack using a spe-
cial construct. This is because the Core can instantiate any property either "stand-alone" (on
the heap) or on the stack. The only thing that must be ensured is a proper object initialization.
The above taxonomy classifies objects according to their "most common usage" or "how they
should be used". The classification could be done on the per-instance basis.

3.3.3. Pointers

The Core implements a concept of persistent pointers to objects. These pointers encapsulate
Massiv::Core: :0ObjectId and can point to components (super classes) of addressable objects
only. In this way they are similar to Java references.

The pointers can have either local or remote dereference semantics. The pointers with the local se-
mantics are able to access local objects (including local replicas) and fail to dereference if the target
object is remote. The access to both methods and attributes is gained (in other words everything that
could be accessible through a corresponding native C++ pointer would be accessible too). The point-
ers with the remote semantics access RPC methods of referenced objects. The important thing is that
both local and remote objects are referenced by the managed pointers and the C++ native pointers
must not be used at all.

Pointers can also be either strong or weak. This is related to the garbage collector and the way how
pointers are interpreted by it. GC periodically scans for unreachable objects (objects unreferenced by
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strong pointers), and deletes them. Scanning originates from the program stack and special GC root
objects. See also Section 5.4, “Garbage Collector”.

Strong pointers can reference local objects only. Thus they also implicitly define migration groups of
objects. If an object 4 that strongly references object B migrates (or B migrates), both 4 and B will
migrate. This ensures that strong pointers will always point to local objects.

Pointers can be annotated by pointer replication flags. When enumerating the replication group of an
object, pointer replication flags mask must be given. Replication group is then defined as a transitive
closure of bidirectional pointers that match specified replication flags mask.

Note

Automatic (implicit) migration and replication group definition/management is a key property
of the Core that makes it unique. /¢ gives a programmer an opportunity to easily partition his
objects to compact groups and isolate data flow between the groups (a programmer can thus
express his intention that a referenced object should always be local in respect to the object
holding the relevant pointer; access to such object can be optimized then). The implicit defini-
tion of replication groups offers an easy-to-use object replication for free. The groups change

at run-time according to pointer changes.
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Part Il. Using Object Model

Now you already know the basic ideas and it is time you immersed deeper into the Massiv object
model. This part gives you a much more complete information than what you got in the overview. It
should train you enough to be able, with some help of the Massiv Core Reference Guide, to start pro-
gramming using the object model that encapsulates all the key features of the Massiv.
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4. Managed Objects

4.1. Introduction

From the Object Model Introduction chapter you should already have been acquainted with the
Massiv object model basics, which also includes the basic ideas of managed objects. This chapter ex-
tends the information about managed objects in a much more detailed way. However, in order to
present the full picture here, it also summarizes the basic facts that were already mentioned above.

As you already know from the previous chapter, the Core is proposed to be able to perform some op-
erations on some of the application objects that would be very hard to implement only using the C++
constructs available in the standard. The objects can be migrated to another node, replicated to other
nodes to make the communication more efficient, communicate via the RPC mechanism, saved into
an archive and restored again. Least used objects can be swapped out and in again on demand; objects
that are no longer needed may be automatically destroyed.

It is probably obvious that the operations above require the object to be able for example to save itself
into a stream (serialization) and be restored again on a potentially different node.

On the other hand, it is clear that the Core must handle these objects in a special manner - for ex-
ample, it must be careful during construction of the object as one object can be instantiated multiple
times (for the first time and then each time it is restored from an archive, swapped in or migrated). It
must not use the C++ native pointers to refer them because the target object could migrate making the
pointer invalid, which could result into the application crash.

There are much more rules and principles about these objects and they will be all explained below.
The most significant advantage the Core provides to its user is that all the mentioned special opera-
tions can be done purely automatically by the Core. It doesn't mean that you would never have for ex-
ample to request replication manually; it means that you as the application programmer don't have to
write any code in your object to make it serializable, archivable, etc. All the functionality is "granted
for free" to you. The only cost you pay for all this is that you have to describe the relevant class in a
special meta-language (IDL) and to respect a few implementation limitations.

Note

We say that the objects that can be handled as described are managed by the Core. Therefore
they are called managed objects. Also the relevant classes are called managed.

Managed objects in general are instances of any C++ class that is derived (either directly or indirectly)
from the Massiv: :Core: :Object base class and respects some implementation limitations.

The implementation limitations required by the managed objects may sometimes be too restrictive.
For example, if some types of objects are always instantiated on the stack or handled as a value (i.e.
passed into RPC calls by value, etc.), using the standard instantiation would be too cumbersome. For
this reason the Core distinguishes among multiple kinds of managed objects. They have been already
listed in the previous chapter, but let's repeat the survey once more because it is an important issue:
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*  Objects with the pointer semantics

They are often instantiated as stand-alone (addressable, on the heap) objects. Such objects have
their unique identification ( Massiv: :Core: :ObjectId), can migrate and can be referenced
by persistent pointers. They are often accessed through pointers only and can be garbage collected
(i.e. automatically destroyed when the Core concludes they are not needed any more).

* Objects with the value semantics (value types)

They are instantiated on the stack and owned by other objects or containers. Such objects are not
addressable, can not migrate and can not be referenced. They are used as "value objects". Their
life time corresponds to the lifetime of the owner object or, if instantiated simply on the stack,
standard scoping rules.

»  Throwable objects
Managed exceptions objects that can be thrown by application code or the Core itself.

The actual requirements of each specific category of objects will be described below in Section 4.3,
“Managed Object in Detail”.

4.2. Managed Data

The managed objects should not work with classic C++ class members. The reason is that these don't
implement the serialization interface that is needed for a functional support for class serialization that
was mentioned in the previous section.

Instead, the Core proposes special data objects that fully conform to the principle that an user doesn't
have to assist a class to become serializable, etc.

The Core distinguishes between two major types of managed data: properties and lightweight serializ-
able types (we will simply call them STypes in the further text).

Whereas the latter implement only the serialization interface and don't provide any enhanced function-
ality, the former also contain some extra information about property ownership, etc. See Section 4.2.1,
“Properties” for more information about the properties and Section 4.2.2, “Lightweight Serializable
Types” for the STypes.

Note

The serialization process of properties doesn't consume more CPU time than the serialization
of STypes, although some other operations on STypes may be more efficient. Also the format
of binary or textual serialization of some variable is the same regardless on whether it is a
property or a corresponding SType.

Note

In fact the managed objects themselves are also managed data (specifically properties). It is
perfectly legal to have managed objects as data members of another managed object.
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4.2.1. Properties

Properties are instances of classes derived (directly or indirectly) from the
Massiv::Core: :Property base class that, moreover, conform to some special implementation
rules. Usually the relevant type names' first letter is P.

Properties have the following specific traits or features (see below for more detailed information):

* Each property has a pointer to an owner property used to build hierarchies of properties. For ex-
ample, if a property is simple member of property of class Foo, its owner is an object of type
Foo. If a property is member of a container, the containter is its owner. Each property must be a
member of some hierarchy - even those that are instantiated on the stack. A property that is not
owned by another property is called root of the ownership hierarchy. Property hierachy informa-
tion is maintained by the Core automatically.

*  Whenever a property is changed, the information about the change is propagated up the relevant
property hierarchy. Finally the root of the hierarchy is informed. This is useful for making some
part of the hierarchy dirty. During replication, only the dirty subhierarchy has to be transmitted
over the network which saves the bandwidth.

» Each property is able to enumerate all properties it owns - objects know about all properties, con-
tainers know about all contained properties.

* Each property has its replication flags that determine what part of the property hierarchy would be
replicated together with the object (see Chapter 7, Replication to learn more about the replication).

Note

Each property contains many auxiliary attributes. Thus, it consumes relatively large piece of
memory. If you want a more efficient handling with the type and don't need the special fea-
tures mentioned above, you should use STypes rather than properties. See also Section 4.2.2,
“Lightweight Serializable Types”.

The Core provides a reasonably wide set of property types available for the application. Properties can
be either plain types such as integers, floating point numbers, pointers (in fact, pointers are also plain)
or containers (the Core offers arrays, dictionaries and sets). Containers can hold instances of other
properties by value (but always all the properties contained within must have the same type as the
containers in Massiv are strongly typed), which includes even managed pointers and objects.

The odds are that the Core user will never need to write his own property (which wouldn't be as
simple as just implementing the relevant class - you also would have to modify the IDL preprocessor).
However we will still mention the implementation requirements, because

» you will acquire a better confidence about what actions you can do safely with properties
* managed objects are the only properties that will be implemented by an user

The following section describes the property implementation and usage issues. Any property imple-

24



Managed Objects

mentation must be replicable and must contain:

* Explicitly defined constructors. When a property is created, it should register to some existing
property hierarchy or become a root of a new one. By default, properties are being registered to
the hierarchy with root StackRootObject that primarily contains all properties instantiated on
the stack.

If the property should be inside another hierarchy, it must be explicitly reinitialized. This can be
done using several methods, for example initialize from owner () or initial-
ize object ().

* The assignment operator (operator= () ). See the Massiv Core Reference Guide, module Prop-
erties for more information.

» Serialization interface (see also Massiv Core Reference Guide, module Properties).

* Enumeration interface to access owned properties. For example this interface contains the
for each owned property do( ... ) method thatenables to perform a specified oper-
ation on each property owned by the actual one. For more information see also Massiv Core Ref-
erence Guide, module Properties).

This chapter doesn't contain a list of specific property types available to the application. Instead,
please refer to Section 10.13, “Property and Argument Types” for a somewhat brief information about
the types usage and semantics. For the complete information see also the Massiv Core Reference
Guide, module Properties.

4.2.2. Lightweight Serializable Types

Lightweight serializable types (also called STypes) are similar to the properties, but are much simpli-
fied. They only implement the serialization interface and some useful methods (see the Massiv Core
Reference Guide, module Lightweight Serializable Types, to find out which ones), but don't contain
the attributes such as the owner pointer, replication flags, etc.

In practice the STypes are useful only to be stored in containers or instantiated on stack more effi-
ciently than properties.

Note

Unlike properties, the lightweight serializable type names are usually prefixed with the S let-
ter.

Note that STypes and property types are often defined in pairs. l.e. for each SType there exists a cor-
responding property and vice versa. There sometimes is also a native type (meaning C++-native)
defined for each SType.

The property and native types for some specific SType can be obtained via the following type defini-
tions nested into any SType class (where NATIVE and PROPERTY would be replaced by the relevant
type name):

typedef NATIVE NativeType; // Native type corresponding to the SType.
typedef PROPERTY PropertyType; // Property type corresponding to the SType.
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Note

If SType is not coupled with any native type, SType: :NativeType should be set to the
type that is returned by the read () method (see below).

Each SType must have the following methods implemented (only those that might be interesting for
the application have been enlisted):

* read/() returns the SType value that should be convertible to the native type.
* to_string () returns object value as a string.
* memory size () returns a number of bytes occupied in the memory by the object.

4.3. Managed Object in Detail

This section covers most of information about managed objects. However, you need to get acquainted
with the IDL and some other topics more properly to be able to write a managed class in practice.
Chapter 13, Creating Managed Class shows in detail and using a practical example how to create a
managed class step-by-step. However, before reading it, you should already have read all the chapters
between this and that one.

Note

Note again that the managed objects are properties as well (Massiv::Core::0bject in-
herits Massiv: :Core: :Property). They can act not only as property hierarchies roots,
but they can also be owned by another properties.

Note

Each managed object is associated with two special objects. The metaobject holds the meta-
information about the relevant class (its base class, method list, ...) and enables introspection
that is useful for the Core to instantiate managed objects, etc. (but can be used by the applica-
tion as well).

The object factory is responsible for objects and replicas instantiation.

Let's first look at an overview about what steps you need to accomplish when implementing a man-
aged class. A step-by-step example is available in Chapter 13, Creating Managed Class.

* Implement the class in C++ according to the rules mentioned below in Section 4.3.1,
“Implementation”.

e Write an IDL description for the class. In particular the description contains information about the
inheritance hierarchy, class methods (together with specification which parameters are input or
output), owned properties, class attributes (such as whether the class is permitted to be archived,
etc.) The IDL preprocessor generates source code for the relevant metaobject, object factory and
several more auxiliary classes.
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For more information about the IDL Chapter 9, Introduction to IDL is a good starting point. See
also Chapter 12, Metaobjects for more information about metaobjects.

Add an entry into the relevant 1d1.11st file. Each entry specifies one idl file involved in an ap-
plication and is needed to make the preprocessor to take the file into account.

To get more information about the 1d1.11ist see Section D.2, “The idl.list File”.

4.3.1. Implementation

As already mentioned, managed objects technically are instances of any class derived (directly or in-
directly) from the Massiv::Core: :0Object base class that moreover conforms to some imple-
mentation restrictions and limitations. All the limitations are described in the following list:

Inheritance
Firstly, all managed classes should use only the public inheritance.

If you want to use the multiple inheritance for your managed objects, it is an important require-
ment that the objects must inherit Massiv: :Core: :0Object exactly once (i.e. only one in-
stance of the Massiv: :Core: :Object component is permitted). For example the situation in
the following picture is invalid:

Figure 4.1. Misused multiple inheritance

Massiv::Core::Object Massiv::Core::Object

SN A
A B
\ / Massiv::Core::Object]
B
C

C

The left half of the figure represents the inheritance hierarchy, whereas the right one shows the
component structure of the result class C.

Classes A and B both inherit Massiv: :Core: :0bject. The class C is derived from both A
and B using the multiple inheritance.

To avoid multiple instances of the Massiv::Core: :0Object in the managed object, it is
strongly recommended either to use virtual base classes or to avoid multiple inheritance at all. Ex-
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ample:

class A : virtual public Massiv::Core::0bject

{

}i

class B : virtual public Massiv::Core::0bject

{
}i

class C : public A, B
{

}i

The class C structure is shown in the following figure:

Figure 4.2. Multiple inheritance properly used

Massiv::Core::Object

’ \
, \
’ \

Massiv::Core::Object

A B

A\C/B

The dashed lines stand for the virtual inheritance (i.e. the base class marked virtual).

Construction

Because managed objects can be generally constructed multiple times, the application programmer
should not write his own user-defined constructors. Instead, the Core takes over the responsibility
for managed objects instantiation and initialization (the relevant code is generated on the IDL

basis).

Instead of constructors, the programmer must supply the initialize () pseudoconstructor that
will be called by the Core only once after the object's first instantiation. The pseudoconstructor
must properly initialize the object itself, its base classes (typically by calling the inherited ini-
tialize () methods) and member objects (the similar way).

initialize () is not being called automatically by object factories. You must either call it
manually or use special templates described below (see Section 4.3.2, “Instantiation and Finaliza-

tion™).
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Note

Although they are also managed object descendants, value types and throwables are exception
from this rule, see below. This fact adds some implementation requirements, but simplifies
their usage.

Access specifiers of methods

All methods defined within managed objects that can be called using RPC (i.e. methods that are
specified in the IDL) must be declared public.

Overriding Massiv: :Core: :Object's methods

Some of the methods in Massiv: :Core: :Object are virtual. However, in derived managed
objects, the programmer should override only those that are explicitly tagged as virtual in the
src/core/object/object.h file. Other methods, even those that are declared virtual in
some of the Massiv: :Core: :Object's ancestor classes, may not be overriden.

MASSIV OBJECT macro

Unlike methods, properties owned by managed objects can be private or protected as well as pub-
lic. To enable the Core to initialize and handle a managed object properly, the relevant metaobject
and object factory must be allowed to access all properties contained in the object. This can be
achieved by declaring metaobject and object factory as friend classes. You can use the
MASSIV OBJECT macro to do this for you.

class MyManagedClass : public Massiv::Core::0Object

{
MASSIV OBJECT ( MyManagedClass ) ;

}

4.3.2. Instantiation and Finalization

Because managed objects has to be initialized by the Core, you cannot instantiate them using the
standard C++ new operator. Instead, there exist some special templates the application programmer is

supposed to use.

The following list enumerates possible ways how to instantiate managed objects:

CreateObject macro

Creates a new class instance using the relevant object factory, does all the basic initialization and
calls the user-defined initialize () pseudoconstructor.

ObjectOnStack template
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Use ObjectOnStack when you want to create an object on the stack. It is a template that en-
capsulates the "target" object on the stack. You need to use it to enable the Core to take control
over the proper object initialization process. It is used as a handle to the stored object that can be
accessed either by a defined conversion or explicitly using the dereference () method or the
operator->().

ObjectOnStack also calls the initialize () pseudoconstructor automatically. All paramet-
ers passed to the ObjectOnStack will be passed to initialize (). Note that output para-

meters are not allowed.

Note

You cannot reference objects created by ObjectOnStack by ObjectPointer instances.

Note

You

be constructed and initialized using the standard constructors.

don't need to use the ObjectOnStack template for the value types, because they can

The following example shows how to create an object on the stack. Let's suppose we work with a
managed class Foo and a value type ValueTypeFoo, both having a method foo:

{

ObjectOnStack< MyManagedClass > my object( ... ); 0O

MyValueTypeClass my value type object( ... ); 0O

my object->foo(); 0O

( ( MyManagedClass & ) my object ).foo(); U

my value type object.foo(); U

} O

U Instantiation of managed object with pointer semantics on the stack. initialize () will

be called automatically.

The ellipsis stands for a list of parameters that would be passed to the MyManagedClass's
initialize () method.

0 Instantiation of value type on the stack. There is no need to call initialize (), because
standard constructors are sufficient. It can be handled the same way as unmanaged objects.

00 Invocation of the foo method on the object created using ObjectOnStack.

0  This is another way how to invocate the method on the managed object on the stack. As you
can see, this is much more cumbersome than the previous one and thus we do not recom-
mend it. However this line should demonstrate that the retyping operator or the ObjectOn-
Stack wrapper works.

0  Unlike in the previous case, here the value type doesn't have any "wrapper" and thus neither
dereferencing using the operator—> () nor retyping is needed.

U  Atthe end of scope bothmy object andmy value type object will be destroyed.

ObjectFactory
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Of course you can create object using the relevant object factory. However, this isn't a way you
are supposed to take. It is more difficult and you would have to call initialize () by hand.

Managed object that are not created on the stack will be destructed automatically by the garbage col-
lector (see Section 5.4, “Garbage Collector” for more information). The on-the-stack objects are des-
troyed according to the standard scoping rules. Because they cannot be referenced by managed ob-
jects, there cannot remain any invalid pointer to the object after it is destroyed.

4.3.3. Referencing

It is strictly banned to use native C++ pointers or references to reference managed objects. The reason
should be already obvious: the Core can for example migrate or swap the object out anytime. The nat-
ive pointer would thus become invalid and its dereferencing would cause an application crash.

A safe way to reference managed object is to use ObjectPointer. Pointers won't be discussed in
this chapter, see Chapter 5, Pointers instead.

4.3.4. ValueTypes

Value types are descendants of the Massiv: :Core: :ValueType class. Use value types for man-
aged objects that can be handled as a value, i.e. they don't need some special initialization, copying
and handling from the Core. Their purpose is to enable application to implement property-like struc-
tures outside the Core.

Value types advantages and drawbacks are summarized in the following list:

» It is more simple to create them on the stack.

* They can be used as arguments or result types of RPC methods.

* They can be used in place of properties.

* They can be instantiated the same way as properties in most of places.
* They should not be created as a stand-alone objects (i.e. on the heap).

The most significant difference of an implementation of a value object from an implementation of a
"standard" managed object is that the former doesn't have the initialize () pseudoconstructor.
Thus, they cannot be instantiated using the CreateObject or ObjectOnStack constructs. In-
stead, you should handle them as values (which means, besides others, that you also cannot use C++
operator new for their instantiation).

The following list summarizes implementation restrictions you must respect while writing a value
type class:
*  Construction

Unlike for general managed objects, you are supposed to write your user-defined constructors for
value types (even to override the default constructor). You should use general managed object in-
stead in case that the fact the object can be instantiated multiple times matters.
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Each constructor must call initialize object () as its first command. It enables Core to do
some initialization of its own.

Default constructors are expected to call default constructed() to indicate that the object
has been created the default way.

Warning

Default constructors of value types must not interact with the simulation.

*  Copy constructor

Each value type must have a copy constuctor implemented. It must also call the inherited copy
constructor.

*  Destruction
Value types cannot have user-defined destructors.
*  RPC methods parameters

Value types that can be used as method parameters in RPC calls cannot contain strong pointers
(pointers that always references local object, see Chapter 5, Pointers) within. The reason is that
the process of transmitting them over the network is simplified.

*  Embedding
Value types can embed each other in the natural way.

*  Property restrictions
Value types are properties, thus all restrictions of properties apply for them (unless stated other-
wise).

The following code listing shows a complete example of a value type implementation:

class MyPair : public ValueType
{

public:
MyPair ()
{
initialize object(); O
default constructed(); 0O

}

MyPair ( int a, int b )
a(a), b(b)
{
initialize object();

}

MyPair ( const MyPair & pair )
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ValueType ( pair ),

a( pair.a ), b( pair.b )
{

initialize object();

}

PInt32 a;
PInt32 Db;
}i

class Derived : public MyPair 0O
{
public:
Derived ()
MyPair ()
{
initialize object();
default constructed();

}

Derived( int a, int b, int c )
MyPair( a, b ), c( c )
{
initialize object();

}

Derived( const Derived & derived )
MyPair ( derived ),
c( derived.c )
{
initialize object();

}

PInt32 «c;
}i

[0 initialize object () must be the first command in each constructor.

[0 The default constructed() indicates that the object has been constructed the default
way.

0  Of course value objects can inherit each other. The same rules as for managed objects apply, i.e.
inheritance must be public and should be virtual if multiple inheritance is used.

Value types can be handled as values:

{
MyPair pair; 0O

PArray<MyPair> pair array;
pair array.push back( pair ); 0O

}

0  Value types can be instantiated as properties. No CreateObject or ObjectOnStack con-
structs.
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O

They can be handled as values - inserted into containers, etc.

4.3.5. Throwable Objects and Exceptions

"Throwables" are managed objects (in fact, they are value objects) that can be thrown as exceptions.
The Core is able to propagate them to the caller nodes during remote calls. In fact they are one pur-
pose objects with value semantics.

You can throw a throwable object using the standard throw keyword. However, you can also create
the object by hand and throw it using the raise () method (it throws a copy of the throwable ob-
ject).

Note that not all exceptions used by the Massiv are managed objects. The Core itself implements its

own hierarchy with base class Massiv: :Core: :Exception inherited from std: :exception
(the generic exception defined in the STL library). The Massiv: :Core: : Throwable class is also
included into this hierarchy - it adds the managed objects' functionality to the exception interface of
Massiv::Core: :Exception.

Note

The exceptions implemented by the Massiv that are not Throwable descendants should be
neither thrown nor catched by the application code (the Core should never let its internal ex-
ception leak into the application code). If a non-managed exception is thrown by the Core on
the target node during the RPC call, the Core itself will catch it and remap (wrap) into the
Massiv::Core::Lib::CoreException that is inherited directly from
Massiv::Core::Throwable. It enables even the internal Core exceptions to be trans-
mitted back to the caller nodes.

The

only exceptions the application code should work with

arc

Massiv::Core::Lib::RuntimeException descendants. Feel free to define as many these
exceptions as you need, but don't forget that the managed exceptions need their IDL description.

Note

The Massiv exceptions doesn't make (nor intend to make) the Massiv "application-program-
mer-resistant". They should be used for notification about extern failures that can't be simply
influenced by the programmer. For example sending wrong parameters (wrong format, type,
...) using the RPC won't probably throw an exception but the application will crash. It is the
programmer's responsibility to make sure he uses the Massiv Core correctly (use the debug
build of the Core to force more extensive tests).

Note

Managed exceptions that won't be catched at all won't stop the simulation; they only will be
processed by the logger.

4.3.6. Callbacks and Event Scheduling
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An application programmer can schedule an object for migration (i.e. transmitting the object to anoth-
er node, see Chapter 6, Migration). The Core will inform the object about a result of the operation by
calling a defined callback (a virtual method that can be overriden in the specific managed object).

The main methods that can be used to make an object migrate are:

Method

Notes

EventHandle schedule to(

Enables to schedule the object migration to a specific
time, The migration is addressed by another object
(referenced by a weak pointer). The event is scheduled
public, i.e. it can be cancelled anytime using the handle
returned from the method.

void migrate to( ... )

This method does the same as the previous one, but
doesn't return any handle. Thus, the event is scheduled
private and cannot be cancelled.

void deliver asap to(

The main difference from migrate to () is that if
the target object is local, the delivery will be done im-
mediately. Note that the informative callback will
already have been performed when
er asap_to returns. However, it is a good idea not
to make any assumptions about this order.

deliv-

Let's now have a look at the callbacks that are used by the Core to inform the object about the migra-
tion result. Note that the callback will be always called affer the migration, i.e. potentially on a differ-
ent node than where the migration was requested.

Callback

Notes

void delivered to( ... )

Called upon the successful object delivery. The system
passes the destination object (guaranteed to be local)
and the delivery time as parameters.

void delivery failed(

Called when the object migration has failed. The sys-

tem passes the failure reason as a parameter.

To get a complete picture, let's describe one more managed object callback. This one has just a little in

common with migration:

Callback

Notes

void object updated(

)

Notifies object about its state change a

% possible change values that can be passed to object updated () are:

* INSTANCE CREATED: New instance of the object has been created.
* INSTANCE MIGRATED: The object just migrated to the local system (or has been loaded from the swap/archive).
* INSTANCE FINALIZE: The garbage collector has just triggered the object deletion. This is a good place to perform the

object-specific cleanup.

* REPLICA CREATED: New replica of the object has been created. REPLICA UPDATE and REPLICA UPDATED will be

sent too.

* REPLICA_ UPDATE: Object replica contents will be updated shortly.
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* REPLICA UPDATED: Object replica contents has been updated.

* REPLICA DESTROY: Object replica will be destroyed.

* SIMULATION_ STARTUP: Notifies object about starting the simulation. A managed class will be notified only if'the sim-
ulation startup notifyissetto true inthe IDL.

4.3.7. Class Kinds

Typically nodes running a Massiv application are divided into servers and clients. Servers collaborate
on the simulation, whereas clients are responsible for presentation of the simulation state to users
(players). Both client and server nodes work with managed objects, but, however, they don't need the
same set of them. Servers work with object that are needed for the simulation, clients with presenta-
tion objects and shared objects are used for communication between them.

The Massiv offers a mechanism that enables to link each type of node with code of only those objects
that it really needs for its work. It is advantageous both for efficiency (it cuts down the size of the ex-
ecutable files) and safety (it prevents client from illegaly modifying classes that are able to influence
the simulation).

This mechanism is called class kinds. The Massiv distinguishes among three class kinds:
KIND SERVER, KIND CLIENT and KIND SHARED. Only the last kind is supported explicitly by
the Core; the others are defined in src/core/object/object.idl. The kind for any managed
class can be specified inside the relevant IDL file (see Example 10.1, “A class description in the IDL”
for example).

Managed classes of the same class kind are grouped into a single compilation/linkage unit. Each node
supports its specific set of class kinds, i.e. it has the relevant meta-data (needed to instantiate and man-
age the classes) and the code of the classes.

The class of kind that is not supported by some node is called alien class in respect to that node.
The following list shows the rules that you need to respect while implementing managed classes:

* A managed object of any kind can be inherited from another object of KIND SHARED.

* A managed object inherited from another object of another class kind than KIND SHARED must
be of the same class kind as its ancestor. For example, you cannot create managed object of
KIND SHARED by deriving it from KIND SERVER.

The following list summarizes rules that are obligatory to the Massiv build system and the Core:

* KIND SHARED classes code will be linked with code of all types of nodes.
¢ KIND SERVER classes code will be linked with code of only server nodes.
* KIND CLIENT classes code will be linked with code of only client nodes.

A node can't instantiate or otherwise use objects that are alien in respect to it. It is not surprising, be-
cause we already know the node doesn't have the relevant code and meta-information available. As a
consequence, KIND SERVER objects aren't allowed to migrate or to be replicated to client nodes and
vice versa. This ensures for example that clients can never modify server objects.

Despite the previous paragraph, a node can reference alien objects using the remote pointers. It en-
ables calling methods using the RPC (see Chapter 8, Remote Procedure Call) even on "aliens".
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4.4. Object Identification
4.4.1. Objectld Overview

All stand-alone managed objects are uniquely identifiable (addressable) through out the distributed
simulation. Each object is assigned an unique number called ObjectId. The ObjectId of an ob-
ject never changes and does not depend on the object's current location.

4.4.2. Objectld Pool

Once a new managed object is created, the Core assigns an unique ObjectId to the object. Because
managed objects can and often will be created on more than one node in the same time, the Core
provides mechanism to prevent assigning the same ObJjectId to two or more objects.

Each node assigns new ObjectIds from its own pool of unused ObjectIds. The pool is managed
by the Core's internal object ObjectProvider. Once a new object is created, the Core asks the
ObjectProvider to generate a new ObjectId for the newly created object. Because each node
has its own ObjectProvider and identification of the ObjectProvider is encoded in the Ob—-
jectId itself, it is ensured that two objects created on different nodes will never be assigned same
ObjectId.

ObjectProviders are identifiable through their ProviderIds. The ProviderId is encoded in
all ObjectIds generated by the corresponding provider.

4.4.3. Mandatory And Optional Part

ObjectId consists of two parts. The first part is mandatory, the second part is optional.

* The mandatory part of ObjectId contains information that is needed to properly localize the ob-
ject in the distributed simulation. The mandatory part uniquely identifies the object and there can't
be two or more objects with the same mandatory part.

The mandatory part consists of ObjectProvider identification, ObjectProvider relative
number and tracked-by-provider flag.

The ObjectProvider identification is ProviderId of the ObjectProvider which gen-
erated the ObjectId.

The ObjectProvider relative number is a number which identities the object in the provider's
pool.

tracked-by-provider is one-bit flag which specifies whether the object is tracked by the object pro-
vider. Objects with this flag set can be found in the distributed simulation more quickly than other
objects because the object provider monitors which node the objects resides on. Why not mark all
objects tracked? The reason is that all tracked objects increase network communication among the
nodes whenever the objects migrate. Also because the object providers store additional informa-
tion on which nodes the objects are located, memory requirements of the providers increase as

37



Managed Objects

well.

* The optional part of ObjectId is also called ObjectInfo because it contains additional in-
formation about the object.

What the “optional” word means? It means that even if you omit the ObjectInfo part of the
ObjectId, you can still address the object in the simulation by the truncated ObjectId.

The ObjectInfo consists of ClassTypelId and archivable flag. The ClassTypeId is iden-
tification of the object's class and specifies the object's dynamic type. The archivable flag spe-
cifies whether the object is archivable or not.

Since the Massiv supports class kinds and separate compilation, the optional part may not be inter-
preted by all nodes properly (node does not understand type information of an alien class, for ex-
ample). If such node can not interpret the additional information it either discards/truncates it or
leaves it uninterpreted.

4.4.4. ObjectId Uniqueness

ObjectIds are never recycled. Even if an object is destroyed, the Core will never assign its Ob-
jectId to another object. One ObjectProvider can generate about four billions of object identi-
fications so one doesn't need to worry whether the pool can get exhausted. Anyway if this would be-
come an issue, the Core supports two or more ObjectProviders owned by one node.

4.4.5. Object Searching

The Core uses sophisticated methods how to find an object in the distributed simulation as quickly as
possible. The searching for objects is used mostly for migrations when an object is migrated to anoth-
er object (see Chapter 6, Migration for more information). In such case the latter object must be found
somehow in the simulation.

You don't need to know how exactly the searching algorithms internally work. The important is that it
is ensured that if the object exists somewhere in the simulation, it will be found.

To find an object, the Core uses several localization methods:

» First of all, each node maintains a cache of recent migrations. The cache tells for an object that mi-
grated from the node some time ago, on which node the object is probably located. The Core sup-
ports automatic corrections of the cache if the data in it are not valid any more. When an object is
found and the content of the cache is not correct for the object, the cache is automatically updated.

» FEach ObjectProvider maintains a cache of its fracked objects. Each tracked object notifies its
ObjectProvider when it migrates so the ObjectProvider knowns where the object
should be located.

» If the object is found neither in the former nor the latter cache, the Core performs global search to
find the object. During global search the node contacts all other nodes and asks for the object. The
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Core must properly handle situations when the object is not on any of the nodes but is currently
being transferred over the network.

4.5. Managed Objects Defined By the
Core

Most managed objects implemented by the Core are internal. However, there are two that are interest-
ing even for the application: NodeObject and AccountObject. See Chapter 14, Special Objects
for more information about them.
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5. Pointers

This chapter describes the pointer model that is used in the Massiv.

5.1. Why Managed Pointers

One of the basic design goals is to allow the Core to delete local object instances without notifying an
user. This is needed for implementation of transparent object migrations, when object instance on the
local node is deleted, transmitted over the network and created again on the other node, object replica-
tion, etc. Because of this it is obvious that the application can not use native pointers (or references) to
reference managed objects. The Core must know all the references the application has made for vari-
ous reasons (garbage collection, implicit migration groups definition). There must be a way to detect
what objects are active (their code is running or data being used).. References must be durable and
must be able to identify all objects reliably, including remote objects and objects that migrated out of
the local node. There should not be any major differences between a local pointer (that references an
object that just happens to be present on the local node) and a remote pointer in terms of declaration
and basic use. The Core should prevent client from dereferencing invalid pointers.

The Core solves these problems by defining Massiv: :Core: :ObjectPointer, which is a re-
placement for native pointers. It is a sort of "smart pointer” that satisfies all the discussed properties.
Using object pointers is nearly the only legal way how the application can reference managed objects,
even local objects must be referenced by them. When we are talking about managed pointers, object
pointers are ment. .

Note

It is obvious that at some point managed pointers must be converted to native C++ pointers in
order to access object members or invoke their methods. However this is done internally by a
pointer logic. Accessed objects are active-pinned (activated) before the access and unpinned
when the native reference is released (if you are interested in the trick that achieves this con-
sult the Massiv Core Programmer's Documentation). The Core refuses to delete pinned ob-
jects (such a request will be automatically delayed until the object is unpinned). This allows
application to access object members through the C++ this.

5.2. Overview

ObjectPointer instances represent safe portable references to managed objects, throw exceptions
if incorrectly used and are able to catch such common errors as dereferencing invalidated or
NULL_ID pointers, bad casts (if type information is available), etc. ObjectPointer instances hold
this kind of static and dynamic information:

» Static information (statically encoded into the pointer instance or set up at the moment of pointer
creation and can not be changed since then):
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Identification of the interface of the object being refered, cast object responsible for accessing
the interface (for more information about the cast object, see Section 5.3.2, “Using Cast Ob-

ject”).

* Dereference semantics (local/remote).

* Pointer interpretation utilized by the Garbage Collector (see the Massiv Core Programmer's

Documentation for more detailed information).
* Pointer replication flags, used to define migration/replication groups of objects.

Dynamic information

*  ObjectId ofthe referenced object, including its type information if available.

Note

ObjectPointers can point to "stand-alone" (addressable) objects only. For example one can not
create ObjectPointer that accesses fourth element of an array embedded into an
Object. In this way ObjectPointers are similar to Java or CORBA references.

Warning

Objects instantiated on the stack are not addressable.

5.2.1. Pointer characteristics

Object pointer instances can be characterized by three main properties:

Is it a stack pointer or a pointer property?

Stack pointers are ObjectPointers that can be instantiated on the stack only and that are not proper-

ties. They are always used as temporary pointers only.

Pointer properties are real properties and thus can be stored in managed objects and containers.
They can also be instantiated on the stack. The discrimination between stack pointers and pointer
properties is purely because of implementation efficiency. Stack pointers are "stripped" versions

of pointer properties, nearly as effecient as the native C++ pointers.
Is that pointer strong or weak?

This object pointer characteristics is related to pointer interpretation by the Garbage Collector and

whether the object can point to remote objects.

Weak pointers can reference remote objects and do not keep referenced objects alive (GC ignores

weak pointers while scanning for unreachable objects).
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Strong pointers always reference local objects and are processed by the Garbage Collector while
scanning for unreachable objects. The local characteristics is important as Core ensures that it is
not violated when an object migrates. It is said that strong pointers implicitly define migration
groups of objects (see Section 6.4, “Migration Groups”).

*  What is the dereference semantics? Local or remote?

What happens when an object pointer is dereferenced? Two semantics have been implemented:
local and remote. Local semantics allows to access local objects only, both its methods and prop-
erties. Remote semantics gains access to methods of local or remote objects, every call is trans-
lated to a RPC call. Object's properties can not be accessed via remote pointers.

5.3. Using pointers

Note that not all combinations of the three pointer characteristics (strong/weak, stack/property, local/
remote dereference) are allowed, there may be restrictions on what objects can be merged into a mi-
gration group, strong pointer properties can not reference object replicas, etc. This limitations are
called pointer policies. They are either checked at compile-time or run-time.

For your convenience and to simplify pointer usage and to name valid pointer characteristics combin-
ations, the following abbreviations were defined (read on for more complete explanation):

Table 5.1. Managed Pointer Types

Pointer instance Description Flags ? use primarily for
Pointer< Object > Strong stack pointer|S, L Reference local object from the
to Object stack. Prevent it from being

garbage collected.

WeakPointer< Object > |Weak stack pointer|L Reference local or remote object
to Object from the stack. Dereference loc-
ally. Use for accessing object
replicas.
Remote< Interface > Remote weak stack|R Reference local or remote object
pointer to Interface from the stack. Perform RPC.
PPointer< Object > Strong pointer prop-|P, S, L Define a migration group of ob-
erty to Object jects. Prevent referenced object

from being garbage collected.

PWeakPointer< Object >|Weak pointer prop-|P, L Reference object from the same
erty to Object or other migration group or ref-
erence object replica.

PRemote< Interface > |Remote weak pointer|P, R Reference object from the same
property to Interface or other migration group or ref-
erence object replica. Perform

RPC.
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? Pointer type flags:

P: property

S: strong pointer, always points to local object
L: local dereference semantics

R: remote dereference semantics

Note

Here, Object denotes any managed object, Interface any managed interface (pure virtu-
al managed object). The discrimination between Object and Interface is for explanatory
reasons only ( properties of Object are not accessible by remote pointers), it is okay to de-
clare Remote< Object > or PRemote< Object > though.

As can be seen from the table the Core offers three types of pointers, all in the property or stack-only
variant. Since checked pointer conversions from one type to other type are possible, one need not use
weak pointers with local dereference semantics at all (they can be replaced by remote pointers; remote
pointers can be converted to strong pointers before dereference in order to get local dereference se-
mantics).

The following sections describe pointer usage in detail.

5.3.1. Declaring Pointers

Managed pointers are implemented as template classes that represent the reference and are accompan-
ied by a set of overloaded operators so that the classes could mimic the C++ pointers. Their declara-
tion looks like this:

/* Pointers with local dereference semantics. */

template< class Type, class Cast = DefaultCast< Type > >
class Pointer;

template< class Type, class Cast = DefaultCast< Type > >
class WeakPointer;

template< class Type, class Cast = DefaultCast< Type > >
class PPointer;

template< class Type, class Cast = DefaultCast< Type > >
class PWeakPointer;

/* Pointers with remote dereference semantics (RPC). */

template< class Type >
class Remote;

template< class Type >
class PRemote;

For example Pointer< MyObject > represents strong stack pointer to MyObJject. Declarations
of other pointer types would look the same.

Note
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Pointers are default-initialized to point to NULL ID.

Note

We have not explained the meaning of the optional Cast parameter yet. It refers to the cast
object functor that is responsible for returning of the correct C++ pointer if managed pointer
is locally dereferenced. Its purpose is to convert a C++ pointer to general object to a pointer to
Type. If managed class inherits Type more times, Type is ambiguous within the class hier-
archy and pointer dereference will fail. In that case user has to provide own cast object that
would resolve such ambiguity. This is described in the following section. However if you do
not use multiple inheritance, do not inherit the same class multiple times (for example virtual
inheritance is used, which is supported by Massiv) or do not want to create pointers to am-
biguous Types, you can skip this section.

5.3.2. Using Cast Object

One of the problems the Core has to deal with is what component of the referenced object should be
accessed if pointer is dereferenced. Note that the reference must be represented at least by ObjectId
of the referenced object and Type of the referenced component. Obviously for some object instances
this would not be sufficient if Type is inherited multiple times by those instances. Because of this, the
reference representation was augmented to hold a Cast cast object. Cast object represents the refer-
enced component more precisely - it identifies not only its 7ype but also provides code how the com-
ponent should be accessed (cast from C++ pointer to general object to the C++ pointer to the reques-

ted component).

The Core provides default implementation of  the cast object called
Massiv::Core: :DefaultCast. It works correctly as long as Type is inherited once only by the
relevant class. If that is not true then the default cast object would not be able to resolve the Type am-
biguity and the dereference may fail. Then user has to implement its own cast object.

Any cast object must inherit from Massiv: :Core: :CastObject.

class CastObject
{

public:
virtual VariantPointer operator () ( ObjectProperty * object ) const = 0;
/* Implements cast from ObjectProperty * to requested component. */
virtual const std::type info & get target type info() const = 0;
/* Returns type information of the referenced component. */

}i

For more information on how cast object should be implemented consult
Massiv::Core: :CastObject in the Massiv Core Programmer's Documentation.

Note

User-defined cast objects are utilized by pointers with local dereference semantics only.
Pointers with remote dereference semantics operate as if default cast object was used
(requested interface must be unique for the referenced object or the operations would fail).
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5.3.3. Assigning To Pointers

Ability to change pointer values and reference other objects is one of the key operations pointers have
to support. Managed pointers overload operator=() and allow for such changes. Any such operation
results in change of the pointer state, namely ObjectId of the referenced object. The actual assign-
ment operation is preceded by optional implicit pointer conversions and validation or verification of
the assignment.

Implicit pointer conversions:

Pointer upcasting

Ability to convert pointers to subclasses to pointers to superclasses. Also known as pointer sub-
sumption. Requires compile-time check.

Pointer mutation

Ability to convert pointers with one semantics to pointers with different semantics. For example
implicit conversions of strong pointers to weak pointers of the same type (reference the same in-
terface). The backward conversion requires a run-time check.

Assignment verification:

Either compile-time or run-time interface test

Tests if referenced object implements requested interface. For example if one wants to change the
value of a Pointer< MyClass > the compiler or system would test if the object inherits from
MyClass.

The compile-time interface test is performed when assigning a pointer of a known type to other
managed pointer without an explicit cast. In this case implicit pointer conversions (in C++ point-
ers style, upcasts only) are allowed and this is checked by the compiler. Violation results in com-
pile-time error.

Note

The compile-time check is similar to concept checks used by various C++ template libraries to
test if a given template parameter supports a requested interface. If a violation is detected
compile-time error in check default cast() will be issued.

The run-time interface test utilizes type information of the referenced object. The test is performed
when assigning an explicitly casted pointer (or arbitrary ObjectId) to other managed pointer. If
type information of the referenced object is not available (or can not be interpreted by the local
node), no test is performed. Pointer dereference may fail then. This can only happen when creating
a reference to a remote object and system is not able to determine actual dynamic type of the refer-
enced object.

Note
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Type information is stored as an optional part of the object's ObjectId. It is always present
if object is local but can be missing if object is remote. System can discard it if it is not able to
interpret it - for example if there is no code for such object (object can not be instantiated on
the local node, it is said to be alien to that node).

In the Demo, client nodes do not know type information of server-only objects. This is related
to class kinds. See Section 4.3.7, “Class Kinds”.

*  Additional pointer policy tests

Tests if pointer with given characteristics can actually reference particular object. Always tested at

run-time.

Note

For example strong pointers must not point to remote objects.

In the following table there are described supported assignment operations. The table shows what op-
erands can be used as arguments to pointer's operator=() and what checks (compile-time or run-time)
are performed. Run-time errors are signalled to the application by raising exceptions (see Sec-
tion 5.3.11, “Exceptions”) or asserts (program logic errors, static errors).

Table 5.2. Pointer assignment variants

Operand

Semantics

Exceptions

Pointer with the same character-
istics

Copy pointer. Always succeeds.

Pointer with a different charac-
teristics

Copy and convert pointer. Allow
implicit  pointer
only. Assignment is validated at
compile-time (upcast) and run-
time (mutation, policy test).

conversions

ObjectNotOnLocalSystemEx-
ception, PointerPolicyViola-
tionException

Explicitly casted pointer

Copy and convert pointer. Allow
any implicit pointer conversion
and checked downcast. Assign-
ment is validated at run-time
(interface test, mutation, policy
test).

[llegalPointerConversionExcep-
tion, ObjectNotOnLoc-
alSystemException, PointerPoli-
cyViolationException

null pseudo-keyword

Reset pointer to point to

NULL ID. Always succeeds.

ObjectId

Create pointer to arbitrary object
identified by its id. Assignment
is  validated at run-time
(interface test, policy test).

IllegalPointerConversionExcep-
tion, ObjectNotOnLoc-
alSystemException, PointerPoli-
cyViolationException
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Operand Semantics Exceptions

C++ pointer Create pointer from C++ pointer|PointerPolicyViolationException

to local managed addressable
object. Assignment is validated
at run-time (policy test). Allows
to assign C++ this to managed
pointers.

Note

Managed pointers implement the same set of constructors with similar semantics.

The use of the presented variants should be quite straightforward and is illustrated at the end of the
section. Nevertheless there are some issues that need to be addressed before and will be explained
now:

How to force an explicit cast

Managed pointers are not casted in a C++ way using its cast operators. A special construct is
provided instead. It is semantically similar to C++ dynamic_cast<> (although the pointer type to
cast to is determined automatically) and is forced by calling convert() method on the pointer that
should be casted. See Section 5.3.3, “Assigning To Pointers” [48] example.

Note

convert() translates the pointer to a special form that will trigger the conversion when it is as-
signed to a pointer. The pointer type to cast to corresponds to the pointer type where the "con-
verted pointer” is assigned to. convert() does not do any conversion until assigned as the tar-
get pointer type is unknown at the time of the call to convert().

Warning

Product of convert(), the special pointer form, can not be stored by application. It must be im-
mediatelly assigned to a managed pointer so that the conversion would be triggered.

Implicit pointer conversions may fail

Unlike C++ pointer implicit conversions, implicit conversions of managed pointers can fail and
throw exceptions. That is because of pointer policy testing (must be done at run-time) and implicit
pointer mutation. We did not want application programmers to use explicit casts when converting
between weak and strong pointers and between their stack-only and property pointer variants be-
cause the code would become unreadable. It is up to application logic to ensure that the actual op-
eration would not fail or handle the potential exception properly.

Note

Implicit conversions of strong pointers to weak pointers will always succeed. See Sec-
tion 5.3.10, “Pointer Policies”.

47



Pointers

o Assigning C++ this

Managed pointers accept C++ this and other C++ pointers. However the pointers must point to ad-
dressable objects or the assignment would fail. For example this pointer pointing to an object in-
stantiated on the stack can not be assigned to a managed pointer.

An example:

class X : public Object { ... };
class Y : public X { ... };
class Z : public Y { Pointer< Z > method(); };

Pointer< Z > Z::method ()
{
Pointer< X > ptr x;
Pointer< Y > ptr y;
Pointer< X > other ptr x;
WeakPointer< X > weak ptr x;

ptr y = CreateObject< Y >(); 0O

ptr x = ptr y; 0O

other ptr x = ptr x;

weak ptr x = ptr x; 0O

//ptr y = ptr x; /* Compile-time error. Need explicit cast. */
ptr y = ptr x.convert(); O

ptr x = null;

return this;

}

This is how stand-alone objects are created. You should already be familiar with this construct.
Implicit pointer conversion (upcast).

Implicit pointer conversion (mutation).

Explicit pointer conversion (downcast). Use method convert() to force an explicit cast of the
pointer.

[ N I B A B

5.3.4. Comparing Pointers

Another important feature managed pointers support is the ability to compare them. Both comparing
with managed pointers and C++ pointers have been implemented, however with different semantics.
When comparing two managed pointers, ObjectIds of the referenced objects are compared only,
the other characteristics, mainly what components are referenced, are ignored. When comparing a
managed pointer with a C++ pointer, pointer to the referenced component (as returned by the cast ob-
Jject) is compared with the C++ pointer.

Note

The actual implementation does not follow the wording exactly, which allows for various op-
timizations. However the effect is the same.
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Managed pointers overload operator==() and operator!=() so that they could be compared as C++
pointers. Since the results of comparisons do not depend on the order of their operands it is sufficient
to summary all the valid operand combinations in the following table. The operations will always suc-
ceed.

Table 5.3. Pointer compare variants

Operand types Semantics

Two managed pointers with arbitrary characterist-|ObjectIds are compared.
ics

One managed pointer, one C++ pointer C++ pointers are compared.

One managed pointer and a null pseudo-|Test if pointer points to NULL ID.
keyword.

Warning

Comparing pointers with ObjectId is illegal as well as casting pointers explicitly for the
purposes of comparison (one of the operands is a product of convert() method). Managed
pointers with different characteristics can be compared without a cast.

Warning

Managed pointers are compared by ObjectIds only. This can yield surprising results in
multiple inheritance hierarchies.

For example if a class Foo was inherited multiple times to object A, the result of the compar-
ison of Pointer< Foo > and C++ this pointing to the same object 4 would always be "not
equal" as Foo would be ambiguous. However if this was converted to a managed pointer be-
fore and then compared with Pointer< Foo > the result would be "equal" as both the
pointers would reference the same object.

In single inheritance hierarchies the results will be exactly the same as if C++ pointers were
compared (the pointers either point to the unrelated class hierarchies, and then object ids are
different, or to the same hierarchy and simple object id test is sufficient because of pointer
subsumption).

5.3.5. Dereferencing Pointers

Managed pointers provide a secure way to dereference self and access components of referenced ob-
jects. When dereferenced, an active proxy  object, bound to the referenced object, is returned by
value. Its type and implementation depends on pointer deference semantics. The proxy then delegates
the access to either bound local object (and fails if there is none; proxy with local dereference se-

1Plroxy objects serve as local gates to referenced objects. Any access to a referenced object is intercepted by a proxy object and
can be translated to a remote procedure call, for example. These object proxies are called active as they are returned by value
and they are deleted as soon as the object is no longer dereferenced (local proxy can be used to measure how long the object has
been active or whether it is active now). This is transparent to the application.
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mantics) or a local RPC stub that translates the access to a RPC call on the bound remote object
(proxy with remote dereference semantics).

If a pointer has a local dereference semantics, the proxy tests if referenced component can be accessed
locally (referenced object or its replica must be present on the local system and the component must
not be ambiguous), pins the object to the local node (object is active since then) and gains full access
to the object's component (as determined by pointer's cast object). When the component is no longer
dereferenced the object is ready to be unpinned. Until unpinned, the object remains active and can not
be deleted or can not migrate. If bound object is not present on the local node, nor its replica, the
dereference will fail.

Proxy with remote semantics access methods described by IDL only. Stubs, generated for each RPC
method, are responsible for translation of the local call to a RPC call. For information how RPC
works see Chapter 8, Remote Procedure Call.

Pointers overload operator->() so that they could be dereferenced in usual C++ way. Attempts to
dereference invalid pointers (point to NULL _ID, ambiguous or unsupported components, remote ob-
jects, etc.) are rejected and one of the following exceptions will be thrown:

*  ObjectNotOnLocalSystemException

* IllegalPointerConversion

Note

The errors that could not be catched at assign time will probably be detected at dereference
time. Remember that no interface test is performed if the type information of the referenced
object is unavailable. However the object could migrate to the local node in the mean time
and the interface test would be then performed at the time of the pointer dereference.

5.3.6. Special Operations

Unlike C++ pointers, managed pointers define additional member methods that can be used to query
pointer state. This information can be used to test if actual pointer operation (for example an assign-
ment to another pointer type, a pointer dereference, etc.) will succeed. Since some of the pointer func-
tionality is turned off in release mode (see Section 5.3.13, “Differences In Debug And Release
Mode”), incorrect use will either be not detected, program will simply crash or its state become incon-
sistent.

Warning

Programmer must be aware of the differences and must test in advance if certain operations
could be processed safely.

The following table lists some of the most useful methods. For the complete list consult the Massiv
Core Programmer's Documentation.
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Table 5.4. Pointer member methods

Method Semantics

is_local() Test if the pointer can be dereferenced locally in
the given context without an error. Must be
rechecked whenever the context changes (the
Core runs in between the two contexts, each con-
text belongs to a different simulation tick) unless
the pointer is strong. See also Section 17.1, “The

Model Used By the Core”.
convert() Force an explicit cast of the pointer.
get_object_id() Get ObjectId of the referenced object.
inherits( const std::type_info & ) Test if the referenced object inherits from a spe-
cified class. Throws Undefined-

ClassTypeException if the object is remote
and its dynamic type is unknown.

An example:

class MyClass : public Object { ... };
class MyDerivedClass : public MyClass { public: PInt32 my integer; ... };

WeakPointer< MyClass > ptr = ...;
try
{
Pointer< MyDerivedClass > ptr derived = ptr.convert(); O
ptr derived->my integer = 2;
}
catch ( Throwable & )
{
}

[0  Pointer conversion may fail because of two reasons. Either ptr refers to a remote object (thus
conversion to a strong pointer is rejected) or the referenced object does not inherit from MyDe-
rivedClass.

The same program can be rewritten so that no exceptions would be raised:

WeakPointer< MyClass > ptr = ...;

if( ptr.is local() && ptr.inherits( typeid( MyDerivedClass ) )
{
Pointer< MyDerivedClass > ptr derived = ptr.convert();
ptr derived->my integer = 2;

}

5.3.7. Migration And Replication Groups
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Pointer properties can be anotated by pointer replication flags that are used for implicit definitions of
migration and replication groups of objects. The flags are set by IDL ptr repflags property attribute.

Replication group of an object is defined as a maximal set of objects reachable from that object over
bidirectional pointer properties whose pointer replication flags match a given mask. Replication flags
masks are "yes-no" pairs that specify what bits of pointer replication flags must be set (yes bits) and
what bits must not be set (no bits). Replication groups induced by a predefined fixed [ REP-
MASK MIGRATE YES, REPMASK MIGRATE NO ] pointer replication flags mask are called migra-
tion groups of objects. The mask is chosen so that any replication group (induced by a different mask)
is a subset of the corresponding migration group. During the enumeration process pointer properties
are treated as if they were bidirectional.

Replication groups are always defined with respect to a specified mask. There is no single replication
group of an object. For example the replication group of an object for the purposes of its replication
from a server to a server node (induced by one mask) may be different from the replication group of
the same object for the purposes of its replication from a server to a client node (induced by another
mask). The masks are set globally for all allowed replication destination node types. When an object
should be replicated, the Core determines type of the replication (for example “replication to server”),
looks up the replication mask related to the particular replication type and enumerates the replication
group of the object using the obtained mask. Specified bit of the pointer replication flags triggers rep-
lication of the referenced and the owner object to the corresponding node type.

Note

For example when replicating a Player object to a server node, not only Player but also
its inventory and other helper objects (part of Player's migration group) would be replic-
ated. However when replicating the same Player object to a client node, only the Player
object and its inventory would be replicated. This is controlled by the setting of the pointer
replication flags.

Migration groups are replication groups with a predefined REPFLAGS MIGRATE pointer replication
flags bit set. If this bit is on then the referenced object will always be (must be) present on the same
node as the object that owns the pointer and the pointer will implicitly define a migration group of ob-
jects. It is also said that the pointer triggers the migration of the referenced object or the owner object
if the other object migrates. Such a pointer need not be strong. However the Core automatically sets
this bit for strong pointer properties.

Note

Pointer properties that define replication/migration groups are treated bidirectionally. This is
needed to ensure that strong pointers always reference local objects, for example. Otherwise if
B migrated to an another node, the strong pointer from A to B would be pointing to a remote
object. Although this makes implementation of ObjectPointer and group enumeration more
complex this proved to be very useful. For example Player object can reference its In-
ventory object by a single strong pointer and both migration groups of Player and In-
ventory are the same (Inventory need not reference Player). Together with implicit
replication/migration group definitions this is one of the key properties that make the Massiv

unique.
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Confused? See the example:

class Inventory
class Account

class MapSector

{
public:

/* ptr repflags =

public Object {
public Object {

public Object

0 */

PRemote< MapSector > neighbor[ 8

i

class Player

{
public:

/* ptr repflags =

public Object

PPointer< Inventory > inventory;

/* ptr repflags =
PPointer< Account >

/* ptr repflags =

MIGRATE |
account;

MIGRATE */

PPointer< MapSector > sector;

}i

Pointer<
Pointer<
Pointer<
Pointer<

player->inventory =
player->account =
player->sector =

P

“Ill‘

L4

Player > player = ...;
Inventory > inventory =
Account > account = ...;
MapSector > sector = ...;

inventory;
account;
sector;

%
MapSector /

}; /* All ptr repflags =
/* All ptr repflags =

MIGRATE | SERVER BIT | STANDARD CLIENT BIT */

SERVER BIT */

e MIGRATE

'mmmmm  SERVER_BIT
STANDARD_CLIENT_BIT

e

2
C 3
i

MapSector
MapSector
A S
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Suppose that we have named pointer replication flags bits so that MIGRATE triggers object migration
(defines a migration group), SERVER BIT triggers replication to server nodes and STAND-
ARD CLIENT BIT replication to standard client nodes. Inventory, Account and MapSector objects
contain weak pointers with ptr_repflags = 0 only, then:

» Corresponding Player, Inventory, Account and MapSector objects form the same migration group.
If more players are linked to the same sector all the Players (and their Accounts and Inventories)
will implicitly belong to the same (single) migration group. On the other side, different MapSector
objects belong to different migration groups.

* Replication group of the Player enumerated due to replication to a server node will contain the
Player object and its Account and Inventory objects. The MapSector and the other Player, Account
and Inventory objects (the rest of the migration group) will not be replicated to server nodes.

* Replication group of the Player enumerated due to replication to a standard client node will con-
tain only the Player object and its Inventory object.

Note

In the example we were assigning strong pointers to the Player object which caused the mer-
ging of the migration groups resulting in the creation of a single migration group containing
all the involved objects. First, the migration group of the Inventory object and the Player ob-
ject was merged, then the migration group of the Account object was joined, etc. Since we
were working with strong pointers all the groups had been local. If a remote migration group
should have been merged, our Player object would have to migrate to the remote group
(taking its current migration group with self) so that the join could have been finished on the
remote node. See Section 6.5, “Requesting Migration”.

Note

Right now you might be confused. How do I assign ptr repflags to a pointer? What val-
ues can be assignmed to ptr repflags? The answer is: ptr repflags is an attribute
of pointer properties, it's value is specified in IDL. For more information see Section 7.5,
“Replication-related IDL Attributes” and Section 10.8, “Attributes”.

5.3.8. Pointers To Forward Declared Classes

When creating recursive data structures, one has to use pointers to forward declared classes in order to
avoid cyclic header inclusion. Pointer implementation allows to declare managed pointers to forward
declared classes. However at the time of the pointer use (for example dereference), the referenced
class must have already been seen by the compiler. This requires to organize source code in such a
way that headers contain class declarations only and the full definition, including method bodies, is
provided in . cpp files.

Header file:

class A;
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class B;

class A : public Object

{

public:
void set( Pointer< B > ptr );
PPointer< B > ptr b;

}i

class B : public Object

{

public:
void set( Pointer< A > ptr );
PPointer< A > ptr a;

i

CPP file:

void A::set( Pointer< B > ptr )
{
ptr b = ptr;
}

void B::set( Pointer< A > ptr )
{
ptr a = ptr;
}

Note

Classes must be forward-declared in the IDL too. See Section 10.9.1, “Forward Declaration”.

5.3.9. Pointer Replicas, Pointers To Object Rep-
licas

Pointer property semantics changes if the property is actually a replica. In that case the object that
owns the property is also a replica. This means that pointer's static characteristics will be partially ig-
nored. In particular all pointer property replicas are considered weak regardless to their static charac-
teristics. That is because not replicated portions of migration groups, thus remote, can be referenced
from the replicated parts by originally strong pointers.

Note

In the example above the P1ayer object replicated to a standard client node would have its
pointers to Account and MapSector pointing to the original (remote) objects and the ob-
jects would not be replicated to that node.
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Warning

This has a consequence that the conversion of PPointer< Object > to Pointer<
Object > can fail if the property is a pointer replica since we are effectively converting a

weak pointer property to a strong stack pointer.

The other issue is how object replicas can be accessed by other non-replica pointers (either regular
stack pointers or non-replica pointer properties). Let us note that object replicas have the same object
id as the original objects and are accessible by pointers with local dereference semantics only. There
are never the original object and its replica present on the same node at the same time (for more in-
formation see Section 7.4, “Accessing Object Replicas™). Obviously strong pointer properties can not
reference object replicas because the corresponding original objects are remote. Also strong stack
pointers can not reference object replicas (such references would prevent the Core from updating
strong-referenced replicas and could block incoming migrations too, see Section 7.10, “Allowed and
Illegal Operations™). However they can be referenced by weak pointers of any other characteristics.

Warning

Calling a SRPC from within a replica (if an object replica is active) is forbidden as it would
prevent the Core from updating the replica.

5.3.10. Pointer Policies

Pointer policies state what pointers, with given characteristics, can reference particular objects and
what the Core guarantees if such a pointer exists. The following object and pointer properties are in-
vestigated:

e What is the dynamic type of the object?

 Is the object local or remote?

If the object is local is it a replica?
* Is the pointer a replica?

Although most of the policies have already been mentioned in the previous sections they have been
summarized in the following lists and tables.

Policies applicable to both stack pointers and pointer properties:
o Object's dynamic type is utilized to validate pointer operations. Can not create pointers to objects
that do not support requested interfaces, can not dereference pointers to ambiguous interfaces

The violation is signalled to the application by raising I1legalPointerConversionEx-
ception exception, either at assign time (this is the interface test already described at Sec-
tion 5.3.3, “Assigning To Pointers”) or dereference time.

» Strong pointers must reference local objects only
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Assignment of a remote object to a strong pointer results in ObjectNotOnLocalSystemEx—
ception exception. The Core guarantees that if the assignment succeeded at some time, the ref-
erenced component was unambiguous and the referenced object was not explicitly deleted by user
in the meantime, then the pointer dereference at a later time would always succeed. The concept

of migration groups ensures that this policy is not violated when objects migrate.

In particular objects referenced by strong-stack pointers can not migrate until the pointers are re-
leased. If an object A migrates all the objects that reference A by strong pointer properties or are

referenced from A by strong pointer properties will migrate together with the object.

Note

This feature is crucial. It allows to access objects without worrying if the objects are still loc-
al.

class X : public Object { .... void f£(); };
class Y : public Object { .... void g(); };

Pointer< X > strong ptr = ...;
WeakPointer< X > weak ptr = ...;
Remote< Y > remote ptr = ...;

strong ptr->f();

if ( weak ptr.is local() )

{
weak ptr->f();

remote ptr->sync g(); 0O

strong ptr->f();
weak ptr->f(); O
}

0  This performs a SRPC call on a remote object. The Core runs meanwhile and the object
referenced by weak ptr can migrate out of the local node.

0  The dereference may fail as the referenced object can no longer be local. See threading
model Section 17.2, “When the Core Runs” to get information on when the Core can
run.

The above example could have been rewritten so that the racing conditions would have been

avoided:

if ( weak ptr.is local() )

{
Pointer< X > ptr = weak ptr; O

remote ptr->sync _g();
strong ptr->f();

ptr=>£();
}
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O  This will fail if weak ptr points to an object replica. See the following policy.

»  Strong pointers can not reference object replicas

Object replicas can be referenced by weak pointers only . This applies to stack pointers too. If
strong stack pointers to object replicas were allowed the Core would have to freeze updates of the
referenced replicas in order to ensure consistency and fulfil the requirement that the replicas
would not be deleted while still strong-stack-referenced. Also incoming migrations turning object
replicas to regular non-replica objects would have to be blocked. In the overall the system would
be stalled.

Warning

When using weak pointers with local dereference semantics one has to be careful when the
pointers are dereferenced. For example if a previous dereference succeeded, a later derefer-
ence may fail if the Core ran in between the two dereferences. This is the semantics of weak
pointers and a neccessary feature that allows to implement an effecient replication model. For
more information see threading (execution) model Section 17.3, “What Happens When the
Core Runs”.

*  Pointers to objects allocated on the stack or member objects owned by other objects can not be
created

These objects are not addressable because they do not have an ObjectId.

The following policies are applicable to pointer properties only. They ensure migration groups con-
sistency. The policies are violated due to program logic errors only and they are signalled to the ap-
plication through a generic PointerPolicyViolationException exception:

» Pointer properties with REPFLAGS MIGRATE pointer replication flags bit set can not reference
remote objects

Such pointers define migration groups of objects. Strong pointer properties are this kind of point-
ers.

» Pointer properties with REPFLAGS MIGRATE pointer replication flags bit set can not point to
object replicas

The original objects are remote and have the same object ids as their replicas.

* Pointer properties with REPFLAGS MIGRATE pointer replication flags bit set can not be used to
link archivable and non-archivable migration groups

If this was allowed we would get a single migration group of objects containing both archivable
and non-archivable objects.

*  Pointer property replicas are always weak

Static pointer characteristics is overloaded if the pointer is a replica.
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Most of the policies take effect if doing implicit pointer conversions when pointer characteristics
changes (pointer mutation). The behavior is summarized in the following table. It can be seen that
conversions to weak pointers always succeed (the plus signs) and the other conversions fail if the ref-
erenced object is remote or an object replica :

Note

and PRemote< X >.

The following table ommits several kinds of pointers. It is because a mutation to them will al-
ways succeed. They are: WeakPointer< X >, Remote< X >, PWeakPointer< X >

Table 5.5. Pointer mutation

From\To

Pointer< X >

PPointer< X >

Pointer< X >

+

+

WeakPointer< X >

Fails if points to a remote object
or a replica

Fails if points to a remote object
or a replica

Remote< X >

Fails if points to a remote object
or a replica

Fails if points to a remote object
or a replica

PPointer< X >

May fail if from pointer replica
pointing to a remote object or
will fail if points to a replica

Will fail if from pointer replica
pointing to a remote object or an
object replica

PWeakPointer< X >

Fails if points to a remote object
or a replica

Fails if points to a remote object
or a replica

PRemote< X >

Fails if points to a remote object
or a replica

Fails if points to a remote object
or a replica

There is always a way to check if certain operation is correct so that the policy violation exception
could be avoided. The check can be done on the application level by using these methods:

* local pointer.s_local()

Tests if the pointer with local dereference semantics can be dereferenced. See Section 5.3.6,

“Special Operations”.

* local pointer property.is_replica()

Tests if the pointer property is a replica.

* local pointer->is_replica()

Tests if the pointer points to an object replica (assuming that the pointer can be dereferenced loc-

ally).

* local pointer.inherits(...)

Tests if the referenced object implements a requested interface.
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5.3.11. Exceptions

Pointer subsystem throws managed exceptions if an incorrect use of a pointer is detected. If an excep-
tion is thrown, the state of the involved pointer is rollbacked to a previous consistent state. The fol-
lowing table describes the exceptions from the point of view of the pointer subsystem, the exceptions

can be used by other subsystems as well:

Table 5.6. Exceptions thrown by the pointer subsystem

Exception Why When
CanNotAccessObjectException |Operation on an object could not|Dereferencing a  NULL ID

be processed. pointer.
IllegalPointerConversionExcep- |Object does not implement the|Assigning or  dereferencing
tion requested interface, or the inter- |pointers.

face is ambiguous. See Sec-
tion 5.3.2, “Using Cast Object”.

ObjectNotOnLocalSystemEx-
ception

Trying to operate on a remote
object.

Dereferencing a pointer with
local dereference  semantics
pointing to a remote object. As-
signing a remote object to a
strong pointer.

PointerPolicy ViolationException

Pointer property specific policy
was violated.

Assigning a pointer.

RemoteCallFailedException

Attempt to issue a remote pro-
cedure call failed.

Processing a RPC request.

UndefinedClassTypeException

Object's dynamic type is un-
known.

Requesting a type information of
a remote object.

5.3.12. Differences From C++ Pointers

This chapter summarizes the basic differences between C++ pointers and managed pointers. As could
have been seen, managed pointers try to imitate C++ pointers as authentically as possible, but also add
non-trivial extensions such as type and reference safety or implicit migration and replication group
definition. Some of the features already supported by C++ pointers are implemented by managed
pointers differently (or not at all) and that's why this chapter is present:

* Pointer operations automatically throw exceptions if an illegal operation is detected

» To force an explicit conversion, when an implicit conversion is not available, use convert() meth-
od. IllegalPointerConversionException will be thrown if type information on the involved object
is available and the conversion is illegal. Type information might not be available if the object is
remote and of unsupported class kind (see Section 4.3.7, “Class Kinds”). In that case no test is
performed! The potential error should be detected when the invalid pointer is used to invoke a re-
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mote call on that object.

* Use null pseudo-keyword to assign NULL ID values to a pointer or compare the pointer with
NULL ID

» Pointers to non-addressable objects (allocated on the stack, member objects) can not be created

5.3.13. Differences In Debug And Release Mode

Full pointer policy testing can be quite an expensive task. However most of the policies that are
checked at run-time are intended to catch program logic errors. This means that the policy violation is
often systematic and once the program has been debugged and it has been verified that the policies are
no longer violated, the checks can be turned off and gain significant program speed up.

If the application is compiled in debug mode all the tests that can be performed locally are turned on.
This includes full pointer policy testing. When compiled in release mode the following tests are
turned off or are different:

*  No null or ambiguous pointer dereference test

An attempt to dereference such a pointer is functionally equivalent to the dereference of a C++
NULL pointer.

»  Limited pointer policy testing

The checking of the policies whose violation would be signalled by a generic PointerPolicy-
ViolationException exception is turned off. These policies ensure consistent use of point-
ers with respect to the definition of migration groups and the use of object replicas.

Warning

Application programmer must be aware of the differences. The program is considered ill
formed if it violates the policies that are checked in debug mode only. Programmer can check
the policy on the application level if needed.

5.3.14. Advanced Techniques

Managed pointers can be combined with C++ references pointing to object members if extra attention
is given. These techniques are considered advanced as one could get along with managed pointers
only. For example in Java you can not create a reference to an object member.

Warning

In Massiv it is okay to create and pass short-time aliasing C++ references pointing to local
members to other local methods as far as the object that owns the referenced members is (and
will remain) active. Such references must not be stored (kept) by the callee. Similarly, C++
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references to data allocated on the stack can be passed to local methods if they are released
when the callee exits. Simple standard scoping rules will help you to understand this.

void print( const Property & p )
{
std::cout << p;

}

void MyObject: :method ()

{ O
std::cout << *this;
print ( this->my property ); 0O

}

/*
const Property & MyObject::get my property() const

{
return this->my property; 0O

}
*/

0  Suppose that MyObject instance has been called through a managed pointer. MyObject instance
has already been pinned when program got to this point. Application can now manipulate with
MyObject instance as usually.

0  Pass my property to print() by C++ reference, print() must forget the reference at its exit.

Wrong! Can not export a C++ reference to an object that won't be active any more.

|

5.4. Garbage Collector

All stand-alone managed objects are garbage collected. This means that the application does not man-
age memory allocation and object's lifetime by itself but it is done automatically by the Core. Pro-
grammer simply creates objects by a new()-like construct and lets the Core delete them when they are
no longer used. The Core periodically scans for such unused objects, basically the objects that can not
be reached by strong pointers, and deletes them. The Garbage Collector is not conservative, during the
mark phase, when the collector is marking "reachable" objects, meta-information of examined objects
is used to determine what references a particular object holds. The Garbage Collector activity is fully
transparent and does not require user's assistance.

5.4.1. The Model

This section describes the garbage collector model implemented in the Core.

Basic single-process garbage collectors usually work as follows. When the underlying run-time de-
termines that there is low free memory, a new GC run is triggered. Its purpose is to find and delete
"lost" objects, the objects that can not be reached from program stack and global variables through
pointers. During this process all threads are stopped so that the GC sees consistent memory image.
The implementation is often conservative and does not utilize any meta-information (everything is
treated as if it could be a pointer). This has the consequence that the GC is not able to detect all un-
reachable objects, might be ineffecient or blocks the program for quite a long time (GC runs do not re-
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main unspotted).

In a distributed environment the problem is much more complex and conventional algorithms used by
local garbage collectors can not be used for various reasons. Also the GC runs may be quite lengthy
and threads can not be blocked during the process. Because of this most distributed systems do not
have a garbage collector at all, require a non-trival user's assistance or are too conservative (GC can
not tell if an object is unreachable, may cause serious memory leaks).

In the Massiv a special form of a local garbage collector is used. There are no global variables, the
whole simulation state is kept in managed objects. Instead of determining what objects are reachable
from global variables (which would not have sence because objects can transparently migrate whereas
global variables can not), the garbage collector determines what objects are reachable from special GC
root objects. An object can be a GC root object either statically (if its class has an IDL gc root flag
set) or dynamically by promoting it to a root object. Objects with scheduled migrations are automatic-
ally promoted to GC roots until the migration takes place. Apart from GC roots, the scanning process
also originates in pointers residing on the program stack. During the scanning, the Garbage Collector
is interested in strong pointers only . Weak pointers are ignored and this is consistent with other GC-
based systems that support weak references.

Note

To conclude, the scanning process originates in GC root objects and stack-strong-referenced
objects. Strong pointers keep the referenced objects alive. One might wonder where the local
semantics of the GC comes from. Remember that strong pointers are the only pointers that are
processed by the GC when it scans for reachable objects and that strong pointers can not point
to remote objects.

When the Core starts a new GC run. It first scans for reachable objects from GC roots and the pro-
gram stack (the mark phase) and then deletes the unreachable objects (sweep phase). Only stand-alone
non-replica objects are garbage collected.

Note

Active objects are not garbage collected too, but they are not considered to be GC roots. Their
migration groups won't also be collected if the active objects are referenced by chains of
strong pointers originating on the program stack.

5.4.2. GC Roots

GC root objects are stand-alone objects handled by the Garbage Collector in a special way. Such ob-
jects are somewhat privileged over non root objects because they will never be collected by the
Garbage Collector unless it was explicitly instructed to do so. Moreover the scanning for reachable
objects originates in these objects. This has a consequence that objects reachable from GC root objects
by strong pointers will not be collected too. In other words GC root objects make other objects alive.
For completeness it is worth saying that stack strong pointers have a similar function as the scanning
originates also in stack-strong-referenced objects.

The Garbage Collector semantics can be expressed in the language of migration groups as well.
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* Migration groups are deleted at the next GC run if they do not have GC root objects and are not
referenced from the stack by strong pointers.

*  Weak-referenced portions of migration groups (objects referenced by weak pointers only) are also
deleted.

There are two kinds of GC root objects:

e Permanent GC roots

A stand-alone object is a permanent GC root if its class defines gc_root = true IDL class attribute.
All stand-alone instances of such a class are GC roots.

Permanent GC root objects can be turned to non-root objects at the end of its life. This ensures
that the migration group will be collected then. Use System::dispose_gc_root().

*  Dynamic GC roots

A stand-alone object instance can be promoted to a GC root at the run-time. The promotion is on
the per-instance basis.

Object instances are automatically promoted to GC roots if they have pending migrations. They
are automatically demoted back to non-root objects when the migrations finish. This allows to
form and migrate a migration group without a permanent GC root object. Such migration groups
can be used to implement messaging:

class Message;

class Sender : public Object /* gc _root = true */
{
public:
void send
(
WeakPointer< Receiver > receiver,
Pointer< Message > message,
const STime & delivery time
)i

}i

class Receiver : public Object /* gc_root = true */
{
public:
void message delivered
(
Pointer< Message > message
)i

PPointer< Message > last message;
}i

class Message : public Object /* gc root = false */

{
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protected: /// Object interface.
void delivered to
(
WeakPointer< Object > object,
const STime & delivery time
)i

}i
void Sender::send

(

WeakPointer< Receiver > receiver,

Pointer< Message > message,

const STime & delivery time

)

{

message->migrate to( receiver, delivery time ); 0O

}

void Message::delivered to

(
WeakPointer< Object > object,

const STime & delivery time

)

{0

Pointer< Receiver > receiver = object.convert () ;

receiver->message delivered( this );

}

volid Receiver::message delivered
(
Pointer< Message > message
)
{
last message = message; U

}

00  Requesting a migration promotes the message to a dynamic GC root object.

0 Message object was delivered to the migration addressee. This is called by the Core when
the migration finishes. The object has already been demoted back to a non GC root object,
however it is stack-strong referenced from the Core until the exit from the method.

0 If message was not assigned to last message the Message object would be garbage collected
at the next GC run.

5.4.3. The API

This section describes public and semi-public APIs to the Garbage Collector. Although the application
mostly should not care, as the Garbage Collector works automatically and need not be controlled by
the application at all, the knowledge of the API can be advantageous. However when working with
the GC directly non-trivial knowledge related to the Core implementation is required. Reading the
Massiv Core Programmer's Documentation is highly recommended.
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The Garbage Collector can be controlled either through System class, which defines a public API
that abstracts all Core subsystems, or directly through GarbageCollector class. The direct access
is semi-public and should be used for diagnostics and debugging purposes only.

Garbage collector related API provided by the System class is summarized in the following table. It
discusses how to explicitly force garbage collection, explicitly delete an object or dispose a migration
group containing a GC root object:

Table S.7. Public API to the Garbage Collector

Method Description

System::force gc() Forces immediate garbage collection. Although
the GC decides itself when to perform the collec-
tion a way to explicitly force the collection might
be useful.

System::dispose gc root( local pointer ) Demotes a permanent GC root object referenced
by the local pointer to a non-root object. The ob-
ject and its migration group will eventually be
garbage collected at once.

System::collect_object( local pointer ) Instructs the GC to collect the object referenced
by the local pointer as soon as possible. This
method allows to delete objects explitly. However
rest of the migration group remains alive at least
to the next GC run.

System::collect_object() can not always delete referenced objects immediatelly. That is because such
objects may be active, for example. If this is the case, the object is tagged and will be deleted at the
next GC tick:

class X : public Object
{
public:
void f ()
{
Pointer< Object > self = this;
System: :collect object( self );
}

There is no need to worry about unspotted dangling pointer dereferences. The delete operation equals
to an immediate object migration (without the rest of its migration group, of course) to a "thrash can".
Any attempt to access such an object will fail because the object is no longer local and can not be loc-
alized on remote nodes (Objectlds are not recycled). Thus, pointers with both local and remote
dereference semantics pointing to the deleted objects will always fail to dereference. Pointer validity
can be tested in the common way.

Warning
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When deleting an object explicitly keep in mind that other objects from the same migration
group will remain alive and their strong pointers to the deleted object will be invalidated (fail
to dereference, but won't be reset to NULL ID). The same steps must be taken as if the ap-
plication was written in plain C++. However invalid dereferences will be catched.

Suppose that we have a migration group with a single GC root object. If the root object was explicitly
deleted by System::collect object() there would be a risk that the rest of the migration group would be
alive until the next GC run. This may cause the problems explained in the previous warning. However
if the root object was disposed by System::dispose_gc root() the migration group would be deleted
atomically at a future GC run. In the case of multiple GC roots all the roots will have to be disposed.

Note

This is valid under a condition that basicaly none of the objects in the migration group is act-
ive at the time of the collect. The condition can simply be fulfiled by preventing the GC from
running if there might be active objects. This is the default behavior and can be changed via
the registry settings.

Direct API to the Garbage Collector is provided by the GarbageCollector global object. The
API is semi-public and gains access to the features ranging from diagnostics and debugging functions,
statistics, settings, the Garbage Collector state to migration and replication group enumeration. The
complete documentation can be found in the Massiv Core Programmer's Documentation and requires
the knowledge of the Core internals. Some of the features are explained in the following section.

5.4.4. Running And Configuring GC

Garbage Collector runs are triggered either automatically by the Core logic, when an object limit
count (adapted by recent memory use) is reached, or explicitly by calling System: : force gc ().
There is a variety of settings that can be used to setup the Garbage Collector. See Section 27.7,
“Garbage Collector”.
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6.1. Overview

The migration is the process when one or more managed objects are moved from one node to another
one, either transparently or on demand.

Object migration is the only directly supported way of data exchange between objects and object in-
teraction. Migrations are addressed by objects. This is basically an agent model, where agents
(objects) migrate in order to accomplish their tasks. Once delivered to an object, a callback is called.
Everything else (RPC and messaging, for example) can be built on top of the object migration.

From previous chapters you should already know:

» What managed objects exist and how they can be grouped together into migration groups (see
Section 5.3.7, “Migration And Replication Groups”).

* How the simulation is distributed over several nodes and how these nodes are accessible to man-
aged objects via node objects (see Section 2.1, “Types Of Nodes” and Chapter 14, Special
Objects).

6.2. Communication Between Objects Us-
ing Migration

When we were designing how the managed objects will communicate while the objects are distributed
among several nodes and thus can't access each other directly, there were several possibilities how to
implement communication between the remote objects. We found both asynchronous and synchron-
ous RPC useful and worth implementing but too complex for the lowest level of communication
among objects.

We knew that we wanted something similar to asynchronous message sending. But the protocol based
on asynchronous messages itself was not suitable for us as it would introduce two types of objects -
managed objects and message objects. But it was just one step from the final solution which is imple-
mented in the Massiv.

In the Massiv, managed objects and messages are the same. Managed objects can behave like mes-
sages and messages can behave like objects. What does that mean? Because each managed object is
also a message, it can be sent to another objects. And because each message is also an object, it can
have properties and methods which can be accessed and invoked.

The migration is the process when one or more messages (objects) are delivered (migrated) to another
object. Here is the right point to make clear the difference between delivery and migration - there is
no difference at all. When we are looking on some object as it is a message, the message is
“delivered” to its recipient object. Actually, the object is migrated to the same node where the recipi-
ent resides and the object (message) is received by the recipient. You should have no problem under-
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standing when “delivery” is interchanged with “migration” (and vice versa) without being explicitly
stated.

The described model where objects and messages are the same, has some nice features.

Because messages are also managed objects, we don't need to take extra care of the messages. For
example, the messages are automatically archived as any other object is.

Messages can contain any managed data.

Messages can expose some specific behavior because the the messages are totally under the con-
trol of the user of the Core. For example, some messages don't only need to be delivered to some
object and then destroyed, but they can be delivered to the object and then they can return to the
sender of the message (or they can be sent again to any other object). This feature is heavily used
in implementation of synchronous RPC where the RPC messages are used to bring back results of
the RPC invocation.

There doesn't need to be some global handler which will pass the message to its recipient once the
message is delivered. The handler is part of the message object - when the message is delivered to
its recipient, one of its methods is invoked with recipient as its argument. The method is virtual so
each message can have its own handler which can do whatever is appropriate for the message. For
example the recipient of the message doesn't need to notice at all that the message was delivered
to him if the message's handler doesn't call any method of the recipient.

6.3. Migration Types

The Core provides two types of migration:

Migration between nodes

Migration between nodes is the proces where the Core moves a group of objects from node 4 to
another node B. The objects are first destroyed on the node A4, then transferred over the network to
the node B on which they are finally recreated to their state before the migration.

By default this migration is transparent to the objects because on the node B the objects are recre-
ated to the same state as on the node A before their destruction. Sometimes, mostly for debuging
purposes, it is usefull to know when an object migrates. See Section 6.8, “Detecting Migrations
Between Nodes” for more information about this problem.

Migration between objects

This type of migration is also called delivery of an object to another object. The destination of the
migration is some object in the simulation. The migrated object is moved to the node where the
destination object exists and delivery callback is invoked on the migrated object with the destina-
tion object passed as an argument. This type of migration is the basic principle on which the entire
communication among remote objects (objects which can't access directly each other) is built
upon.
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The two types of migrations are presented only for clarity because user of the Core doesn't need to
distinguish between them. There is one common interface how to request migration of an object to
either another object or to some node in the simulation (nodes can be addressed on object level too,
see Section 14.2, “Node Object”). Also the migration between objects is an extension of the migration
between nodes because the migrated object can travel among several nodes before the destination ob-
ject is found in the simulation.

6.4. Migration Groups

Managed objects are grouped into migration groups, as you should already know from Section 5.3.7,
“Migration And Replication Groups”. For simplicity you can think of migration group as a maximal
set of objects where each object from the group is reachable via strong pointer properties by at least
one another object from the group, and any object outside the group is not reachable by any object
from the group via strong pointer properties.

In other words, if object 4 has strong pointer to object B, both of the objects belong to the same mi-
gration group. The important thing is that it is ensured that if an object is located on a node, all objects
from its migration group are located on the same node as well and the objects can access all other ob-
jects from the migration group directly by dereferencing the strong pointer properties.

Because objects from one migration group must always reside on the same node, all of the objects
must migrate together whenever one of them have to migrate to another node.

All objects from one migration group always migrate together. Whenever one object from the migra-
tion group migrates, all other objects from the migration group migrate as well together with the ob-
Ject.

6.5. Requesting Migration

There are three methods of Object which can be used to request delivery (migration) of the object to
another object: migrate to (), schedule to() anddeliver asap to().

void Object::migrate to
(
WeakPointer< Object > destination object,
const STime & delivery time,
bool notify = true
)

EventHandle Object::schedule to
(
WeakPointer< Object > destination object,
const STime & delivery time,
bool notify = true
)i

void Object::deliver asap to
(
WeakPointer< Object > destination object,
bool can deliver to replica = false
)i
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The destination object specifies the object to which the migrated object should be delivered.

The delivery time is the time when the migrated object should be delivered to the destination
object. Note that that the Core doesn't ensure that the object will be delivered exactly at the specified
time to the destination object. The delivery time specifies only when the migration will begin
because there is no way how to detect how much time the migration will take since the destination ob-
ject must be first found in the simulation and also the network transmission time is unpredictable. The
migrated object will be delivered exactly at the specified time only if the destination object is on the
same node as the migrated object (in such case the migrated object is not migrated at all). The variable
duration of the migration should not be a problem because once the migrated object is delivered, the
Core tells him the original delivery time and so the object can easily compute how much time
the migration took and do whatever is appropriate.

The notify specifies whether the migrated object should be notified when it is delivered to the des-
tination object. If it is true, the Core calls delivered to () (or delivery failed() in case
the delivery failed) on the migrated object once it is delivered to the destination object. If the notify
is false, the migrated object is not notified of the finished migration (neither delivered to () nor
delivery failed() is called).

In most cases you will request deliveries with notifications (the not i fy set to true, which is the de-
fault) since the delivered objects will often do something with the destination objects (call their meth-
ods, access their properties etc).

Migrations without notifications are useful when you want to migrate an object without letting it to
know. In such case the migration to the destination object just means moving the object to the node
where the destination object resides. This principle is used by the Core to distribute managed objects
among server nodes when performing load balancing (Appendix B, Load Balancing).

The migrate to () tells the object to migrate at specified time to the destination object.

The deliver asap to () tells the object to migrate to the destination object as soon as
possible. The major difference from general migrate to is that the object is delivered immedi-
atelly if destination object is a local object instead of scheduling the migration so that it
could be processed at next simulation tick (if possible). If destination object is alocal object,
migration callbacks (see Section 6.6, “Migration Callbacks”) will already have been executed by the
time when deliver asap to () returns. If the object is not local a migration to the destina-
tion object is scheduled to current simulation time and the method behaves like mi-
grate to().

The can deliver to replica determines whether the object can be delivered to a consistent
local replica of the destination object. If a migration is scheduled the object is always de-
livered to the original object.

schedule to () does the same what migrate to () does with the only difference: the methods
returns a “handle to the scheduled migration” (the handle is called EventHandle because scheduled
migrations are implemented as events of the objects but it is nothing you should worry about). The re-
turned handle can be used to cancel the migration. Note that the migration can be cancelled only if
you have both the handle to the migration and strong pointer to the migrated object (i.e. the object is
local). In other cases the result of the cancellation is undefined. The migration may but also may not
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be cancelled.

Corresponding property for the EventHandle is PEventHandle. To cancel the migration call
kill () method on the handle:

void EventHandle::kill () ;
void PEventHandle::kill () ;

Note that there is also performace difference between migrate to () and schedule to (). The
latter adds extra data to the object which must be transferred over the network when the object is mi-
grated. If you don't need to cancel migrations you should always use the migrate to () method.

Warning

The Core is not able to migrate active or pinned objects. The methods used to request object
migrations either deliver the objects directly to local objects (deliver asap to()) or
schedule the migrations so that they could be processed later (possibly at next system tick)
when the objects are not active any more. In particular the migration will still be pending
when the program returns frommigrate to ().

If an object requests its migration and then immediatelly issues a SRPC call the object will
not be able to migrate at least until the SRPC completes. The object will be blocked and may
block other objects too - object migrations initiated on the same node are processed by the
Core in the order of their delivery times. Thus if an object A schedules a migration to be pro-
cessed at time T1 and an object B schedules a migration to time T2 > T1, and both the objects
are located on the same node, B will not be able to migrate until A migrates (B will be
blocked by 2).

It is highly recommended not to touch objects with pending migrations. When their migra-
tions complete corresponding callbacks will be upcalled (see Section 6.6, “Migration Call-
backs”).

6.6. Migration Callbacks

Once an object is delivered to its recipient, it is notified by delivered to () or by deliv-

ery failed() in case the delivery failed.

virtual void Object::delivered to
(
WeakPointer< Object > destination object,
const STime & delivery time

)i

virtual void Object::delivery failed
(
DeliveryFailure failure,
const STime & delivery time

)i

The delivered to () method is called if the migrated object is successfully delivered to the des-
tination object.
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The delivery failed () method is called if the migration failed for some reason.

The destination object and the delivery time are the arguments passed to the functions
migrate to (), schedule to() anddeliver asap to () when a migration is requested.

If the migration has been successful, the Core ensures that the destination object pointer
points to a local object (object located on the same node) and thus it can be accessed directly by
dereferencing the pointer. The pointer is weak and thus deliveries to local object replicas by deliv-—
er asap to () are possible (see Section 5.3.10, “Pointer Policies”). However it is ensured that if
destination object does not point to a replica it is internally strong-referenced from the Core.
It is also ensured that this object is strong-referenced too.

If the migration has failed, the failure holds the failure reason.

Table 6.1. Migration failure reasons

Value The migration failed because...

DESTINATION NOT ACCESSIBLE The destination object is not accessible in the sim-
ulation. Either the object was already destroyed or
the object didn't exist at all.

EVENT KILLED The migration was cancelled. See description of
schedule to() mthod in Section 6.5,
“Requesting Migration”.

6.7. Preventing Migrations

It is possible to prevent migrations of all objects of a class. If the class is declared with no_migrate at-
tribute set to true (see Section 10.9.3, “Class Attributes™), all instances of the class won't be allowed
to migrate. If you create an instance of the class, the object will always reside on the node on which it
was created. If you will try to migrate these objects, the Core will log a warning message and discard
the migration.

6.8. Detecting Migrations Between Nodes

By default the migration between nodes is transparent to the objects and you should never need to de-
tect it because there can be many reasons why an object is migrated to some node (not only because
the object or another one requested it) and because the Core will never tell you the exact reason. The
Core provides a generic callback, which is called whenever an object is recreated on a node. The
name of the callback is object updated (). The callback has a single reason parameter that,
for the purposes of object migration, is always set to INSTANCE MIGRATED. IN-
STANCE MIGRATED can't be used to detect migration between nodes, because the Core uses this
reason also when the object is loaded from the swap file or restored from the archive file. In most
cases an application programmer should not care and if the callback is used at all it should be used for
debugging purposes only.
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6.9. Migration And Garbage Collector

Objects with scheduled migrations are never automatically destroyed by the Garbage Collector even if
they are not permanent GC root objects. Objects with scheduled migrations are promoted to GC root
objects. See Section 5.4, “Garbage Collector” for more information about GC root objects.

6.10. Migration And Nodes

As you already know, the Massiv divides all nodes into three groups: client nodes, simulation servers
and data service nodes. Because data service nodes do not participate in the simulation, they can nev-
er be destination of migrations and thus will not be mentioned in the following sections.

6.10.1. Migration Between Server Nodes

Migration among server nodes is the the basic principle the entire communication among remote ob-
jects is built upon. There is no restriction on this type of migration because server nodes are always
trusted so you can migrate any object to any server node at any time.

6.10.2. Migration From Client To Server Nodes

Because server nodes can't trust any data from client nodes, there are many restrictions on object mi-
grations from client to server nodes:

* Only one object can migrate from a client node to a server node at once i.e. any migration group
sent from client nodes to some server node must consist of only one object. If a client node sends
two or more objects as a part of one migration message, the server node discards the message
away and the client is disconnected from the simulation.

» Only objects of explicitly selected classes can migrate from client to server nodes. When you cre-
ate a new class, you can specify in its /DL description whether the class is allowed to migrate from
client to server nodes (see client_server migrate attribute in Section 10.9.3, “Class Attributes”). If
the client node sends an object which is not allowed to migrate from client to server nodes, the
server node discards the message and the client is disconnected from the simulation.

* The destination of the object which is being sent from a client node to a server node must be an
account object of the client (see Chapter 14, Special Objects). Its up to account's logic to process
the object and optionally forward the message to another objects in the simulation. Again, if the
client is trying to communicate directly with an object different from its account object, it is dis-
connected from the simulation.

» Of course the data itself of the object which is being sent from the client node to the server node is
verified as well.

Once the object is successfully verified by the server, new Objectld is generated for the object be-
cause its current Objectld, generated by the client, is not persistent and can't be used as a valid Object-
1d inside the simulation. Having new Objectld, the object can be finally delivered to the account ob-
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ject of the client.

6.10.3. Migration From Server To Client Nodes

Similarly to migration from client to server nodes, also the migration from server to client nodes have
some specifics. First of all, there are no restrictions on which and how many objects can migrate to
client nodes. But you should have in mind that the client nodes don't support all classes supported by
the Core on server nodes but only a subset.

Because object owned by client nodes are not part of the simulation and the client nodes can't be trus-
ted, once an object is migrated from servers to a client node, it can't ever return back in the simulation.
The server nodes also loose track of the object and don't monitor the object any more.

6.11. How Migrations Are Used By The
Core

6.11.1. Load Balancing

The Massiv provides facilities for automatic load balancing to decrease network and CPU load (see
Appendix B, Load Balancing). The Core uses transparent migrations to migrate objects to less loaded
nodes in order to keep uniform resource loads.

6.11.2. Synchronous And Asynchronous RPC

The Massiv provides remote procedure call (RPC) mechanism that allows you to call methods of re-
mote objects (see Chapter 8, Remote Procedure Call). The RPC is implemented by migrating RP-
CObject between the caller and the callee object.
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7.1. Overview

The replication is used to keep read-only copies of managed objects on one or more nodes. These cop-
ies are called object replicas, or simply replicas. The Core automatically keeps object replicas up-
to-date during their lifetime.

Replication serves two main purposes:

» To keep up-to-date copies of objects needed for world presentation on client nodes. Server nodes
decide which objects are relevant for the presentation (i.e. visible and/or audible) and request their
replication to client nodes.

* To optimize communication between objects, especially to reduce the communcation latency. If
server node-side code wants to read properties (or call constant methods) of objects potentially
owned by a different server node, it can request replication of such objects in advance and access
object replicas instead of accessing the objects themselves over the network (using synchronous
RPC for example).

On a single node, either object itself or its replica can exist, but never both of them. Replicas have the
same object id as the original object and can be accessed using a weak pointer to the object (see Sec-
tion 7.4, “Accessing Object Replicas”).

7.2. Replication Model

Each managed object keeps list of nodes it should be replicated to, and for each node the simulation
time when replication of the object to the node should be stopped. When the Core decides to update
replicas on a node, it gathers set of objects that should be replicated to the node, determines all objects
belonging to their replication groups, and sends the replication update to the node.

Note

Replication of replicas is illegal.

In this chapter, when talking about a given object and its replication, replication server refers to the
node that owns the object, and replication client refers to each of the nodes the object is replicated to.
Somethimes this may be shortened to server and client. When talking about different types of nodes,
as described in Section 2.1, “Types Of Nodes”, server node and client node terms will be always used.

7.2.1. Simple Example

The Figure 7.1, “Replication Example” shows a simple situation, where Replication Server owns two
objects, Object A and Object B, and replicates them to Replication Client 1 and Replication Client 2,
respectively. The Core keeps the copies of the objects and their replication groups on replication cli-
ents, until the replication timeout simulation time is reached.
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Figure 7.1. Replication Example
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The figure does not indicate whether Object A and Object B belong to the same replication group or
not. If they belonged to the same group, the same set of objects would be replicated to both replication
client nodes, even if the replication was “triggered” by a different object.

7.2.2. Replication from Client Nodes

Only server nodes are allowed to replicate their objects. Any client node that tries to replicate an ob-
ject to a server node will be disconnected from the simulation. There are two reasons for this behavi-
or:

* Replication from client nodes to server nodes seems useless. None of the two scenarios where rep-
lication may help (world presentation and communcation optimizations) applies to client nodes.

* Replication from client nodes to server nodes would be dangerous and insecure. It would allow
client nodes to spam server nodes with tons of useless objects.

7.2.3. Replication and Migration

When an object, that is replicated to several nodes, migrates, the new owner node becomes respons-
ible for replication of the object. All replication requests, along with their timeouts, will migrate with
the object.

Object remembers replication request even when the replication client node of the request is the same
as the owner node of the object. Such requests are perfectly legal. No replicas on the owner node will
be created, but if the object migrates to a different node, the new owner node will automatically rep-
licate the object back to the former owner node.
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Because client nodes are not allowed to replicate their object, when an object migrates to a client
node, all replication requests of the object are forgotten and its replicas are destroyed.

7.2.4. Replication and Class Kinds

You should already know what class kinds mean. If not, refer to Section 4.3.7, “Class Kinds”.

It is allowed to replicate objects of any kind to a node of the same type, but when replicating to a node
of different type, all replicated objects must be of KIND SHARED.

7.3. Requesting Replication

This chapter describes how to request replication of an object and how to cancel a replication request.

7.3.1. Using Methods of Object

To request replication of an object to given node, call replicate to () method of Object. To
cancel replication of an object, call cancel replication:

void Object::replicate to
(
WeakPointer< Object > destination node,
const STime & timeout
)i

void Object::cancel replication

(

WeakPointer< Object > destination node
)7

The destination node argument must point to a node object (see Section 14.2, “Node Object”).
This is an important difference from migration - while migration is addressed by destination object,
replication request is addressed by destination node.

The timeout argument specifies simulation time when replication of the object will be stopped and
the object replica will be destroyed. The replication timeout will be set to this value, even if replica-
tion request of the object to given node exists, and its replication timeout is larger. Setting the timeout
to the past (default-constructed value of STime is always in the past) will effectively cancel the rep-
lication. Actually the cancel replication is just a properly named shortcut for replic-
ate to withsuch timeout.

7.3.2. Node Object Pointers

Pointers in general are described in Chapter 5, Pointers, and node objects are described in Sec-
tion 14.2, “Node Object”. This section just repeats the most useful information regarding object rep-
lication.

Pointer to a node object can be easily constructed from a node id:
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NodeId node id = ...;
WeakPointer< Object > node object( ObjectId( node id ) );

To get node id of the local node, call:

const NodeId local node id = System::get local node id();

Because replicate to () can be called remotely (see Chapter 8, Remote Procedure Call), it's
easy to request replication of a remote object foo to local node:

Remote< Object > foo = ...;
foo->async _replicate to( ObjectId( System::get local node id() ), STime( 60.0 ) );

Obtaining pointer to node object of a client node is also relatively easy. When client connects to the
simulation, it calls method client connected() of AccountObjectInterface and passes
pointer to its node object as the only argument:

virtual void AccountObjectInterface::client connected

(
const WeakPointer< NodeObjectInterface > & node object

) = 0;

Refer to Section 14.3, “Account Object” for information about account objects. You should also
check  implementation @ of account object in  Massiv  Demo  (files src/
demo/lib/shared/account object.*).

7.3.3. Requesting Replication by RPC

Remote procedure call to a object can automatically trigger its replication to callee node. This is de-
scribed in Section 8.5.1, “Triggering Replication by RPC”,

7.4. Accessing Object Replicas

Replicas of objects have the same object id as the objects they are replicas of. On every node, exactly
one of the following statements is true for object of given object id:

* The object is local.

» The object is remote and its replica exists on the node.

* Neither the object itself nor its replica exists on the node. The object is either remote or does not
exist at all.

As described in Chapter 5, Pointers, objects pointed to by a strong pointer are always local. However,
weak pointer may reference a remote object. If the object is remote, and its replica exists on local
node, weak pointer can be used as if the object was local, and it will access the replica instead of the
object.

The following example shows how to determine whether an object is local, replica of the object is loc-
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al, or the object is remote. Moreover, if a replica of the object exists, it determines whether it is con-
sistent or not (the replica consistency is described in Section 7.7, “Consistency of Replication
Groups™):

Example 7.1. Determining State of an Object

WeakPointer< Object > foo = ...;
if( foo.is local() )
{
if ( foo->is replica() )
{

if( foo->is consistent () )

{

/* Consistent replica of foo is local. */

}

else

{
/* Inconsistent replica of foo is local. */
}

}

else

{
/* foo is a local object. */
}

}

else

{

/* foo is a remote object, or does not exist at all. */

}

The Core restricts operations on replicas; especially it's illegal to modify properties of replicas. For
complete list of allowed and illegal operations, refer to Section 7.10, “Allowed and Illegal Opera-
tions”

7.5. Replication-related IDL Attributes

The IDL description allows you to specify many attributes of classes, properties and methods. This
sections describes attributes related to replication. The syntax of attribute definition is documented in
Section 10.8, “Attributes”, complete lists of class, property and method attributes are in Sec-
tion 10.9.3, “Class Attributes”, Section 10.10.1, “Property Attributes” and Section 10.11.1, “Method
Attributes”, respectively. If you are not familiar with the IDL concept at all, you should first read
Chapter 9, Introduction to IDL.

Two replication-related property attributes, commonly called replication flags, exist: repflags and
ptr repflags. They are used to choose which objects belong to a replication (or migration) group
and which properties of those objects should be replicated, based on #ype of destination node. Both
repflags and ptr repflags are of enumeration type ReplicationFlags.
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The following sections assume that standard values of the ReplicationFlags attribute type, as defined
in src/core/object/object.idl, are used. However, the Core allows you to define your own
replication flag constants and per-node type replication masks as explained in Section 7.5.5, “Custom
Replication Flags and Masks”.

7.5.1. Node Types

As you already know, the Massiv divides all nodes into three groups: client nodes, simulation servers
and data service nodes. Because data service nodes do not participate in the simulation, they can nev-
er be destination of replications or migrations, and will not be mentioned in the following sections.

Default replication flag constants distinguish two client node types: standard client and privileged cli-
ent. The Core will support this distinction in the future, but currently it treats all client nodes as equal.
When using recommended settings (see Section 7.5.4, “Recommended Node Replication Masks”), all
client nodes are treated as privileged for replication purposes.

Note

This distinction is used only for replication purposes when choosing which properties should
be replicated and which objects belong to a replication group, it does not add any special priv-
ileges to client nodes. You can still easily implement per-account privileges as can be seen in
the Massiv Demo - only players with 7oot accounts may directly edit the terrain and entities.

7.5.2. Choosing Properties To Replicate

Property attribute repflags allows you to choose which properties of a managed object should be
serialized when replicating the object to a node of given type. It can be assigned one of the values
defined in Table 7.1, “Property replication flags”. The default value of the repflags attribute is
REPLICATE - all properties are replicated to all node types by default.

Table 7.1. Property replication flags

Value Bits set Meaning
NONE none Illegal value. MIGRATE bit of rep-
flags must be always set.

MIGRATE MIGRATE Do not replicate, only migrate.

SERVER MIGRATE | SERVER BIT |Replicate only to simulation servers.

PRIVILEGE D_CLIENTa MIGRATE | PRIV-|Replicate only to privileged clients.
ILEGED CLIENT BIT

STANDARD CLI ENT® MIGRATE | STAND-|Replicate only to standard
ARD CLIENT BIT (non-privileged) clients.

b . . .

PRIVILEGED SERVER | PRIV-|Replicate to simulation servers and
ILEGED CLIENT privileged client nodes.

CLIENT PRIVILEGED CLIENT | |Replicate to client nodes (both standard
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Value Bits set Meaning
STANDARD CLIENT and privileged).
REPLICATE SERVER | CLIENT Replicate to all node types.

# Because the Core does not distinguish standard and privileged client nodes yet, this repflags value should not be used. Use
CLIENT instead.

Because the Core does not distinguish standard and privileged client nodes yet, this repflags value should not be used at
all.

Replication flags are specified for each property which is member of a managed object. If the property
is a container property, its replication flags apply to both the container and the properties it holds.

Note

When replication protocol decides if a property should be replicated, it checks only the value
of its repflags attribute, even if the property is a managed object or a container. For ex-
ample, an array property with SERVER repflags would not be replicated to client nodes at
all, even if it contained an object with properties with REPLICATE repflags.

7.5.3. Replication and Migration Groups

The ptr repflags property attribute of pointer properties is used to define replication and migra-
tion groups. Possible values are described in Table 7.2, “Pointer replication flags”. The default value
of the ptr repflags attribute is NONE for weak pointers and MIGRATE for strong pointers - weak
pointers do not define a group by default, and strong pointers define a migration group by default.

Migration and replication groups in general are documented in Section 5.3.7, “Migration And Replic-
ation Groups”.

Table 7.2. Pointer replication flags

Value Defines a group when... b

NONE pointer does not define a group

MIGRATE migrating

SERVER migrating, or replicating to a simulation server

PRIVILEGE D_CLIENTc migrating, or replicating to a privileged client

STANDARD CL IENT® migrating, or replicating to a standard non-privileged client

PRIVILEGED migrating, or replicating to a simulation server or a privileged cli-
ent

CLIENT migrating, or replicating to a client node

REPLICATE migrating or replicating

? Bit values are exactly the same as in Table 7.1, “Property replication flags”.

Because replication groups are subsets of migration groups, all pointers with ptr repflags set to anything but NONE
define a migration group.
¢ Because the Core does not distinguish standard and privileged client nodes yet, this ptr repflags value should not be
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used. Use CLIENT instead.
Because the Core does not distinguish standard and privileged client nodes yet, this ptr repflags value should not be
used at all.

Warning

Strong pointers must always define at least a migration group. The IDL processor will auto-
matically change default value (NONE) of ptr repflags of simple strong pointer proper-
ties to REPLICATE (actually, value of another property attribute, strongptr repflags,
is used, but you should never override its default). However, if a strong pointer is stored in-
side a structural property (such as a pair or a container), ptr repflags of the property
must be set manually in the IDL.

Pointers contained within member objects and container properties of an object define migration/rep-
lication groups too. If a pointer is member property of a managed object, ptr repflags specified
in IDL of the corresponding class are used. If a pointer is a member of a non-object container prop-
erty, ptr repflags of the container are used. This means that it's impossible to mix pointers with
different ptr repflags in container properties (such as the pair, for example).

Note

It's possible for pointers to define a replication group even if their value is not replicated, if

repflags is more restrictive than ptr repflags. This feature is probably not very use-
ful.

Warning

Be careful when mixing objects of different kind (described in Section 4.3.7, “Class Kinds”)
in a group. Migration of object of unsupported kind will crash destination node, replication of
object of unsupported kind and all objects replicated along the object will be ignored by des-
tination node.

7.5.4. Recommended Node Replication Masks

When interpreting values of repflags and ptr repflags attributes, the Core compares them
with replication masks for given node type.

The Core does not define any replication flags except the MIGRATE bit, other bits are defined in the
IDL. Values described in previous sections document recommended flag values defined in src/
core/object/object.idl and the Core does not know their values. Therefore default replica-
tion masks are pretty useless: when they are used, all properties are always replicated, and all pointers
with the MIGRATE ptr repflags bit set define both migration and replication group, no matter
what the destination node type is.

To use flags defined in src/core/object/object.idl with meaning described in previous
sections, override mask settings on each node to these values:

[ Settings/ObjectManagement/Replication ]
server repflags no : integer = 0
server repflags yes : integer = 3 0O

83



Replication

client repflags no : integer = 0
client repflags yes : integer = 5 0O

[0  These masks match iff MIGRATE and SERVER_BIT are set.

[0  These masks match iff MIGRATE and PRIVILEGED CLIENT BIT are set, i.e. all clients are
privileged.

In the Massiv Demo, these settings are stored in a separate file, src/

demo/config/common/massiv.replication.conf.

7.5.5. Custom Replication Flags and Masks

As already mentioned, the Core does not force you to use replication flag values defined in ob-
ject.idl. To define custom flags, you must first understand how the Core interprets the flags.

Let's begin with few simple definitions:

* Replication flags - an integer. Each bit of the integer corresponds to a flag. The Core defines
single flag, MIGRATE, as 0x01.

*  Replication mask - a pair of replication flags, called yes-mask and no-mask.

It is said that replication flags match a replication mask, if all bits set in the yes-mask are set in the
flags too, and no bits set in the no-mask are set in the flags. In other words, the yes-mask specifies
which bits of the flags must be set in, and the no-mask specifies which bits of the flags must not be
set.

Different replication masks are used for migration and replication, as described in Table 7.3,
“Replication masks”. The Core uses the mask to enumerate migration or replication group - pointers
with ptr repflags attribute matching the mask define a group. When the Core migrates or replic-
ates an object, only properties with repflags attribute that matches the mask are serialized.

Table 7.3. Replication masks

Operation Mask source Yes-mask No-mask
Migration constant MIGRATE 0

Replication to server node registry a server repflags yes server_repflags no
Replication to client node registry a client_repflags yes client_repflags no

aRephaﬂhnqdawdsenmgsmesuwaimtheSettings/ObjectManagement/ReplicationIegmﬁynod&

To define custom replication flags, you must:

e Override values of the ReplicationFlags enumeration attribute type. There is no easy way to do
this, because the attribute type is defined in object.id1, which is part of the Core sources and
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is included by all IDL files. Currently the file must be modified directly.
* Choose replicate-to-server and replicate-to-client masks and set their values on all nodes.
It's not recommended to override default replication flag values. It's even not very useful, because cur-

rent version of Massiv uses only type of destination node to choose replication masks. This may
change in the future.

7.6. Replication and Migration Compared

This section tries to point out that the replication is not the same thing as copy-and-migrate. It may
seem that the Core simply duplicates objects that have to be replicated and then migrates them to rep-
lication clients. The following table lists the biggest (and most obvious) differences between the copy-
and-migrate protocol that could be implemented on top of the Core, and the replication:

Table 7.4. Differences between the copy-and-migrate and the replication

copy-and-migrate replication

It's impossible to easily duplicate the whole mi-|Complete replication groups are replicated.
gration/replication group.

Duplication creates new objects with new object|An object and its replicas have the same object

ids. ids.

Migration transfers object once. There is no easy|Replication continuously updates replicas until

way to update the migrated object. replication request times out, and then destroys
them.

Migration transfers all properties of the migrated |Replication allows you to select which properties
object. should be replicated to a given type of node. Rep-
lica updates are very efficient, especially if
changes to replicated objects are not frequent, or
only some properties of the objects are modified.

7.7. Consistency of Replication Groups

Replicas belonging to the same replication group on a replication client node are said to be consistent,
if all of them have the same "age", i.e. all of them have been updated at the same time (it's assumed
that replication updates contain complete groups). Replication protocol tries as hard as possible to
keep replication groups in the consistent state. However, this is not always possible. Replicas may
sometimes become inconsistent if a replication group is split into two or more parts, part of the group
migrates to another server and a replication update of one of the parts is received before an update of
other parts.

Example of an inconsistency: Assume there is a replication group consisting of two objects, A and B,
on server node Serverl. There is a pointer from B to 2 which defines the replication group. The client
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node Client has replicas of the replication group. Then:

1. The pointer from B to A is changed and the replication group is split into two groups on Serverl.
2. The object B migrates to the server node Server2. The object A stays on the server Serverl.
3. In the next replication update, Client receives an update of the object A from the server Serverl.

In this case we say that the replica of the object B is in an inconsistent state on the Client, because it's
in an older state than object A, has a pointer defining a replication group to A, but the objects should
no longer be in the same replication group.

Note

A and B may also be groups of objects of course.

Inconsistencies can cause nasty problems. When working with inconsistent replicas, nothing can be
assumed about objects the replicas reference. In this case, the pointer references a more recent version
of the object replicas (which can be fatal if the objects mentioned are part of a dynamic data structure
such as list). Pointers of inconsistent replicas could also reference non-local or non-existing objects.

This can't be prevented on replication servers and can't be fixed by replication client. The replication
client can only detect this situation, and report it to the programmer.

For the programmer only one thing is important - some replicas may be marked as inconsistent for a
while. How this can be detected is shown in Section 7.4, “Accessing Object Replicas”. If a replica is
inconsistent, you can't trust its replication-group-defining pointers. They may point to another incon-
sistent replica, to a replica in a more recent state, to a local object (obviously in a more recent state
t0o), or to a non-existing object.

Any automatic or semi-automatic optimizations, performed by the Core on replicas, require replicas to
be consistent. If they are not, the optimization will not take place. For example, the replica-optimized
const SRPC will not be optimized if the replica is inconsistent and the regular SRPC will be per-
formed instead.

7.8. Callbacks to Replicas

Whenever the Core makes “important” change to an object, it calls its object updated () virtual
method. This method has single argument reason. Replication protocols will call this callback meth-
od with reason set to one of the following values:

Table 7.5. Replication-related object update () reasons

a
Reason value Used when

REPLICA CREATED Signalled after a new instance of object replica has been created
and initialized. Properties of the replica are still invalid at this time.
Both REPLICA UPDATE and REPLICA UPDATE object
changes will be signalled after REPLICA CREATED.
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Reason value Used when

REPLICA UPDATE Signalled before update of replica properties.
REPLICA CREATED Signalled after update of replica properties.
REPLICA DESTROY Signalled before destruction of a replica.

* The type of the reason argument is enumeration UpdateReason defined in class Object. Therefore fully-qualified name of
the REPLICA CREATED (for example) is Massiv::Core::0Object: :REPLICA CREATED.

Replication protocols ensure that replication update always contains up-to-date versions of all objects
belonging to a replication group. If multiple objects are created by the update, REPLICA CREATED
callback will be signalled on all new objects as they are instantiated. All objects will be created before
contents of any object is updated.

If multiple objects are destroyed by an update, REPLICA DESTROY callback will be signalled on all
objects-to-destroy before any object is actually destroyed.

REPLICA UPDATE and REPLICA UDPATED callbacks are signalled as objects are updated. There-
fore you should not assume anything about validity of pointers and about objects belonging to the rep-
lication group of the updated objects when handling these callbacks.

Note

Refer to Massiv Core Reference Guide for more information about all available object call-
backs.

7.9. Replica Manager

Callbacks described in the previous section may be useful, but they have many drawbacks. Especially
before-update and after-update callbacks are a bit useless, because they are signalled during replica-
tion group update and other objects belonging to the replication group of the updated object can't be
safely accessed.

Another problem is that the object itself must handle the callbacks. This may be a problem when you
want to monitor changes to replicas of world objects on a client node, and modify their visual repres-
entation, for example. Because code of such objects is shared between client and server nodes, modi-
fications to client-side structures may be pretty nasty.

The replica manager singleton object tries to solve all these problems. It allows you to register call-
back functions that will be invoked when objects with given object id or given class are modified.

Standard usage of ReplicaManager is shown in Example 7.2, “Usage of replica manager”. For
complete documentation of the ReplicaManager class, see the Massic Core Reference Guide.
What's important about the callbacks:

* REPLICA UPDATED callback is invoked for each updated replica, after contents of all replicas
from an update have been modified. This means that at the time of this call, all objects belonging
to the replication group of the updated object are already up-to-date.
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* REPLICA GROUP UPDATED callback is invoked for each replica that has not been modified by
the update, but that belongs to a replication group of a replica that has been modified. REP-
LICA GROUP UDPATED callbacks are invoked after REPLICA UPDATED callbacks.

* REPLICA DESTROY callback is invoked before any replica is destroyed or updated. All objects
belonging to the replication group of the object-to-destroy still exist. The callback is invoked
whenever replicas are about to be destroyed. This includes handling of standard replica update
messages, handling of an incoming migration, node reinitialization and node shutdown.

In the Massiv Demo, ReplicaManager is extensively used by all game manager classes, their
sources can be found in directory src/demo/client/game.

Example 7.2. Usage of replica manager

using namespace Massiv::Core;

/* A structure. */

struct MyStruct;

/* A managed object. */
class MyObject;

/* The callback function. */
void my callback
(

ReplicaManager: :UpdateReason reason,

WeakPointer< Object > replica,
int user tag,
VariantPointer user data

)

{

/* Cast replica pointer to correct type. */
WeakPointer< MyObject > my replica( replica.convert() );

/* Cast user data to correct type. */
MyStruct * const my struct( variant_cast< MyStruct * >( user data ) );

switch( reason )

{
case ReplicaManager: :REPLICA UPDATED:
/* Contents of my replica have been updated. */

break;

case ReplicaManager::REPLICA GROUP UPDATED:
/* An object belonging to replication group */
/* of my replica has been updated. */

break;

case ReplicaManager::REPLICA DESTROY:
/* Replica my replica is about to be destroyed. */
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break;

int my tag = ...;
MyStruct my struct;

/* Register callback monitoring changes to all objects of class MyObject. */
ReplicaManager & replica manager = Global::replica manager () ;
replica manager.register callback

(

typeid ( MyObject ),

&my callback,

my tag,

VariantPointer ( &my struct )

)

/* Unregister all registered callbacks to the my callback method. */
replica manager.unregister callback( &my callback );

7.10. Allowed and lllegal Operations

Working with replicas is not completely foolproof. In the debugging build, the Core tries to check all
operations with replicas and throws an exception whenever programmer tries to perform an illegal op-
eration. Some of these tests are expensive and are not done in the release build.

The following operations are illegal:

» Referencing replicas from strong pointers, unless the pointer is owned by a replica.
*  Writing to properties of a replica.

* Reading unitialized properties of a replica (properties that are not replicated because of the value
of their repflags property attribute are unitialized).

* Using synchronous RPC from method called on a replica.
The following operations are potentially dangerous:

* Calling a non-const method of a replica. It will probably write to the replica.

» Calling a const method of a replica. It may still write to properties of other objects in replication
group of the replica, but you should probably not mark such methods as const. The method may
try to construct strong pointer to the replica (this), or perform another illegal operation. Const
methods may try to affect the simulation in any way - create and destroy other objects, migrate
them, etc. It's recommended to add hope ( !is replica() ); to all const methods that
can't be called on replicas, and document that.
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» Using synchronous RPC while working with replicas, because their state may change in any way
during the call. They may be updated (which may be a problem if you iterate over a replicated
structure), become inconsistent, or even be destroyed by the Core. There is no way to pin a rep-
lica, and such operation won't be implemented in the future versions of the Massiv, because it
could stall both replication and migration protocols.

*  Working with inconsistent replicas, obviously.

The following operations are safe:

* Replica-optimized SRPC (see Section 8.5.2, “Synchronous RPC Optimizations”). The call will not
be performed locally if the replica of the callee object is inconsistent.

* Calling method deliver asap to() of an Object  with  parameter
can deliver to replica setto true. It will never deliver the object to an inconsistent
replica.

Warning

The lists above are not exhaustive.

7.11. Massiv Demo Examples

Check the Massiv Demo for some real-world examples of replication usage. On server side, replica-
optimized SRPC calls are used, for example in src/demo/1ib/server/robot.cpp. Manual
replication is used too. For example, in src/demo/lib/server/sector.cpp, Sec-
tor::get tile elevation () accepts neighbor-sector tile indices. If the neighbor sector is
local or a replica of the neighbor exists, correct elevation is returned. Otherwise, elevation is estimated
from current sector, and replication of the neighbor is requested.

There is one interesting feature in server-to-client replications. All presentation-related data of entities
and sectors are stored in special classes. For example, class Ent ity has strong pointer to class C11 -
entEntity, which contains all presenation data of an entity. This separation is actually required be-
cause of class kinds. ClientEntity is KIND SHARED (i.e. known to both client and server
nodes), while Entity is KIND SERVER (i.e. its definition and implementation is unknown to client
nodes). If presentation data were stored directly in Entity, it would have to be KIND SHARED.
That would mean that all classes used by Entity would have to be KIND SHARED too, but that
would include nearly all classes of server lib.

Because of this, the repflags attribute is not used in demo at all. Pointers from Entity to C1li-
entEntity have ptr repflags set to SERVER - the objects are in the same migration group
and in the same replication group when replicating an entity to a server node. But when a Clien-
tEntity object is replicated to a client node, Ent ity will not be in its replication group.

The client use the replica manager to monitor changes to all the C1ient* objects. Source of replica
managers can be found in directory src/demo/client/game.
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7.12. Configuration and Statistics

Configuration of replication protocols is documented in Section 27.15, “Replication”. You should not
have to modify the default settings, except replication masks, as explained in Section 7.5.5, “Custom
Replication Flags and Masks” and Section 7.5.4, “Recommended Node Replication Masks”.

Statistics regarding outgoing replication are stored in subnodes of the /Statist-
ics/Replication/Server registry node, and statistics about incoming replication are stored in
subnodes of the /Statistics/Replication/Client registry node.
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8. Remote Procedure Call

8.1. Overview

This chapter describes various flavors of the remote procedure call (RPC) mechanisms provided by
the Massiv. RPC allows you to call methods of managed objects, even if they are not owned by local
node, using syntax nearly identical to that of local calls.

To be able to call a method, it must be described in the IDL of its class. If you are not acquainted with
the IDL concept yet, refer to Chapter 9, Introduction to IDL. In all examples in this chapter, it's as-
sumed that a class Foo with the following IDL description exists:

Example 8.1. RPC Example - IDL for class Foo

class Foo : Massiv::Core::0Object
{
method< const > bar( out int32 result, in int32 param ) : bool;
method baz( out int32 result, in int32 param ) : bool;
}i

Both methods, bar and baz, take single in argument (param) and return boolean type and single out
argument (result). Method bar is constant.

Moreover, it's assumed that a valid remote pointer to object of type Foo, foo, exists. To be able to
use Remote pointer to class Foo defined in the IDL description contained in foo.1id1, one must in-
clude the generated header foo rpc.h:

#include "foo rpc.h"

Remote< Foo > foo = ...;

To see how to obtain such pointer, check Chapter 5, Pointers.

8.2. RPC Model

To make a RPC request, dereference the Remote pointer to get a stub object. Stub objects are automat-
ically generated from the IDL and serve for two purposes:

» To change parameters affecting the way the call will be performed, and
* To perform the call.

Methods that set options for a remote call are universal - they are the same for each stub object. All of
them return a reference to the stub object, which allows you to set multiple options and perform the
call in single statement. The methods will be introduced in the following sections, for a complete list
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check Section 8.8, “RPC Reference Guide”
For each method defined in the IDL, two methods are implemented by the stub:
* async_bar () performs asynchronous remote call (see Section 8.3, “Asynchronous RPC”).

* sync_bar () performs synchronous remote call (see Section 8.4, “Synchronous RPC”).

The RPC is implemented on top of the migration protocols. Standard localization protocols are used
when sending RPC requests and results. Both requests and results will be archived properly when re-
mote call is pending. Check Chapter 6, Migration to understand potential restrictions and problems.

Execution of the standard remote call can be divided into the following steps:
1. When a stub object is instructed to perform a call, it creates a RPCObject, marshalls method ar-
guments into the object and migrates it to the callee object. The stub will also create a ResultOb-

Jject, which will remain on the caller node and track status of the pending call (see Figure 8.1,
“Inititating Remote Call”).

Figure 8.1. Inititating Remote Call
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2. When the RPCObject with the call request is delivered to the callee object, it performs the call. If
the call returns successfully, RPCObject will collect the results (values of method result type and
out and inout arguments). Otherwise, if exception is thrown by the method or if the RPCObject
can't perform the call, information about the error will be stored in the RPCObject (see Fig-
ure 8.2, “Performing Remote Call”).

Figure 8.2. Performing Remote Call
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3.  The RPCObject is sent back to ResultObject, which has been created in the first step (see Fig-
ure 8.3, “Sending Back Call Results™)

Figure 8.3. Sending Back Call Results
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4. When the ResultObject receives the RPCObject, it changes its state according to the result of the
call. If the call is asynchronous, the caller should check state of the ResultObject and do whatever
he wants.
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If the call is synchronous, the ResultObject is managed by the stub. When its state changes, stub
will either simply return (if the call has been successful) or throw an exceptiong (if the call
failed). The execution of the caller code will then resume (see Figure 8.4, “Delivering Call Res-
ults”)

Figure 8.4. Delivering Call Results
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Note

These figures describe synchronous remote call, and asynchronous remote call when delivery
of results is requested. In real code, the most common variant of the RPC used is probably
simple asynchronous call, which ignores results of the call. No ResultObject is created in that
case, and RPCObject ignores results of the call and remains on the callee node until it's des-
troyed by the garbage collector.

8.3. Asynchronous RPC

The most simple and probably the most common remote call variant is asynchronous remote call. It
has best effort and one-way semantics: the call will be performed at most once and the callee does not
inform the caller about the results of the call. As long as the callee object is reachable by the standard

localization protocols, the call will be performed exactly once.

8.3.1. Immediate Asynchronous RPC

To initiate an asynchronous call to method FUNCNAME, call the async_ FUNCNAME method of the
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stub object:

/* Call method bar of object foo, passing 1 as param. */
foo->async bar( 1 );

/* Call method baz of object foo, passing 2 as param. */
foo->async baz( 2 );

This call will create a RPC request, schedule its migration to the callee object, and return immediately.
When the request is delivered to the callee node, the target method will be called. The result returned
by the method and modifications of the out (or inout) arguments will be forgotten. There is no way to
determine the status and the result of the call by the caller.

As you can see, async_ methods that perform the call don't have the same signature as the methods
they call. The following differences apply:

e The out arguments are not passed to the async_ methods.

*  The inout arguments are passed to the async_methods, but they will not be modified.

* The return type of the async methods is always Pointer< ResultObject >. You can safely ignore
it, beacuse it will be always a nul1l pointer, unless reply to the call is requested by the caller (see
Section 8.5.4, “Getting Reply to Asynchronous RPC”.)

8.3.2. Scheduling Asynchronous RPC

In the example in the previous section, the request was sent to the callee node as soon as possible. Ex-
ecution of the call can be also scheduled to some specific simulation time using the param () method
of the stub object:

/* Call method bar of object foo, passing 1 as param. The call will be
performed when the global simulation time reaches 1000 seconds. */
foo->param( RPC_TIMED, STime( 1000.0 ) ).async bar( 1 );

/* Call method baz of object foo, passing 2 as param.
The call will be performed in 10 seconds. */
foo->param( RPC DELAYED, STime( 10.0 ) ).async baz( 2 );

The param () method is described in RPCStubs, examples of advanced use of this method can be
seen in Section 8.5, “Advanced Techniques”.

8.4. Synchronous RPC

In addition to the asynchronous RPC, the Massiv also implements the synchronous RPC (also called
SRPC). Unlike asynchronous call, synchronous call will block execution of the current thread until the
request is delivered, callee method returns and call results are delivered back to the caller node. Con-
text may switch to different threads while the current thread is blocked. See Section 17.1, “The Model
Used By the Core” for more information about the Massiv threading model.

Synchronous calls in the Massiv have best effort semantics, they will be performed at most once. The
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call request may have several outcomes: its delivery may either succeed or fail, and if it succeeds, the
call itself may either succeed or fail. The Massiv will always try to inform the ResultObject about the
call outcome (see Section 8.2, “RPC Model”). If the results are delivered to the ResultObject, it will
either return them to the caller (in case of success), or throw an exception. If the delivery of the results
fails, information about the call will be lost, the call will timeout and the relevant exception will be
thrown too.

8.4.1. Performing The Call

To call a method FUNCNAME synchronously, use the sync FUNCNAME method of the stub object:

/* This variable will hold value of method out argument "result'.
Int32 ires;

/* Call method bar of object foo, passing 1 as param.
Store the value of the out argument "result" into variable ires,
and the value of the return type into variable bres. */

bool bres = foo->sync bar( ires, 1 );

Unlike asynchronous method stubs, synchronous method stubs have the same signature as the method
they call. The Massiv will pass all in and inout arguments over the network to the callee method, and
transfer the results (out and inout arguments and return type value) back to the caller. The semantics
of synchronous call is nearly the same as that of standard local C++ call. However, there are several
differences. The most obvious one is that the call may block execution of current thread for quite a
long time, and it may even timeout. The SRPC is also the only place where the Massiv may switch
context to another thread. More differences and limitations are explained in the following sections.

8.4.2. SRPC Exceptions

As already mentioned several times, the sync_ stub method may throw an exception. This section tries
to clarify when and why this may happen. For more generic information about the Massiv exceptions,
see Section 4.3.5, “Throwable Objects and Exceptions”.

There are two reasons why an exception may be thrown:
* Call request has been successfully delivered, the method has been called and it has thrown an ex-
ception. The exception will be delivered back to the callee node and rethrown there.

* The call has failed. The Massiv Core throws an exception that indicates the failure.

8.4.2.1. Exceptions Thrown By Callee

The Massiv Core is able to deliver exceptions thrown by the callee method back to the caller. Because
the standard migration is used to implement the RPC, the Massiv exceptions transferred over the net-
work must be throwable managed objects (see Section 4.3.5, “Throwable Objects and Exceptions”).
(which means, besides others, that they must be properly described in the relevant IDL). If a callee
throws such exception, it will be delivered back to the caller and rethrown there.
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Other exceptions will be remapped to a single managed exception,
Massiv::Core::Lib::CoreException. If  the exception inherits standard
std: :exception,its what () message will be copied to the CoreException.

8.4.2.2. Exceptions Thrown By The Core

If the call fails, an exception will be thrown too. The Core may throw one of the following exceptions:

e Massiv::Core::Lib::I1llegalPointerConversionException : Thrown when the
Massiv is unable to perform conversion from pointer to Massiv: :Core: :Object to pointer
to object of type of the class the method is defined in. That would be Foo in the example above.
There may be two reasons why this conversion can't be performed:

The conversion is ambiguous, because the object inherits the class multiple times. In the ex-
ample this would mean that object foo is of type that inherits class Foo multiple times. You
should avoid such inheritance hierachies, check Chapter 5, Pointers for more reasons.

The pointer used in the call points to class of incompatible type. In the example above it would
mean that the object foo does not inherit class Foo. While the Massiv tries to check all poten-
tially dangerous pointer assignments at run-time, it's not always able to determine if value as-
signed to a pointer actually points to an object of a compatible type, if the object is not local.
Again, see Chapter 5, Pointers for in-depth information about pointers.

e Massiv::Core::Lib::RemoteCallFailedException : Many reasons why this ex-

ception may be thrown exist:

The call has been cancelled. This happens when the node shuts down (or when the call
timeouts, see below). Note that the remote method may have been called even if this exception
is thrown.

The call timed out and has been cancelled by the Core. Something weird happened, or either
the request or the reply has been thrown away because of security reasons (see Section 8.4.3,
“SRPC Security and Limitations”).

The request can't be delivered to the callee object. It no longer exists, or its localization has
failed (but probability of that happening is nearly zero, something like million-to-one).

The caller tried to use wrong combination of call options and call variant. Actually, the Massiv
is a bit messy regarding these problems.
Massiv::Core::Lib::InvalidArgumentException should be probably thrown
instead. Actually, the Massiv may even fail with an assert or throw a different exception if
really dumb combination of arguments is used. To be safe, always use arguments that make
sense. (This is not a bug, it's a feature - you don't want to pass random arguments to the
Massiv and then catch exceptions to see what happened. Bad arguments are considered intern-
al error by many parts of the Massiv API, even if they originated in code written on top of the
Core.)
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8.4.3. SRPC Security and Limitations

The Massiv security model expects that server nodes can be trusted. However, the Massiv does not
trust client nodes. For example, we can't expect that client nodes always reply to requests. Because of
that reason, it's illegal to call synchronously methods of objects owned by client nodes.

8.4.4. Advantages and Disadvantages of SRPC

The greatest advantage of synchronous RPC is obvious: its semantics is similar to that of standard loc-
al call and it's the easiest way to get call results. However, it's not recommended to use SRPC between
servers too often in the Massiv because of the following reasons (most of them apply especially if you
implement game-like application on top of the Massiv; you should have probably used another mid-
dleware if you wanted to implement different kind of application):

* The Massiv distribution model allows large distances (and pings) between server nodes. Syn-
chronous calls may block for quite a long time, which may harm real-time requirements of the
simulation.

* SRPC introduces cooperative threading into the simulation. While a stub waits for call results, oth-
er thread may (and probably will) run. The same object could be reentered by the other thread to
service another request in the meantime. It's suprisingly easy to make serious and hard-to-debug
errors in such environment, especially if you are not used to it. Make sure you know exactly in
what state object performing a SRPC may be, and what may happen when someone wants to ac-
cess the object or to call its method.

* Ifyou try to solve the problem above using a locking mechanism, be aware of potential deadlocks.

These reasons apply to client-to-server communication too. Most simulation-related requests from cli-
ent should be asynchronous and the replication should be used to send presentation-related data from
servers to clients.

However, there are some cases when the SRPC is really useful and should be used. One such example
is the movement of entities in the Massiv Demo. When an entity wants to move to a different location,
it must first make sure that it can move to the new location and then move there. All entities reserve
area around them to make sure that they never collide, and both area around the old location and the
new location must be reserved before the entity can actually change its position. If the movement
fails, the entity remains at the old location. If the movement succeeds, the entity cancels reservations
around the old location.

In the Massiv Demo we have chosen to divide the world into evenly-sized sectors. These sectors can
be arbitrary distributed among the servers and entities can freely move between the sectors. This
means that there are no “teleports when moving between different areas of the world” problems/
hacks. However, it also makes the implementation of the entity movement a bit tricky. Even this
simple collision system requires a modification of several data structures during the movement, and
those data structures might be owned by different server nodes.
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The implementation of do_move () method makes heavy use of the SRPC. During its exection, it
does not modify entity data, and all modifications done to other data structures leave them in consist-
ent state and are reversible. When an entity wants to move, and it's not currently moving, it simply
calls do_move (). However, if it's already moving, it just remembers that it wants to move and
where it wants to move to. If do_move () fails, it reverts modified data structures to their previous
state. If it succeeds, it changes entity position. In both cases, if another movement was requested while
do_move () had been moving the entity, it will try to move the entity again.

This implementation is optimal. If an entity is not near a boundary between sectors owned by different
nodes, do _move () will finish immediately, because the local SRPC is optimized (see Section 8.5.2,
“Synchronous RPC Optimizations”). Otherwise it may take a while, but the implementation keeps
calls between different nodes at the minimal rate, and the movement does neither block nor interfere
with execution of other entity methods.

For more details check src/demo/1ib/server/entity.cpp, methods move entity () and
do _move ().

8.5. Advanced Techniques

This section describes several advanced RPC techniques. The subsections are sorted roughly by their
difficulty (in the increasing order) and usefulness (in the decreasing order). You should understand the
replication (Chapter 7, Replication) before reading this section.

8.5.1. Triggering Replication by RPC

Both synchronous and asynchronous RPC can be used to trigger a replication of a callee object to a
caller node:

/* Call asynchronously method bar of object
foo, passing 1 as param and request replication
of foo to local node for 60 seconds. */
foo->request replica( STime( 60.0 ) ).async bar( 1 );

/* Synchronous call with replication request. */
Int32 ires;
bool bres = foo->request replica( STime( 60.0 ) ).sync baz( ires, 2 );

/* Asynchronous call scheduled to the future */
/* combined with replication request. */
foo->param( RPC DELAYED, STime( 10.0 ) ).

request replica( STime( 60.0 ) ).async bar( 2 );

Usefulness of this will be obvious in the next section.

8.5.2. Synchronous RPC Optimizations

The Massiv offers two methods of SRPC optimization. The first one is really simple and automatic - if
the callee object is local, no RPCObject and ResultObject objects will be created. The call will
be performed directly instead of the standard RPC-over-migration mechanism, and will be nearly as
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fast as the direct call using Pointer or WeakPointer.

Note

It is ensured that if the "target" object is local and not replica, it is stack-strong referenced
during the call. Thus, it cannot migrate away causing an inconsistency.

Warning

In the current implementation the semantics of locally optimized SRPC calls is different from
the standard SRPC. If a callee throws an unmanaged exception, it will not be remapped to
Massiv::Core::Lib: :CoreException.

Note

Asynchronous calls are never optimized this way, even if they are sheduled to ASAP (default
behavior). This ensures that semantics of asynchronous calls is always the same.

The second optimization is similar to the first one, but it must be explicitly requested. It allows to op-
timize SRPC to const methods as local call even when the callee object is not local, if consistent rep-
lica of the object exists on the caller node. To enable this optimization, use:

/* Call method bar of object foo synchronously. If foo is local */
/* object, or if a consistent replica of foo exists, the call */
/* will be optimized. */

Int32 ires;

foo->param( RPC ALLOW LOCAL REPLICA CALL ).sync bar( ires, 1 );

/* It's illegal to call non-const methods with the */
/* RPC ALLOC LOCAL REPLICA CALL flag set. This call will fail. */
foo->param( RPC_ALLOW LOCAL REPLICA CALL ).sync baz( ires, 2 );

/* This way, you will request replication of foo if it's */
/* not local and its replica does not exist yet, and */
/* optimize the call otherwise. */
foo->param( RPC_ALLOW LOCAL REPLICA CALL ).
request replica( 60.0 ).sync bar( ires, 3 );

/* This version is a shortcut for the same thing. */
foo->optimize replica( 60.0 ).sync bar( ires, 4 );

Note

Currently the last two commands are not implemented 100% optimally. If a consistent replica
exists, the replication request will never be sent to the callee node. When replication timeouts,
the local replica will be destroyed by the callee node, and next call will be sent over the net-
work. That call will trigger replication again. You should be aware of this behavior.

Warning

Let's assume the baz method sets variable of the Foo object to param, and bar returns its
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previous value in result. Check the following code:

/* Set value of foo to 1. */
Int32 ignore;
foo->sync baz( ignore, 1 );

/* Read value of foo to ires. */

Int32 previous value;

foo->optimize replica( 60.0 ).sync bar( previous value, ignore );
hope ( previous_value =1 );

It's actually wrong! The assert (using the Massiv debugging hope macro here) may fail, iff all
of the following conditions are met:

1. Object foo is not local.

2. Consistent replica of foo exists.

3. Replica of foo still contains an old state of the object when the bar is called (the call to
bar occured before the replica had been synchronized with its original.

As you can see, bugs like this might be hard to debug, because the conditions of failure are
met only rarely.

Note

This optimization is the only place where the Massiv checks a value of the const method at-
tribute. That's why it was said that the definition of this flag is a bit vague. At the time it was
introducted to IDL its meaning was “the method is const in the C++ point of view”. However,
in reality it means “replica-optimized SRPC to this method is illegal”. You may want to mark
non-const (in C++ sense) methods as const in IDL, if calling this method may be dangerous if
object is replica.

8.5.3. Asynchronous RPC to Replicas

This special feature allows you to call methods on replicas of a given local object, instead of on the
object itself. Note that this is different from the SRPC optimization mentioned above. The call request
will be delivered to all known replicas of the object, but never to the object itself. This weird feature
allows object (or anyone else) to communicate with all its replicas.

For example, it can be used to implement “special effects” on client nodes. This may include, but is

not limited to:

* Sound effects. When an entity should make a sound, it sends request to play a given sample to all
its replicas. All clients which see the entity will play the sound effect.

»  Graphic effects, for example sparkles, explosions. Pretty much the same thing.

» Trigger animation of an entity. You could use replicated variable of an entity object to indicate
which animation it should play. However, that's not very useful way to trigger one-shot anima-
tions, such as firing a gun, slashing a sword, etc.
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Unfortunately, because the Massiv Demo lacks special effects, this feature is not used there at all.
Only single param () flag is needed to change behavior of asynchrnous call to call-to-replicas:

foo->param( RPC REPLICAS ) .async bar( 1 );

/* You may delay this call as well. */
foo->param( RPC_REPLICAS | RPC DELAYED, 10.0 ).async bar( 2 );

Note

The object (foo in the example) must be local. Otherwise the Core does not know anything
about locations of its replicas and will not deliver the calls.

Note

It's illegal to request reply to asynchronous call to replicas (see next section), or to perform
synchronous call to replicas.

8.5.4. Getting Reply to Asynchronous RPC

As you already know, the implementation of SRPC creates two objects. The ResultObject stays on the
caller node, while the RPCObject migrates to the callee node (call request) and back to the caller
(results). You can actually do the same thing with the asynchronous RPC too. If you set the
RPC_RESULTS flag, the async_ call will return a pointer to the ResultObject, and the RPCObject will
be instructed to return back to the ResultObject with the call results. You can check the ResultObject
regularly to monitor the state of the call:

/* Initiate the call. */
Pointer< ResultObject > result = foo->param( RPC RESULTS ) .async bar( 1 );

/* Later somewhere in a galaxy far away... :) */

/* Check state of the call. */
if ( result->state != ResultObject::STATE UNKNOWN )
{
if ( result->state == ResultObject::STATE SUCCESS )
{
/* Get a packet with method results. */
std::auto ptr< MethodPacket > packet( result->create results() );

/* Get the value of the boolean return type as a string. */
const std::string bres str( packet->get argument value( -1 ) );

/* Get the value of the integral out argument result. */
const std::string ires str( packet->get argument value( 0 ) );

/* Cast to the real packet type. */

METHOD_ PACKET ( Foo, bar ) * const results =
checked cast< METHOD PACKET( Foo, bar ) * >
( packet.get () );

/* Access results directly. */
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const bool bres = results-> result;
const Int32 ires = results->result;

/* Can access param too, but its value will be random. */
const Int32 irand = results->param;

}

It's illegal to request reply from client-side objects (the only one with well-known object id is client
node object).

See Section 8.8, “RPC Reference Guide” for complete listing of public methods of ResultObject and
MethodPacket.

8.5.5. Dynamic RPC

A call where method name and arguments are not known at compile-time and are constructed at run-
time (usually from strings) is called a dynamic call. Metaobjects (see Chapter 12, Metaobjects)
provide several methods that can be used to perform a dynamic synchronous RPC. The following ex-
ample demonstrates a dynamic call using method which identifies the method to call by a string. See
the Massiv Core Reference Guide for in-depth reference guide to the MetaObject APIL

Example 8.2. Dynamic RPC

using Massiv::Core;
const MetaObject * const metaobject = foo->get metaobject(); 0O
const std::string method name ( "bar" ); O

const SInt32 param = ...; [O
std::stringstream arguments;
{
TextWriter tw( arguments );
const Serializer::Description desc;
param.text write( tw, desc );

}

TextReader tr( arguments ); 0
tr.next line();

std::auto ptr< MethodPacket > results [
(
metaobject->remote call method
(
foo,
method name,
tr
)
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[0  This is the easiest way to obtain a pointer to a metaobject of given managed object. See also Sec-

tion 12.2.1, “Obtaining a MetaObject”.

In this case we identify the method to call by its name.

0  Here a stream containing all in and inout arguments is constructed. The arguments are expected
to be stored in their textual serialization form.

|

In the example, a serializable type and a text writer object are used to ensure that the argument is
serialized correctly. If the method foo () had multiple arguments, method write space ()
of TextWriter would be used to separate the arguments.

Note

In this case standard operator<< could be used to write the integer to the stream, because
that's how integers are serialized to text streams. However, we wanted to demonstrate how to
write any property (or corresponding serializable type) to a stream without any knowledge of
serialization internals.

The Serializer::Description object must be passed to all serialization methods. It's
used to describe special serialization options during migration and replication. Always use de-
fault-constructed serializer description here, it ensures that all properties will be serialized as
needed by the remote call.

[0 A TextReader object is constructed from the argument stream. The next line () method
must be called to intruct the reader to read in the first (and only) line of the stream.

O  This is how the call itself is made. It may throw a Lib: :RemoteCallFailedException
exception with “Invalid method name” description if the method name is invalid (the object does
not have such method), serialization exception if the arguments are not stored properly in the
stream, or any RPC-related exception as described in the previous sections. On success, a new
method packet with method results is returned. It's documented in Section 8.8, “RPC Reference
Guide”.

Note

TextWriter and TextReader classes simplify work with line-oriented textual streams. If
you find them useful, you can freely use them in your Massiv-based application. For example,
the Massiv Demo uses these classes to parse all textual data objects. Refer the Massiv Core
Reference Guide for more information about the classes and their methods.

Note

Currently there is no easy way to perform a dynamic asynchronous RPC. You could check
how the remote call method() methods are implemented (see src/
core/object/metacbject.cpp) and use it as a starting point for implementation of
dynamic asynchronous RPC. It should be quite easy; asynchornous dynamic RPC has never
been implemented because no-one really needed it yet.

8.6. Configuration and Statistics

For description of RPC configuration in brief implementation notes, please refer to Section 27.14,

105



“Remote Procedure Call”.

Statistics regarding synchronous RPC are stored under the /Statistics/System/SRPC registry
node.

8.7. Method Arguments and Results

This section describes the way arguments are handled by the RPC. Please refer to Section 10.13,
“Property and Argument Types” for information about mapping between the IDL types and C++ in/
out/inout types.

8.7.1. Pointers

It's illegal to use a strong pointer, or a structure containing a strong pointer, as an argument or the re-
turn type. Strong pointers always define a migration group (the group of objects that cannot be spread
over more nodes), but the RPC can't be used to migrate more other objects.. Semantics of such calls
would be hard to defined and probably non-obvious.

This means that you can't pass data structures consisting of multiple data objects, that from a migra-
tion groups implemented, as arguments of methods when using the RPC. You must use the standard
migration instead. However, you can use arrays of objects and other data structures, implemented as
properties, as method arguments.

Note

IDL compiler, factgen.pl, checks this.

8.7.2. Managed Objects

You can use a managed object as a method argument or a return type, as long as it is a value type (see
Section 4.3.4, “ValueTypes”).

The IDL to C++ type mapping might indicate that the relevant objects are passed by reference.
However, that's not completely true. They are passed by reference from the caller to the stubs and
when calling the method of the callee object. However, they are copied and passed by value intern-
ally, especially over the network. Because of this the Massiv requires that the type of the actual argu-
ment (the object passed to the call) and the type of the formal argument (type specified in method de-
claration) must be the same.

Unfortunately, because references are used in the stub and method interfaces to save a few unneces-
sary copies, C++ compiler will not issue compile-time warning when you pass an object of a derived
class instead of the correct one. The Massiv will check the types at run-time and throw
Massiv::Core::Lib::RemoteCallFailedException if the types do not match.

8.8. RPC Reference Guide

This section briefly describes all public RPC-related classes, methods and enumerations. For in-depth
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documentation of all RPC classes and methods, check the Massiv Core Reference Guide (module
RPC) and sources.
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Name

RPCStubs -- client-side (caller-side) part of RPC implementation.

RPCStubs

Synopsis

class RPCStubs

{
public:

RPCStubs & param
(
int flags = RPC DEFAULT,
const STime & time = STime ()
)i

RPCStubs & request replica
(

const STime & timeout
)i

RPCStubs & optimize replica
(

const STime & timeout
)i
}i

Description

The synopsis is a bit misleading. For each managed class (class described in the IDL), single stub
class will be generated. Each stub class implements the three methods mentioned above, as well as
methods performing the call (described in Section 8.3, “Asynchronous RPC” and Section 8.4,
“Synchronous RPC”). In the synopsis, RPCStubs stands for class name of any stub class.

Dereferencing a Remote pointer returns a stub object for a class of a given type. To be able to use Re-
mote pointers to class described in foo.id1, include generated header foo rpc.h.

You should never store a reference or a pointer to a stub object. Each of the three “universal” methods
returns reference to the stub object itself, so they can all be called easily in a single statement. Actu-
ally, it's hard not to do the whole set-up-options-and-perform-the-call in a single statement, because
dereferencing a Remote pointer always returns a new stub object instance with default options set.
This means that you don't really have to care about the real stub class names.

Method param ()

Use param () to change call flags and delivery time. The method has two optional arguments:

e flags: Combination of RPCFlags, described below.
* time: Simulation time when the remote method should be called. Depending on flags, it's
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either absolute (if RPC_TIMED flag is set) or relative to current simulation time (if
RPC_DELAYED flag is set).

Default parameters yield one-way asynchronous immediate call or immediate synchronous call.

The following public RPCFlags are defined:

Table 8.1. RPCFlags

Flag Description

RPC_TIME p* The time argument is absolute.

RPC_DELAYEDab The time argument is relative to current simula-
tion tieme.

RPC_RESULTS When performing asynchronous call, the stub will
return a ResultObject and return pointer to the ob-
ject. It can be used to monitor call status and to
retrieve call results. See Section 8.5.4, “Getting
Reply to Asynchronous RPC”.

RPC_ALLOW_LOCAL_REPLICA_CALLc Enable replica-optimized SRPC. See Sec-
tion 8.5.2, “Synchronous RPC Optimizations”.

RPC_REPLICASb Call method of replicas of given object. This flag
can't be combined with RPC_RESULTS. See Sec-
tion 8.5.3, “Asynchronous RPC to Replicas”.

RPC_DEFAULT Default value of flags. Equal to RPC_ TIMED.

? Exactly one of RPC_TIMED and RPC_DELAYED flags must be set.
It's illegal to set this flag when performing a synchronous call.
“It's illegal to set this flag when performing an asynchronous call.

Because synchronous calls can't be scheduled into the future, you can't set the RPC_DELAYED flags
or time argument to non-zero time.

Method request replica ()

Request replication of the callee object to the caller node for timeout number of seconds. See Sec-
tion 8.5.1, “Triggering Replication by RPC”.

Method optimize replica()
Shortcut for

param( RPC ALLOW LOCAL REPLICA CALL ) .request replica( timeout );

See Section 8.5.2, “Synchronous RPC Optimizations”.
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Name

ResultObject -- object tracking status of a remote call, destination of call results.

ResultObject

Synopsis
class ResultObject : public Object
{
public:
enum State;
public:
PEnum< State > state;
PPointer< Throwable > exception;
public:

void cancel () const;

std::auto ptr< MethodPacket > create results() const;
}i

Description

ResultObject is returned by asynchronous call stub when the RPC_ RESULTS flag is set using the
param () method. It can be used to monitor the call state and inspect its results.

Note

ResultObject is used internally to implement the SRPC and offers more methods and data for
that purpose. You should use only features described in this documentation.

Call State

The state field of an ResultObject may contain one of the following values:

Table 8.2. ResultObject state

Name Description

STATE UNKNOWN Waiting for a reply to the call request.

STATE SUCCESS The call has succeeded. Use the cre-
ate results () method to retrieve the results.

STATE DELIVERY FAILED Failed to deliver the request to the callee object.

110



RPC

Name Description

STATE UNSUPPORTED INTERFACE The callee object does not implement the reques-
ted interface. Check Section 8.4.2.2, “Exceptions
Thrown By The Core”, description of Illegal-
PointerConversionException, to see when this
may happen.

STATE EXCEPTION An exception has been thrown on the callee node.
The exception filed of ResultObject will
point to the exception. The exception was either
thrown by the callee method, or generated by the
Core. See Section 8.4.2.1, “Exceptions Thrown
By Callee” for information about user exception
remapping.

STATE CANCELLED The call has been cancelled, either by the can-
cel () method or by the Core.

Initial value of state is STATE UNKNOWN. When information about call results is delivered back to
the ResultObject, the state will change to a different value. Its value will never change afterwards.

Note

The enumeration type State is member of the ResultObject class, so the fully-qualified
name of STATE SUCCESS is Massiv::Core::ResultObject::STATE SUCCESS
for example.

Method cancel ()

Call this method to try to cancel pending remote call.

Warning

This method does not guarantee that the call will be cancelled. It will be able to cancel the call
only if the request has not migrated to the callee node yet.

Method create results()

This method creates structure containing the results of the remote method call. The call state must
be STATE SUCCESS. The results are stored in a MethodPacket object (described below), the
callee is responsible for its destructrion.
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Name

MethodPacket -- structure containing call arguments and results.

MethodPacket

Synopsis

class MethodPacket

{
public:

virtual std::string get argument value

(
int index
) const;

}i

#define METHOD_ PACKET( class_name, method_name )

Description

Method packets are classes used to keep and serialize method arguments and results and to call meth-
ods on the callee node. They are automatically generated from the IDL class descriptions.

Class MethodPacket offers generic interface to all method packet classes. Method
get argument value is its only method public for the Core user.

Method get argument value

This method returns value of given method argument as a string. It uses a textual serialization to gen-
erate the string. The argument index is zero-based index into a list of method arguments (O corres-
ponds to the first argument, 1 to the second one, etc.). To get value of method return type, use -1 as
the index.

Massiv::Core::Lib::InvalidArgumentException will be thrown if the i ndex is inval-
id (lower than or equal to -2, -1 if method does not return a value, or greater than or equal to the num-
ber of method arguments.) Undefined value will be returned if the packet has been returned by the
create results () method of ResultObject (i.e. the packet contains method results), and the
index corresponds to an in argument.

Accessing Results Directly

The METHOD PACKET macro expands to name of method packet class for given interface and meth-
od. For example METHOD PACKET ( Foo, bar ) yields name of method packet for method bar
described in the IDL of class Foo.

If you have a MethodPacket pointer to a method packet containing arguments/results of a known
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method, you can use the METHOD PACKET macro to cast it to the pointer of the correct type. You
can then use this pointer to access method arguments and results directly. All in, out and inout argu-
ments are stored in the method packet object as stype data fields, with names equal to argument
names. If the method returns a value, it will be available as result data field.

See Section 8.5.4, “Getting Reply to Asynchronous RPC” for an example.

Packets for Virtual Methods

If class Foo introduces a virtual method bar, and class Shoo inherits Foo, there will still be only
single method packet class for the bar method. METHOD PACKET ( Shoo, bar ) will yield an
invalid class name. This is consistent with IDL - you should not (must not) write description of meth-
od bar in the IDL description of class Shoo.

Simply, METHOD PACKET ( C, m ) is a valid class name, iff the IDL description of the class C
containts a description of method m.
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9. Introduction to IDL
9.1. What Is IDL?

As already mentioned in the introduction, one of the main concepts in the Massiv is the distributed ob-
ject model. Besides others, some of features of this model are:

*  RPC (Remote Procedure Call) enables calling of methods on objects that may be located on anoth-
er node.

*  Object migration (and replication) - the migrating object must be serialized into a network packet/
stream, sent over the network and then created and initialized from the packet.

» Introspection enables to control some properties and some information (such as name of the class,
name of its ancestor, list of properties, etc.) about object at run-time. You can not only view the
information, but also modify some parts of it (value of some attributes, etc.) which might is useful
for example for an application debugging.

Although C++ doesn't provide a mechanism to manage the meta-information about classes and objects
(such as name or ancestors), they are crucial for implementation of the features mentioned above. For
example, when calling a method via RPC, it is needed to serialize information such as its name, type,
actual parameters values and others into a network stream (so-called marshalling) and to reconstruct
the call on the destination node after transmitting the information over the network.

There are more ways of defining the meta-information additionally. The one the Massiv makes use of
is the IDL (Interface Definition Language). Perhaps it might be better to call it ODL (Object Descrip-
tion Language), but for some historical reasons we decided to keep the original designation.

The main idea of the IDL is that the required information is provided in a special form, often separ-
ated from the class declaration/definition, either written into an another file or into the same file in a
form of source code annotation.

9.2. IDL in the Massiv

In Massiv, the IDL information is stored in external .idl files that are processed by the src/
core/factgen/factgen.pl IDL compiler. For a given *.id1l file the compiler outputs
* generated.h, * generated.cpp and * rpc.h files that hold implementation of object
factories, metaobjects and declarations of the exposed RPC interfaces. See Chapter 11, Classes Gen-
erated From the IDL for more information about what output the IDL compiler exactly generates.
Generated classes are compiled together with the application code using the integrated build system.

What the IDL compiler doesn't product is the standard C++ declaration of the classes described in an
IDL file. Thus, the user who wants to write a managed object must provide

* the IDL description
¢ the C++ declarations of the classes contained in the IDL
* the C++ implementation of the classes
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* arecord in the relevant id1.11ist file (see Section 9.2.1, “idLlist files”).

9.2.1. idl.1list files

The IDL processor won't automatically process every IDL file that would emerge in the source tree.
To tell the processor about a new IDL you must insert a record into some of the id1.11ist files. For
detailed information about this procedure refer to Section D.2, “The idl.list File”.
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10. IDL Syntax

10.1. Basic Syntax Overview

As mentioned in the IDL introduction, the IDL descriptions must be contained in specific files that
typically have the 1d1 extension. You can find these files in the Core source tree as well as in the
Demo.

These files are not completely standalone - they can import each other. Almost every IDL file needs
some generic declarations that are contained in src/core/object/object.idl. This file
defines all class, method and property attributes required by the Core, as well as the description of the
Massiv::Core: :0Object. This file together with all public Core IDL files can be indirectly im-
ported using the file src/core/core.id1.

The most frequent entities contained in the IDL are class descriptions (arbitrary number in each file)
of managed classes (see Chapter 4, Managed Objects). Typically the IDL file name corresponds to
the name of the header file that contains C++ definitions of the relevant classes.

For each IDL file foo.idl referenced from the id1.11ist (described in Section D.2, “The idl.list
File”), a file foo.h must exist, because it's automatically included by the sources generated from
foo.idl. However, classes described in foo.1idl may be defined anywhere, as long as the files
containing the class definitions are properly referenced from foo.1id1l using the “include file” dir-
ective, as described in Section 10.12.1, “The include header Directive”.

Morever, if an IDL file is not referenced from any id1l.1list, no sources will be generated from it
and the header with corresponding name may not exist. Such IDL files should not contain any class
definitions. One example of such file in the Core is src/core/core.idl.

The following example should give you an overview of how class descriptions in the IDL look like in
general before the detailed syntax description. It contains a complete description for a very simple and
academical class FooBar located in the my application namespace. It's base class is
Massiv::Core: :0Object, it has several properties and methods. Note that the class definition
does not need to end with a semicolon character. For more detailed information, see the remarks be-
low the source code. If you don't have even an idea what about what the example actually means, skip
it, continue reading and get back at the end of the chapter.

Example 10.1. A class description in the IDL

#import "core.idl" [
namespace my application { [

class [
<
kind = SERVER, 0O
root,
tracked
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> FooBar : ::Massiv::Core::0bject [

{
enum State { } O

property< repflags = MIGRATE > State state; 0O
property weak pointer< Object > buddy;
property strong pointer< FooBar > next;
property value array< uint32< 8 > > array;

method set buddy U
(
out weak pointer< Object > old buddy,
in weak pointer< Object > new buddy
)

method< const > get buddy() : weak pointer< Object > [
}

} // namespace my application

This imports all public Massiv Core IDL files, the most important being the src/
core/object/object.idl file, which defines all required attributes and describes the
Massiv::Core::0bject.

Namespaces can be declared using the same syntax as in C++ and have the same semantics. In
this example we define everything in namespace my application.

The class keyword begins a class description in the IDL. The description consists of the class
attributes, name, inheritance information and of the class body (properties, methods, etc.)

Class attributes specify some basic parameters for the class. In the example, the FooBar class
would be a server-only class (kind attribute), garbage collector root (root attribute) and tracked
by the object provider (tracked). The meaning of these attributes is described in Section 10.9.3,
“Class Attributes”.

A C++-like syntax is used to define list of base classes. In the example the class that all managed
classes must inherit, Massiv: :Core: : Object, is inherited directly.

This line indicates that an enumeration type State is defined withing the FooBar class. Its
enumeration values are not used in the IDL so they are not defined at all. Note that the definition
is not terminated by a semicolon character (it's not needed but can be used; in the future versions
it might be required to make syntax more C++-like).

The FooBar class containts four properties:

* Property state, of enumeration type State (defined on the line above). The repflags
property attribute defines replication behavior of the property - in this case the property will
migrate (as all properties do), but it will be never replicated.

* Property buddy, of type weak pointer. Using the weak pointer for the reference to the
buddy enables the FooBar object and its buddy to be located on different nodes.

* Property next, of type strong pointer. The strong pointer ensures that this FooBar
and the next FooBar are always located on the same node and migrate together in a single
migration group.

117



IDL Syntax

* Property array is an example of a little bit more complex property type - an array of un-
signed 32-bit integers. Only the 8 low bits of the integers are replicated.

0  Description of a simple method that can be called using the RPC. It has single out and single in
argument. As the name of the method and its arguments indicate, it probably sets the buddy
property to new_buddy and returns its old value in o1d_buddy.

0  Another method, this one probably returns value of the buddy property. This example shows
how the return types are defined. The method is marked as const. The meaning of this attribute
is a bit different from the C++.

10.2. Tokens

There are several types of tokens: identifiers, keywords, literals and special symbols, such as operat-
ors and punctuation. Blanks, horizontal and vertical tabs, new-lines, form-feeds and comments (as de-
scribed below), collectively called whitespace, serve to separate tokens and are ignored otherwise.

10.2.1. Comments

As in the C++, the characters /* start a comment that terminates with the characters * / and the char-
acters // start a comment that terminates at the end of the line on which they occur. /* */ com-
ments do not nest. The characters //, /* and */ do not have any special meaning within a // com-
ment, and the characters // and /* have no special meaning withina /* */ comment.

10.2.2. Identifiers

An identifier is a sequence of alphanumeric and underscore characters. The first character must be al-
phabetic or underscore. All characters are significant. Identifiers are case-sensitive.

There is only one namespace for IDL identifiers in each scope. Using the same identifier for a class
and an enumaration type in the same scope, for example, is an error.

10.2.3. Keywords

IDL keywords are identifiers that have a special meaning within given scope. Keywords are not glob-
ally reserved, the following IDL is legal:

#import "core.idl"
enum property { }

class method : Massiv::Core::0Object
{
property uint32 property;
property bool class;
property bool weak pointer;
method method () ;
}
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However, if C++ reserved words are used as identifiers, corresponding C++ definitions will be illegal
and the generated sources won't compile.

10.2.4. Literals

This section describes the following literals: integers, floating-point numbers, characters and strings.

10.2.4.1. Integer Literals

Integer literals can be specified in on of the following forms:

* decimal (base 10): Sequence of digits that does not begin with 0 (digit zero).

*  hexadecimal (base 16): 0x followed by a sequence of digits and a to £ or A to F characters repres-
enting number ten to fifteen.

* binary (base 2): Ob followed by a sequence of 0 and 1 (digits zero and one).

* octal (base 8): 0 followed by a sequence of 0 to 7 (digits zero to seven).

10.2.4.2. Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e or E, and an
optionally signed integer exponent. The integer and fraction parts both consist of a sequence of decim-
al digits. Either the integer part or the fraction part (but not both) may be missing. Either the decimal
point or the exponent (including the e or E character), but not both, may be missing. If both the
decimal point and the exponent are missing, the literal is interpreted as a integer literal.

10.2.4.3. Character Literals

Single character enclosed in single quote (') characters is a character literal. No escape sequences are
supported in the character literals. While the parser recognizes character literals, they are not used in
the IDL at all.

10.2.4.4. String Literals

String literal is a sequence of characters enclosed in double quote (") characters. Escape sequences in-
side the double quotes are recognized, but not interpreted by the parser. For example token
"foo\"bar" will be parsed as a single string, but the \ character will be retained in the string.

10.3. Parser Directives

The parser directives are syntactic constructions very similar to the C/C++ preprocessor directives
(although the IDL parser in the Massiv doesn't have any preprocessor). Each directive begins with the
# character and cannot be split into more lines (the only exception is a nasty C++ compatible hack -
enclosing the end of line into a multiline comment). List of all supported directives follows:

e f#ierror STRING
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Prints STRING to the stderr and causes the processor quit with an error.
¢ #warn STRING

Prints STRING to the stderr.
* $#include STRING

The IDL processor will attempt to find a file specified by STRING in all directories contained
withing the list of paths that should be searched. If the file is not found, the processor will stop
with an error. Otherwise the parsing will continue and the contents of the relevant file will be put
in place of the #include directive.

* {#import STRING

This directive has almost the same meaning as the #include directive. The difference is that
nothing will be done if the file has already been imported or is just being processed. Importing
should almost always be used instead of including to prevent duplicate symbol definitions.

10.4. Massiv IDL Grammar

The description of the Massiv IDL grammar uses a syntax similar to Extended Backus-Naur Form
(EBNF). Table 10.1, “Massiv IDL EBNF” lists the symbol used in the grammar and their meaning.

Table 10.1. Massiv IDL. EBNF

Symbol Meaning

1= Is defined to be

| Alternative

<text> Nonterminal

"text" Literal

* Repeat zero or more times

+ Repeat one or more times

{} Group of several syntactic units
[] Optional syntactic unit

The complete grammar follows. Note that it's not 100% correct everywhere. For example, all assign-
ments are strongly typed in IDL, type of the expression that can appear on the right side of the assign-
ment operator is determined by the type of object on the left side of the operator.

(1) <idl> ::= <definition>*
(2) <definition> ::= <namespace>
| <enum>
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(3)

(4)

(3)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)
(15)

(16)

(17)
(18)

(19)

(20)
(21)

(22)

(23)
(24)

<namespace>

<enum>

<enum_body>

<enumerator>

<attribute>

<attr_kind>

<classattr_dcl>
<classattr_flags>
<classattr_flag>
<propattr_dcl>
<propattr_ flags>

<propattr_flag>
<methodattr_dcl>

<methodattr_flags>

<methodattr_ flag>
<attr_type>

<buildin_type>

<enum_name>
<scoped_name>

<attr_default>

<attr_name>
<class>

<attribute>
<attr_default>
<class>
<include_header>

"m.n
’

"namespace"
<identifier>

"{" <definition>*
"enum"
<identifier>

"{" <enum body> "}"
<enumerator>

{ "," <enumerator> }*
L "1

<identifier>

n=mn

n}n

<int_expr>
<attr_kind>
<attr_type>
<identifier>

n=n

<const_expr>

nm.n
’

<classattr_dcl>
<propattr_dcl>
<methodattr_dcl>
"classattr"

[ "<" [ <classattr_flags> ]
<classattr_flag>

{ "," <classattr_flag> }*
"inherit"

"idl_internal"

"propattr"

[ "<" [ <propattr_flags> ]
<propattr_flag>

{ "," <propattr_flag> }*
"idl_internal"
"methodattr"

[ "<" [ <methodattr_flags> ] ">"
<methodattr_flag>

{ "," <methodattr_flag> }*
"idl_internal"

<buildin_type>

<enum_name>

"bool"

"int"

"string"

<scoped_name>

<identifier>

"::" <identifier>
<scoped_name> "::" <identifier>
"attribute"

<attr_name>

nyn ]

nyn ]

<const expr>

nm.n
’

<scoped_name>
<class_fwd>

1
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(25)

(26)

(27)

(28)
(29)
(30)

(31)
(32)

(33)
(34)
(35)
(36)

(37)

(38)
(39)
(40)

(41)
(42)

(43)

<class_fwd>

<class_dcl>

<class_header>

<classattr_vals>
<classattr_val>
<boolclassattr_name>

<classattr_name>
<class_inheritance>

<base_class_name>
<class_name>
<class_body>
<in_class>

<property>

<propattr_vals>
<propattr_val>
<boolpropattr name>

<propattr_name>
<type>

<stype>

<class_dcl>
"class"
<identifier>

m.n
’

<class_header>
"{" <class_body> "}"

"class"
[ "<" [ <classattr_wvals> ] ">" ]
<identifier>

[ <class_inheritance> ]
<classattr_val>

{ "," <classattr_val> }*
<boolclassattr_ name>
<classattr_name> "=" <const_expr>

<scoped_name>
<scoped_name>

won

<base_class_name>

{ "," <base_class_name> }*
[ "virtual" ] <class_name>
<scoped_name>

<in_class>¥*

<enum>

<attr_default>

<class>

<property>

<method>

m.n
’

"property"

[ "<" [ <propattr_wvals> ] ">" ]
<type>

<identifier>

m.en
’

<propattr_val>

{ "," <propattr_val> }*
<boolpropattr_ name>
<propattr_ name> "=" <const_expr>

<scoped_name>
<scoped_name>
<stype>
<array_ type>
<class_type>
<dictionary type>
<event_type>
<pair_type>
<pointer_type>
<set_ type>
<bool_type>
<color_type>
<enum_type>
<float_ type>
<floatq_type>
<int_type>
<orientation_type>
<string_ type>
<time_ type>
<vector_type>
<vlint_ type>
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(44) <bool_type> ::= "bool"
(45) <color_type> ::= "color"
(46) <enum_type> ::= <enum_name>
(47) <float_type> ::= float32
| float64
(48) <floatq_type> ::= { floatq32 | floatqg64 }
"<" <floatq_traits> ">"
(49) <floatq_traits> ::= <string_ literal>
(50) <int_type> ::= <bitint_type>
[ "<" <bit_width> ">" ]
(51) <bitint_type> ::= int8
| intlé
| int32
| inte64
| uint8
| uintlé
| uint32
| uint64
(52) <bit_width> ::= <int expr>
(53) <orientation_type> ::= "orientation"
(54) <string_type> ::= "string"
(55) <time_type> ::= "time"
(56) <vector_type> ::= "vector2"
| "vector3"
(57) <vlint type> ::= vlint8
| vlintlé
| vliint32
| vliinté64
| vluint8
| vluintlé
| vluint32
| vluinté64
(58) <array_ type> ::= <parray_type>
| <varray_type>
(59) <parray_type> ::= "property_ array"
"<" <type> ">"
(60) <varray_type> ::= "value_array"
"<" <stype> ">"
(61) <class_type> ::= <class_name>
(62) <dictionary_ type> ::= <dictionary kind>
"<" <dictkey_type> "," <dictvalue_type> ">"
(63) <dictionary kind> ::= "dictionary"
| "multi_dictionary"
(64) <dictkey_ type> ::= <type>
(65) <dictvalue_type> ::= <type>
(66) <event_type> ::= "event_handle"
(67) <pair_type> ::= "pair"
"<" <pairvalue_ type> "," <pairvalue_type> ">"
(68) <pairvalue_type> ::= <type>
(69) <pointer_ type> ::= <pointer kind>
"<" <class_name> ">"
(70) <pointer_kind> ::= "strong pointer"
| "weak pointer"
| "remote pointer"
(71) <set_type> ::= <set kind>

"<" <setvalue_type> ">"
(72) <set_kind> ::= "set"
| "multi_set"
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(73) <setvalue_ type> ::= <type>

(74) <method> ::= "method"
[ "<" [ <methodattr_wals> ] ">" ]
<identifier>

n (ll

[ <arguments> ]
ll) n

[ <return_spec> ]

m.n
’

(76) <methodattr_vals> ::= <methodattr_val>
{ "," <methodattr_val> }*
(77) <methodattr_val> ::= <boolmethodattr name>
| <methodattr name> "=" <const_expr>
(78) <boolmethodattr name> ::= <scoped name>
(79) <methodattr_name> ::= <scoped name>
(80) <arguments> ::= <argument>
{ "," <argument> }*
(81) <argument> ::= <pass_semantics>
<type>
<identifier>
(82) <pass_semantics> ::= "in"
| "out"
| "inout"
(83) <return_spec> ::= ":"
<type>
(84) <include_header> ::= "include_header"

<string_ literal>

nm.n
’

(85) <const_expr> ::= <bool_expr>

| <int_expr>

| <string_expr>

| <enum_expr>
(86) <bool_expr> ::= <bool_ literal>
(87) <bool_literal> ::= "O"

| "1n

| "true"

| "false"
(88) <int_expr> ::= "-"*

<int_literal>

(89) <string_expr> ::= <string_ literal>
(90) <enum_expr> ::= <identifier>

The grammar of literal nonterminals (<int literal>and <string literal>)is not included
as they were already described. Note that neither float nor character literals are currently used by the
IDL.

10.5. Name Lookup and Scoping

The fully-qualified identifier names and name lookup rules are similar to C++. Because the IDL has
no using directive, no overriding and the IDL ignores class inheritance when performing a name look-
up, the actual rules are much simplier.

Each identifier has exactly one global name, usually called fully-qualified identifier name. It's con-
structed by separating list of scope identifiers the identifier is defined in, beginning at the root scope,

124



IDL Syntax

by : :, and prepending : : to this name. Identifiers of the following elements introduce a new scope:

e namespace (see Section 10.6, “Namespaces”)
* enumeration (see Section 10.7, “Enumerations™)
* class (see Section 10.9, “Classes”)

Note

In C++, fully-qualified name of enumerants defined within an enumeration type does not in-
clude the identifier of the enumeration type. In IDL it does.

The following example shows definitions of several identifiers and their fully-qualified names in com-
ments:

/* root scope */

/* namespace ::foo */
namespace foo {

/* class ::foo::Bar */
class Bar
{
/* class ::foo::Bar::Baz */
class Baz
{
}

/* enum ::foo::Bar::MyEnum */
enum MyEnum
{
/* enumerant ::foo::Bar::MyEnum::NUMBER */
NUMBER = 1,
}
}

/* class ::foo::Bar2 */
class Bar2 : Bar

{

}

Unlike C++, inheritance in the IDL does not introduce new global identifier names for the inherited
identifiers. Therefore ::foo::Bar2::Baz is not a name of ::foo::Bar: :Baz and can't be
used to refer to it.

The IDL has a single namespace for all identifiers within a given scope. You can't declare multiple
identifiers with the same name in the same scope, even if their entity type is different.

The name lookup rules are really simple. You can refer to an identifier either using its fully-qualified
name, a qualified name (<scope-name>: :<identifier>), or just a literal. If the name begins
with : :, it's a fully-qualified name, which is an unique identification of an identifier in IDL, and the
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name resolution is obvious. Otherwise the name resolution starts at current scope. If concatenation of
fully-qualified name of the current scope, : : and the name yields a fully-qualified name of an exist-
ing identifier, the name resultion successfully stops at the identifier. Otherwise the same rule is ap-
plied to the parent scope of the current scope, and so on, until the identifier is found, or the root scope
is reached without a success.

10.6. Namespaces

Namespaces in the IDL exactly correspond to the C++ namespaces. Namespace definition satisfies the
following syntax, which is the same as the C++ namespace syntax:

(3) <namespace> ::= '"namespace"
<identifier>
"{" <definition>* "}"

As mentioned in Section 9.2, “IDL in the Massiv” the user must provide the C++ defintion and imple-
mentation of the classes described in the IDL. The IDL class description should be located in the same
namespace as the C++ class. Otherwise the IDL processor wouldn't be able to generate object factor-
ies and metaobjects that would be able to work with the relevant managed class.

The namespace specified in the IDL doesn't have anything in common with the namespace where the
object factories and metaobjects are generated (for both of these, the Massiv::Generated
namespace is used always).

10.7. Enumerations

Enumeration types are similar to enums in C++. Their definition satisfies the following syntax:

(4) <enum> ::= "enum"
<identifier>
"{" <enum_body> "}"
(5) <enum_body> ::= <enumerator>

{ "," <enumerator> }*
[ ll,ll ]
(6) <enumerator> ::= <identifier>

<int_expr>

Syntax of the integral expression that can be used on the right sight of the enumerator assignemnt is
described in Section 10.8.5.2, “Integer Expressions”. Unlike in the C++ enumerations, all IDL enum-
erants must have assigned a value.

Enumeration type can be defined either in a namespace scope (see Section 10.6, “Namespaces”) or in
a class scope (see Section 10.9, “Classes™).

Enumeration types are used in two contexts:

1.  As attribute types. In this case definition of the enumerants and their values is important. See
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Section 10.8.2, “Attribute Types” for more information.

2. As property types. In this case only the name of the enumeration type is used in the IDL to C++
mapping. The enumeration should contain no enumerants.

Single enumeration type may be used in both contexts, but it's not recommended to do so.

Note

So far, the only place where the constants defined in enumerations may be used is an expres-
sion in the context of an assignment to an attribute of a relevant enumeration type. Enumera-
tion contants can't be used in integer expressions.

10.8. Attributes

Attributes allow you to specify special information about declarations of classes, properties and meth-
ods in a generic way. For example, the C++ function specifiers virtual and const would be implemen-
ted as method attributes in the IDL (those method attributes actually exist, although the const attribute
has a slightly different semantics).

You can think of attributes as type key-value pair. The attributes are divided into three kinds: class at-
tributes, property attributes and method attributes. Because the IDL has only single namespace for all
identifiers within given scope, it's impossible to define two attributes of different kind with the same
name.

Each class, property or method always has the same set of class, property or method attributes, with
possibly different attribute values. All attributes must be declared before any class, property or meth-
od declaration.

The IDL language itself does not define any attributes, attributes are defined directly in the 1d1 files.
However, some attributes are required by the IDL processor, and other attributes are required by the
Core. All these attributes are declared in src/core/object/object.idl, and the IDL pro-
cessor will reject all 1d1 files that do not include declarations of those attributes. The attributes are
described in Section 10.9.3, “Class Attributes”, Section 10.10.1, “Property Attributes” and Sec-
tion 10.11.1, “Method Attributes”.

Values of all non-internal class, property and method attributes are queriable at run-time. Names of
the C++ attribute variables are derived from fully-qualified names of the attribute identifiers: the lead-
ing : : is stripped and other : : are replaced by the underscore character. See Chapter 12, Metaobjects
for more information about metaobjects and object introspection.

Note

All attributes defined in src/core/object/object.idl are declared in the root scope,
therefore their C++ names are the same as their IDL names.

Note
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Unless you want to modify the Massiv Core, you won't have to define your own attributes.
Actually, currently the only way to define new attributes is to modify src/
core/object/object.idl directly. However, the following sections should help you to
understand how the attributes work in general and how to specify their values.

10.8.1. Attribute Definition

Attribute definition satisfies the following syntax:

(7) <attribute> ::= <attr_kind>
<attr_type>
<identifier>

n=mn

<const_ expr>

nm.n
’

Whether the attribute is a class, property or method attribute is specified by <attr kind>, which
can be one of “classattr”, “propattr”, or “methodattr”, optionally followed by attribute flags enclosed
in the < and > characters. Attribute flags are simple literals separated by commas that further specify
behavior of the attribute. Each attribute kind can be flagged as “idl_internal”, which instructs the IDL
processor not to export its value to metaobject introspection structures. If class attribute flag “inherit”
is set, the attribute value lookup will change as described in Section 10.8.6, “Attribute Value

Lookup”.

The <attr type> specified attribute type, the <identifier> specified its name. The
<const_expr> defines default value of the attribute. It must be a constant expression of type equal
to the type of the attribute.

10.8.2. Attribute Types

All attributes are typed. Attribute type definition satisfies the following syntax:

(18) <attr_type> ::= <buildin_type>
| <enum_name>
(19) <buildin_type> ::= "bool"
| "int"
| "string"

The following table describes all attribute types that can be used, and to which C++ types they map in
the metaobject introspection structures:

Table 10.2. Attribute Type

IDL Type C++ Type Description
bool bool A boolean attribute. Can be either true or
false.
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IDL Type C++ Type Description

int int An integral attribute. Can be assigned an arbitrary
int value.

string std::string A string attribute.

name of an enumeration type in- |int An enumeration type attribute. Can be assigned

dentifier any constant enumeration expression of given
enumeration type.

10.8.3. Attribute Default Values

Attribute values are specified by a constant expression of given type, as documented in the next sec-
tion. Each attribute has a default value, specified in its definition. This default value can be overridden
using the following syntax:

(22) <attr_default> ::= "attribute"
<attr_name>

n—mn

<const_expr>

m.n
’

The attribute override is valid until the end of the current scope, where it reverts back to override valid
before the scope beginning, or until it's overridden by another “attribute” keyword.

Warning

The attribute default value overridde can cross file boundaries. You should never override the
default within a scope that may cross file boundaries.

The following example shows how the overriding works:

/* Define a class attribute with default value set to 1. */
classattr int attr = 1;

namespace foo {
/* Default value is still 1. */

attribute attr = 2;
/* Default value is 2 now. */

attribute attr = 3;
/* Default value is 3 now. */

namespace bar {
/* Default value is still 3. */

attribute attr = 4;
/* Default value is 4 now. */

} // namespace foo::bar

/* Default value is 3 again. */
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} // namespace foo

/* Default value is 1. */

10.8.4. Attribute Value Assignment

In each class definition and property or method declaration, values of attributes of corresponding kind
can be specified using the following syntax:

(27) <class_header> ::= "class"
[ "<" [ <classattr_wvals> ] ">" ]
<identifier>
[ <class_inheritance> ]

(28) <classattr_vals> ::= <classattr_val>
{ "," <classattr_val> }*
(29) <classattr_val> ::= <boolclassattr_ name>
| <classattr_name> "=" <const_expr>

(30) <boolclassattr_name> ::
(31) <classattr_name> ::

<scoped_name>

<scoped_name>

Similar syntax is used to specify property and method attributes.

Class, method or property attribute values are specified directly after the “class”, “method” or
“property” keyword, respectively, as a list of name=value assignments separated by commas, en-
closed in < and > characters. The attribute specification is optional. Assigning true to a boolean at-
tribute can be equally written as the attribute name without any value assignment (i.e. just foo in-
stead of foo = true).

10.8.5. Expressions

Attribute value can be specified in several context:

* Default value specification in attribute definition.
* Default value override.
» Attribute value assignment in class defintion and property or method declaration.

In each of these contexts, constant expression of corresponding type is used on the right side of the as-
signment. Currently, the IDL parser can only evaluate primitive constants in place of expressions.

10.8.5.1. Boolean Expressions

In the context of assignment to a boolean, the following values can be used:

e trueorl
e falseorO

10.8.5.2. Integer Expressions
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In the context of assignment to an integer, a integer literal (see Section 10.2.4.1, “Integer Literals™),
optionally beginning with any numbers of minus (-) characters, may be used.

10.8.5.3. String Expressions

In the context of assignment to a string, a string literal can be used.

10.8.5.4. Enumeration Expressions

In the context of assignment to an attribute of enumeration type, identifier of any enumerant defined
withing the enumeration type may be used. Note that in this case name lookup and scoping rules do
not apply, an identifier of an enumerant is used directly.

10.8.6. Attribute Value Lookup

For each class, property and method, values for all attributes of given kind are always defined. If an
attribute is not assigned a value in a class, property or method declaration, the default value of the at-
tribute is used. The default is specified in attribute definition and can be overridden as described in
Section 10.8.3, “Attribute Default Values”.

The only exception to this lookup rule are class attributes with the “inherit” attribute flag set. If a class
has a base class (all classes except Massiv: :Core: :Object do) and value of an “inherit” class
attribute is not specified in the definiton of the derived class, attribute value from the base class is
used, even if it's not directly specified in its definition and has been determined by applying this rule
recursively. If a class inherits multiple base classes, and value of an unassigned “inherit” attribute is
not the same in all base classes, the IDL is ill-formed - class attribute value must be always explicitly
assigned in this case.

Note

Default attribute value lookup is never done for “inherit” class attributes, except for the defin-
tion of the Massiv::Core::0bject class. Therefore it's pretty useless to override de-
faults of “inherit” class attributes.

10.9. Classes

All managed classes defined in the C++ must be described in the IDL. This section documents class

description (also reffered to as class definition) syntax.

10.9.1. Forward Declaration

As in C++, classes in IDL can be forward declared using the following syntax:

(25) <class_fwd> ::= "class"
<identifier>

nm.n
’
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Class attributes are not specified in a forward declaration.

10.9.2. Class Definition

Class definition consists of a class header and a class body. Classes are defined (or described) using
the following syntax:

(26) <class_dcl> ::= <class_header>
"{" <class_body> "}"

(27) <class_header> ::= "class"
[ "<" [ <classattr_wvals> ] ">" ]
<identifier>

[ <class_inheritance> ]
<in_class>*

<enum>

<attr_default>

<class>

<property>

<method>

"m.n
’

(35) <class_body> ::
(36) <in_class> ::

The class header specifies an optional list of class attribute values, the class name and an optional
class inheritance specification.

The class body can contain definitions of enumeration types and subclasses, attribute default overrides
and declarations of class properties and methods.

10.9.3. Class Attributes

Class attribute value assignments satisfy the following syntax:

(28) <classattr_vals> ::= <classattr_val>
{ "," <classattr_val> }*
(29) <classattr_val> ::= <boolclassattr name>

<classattr_name> "=" <const_ expr>
<scoped_name>
<scoped_name>

(30) <boolclassattr_name> ::
(31) <classattr_name> ::

The following table lists all class attributes defined in src/core/object/object.idl:

Table 10.3. Class attributes defined in the Core IDL

Name Type Default Description

abstract bool false If true, the class is abstract and can't be in-
stantiated.

assignable bool false If true, the class implements the assign-
ment operator.

client_server migrate bool false If true, the client can migrate objects of
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Name

Type

Default

Description

this type to servers.

comparable

bool

false

If true, the class implements the == oper-
ator.

has_strong pointer

bool

false

If true, the class contains a strong pointer.
This attribute is automatically set by the
factgen, you should not assign it a value.
However, you can query its value at run-
time.

kind"

ClassKind

SHARED

Kind of the class. It can be SHARED, SERV-—
ER or CLIENT. See Section 4.3.7, “Class
Kinds” for more info.

. a
no_archive

bool

false

If true, the instances of the class won't be
archived. Class
Massiv::Core::Lib: :NodeObjectlI
nterface has this attribute set to true.
You should not change value of this attrib-
ute: all node objects should be non-
archivable, other objects should be archiv-
able.

a
no_balance

bool

false

If true, objects of this class will not be mi-
grated by the load balancer.

. a
no_migrate

bool

false

If true, the instances of the class won't be
allowed to migrate. Class
Massiv::Core::Lib: :NodeObjectlI
nterface has this attribute set to true.
You should not change the value.

noafe_objecta

bool

false

Specifies whether the class true is a node
object class. Class
Massiv::Core::Lib::NodeObjectlI
nterface has this attribute set to true.
You should not change the value.

a
root

bool

false

If true, the instances of the class will be
permanent GC roots. See Section 5.4,
“Garbage Collector” for more information
about the garbage collector.

. . . a
simulation_startup notify

bool

false

If true, the instances of the class will be
notified when the simulation is restored from
an archive. The object updated () will
be called, with reason set to SIMULA-
TION STARTUP.

Setting this attribute to true is useful when
an object needs to perform special initializa-
tion on simulation startup. For example, act-
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Name Type Default Description

ive account objects probably contain inform-
ation about the connected client. Because ac-
count objects are archived as any other ob-
jects, this information is stored in the
archive. When a new simulation is started,
no clients are connected, but account objects
that were active when the startup archive
was created may contain obsolete informa-
tion about clients. Therefore the class
Massiv::Core::Lib::AccountObje
ctInterface has this attribute set to
true.

The system ensures that all server nodes are
running when the object updated() is
called. The order of object notifications is
undefined. You must not use the synchron-
ous RPC from the object updated()

callback.

throwable® bool false If true, the instances of the class can be
thrown as an exception using the C++
throw.

tracked bool false If true, the instances of the class will be

tracked by their object provider. This will
make migrations of objects to the instances,
including remote class to the instances, more
efficient, and migration of the instances
themselves a bit less efficient.

value_typea bool false If true, the instances of the class are value
types. You should not set this attribute dir-
ectly. Inherit the class
Massiv::Core::Lib::ValueType
which sets the attribute automatically in-
stead. Value types are described in Sec-
tion 4.3.4, “ValueTypes”.

? This class attribute has the “inherit” attribute flag set. Different attribute value lookup rules apply it the value is not specified
in the class definition. See Section 10.8.6, “Attribute Value Lookup”.

10.9.4. Class Inheritance Specification

Class inheritance is specified using the following syntax:

(32) <class_inheritance> ::= ":"

<base_class_name>

{ "," <base_class_name> }*
(33) <base_class_name> ::= [ "virtual" ] <class_name>
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(34) <class_name> ::= <scoped_name>

All base classes must be defined at the scope of the definition of the derived classes. Forward declara-
tion won't suffice. All base classes must be inherited as public in the C++ definition of the class.

Each managed class must inherit Massiv: :Core: :Object exactly once.

10.10. Properties

Declaration of a property satisfies the following syntax:

(37) <property> ::= "property"
[ "<" [ <propattr_vals> ] ">" ]
<type>
<identifier>

nm.n
’

Property declaration consists of an optional list of property attribute assignments, the property type
and the property name. Property types are described in Section 10.13, “Property and Argument
Types”.

It's possible to declare properties with the same name in both base and derived class. The IDL will
treat them as two different properties, and they should be defined as such in the C++ definition of the
classes.

Access to the properties in the C++ classes can be public, protected or private, as long as the classes
are properly defined to be friends of their metaobjects, as described in Section 4.3.1,
“Implementation”. The access is not specified in the IDL.

Warning

All class properties must be properly described in the IDL. If you forget to describe some
properties, the IDL will be processed and the generated sources will compile without any er-
ror, but the properties you forgot to describe will not be serialized, migrated, replicated, or
archived at all.

10.10.1. Property Attributes

Property attribute value assignments satisfy the following syntax:

(38) <propattr_vals> ::= <propattr_val>
{ "," <propattr_val> }*
(39) <propattr_val> ::= <boolpropattr name>
| <propattr name> "=" <const_expr>
(40) <boolpropattr_name> ::= <scoped name>
(41) <propattr_name> ::= <scoped name>
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The following table lists all property attributes defined in src/core/object/object.idl:

Table 10.4. Property attributes defined in the Core IDL

Name

Type

Default

Description

repflags

ReplicationFlags

REPLICATE

This attribute specifies the migration and rep-
lication behavior of the property. See Sec-
tion 7.5.2, “Choosing Properties To Replicate”
for more information about the replication and
for exhaustive enumeration of possible values.
The default value means that the property will
be always included in replications.

ptr repflags

ReplicationFlags

NONE

This attribute specifies which objects belong to
the same migration or replication groups, as
described in Section 7.5.3, “Replication and
Migration Groups”. It's useless to set value of
this attribute on properties that are not pointers,
or do not contain pointers.

10.11. Methods

Declaration of a method satisfies the following syntax:

(74)

<method> ::

"method"

[ "<" [ <methodattr_wvals> ] ">" ]

<identifier>

" (ll

[ <arguments> ]

u) 1]

[ <return_spec> ]

m.en
’

Method declaration consists of an optional list of method attribute assignments, the method name,
specification of method arguments and an optional specification of method return type.

It's illegal to declare methods with the same name in both base and derived class. The IDL does not
support method overloading and hiding, and default argument values. Virtual methods should be de-
clared only in the class where they are first defined in the C++, and RPC to virtual methods will work

as expected.

Constructors, destructors and operators can't be declared in the IDL. All methods declared in the IDL
must be public in the C++.

Note

You don't have to declare all methods defined in the C++ in the IDL. However, only the de-
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clared methods can be called using the RPC.

10.11.1. Method Attributes

Method attribute value assignments satisfy the following syntax:

(76) <methodattr_ vals> ::= <methodattr_ val>
{ "," <methodattr_val> }*
(77) <methodattr_val> ::= <boolmethodattr name>

<methodattr_ name> "=" <const_expr>
<scoped_name>
<scoped_name>

(78) <boolmethodattr name> ::
(79) <methodattr_ name> ::

The following table lists all method attributes defined in src/core/object/object.idl:

Table 10.5. Method attributes defined in the Core IDL

Name Type Default Description

virtual bool false If true, the method is virtual in the C++ sense. Setting this
attribute correctly is not required as it's not (and will not be)
used by the RPC at all. However, the value is exported to
metaobjects, and therefore should be set correctly to prevent
confusion.

const bool false Meaning of this attribute is described in Section 8.5.2,
“Synchronous RPC Optimizations”. It should be always
false if the method is not const in the C++ sense. Set it to
true if you want to allow replica-optimized RPC to the
method.

10.11.2. Method Arguments and Results

Method argument specification satisfies the following syntax:

(80) <arguments> ::= <argument>
{ "," <argument> }*
(81) <argument> ::= <pass_semantics>
<type>
<identifier>
= "in"
| "out"
| "inout"

(82) <pass_semantics> ::

The <pass_semantics> specify how the argument is passed over the network:

* in - the argument is passed from the caller to the callee. out - the argument is passed from the
callee to the caller. inout - the argument is passed in both directions.

137




IDL Syntax

If the method returns a value, its type is specified using the following syntax:

(83) <return_spec> ::= ":"
<type>

Argument and return type can be any type described in Section 10.13, “Property and Argument
Types”, except for types that are, or contain, a strong pointer.

10.12. Special Directives

This section describes other special IDL directives that do not fit in any other category.

10.12.1. The include header Directive

The “include header” directive satisfies the following syntax:

(84) <include_header> ::= "include_header"
<string_ literal>

m.n
’

It instructs the IDL processor to include specified file in all files that are generated from the IDL file
the derictive appears in. Use it if class described in an IDL files are defined in multiple C++ headers.

10.13. Property and Argument Types

This section describes all IDL types that can be used as types of properties, method arguments and
method result types, and their mapping to corresponding C++ types. All the types that are managed
classes are described in Section 4.2, “Managed Data” in detail; only a brief information is given here.

Every IDL type can be mapped to one or more native C++ types or special C++ classes, according to
the actual context of usage. We distinguish five various usage contexts:
o simple

The most simple C++ type that can hold values of this type on the stack. This type is used when
passing a result from SRPC, for example.

If there is no possible mapping to native C++ type, serializable type is used.
* in argument

An input argument of a method. This context is used for example to pass in arguments to RPC
stubs, and should be used for in arguments in C++ definition of methods declared in IDL.

For simple types, it usually equal to simple type, otherwise it's a constant reference to simple type.
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* out argument

An output or input-output argument of a method. This context is used for example to pass out and
inout arguments to/from RPC stubs, and should be used for out and out arguments in C++ defini-
tion of methods declared in IDL.

This type is usually a reference to simple type.
o serializable

The most lightweight serializable type that can hold values of this type. It's used in all contexts
where serialization may be used, but full-blown properties are not needed. For example, generated
structures containing RPC arguments use serializable types, also calls stypes.

Only some types define lightweight stypes, usually the simple ones. If not serializable type exists
for the IDL type, property will be used instead.

For complete list of stypes, please refer to the Massiv Core Reference Guide, module Lightweight
Serializable Types.

* property

Properties are types that can hold values of this type, can be serialized, they know which property
owns them, they remember time of their last modification, etc. All managed objects are properties.

Properties should be the only types that are contained in managed objects. For a complete list of
properties and their documentation, please refer to the Massiv Core Reference Guide, module
Properties.

The following sections describe particular IDL types in detail. Each description begins with a table
that shows to what C++ types the particular type will be mapped to in the specific context. The pro-
grammer needs to know that to be able to implement managed classes (see Chapter 13, Creating Man-
aged Class).

Note
All the non-native C++ types used for the mapping of the IDL types are defined in the

Massiv: :Core namespace. However, for better lucidity, we leave this namespace out in
the following tables. For example, we write SBool instead of Massiv: :Core: : SBool.

10.13.1. Boolean

Table 10.6. Boolean type mapping

Context Type
IDL bool
simple bool
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Context Type
in argument bool
out argument bool &
stype SBool
property PBool

A classic boolean type that can store either the t rue or the false value.

10.13.2. Integers With Fixed-length Serialization

Table 10.7. Integral type mapping

Context Type

IDL int32<N >
simple Int32

in argument Int32

out argument Int32 &

stype SInt< Int32,N >
property PInt< Int32,N >

int32< N > is an signed 32bit integral type. Only the lower N are serialized when the integer is trans-
mitted over the network.

Many modifications of this type exist:

»  Unsigned integer

In the IDL the notation of the type is uint32< N >,

In the other contexts, only replace Int32 by Ulnt32. For example, UInt32 & or SUInt< Int32,N >.

» Integer with a bitwidth different from 32

The supported bitwidths are 8, 16, 32 and 64. The syntax is obvious - just put the desired
bitwidth instead of the 32 value in the signed 32-bit integer. Of course, you can do the same for
unsigned types.

This example shows some possible integer declarations.

int8< 7 >
int64< 32 >
uintl6< 8 >
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*  Fully serializable integer

If the N parameter is ommited, all the bits contained within the number will be serialized. The ex-
ample of a few possible IDL definitions follows:

Note

Similarly you can ommit the N parameter in the int8, int16 or int64 types.

int8 il;
int64 i2;
uintlo6 13;

10.13.3. Integers With Variable-length

tion

Table 10.8. VLint type mapping

Serializa-

Context Type

IDL vlint32
simple Int32

in argument Int32

out argument Int32 &

stype SVI1i< Int32 >
property PVli<Int32 >

The vlint also represents an integral type. The difference from the types that were mentioned above
lies in the serialization. All bits are always serialized, but the values that are close to the zero require
less bits in network serialization than integers with large absolute values.

This type is suitable for values that typically won't be too large, but their exact maximum is unknown,

such as indices.

Similarly to the classic integers, you can still use either signed or unsigned variable length integers
with the bitwidth among 8, 16, 32 or 64 bits.

The following example shows some of the possible definitions of the variable length integers:

v1lint32 v1i32;
viunitl6 viui6ed;
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10.13.4. Enumeration Type

Table 10.9. Enumeration type mapping

Context Type

IDL ENUM

simple ENUM

in argument ENUM

out argument ENUM &

stype SEnum< ENUM >
property PEnum< ENUM >

The IDL name of an enumeration type is its scoped name. The enumeration type must be defined both
in the IDL and the C++ sources. Its IDL definition may be empty - the constant values are irrelevant.
In the table, the identifier ENUM is used.

Example - the C++ part:

class MyClass : public ::Massiv::Core::0bject
{
enum Mono
{
COLOR BLACK = 0,
COLOR WHITE
)i

I
=

b7
Example - the IDL part:

class MyClass : ::Massiv::Core::0Object

{
enum Mono { }; // We declare this empty.

property Mono mono colors;
// The enumeration is used by its declared name.

}

Note

The enumeration type may be declared in any namespace, as long as it's defined in the same
namespace in the IDL and C++.

Warning

Enumeration types are serialized as integers and no value checking is done. Enumeration
types are archived as integers too, therefore all the enumerants should be assigned values in
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the C++ definition of the integer, and these values should never be changed.

10.13.5. Floating-Point

Table 10.10. Floating-point type mapping

Context Type
IDL float32
simple Float32

in argument Float32
out argument Float32 &
stype SFloat
property PFloat

Besides the single-precision 32-bit floating-point types, double-precision 64-bit types may be used

too. Just replace the 32 with 64.

10.13.6. Floating-Point With Quantized Serializa-

tion

Table 10.11. Quantized floating-point type mapping

Context Type

IDL floatq32<"TRAITS" >
simple Float32

in argument Float32

out argument Float32 &

stype

SFloatQ< Float32, TRAITS >

property

PFloatQ< Float32, TRAITS >

This type is a floating-point type that uses quantization during replication (but not during migration).
The quantization parameters are specified by the TRAT TS class, which must be defined somewhere in
the C++ sources. The TRATITS class is described in the Massiv Core Reference Guide.

Note

Because the IDL does not know anything about the TRAITS class, it must be specified as a
fully-qualified C++ name in a string in the IDL.
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10.13.7. String

Table 10.12. String type mapping

Context Type
IDL string
simple std::string
in argument const std::string &
out argument std::string &
stype SString
property PString
ASCII string type.
Warning

During the transfer over the network, only 7 bits of each character are serialized. Do not use
non-ASCII characters (characters with integral representation greater than 127) in strings. In
the future an Unicode string type may be implemented.

10.13.8. Time

Table 10.13. Time type mapping

Context Type

IDL time

simple Stime

in argument const STime &
out argument STime &

stype Stime
property PTime

The time type is used to hold value of the simulation time specified in seconds.

10.13.9. Event Handle

Table 10.14. Event handle type mapping
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Context Type

IDL event_handle
simple EventHandle
in argument EventHandle
out argument EventHandle &
stype PEventHandle
property PEventHandle

The event handle is a handle to a scheduled migration event. The handle can be used as a reference to
the event when a programmer wants to cancel (ki//) the event.

Warning

Migration event cancellation is not reliable. It will work only if the object that should migrate
is owned by the same node as the object that tries to cancel the event.

10.13.10. Math Vectors

Table 10.15. Math vector type mapping

Context Type

IDL vector2

simple SVector2

in argument const SVector2 &
out argument SVector2 &
stype SVector2
property PVector2

vector2 represents a 2-dimensional vector. Besides that the Core provides a 3-dimensional vector

(vector3).

10.13.11. Orientation

Table 10.16. Orientation type mapping

Context Type
IDL orientation
simple SOrientation

in argument

const SOrientation &

out argument

SOrientation &
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Context Type
stype SOrientation
property POrientation

Orientation type represents an angular orientation. Please refer to the Massiv Core Reference Guide,
documentation of the Massiv::Core: :Orientation template and documentation of the src/
core/property/orientation.h file, for more information about orientations.

10.13.12. Color

Table 10.17. Color type mapping

Context Type

IDL color

simple SColor

in argument const SColor &
out argument SColor &

stype SColor
property PColor

The color is represents a red-green-blue-alpha color with floating-point components in the range from
0.0 to 1.0. The components are quantized to 8-bit during replication.

10.13.13. Pointers

The following tables show a pointer type that would refer to a managed object of type CLASS. In the
first table it is a strong pointer, in the second a weak pointer and in the third a remote pointer. To
learn more about the pointers see Chapter 5, Pointers. For quick information about the difference of
the three types of pointers, see Table 5.1, “Managed Pointer Types”.

Table 10.18. Strong pointer type mapping

Context Type
IDL strong_pointer < CLASS >
simple Pointer< CLASS >

in argument

const Pointer< CLASS > &

out argument

Pointer< CLASS > &

stype

Pointer< CLASS >

property

PPointer< CLASS >
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Table 10.19. Weak pointer type mapping

Context Type

IDL weak pointer< CLASS >

simple WeakPointer< CLASS >

in argument const WeakPointer< CLASS > &
out argument WeakPointer< CLASS > &
stype WeakPointer< CLASS >
property PWeakPointer< CLASS >

Table 10.20. Remote pointer type mapping

Context Type

IDL remote_pointer< CLASS >
simple Remote< CLASS >

in argument const Remote< CLASS > &
out argument Remote< CLASS > &
stype Remote< CLASS >
property PRemote< CLASS >

10.13.14. Managed Class Type

Table 10.21. Managed class type mapping

Context Type

IDL CLASS

simple CLASS

in argument const CLASS &
out argument CLASS &

stype CLASS
property CLASS

The IDL type name of a managed class is its scoped name. If you want to use a class as an array ele-
ment or a method argument (or nearly anything else but simple member property of another managed
class), you should probably define it as a value type, because value types can be easily constructed on
the stack. See Section 4.3.4, “ValueTypes” for more information.
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10.13.15. Pair

Table 10.22. Pair type mapping

Context Type
IDL pair< FIRST, SECOND >
simple PPair< PFIRST, PSECOND >

in argument

const PPair< PFIRST, PSECOND > &

out argument

PPair< PFIRST, PSECOND> &

stype

PPair< PFIRST, PSECOND >

property

PPair< PFIRST, PSECOND >

The pair can hold a tuple of properties. In the table, FTRST and SECOND represent types in IDL syn-
tax, and PFIRST and PSECOND represent corresponding property types.

10.13.16. Array

This section describes two types of arrays - the value array and the property array. Both of them will
be described below in more detail.

Table 10.23. Value array type mapping

Context Type
IDL value array< TYPE >
simple PValueArray< STYPE >

in argument

const PValueArray< STYPE > &

out argument

PValueArray< STYPE > &

stype

PValueArray< STYPE >

property

PValueArray< STYPE >

The TYPE is a type description written in the IDL syntax. The STYPE is the corresponding serializ-
able type (stype).

value array< TYPE > is an array that can be dynamically resized using a special method. It is able to
hold lightweight serializable types.

All objects occupying one concrete array must all be instances of the same type.

This array occupies less memory and is more efficient than the property array (described below) be-
cause it accommodates relatively small serializable types instead of much larger properties. Con-
sequently, the value array cannot be used for types whose corresponding serializable type is a prop-
erty. The following types can be used as elements of a value array:
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* boolean type

* integral types, both with fixed-length and variable-length serialization
* enumeration types

» floating-point types, inluding quantized floats

e string type

* time type

» event handle type

e 2-D and 3-D math vector types

* orientation type

* color type

The IDL parser can itself distinguish which combinations are permitted and which not.

Note

Pointers can't be used as elements of value arrays, even though their stype is not a property.

To create a two-dimensional array use a property array of arrays of lightweight serializable types.

Table 10.24. Property array type mapping

Context Type

IDL property array< TYPE >
simple PArray< PTYPE >

in argument const PArray< PTYPE > &
out argument PArray< PTYPE> &
stype PArray< PTYPE >
property PArray< PTYPE >

As well as the value_array (see above) the property array is a dynamic array. The difference is that
the latter stores properties, rather than serializable types. Therefore it occupies more memory and is
less efficient in speed; however the advantage is that the TYPE is not restricted as in the value arrays.

10.13.17. Set

Table 10.25. Set type mapping

Context Type
IDL set< TYPE >
simple PSet< PTYPE >

in argument

const PSet< PTYPE > &

out argument

PSet< PTYPE > &

stype

PSet< PTYPE >
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Context

Type

property

PSet< PTYPE >

Table 10.26. Multi-set type mapping

Context Type
IDL multi_set< TYPE >
simple PMultiSet< PTYPE >

in argument

const PMultiSet< PTYPE > &

out argument

PMultiSet< PTYPE > &

stype

PMultiSet< PTYPE >

property

PMultiSet< PTYPE >

The set and multi_set types are containers that keep values of given type. In the set, no two elements
will be the same, while the multiset can hold more values that are equal (according to their == operat-

or).

In the table above, TYPE stands for a type in the IDL syntax, while PTYPE stands for corresponding

property type.

Please refer to the Massiv Core Reference Guide for more information about sets and multi-sets.

10.13.18. Dictionary

Table 10.27. Dictionary type mapping

Context Type
IDL dictionary< KEY, VALUE >
simple PDictionary< PKEY, PVALUE >

in argument

const PDictionary < PKEY, PVALUE > &

out argument

PDictionary< PKEY,PVALUE > &

stype

PDictionary< PKEY, PVALUE >

property

PDictionary< PKEY, PVALUE >

Table 10.28. Multi-dictionary type mapping

Context Type
IDL multi_dictionary< KEY, VALUE >
simple PMultiDictionary< PKEY, PVALUE >
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Context Type

in argument const PMultiDictionary < PKEY, PVALUE > &
out argument PMultiDictionary< PKEY,PVALUE > &

stype PMultiDictionary< PKEY, PVALUE >
property PMultiDictionary< PKEY, PVALUE >

The dictionary and multi_dictionary types are associative containers that map the KEY values to the
values of VALUE. While the dictionary maps each unique key to a single value, the multi_dictionary
can map single key to multiple values.

In the table above, KEY and VALUE represent types in the IDL syntax, while PKEY and PVALUE rep-
resent corresponding property types.

Please refer to the Massiv Core Reference Guide, module Properties for more information about dic-
tionaries and multi-dictionaries.

151
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This chapter gives an overview of classes that are generated by the IDL preprocessor.

Note

To make the IDL preprocessor process a specific IDL file, you first have to add a relevant
entry into the id1.1ist file (see Section D.2, “The idllist File”).

The following classes are generated into your source tree on the basis of the IDL. Let's suppose we
have a managed class named simply X and that the C++ sources of the class are in x.h and x. cpp,
respectively.

Table 11.1. Classes generated on the basis of the IDL

)
Class * File Notes
class MetaObjectImpl<X> x _generated.h |Metaobjects store all the meta-data
about the class, such as the base
class, etc.

class ObjectFactoryImpl<X> |x generated.h |ObjectFactories enable mainly to in-
stantiate objects and their replicas.

RPCStubs<X> x_rpc.h See below.
Other RPC helper classes ¢ X _rpc.h See the Massiv Core Reference
Guide.

# Class name without the Massiv: : Core part.
The name of the file that will be generated for the relevant class. It will be located in the same directory as the IDL file.
¢ For example implementation of the RPC packet for each method that is described in the IDL.

The RPC related generated classes are described right below; for information about metaobjects or ob-
ject factories see the following chapter.

Because the application shouldn't use most of the generated objects explicitly (except for metaob-
jects), this book dosn't describe them in detail. For more information about either of them please refer
to the Massiv Core Reference Guide.

11.1. RPC Related Classes Generated

This section gives a overview about what basic classes are generated by the IDL parser according to
the relevant IDL description. It doesn't intend to provide a complete list of methods of the classes nor
a full list of the classes, because the Core user generally doesn't need to work with most of them dir-
ectly.

11.1.1. RPCStubs Objects
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Each managed object has its own RPCStubs object assigned. This class declaration is generated on
the IDL basis into X rpc.h and the relevant implementation into X generated.cpp, where X
stands for the name of the idl file without the extension.

The RPCStubs object for any managed class can be obtained by dereferencing the relevant remote or
weak pointer. It provides interface for calling the methods of the associated class via RPC.

The exhaustive information about handling the RPC mechanism can be found in Chapter 8, Remote
Procedure Call. The following paragraphs only briefly summarize this inforamation.

The RPCStubs objects contain two categories of methods:

1. Helper methods

These methods returns the self reference and thus can be chained for the programmer's conveni-
ence.

* param( flags, time ) enables to set the RPC parameters. f1ags can specify besides
others an immediate or delayed RPC call mode. For setting the delay serves the second para-
meter.

* request replica( timeout ) requests replication of the target object (in case the
pointer the programmer has used for obtaining the stub is remote) for t imeout seconds at
the local node.

* optimize replica( timeout ) requests replication of the target object the same
way as the previous method. Moreover it allows the optimized replica SRPC. See Sec-
tion 8.5.2, “Synchronous RPC Optimizations” for more information.

2. Methods for performing RPC calls

Two RPCStubs methods is generated for each method that can be called using the RPC (i.e.
that has its description in the IDL). Let's denote X the name of this original method.

* async X( .. ) performs the asynchronous RPC. The signature of this method is the
same as the original one except for that the out parameters are removed. See Section 8.3,
“Asynchronous RPC” for more information.

* sync X( .. ) performs the synchronous RPC. The signature of this method is the same
as the original one (the one we are calling via the RPC). See Section 8.4, “Synchronous
RPC” for more information.

Note that if a class X is inherited from a class Y, the RPCStubs< X > is generated so that it in-
herits from RPCStubs< Y >. Therefore the programmer can use a stub object of a class even
for RPC calls of methods contained in all of its antecedents.
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12.1. Overview

As mentioned in previous chapters, the Massiv Core needs information about classes and objects that
are not provided by the C++ language itself to implement object serialization, replication, migration,
RPC and other features. All managed objects must be described in IDL files, which are processed by
the factgen.pl utility, that generates (besides others) source code of metaobjects - objects that provide
all necessary information about managed classes, their inheritance, properties and methods.

While metaobjects are used extensively by the Core, a large part of their API is public and can be used
by the programmer to perform object introspection (obtaining information about objects and their
classes at run-time).

For each managed class defined in the IDL, also the two following C++ classes are generated:

* A class that implements MetaObject interface. It provides the object introspection.

* A class that implements ObjectFactory interface. It allows you to create object instances.
Metaobjects are singletons - single instance of MetaObJject and ObjectFactory is created for

each managed class known to the node during the node startup.

Both MetaObject and ObjectFactory are briefly described in this chapter. However, only an
overview of metaobject structures and methods is provided. Please refer to the Massiv Core Reference
Guide for in-depth information about the interfaces.

12.2. MetaObject class

MetaObject provides the following information about classes and objects:

* Class name and type information
* Inheritance information

* Description of class properties

e Description of class methods

12.2.1. Obtaining a MetaObject

Obtaining a pointer to a metaobject describing the most derived class of a local object is simple - just
call the get metaobject () method of the object.

Otherwise you have to use the ClassManager singleton and use one of its get metaobject ()
methods as illustrated in this example:

Example 12.1. Obtaining a MetaObject
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using namespace Massiv::Core;

/* Get reference to the class manager. */
const ClassManager & class manager = Global::class manager() ;

/* Get metaobject by fully-qualified class name. */
const MetaObject * const ml = class manager.get metaobject( "Foo" );

/* Get metaobject by C++ class type info. */
const MetaObject * const m2 = class manager.get metaobject ( typeid( Foo ) );

/* Get metaobject by class type id. */

const WeakPointer< Object > object = ...;

const ObjectId & object id = object.get object id();

hope ( object id.is object info available() );

const ClassTypeId class type id = object id.get class type id();

const MetaObject * const m3 = class manager.get metaobject( class type id );

The example should be pretty self-explanatory, except for the “get metaobject by class type id” part,
which illustrates how a metaobject pointer can be obtained from an object pointer to a possibly remote
object. In that case we must extract a class type id from its object id. Unfortunately some object ids
may be missing the class type information, if the referenced object is remote. This may happen when
an object id referencing an object of an alien kind is archived and then loaded back, for example. You
can assume that the class type id is present when you know that the pointer you have extracted the id
from never migrated, or migrated only between nodes of the same type (nodes supporting the same set
of class kinds). To make it short and simple: you can use this approach on server nodes if the object
pointer was retrieved from a server-only object.

None of the get metaobject () methods that were mentioned so far returns NULL. They all
throw the Lib: :UndefinedClassTypeException exception if no metaobject is available for
the given class. This may happen even in the third version (getting the metaobject by the class type id)
if the object id references an object of an alien class kind. For each get metaobject () method
variant a corresponding method called get metaobject nothrow () exists, which never throws
an exception and returns NULL on error instead.

12.2.2. Passing Pointers to MetaObject Methods

In the MetaObject APIL pointer-to-object arguments are often used. However, they are usually not
object pointers as described in Chapter 5, Pointers. Instead, these two pointer types are used:

* PtrToObject is a lightweight pointer to Object. Unlike simple Object *, it ensures that
the referenced object will not be destroyed by the garbage collector, i.e. the pointer pins the object
until it stops referencing it. To convert an object pointer to the Pt rToObject, use the following
code:

Pointer< Object > object = ...;
const PtrToObject ptr to object( object.dereference() );
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VariantPointer is similar to simple void *. If debugging is enabled, it remembers the type
of the pointer it has been initialized with, and allows you to cast it only to the pointer of the ex-
actly same type. The following example constructs a VariantPointer and then casts it back to
the correct type:

Foo * const native foo = ...;

VariantPointer variant foo( native foo );
/* variant foo now knows it points to Foo *, regardless */
/* of the most derived class type of *native foo. */

/* This is the only correct variant cast that may be performed on variant foo. */
Foo * const back to foo = variant cast< Foo * >( variant foo );

/* This fails in debug builds, unless Bar is typedef to Foo. */
Bar * const error = variant_cast< Bar * > ( variant_foo )2

The variant pointers are used to pass pointers to object components (see Section 12.2.3.3, “Class
Inheritance”). Most methods of metaobject for class Foo require that all variant pointers passed to
them are of type Foo *. You can use methods downcast () and upcast () of the MetaOb-
ject cast pointers (and create corresponding variant pointers) at run-time, without any compile-
time class type knowledge. The easiest way to get a variant pointer to the most derived class of
given object, use the following code:

Pointer< Object > object = ...;

VariantPointer complete object( object.get complete object() );

/* If the most derived class of the object is Foo, complete object is */
/* now of type Foo *, even 1f the object pointer previously */

/* refered to some of its ascendants. This is the variant pointer most */
/* methods of the metaobjects expect. */

12.2.3. Class Information

This section describes how to obtain information about a class, such as class name, class type info,
class attributes and inheritance hierarchy.

Note

From now on any method names refer to methods of the MetaObject class, unless spe-
cified otherwise. “The class” refers to the class described by the metaobject we're talking
about.

12.2.3.1. Class Name and Type Info

To get fully-qualified name of a class, use the get class name () method. The methods
get class type info(), get class pointer type info() and
get class_ type id() return information about the class type.
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12.2.3.2. Class Attributes

The get attributes () method returns a reference to a structure containing values of all class at-
tributes. You can also query value of an attribute foo using a get attribute foo () method.
For complete list of class attributes defined in cbject.idl, refer to Section 10.9.3, “Class Attrib-
utes”.

12.2.3.3. Class Inheritance

In the metaobject terminology, a component refers to any class inherited, directly or indirectly, by a
given class, including the class itself. For example, if Foo inherits classes Bar and Baz, Bar inherits
Xyzzy and Fyzzy and Baz inherits Xyzzy and Buzzy, these are all components of Foo:

*  Foo itself.

* Bar, inherited directly.

* Baz, inherited directly.

* Xyzzy, inherited via Bar.
e Fyzzy, inherited via Bar.
e Xyzzy, inherited via Baz.
* Bazzy, inherited via Baz.

The method get component infos () returns a reference to a constant vector (in the STL sense)
of ComponentInfo structures, describing all components of the class. For each component, inform-
ation about its inheritance and pointer to the relevant metaobject describing the component is
provided.

Several variants of the upcast () method are offered, each of them converts a variant pointer to
refer to a specified component. The method inherits () checks if a class inherits a class specified
by given C++ type info.

12.2.3.4. Example

The following example prints class-related information about a given object.

Example 12.2. Class introspection

using Massiv::Core;

Pointer< Object > object = ...;

const MetaObject * const metaobject = object->get metaobject();
hope ( metaobject );

/* Get fully-qualified name of the most derived class of the object. */
std::cout << "class of the object is "

<< metaobject->get class name ()

<< std::endl;

/* Get value of a class attribute. */
std::cout << "the class is "
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<< metaobject->get attribute abstract() 2 "" : "not"
<< " abstract"
<< std::endl;

/* Print information about direct and virtual base classes. */

std::cout << "inherits: " << std::endl;

const MetaObject::ComponentInfos & components( metaobject->get component infos() );
MetaObject: :ComponentInfolterator it;

for( it = components.begin(); it != components.end(); ++it )

{

const MetaObject::ComponentInfo & component = *it;
if ( component.is parent() )

{
/* The class directly inherits the component. */
std::cout << " " << component.name << std::endl;

}

else if( component.virtual component )

{
/* The class inherits the component virtually. */
std::cout << " virtual " << component.name << std::endl;

}

/* Other components are ignored here, they are inherited indirectly */
/* via other components this code prints out. Their component.name */
/* 1is not a simple class name, it contains complete "path" */

/* to the component from the most derived class. */

12.2.4. Properties

Each MetaObject keeps information about all properties of the class it describes, both defined in
the class and inherited from base classes.

12.2.4.1. Property Information

The method get property infos () returns a reference to a constant vector of Property-
Info structures. Each structure describes a single property - its name, type (as a string in the IDL
syntax), reference to a component the property is defined in and a structure with values of all property
attributes.

The method find property infos () can be used to retrieve information about properties
matching given wildcard pattern. To obtain information about a property of an object when given a
pointer to the property (see below) and the object, use one of the find property info () meth-
od variants.

12.2.4.2. Getting Property Pointers

Given a pointer to a local object and an identification of a property of the object, the pointer to the
property can be obtained using the get property () method. To retrieve pointers to multiple
properties of a given object matching a given wildcard pattern, use the find properties|()
method.
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12.2.4.3. Performing an Operation on a Set of Properties

To perform an operation specified by the Property: : PropertyOperation functor on all prop-
erties of a given object, call the for each property do () method.

12.2.4.4. Example

The following example prints types, names and values of all properties of a given object.

Example 12.3. Property introspection

using Massiv::Core;
Pointer< Object > object = ...;
const MetaObject * const metaobject = object->get metaobject();

hope ( metaobject );

/* Cast to pointer referencing the most derived class of object. */
/* Many MetaObject methods that access the object require this. */
/* This is a shortcut for metaobject->downcast (); */

VariantPointer complete object( object->get complete object () );

/* Print info about all object's properties. */
const MetaObject::PropertyInfos & properties( metaobject->get property infos() );
MetaObject: :PropertyInfolterator it;
for( it = properties.begin(); it != properties.end(); ++it )
{
const MetaObject::PropertyInfo & info = *it;
/* We could simply print complete description of the property in */
/* the IDL syntax using the operator<< of the info object here. */

/* Print property type in IDL syntax and property name. */
std::cout << info.type << " " << info.name << " = ";

/* Get pointer to the property. */

/* Because complete object points to the most derived class of */

/* the object, the get property from complete object () method can be used. */

/* Otherwise a bit slower but more generic get property() would */

/* have to be used. */

const Property * const property = metaobject->get property from complete object
( complete object, it );

hope ( property );

/* Print value of the property. */

/* Each property defines operator<< which prints its value */

/* in a format easy-to-read for a human being. */

/* If we wanted to print the value in textual serialization format, */
/* we would have to call property's get () method or use a TextWriter */
/* object bound to std::cout and call the text write() serialization */
/* method of the property. */

std::cout << *property << std::endl;

}
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12.2.5. Methods

The MetaObject can be also used to obtain information about methods defined in the class. Note
that no information about inherited methods (methods defined in base classes) is kept in the
MetaObject. However, several methods automatically search metaobjects of base classes to
provide information about all class methods (including the inherited ones).

12.2.5.1. Method Information

The method get method infos () returns a reference to a constant vector of MethodInfo
structures. Each structure describes a single method of the relevant class - its name, description of ar-
guments and a return type, and a structure with values of all method attributes. For each method argu-
ment, information about its name, type (as a string in the IDL syntax) and the calling semantics
(called argument kind in the structure) is provided.

The method find method infos () can be used to retrieve information about methods matching
a given wildcard pattern, including methods defined in ascendant classes. Given a wildcard pattern
and a pointer to a local object, find methods () finds all methods matching the pattern (including
inherited ones), and returns information about the methods, including pointers to metaobjects of com-
ponents the methods are defined in and correctly casted variant pointers to the components.

12.2.5.2. Dynamic Local Calls

The MetaObject allows you to call any IDL-described method of a local object dynamically (i.e.
construct the call at run-time). Use one of the overloaded call method () methods to perform
such a call. The method to be called can be identified in many ways, arguments are specified in their
textual serialization form, separated by whitespace. There is no way to obtain results of a dynamic
local call.

The MetaObject of the class the method is defined in must be used when calling
call method().MetaObject describing a derived class can't be used to perform the call. The
call expects a variant pointer referencing the component of the type the metaobject describes. The
find methods () may provide useful to obtain pointer to the correct metaobject and correctly cas-
ted variant pointer. To simplify things a bit, several call methods () methods are provided. These
methods allow you to easily call all methods matching a given wildcard pattern on a local object, in-
cluding methods defined in base classes.

Note

The dynamic local call API is not very nice and it does not allow you to obtain call results.
You may want to use dynamic RPC even if the callee object is local.

12.2.5.3. Dynamic RPC

Probably the most useful part of the method-related API of the MetaObject class is the dynamic
RPC. 1t allows you to construct and perform a remote call at run-time. In many ways it is similar to
the dynamic local call API described above, but it's easier to use and allows you to examine call res-
ults.
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Use one of the overloaded remote call method () methods to call a method of an object
(remote as well as local) dynamically. Check Section 8.5.5, “Dynamic RPC” for detailed description
of the dynamic RPC.

12.2.5.4. Example

The following example prints types, names and values of all properties of a given object.

Example 12.4. Method introspection

using Massiv::Core;

Pointer< Object > object = ...;

const MetaObject * const metaobject = object->get metaobject();
hope ( metaobject );

VariantPointer complete object( object->get complete object () );

/* Unlike property infos, method infos do not contain descriptions */
/* of methods defined in base classes. We must examine all components */
/* manually. Because components contain information about the most */
/* derived class too, we don't have to treat it as a special case. */
const MetaObject::ComponentInfos & components( metaobject->get component infos() );
MetaObject: :ComponentInfolterator c it;
for( c it = components.begin(); c it != components.end(); ++c it )
{
/* Iterate over all methods of the component. */
const MetaObject * const component metaobject = c it->metaobject;
hope ( component metaobject );
const MetaObject::MethodInfos & methods
( component metaobject->get method infos() );
MetaObject::MethodInfolterator m it;
for( m it = methods.begin(); m it != methods.end(); ++m it )
{
/* Print complete description of the method in IDL syntax. */
/* We could also reimplement this manually by printing all */
/* attribute values, argument declarations and the return type. */
const MetaObject::MethodInfo & info = *m it;
std::cout << "method "
<< info.attributes
<< "o
<< info
<< My
<< std::endl;

12.2.6. Massiv Core and Demo Examples

Power of the object introspection is demonstrated in the implementation of the console. The console
allows you to read and write to all properties of local and remote objects, even to properties of mem-
ber objects, elements of arrays and dictionaries, and properties of objects pointed to by migration-

161



Metaobjects

group pointers (i.e. objects owned by the same node as the object owning the pointer). You can also
call methods of both local and remote objects, create and destroy objects, force migration of objects,
etc. The console provides the bash-like command completion in almost every context regarding an ob-
ject local to the node the console is connected to. The implementation of the command parsing and the
completion is in the src/demo/1ib/shared/console. cpp file, the commands themselves are
implemented in many files, probably the most interesting is src/
demo/lib/shared/node console commands.cpp.

Another nice example of the introspecition usage is the implementation of the operator<< of the
MetaObject, which generates description of the class in IDL syntax. It is more simple and easier to
understand than the console implementation. You can check it out in src/
core/object/metaocbject.cpp.

12.3. ObjectFactory Class

Object factories are special metaobjects that are used to instantiate and initialize managed objects
(including its properties).

They are used by the Core to either instantiate new objects, migrated objects or object replicas. You
can use them to create new objects too. However, using the CreateObject helper class as de-
scribed in Section 4.3.2, “Instantiation and Finalization” is the recommended way to instantiate new
objects.

One special object factory class is generated for each managed class; all of them inherit from
Massiv::Core::0bjectFactory.

The object factories need an information about the inheritance hierarchy of their associated object to
be able to properly initialize it. They also need information about its properties, etc. Therefore, each
object factory keeps a reference to the metaobject associated with the same class as the relevant fact-
ory. That's one of the reasons why metaobjects are essential in the Massiv. An object factory for any
object can be obtained from the ObjectManager.

The following list summarizes public methods contained withing an object factory class:

* create object () creates a new instance of a relevant managed class.

* create object( object id ) creates an instance of the relevant managed class using a
specified object id. This is useful for example when creating objects from archive (the user
code will never create objects from archives itself, but despite that there might exist a reasonable
usage for this method in the user code).

* create replica( object id ) creates replica of the relevant managed class. The given
object id must be the same as of the original objects. The user code typically won't use this
method because there exist more comfortable methods of requesting replication. See Chapter 7,
Replication for more information.

* clone object( object ) makes a duplicate of the given object using the shallow-copy
technique (i.e. there won't be shared properties between the two objects, etc).

* raise exception( object ) throwsan object as an exception by value.
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13.1. Overview

This chapter provides a step by step tutorial, that will show you how to create a new library containing
a simple managed class. The complete sources of this example are stored in src/ex-
ample/server lib. They are also listed in Appendix F, Example Listings.

We will show how to create a new library that will be built using the Massiv build tool mkgen.pl.
Then we will create a simple “hello world”-like example. For educational puposes it will be split into
two managed classes - an interface and an implementation. Both IDL description (see Chapter 9, In-
troduction to IDL) and C++ implementation (see Chapter 4, Managed Objects and other chapters) of
the classes will shown.

You may also want to read Section D.1, “Massiv Build Tools”. It contains a description of the build
process in general, and a reference guide for the tools used to build a library or an application.

The example is split into an interface and an implementation for simple reasons: to show an example
of class inheritance, attribute inheritance, description of virtual methods and other features. However,
it may be useful to provide forward compatibility of the library too. If the implementation of the
Hello class changed drastically, the Massiv Core would not be able to read archives containing an
old version of the class. The Massiv Core does not support any form of class versioning directly. So
instead of incompatible changes to existing classes, you should implement brand new classes that im-
plement the same (and stable) interface (ShinHel1lo, followed by Hel1loNisei and ShinHell-
oNiseiZ in the future, for example). Then you can either write a special code that converts old ob-
ject versions to new ones, or just leave the old objects there if their old behavior is not harmful.

Note

The sources in the src/example/server 1ib directory contain special comments that
are used to automatically generate example copies in this document. You should ignore them.
Also the line numbers in examples in this document are not the same as line numbers in the
sources: the special comments as well as the first part with copyright and license information
are not included in the examples.

Note

This relatively simple tutorial does not demonstrate all features of the Core. The features not
used in this example include complex property data structures, usage of pointers, replication,
migration and replication groups, usage or implementation of special objects such as node ob-
jects and account objects, heavy use of RPC and more. You will have to check the sources of
the Massiv Demo for more complex examples.

13.2. Creating a Library
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For each independent library, a new empty directory should be created. In this example, mkgen.pl
will be used to create platform-specific makefiles that are then used to build the library. You can use
any other build tool, but it's recommended to stick to mkgen.pl, because it supports sources that are
generated at compile-time and can determine dependencies of those files.

The mkgen.pl tools parses simple script files in each directory and creates makefiles for specified
platforms. The script files are called makefile.gen. This section describes all important parts of
the src/example/server lib/makefile.gen file:

Every makefile.gen describing a library with managed classes should begin like this:

(1) # "Creating Managed Class'" example.

(2) # mkgen.pl will generate makefiles for selected platforms from this file.
(3)

(4) # Required for all C++ projects.

(5)

(6) STDCPP

(7)

(8) # Include makefile.gen part generated by genmkgen.pl from idl.list.

(9)

(10) include makefile idl.gen

STDCPP tells mkgen.pl that it should link projects in this directory with the system C++ libraries.
The include makefile idl.gen line includes part of makefile.gen that will be automat-
ically generated by the genmkgen.pl tool as described in the next section.

Global makefile.gen commands follow. These commands apply to all projects built in this direct-
ory:

(12) # Directories to include from.

(13)

(14) includes = . ../../core

(15)

(16) # Precompile the massive core.h header if the compiler supports it.
(17)

(18) precompile = core.h

The includes assingment sets list of directories to search when C++ files include other files. It's
used both by mkgen.pl when it interprests the #include directives, and it's passed to the compiler
by makefiles generated by mkgen.pl. The precompile assignment specifies that the core.h
header should be precompiled, if the target platform supports it.

The last section of makefile.gen describes how to build the library:

(20) # Create a library in this directory, containing objects compiled from
(21) # all C++ sources, including the generated sources. This library will
(22) # reference symbols from the Massiv Core shared library.

(23)

(24) library example 1lib server

(25) sources = *.cpp
(26) sources += @GENERATED SOURCES(@
(27) shlibs = ../../core/massiv

(28) endlibrary
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The library will be called example 1ib server. It will be built from all C++ sources that are in
the directory, plus all generated sources. The global @GENERATED SOURCES@ variable is set in
makefile idl.gen. The library will reference symbols from shared library called massiv built
in the src/core directory.

13.3. Adding New IDLs to a Library

To build a library with managed classes, descriptions of the classes are required. These descriptions
are written in special IDL files as described in sections below. To process the IDL files, mkgen.pl
must know their names, names of files that are generated from the IDL files, and dependencies of
those files. This information is automatically generated by the genmkgen.pl tool, which reads the
idl.1list file and generates makefile idl.gen, which is then included into makefile.gen.

IDL files usually require (import) other IDL files, and some of them may belong to other library.
These dependencies are described by the depends directives in the id1.11ist files:

(5) # We use managed classes from the Core library.
(6)
(7) depends ../../core

In this case, some IDLs from the src/core directory are required. All directories specified by the
depends directive must contain an 1d1.1ist file. Note that the depends directive must be also
used when a C++ source includes a source generated in an IDL file that is part of the id1.1ist in
the specified directory. All required directories must be listed, depends won't be searched recurs-
ively.

List of all IDL files that belong to the library must be specified in the 1d1.1ist using the 1d1 dir-
ective:

(9) # List of files containing descriptions of managed classes.
(10)

(11) idl hello interface.idl

(12) idl hello.idl

This example contains two classes, interface and implementation, each described in its own IDL file.

13.4. Interface Class

HelloInterface is an abstract class with a single method (hel1lo ()) and no implementation.

13.4.1. IDL Description of HelloInterface

Let's begin with the IDL description of the HelloInterface class.

The #import directive is similar to C++ #include with standard #ifdef guards - the specified
file will be included only if has not been included yet. The core.id1 file includes all public IDL
files from the Core:

(1) #import "core.idl"
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All classes in this example are defined in the examp1le namespace:

(3) namespace example {

IDL class description uses syntax similar to C++ class definitions:

(5) class

(6) <

(7) abstract,

(8) kind = SERVER,

(9) root

(10) >

(11) HelloInterface : ::Massiv::Core::0Object

The key differences are:

* Values of special attributes may be set per-class. This is a generic way how to specify additional
information about a class, similar to various compiler-specific C++ ways to specify such informa-
tion (_ declspec, attribute , etc.). In this case the class is abstract (objects of the
class can't be instantiated), garbage collector root (see Section 5.4, “Garbage Collector”) and it's
kind is SERVER - objects of the class can be owned only by server nodes, client nodes don't know
anything about the class. This may seem a bit weird, but remember that client nodes are not al-
lowed to call methods of any objects but their account object.

*  Only the public inheritance is supported. Otherwise the inheritance specification is the same as in
C++ - there may be multiple base classes and virtual inheritance can be used. The
Massiv::Core: :0Object class is root of the hierarchy of managed classes and all managed
classes must include it exactly once (so you should include it virtually if you intend to use mul-
tiple inheritance).

The class body follows. It may contain description of nested classes and enumeration types and de-
scription of class properties and methods:

(12) {

(13) method< virtual > hello
(14) (

(15) in string callee name
(16) ) : string;

(17) }

The HelloInterface class is really simple. It contains single method called hello (). The
method is virtual (this is specified by a method attribute), single string argument is passed to the
method and it returns another string (Pascal-like syntax is used to specify the return type).

13.4.2. C++ Definition of HelloInterface

The C++ defintion of the class begins with standard #includes:
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(4) #ifndef MASSIV CORE H
(5) #include "core.h"

(6) #endif

(7)

(8) #include <string>

The core.h header includes nearly all public headers from the Massiv Core that you can ever need.
We precompile the core . h header on platforms that support that, therefore it should be included as
the first headers everywhere (because most compilers only support precompiling of the first header).
The standard string header is included too.

The C++ definitions must be in the same namespace as their IDL descriptions:

(10) namespace example {

The definition of the class HelloInterface follows:

(i1) JE

(12) * Interface of hello classes.

(13) *

(14) * This is generic interface of all classes that implement the
(15) * hello() method.

(16) *

(17) * As described in the IDL, all Hello classes should be root objects
(18) * of KIND SERVER kind.

(19) 74

(20) class HelloInterface : public ::Massiv::Core::0bject
(21) {

(22) public:

(23)

(24) J=E

(25) * The "say hello" method.

(26) *

(27) * It should generate a hello message for the callee (@a callee name,
(28) * print it anywhere it wants and return it.

(29) 7

(30) virtual std::string hello

(31) (

(32) const std::string & callee name

(33) ) = 0;

(34)

(35) }; // class HelloInterface

As described in the IDL, the HelloInterface's base class is Massiv: :Core: :Object and it
has a single method, hello (). The method is pure virtual. Note that the IDL does not care that the
method is pure (and there is no way to specify that), but it needs to know that objects of the class can't
be instantiated, as specified by the abstract class attribute. The type of the only argument and the re-
turn type of the method follow type mappings described in Section 10.13, “Property and Argument
Types”.

13.5. Implementation Class
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The Hello class implements the HelloInterface interface. It remembers its name, number of
times hello () has been called since the creation of the Hel1lo object and the number of times the
hello () method has been called since the most recent simulation startup.

13.5.1. IDL description of Hello

The relevant part of the IDL looks like this:

(1) #import "hello interface.idl"
(2)

(3) namespace example {

(4)

(5) class

(6) <

(7) simulation startup notify

(8) >

(9) Hello : HellolInterface

(10) {

(11) method register to naming

(12) (

(13) in string name

(14) ) : bool;

(15)

(16) property string name;

(17) property v1lint32 total call count;
(18) property v1int32 current call count;
(19) }

(20)

(21) '} // namespace example

As in C++, descriptions of all base classes must be included, otherwise the inheritance specification is
not valid.

Only one class attribute is assigned a value directly. Setting the simulation_startup notify attribute en-
sures that all He11o objects will be notified when the simulation starts. Because the roof and kind at-
tributes have the inherit semantics, and their value is not directly set, values from the HelloInter-
face class will be inherited; therefore He11o will be garbage collector root server-only objects. The
abstract attribute does not have the inherit semantics, so the Hel1o class is not abstract.

Note

The only reason why the root attribute is set in the HelloInterface class is to make it de-
fault for all derived classes. It has no meaning for the HelloInterface class itself, be-
cause it is declared abstract.

The Hello class introduces a new method, register to naming (). It has three properties:
name, total call countand current call count.

13.5.2. C++ implementation of Hello
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The implementation of the Hello class is pretty straightforward, except for a bit weird re-
gister to naming (), which demonstrates usage of RPC.

13.5.2.1. Properties

The class has three properties:

(75) Massiv::Core: :PString name;

(76) /**< Internal name of the object.

(77) It's used to print the hello message and to register
(78) the object to the global naming service. */

(79)

(80) Massiv::Core::PV1Int32 total call count;

(81) /**< Number of calls to hello() since object creation. */
(82)

(83) Massiv::Core::PV1Int32 current call count;

(84) /**< Number of calls to hello() since node startup. */

Their types correspond to types used in the IDL, as described in Section 10.13, “Property and Argu-
ment Types”.

13.5.2.2. Initialization

The initialize () method is called automatically on each object being created by the CreateO-
bject helper class (described in Section 4.3.2, “Instantiation and Finalization”). It's a replacement of
a standard C++ constructor - because at the time the real constructor is called the object is not initial-
ized yet, you cannot modify its properties in the constructor. Unlike constructor, initialize ()

will never automatically call initialize () of base classes nor of member objects.

Any Hello instance initializes its name in initialize ():

(10) void Hello::initialize

(11) (

(12) const std::string & the name
(13) )

(14) {

(15) name = the name;

(16) }

If you wanted to create a new Hello object called “name”, the code would look like this:

Pointer< Hello > hello
(

Massiv::Core::CreateObject< Hello >( "name" )
)i

13.5.2.3. Monitoring Object Changes

Because we want to count number of times the hello method has been called since the simulation
startup, we must reset the current call count property to zero on each startup. We have set the
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simulation_startup notify class attribute in the IDL description, so the object updated () meth-
od will be called on each startup:

(99) void Hello::object updated

(100) (

(101) UpdateReason reason

(102) )

(103) {

(104) if( reason == SIMULATION STARTUP )
(105) {

(106) current call count = 0;

(107) }

(108) }

Note

You can also monitor other changes of an object. See the Massiv Core Reference Guide for a
complete documentation of the Object: :object updated () method.

13.5.2.4. Hello World

Now we can implement the hello () method:

(18) std::string Hello::hello

(19) (

(20) const std::string & callee name

(21) )

(22) {

(23) std::ostringstream oss;

(24) oss << "Hello to " << callee name << " from " << name << std::endl;
(25) oss << "(called " << total call count << " times, " <<

(26) current call count << " since startup)" << std::endl;

(27) const std::string s = oss.str();

(28)

(29) total call count++;

(30) current call count++;

(31)

(32) Global::log info( Status::FACILITY LIB, Status::PRIORITY LOW, s );
(33) return s;

(34) }

The method will create a message that greets the callee, and prints the name of the He11o object and
values of the two counters mentioned above. Then it will increase the count, log the message and re-
turn it to the callee.

13.5.2.5. Massiv Demo Naming Service

The last method, register to naming (), is a bit more complex and demonstrates usage of the
dynamic RPC. You won't usually have to write a method like this. For example the Massiv Demo
does not use the dynamic RPC at all for example.

This method registers the Hello object to a naming service object of type
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Demo: :Lib: :NamingService. Because it uses the dynamic RPC, the He1l1o class can be com-
piled without any header from the Massiv Demo and the library can be linked to any application, even
if it does not implement a naming service at all. The call will fail in that case, destroy the He11lo ob-
ject and return false.

The register to naming () method is intended to be run from the console of the Massiv
Demo. These commands create a He11o object and register it to the global naming service under the
name “hello”:

/connect Serverl
/createobject example::Hello > $OBJID
/rcall $OBJID example::Hello register to naming "hello"

If the registration succeeds, anyone can query the global naming service object for the pointer to an
object called “hello”, and then use the HelloInterface interface to call the hello () method. If
the registration failed, the Hel1lo object is destroyed. Therefore it's safe to run these commands mul-
tiple times: exactly one object will remain registered to the naming service and other objects will des-
troy themselves.

The method expects a single argument - the name of the object. This is required because if an object is
created from the Massiv Demo console, its initialize () method is not called:

(36) bool Hello::register to naming

(37) (

(38) const std::string & the name
(39) )

(40) {

(41) initialize( the name );

We initialize two local variables. The self object pointer points to the Hello object itself. The
failed is initialized to true and is set later to false on success:

(43) const WeakPointer< Object > self( this );
(44) bool failed = true;

All real work is enclosed within a try block. If an exception is thrown, we assume that the registration
has failed.

(45) try
(46) {

Firstly, we ask the Core for the object id of the naming service object and create a remote pointer to
the service object. The object id is stored in the registry in Settings/
WellKnownObjectIdDatabase/naming service object. The Core defines location of
this config variable, but it does not care about the interface of the naming service object at all - that's
up to the application:

(47) const ObjectId naming id = Global::well known object id database() .
(48) get naming service object();
(49) const Remote< Object > naming( naming id );
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Next, we acquire the metaobject of the Demo: : Lib: :NamingServer class:

(51) const MetaObject * const metaobject = Global::class manager() .
(52) get metaobject( "Demo::Lib::NamingService" );

We have to serialize the arguments for the register object () method to a text stream. The ex-
pected arguments are:

* Name under which the object should be registered.

» Pointer to the object.

* A boolean flag; false means that the registration should fail if a different object is already re-
gistered under the same name.

(54) std::stringstream ss;

(55) {

(56) TextWriter tw( ss );

(57) const Serializer::Description desc;
(58) name.text write( tw, desc );
(59) tw.write space();

(60) self.text write( tw, desc );
(61) tw.write space();

(62) const SBool replace = false;
(63) replace.text write( tw, desc );
(64) }

Then we perform the dynamic RPC call:

(66) TextReader tr( ss );
(67) std::auto ptr< MethodPacket > results = metaobject->
(68) remote call method( naming, "register object", tr );

The register object () method returns false if the registration failed. Because we don't
know the type of the method packet, we must check its contents in their textual form.

(70) if ( results->get argument value( -1 ) == "true" )

(71) {

(72) failed = false;

(73) }

(74) else

(75) {

(76) std::ostringstream oss;

(77) 0ss << "Object " << name << " already registered "
(78) " to the global naming service." << std::endl;
(79) Global::log warning( Status::FACILITY LIB,

(80) Status::PRIORITY HIGH, oss.str() );

(81) }

(82) }
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Log a warning if the registration failed.

(83) catch( std::exception & e )

(84) {

(85) std::ostringstream oss;

(86) 0ss << "Failed to register " << name << " to naming service: "
(87) << e.what () ;

(88) Global::log warning( Status::FACILITY LIB,

(89) Status::PRIORITY HIGH, oss.str() );

(90) }

If the registration failed, we destroy the Hel1o object.

(92) if( failed )

(93) {

(94) Massiv::System::dispose gc root( self );
(95) }

(96) return failed ? false : true;

(97) }

13.6. Linking With the Massiv Demo

The library we have created depends only on the Core and can be linked to any Massiv application.
For example, to link it to the Massiv Demo, modify it following these steps:

1. Modify src/demo/1lib/server/idl.1list, which is the main IDL list of the Massiv
Demo server node application. Add line containing depends
./../../example/server 1lib, which ensures that the example managed classes will

be included in the class list of the Massiv Demo server.

2. Add a line containing libs +=
../../example/server lib/example server lib to the program
demo_server section of file src/demo/server/makefile.gen to link the Massiv
Demo server with the example library.

Then you can either directly instantiate and use objects of the He11o class from other objects, or cre-
ate the Hello object and register it to the naming service (from the code or on the console of the
Massiv Demo), and then use it from anywhere like this:

#include "database/well known object id database.h"
#include "lib/server/naming service.h"
#include "example/server lib/hello interface.h"

const ObjectId naming id = Global::well known object id database() .
get naming service object();
const Remote< Demo::Lib::NamingService > naming( naming id );
Remote< example::HelloInterface > hello( naming—>sync_get_object( "hello" ) ).convert();
const std::string result = hello->sync hello( "callee" );
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14. Special Objects

14.1. Overview

The Massiv Core provides interfaces for two managed objects, which must be implemented by the ap-
plication. The former one, derived from Massiv: :Core: :NodeObjectInterface, is used to
represent each node in  the  simulation. The latter one, derived from
Massiv::Core: :AccountObjectInterface, represents account of a client and is used as
gateway between objects which resides on the client node and the objects in the simulation.

14.2. Node Object

As you already know, the Massiv simulation is distributed over several nodes. Node objects are spe-
cial objects that represents these nodes in the simulation. Each node has its node object which resides
on that node and is not allowed to migrate.

Each stand-alone managed object has its own unique ObjectId which makes the object addressable
in the simulation. The same applies for node objects. The only difference is that their ObjectIds
have a special form that allows the Core to easily distinguish between ordinary object ids and ids rep-
resenting node objects. When a node object needs to be localized the Core contacts the corresponding
node directly.

Once the Massiv Core is properly initialized, it asks the application to create the node object which
will represent the local node in the simulation. Because service nodes don't participate in the simula-
tion at all, the application should implement two types of node objects. One for server nodes and one
for client nodes. Each node object must be derived from
Massiv::Core: :NodeObjectInterface abstract class.

class NodeObjectInterface : public Object
{

public:
virtual NodeId::Type get node type() const = 0;
virtual Pointer< AccountObjectInterface > create account object() = 0;

bi
The get node type () returns type of the node it represents which should be either client or serv-
er node type.

The create account object () method is used by the Core when it needs to create a new ac-
count object. The node object serves here as an account object factory. See Section 14.3, “Account
Object” for more information.

14.2.1. Functionality Of Server Node Objects

The Core does not enforce much requirements on the implementation of server node objects. They are
utilized by the Core for automatic creation of account objects only, but the application can and often
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will extend their functionality beyond the requested requirements. They can serve as an application
level interface to connected servers, for example.

The Core asks the application to create an account object (defined on the application level) for a new
client when it is just being subscribed into the simulation. See Chapter 28, Handling Accounts for
more information.

14.2.2. Functionality Of Client Node Objects

Client node objects are used by servers to communicate with the corresponding clients on the applica-
tion level. Because server and client nodes collaborate by using object migration, the server nodes
must be able to somehow specify that the destinations of the migrations are client nodes. Objects cre-
ated on client nodes are not part of the simulation which is distributed over the server nodes and so the
server nodes can't know which objects exist on the client nodes and therefore can't address those ob-
jects directly. The server nodes always migrate objects to the node objects of the clients. The identific-
ations of the client node objects are always known to all server nodes.

14.3. Account Object

Account objects are special objects which represent accounts of clients subscribed into the simulation.
Each client node has exactly one account object. Client node and account object are tightly coupled
together. The account object represents gateway from the client to the simulation. Before new client
nodes can connect for the first time to the simulation, their account objects must be created.

Because server nodes can't trust any data from client nodes, there are many restriction on communica-
tion between client and server nodes for security purposes (see Section 6.10.2, “Migration From Cli-
ent To Server Nodes”). One of these restrictions is that any client node can interact with the simula-
tion only through its account object. Thus the entire traffic from clients to servers is under control,
which leaves only a small gap how clients can possibly (either willingly or by aaccident) break the
simulation.

Each client has its own account object. Once the client gets connected to the simulation, disconnects
from the simulation, etc., the Core notifies its account object about the event. This allows to hook spe-
cific actions associated with the event. Its up to the account object to do whatever is appropriate.

When a client is connecting to the simulation, the Core initializes network connections among the cli-
ent and other server nodes only. Once the network connections are established, the Core leaves all
other communication on the account object. The account object usually does application specific ac-
tions. For example, if the application was some RPG game, the account object would probably wake
the client's hero up (which is another managed object) and put him into the simulated world, so that he
could fight another horde of monsters.

Client nodes can migrate objects to their account objects only. If the rule is violated the Core discon-
nects the client from the simulation.

Each node object must be derived from Massiv: :Core: :AccountObjectInterface abstract
class.
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class AccountObjectInterface : public Object

{
public:

virtual void client connected

(

const WeakPointer< NodeObjectInterface > & node object
) = 0;

virtual void client disconnected() = 0;

virtual bool check client rpc request

(
const Pointer< RPCObject > & request
) const = 0;

}i

The client connected () method is called by the Core when the client with this account gets
connected to the simulation. The Core calls the method using asynchronous RPC. node object is
a pointer to the node object representing the client's node. Account objects usually remember this
pointer so that they could communicate with the connected client's node.

The client disconnected() is called by the Core whenever the client of the account object
gets disconnected from the simulation. There are many reasons why the client can be disconnected.
For example the client intentionally quit from the simulation or network connection to the client was
lost etc. Account objects usually forget the reference to the client's node object (that was remembered
when client connected () had been called) as no more messages can be delivered to the dis-
connected client.

Note that calls to client connected() and client disconnected() don't need to be
properly paired. The Core ensures that for one client connected () there will be at least one
call to client disconnected(), but there may be more calls to the cli-
ent disconnected () and so the account objects should count on it.

The check client rpc request () is used to verify RPCObjects received from the client.
When delivering a RPC request from the client to an object on a server, the Core checks whether the
RPC callee inherits from AccountObjectInterface) and then calls this method which should
perform additional, application specific, tests. Their purpose is to check that properites of the RPCOb-
ject are valid and that the client is not trying to call a "private" method, etc.

14.3.1. Account Objects in Massiv Demo

In the Massiv Demo, which is a sample application showing how the Massiv should be used in prac-
tice, the account objects serves for many purposes. This section gives you a simple overview how the
account objects works in the Demo and how they can be used in real applications.

*  Player control

In the Demo each client has its own player. The player is an entity which can be moved around the
map. Because the client can't communicate with its player directly, the account object receives in-
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put from the client and forwards it to the player which is able to react to the client's orders.
Replication

The account objects manage replication of the simulated world to the client. Once the client gets
connected to the account object and starts controlling its player entity, the account object starts
replicating an area around the player (this inludes surrounding map and nearby entities like sheep).
Also the inventory with all items the player has is replicated to the client so it can manipulate with
the inventory as well.

Console commands

The account object gives the client ability to execute some commands. The commands are sent by
the client to the account object in a textual form. The commands are called console commands be-
cause the client's application provides a console, which can be used by the client to enter com-
mands.

The console commands sent by the client are executed either directly by the account object or are
forwarded to some node object (the console is "connected to"). The account object is always
linked with some node object. If a received command is not recognized by the account object, it
forwards the command to the node object the account object is linked with.

Some commands are accessible only for administrators. Whether a client is an administrator is de-
termined by its account object. In the Demo there are two types of account objects: normal and
root. The normal account object supports only some of all available commands. The root account
object supports all commands.

The account object supports commands which manipulate the client's player entity. For example
the client can change name or chat color of the player. Other commands supported by the account
object include commands for modifying elevation of the simulated map. These commands can be
executed only by root account objects. Administrators can use these commands to modify map of
the simulated world (although the Demo provides map editor which can be used to manipulate the
map with few mouse clicks so there is no reason why to modify the map via account commands).
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Part lll. Writing Application Over
Massiv

This part guides you through what you need to know to start writting a real application using the
Massiv. This part contains all the marginal issues that are mostly not related to the substantial parts of
the Core, but you, as the Massiv developer, can't do without them (or at least they might be quite use-
ful to you).
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15. Massiv Application Skeleton

15.1. Overview

By now you should already be familiar with the distributed object model used in the Massiv. While
the knowledge of the model is essential and allows you to write the logic of the distributed applica-
tion, it does not give you any information about how to configure, setup, control and run the Core.
This chapter will focus on these topics.

The Core can be controlled by utilizing two main classes: Massiv::System and
Massiv::Core: :Global. These are singleton objects with static methods. While the System
class allows to control the Core in a more abstract way, the Global class enables to get access to
concrete Core subsystems and allows a lower level access. Some of the accessed subsystems are
private to the Core and need not (must not) be used by the application at all. See Chapter 16, Global
Objects And System Interface for more information about the global objects.

Besides the application-to-Core communication, the Core sometimes needs to upcall/callback the ap-
plication. The upcalls are either on the object level (special methods of managed objects are upcalled
from the Core; mainly the migration deliveries and upcalls on special objects, see Chapter 14, Special
Objects) or on the application level (they are global to the simulation). For example when a node con-
nects to the simulation, the Core asks the application to create an object level representation of the loc-
al node (the application's response should be instantiation of an object derived from
Lib: :NodeObjectInterface, see Section 14.2, “Node Object”). Also since the model has been
designed in such way that it is the Core that runs, the Core provides a next tick callback called at the
end of each tick. This allows to perform additional application specific work that does not relate to the
simulation directly, like redrawing the screen, handling keyboard input, etc.

As the application runs the system undergoes state changes. The states are called the system phases. It
is strictly specified what can and what cannot be done in each particular system phase. When the ap-
plication starts, the system is in the uninitialized state. The states can be changed using various calls to
methods of the System class. Note that the Core can not be used if it is not initialized. The following
diagram shows the system states, the transitions among them and the corresponding calls that cause
the state changes:

Figure 15.1. System Phases
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Table 15.1. System Phases
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Phase

Semantics

PHASE UNINITIALIZED

The Core is uninitialized and can not be used. This is the initial
state.

PHASE INITIALIZED

The Core has been initialized. It runs in an anonymous mode.

PHASE DOWNLOADING DATA

The Core is downloading minimal data required to start regular
operation.

PHASE DATA DOWNLOADED

The minimal data was downloaded. The Core is ready to
change its identity and register to the simulation.

PHASE CONNECTING

The node is connecting / registering to the simulation using its
real identity.

PHASE CONNECTED

The node has connected to the simulation.

PHASE RUNNING

The simulation is running.

PHASE DISCONNECTING

The node is disconnecting from the simulation and changes its
identity back to anonymous.

PHASE SHUTTING DOWN

The Core is shutting down and deinitializing itself.

Application's main function usually does the following steps. The steps will be discussed in the sec-

tions below in detail:

» Initializes the Core

* Downloads minimal prerequisite data

» Connects to the simulation
«  Starts the main loop
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¢ Disconnects from the simulation
¢ Shutdowns the Core

15.2. Initializing the Core

When the application starts the Core is uninitialized and must be explicitly initialized by the program-
mer. The initialization process is responsible for proper Core start up which includes instantiation of
the requested global objects, their registration and initialization. To simplify the process and shadow
the programmer off the initialization internals and subsystem dependencies as much as possible the
Core defines a Massiv: :System: : StartUpInfo structure that drives the initialization process.
As a result the Core can be started by a single call to the System class.

The StartUpInfo structure contains information that describe what subsystems will be required by
the application and optional parameters that can affect the operation of that subsystems.

Note

Since the Massiv is an extensible pluggable system and not all applications generally require
all of its subsystems, there is a way to specify what subsystems should be started. The system
then resolves the start up dependencies (what already must be and must not be running when a
specified subsystem is being started) and ensure the proper start up order. Although it is not
currently used, the initialization process allows for subsystems reinitialization or restart at
run-time.

The structure can either be filled by hand (the knowledge of the Massiv Core Reference Guide is
highly recommended) or automatically according to a predefined application profile. Currently the
profiles are classified by node types, there are profiles for anonymous-only nodes, client nodes, server
nodes and data service nodes.

Note

Anonymous-only nodes can be used to implement support utilities only as nearly everything
is not available. For example the Massiv filesystem utilities (see Chapter 25, Auxiliary Utilit-
ies) run under this (modified) profile. An application programmer should be interested in
server, client and service profiles only.

To construct a StartUpInfo structure from a profile, use the following constructor:

typedef void RegisterClasses|();
typedef void CreateNodeObject () ;
typedef void NextTick() ;

StartUpInfo::StartUpInfo
(
Core::Nodeld::Type node type, O
const std::string & conf file, 0O

RegisterClasses * register classes = NULL, 0O
CreateNodeObject * create node object = NULL, U
NextTick * next tick = NULL 0O

)
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0 This determines what profile will be activated. The Core defines the following values:
TYPE SERVER, TYPE CLIENT, TYPE SERVICE and TYPE ANONYMOUS. Their meaning
should be obvious from the text above.

[0  The path to the main configuration file. May contain SHOME shortcut that will be expanded to
current user's home directory.

0  The callback whose purpose is to register all managed classes that the local node supports. Usu-
ally points to Massiv::Generated::register classes() generated by the IDL compiler. The callback
is fired at system initialization. See description of class 1ist command in Section D.2, “The
idL.list File”.

0  When the local client or server node connects to the simulation, an object level representation of
the local node should be created. The callback is responsible for instantiation of an application
defined class that inherits from Lib::NodeObjectInterface and represents the local
node. See Section 14.2, “Node Object”.

[0  Callback invoked by the Core at the end of each tick. Note that the SRPC can not be called from
within the callback.

The constructor takes a parameter that describes what profile should be used, path to the configuration
file and optional callbacks. The callbacks are automatically registered when the structure is used to
drive the system initialization. However they need not be specified in the structure. In that case they
must be registered explicitly before the system initialization.

Note

The callback registrations are global and are not part of the system state. It means that they
must be registered before the system initialization (it can be done automatically through the
StartUpInfo) and are not reset when the system shutdowns. They also can be registered
only once and cannot be unregistered or changed for other callbacks later.

Use System: :register register classes(), Sys-—
tem: :register create node object() and Sys-
tem::register next tick() to register your callbacks. There can be more callbacks
registered to the same type of the event.

To initialize the Core do the following steps:

* Create a StartUplInfo structure.
* Register system callbacks unless they are specified in the structure.
e Pass the structure to System: :initialize ().

15.3. Downloading Prerequisite Data

The Core requires downloading the prerequisite data before connecting to the simulation. This ensures
that both the application and the Core have the prerequisite data available and up fo date. Such a fea-
ture is essential as a manual synchronization of the data is unacceptable. For example server nodes
must know each other and this kind of information is distributed using this mechanism.

Note
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Note that servers may be located miles away from each other, almost certainly not on a LAN.
Thus, manual updates to the node database, the database where the information on server
nodes is stored, would be cumbersome. No need to mention how client nodes can profit from
such feature.

The download mechanism is the same as the one used to download the data dynamically
when the system is running, see Chapter 24, Data Service.

To download the data call System: :download data (). When done the Core is ready to connect
to the simulation.

Note

In order to be able to connect to the data service, the node must know the service node's pub-
lic credentials and the credentials that will be used to authentize self. Since the download pro-
cess runs anonymously, the local node does not introduce itself using its real identity (which
may be unknown at the time of the download) and uses a well-known anonymous credentials
instead. Both the anonymous credentials and service node's public credentials are specified in
configuration files. See Section 27.11, “Node Database”.

15.4. Connecting To the Simulation

Until connected to the simulation, the object model does not and cannot work properly. The connec-
tion serves for two main purposes. It ensures registration to the simulation and restoration of the pre-
vious state. Once connected the node is ready to participate in the simulation and service requests sub-
mitted by other collaborating nodes.

This is what happens when a node connects to the simulation:

The node registers into the simulation using given credentials

Prior connecting to the simulation the node operates in an anonymous mode. In such a mode the
node can download prequisite data but can not register into the simulation (note that an extra con-
nection and extra mechanism is used for downloading the data; it has nothing to do with the con-
nection that is utilized to connect a node to a simulation). In order to register the node identity
must be known. Then, whenever the node initiates a connection to a remote node it will be authen-
tized using the supplied credentials.

A simulation state is restored from the archive (server nodes only)

The simulation state is being automatically archived. When a server node connects to the simula-
tion its state is restored from the latest valid archive. See archive management Chapter 23, Archiv-
ation and Startup.

Warning

Simulation can not be started if there is a server node without an archive. This also applies
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when the servers are started for the first time (startup archives must be created first).

* Node objects are created (server and client nodes only)

Node objects are object-level representation of the registered nodes, that participate in the simula-
tion (see Section 14.2, “Node Object”). To enforce instantiation of a node object representing the
local node the create node object callback will be fired by the system (see above).

Call System: :connect () to connect to the simulation. The method takes a reference to an input
stream (login file) holding the credentials the node will use to authentize itself (node id and its RSA
keys). The standard configuration format is used to store login files (see Section 27.11, “Node Data-
base”):

[ ]

node id : string = "[ Server 1 ]"

"

rsa private key : string = "...

rsa public key : string =

Note

In the Demo client login files are encrypted using client supplied passwords. The encryption
is implemented on the "application level".

15.5. Running the Main Loop

In order to run the simulation or offer services to other nodes the main loop must be started and
entered. The loop can be entered only if the node has correctly connected to the simulation.

Call System: : run () to enter the main loop. The Core will loop in the method until quit from the
loop is requested or a non-application exception is raised. Note that the Core cancels pending opera-
tions (for example SRPC calls) if a quit from the loop was requested. Thus, the simulation state can be
affected by the quit (i.e. the state prior to a call to System: : request quit () can differ from the
state after the quit has been actually performed).

Note

This is not a problem unless the main loop is reentered again and the simulation restarted
without a reconnect.

Warning

Managed exceptions uncaught by the application will not stop the simulation. They are simply
ignored.

15.6. Disconnecting From the Simulation
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Unlike other systems the Core allows to properly disconnect from the simulation. Although such a
feature can be used by server and service nodes too, it is targetted primarily to client nodes as it allows
them to disconnect and reconnect under different identities without the need for restarting the applica-
tions. On the other hand server and service nodes disconnect from the simulation rarely, usually due to
infrequent maintenance purposes only. If a server node disconnects the whole simulation will be
stopped.

Call System: :disconnect () to unregister and disconnect from the simulation. Once done, the
client's Core will be switched back to the anonymous mode, the simulation state forgotten and man-
aged objects deleted. The system state will be the same like the one before calling Sys-
tem: :connect () and in fact it is completely legal to call System: : connect () again.

15.7. Shutting Down the Core

To correctly shutdown the Core and stop all running subsystems call System: : shutdown (). The
system state will be reset and the Core will remain unitialized. In order to use the Core from now on,
it must be initialized again. However the application doesn't need to be restarted.

15.8. More On the System Loops

Most of the work done by the Core is processed within a context of system loops. They enable pro-
cessing of blocking or lengthy operations. The actual work that needs to be done is divided to smaller
parts, each being processed in a single loop iteration. The iterations are called ticks. At the end of each
tick the next tick callback is fired by the system which allows to do an additional work in parallel or
cancel the work being processed by the Core without the need for using worker threads. Since the
Core threading model is single-threaded any worker thread must not interact with the Core nor the
running simulation. For example when connecting to the simulation the Core runs the connect loop,
when running the simulation the main loop is being run, etc.

Note

Time differences between two ticks (and two next tick callbacks) are not fixed. The actual dif-
ference depends on the amount of the work that needs be done within a single tick, recent
CPU and resource loads, etc. Also when there is no work to be done the Core sleeps for a
while so that CPU cycles are not wasted. This is controlled by the tick scheduler. However
there are soft limits on minimum and maximum time differences that the tick scheduler tries
to hold. They can be specified via registry (Settings/System/Scheduler node, see
Section 27.16, “Scheduler”) and the default values are 0.005f (the minimum difference)
and 0. 05f (the maximum difference).

The system loops are entered by appropriate calls to the System class. When the work associated
with a particular loop is done, the loop is left automatically. The successful completion of the work
often results in a system state change. If the work can not be completed an exception will be thrown
and the state will not be changed.

The system loops can also be cancelled by the application by calling System: : request quit ().
If called the current system loop would be cancelled. That would result either in a simple quit from
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the loop (if no state change is associated with the loop) or throwing an exception (if the work was not
completed and a state change was expected).

The following tables list all the system loops, associated state changes and what happens if an error
occurs or quit is requested:

Table 15.2. Download data system loop

Loop

System: :download data()

Purpose

Download prerequisite data

Required state

PHASE INITIALIZED

State if succeeds

PHASE DATA DOWNLOADED

State if fails

PHASE INITIALIZED, exception

Quit effect

PHASE INITIALIZED, ExSystemError exception

Table 15.3. Connect system loop

Loop System: :connect ( const std::istream & config )
Purpose Connect to the simulation
Required state PHASE DATA DOWNLOADED

State if succeeds

PHASE CONNECTED

State if fails

PHASE DATA DOWNLOADED, exception

Quit effect

PHASE DATA DOWNLOADED, ExSystemError exception

Table 15.4. Run system loop

Loop System: :run ()
Purpose Run main loop
Required state PHASE CONNECTED

State if succeeds

PHASE CONNECTED

State if fails

PHASE CONNECTED, non-managed exception

Quit effect

PHASE CONNECTED

Table 15.5. Disconnect system loop

Loop

System: :disconnect ()

Purpose

Disconnect from the simulation

Required state

PHASE CONNECTED
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State if succeeds PHASE DATA DOWNLOADED
State if fails PHASE CONNECTED, exception
Quit effect PHASE CONNECTED, ExSystemError exception

Table 15.6. Generic system loop

Loop System: :generic loop ()
Purpose Loop until cancelled.
Rﬁquﬁaiﬁaw !PHASE_CONNECTEIM&&ﬂPHASE_RUNNING

State if succeeds

State if fails exception

Quit effect

15.9. An Example

This section shows an example of an application skeleton for a client node. We will not show a skelet-
on for a server node here as most of its complexity relates to startup archive creation. For more in-
formation see Section 16.2.1, “Archive Management API”, the Massiv Core Reference Guide or the
relevant part of the source codes of the Demo.

Note

To create a startup archive, initialize the Core as usually and download the prerequisite data.
Do not connect to the simulation as that would restore the latest saved state (if there is any) or
fail otherwise. Create global objects (initial simulation state), save the archive and shutdown
the Core. Often only the first server creates the global objects, the remaining servers create
empty archives instead.

#include "class list.h"

std::string login;
bool quit;

void create node object callback()

{

CreateObject< ClientNode >(); [O
}
void next tick callback() 0O
{
switch ( System: :get phase() ) O

{
case System::PHASE DATA DOWNLOADED:

/* Handle a login dialog. */
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}
}
catch ( Exception & )

{
Handle exceptions here

}

System: : shutdown () ;
}

For information about how a node object should be implemented refer to Section 14.2, “Node
Object”

Note that no cycle is needed in the next tick callback, because it is being called periodically.

This is how the current system phase can be determined. It also gives an information about what
system loop is running.

Entering a generic loop in this state (PHASE DATA DOWNLOADED) ensures that a login dialog
will be displayed and handled. When a user supplies his credentials, the loop is cancelled and the
credentials are passed to System: : connect ().
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16. Global Objects And System
Interface

The Massiv defines a concept of a central management of all global objects (i.e. singleton objects that
are accessible globally from both the Core and the application, often called Core subsystems) repres-
ented by the G1lobal static class. In addition to the G1obal class there is System class that can be
used to control the Core in a more abstract way, without the need for digging into internal Core sub-
systems. A few words on this topic were already written in Section 15.1, “Overview”.

16.1. Global objects

Global class serves as a repository for all global objects defined in the Core. It holds references to
them and and provides methods (one per each object) to access them. Moreover it publishes an inter-
face for logging messages in a simplier way (therefore there is no need for using the logger explicitly).

Warning

Whenever a global object needs be accessed, corresponding reference must be obtained from
the Global class and must not be kept by the caller. This allows to replace global object in-
stances at run-time.

Global objects are created and properly registered to the repository by System: :initialize ()
method. An attempt to access an unregistered object results in a run-time error (assert).

16.1.1. List of Global Objects

The following list summarizes global objects registered to the Global class. Note that not all the
global objects can be utilized by the application directly. In fact some objects are actually private to
the Core and must not be used by the application at all! However the list doesn't contain such
"banned" objects.

Names of the methods, used for accessing particular objects, are quite straightforward. For example,
to get a reference to ThreadManager you have to use the Global::thread manager ()
method. For other objects the naming principle is the same.

You can find more information about all of the objects in the Massiv Core Reference Guide.
Moreover, at some of them there is a link to yet another information source.
e AccountManager

Manages client's account creation (in cooperation with the data service.

See also Section 14.3, “Account Object”.

* ClassManager
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Registers all known managed classes supported by the local node and keeps metaobjects for them.
Each class is assigned an unique class type id, which can be transmitted over the network and is
not platform specific (unlike standard C++ type info).

See also Section 12.2.1, “Obtaining a MetaObject”.

CriticalSectionManager

Manages critical sections creating.

See also Section 17.5, “Worker Threads” or the Massiv Core Reference Guide, module Threads.
DataManager

Manages data objects and allows for dynamic (on-the-fly) data downloads while a player is
already playing the game. It also enables substitutions of unavailable data by a more general one
that has already been downloaded.

See also Chapter 24, Data Service.
Logger

Logger enables making logs at run-time providing a possibility to sort messages according to sev-
eral-criteria filters and send them to various destinations.

See also Chapter 20, Logger Library.

ObjectManager

Object manager is responsible for local object management. It pushes the simulation forward.
PathManager

Enables to get filesystem paths to various Massiv-specific or system directories, such as log, data,
source_data (see Chapter 24, Data Service), archive, work or login directory.

See also the Massiv Core Reference Guide.
Registry

A hierarchical database that stores variables that may come either from configuration files, from
various statistics or may be created for other reasons at run-time.

See also Chapter 19, Registry.
ReplicaManager

Replica manager monitors updates of replicas. An user can register a callback that will be invoked
everytime the specified replicas are updated.

See also the Massiv Core Reference Guide.
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* SemaphoreManager

Manages semaphore instantiations.

See also Section 17.5, “Worker Threads”.
¢ ThreadManager

Manages worker threads.

See also Section 17.5, “Worker Threads”.
* VolumeManager

Manages a virtual file system that provides a single interface for accessing streams on the native
file system as well as a set of mounted Massiv-specific volumes (such as Volume or Compact-
Volume images).

See also Chapter 21, Massiv Filesystem.

16.1.2. Global Logging Interface

The Global logging methods are shortcuts for similar methods provided directly by the Logger.

The most useful methods are 1og debug, log info, log warning and log error, each
having facility, priority and message parameters (except for the 1og error method that
has only the facility and message parameters, because the priority is automatically the highest
possible. See Chapter 20, Logger Library to get better idea what is the difference between the meth-
ods and what the parameters stand for.

The following example shows a typical code that logs some non-trivial message:

int line number = ...;

std::ostringstream s;
s << "syntax error at line \"" << line number << "\"";
Global::log warning( Status::FACILITY REGISTRY, Status::PRIORITY HIGH, s.str() );

16.2. System Interface

System class allows to control the Core in a global way. It provides facilities for the Core initializa-
tion, shutdown, etc. and simplified access to Core subsystems. Some of the functionality can be ac-
cessed by calling appropriate subsystems directly, however this would require knowledge of the Core
internals (as semi-public API would be used) and the use would be cumbersome. On the other side,
the API provided by the System class is completely public.

The System API can be separated into these functional groups:
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System callbacks

Registering system callbacks used to upcall the application from the Core. The callbacks must
either be registered manually before the system initialization or automatically via entries in Star-
tUplnfo structure that is passed to System::initialize(). See also Section 15.2, “Initializing the
Core”.

Method

void register_register classes( void ( *callback )() )

void register create node object( void ( *callback )() )

void register_next_tick( void ( *callback )() )

Managing system phases, system loops

Initializing the Core, downloading prerequisite data, connecting to simulation, running simulation,
disconnecting from simulation, shutting the Core down. See also Figure 15.1, “System Phases”.

Method Semantics

Phase get phase() Determine current system phase.

void initialize( const StartUpInfo & info ) Initialize the system according to StartUpInfo
structure.

void download_data() Download prerequisite data.

void connect( std::istream & my config ) Connect to the simulation using credentials
stored in my_config.

void run() Run the main loop.

void disconnect() Disconnect from the simulation.

void shutdown() Shutdown the system.

bool is_connected() Check whether the system is connected to the
simulation.

void request_quit() Request quit from the current system loop.

Time

Retrieving the current simulation time and the local system time. See also Chapter 18, Simulation
Time.

Method Semantics
const STime & time() Get simulation time.
const SystemTime & system_time() Get local system time.
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Garbage Collector API

Forcing garbage collection, deleting objects explicitly, disposing GC root objects. See also Sec-

tion 5.4, “Garbage Collector”.

Method

Semantics

void force gc()

Force garbage collection.

void collect_object( "managed pointer" )

Force GC to collect object referenced by the
managed pointer.

void dispose_gc root( "managed pointer" )

Tells GC that permanent GC root object
should be demoted to a non-root object.

Well lnown object ids

Determining naming service object id.

Method

Semantics

const
get naming_service object id()

Objectld &

Get naming service object id.

Local node information

Obtaining local node id.

Method

Semantics

const Nodeld & get local node id()

Get node id of the local node.

bool is_server()

Test if the local node is a server.

bool is_client()

Test if the local node is a client.

Archive management

Creating initial (startup) archives, packing and unpacking archives. See also Section 16.2.1,
“Archive Management API”, Chapter 23, Archivation and Startup or the Massiv Core Reference

Guide.

Method

Semantics

void create initial object provider( Ulnt32 id

)

Ask the Core for a new Objectld pool so that
object instances could be created. To be used
when a startup archive is being created.

void create initial archive()

Archive local simulations state. To be called
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Method Semantics

from server nodes that did not connect to the
simulation and where startup simulation state
has just been prepared.

void unpack archive( const std::string & Export archive streams from the volume im-

archive id, const std::string & directory ) age to external file system.

void pack archive( const std::vector< Import archive streams from external director-
std::string > directories, const std::string & ies to a new archive. Create an archive
archive id) volume from one or more unpacked archives.

16.2.1. Archive Management API

The Core provides a mechanism for automatic simulation state externalization and restoration. Server
nodes periodically create distributed snapshots of the whole simulation and store them to locally man-
aged archive files. When servers are started and connect into the simulation (see Section 15.4,
“Connecting To the Simulation”) their states are restored from the archives. This ensures that the sim-
ulation state is durable and survives server down times, crashes, etc. In order to be able to connect into
the simulation as a server node there must be at least one valid archive so that the local server state
can be restored from it. If there is no archive available (for example the server is going to be started
for the first time), a startup archive must be created first. The following paragraph will describe this in
detail.

To create a startup (initial) archive the following steps must be made:

* Initialize the Core and start the server in an anonymous mode.

This is done by calling System::initialize( .... ), optionally followed by Sys-
tem: :download data (). Once initialized the Core operates in an anonymous mode which
means that it can not cooperate with other nodes and the simulation dispatching is disabled.

» Create an object provider so that we will be able to create objects.

Call System::create initial object provider( id ) with the id variable
identifying the provider. The caller must ensure that it is unique in the system. Once done a new
ObjectId pool is created and ready to generate object identifications. See Section 4.4, “Object
Identification”.

*  Prepare the "startup" simulation state.

Typically some sort of "global" objects are created and events scheduled to them. Note that the
server operates in an anonymous mode and the simulation dispatching is disabled. Events sched-
uled at this stage will not be fired until the server is restarted from the startup archive. This way,
the startup archive logic can be implemented as a regular server lib code that will be ran after the
server restart.
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Warning

SRPC can not be used at this stage.

Note

Startup archives must be created on all registered servers. Typically "global" objects are cre-
ated on the "first" server only, empty archives (with no objects) on the remaining servers.

e Archive the created simulation state and shutdown the Core.

Call System: :create initial archive(),then System: :shutdown ().

class World : public Object

{
public:

void create initial world();
i

void create initial archive
(
UInt32 my provider id,
bool create initial objects
)

{

System::initialize( System::StartUpInfo( NodeId::TYPE SERVER, ... ) );
System: :download dataf() ;

System: :create initial object provider ( my provider id );

if ( create initial objects )

{
Remote< World > world = CreateObject< World >();

world->async create initial world(); 0O

}
System: :create initial archive();
System: :shutdown () ;
}

O  The RPC is scheduled only. It will actually be called once the server is restarted from the startup
archive.

Simulation state is externalized to archive files with a proprietary structure. If there is a reason to
modify their content (for example when adding new data members to existing classes) they must be
"unpacked" to an external file system first (System: :unpack archive ()). Modifications can
be  performed then. When done the archive must be  "packed"  again
(System: :pack archive ()). Although unauthorized changes to the archives can break their
consistency, cause application crashes (because of data integrity loss) or make the core refuse to load
it, there are very special reasons why these operations are allowed.

199



17. Threading Model

This chapter describes the threading model used by the Core and the issues a programmer must deal
with when the use of application-level threads is planned.

17.1. The Model Used By the Core

First of all it must be noted that the Core is not a multithreaded library. Although there may be mul-
tiple Core threads running in parallel the API exposed to the application is not thread-safe. This may
look like a serious design flaw but hey, the Massiv is a distributed MMO game middleware intended
to be ran on multiple nodes, not on a single CPU. If the Core had been multithreaded, so would have
been the distributed application. This would result in application complexity growth (locking on the
application level would be essential), performance losses due to the need for synchronization
(distributed locking is often innefective) and the risk of distributed deadlocks. Needless to say that the
transparences the Core currently supports would probably have to be relaxed or could not be imple-
mented reliably at all.

The Core itself allocates worker threads for its own needs. These are used by the file system to imple-
ment asynchronous 10, for example. Besides these threads there may be one or more simulation
threads that are scheduled cooperatively. Only one thread runs in a moment. However the Core is free
to switch among the simulation threads whenever it is entered to perform a blocking operation. From
the point of view of the application, it runs cooperatively and thread switches occur at well-known
places only ("preemption points").

17.2. When the Core Runs

As the application runs and uses the object model, the Core is entered to peform various operations.
Most of the operations are "immediate" operations which means that they are served immediatelly and
other parts of the application (or Core subsystems) can not run in the meantime. However there may
be blocking operations that can not be served immediatelly - the Core switches temporarily to an an-
other simulation thread and lets the application or the Core run within the context of the other thread
until the request can be completed. The blocking operations are the preemption points. Currently, the
only allowed blocking operation is a waiting for a SRPC reply.

When the simulation is running the Core is looping in a system loop (see also Section 16.2, “System
Interface”). It does its own work and when it receives a request to upcall the application (for example
to deliver an object migration), the application is entered. Until the application returns from the upcall
the Core will not run. However the application can issue a blocking operation. The application context
will then be frozen and the Core will be reentered. Until the blocking operation finishes the Core is
looping in a new instance of the system loop (probably also within a context of an another simulation
thread) and serves other requests. The application can be upcalled in the meantime, including the ob-
ject that waits for the completion of the blocking operation. When the blocking operation completes
the application will be resumed from the saved context.

Note
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The Core is always looping within a context of a system loop. If an upcalled client code issues
a blocking operation, the new instance of the system loop is spawned, current application con-
text is saved and the Core will be looping in the new loop instance. When the blocking opera-
tion finishes, the current loop is terminated and the saved context restored.

The context saving and restoring is implemented by switching to a different simulation thread.
The old thread is suspended (thus the context saved) and a new thread is let run in the mean-
time. To restore the saved context a switch to the previously suspended thread occurs. Only
one simulation thread runs in a time. When there is no free thread the system loop is simply
nested (instead of spawning the loop within a context of a new thread, the loop is reentered
within the context of the same thread). However the nesting allows to resume saved contexts
in LIFO order only (the contexts are saved on the program stack, "older" contexts can not be
resumed until "newer" blocking operations complete).

17.3. What Happens When the Core Runs

Although the previous section was a bit too much technical the major information was that the block-
ing operations can cause a preemption and both the Core and the application can run in the meantime.
In particular object states after the blocking operation can be different from the states before the oper-
ation. This sections describes potential pitfalls.

Note

A preemption can occur due to a blocking operation only.

When the Core runs all Core subsystems run too. This means that objects can migrate or be garbage
collected, for example. Object replicas can be deleted or become inconsistent. In order to prevent such
a behavior objects must be strong referenced from the stack. Note that this does not work for object
replicas and one has to be very careful when working with them. The following list summarizes com-
mon errors:

o Weak-referenced objects can no longer be accessible or consistent

Weak-referenced objects accessible and consistent before the blocking operation can no longer be
accessible or can be inconsistent when the operation finishes. Use strong stack pointers to "pin"
local (non-replica) objects, copy replica state before issuing a blocking operation.

class RemoteObject : public Object
{

void rpc method() ;
}i
class MyObject : public Object

{

void f( WeakPointer< MyObject > next );
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PRemote< RemoteObject > ptr;
}i

/*
void MyObject::f( WeakPointer< MyObject > next )
{
next->ptr->sync rpc method() ;
next->ptr = null; /* May fail. */
}
*/

void MyObject::f( WeakPointer< MyObject > next )

{

Pointer< MyObject > n = next;
n->ptr->sync rpc method() ;
n->ptr = null;

}

Object can be reentered while waiting for a blocking operation completion

Currently the Core ensures that SRPC (the only allowed blocking operation) will never cause a
deadlock because the "blocked" objects waiting for the reply are not locked and can be reentered.
Application logic must deal with this.

class Counter : public Object

{
void add( int count );

PInt32 counter;
PRemote< RemoteObject > ptr;
}i

/*
void Counter::add( int count )
{
int ¢ = counter;
ptr->sync rpc method() ;
counter = ¢ + count; /* counter may not be equal to c. */
}
*/

void Counter::add( int count )

{

int ¢ = counter;
counter = ¢ + count;
ptr->sync rpc method() ;
}

*  Object state can change during a blocking operation

Any object (including the blocked one) can be reentered while a blocking operation is in progress.
There may be multiple pending blocking operations in progress. To deal with this problem (if it is
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a problem at all) either "recheck" the state when the blocking operation finishes, perform such op-
erations at the end of the upcall or implement own "locking" mechanisms on the application level
(reject or queue operations submitted in the meantime).

class Operation : public ValueType

{
}i
class Operations : public Object

{
public:

void do_operation( const Operation & operation );
private:
void do_operation internal( const Operation & operation );

PArray< Operation > retry queue;

PBool inside do operation;
PRemote< RemoteObject > ptr;

}i

void Operations::do operation internal( const & operation )

{

/* Blocking operation is performed here. */

void Operations::do operation( const & operation )
{

int 1i;
/* Test for recursion ("lock"). */

if( inside do_operation )
{
retry queue.push back( operation ); /* We do not want to perform the operation now. Queue or
return;

}
/* Do operation. */

inside do operation = true;
do operation internal ( operation );

/* Replay queued operations ("unlock"). */

for( i = 0; 1 < retry queue.size(); i++ )
{

do operation internal( retry queue[ i1 ] ); /* retry queue may have grown in the meantime. */

}

retry queue.clear();
inside_do_operation = false;
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Maybe you should look at the implementation of sector tile reservations in the Demo. In order to
move an entity, the corresponding tiles the entity would be occupying must be reserved. The reser-
vation is done using SRPC. If another move request arrives while the previous move is still in pro-
gress the entity remembers the new position and once the previous move finishes the new move to
the new position is automatically initialized. This differs from the example above in that way that
entities remember the last requests only. There is also OPTIMISTIC LOCK() macro that simpli-
fies the accounting.

Warning

This is the price for using SRPC. The Core does not implement builtin synchronization prim-

itives to be used by the distributed application because of several reasons:

» Iflocks were supported the application could deadlock. In the current model deadlocks are
avoided.

* Iflocks were supported object could be locked for an indefinite time amount.

While waiting for the lock objects would be pinned and could not migrate. The system
would be stalled and archivation could not be initiated if there was a blocked object wait-
ing for a lock.

* Due to the cooperative multithreading model locks can be simulated on the application
level.

However they can not be implemented because there is no way how to perform a "wait"
operation and allow other threads to run in the meantime.

17.4. Configuration

See Section 27.14, “Remote Procedure Call” for information about how to set number of allowed
threads.

17.5. Worker Threads

The Massiv provides platform independent interfaces to access threading and synchronization facilit-
ies. Of course they have been implemented primarily to be used by the Core but the API was also ex-
posed to applications. However since the Core (and thus distributed applications) are single threaded
worker threads spawned by an application must not interact with the Core nor the application at all.
Nonetheless they can be used by Ul and sound subsystems in the Massiv clients if standard polling
mechanism via hooking next tick callbacks (see Section 16.2, “System Interface™) is not sufficient.
The API is described thoroughly in the Massiv Core Programmer's Reference and will not be dis-
cussed here in detail.

204



Threading Model

Warning

The thread and synchronization API can be used locally only. It is not available on the "object
level" and can not be used by the distributed application (i.e. locking local resources from re-
mote nodes).

The API to the thread subsystem is in general similar to what you would find in common operating
systems. It is accessible through Thread object instances and a ThreadManager global object.
While the Thread objects return information on the corresponding threads (its static methods return in-
formation on the current thread), ThreadManager provides access to the whole threading subsystem
and allows to launch new threads. When a new thread is launched corresponding Thread object is cre-
ated.

To synchronize self with different threads synchronization primitives are implemented too. These are
CriticalSection and Semaphore.

Critical sections implement simple guarded sections for mutual exclusion of involved threads (only
one thread can enter the section, other threads are not allowed to step in unless the first thread has
already left the section). To enter the section call enter () method. If an another thread has already
entered the section the calling thread will be blocked until the other thread leaves it (1eave () ).

Semaphore is an another synchronization primitive. A positive integral counter is associated with each
semaphore instance that basically denotes how many threads can enter the guarded section. Initially
the semaphore value is set to the value specified at semaphore construction. Semaphores are accom-
panied by atomic operations that either increment (up () ) or decrement (down () ) the semaphore's
value. If the value can not be decremented (as it is already 0) the calling thread is blocked in down ()
until an another thread increments it. Usually the value is decremented when the guarded section is
entered and incremented when the section is left.

Both CriticalSection and Semaphore instances are created and managed by corresponding
managers (CriticalSectionManager, SemaphoreManager), accessible as global objects.

The following example shows basic usage of the threading and synchronization subsystems. However
there is no need to comment on the use of the interfaces as it is obvious and the exact description
could be found in the Massiv Core Programmer's Reference if needed.

struct Item { ... };

void produce( Item & item );
volid consume( Item & item );

int producer ( VariantPointer arg );
int consumer ( VariantPointer arg );

const int max count = 10;
Semaphore * free count = Global::semaphore manager () .create( max count );
Semaphore * full count = Global::semaphore manager () .create ( 0 );

CriticalSection * section = Global::critical section() .create();

int count = 0;
Item queue[ max count ];
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bool quit;

Reference< Thread > p thread Global::thread manager () .create( producer, &quit ) ;
Reference< Thread > c thread = Global::thread manager () .create( consumer, &quit );

int producer ( VariantPointer arg )

{
bool & quit = *variant cast< bool * >( arg );
int num items produced = 0;

while ( true )

{

free count->down () ;

{

section->enter () ;

if ( quit )
{
section->leave ()
return num items_ produced;

}

produce ( queue[ count++ ] );
num items produced++;

section->leave () ;

}
full count->up();

}

int consumer ( VariantPointer arg )

{
bool & quit = *variant cast< bool * >( arg );
int num items consumed = 0;

while ( true )

{

full count->down () ;

{

section->enter () ;

if( quit )
{
section->leave () ;
return num_items_consumed;

}

consume ( queue[ —--count ] );
num_items consumed++;

section->leave () ;

}

free count->up():;

}

void stop ()
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18. Simulation Time

The simulation time is an abstract time used in important parts of the Massiv Core (event scheduling,
RPC) and it can be used also by a programmer. It has nothing to do with a real time. When new simu-
lation is started, the simulation time (also called "the massiv time") is simply zero. When the simula-
tion is started from an archive, the simulation time is set to the time stored in the archive.

The simulation time is a decimal number that expresses number of seconds elapsed since the moment
when a simulation was started. In the actual implementation, the precision of the simulation time is in
miliseconds. Example: simulation time 130.435 means 130 second and 435 miliseconds since the sim-
ulation start.

To obtain the actual simulation time, call Massiv::System: :time () method. Important fact is
that the simulation time doesn't change during one Massiv tick. Thus calling a method above more
times during one tick will return the same value of simulation time.

The aim is that the simulation time should be "as fast as" the real time. This means when one hour
elapses measured in the real time, one hour (3600.000 seconds) elapses in the simulation time.
However, the hardware clock of computers will run a little differently. The simulation time is com-
puted on the basis of the hardware clock, so a simulation time synchronization is needed among
Massiv servers, and clients' simulation time must be adapted to according to the synchronized simula-
tion time. This solution leads to the fact that the simulation time is not "as fast as" real time, but "as
fast as" the fastest hardware clock among massiv serves.

The class Massiv: :Core: : TimeManager manages the time synchronization.

Sometimes a programmer needs to have an access to the operating system time to be able to measure
time with a high accuracy. Call method Massiv::System::system time () to get an actual
value of the system time - this value is a decimal number with the same meaning as simulation time.
The following example shows a typical use of the system time:

SystemTime old time = Massiv::System::system time();

while( Massiv::System::system time() - old time < 0.020f ) ) // 20ms
{

// do some work within 20ms

}

Note

Unlike the simulation time, the value of the system time changes during one massiv tick.
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19. Registry
19.1. Survey

Registry module is primarily proposed for easy configuration and initialization of all the parts of
Massive server or client. Nevertheless, this functionality has been further enhanced - now the Registry
can serve as a hierarchical database for many more purposes (for example for storing various system
statistics - user can obtain a reference to any variable in the registry and thus make the access or modi-
fication very effective). Registry can be filled by a program code, but it also provides methods for
loading its contents from configuration files .

19.2. Registry Structure

Registry has a hierarchical tree structure. This hierarchy is based on one root node that must be al-
ways present. Any node in the registry is either leaf or contains at least one subnode. Besides sub-
nodes, each node can store variables (variables stored in the Registry are so-called config variables) or
symbolic link definition.

<root_node>

A/ subl
sub?

/subl —— /sub2
- sl:symlink = subl/x

float = 4.3 T ———
<2 symiink = sab2/s1 | [ xistring - "abe

subl

sl:symlink = subl/subl/y

/subl/subl

Structure of the registry (instance diagram - example). Note that each node consists of three sections -
config variables, subnodes references and symbolic links.

19.2.1. Config Variables

As it was already stated, config variables are the special variables that are internaly used by the re-
gistry to store its variables. The advantage they bring is that they can be handled regardless their actu-
al type. Nevertheless, when creating the variable, the type must be specified. Typically, this will be
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done in a configuration file using predefined keywords. The following table shows the possible config
variable types in case you need to create config variable from program code:

Table 19.1. Config Variable Types

Type Relevant ConfigVariable Descendant
integer (32 bits) CVarInteger

large integer (64 bits) CVarLargelnteger

float CVarFloat

string CVarString

boolean CVarBoolean

19.2.2. Symbolic Links

Symbolic links (also aliases) symbolic names for variables stored under another name in the same re-
gistry node or under any name in another node. They contain textual path that specifies the target vari-
able. Note that an alias target may be another alias, etc., until there is a variable in the chain.

Symbolic links are useful for example when there have to be the same variables in more nodes. In-
stead, we can have the real variables stored only once and more aliases set up to refer each of them.

19.3. Usage

Note

For detailed registry usage information, please refer to the Core Reference Guide. Here is

only the most significant stuff.

19.3.1. Filling The Registry With Data

Let's assume we have a configuration file registry.conf containing the following text:

X : int =3

sl : symlink = /subl/x
s2 : symlink = /sub2/sl
[ subl ]

X : float = 4.3

[ sub2 ]

b4 : string = "abc"

Now the configuration contents can be loaded using the Registry::1load config file meth-
od. Moreover, we will use Registry::create variable and Re-
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gistry::create symbolic link (as obvious, creates variable or symbolic link, respectively)
to make the contents of the registry database be the same as in the picture in the Section 19.2,
“Registry Structure”.

Registry registry;
registry.load config file( "registry.conf" );

registry.create variable( "y", "/subl/subl", CVAR TYPE STRING, "abc" );
// This creates new node /subl/subl and inserts a variable called
// y of string type with default value "abc".

registry.create symbolic link( "sl1", "/sub2", "/subl/subl/y", false );
// This creates new symbolic link in the /sub2 node. This link
// refers the y variable inserted in the previous call to
// insert variable. The last parameter (false) indicates that
// the registry won't check whether the symbolic link target really
// exists.

Note

The configuration file can include other configuration files, as described in the Chapter 26,
Registry Configuration File Syntax. There are even more loading routines enabling for ex-
ample loading configuration relatively to some specific registry node, etc.

Note

The registry doesn't allow you to delete variables or symbolic links you have created.

Note

You can  whenever save the registry into file using the Re-
gistry::save config file( <filename> ) method. Again, there are more pos-
sibilities - for example, it is possible to save only a subtree of the registry, etc.

19.3.2. Accessing Variables In The Registry

There are more possibilities how to access variables. The most common one is the method Re-
gistry::access variable( <full name> ). This routine automatically handles symbol-
ic links; should the <full name> refer to a symbolic link (or symbolic links chain), all the links
will be resolved and a reference to the target variable (not to an alias) will be returned. Reference to
ConfigVariable is returned, but this is not limiting at all, because config variables have retyping
ability for all common (C built-in) types (Use for example the read string () method; similar for
other types. These methods perform relevant retyping if needed.)

// Let's assume we have the registry contents the same as in the
// last example.

ConfigVariableFloat & cvar float = registry.access variable( "/subl/x" );

std::cout << "/subl/x = " << cvar float.read float() << std::endl;
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// Prints out "/subl/x = 4.3".
ConfigVariableString & cvar string = registry.access variable( "/s2" );

std::cout << "/s2 = " << cvar_ string.read string() << std::endl;
// Prints out "/s2 = ab" (although /s2 is actualy a link pointing to
// the "sub2/s1", which is another symbolic link which points to
// the /subl/subl/y at last).

19.3.3. Iterating and Searching The Registry

There are several options available for iterating the registry. For mere variable enumerating withing
one node, use Tterator (or ConstIterator, respectively); to enumerate a single node's sub-
nodes, SubnodeIterator (or ConstSubnodeIterator, respectively) is a good choice. If you
want more complicated enumeration involving more nodes or whole subtree, you have to use the
SearchContext and special registry methods.

Iterators

As mentioned above, the Registry offers several types of iterators. The const and "standard" version
of iterator is more or less the same; the difference is only that you cannot modify a config variable us-
ing a constant iterator. The difference between 'within-node' and subnodes iterator is also obvious -
the first can be used for enumerating variables, the second for subnodes. The last item that can be con-
tained withing registry nodes - symbolic links are enumerated together with variables. It means that
the 'within-node' doesn't distinguish between symbolic links and iterators.

As usual when working with iterators, there are several registry methods yielding initial iterators. The
following table shows all of them. And, of course, they contain all the operators you would expect to
be available when working with pointers.

Table 19.2. Basic Registry iterator methods

Method Description

begin( const std::string & path, |Returns an iterator refering the first variable (or
const std::string & pattern ) symbolic link) in the node specified by path. If
pattern is given, the iterator will ignore all
items that don't match this pattern (wildcards).

end () Returns an invalid iterator. This can be used in
comparisons to detect that the iterator doesn't
refer to a valid variable/symbolic link.

begin subnodes( const std::string|Returns an iterator refering the first subnode of
& path, const std::string & pat-|the node specified by path. If pattern is giv-
tern ) en, the iterator will ignore all subnodes that don't
match this pattern (wildcards).

end_subnodes () Returns an invalid iterator. This can be used in
comparisons to detect that the iterator doesn't
refer to a valid subnode.
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Note

Each of the methods in the table returns either constant or 'standard' iterator, depending on the
context.

The following example prints names of all variables and aliases contained in the root node that begin
with the s character; then prints all subnode names:

registry.create variable( "strl", "/", CVAR STRING, "first string" );
// lets insert one more value into the registry first:

Registry::Iterator it ( registry.begin( "/", "s*" ) );
// creates the iterator and binds it with the root node

std::cout << "Variables:" << std::endl;

while( it != registry.end() )
{
std::cout << it—>get_name() << std::endl;
it++;

}

Registry::Subnodelterator sub_it ( registry.begin subnodes( "/", "*" ) );
// creates the subnodes iterator and binds it with the root node

std::cout << "Subnodes:" << std::endl;

while( sub it != registry.end subnodes() )
{
std::cout << *sub it << std::endl;
sub_it++;

}

The preceding example should present an output similar to the following:

Variables:
str

sl

s2
Subnodes:
subl

sub2

SearchContext

For more powerful Registry enumeration, you have to use the SearchContext class directly in-
stead of iterators. SearchContext stores all the information about where exactly the last search
had stopped. That enables the next search to continue from this spot. SearchContext has many
methods to get information about the refered variable or to get the variable itself. The following table
summarizes most significant methods:
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Table 19.3. Registry Enumeration and Search Methods

Method

Description

SearchContext open registry node (
const std::string & path )

Returns a search context bound with the registry
node specified by the path parameter. This con-
text can be used as a parameter of the following
methods.

bool
std::string::value type *

find variable ( const
pat-

tern, SearchContext & context )

Searches for a variable or symbolic link matching
the given pattern. This search is not restricted
to only one node; on the contrary, it traverses the
whole registry tree. If the variable has been found,
returns true and fills the context appropriately.
If next time this context is passed to the meth-
od, the search will continue from where it fin-
ished the last time.

bool
std::string::value type *

search registry node( const
pat-

tern, SearchContext & context )

This method is exactly the same as the previous
one, but this is restricted to just one Registry
node.

The SearchContext state is always specified with one of the following types:

Table 19.4. Registry Enumeration and Search Methods

Type

Description

RRT VOID

The search context doesn't refer to anything.

RRT NOT FOUND

No variable found during the last search using this
context.

RRT VARIABLE

The context refers to a variable.

RRT ALIAS

The context refers to an alias.

In the following example we are looking for all the variables called x in all the nodes contained in the

registry:

SearchContext
registry.find variable( "x", sc );
while( sc.get type ()

{

std::cout << sc.get name() << " = " <<

!= RRT_NOT FOUND )

sc( open_registry node( "/" )

);

std::cout << sc.get variable().read string() << std::endl;

registry.find variable (

}

an’ sc );

Possible output of this example could be:
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x =3
x = 4.3
x = abc

19.3.4. Settings

It is obvious that if access _variable was called each time some configuration variable is called,
the efficiency would suffer a great deal (access _variable have to find the relevant node, then re-
solve symbolic links, etc).

The solution to this matter is the Settings class. It descendants keep references staight to the relev-
ant config variables in the Registry. Thus, when we need to access some registry variable, we use this
reference instead of calling the access variable.

To make use of the Settings class, follow these steps (each of them accompanied with a relevant part
of an example; for the example, let's suppose we want to have configuration variable ping delay
for client class Network):

» Create a new settings class that inherits from the Settings and that is specific for a class you
are writting settings for (let's call it the client class). The new settings class should contain refer-
ences to all the config variables you want to use within the client class. Also, it should declare a
default constructor.

Next, within the client class, create a variable - instance of your new settings class.

class Network

{
// some network stuff here ...
public:
enum EDefaultPingDelay
{
DEFAULT PING DELAY = 100

}i

class NetworkSettings : public Settings
{

public:
NetworkSettings () ;
public:
Integer & ping delay;
}i
public:
NetworkSettings settings;

i
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* Implement the default constructor. It should set each reference withing the class to refer to the rel-
evant config variable properly.

Network: :NetworkSettings: :NetworkSettings ()
Settings ( "Network" ), 0O
ping delay
(

access integer
(
"ping delay", 0O
DEFAULT PING DELAY
)

* Now you can access the variables directly from the client class using for example set-
tings.variable name syntax.

// Inside some of the Network methods implementation...
std::cout << "Ping delay = " << settings.ping delay << std::endl;

0  Variables managed by Settings classes are always stored in subtree of the /Settings
node. The rest of the path is specified in Settings constructor parameter. In this example, all
settings variables will be stored in the /Settings/Network registry node.

[0  This parameter specifies name of registry variable that will be bound to ping delay. In this
case, ping delay will be stored as /Settings/Network/ping delay in the Registry.

Warning

Obviously, the Registry must be initialized prior to initialization of any class using the Set-

tings.

19.3.5. Statistics

Sometimes you need to watch some values and their changes in time, etc. The Statistics class
provides the common interface for doing so.

It works very much the same as the Settings and thus we won't repeat all the information and ex-
amples from the previous section. For more information, please refer to the Massiv Core Reference
Guide. Note that the client class is responsible for updating the statistics values.

Nevertheless, we will mention one useful feature of this class, measuring of time differences. Imagine
you are writing some lengthy routine using the Core and you need to watch how long this routine
runs. The following example shows how to do so (let's assume that SomeClass has the statist-
ics containing the time difference float variable):
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void SomeClass::lengthy method ()
{
Statistics::MeasureSystemTime measure( statistics.time difference );
// Lengthy computation follows.

// System time difference is assigned into the statistics.time difference variable
// at the end of the measure validity scope.

}

Note

All the statistics variabes are stored in the subtree of /Statistics.

19.3.6. Configuration Files Syntax

See Chapter 26, Registry Configuration File Syntax for information about configuration files.
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20. Logger Library
20.1. Survey

Logger Library can be used for runtime logging of various messages (debugging, informative, error,
etc.). It is proposed to be fully configurable - log messages can be filtered based on several criteria
and sended to various destinations such as standard output, file, string and others. These filter rules
can be configured during initialization of the library and can be changed anytime.

20.2. Logger Structure

Each logger instance firstly maintains a list of registered destinations, i.e. all output places for log
messages. Moreover, it provides mapping of destination names to destination instance pointers (des-
tination mapping table). Note that destination name is not a property of destination class.

Next, the logger has a table of rules. A rule is a filter that helps to determine whether each particular
message should be sent to each of a specific set of destinations (each message has attributes such as
priority, type, facility - i.e. particular part of the Core and status, which bears the information carried
in the message). Each rule consists of selector and rule destinations iterators set. Selector works as a
predicate - its parameters are the attributes of a log message. If it, applied to a log message, yields true
the message matches the selector and will be sended to all output destinations pointed to by iterators
in the rule destinations iterators set. In either case, next rule is then compared with the message and so
on, until all rules have been processed.

Rule destinations iterators set consists of iterators pointing into the destination mapping table.

Selector is a set of selector elements - atomic conditions that express constrains on log messages (such
as “priority greater or lower than some value”, etc.). To match any selector, a log message has to
match all of the selector elements contained within.
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Destination Mapping

DestinationName Pointer | cout : LogDestinationCout |
cout -
cerr __’| cerr : LogDestinationCerr
#log.txt - - —

filedestl : LogDestinationFile |
#errors\log_err.txt N

| filedest2 : LogDestinationFile l

RegisteredDestinations

—

[

Selectors* | Destinations
Table of Rules

* Selector = set of selector rules |"

Structure of the logger library (instance diagram - example).

Note

The #path/filename string is being used for specification of a log destination determined
for the output into a file. Note that the path must be relative, because it will be merged with
the path that specifies the logs root directory. This root path can be set in the configuration

files, see Chapter 27, Understanding Configuration Values Related to the Core for more in-
formation.

20.3. Usage

After a logger configuration, its usage is quite straightforward - generally just one method is used to
process log messages (log message must be created first as an instance of LogMessage class):

LogMessage message
(
STATUS DEBUG
(
Status::FACILITY TEST, Status::PRIORITY LOWEST
)

nmsgn

)

logger.log( message );

Note
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For your convenience you can use the more comfortable logging interface provided by the
Global class, see Section 16.1.2, “Global Logging Interface” for more information.

Configuration of the logger is more complicated - the following is the general example of how to con-
figure logger directly; for indirect configuration using registry configuration files see Logger config-
uration using the Registry.

First of all selectors must be created and selector elements created and inserted into appropriate select-
ors. Following lines create one selector consisting of two selector elements. The first selector element
matches log messages of types warning and error and with priority greater or equal to
Status::PRIORITY LOW and from facility FACILITY TEST. The second one matches mes-
sages of any type from any facility having its priority less or equal to Status: : PRIORITY HIGH.
The whole selector matches all messages satisfying all of the previous constraints.

Logger: :SelectorElement seleml
(
Logger::SelectorElement: :TYPE GEQ |

Logger: :SelectorElement: :PRIORITY GEQ,

Status::FACILITY TEST,
Status::TYPE WARNING,
Status::PRIORITY LOW
);

Logger: :SelectorElement selem2
(
Logger::SelectorElement: :PRIORITY LEQ,
Status::FACILITY ANY,
Status::TYPE ANY,
Status: :PRIORITY HIGH
);

Logger: :Selector selector;
selector.insert ( seleml );
selector.insert ( selem2 );

Initialization of logger itself follows: insertion of rules first.

Logger & logger = ( Global::logger () );
logger.clear rules();

Logger: :Rulelterator ri;
ri = logger.insert rule( selector );
assert ( ri != logger.end rule() );

Destination registration:

if( !logger.register destination( logdest ) )
{
delete logdest;
throw ExLoggerError ( "Cannot register 'logdest'." );

}

After the rules has been inserted into logger and destinations have been registered, each rule must be
associated with its destinations (i.e. destinations for all messages matching each specific rule):
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logger.insert destination( ri, "test" );
// lets suppose "test" is name of the logdest destination, 1i.e.
// logdest's get name () method returns "test" string.

Logger supposed it will be uninitialized:

logdest->reset () ;

logger.clear rules();

logger.unregister destination( logdest );
logdest = NULL;

20.4. Logger Configuration Using the Re-
gistry

Note

See Configuration Files Syntax for general information about how to write configuration files;
see Registry for more information about Registry.

Logger instance can be initialized from registry using method initialize from registry()
supposing that the registry itself has already been initialized and has read its configuration files.

20.4.1. Registry Nodes Involved Into Logger Con-
figuration

The main node is Logger. If this node is not contained in the registry, the default settings are applied
- i.e. all log messages are sent to cout. Otherwise the default settings are not considered.

If the registry contains the Logger node, it must contain also all of the following:
* Logger/Destinations node: describes all destinations that should be registered with the
Logger.

* Logger/SelectorElements node: describes all selector elements that may be included into
selectors.

* Logger/Selectors node: describes all selectors, i.e. their elements and destinations.

20.4.2. Logger Destinations Declaration

Logger destinations declaration is contained in the Logger/Destinations node. It is a set of
strings, one for each destination. All of the strings may have arbitrary name, important is the strings'
contents. See the following table for the full description:
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Table 20.1. Logger Destinations

String contents Meaning

cout Standard output

cerr Error output

#file File, filename consists of path and filename.
Note

The cout destination is registered by default. However if you load the logger configuration
from the registry, cout won't be registered unless it is contained in the configuration.

Example 20.1. Logger destinations declaration example

[ Logger/Destinations ]

destl : string = "cout"
dest2 : string = "#net.log"
dest3 : string = "#thrash/garbage.log"

The previous lines register standard output, net.log and thrash/garbage. log files as logger
destinations.

Note

For the file log destination there should not be specified an absolute path, because the string
stands for only a name of a log. There might be added some other path (path to the log direct-
ory, for example) before it sometimes. This would make the path invalid if the string in the
configuration was an absolute path.

20.4.3. Selector Elements Declaration

Selector elements declaration takes place in the Logger/SelectorElements node. This node
should contain a set of subnodes - one for each selector element - of arbitrary names. Each of the sub-
nodes consists of up to four variable declarations: priority, type, facility and negate. Pri-
ority, type and facility are each log message's atributes - according to them the message is being
filtered.

Priority and type are strings containing a comparison sign and a keyword. Comparison sign of one of
<, >, <=, >= and =; possible keywords are described in the following table (see also src/
core/status/status.h):
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Table 20.2. Logger Selector Attributes

Settings Possible keywords
priority lowest, low, normal, high, highest
type any, debug, info, warning, error

facility contains just a name of some facility. At present, posible facilities are: any, generic,
system, io, logger, network, registry, object management, ob-
ject localization, archivation, crypto, file system, lru cache, synchron-
ization, thread, data management, time management, test, node database,
archive database, node management and replication. See src/
core/status/status.h for complete list.

negate is a boolean variable. If true, a log message matches the selector element if it doesn't match
any of priority, type or facility constraints.

Example 20.2. Declaring two selector elements of names Elementl and
Element2

[ Logger/SelectorElements/Elementl ]

priority : string = ">= low"
type : string = "<= warning"
facility : string = "any"

negate : boolean = false

[ Logger/SelectorElements/Element2 ]

priority : string = ">= lowest"
type : string = "= info"
facility : string = "network"
negate : boolean = false

20.4.4. Selectors Declaration

Each selector consists of a set of selector elements, each specifying an atomic condition, and set of
destinations. All selector definitions are contained in the Logger/Selectors node; this node con-
tains none or more subnodes (each for one selector) of arbitrary names. Each of these subnodes con-
tains two more subnodes Elements and Destinations.

Elements subnode describes which selector elements should be included into this selector. It is a set
of strings of arbitrary names - each string should contain name of one element declared under the
Logger/SelectorElements node.

Destinations subnode determines all destinations the messages matching this selector will be
sent to. Its items are either strings containing name of destination declared in the Logger/
Destinations node or symbolic links refering to these variables.

223



Logger

Example 20.3. Selectors declaration

Note

Let's suppose all declarations from previous examples are valid.

[ Logger/Selectors/Selectorl/Elements ]
elementl : string = "Elementl"

[ Logger/Selectors/Selectorl/Destinations ]
destinationl : symlink = Logger/Destinations/dest3

destination2 : string = "cout"

[ Logger/Selectors/Selector2/Elements ]
elementl : string = "Element2"

[ Logger/Selectors/Selector2/Destinations ]
destinationl : string = "#net.log"

In this example there are two selectors declared - Selectorl and Selector?2. The first of in-
cludes selector element declared as Element1, the second includes Element?2. The first selector
directs all matching messages to #thrash/garbage.log (dest3) and to cout, the second one
sends messages to #net.log.

20.4.5. Example

Example 20.4. Configuration using the registry - complex example

# Note that this file should be a part of the main massiv

HH=

configuration file or it should be included (directly or
# indirectly) using the !include directive.

[ Logger ]

#tHE##EA AR HEA AR FEA R A FHAF R A F A A RA AR EAA RS
# Logger destinations declaration section

#HARHAAFFF

[ Logger/Destinations |

destl : string = "cout"

dest2 : string = "#net.log"

dest3 : string = "#thrash/garbage.log"

(23 a T I IS TR BT R E LSRR LR LR E
# Selector elements declaration section
#HE#EHAHAA
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### 'Elementl' declaration ###
[ Logger/SelectorElements/Elementl ]

priority : string = ">= low"
type : string = "<= warning"
facility : string = "any"

negate : boolean = false

### 'Element2' declaration ###
[ Logger/SelectorElements/Element2 ]

priority : string = ">= lowest"
type : string = "= info"
facility : string = "network"
negate : boolean = false

#H#AFRAAFAAFRARFAAFRAARAAFHAFRAAF A AR R A AR FHA
# Logger selectors declaration section
#HAHAAAFAS

### 'Selectorl' declaration ###
[ Logger/Selectors/Selectorl/Elements ]
elementl : string = "Elementl"

[ Logger/Selectors/Selectorl/Destinations ]
destinationl : symlink = Logger/Destinations/dest3
destination?2 : string = "cout"

### 'Selector2' declaration ###
[ Logger/Selectors/Selector2/Elements ]
elementl : string = "Element2"

[ Logger/Selectors/Selector2/Destinations ]
destinationl : string = "#net.log"
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21. Massiv Filesystem

The Massiv filesystem is a concept that enables to store many streams of data in a single file
(managed by a host filesystem such as Fat32, NTFS, etc.). Each such file is called an instance of the
Massiv filesystem or simply a volume. The streams inside a volume are managed the similar way as in
some of the "real" (native) filesystems, but using the Massiv filesystem is likely to be more efficient
than storing each stream of data in a separate file on the host filesystem.

There are two types of volumes - either a standard Massiv::Core::Volume or
Massiv::Core: :CompactVolume. The later stores the streams in a compressed form (using the
same method as gzip).

In the Massiv the volumes are used for several purposes. For example, the compressed volumes are
utilized for archivation (more described in Chapter 23, Archivation and Startup), whereas uncom-
pressed ones are useful as swap files (to store managed objects that has been swapped out of RAM be-
cause they had been unused too long).

The Massiv provides an unique interface that enables to access streams on all volumes and the host
filesystem (or any other "real" one) the same way. Moreover this interface is platform independend. 1t
is implemented by Massiv: :Core: :VolumeManager. Only one instance of the volume man-
ager is permitted. Nevertheless, you never need to access the instance explicitly, because almost all its
methods are declared static. Volume manager works with special streams that are derived from the
standard iostreams ones and that are defined inside the Massiv::Core::VolumeManager
streams. See below for a self-explanatory example.

Note

You can use the Massiv::Core: :FileSystem interface not only to open streams, but
also to work with the directory structure (create or remove directories, etc.) See the Massiv
Core Reference Guide for the complete information.

Before the volume manager can take any volume into account, it must have been mounted. The man-
ager virtually creates a single filesystem that encapsulates the native filesystem and all mounted
volumes (all of them are mounted always to the root of the volume manager filesystem). When re-
quested to open some stream, the manager searches the native filesystem first and then all volumes in
the same order as they have been mounted. To force it to ignore all filesystems/volumes except for
one, prefix the stream name with either volume name:// (for the mounted volumes, replace
volume name with the actual name of the relevant volume) or native:// for the native filesys-
tem.

Note

Each volume has an associated name that is specified when the volume is created. This name
can be different from the volume image file and represents the volume in the volume man-
ager's virtual filesystem.

The following example shows the basic usage of the volume manager, streams and the FileSystem
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interface. You should prefer this interace from the standard C++ API, because it is more general and
platform independent.

Example 21.1. Volume manager usage

VolumeManager: :mount ( "volumel_image" )2 O
VolumeManager: :mount ( "volume2 image" );
VolumeManager: :format ( "volume3 image", "volume3" ); [
VolumeManager: : IFStream ifs( "stream_path/stream_name" )2 O
..work with the stream the same way as with a iostream...
ifs.close(); O
VolumeManager: :OFStream ofs( "native://stream path/stream name" ); [

..work with the stream the same way as with a iostreams...

ofs.close();

VolumeManager: : OFStream ofs( "volumel://stream path/stream name" ); O

..work with the stream the same way as with a iostreams...

ofs.close();

FileSystem & fs = VolumeManager::file system(); 0

fs.create directory( "the/directory/path" ); 0O

VolumeManager: :dismount ( "volumel image" ); O

VolumeManager: :dismount ( "volume2 image" );

These lines mount two volumes, the first stored in volumel image and the second in
volume2 image files on the host filesystem. Let's suppose that the first volume has name
volumel and the second volume?2.

This way you can create a new empty volume that would be stored in the volume3 image
file.

This line shows how a stream can be opened. A general stream name is given here. Thus, more
volumes can be potentially searched for it. The order is: the native filesystem first, volumel
second, volume? third and finally volume3.

Here the same stream is opened for writing. It will be searched for only on the native filesystem;
all volumes will be ignored.

This will open the stream on volumel and ignore all other volumes and the native filesystem.
Note that the volume name must be given, not the image file name.

fs will contain a reference to the volume manager's filesystem interface that provides access to
all mounted volumes as well as to the native filesystem.

This is only a small example of what you can do using the FileSystem interface. Note that
even the create directory () is more powerful than most of OS API equivalents, because
it enables to create more nested directories using a single call.

This specific call creates a new directory on the volume3 volume.
This dismounts the volume from volume manager. It won't be taken into account any more.
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You can also handle (pack, unpack, list) volumes manually using some extern utilities. See
Chapter 25, Auxiliary Utilities for complete information.
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22. Command Line Parser

22.1. Survey

Command Line Parser is a separate library providing a simple Unix-style command line parsing.

Command line is what you write for launching an application, i.e. name of the desired executable file
followed by directives that specify how the application should behave.

This library supports the following form of directives:

application name <switches section> <other parameters section>

Switches section consists of one or more switch sequences, where switch sequence means either a
simple switch - a dash followed by a letter (-m, for example), or a parameter switch - simple switch
followed by parameter, not neccessarily separated with blanks (i.e. -f <filename> or -
ffilename, which has the same meaning). Moreover, switches may be grouped together. For in-
stance, -g -h -i switches section has the same semantics as —ghi, where both g and h must be a
non-parameter switches. i can be a non-parameter or parameter switch, in which case it should be fol-
lowed by its parameter (-ghi parameter or even ~-ghiparameter).

Parameter section can be terminated in two ways:

* by a sequence not beginning of - that isn't a parameter of some parameter switch.

* by the —- sequence.

Other parameters section is a list of arbitrary words that are passed 'as they are' to the program (with
one exception - if there is some string enclosed into quotes, the quotes are removed before passing it
to the program).

22.2. Usage

To use the command line parser utility, you have only to create an instance of the CmdLineParser
class and initialize it with the argv and argc parameters passed to the main () function, plus two
strings containing all parameter and non-parameter switches, respectively. Then call the

get next ( std::string & parameter )

routine in a loop until the parsing is finished. get next returns:

* aletter specifying a non-parameter switch (parameter is will be empty).

* aletter specifying a parameter switch (parameter will obtain a parameter string).
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* a - character - this indicates that the switch section has already been terminated; parameter ob-

tains an argument string.

* a \O0 character (ASCII 0) - stands for the end of parsing; no more switches or parameters avail-
able.

Example 22.1. Cmdline parser usage example

int main( char ** argv, int argc )
{
try
{
CmdLineParser cmd line( argc, argv, "vs", "f" );
/* This initialization line sets up a command line parser
* instance and makes it consider 'v' and 's' a
* non-parameter switches, whereas 'f' a parameter one.

*/

bool parse = true;
while ( parse )
{
std::string parameter;
const char option = cmd line.get next( parameter );
switch( option )
{

case =
/* Switches section has already been terminated.*/

process parameters( parameter );

break;
case '"\0':
/* End of parsing. */
parse = false;
break;
case 'v':

process switch v();
break;

case 's':
process switch s();
break;

case 'f':
/* 'f' is a parameter switch - therefore
* 'parameter' variable must now contain the
* parameter string.
*/

process switch f( parameter );
break;

default:
assert( 0 );
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Part IV. Administration

The Massiv provides some tools you can use for the system administration, such as configuration or
cryptography keys generators, special archives viewers, and others. This part provides a survey of
such tools, together with a necessary piece of theory you need to know to understand what these tools
are really for.
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23. Archivation and Startup
23.1. Archivation

The archivation is very important in distributed systems. The Massiv uses a global archivation where
the global means that it runs simultaneously on all of the servers and the whole simulation state is be-
ing archived - every server saves its own part of the simulation (which it is currently managing). The
archivation process starts periodically on every involved server and runs transparently in the back-
ground and thus does not block server functions at all. Once the achivation is started, all servers are
notified about this action and the global archivation starts. Archives are stored in the server's
./archives/regular/ directory as massiv XXXXXXXXXX.archive files where
XXXXXXXXX represents the number of the created archive ( €.g.0000000001 ). Because of high
amount of the created files, old files are consecutively deleted and only recent ones are kept. After the
archive creation, an acknowledgement file massiv XXXXXXXXXX.archive. ack  is cre-
ated, which serves for the archive validation. Of course, the archives have its own validation system,
but this created file means that no error occured during the archivation and data were successfully
saved. Created archive files are descendants of the Massiv volumes and can be unpacked or listed by
auxiliary utilities (see Chapter 25, Auxiliary Utilities). Note that because of archive's extended proper-
ties, it cannot be repacked as a new valid archive by the utilities and the System API (or the Demo
server executable) must be used instead (see Section 16.2.1, “Archive Management API”).

For description of archivation configuration in brief implementation notes, please refer to Sec-
tion 27.2, “Archive Database” and Section 27.3, “Archive Manager”.

23.2. Simulation Startup

Each started server enumerates all saved archive files that are present in the
./archives/regular/ directory and checks whether they are valid. Then all servers cooperate
and negotiate the number of the latest global valid archive they would use for the simulation startup.

A special case of the server startup is the first time simulation launching which is realized from pre-
generated server archives. One server must have initial archive containing a "special object", which
can create the whole simulation, other servers have empty archives just for their own startup. As soon
as the simulation is created from the "special object", the load-balancing feature ditributes objects to
all servers where they can be then archived by the local transparent archivation.

For further instruction about the configuration generation please refer to Chapter 25, Auxiliary Utilit-
ies.

23.3. Adding or Removing Servers

There may be reasons why an existing server should be removed from the simulation or a new one ad-
ded while preserving the simulation state. Since all servers must have valid archives or the simulation
can not start the process of adding or removing servers is tighly coupled with archive management:
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Adding a new server

Using the supplied command line utilities generate the configuration for the new server and re-
gister it into the node database (requires editing of the
source data/config nodes public public node data set).

Using the Demo server executable create an empty startup archive for this server.
Removing a server

Unregister the server from the node database (requires editing of the the
source data/config nodes public public node data set).

Find out the latest valid archivation id (we will call it 1 d) and locate a different server that will re-
main registered in the simulation. Replace its archive number id by a merge of this archive and
the archive number id on the server that is just being unregistered. To merge the two archives,
use the Demo server executable to unpack them, each one to a different directory, and pack them
together to a single new archive.
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24. Data Service

To enable even users with a slow internet connection to start playing as soon as possible, it is import-
ant to avoid making them download many megabytes of data needed for the presentation before they
can connect. The first way is to distribute all the data on a CD. This has many drawbacks, in particular
problems with the distribution to the potentially "random" locations in the world. The second way is
to enable them downloading the data dynamically, when they need them, during playing the game.

The class Massiv: :Core: : DataManager implements the functionality of the data management.
It provides methods which can be used to work with data such as textures, sound data, maps, texts and
other textual and binary data.

A global instance of the class Massiv: :Core: :DataManager is created on each Massiv node
and plays a different role according to the hosting node type (Master data service, Server or Client).

*  On the Massiv server or client node, the data manager downloads data from the master data ser-
vice node, and offers them to an user.

* On the Massiv data service node, the data manager's task is to upload the data to other Massiv
nodes. When a client or server connects to a simulation, it contacts the relevant master data service
to synchronize the data with it.

On a specific node the data is stored in a subtree of one separate directory in files. This directory is
called the data directory. The files can be located in subdirectories of the data directory and are called
the data files. A data file name from the point of view of the data manager is not just a plain file name,
but it is a relative path to the data directory.

Besides the data files, there are also two files in the data directory that describe the whole data system
(in a textual way). These files are called .description and . filelist. On the master data ser-
vice node, there is even another directory called the source data directory and a textual description of
the source data in the file .update description. The structure of this file will be described be-
low. It is the only file that must be changed manually by the administrator; the other two mentioned
files are updated automatically.

An administrator of the Massiv data server modifies the data in the source data directory (for example
adds new data files, modifies the existing ones, modifies the source data description file, etc.). After
that he should update the changes from the source data directory into the data directory. This update is
processed during the master data service startup, or when the method DataMan-
ager::request master data update () is called. After data update information about up-
date is propagated to servers and clients they will update their local data.

The administrator needs to edit file . update description which describes the source data sys-
tem. See section Structure of .update description file.

Each data file is versioned (i.e. contains information about its version) as well as the whole data sys-
tem. This is essential for the data manager to be able to find out if some data has changed (new texture
added, old texture modified, etc.). Clients and servers compare their local version information with the
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master data service to decide if it is necessary to download some new data.

24.1.

.update description structure

To be able to create and modify .update description file it is necessary to know the structure
of this file. Let's look at an example to understand.

#H#
# Images

node image default

type necessary client

file "image/default.png"

node image font console

type necessary client
file "image/font.png"

endnode

node image background

type client
file "image/background.jpg"

endnode

endnode # image default

node model default
type necessary client
file "model/default.md2"

node monster

type client
file "model/monster.md2"

node player

type client
file "model/player.md2"

endnode

endnode # monster
endnode # model default

#H#

# Data objects

dataobject
dataobject
dataobject
dataobject
dataobject
dataobject
dataobject

image/default = /image default

image/font console = /image default/image font console
image/background = /image default/image background
model/default = /model default

model/monster = /model default/monster
model/monster dark = /model default/monster
model/player = /model default/monster/player

The structure consists of two parts - data nodes and data objects. The data nodes create a tree. Each
data node is associated with exactly one data file.

A data node ancestor in the tree can substitute its descendant data nodes. This mechanism enables to
use more general data temporarily until the specific data is actually downloaded. For example, in the
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tree above, image/default.png would be used instead of image/background. jpg until the
later would be downloaded by the relevant client.

Data objects are mapped to data nodes, usually leaf data nodes (FIXME BUG TO SE MI TEDA
NEZDA!). If a programmer wants to obtain a data object, the data manager algorithm searches for the
first usable data node on a path from the corresponding data node to the root data node. It is guaran-

teed that the root data node is always present in the data system of each client (i.e. it never needs to be
downloaded).

The consequence of the described mechanism is that the player can see (for example) "walking black-
and-white boxes" instead of the real models of figures until the they are actually are available. This is
a big advantage, because any player can start playing very quickly. However, if he doesn't like the de-
fault models and images, he can still wait until all the data is available.

Let's describe structure of a file. Comments are parts of lines starting with the # character and ending
at the end of the line. A data node declaration begins with the node keyword and ends with keyword
endnode.

Between these keywords there are located properties of the relevant data node as well as other
(submerged) nodes. Submerging of the data nodes declarations is the way how to create the tree.

Each data node has several mandatory properties:

* name stands for a data node name; it must be located on the same line after the node keyword.

» file specifies a name of the data file associated with the relevant data node; only one data file is al-
lowed in one specifiec data node.

There exist also some optional properties:

» type specifies the data node type; the possible values are necessary client, neces-
sary server, client, server; there can be several types for one data node; the purpose of
this property is to declare which data is client or server specific and which is necessary for the
simulation.

* obsolete declares the relevant data node as obsolete; it cannot be used in the simulation any more.

The second part of the .update description file consists of the data objects. A data object
definition begins with the dataobject keyword followed by the data object name (the / character is per-
mitted), = and the data node path to the existing data node. Don't forget to use space between all of the
parts.

Note

Two data objects can be mapped to the same data nodes. For example models of two charac-
ters are identical, but textures will differ.

Note
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Data files are unique for data nodes. Different data nodes must own different data files.

24.2. Data Objects

A data object is a C++ object, implemented by the class Massiv: :Core: :DataObject, which
provides an interface needed to handle the data. A programmer needs to know a name of the data ob-
Jject he wants to use. To obtain the data object, call DataManager::get data object () meth-
od. The DataObject object has an attribute data, which is inherited from the class
std::ifstream and can be use to read the relevant data from a stream using the stadard C++ inter-

face.

The following example shows how to get texture data (represented by an image file).

DataManager & data manager Global::data manager () ;
DataObject * warrior texture = data manager.get data object( "warrior texture" );
warrior texture->open();

// read data from attribute warrior texture->data

// using the data member

warrior_texture—>close();

The point is that the programmer doesn't need to know what data will be contained in the data object.
All he must know is just the data object name.

24.3. Download/upload speed

Data download speed (server and client nodes case) and data upload speed (data service case) is con-
figurable, see section configuration of the data manager
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25. Auxiliary Utilities

25.1. Short info about auxiliary utilities

provided with the Massiv

Several simple administration utilities are provided with the Massiv. Source of the utilities are located
inthe src/utility directory. The following table summarizes all the utilities:

Table 25.1. Utilities

Name Function

gencfg Generate configuration for a set of nodes
generate _key pair Generate RSA key pair

pwd_encrypt Encrypt a file

pwd_decrypt Decrypt a file

pack volume

Pack files into a volume

unpack volume

Unpack files from a volume

list_volume

List contents of a volume

The following table lists names of the utility binaries when installed on Unixish systems. Different
names are used to prevent name clashes. If you want to install the utilities into directory specified in
the PATH environment variable on Win32 systems, you should probably rename them in similar way.

Table 25.2. Un*x utility binary names

Utility Name

Name of the Binary

gencfg

massiv-gencfg

generate_key pair

massiv-genkey

pwd_encrypt

massiv-encrypt

pwd_decrypt

massiv-decrypt

pack volume

massiv-pack

unpack volume

massiv-unpack

list_volume

massiv-list

The following pages contain thorough description of the individual utilities.
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Name

gencfg -- generate configuration for a set of nodes

gencfg

Synopsis

gencfg [OPTION...]

Description

Create simulation config files for one data service node, given number of server nodes and one client
node with administrator privileges.

The following options are recognized:

-s N
Create configs for N server nodes.

-1 service ipservice port serverl ipserverZ port...

IP addresses and names for service and server nodes.

Generate simulation config files for Nullsoft Installer (NSIS).
-p
Set administrator password for client account.

Example

Generate config files for 2 server nodes, one client and one service node, using localhost IPs for the
server and service nodes:

gencfg -s 2

Notes

You should not have to use this utility to setup the Massic Demo. Use binary installation under Win32
and the massiv-setup utility under Linux (see Section E.1.4, “Compilation under Linux (GCC)”).

Known Bugs

The optional password is passed on the command line, which is not very secure.
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Name

generate_key pair -- generate RSA key pair

generate_key_ pair

Synopsis

generate key pair seedlen

Description

Generate a pair of RSA keys. The keys will be saved in binary form into files rsa _priv.rsa and
rsa_ publ.rsa and as a part of massiv configuration file into rsa keys.conf. The seedlen
option specified key length in bits.
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Name
pwd_encrypt -- encrypt a file

pwd_encrypt

Synopsis

pwd_encrypt filename password

Description

Encrypt file filename wusing given password and write
filename.crypted.

Note

This utility is used to encrypt login configuration files in the Massiv Demo.

Known Bugs

The password is passed on the command line, which is not very secure.

encrypted file

nto
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Name
pwd_decrypt -- decrypt a file

pwd_decrypt

Synopsis

pwd_decrypt filename password

Description

Decrypt file filename using given password and write
filename.decrypted.

Note

This utility can be used to decrypt Massiv Demo login configuration files.

Known Bugs

The password is passed on the command line, which is not very secure.

decrypted file

nto
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Name

pack volume -- pack files into a volume

pack volume

Synopsis

pack volume [OPTION...] volume file...

Description

Pack given files into volume volume.
The following options are recognized:
-c
Use compact volume file format. Currently format of existing volumes is

not recognized automatically. Note that Massiv archives are stored in
compact volume format.

Erase source files after being packed.

Format (clear) the volume first. This option must be used when creating
a new volume file.

-h, -?
Show help.
-m mask

Wildcard mask used to filter files when recursion is used.

—n name
Internal name of the archive. Used only when a new archive is created.

-p path
Destination path in the volume.
Pack directories recursively.
-R

Pack directories recursively, do not use mask specified by the
-m option to match subdirectory names.
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Example

Pack all *.png files from directory images to a new compact volume volume . image called /M-
AGES:

pack volume -f -c -n IMAGES -m '*.png' -R volume.image images
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Name

unpack volume -- unpack files from a volume

unpack volume

Synopsis

unpack volume [OPTION...] volume path...

Description

Unpack files from given volume directories (path) of volume volume.
The following options are recognized:
-c
Use compact volume file format. Currently format of existing volumes is

not recognized automatically. Note that Massiv archives are stored in
compact volume format.

-d path
Directory where to unpack the files. Default is current directory.
Erase source files after being unpacked.

~h, -2
Show help.

-m mask
Wildcard mask used to filter files when recursion is used.

Pack directories recursively.

-R
Pack directories recursively, do not use mask specified by the
-m option to match subdirectory names.
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Name

list volume -- list contents of a volume

list volume

Synopsis

list volume [OPTION...] volume

Description
List contents of volume volume.
The following options are recognized:
-c
Use compact volume file format. Currently format of existing volumes is

not recognized automatically. Note that Massiv archives are stored in
compact volume format.

-d
Print directory names even in non-recursive mode.

~h, -7
Show help.

-m mask
Wildcard mask used to filter files when recursion is used.
Omit header with general volume image information.

-p path
Directory of the volume to list.

Pack directories recursively.

Pack directories recursively, do not use mask specified by the
-m option to match subdirectory names.
Print stream sizes.

-w width
Width of the size information column (used with the —s option).
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26. Registry Configuration File Syntax

This chapter describes the configuration syntax of the registry.

Note

An example of a configuration file can be found in

massiv/src/core/test/massiv.conf

Note

Configuration files are fully case-sensitive.

26.1. Variable, Node and Alias Names

Variable, node and alias names can contain none of ! () []=\"" nor space nor tab. Moreover, all
non-printable (i.e. with ASCII value < 32) are also invalid. Symbol # is valid, but, however, it cannot
be contained at the beginning of the name, because whole line would be considered a comment.

Path is formed of none of more node names and one variable or alias name, all of them separated by /
from each other.

26.2. Structure of the File

Configuration file consists of blocks, each block refers to one particular node in the registry; new vari-
ables are inserted relatively to this node. However, symbolic link “addresses” are always considered
relatively to the root registry node.

Generally, each block looks like this:

[ Relative or absolute node definition ]
One or more variables definition...

Relative or absolute node definition is mandatory even if the following section refers to the
registry root node - in such case, it consists only of [ ] character sequence.

Variable definition syntax should be used as follows:
variable name : type = value
or

variable path/variable name : type = value

variable path relates to the actual relative node in the block. type can be one of following
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strings, written in lowercase and not quoted:

* Dboolean ... Typicaly true or false, but there are also acceptable conversions. 0 yields false,
whereas all non-zero values true.

* int... Integer value, typicaly 32bit wide.

» largeint ... Integer value, typicaly 64bit wide.

e float ... Floating point number.

* string ... String value.

value must satisfy a syntax of each specific type. See examples bellow....

26.3. Additional Stuff
26.3.1. Comments

Comments begin with the # sign, continues as far as the end of line; everything that comes after the
value field is also ignored.

26.3.2. Blanks

Blanks are spaces and tabs and they are ignored; nevertheless, for example blank still cannot appear in
the middle of a variable name, as described in section variable, node and alias names.

26.3.3. Includes

Include directive has form:

!include <path/file>

Include must always be placed on a separate line. path should be a relative path to another (so-called
nested) configuration file, which will be processed at this point before continuing processing of the
original file.

26.4. Example

Example 26.1. Registry configuration file syntax
# Beginning of the first section; note that a section declaration must
# come BEFORE the first variable definition!!!

[1]

host name : string = "atrey.karlin.mff.cuni.cz"
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# Defines a host name variable in the root node of the registry.

# Beginning of the second section

[ foo vars ]

foo var x : int = 13
# Defines a foo var x variable in the foo_vars subnode of the root
# node.

foo/foo_var_y : largeint = 33333333333333
# Defines foo vars/foo/foo var y variable.

link foo foo var y : symlink = foo vars/foo/foo var y
# Defines a symbolic link to foo vars/foo/foo var y variable.
# Note that full path must be specified; thus, line
# foo/foo_var y
# wouldn't be correct as it wouldn't refer to the right variable.

# Beginning of the third section

[ bool vars ]

var true : boolean = true

var false : boolean = false
# This is how logical values are specified. Just 0 or 1 wouldn't
# be sufficient.

# Note: we do not implement a strict syntax checking; thus, even the
# following lines are correct (comments shows the equivalent
# lines) :
var correctl : boolean : false = true
# Everything between the 'type' field and the first '='
# character is ignored. Thus, the line above has the same
# meaning as
# var correctl : boolean = true

var correct2 ignored : boolean = false ignored

# Everything between the 'variable path/variable name' and the
first ':' character is ignored. Similary, all that is after
the 'value' field is also ignored. Thus, the line above has
the same meaning as

+= H o =

var correct2 : boolean = false
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27. Understanding Configuration
Values Related to the Core

Note

For general information about the configuration files and their syntax, please refer to
Chapter 26, Registry Configuration File Syntax.

27.1. Account Manager

Configuration of the account manager:

[ Settings/AccountManager |
manual management : boolean = true [0

O  Set value to true if manual account management is required. So, newly created client accounts
are not automatically added to file source data/config nodes private, but to file
source data/config nodes private.manual and administrator must manually
merge these two files to add new client accounts to the client account database. Default value is
false, that is, newly created accounts are automatically added to the client account database.

27.2. Archive Database

Configuration of the archive database:

[ Settings/ArchiveDatabase ]
keep archives count : integer = 5 0
milestone divider : integer = 10 0O

0 A number of most recent archives kept on the disk.
O  This value defines that every n-th archive will be kept on the disk permanently. Setting this op-
tion to 1 will keep all archives created.

27.3. Archive Manager

Configuration of archive manager:

[ Settings/ArchiveManager ]

auto archivation delay : float = 600 0O

10 O
60 O

auto_archivation enabled : integer

local archivation duration : float
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|

A time period between two occurs of archivation.

Defines whether auto archivation's enabled or not. Setting this option to true is higly recom-
mended.

This value defines an amount of time (in seconds) when archive manager waits in idle phase un-
til it initiates a new distributed archivation in case if auto archivation is enabled.

27.4. Balancer

Configuration of the balancer:

[ Settings/Balancer ]

enabled : boolean = true [

data flow optimization enabled : boolean = true

resource load optimization enabled : boolean = true

memory load optimization enabled : boolean = true

min data run period : float

5 0O

max_data run period : float = 120

resource run period : float = 10

memory run period : float = 60

samples per run fraction : float = 0.02 0O

size of object samples fraction : float

0.05 0O

data_ flow fraction : float = 0.75 [
data_flow_aging coef : float = 0.9 [

object timeout : float = 30 O

cpu load weight : float = 0.5 O

rank compare factor : float = 0.6 O

balance object count fraction : float = 0.05 O

[ R |

Is Balancer globally enabled? If yes, are given balancer optimizations enabled?

Times between two runs of given balancer optimizations.

Suggested number of object-to-object samples per run relative to the total number of objects.
The actual value is obtained by multiplying the constant by statistics.num objects.
Suggested minimum total size of object-to-object samples in a run, as a fraction relative to
memory load. The actual value is obtained by multiplying by statist-
ics.memory load.

Minimum data flow fraction that must be consumed by the "major" consumer node in order to
trigger group migration to that node. A float value from [ 0, 1 ] range.

A coefficient from [ 0, 1 ] that determines how much old samples are obsoleted. Their weight
will be multiplied by this coefficient.

Swap-out migration group if it has not been touched for object timeout seconds.

Factor used when comparing resource load ranks of two nodes to determine whether one of the
nodes is "substantially less loaded than the other node". A float value from [ 0, 1 ] range. The
lesser values imply the bigger required differences in node ranks.

Factor used when comparing resource load ranks of two nodes to determine whether one of the
nodes is "substantially less loaded than the other node". A float value from [ 0, 1 ] range. The
lesser values imply the bigger required differences in node ranks.

How many objects to migrate in a single resource optimization run. Defined as a fraction relative
to the total number of objects registered to the simulation. Must be sufficiently small or the re-
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source optimization will not converge.

27.5. Data Service

Configuration of the data manager:

[ Settings/DataManager |
download type : integer = 1 [

data _service node : string = "[ Service 1 1" 0O

max_ download speed : integer = 4096 O

check data version interval : integer = 60 0

mount data volume : boolean = false O

data volume image name : string = "data.image" 0O

0 Download type of the data manager. Specifies which data files will be downloaded before node

|

O

is connected to the simulation. Values can be:

* 0 -no download. Value used for master data service.

* | - necessary download. Only data files with a flag "necessary data file" will be downloaded
before connecting to the simulation. Default value for server and client nodes.

* 2 - full download. Download all data files before connecting to the simulation.

Node id of a data service node from which data will be downloaded first. Currently only master
data service node id is supported.

For server and client nodes - maximum speed of data download in bytes per second. For data
service - maximum speed of data upload in bytes per second for a one connection.

Interval is seconds between checks if new data version is available for download.

Set value to true to store downloaded data to a volume. Else data will be stored in a directory.
Default value is false.

Define volume image name if data are stored in a volume. Default value is "data.image".

27.6. File Acknowledgement Manager

Configuration of the file ack manager:

[ Settings/FileAckManager |
create _ack delay : float = 10 0O

O

Default time delay between ack creation request and ack file creation itself (in seconds).

27.7. Garbage Collector

Garbage Collector related configuration can be separated to two distinct groups:
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* QGarbage Collector Settings
Allows to slightly change semantics of the Garbage Collector:

[ Settings/ObjectManagement/GC ]
can_run_any time : boolean = false U

[0  Set this to true to allow GC to run even when objects are or might be active. Since active ob-
jects can not be deleted and are not treated as GC roots this may cause that migration groups
will not be deleted atomically. See System: :dispose gc_ root ().

* Garbage Collector Tuning

Controls automatic triggering of the Garbage Collector runs. Expert knowledge is required in or-
der to be able to change these settings without causing a serious harm to the application perform-
ance.

[ Settings/ObjectManagement/GC ]

max iterations per tick : integer = 256 O
max_run period : float = 30 0O

limit delta : integer = 50 O

max limit delta fraction : float = 2 O
thrashing ratio : float = 0.8 0O

thrashing coef : float = 0.2 0O
lazy ratio : float = 0.5 O

lazy coef : float = 1.2 0O
max_unpin time delta : float = 1 0O

0  Maximum number of internal GC iterations within a GC tick.

0  Maximum time difference between two GC runs.

O  Trigger next GC run when object count reaches the current limit delta value plus number of
local objects at the time of the previous GC run. Adapted at the end of the GC run.

0  Maximum limit delta propotionally to the total number of local objects.

O The GC gets in the "thrashing mode" if number of finalized objects at the last GC run is
greater than thrashing ratio multiplied by the total number of local objects.

[0  Limit delta adaptation coefficient used when the GC is in "thrashing mode".

[0  The GC gets in the "lazy mode" if number of finalized objects at the last GC run is less than
lazy ratio multiplied by the total number of local objects.

O  Limit delta adaptation for the "lazy mode".

00 Issue a warning if objects have been active-pinned longer than the preset value (to get in-
formation on what active pinning is, consult the Massiv Core Reference Guide). Used for ap-
plication performance and migration stalls tuning due to object pinning.

27.8. Logger

The logger configuration is more complicated and requires some knowledge of the logger stucture.
Therefore it has been separated as a special part of the relevant chapter. See Section 20.4, “Logger
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Configuration Using the Registry” for more information.

27.9. Network

Configuration of the network:

[ Settings/Network ]
blowfish key length : integer = 16 0O

blowfish key timeout : integer = 3600 [

max_ idle seconds : integer = 10 0O
max_pings : integer = 3 [

max_receive bytes : integer = 32768 O

max server life : integer = 60 O

next ping delay : integer = 2 0O

tcp preallocated buffers : integer = 10 O
udp_preallocated buffers : integer = 10 O

Default key length for blowfish ciphre. Higher value increases security, but slows down message
crypting and decrypting.

Blowfish key life in seconds. After this time period blowfish regeneration process exchanges
new blowfish ciphre. Lower value increases security, but decreases the network performance.

A time period after which PING MESSAGE/DISCONNECT REQUEST MESSAGE is sent to
the other side. The message type depends on auto close feature setting by the node. When true,
request to close the connection is sent, otherwise PING MESSAGE to find out, whether the oth-
er side is alive.

A amount of allowed ping messages sent to the other side without reply. After this amount of
tries, CONNECTION LOST is signalized to the higher layers.

An amount of bytes allowed to receive in one network tick on a connection. Higher value in-
creases network performance, but decreases performance of the Core.

A time period after which server ( connection acceptor ) closes new accepted connection, when
no data exchange appeared in the connection creation process.

A time period between two consecutive sends of PING MESSAGE when no
PING REPLY MESSAGE received.

An amount of the preallocated buffers reserved for the TCP message sending. Higher value in-
creases network performance, but consumes more PC memory.

An amount of the preallocated buffers reserved for the UDP message sending. Higher value in-
creases network performance, but consumes more PC memory.

27.10. Node Manager

Configuration of the node manager:

[ Settings/NodeManager ]

block disconnected client timeout : float = 3 a

O

How long to block connections from disconnected clients in seconds.
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27.11. Node Database

Node database keeps information about nodes the can participate in the simulation and the informa-
tion how the remote nodes can be contacted from other nodes (published node credentials). This in-
cludes network addresses, RSA public keys, account objects of client nodes, etc. It also holds com-
plete local node credentials, including a "private" part that is not published to other nodes. The private
parts are read from external login files (see Section 15.4, “Connecting To the Simulation”) when
nodes connect into the simulation and are used to authentize them, thus they must be kept in secret.

For each registered node the following public entries are held:

node id : string = "[ Client 1 ]" O

rsa public key : string = "..." 0O
address : string = "localhost" 0

port : integer = 0

name : string = "MyClient" [

account object : string = "[ 1 2 0 " O

0  The node being described.

0  The node's public RSA key. Together with its private RSA key (stored in the node's login file)
used to authentize this node.

O  The node's address and port. Must be filled for SERVER and SERVICE nodes so that other
nodes can initiate connections to them. CLIENT nodes leave these fields blank and they are ig-
nored.

0  Optional node name.

0  Client node's account object. See Section 14.3, “Account Object”. Ignored by SERVER and
SERVICE nodes as they do not have associated any account objects to them.

The entries are stored in node data objects or statically in the registry. Usually there are only two stat-

ic records:

* Master data service node credentials
Settings/NodeDatabase/master data node
*  Complete anonymous node credentials

Settings/NodeDatabase/anonymous_ node

Both are used to download minimal prerequisite data before connecting to the simulation. A node uses
anonymous node credentials to authentize self when contacting a master data service to download the
prerequisite data. The data service node credentials are also stored statically.

Note

Since there is no login file for anonymous nodes the private part of the anonymous credentials
is also stored in the registry. The following fields are added:

rsa private key : string =
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The dynamic part of the node database is automatically downloaded as a prerequisite data.

To connect to the simulation under a given identity corresponding login file must be supplied. The in-
formation stored in the file (the private part of the node credentials) is combined with the correspond-
ing entries in the node database and complete local node credentials are obtained. The node can then
connect into the simulation using these credentials. This is a structure of a login file:

[]

node id : string = "[ Client 1 1" O

rsa public key : string = "0Z0\r\x06\t*\x86H\x86\xf7\r\ ..." O

rsa private key : string = "0\x82\x015\x02\x01\x000\r\x06\ ..." O

0  Local Nodeld.

0  Node's public RSA key. Must match the corresponding entry already published in the node data-
base.

0  Node's private RSA key. Used to authentize the node.

Note

For information about the configuration generation please refer to Chapter 25, Auxiliary Util-
ities.

27.12. Object Manager

Configuration of the object manager:

busy time limit : float = 0.25 0O

debug force random local migration : boolean = false [

debug force swap out of objects with scheduled events : boolean = false [
debug random local migration probability : float = 0 O

log events : boolean = false [

log process _migration messages : boolean = false [

max_schedule delay : float = 4 O

[0 Setstatistics.too busy to true if time difference between ticks at level zero is greater
that this limit.

0  Whether to enable random local migrations - object that must be delivered to destination object
is passed to migration protocol layer even thought destination object is local. Note: Ignored if
the Core is not compiled in debug mode.

0  Whether to swap-out all objects which have scheduled one or more events for current tick. The
objects are swapped-out before any event is processed in current tick.

0  Specifies probability of local migration if debug force random local migration is true. Should
be in 0.0 to 1.0 range, other values may cause random behavior.

0  Log each delivered to() and delivery failed() events. Should be used only for debug purposes
because it can really slow down entire system.

0 Log each migration message that is beeing processed.
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0 Warn if global schedule has been blocked by a "busy"

max schedule delay seconds.

27.13. Path Manager

Configuration of the path manager:

object

for

at

least

Note

home/username, on win32 system - "C:\Documents and Settings\username"

Special string $HOME can be used in a directory path. Every occurance of this string will be
replaced be the home directory of currently logged user. Example: on unix system - /

[ Settings/PathManager ]

login directory : string = "S$HOME/.massiv/client/login" [
source data directory : string = "./source data" O

data directory : string = "./data" 0O

archive directory : string = "./archives" O

log directory : string = "./log" O

work directory : string = "." 0O

Path to a directory with login files.

Path to a directory with source data. Used by master data service only.
Path to a directory with data.

Path to a directory with archives. Used by server nodes only.

Path to a directory with log files.

Path to a directory for temporary files.

27.14. Remote Procedure Call

Configuration of synchronous RPC:

OooOoOooOoOod

[ Settings/System/SRPC ]

min stack size : integer = 65536 [
num_threads : integer = 1 0O

optimize local calls : boolean = true [

reply timeout : float = 30 O
statistics period : float = 5 0O

0  Minimum stack size reserved for the Core, in bytes. If there is less stack space than the preset
limit, and there are no free SRPC threads left, synchronous call requests will be rejected.
0  Number of simulation threads used to implement SRPC. When the Core runs out of free threads,
it will start using less optimal technique to implement SRPC - stack recursion. The largest disad-
vantage of stack recursion is its last-in-first-out semantics; no SRPC request serviced by the re-
cursing thread can be finished before the most recent one. If num threads is 1, the SRPC re-
quest can be blocked indefinitely until the Core runs out of stack (see min stack size
above), if too many SRPC requests are made in such environment. Note that this problem can't

happen if num_threads is at least 2.
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Value of num threads is ignored if the node has been started with the
single threaded srpc flag set to true (see the Massiv Core Reference Guide, docu-
mentation of the Massiv: :System: :StartUpInfo).

0  Allow optimizations of local synchronous calls by direct calls? Setting this option to false is
useful only when debugging the Core. Its value is ignored in optimized builds.

[0  SRPC request will be cancelled if reply is not received in reply timeout seconds.

O  Time period between two consecutive updates of RPC statistics, in seconds.

27.15. Replication

Configuration of replication protocols:

[ Settings/ObjectManagement/Replication ]
client repflags no : integer = 0 g
client repflags yes : integer = 1

server repflags no : integer = 0

server repflags yes : integer =1

N
O

min client update period : float =
max client update period : float =
min server update period : float =

N O O
(6]

max server update period : float =

max udp update size : integer = 1500 0O
debug : boolean = false [

[0  Replication masks are used to determine which objects belong to a replication group and which
properties should be serialized during replication. Their default values are pretty useless and
should be overridden in a configuration file as explained in Section 7.5.4, “Recommended Node
Replication Masks”

[0 Minimal and maximal periods between two consecutive replica updates sent to client or server
nodes, in seconds. Slower update speeds (longer periods) are used when bandwidth to the nodes
seems to be saturated.

O  If replication update packets is larger than this value (in bytes), TCP will be used to send it in-
stead of UDP. When wusing TCP, wupdate period may become larger than
max * update period.

0  Enable debugging log messages? In release builds, the default value is false, in debug builds
the default is true. If its value is true, the messages may still be filtered by standard logger
filters.

27.16. Scheduler

Configuration of the scheduler:

max sleep time : float = 0.05 O
min sleep time : float = 0.005

0.01 0O
sleep time increment constant : float = 0.005

sleep time decrement constant : float
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tick delta high limit : float = 0.02 0O
tick delta low limit : float = 0.005 O

0  Maximum and minimum sleep time.
0  Constant added to/ subtracted from sleep_time if idle.
[0 If time delta between two ticks is larger than tick delta low limit, sleep time will de-

crease.
[0 If time delta between two ticks is smaller than tick delta low limit, sleep time will in-
crease. This is the evidence that there were very little work to do in the previous tick.

27.17. Time Manager

Configuration of the time manager:
[ Settings/TimeManager |

time synchronization interval : integer = 10 0O

0  Server nodes send each other time synchronization messages. This value is an initial value of in-
terval between particular time synchronization messages is seconds.

27.18. Volume Manager

Configuration of the volume manager:

[ Settings/VolumeManager ]
flush period : float = 5 O
volume cache : integer = 2097152 0O

0  How often the volume manager flushes file systems in seconds.
0  Cache size per mounted volume in bytes.

[ Settings/VolumeManager/Volumes ] [
: string = volume image

[ Settings/VolumeManager/ReadOnlyVolumes ] [
: string = read only volume image

O  Registry node holding arbitrarily named string config variables. Each variable contains a path to
a volume image to be mounted at core startup.
O  Registry node holding a list of paths to volume images to be mounted read only at core startup.

27.19. Well Known Object ID Database

Configuration of the well known object ID database:

[ Settings/WellKnownObjectIdDatabase ]
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naming service object : string = "[ null ]" 0O

[0  Object id of naming service object.

263



28. Handling Accounts

When new simulation is created, there are few nodes in the node database - master data service node,
server nodes, anonymous node also called anonymous account, and one administrator client node also
called administrator account. In this state, no clients can connect to the simulation, because they don't
have their own account.

Newly installed massiv client knows information just about master data service node and anonymous
account (this information are stored in a file massiv.server nodes.conf) Client connects to
the master data service using anonymous account and downloads data necessary for connecting to the
simulation (including node database). Node database is managed by master data service and is stored
as necessary data object. In this state, client knows all server nodes, but it doesn't have account for
connecting to the simulation.

Client sends a request to create account to the master data service, master data service sends a request
to some server node to create special object called account object (see chapter special objects), after
that master data service saves new client account to the node database, updates data and distributes
them to massiv servers. In this state, server knows the client and it can successfuly connect to the sim-
ulation.

Note

When account creation request is sent from a client, it takes awhile till server nodes update
their data with actualized node database. This time can be a few tens of seconds in a case of
automatic account management, or more (days) in a case of manual account management, see
account manager settings.
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Appendix A. Network Layer
A.1. Locking And Unlocking Buffers

The Network subsystem uses both TCP and UDP protocol for communication. More reliable TCP is
used in the connection creation process, sending control messages specific for the lower network layer
(e.g. PING, DISCONNECT REQUEST, etc.) and for the migration. The unreliable UDP protocol is
used mainly in the object replication process (although if the replication data is large, the replication
may use TCP as well). Every time a higher Massiv layer wants to send something to another node, the
Network is asked to /ock a reliable or unreliable buffer.

Network e
NodeId nodeid = ...;
Netobuffer * buffer tcp = net.lock( nodeid, STREAM RELIABLE,
NET MIN USER MESSAGE, true );
// This locks a TCP buffer for node nodeid.
// Then a user message 1s written into the buffer using the standard <<
// operator. The resulting buffer can be scheduled to be sent using the unlock ()
// method. The message may be sent either immediately or in the next network
// tick, according the last lock parameter. In this specific case,
// the buffer would be sent immediately, because the last parameter is
// true.

Netobuffer * buffer udp = net.lock( node, STREAM UNRELIABLE, NET MIN USER MESSAGE );
// This locks a UDP send buffer for node nodeid.
// The buffer will contain an user message (due to the NET MIN USER MESSAGE) .

There are some permanent buffers (the number of permanent buffers is configurable via settings),
which can be used in case they are ready to be locked. In case there is no available permanent buffer,
the Network automatically creates a dynamic one. When data is written into a buffer, the higher Net-
work layer must unlock the buffer to inform the lower layer that it is ready to be sent.

Network net;
Netobuffer * locked tcp = ...;
net.unlock( locked tcp );
// This unlocks an already locked TCP buffer.

Netobuffer * locked udp;
net.unlock( locked udp );
// This unlocks an already locked UDP buffer.
// UDP buffer can be also unlocked using the method
// unlock unreliable( locked udp, false ).
// The false parameter indicates that the buffer is not completely ready
// to be sent. It's going to wait for an explicit flushing with
// flush( unlocked udp ) or for being locked again.

The main difference between the TCP and UDP buffers is that in the case of UDP more messages can
be added into the buffer, even if it is already prepared to be sent (of course the destination of all the
messages must be the same network node). This feature helps to increase the network throughput.

After being unlocked the message body is encrypted using the blowfish ciphre (see Section A.2,
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“Managing Connections”) and placed into a list of outgoing messages, which will be sent at the end of
the network tick. UDP messages also contain the additional CRC checksum of the encrypted message
body, to ensure integrity of the data received by the target node.

A.2. Managing Connections

All the communication between nodes is encrypted for higher security. Every node involved in the
simulation has an unique RSA key pair for authentication during the connection creation process.
After the successful authentication the server generates a Blowfish ciphre which is used for both the
UDP and TCP buffers encryption. Because this guarantees better performance but lower security than
RSA encryption/decryption, this key is periodically regenerated if the connection is used for a longer
time (this time value is also cofigurable via settings). The Network implements the connection auto-
close feature between some types of nodes (Server-Server or DataService-Server) to save resources
and optimize the network performance. Any auto-closed connection still seems to be open to the high-
er levels; in case there is some request, the connection is transparently established again and the data
delivered as if no connection close had ever occured. This feature can be managed from higher layers.

Network net;
NodeId nodeid = ...;

net.control connection auto close( nodeid, true );
// This enables auto close feature to node nodeid.

When some node wants to auto-close a connection to another node, it sends a request and waits for
permission. The reply depends on auto-close connection feature setting on the other node.

A.3. Connection Creation Process

The connection creation process uses the reliable TCP protocol. After the TCP connection has been
successfully created, both sides exchange also UDP port number in order to know where to send UDP
packets to.

Table A.1. Process of the successful connection creation

Connection acceptor - Server Connection initiator - Client

Listens on a well known port

Initiates a TCP connection to the server's well
known port (configurable in configuration files).

Accepts the connection and sends SERV-
ER_PORT MESSAGE with the server's Nodeld

Receives the SERVER PORT MESSAGE with
the server's Nodeld and sends the
NODE ID MESSAGE with the client's Nodeld.

Receives NODE ID MESSAGE, generates blow-
fish ciphre and sends RSA-encrypted BLOW-
FISH KEY MESSAGE
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Connection acceptor - Server

Connection initiator - Client

Receives, verifies and decrypts the BLOW-
FISH KEY MESSAGE and sends back RSA-
encrypted KE Y CONFIRMATION MESSAGE

Receives, verifies and  decrypts the
KEY CONFIRMATION MESSAGE, creates a
UDP socket and sends UDP_PORT MESSAGE
containing the port number that should be used
for sending UDP messages to this node.

Receives the UDP PORT MESSAGE with the
server's UDP port and sends back empty
UDP_CONNECT MESSAGE. The connection has
been created.

Receives the empty TCP_CONNECT MESSAGE.
Sends back the empty
TCP_CONFIRMATION MESSAGE. The connec-
tion has been created and confirmed.

Receives the empty
TCP_CONFIRMATION MESSAGE. The connec-
tion has been confirmed too.

After the synchronnous TCP connection creation process begins the asynchronous UDP setup proced-
ure - server ( in the meaning of connection acceptor ) must get informed about the client's ( initiator's )
UDP port. Every second the client sends the UDP INIT MESSAGE to the server's UDP port until it
receives the TCP UDP_HANDSHAKE MESSAGE from the server.

A.4. Configuration And Statistics

For description of the network configuration in
tion 27.9, “Network”.

brief implementation notes, please refer to Sec-

Statistics regarding network are stored under the /Statistics/Network registry node.
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Appendix B. Load Balancing

The Massiv provides facilities for automatic load balancing. It is implemented by the Balancer
class which monitors data flow among migration groups and nodes registered into the simulation, per-
forms transparent object migrations in order to decrease network or CPU load, swaps out not-re-
cently-used objects and migrates objects to less loaded nodes in order to keep uniform resource loads.
To make the balancing possible transparent object migrations without application's assistance had to
be implemented. This is a key feature of the object model and probably the most important object
model design goal. As a result objects can migrate not only due to application logic decisions.
However the migrations triggered by the load balancing subsystems are completely transparent to the
application. If you are not interested in how the load balancer works you can safely ignore this ap-
pendix.

B.1. Optimization Techniques

There are three different optimization techniques. They run independently and are often triggered
when there is enough information to perform the optimization (for example data flow statistics
between migration groups and remote nodes is available):

* Local data flow optimization

The optimizer keeps track of data flow generated by local migration groups and nodes that con-
sume the generated data. Whenever an object migrates, local SRPC call is made or a replication
update is sent, the data amount, that would have to be transmitted over the network, is accounted
to a migration group responsible for the production of the data flow. For example if an object A is-
sues a RPC call to object B, RPCObject is created and migrated to B. The migration cost of the
RPCObject is charged to the object A as the migration was initiated by that object.

Note

When data flow needs be accounted its producer must be identified first. To simplify the pro-
cess the data is always treated as if it was produced by the last object upcalled from the Core.
Direct local calls made by the application since the last upcall are ignored. Although the pro-
ducer may not be identified reliably it will always be an object from the "correct” migration
group unless local weak pointers are used to call other objects directly. This semantics is sim-
ilar to CORBA this ().

Migration groups that produce data flow consumed by "single major" nodes (it is not directed to
other nodes or the consumed portion of the data is negligible with respect to the major nodes) will
be migrated to that nodes. This will reduce data flow between the local node and the major nodes.

The statistics are gathered locally on a per-object basis. When enough data is collected the statist-
ics are aggregated by migration groups and major consumer nodes are identified. Migration
groups are then migrated to the major consumer nodes unless it is cheaper to leave them on the
local node.
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Note

If we were running this kind of optimization only all objects would finally end up on a single
node.

*  Global resource optimization

Unlike the local data flow optimization whose aim is to decrease network traffic locally, from a
local node to remote nodes, the global resource optimization tries to optimize resource load in the
global. The optimizer keeps track of resource loads on all nodes and migrates objects among the
nodes to ensure uniform loads.

Each node "ranks" its resource load which is in turn distributed to all other nodes. The most
loaded node periodically elects a subset of its local objects and migrates them to the least loaded
node. Since the number of objects to be migrated must be sufficiently small (in order to converge),
the optimization can be a lengthy process and it may take a while to find an equilibrium.

Note

Objects are elected by a random process which implies that the sets need not be "compact"
(with respect to some data flow criterion). However if the optimization is combined with the
local data flow optimization, the other optimizer will push "companion" objects to that node
soon.

*  Local memory optimization

Migration groups that were not touched for some time are transparently swapped out and read
back into memory when needed, upon a Core request. Swap-out operation is technically equal to a
"migration to a swap file", which means that swapped-out objects are not local.

Note

This is completely different from memory swapping implemented by various operating sys-
tems. Our approach ensures that idle objects do not pollute Core tables and that "working ob-
ject set" is kept sufficiently small. This allows to build large distributed worlds as most of
them would probably be idle.

The swapping always operates on a per migration group basis. Objects are read into memory when
their scheduled events should be dispatched or an object is delivered to them. As a result RPC
calls wake up the objects too.

If load balancing must be disabled for some reason one can do so via the appropriate settings in the re-
gistry (see Section 27.4, “Balancer”). An another option is to mark classes as no-balance (see Sec-
tion 10.9.3, “Class Attributes”) which prevents the Balancer from performing optimization on in-
stances of such classes. In the most cases no_balance IDL attribute is used as a hint to the Balan-
cer that says that instances of the class are transient and will be collected by the Garbage Collector
soon thus no optimization is required.
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B.2. Configuring the Balancer

The balancer configuration is described in Section 27.4, “Balancer”.

Various statistics can be found under /Statistics/Balancer registry node.
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Appendix C. Core Requirements

The Core library currently supports Windows (98 or newer) and Linux operating systems. However,
all the platform-specific code is separated into special directories so that porting Massiv onto another
platform should be quite straightforward.

As for the hardware configuration, you need to meet the following requirements (note that only x86
hardware platform is supported; no other one has been tested):

Note

Massiv has not been tested on big-endian systems and thus probably won't run on them.
However, the appropriate modifications to make it running should be quite straightforward.

Minimal hardware configuration

» procesor Pentium [ 60Mhz (for very simple applications)
procesor Pentium II, Duron, Athlon 400Mhz (for other applications)
+ 32MB RAM

» arbitrary network card

Recommended hardware configuration

» procesor Pentium III, Duron, Athlon 1Ghz
+ 64MB RAM

 arbitrary network card

271



Appendix D. Auxiliary Utilities to
Build Massiv and Documentation

This chapter describes tools provided along the Massiv that can be used to build projects based on the
Massiv and to compile Doxygen and DocBook documentation. While you will have to use some of
them (such as the IDL processor factgen.pl), using most tools described in this chapter is not required
by highly recommended.

D.1. Massiv Build Tools

Building application based on the Massiv (and the Massiv Core itself) is not a simple task. Many
soure that are required to compile and link the application are automatically generated, mostly from
the IDL. If you wanted to use your favorite build tool, you would have to teach it how to call external
tools to generate the files. You could write complex makefiles that accomplish that, or generate the
files manually and then use less sophisticated build tools.

It's highly recommended to use tools described in this section that do all the hard work almost auto-
matically.

The following text tries to describe the whole build process of a Massiv project, assuming Massiv
build tools are used exclusively.

Massiv build tools work with projects. A project is either a library (static or shared) or a program. The
programmer usually has to write the following files for each project:

» (C++ sources containing implementation of both standard C++ and Massiv managed classes.

» IDL descriptions of all managed classes.

* 1idl.1ist - this files contains list of all IDL files and some additional information. Syntax of the
file is described in Section D.2, “The idl.list File”.

* makefile.gen - a file that descibes how to build the project The mkgen.pl tool reads this file
and generates makefiles for selected target platform.

For example, the Massiv Demo client application contains many C++ sources stored in several direct-
ories and no IDL files. It depends on three library projects - the Massiv Core library, and shared and
client-side demo libraries. Even though it does not conain any IDL files, it depends on libraries with
IDL files and its sources include several generated files from those libraries, therefore it must contain
an 1dl.1list file too.

To be able to build a Massiv project, makefiles must be generated first. This phase is usually called
configuration. The most simple configuration consists of two steps illustrated by this figure:

Figure D.1. Configuration phase
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sources
IDLs
idl.list genmkgen.pl makefile_idl.gen
makefile.gen mkgen.pl

W makefiles

1. Generate makefile idl.gen files from idl.1ist files. This step is performed by the gen-
mkgen.pl tool. It determines information about dependencies between C++ sources and IDL
files written by the programmer and the generated sources, and writes the information to file that
must be included from makefile.gen in the same directory.

2. Generate makefiles. This step is performed by the mkgen.pl tool. It reads all makefile.gen
files and generates makefiles for specified target platform.

You can use scripts in the massiv source root directory to perform the configuration step. On Win-
dows, run the configure.cmd command, on Linux (and other supported Unixish systems), run the
configure script.

You can various arguments to the configure script - you can specify which compiler should be used,
where development libraries are located, which compilation and linking options should be used, dir-
ectories where the binaries and libraries should be installed, and more. Run configure --help for de-
tailed help. The script first checks if local environment - if correct compiler version is present, if de-
velopment versions of all required libraries are properly installed, etc. Then it generates several files
required by the build and installation process and runs genmkgen.pl and mkgen.pl.

The Win32 script is much more simple - it just runs the two tools. Several files automatically gener-
ated by the unixish script must be edited manually. For each such file, a file with thesame name and
.example extension appended exists. It contains default settings and documentation of the settings.
The files that must be edited manually are:

* mkgen/config/msvc.config
e src/demo/client/config.h
e src/demo/server/config.h
e src/demo/service/config.h

The configuration phase must be perfomed when any makefile.gen or idl.list is changed,
when new sources are added to a project or sources are removed from a project or when source de-

273



Auxiliary Utilities

pendencies change.

After the configuration phase, makefiles for all specified target platforms will be created in each
project directory. The makefiles can correctly generate sources from IDL as required, compile the
sources and build the projects as illustrated by the following figure. All utilities mentioned in the fig-
ures are described later in this chapter. The utilities are automatically called from the makefiles, you
never have to call them manually.

Figure D.2. Generating sources

sources
factgen.pl generated
T
IDLs sources
idl.list : class list
classlist.pl

Figure D.3. Compile and link the project

sources
compiler,
linker .
generated library or
sources program
class list

The makefiles define several targets:

* all (default target) - build all projects specified in makefile.gen in current directory. You can
define multiple projects in single makefile.gen, but it's not recommended.

» generate - generate all sources of local projects.

* degenerate - remove all generated sources.

* library FOO - build library FOO. It must be either local library project, or a library local project
depends on.

e program_FOO - build local program project FOO.

* FOO obj - compile object FOO.obj. The object must belong to a local project. The FOO should be
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only the file name without extension; if the corresponding source is located in a subdirectory, the
name of the directory should not be specified.

Note

There is no clean target. The degenerate target deletes generated sources and no objects, lib-
raries or programs. However, those are stored in completely seprate tree in .bin directory in
the Massiv source root, so you can easily remove them manually.

The following pages briefly describe all Massiv commands. Most of them all called automatically
from the generated makefiles, so they only basic description is provided. All the tools are written in

Perl and contain standard perldoc documentation - run perldoc FOO to display documentation of the
FOO command.
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Name

mkgen.pl -- generate makefiles

mkgen.pl

Synopsis

mkgen.pl {COMMAND} [OPTION...] [directory...]

Description

Generate or clean makefiles from makefile.gen files found in specified directories and their sub-
directories. If no directories are specified, current directory and all its subdirectories are processed.

Commands
The COMMAND must be one of:

-g | —-—-generate
Generate makefile for specified platforms.

-¢ | —--clean
Remove makefiles generated for specified platforms.

Options
Useful (but not all) options are:

-p | —--platform name
Build or clean makefiles for specified platform.
This option may be used multiple times to specify multiple platforms. Currently only
two platforms are really useful - unix and msvc.
If the option is not used, mkgen.pl will try to guess local platform.

-v | —--verbose
Be more verbose. May be used multiple times.

Syntax of makefile.gen

The complete syntax of makefile.gen is quite complicated. In this section, only the most useful
features will be described. Moreover, we will not differentiate between features implemented directly
by the mkgen.pl, features defined in per-platform support files (as long as they serve the same pur-
pose on all platforms) and macros defined in files automatically included from each
makefile.gen. For more information about makefile.gen syntax and documentation of mk-
gen.pl in general check contents of the doc/mkgen directory. Note that while the documentation is
nearly complete, it's quite sketchy and probably hard to understand.
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The syntax is line-oriented. Lines beginning with a hash character (#) and empty lines are ignored. To
split long lines into multiple lines, use a backslash character (\) at the end of each line that continues
on the next line.

Each makefile.gen file should start with lines indicating which libraries are used by all projects
described in the file. These settings mainly affect which directories will be searched for system head-
ers:

*  STDCPP - standard C++ libraries
* SDL - Simple DirectMedia Layer libraries
*  OPENGL - OpenGL and GLU libraries

If a project contains an idl.1list, a mkgen script describing rules and dependencies required to
generate sources from IDL files will be generated from the list. Always include this file into make-
file.gen using the following line: include makefile idl.gen.

Assignments to lists that apply for all projects described by makefile.gen should follow. The syn-
tax of list foo assignment is:

foo = 1tems
Set footo items.

foo += items
Add items to foo.

foo —-= items
Remove items to foo.

items is list of whitespace separated words. If the list assigned to is list of file name, wildcard pat-
terns can be used in items. Wildcard patterns are expanded to list of files that match the pattern in
current directory. Note that if a list contains item foo.cpp, and you subtract * . cpp from the list,
the foo. cpp will be removed from the list only if file with that name actually exists. Also note that
currently the —= syntax is supported only when defining the sources list of a project.

The useful global lists you can assign to are:

* includes - list of directories to search when including a file from C++ sources.

* defines - list of macros to always define when compiling a C++ source file.

* precompiled - name of C++ header to precompile. This list should contain only single item.

Each makefile.gen should contain definition of at least one project. To define a program project
called foo, use the following syntax:

program foo
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endprogram
The project name must be unique.

Three project types are recognized:

* A program, defined in program - endprogram block. This compiles and links an exectuable
with the specified name.

* A statically linked library, defined in 1ibrary - endlibrary block.

* A shared library, aka dynamically linked library, defined in shared library - end-
shared library block. When compiling an object that belongs to a shared library foo,
macro OPTION BUILD SHARED foo will be defined.

Project options are defined by list assignments inside the project block. The following lists exist:

* sources - list of C++ sources the project consists of. When a project contains an id1l.1list, you
can use assignment sources += Q@GENERATED SOURCEQ to add list of all sources generated
from the IDL files to the list of sources to compile.

o [ibs - list of libraries to link with, if the project is a program, or list of libraries to build before cur-
rent project, if the project is a library. A library should be specified using a relative path to the dir-
ectory where the makefile.gen for the library is located, concatenated with the library name.

* shlibs - list of shared libraries to link with, if the project is a program. If the project is a library,
this list should contain all shared libraries that this library might reference, ie. require some sym-
bols defined in some of the referenced shared libraries. All required libraries must be specified
correctly, otherwise link of a program that used this library may fail on some platforms.

When compiling an object belonging to the project, macro OPTION USE SHARED foo will
defined for each referenced shared library foo

o syslibs - list of system libraries to link with. The list should contain a symbolic name of the library
on Win32 without the . 1ib extension and on Unices without the 1ib prefix and the .a (or
. so) suffix. Several macros are predefined to link program with some useful libraries:

STDCPP _LIBS - standard C++ libraries
SDL LIBS - Simple DirectMedia Layer libraries
OPENGL LIBS - OpenGL and GLU libraries

Note
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It's not recommended to define multiple projects in single file, unless you really know what

you are doing.

Examples

The best examples are all makefile.gen files that are part of the Massiv Core and the Massiv
Demo sources.

Notes

The mkgen.pl can be found in the mkgen subdirectory of the massiv source root directory.
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Name

genmkgen.pl -- generate makefile idl.gen

genmkgen.pl

Synopsis

mkgen.pl [OPTION...] [directory]

Description

Generate makefile idl.gen files from id1l.11ist files found in specified directory and its sub-
directories. If no directory is specified, current directory and all its subdirectories are processed.

Options
The only option is:

-v | —--verbose
Be more verbose. May be used multiple times.
Notes

Syntax of 1d1.1ist files is described in Section D.2, “The idl.list File”.

The genmkgen.pl can be found in the src/core/factgen subdirectory of the massiv source root
directory. Check its perldoc documentation for more detailed info.
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Name

factgen.pl -- generate metaclasses and rpc stubs from IDL

factgen.pl

Synopsis

factgen.pl [OPTION...] {file.idl}

Description

Generate file generated.h, file generated.cpp and file rpc.h from given
file.idl.

This is the IDL processing tool. When using standard Massiv build tools (genmkgen.pl and
mkgen.pl), you won't ever have to use this tool directly.

Options
The options is:

-1 | --include directroy
Add the directory to the list of directories to search
when including or importing an IDL file.

-v | —--verbose
Be more verbose. May be used multiple times.

Notes

The factgen.pl can be found in the src/core/factgen subdirectory of the massiv source root dir-
ectory. Check its perldoc documentation for more detailed info.
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Name

classlist.pl -- generate class list files from 1d1.11ist files

classlist.pl

Synopsis

classlist.pl [OPTION...] [directory]

Description

Generate class list.list, class list.h and class list.cpp files from idl.1list
in specified directory.

Options
The only option is:

-v | —--verbose
Be more verbose. May be used multiple times.

Notes

What the class lists are and syntax of 1d1.11ist files is described in the next section.

The classlist.pl can be found in the src/core/factgen subdirectory of the massiv source root
directory. Check its perldoc documentation for more detailed info.

D.2. The idl.1ist File

The id1.1list is used by two utilities:

» It's read by the genmkgen.pl tool. The tools generates makefile idl.gen file from each
idl.1list. These files are used to generate makefiles that drive compilation and linking of
Massiv programs and libraries. The genmkgen.pl uses contents of idl.1list to determine
which IDL files exist, which files should be generated from the IDL files, how to generate the
sources and dependencies of the generated files.

* The classlist.pl tool read the file to determine set of all managed classes that exist and to write
their list and generate sources that instantiate and register metaobjects of all the classes at program
startup.

The programmer has to write an 1d1.1ist in each directory that contains a project that either
defines or references a managed class.
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The format of 1d1.1ist files is line-oriented. Empty lines and lines beginning with a hash character
(#) are skipped. Other lines may contain the following commands:

* depends dirname

Specifies a directory containing another idl.list file that contains IDL files required by
projects in this directory. An IDL file is required if a C++ source includes a source generated from
the IDL file.

This command will also add the dirname to the list of directories to search when importing or
including an IDL file. Moreover, it's used by the class 1ist command as described later.

* directory dirname

This command specifies the directory which the IDL processor should search when an IDL file in-
cludes or imports another IDL file. All the directories specified by the depends commands will
be searched too.

e 1dl filename

This line specifies one IDL file that should be processed. All existing IDL files must be listed in
exactlyone idl.list.

* class list

The Core needs to know list of all managed classes that are defined in a node executable to cor-
rectly instantiate their metaobjects and factories on node startup. This list must be generated in ex-
actly one library (or program), that is linked to the resulting executable. To build the list, use the
class_ list command inthe idl.1ist of the library (or program). The idl.1ist that con-
tains the class list command must specify all libraries with managed classes that will be
linked to the exectuable as its depends.

Makefiles generated for the library (or program) project with the class 1ist command will
generate class list.cpp and class list.h sources from the idl.list, using the
classlist.pl tool. The sources will define single function,
Massiv::Generated::register classes (), which registers all managed classes to the
Massiv Core. Pointer to this function is used at node startup, as described in Section 15.2,
“Initializing the Core”.

Note

Each of the commands except class 1ist may be used multiple times.

D.3. Documentation Tools

This section briefly describes how to build Massiv documentation.
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D.3.1. Doxygen

All sources of the Massiv Core, Massiv Demo, utilities and examples are documented using Doxygen
comments. Doxygen (http://www.doxygen.org) is a documentation system that can generate nice doc-
umentation from a set of documented sources. The Massiv Core Reference Guide mentioned many
times in this book is generated by the Doxygen too.

To generate documentation of the Massiv Core (the Massiv Core Reference Guide) or documentation
of the Massiv Demo, follow these steps:

1. Install the Doxygen.

2. Optionally install Graphviz (http://www.research.att.com/sw/tools/graphviz/) if you want to gen-
erate nicer diagrams.

3. Enter the doc/doxygen subdirectory of the Massiv source root directory.

4. Copy config.doxygen.example to config.doxygen and edit it. If you have install
Graphviz, you should set HAVE DOT to YES.

5. On systems with unixish make, you can use supplied Makefile to build the documentation. Oth-
erwise run Doxygen directly; to build the Massiv Core Reference Guide, use core.doxygen
config file, to build the Massiv Demo documentation, use demo . doxygen. You may have to
create the output directory (html/core for example) manually, because Doxygen can't create
nested directories automatically.

D.3.2. DocBook

The documentation you are reading now is written in DocBook (http://www.docbook.org). Its XML
sources can be found in doc/docbook subdirectory of the massiv source root directory.

Building DocBook documentation is not an easy task. Please refer to doc/
tech/documentation. txt for information about required tools and documentation of the doc/
docbook/docgen.pl utility that is used generate the documentation.
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Appendix E. Compiling Massiv

E.1. Compilation of the Core
E.1.1. Downloading Massiv from CVS

If you are reading this file, you probably already have the sources. Nevertheless, you can checkout
them from SourceForge CVS using the following commands:

cvs -d:pserver:anonymous(@cvs.massiv.sourceforge.net:/cvsroot/massiv login

cvs -Z3 -d:pserver:anonymous(@cvs.massiv.sourceforge.net:/cvsroot/massiv co massiv

cvs -Z3 -d:pserver:anonymous(@cvs.massiv.sourceforge.net:/cvsroot/massiv co demo_data

cvs -z3 -d:pserver:anonymous(@cvs.massiv.sourceforge.net:/cvsroot/massiv co demo _install

The first line logs you as an anonymous user to the CVS - hit enter when asked for a password. The
second line checkouts the source codes. You need to use the last two lines only if you want to run the
Demo. The third one enables to download simulation data (textures, models, etc.) and finally the last
line checkouts some stuff that could help you create installers for Windows.

E.1.2. Compilation Steps Common for All Plat-
forms

1. Download Cryptopp

Download Cryptopp (a cryptography library) from
http://www.eskimo.com/~weidai/crypto42.zip. Unpack it into src/ext/cryptopp (under
Linux use the —a option to covert CR/LF newlines properly). Don't compile Cryptopp separately,
i.e. using the provided dsw project.

2. Download the SDL libraries

Download and install the following libraries:

* SDL (http://www.libsdl.org) - a portable library for graphics, sounds, etc.
* SDL image (http://www.libsdl.org/projects/SDL_image) - a portable library for loading/sav-
ing images from/to files.
3.  Download OpenGL and the GLU library

Probably the OpenGL is already installed on your system. If not, refer to http://www.opengl.org
for information how to install it. Note that besides the OpenGL you need also the GLU library.
Even this one is probably already preinstalled; seek for more information on the same website.
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E.1.3. Compilation under Windows (MSVC)

Note

Requirements: MSVC 6.x or 7.x with a command-line compilation support installed.

You have to accomplish the following steps to compile the Massiv Core library from source code un-
der Windows:

1. Download Perl

A working possibility is ActivePerl (http://www.activestate.com) or the Perl of Cygwin (ht-
tp://www.cygwin.com/setup.exe) for example. ActivePerl seems to be the more effective choice
bringing less problems. Note: In case you decide installing Cygwin, you should choose "Default
text file type: unix" during the installation.

2. Download STLPort

Download STLPort (a STD C++ library implementation) from ht-
tp://www.stlport.org/download.html. Massiv relies on an ANSI-conformant STD C++ library.
You are required to use STLPort under MSVC 6.x. If you are the lucky one and own MSVC 7.x,
you can use the Dinkumware STD C++ library which is shipped with it.

3. Compile STLPort if you want to use it.

If you chose to use the STLPort library, compile it with the i ostream support according to in-
structions included within the distribution:

You should go to the src directory of the STLport and run
nmake /f ve6.mak clean all

command if using MSVC 6.x or

nmake /f ve7.mak clean all

if using MSVC 7.0.

4.  Generate makefiles

Run

configure.cmd

from the Massiv root directory to generate makefiles and some other stuff. Re-run each time you
add or remove sources, change #includes, etc.

5. Configure compilation

Copy mkgen/config/msvc.config.example to mkgen/config/msvc.config and
edit it. Especially you need to edit msvc.config to choose between the Debug/Release
build and to set paths to your STL and SDL libraries. All you need to do should be obvious when
you see the file contents.

Note
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You don't have to regenerate makefiles when msvc.config is changed.

6. Compile auxiliary utilities

Compile makedir.c, runin.c and touch.c in mkgen/win32 and move it to somewhere
in your PATH.

Note

This compilation is as simple as the following command:

cl {utility name.c}

7.  Compile Massiv

Run
nmake /f makefile.msve
from src/core to compile the Core library.

Note

You should have no troubles compiling the Demo executables now. The Demo is located in
src/demo directory. In each server, client and service subdirectory there is a
config.h.example file. Copyitto config.h and edit it. You have to set the path to the
main configuration file appropriately. After that, just run

nmake /f makefile.msve

from each of the server, client and service subdirectory.

E.1.4. Compilation under Linux (GCC)

Note

These are an instructions to compile not only the Massiv Core, but also how to make the
Demo running. These instruction are already available in a simple text file massiv/
doc/INSTALL in the source tree. It may contain more up-to-date information.

Note

Requirements:

* gcc 3.0, 3.2 or better with the corresponding version of libstdc++.
SDL 1.2+ headers and libraries, including SDL_image library.

*  OpenGL 1.1+ and GLU headers and libraries.

* Perl 5.0 or newer.

L]

You have to accomplish the following steps to compile the Massiv Core library from source code un-
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der Linux/GCC:

1.  Configure

To configure Massiv for your development environment, run

./configure

script in the massiv directory (the one containing doc and src subdirectories). If it fails, try
running

./configure --help

to find out how to fix the problem. You also might examine the configure.log.

2. Compile and install

To compile the Massiv Core library, demo game client, server and data service and various utilit-
ies, run make in the massiv directory which contains the configure script from mentioned in
the first step.

Note

The Demo is located in the src/demo directory. In each server, client and service
subdirectory there is a config.h.example file. Before you start the Demo compilation,
you have to copy it to config.h and edit it. You must set the path to the main configuration
file appropriately.

To install the Core library, demo game and utility binaries, demo game data, setup script and ba-
sic documentation into directories specified in the Configure step, run

make install

in the same directory. If you only want to install the demo game client, run

make install client

3. Setup demo game servers

To setup a demo game server, run the massiv-setup script from an empty directory. If you run it
from empty ~/ .massiv with no parameters, the default setup (three simulation servers, master
data service and client with default privileged account, all on localhost) will be used. You can
then run the data service, simulation servers and the client using the run-* scripts generated in
the ~/ .massiv directory. If you want a different setup (run servers on multiple machines, use
different number of simulation servers, store runtime data in different directories, etc.), run
massiv-setup --config=FILENAME

Contents of the setup configuration (FILENAME) is documented in the default config which is
used when no -—config option is used. Run

massiv-setup --help

to determine location of the file. It is possible to configure for example the following:

*  How many simulation servers will be used
» [P addresses of the master data service and simulation servers
» Paths where run-time data (i.e. contents of subdirectories created by massiv-setup in current
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directory) will be stored on server machines.

4.  Running the Demo Game Servers

Distribute contents of directories corresponding to run- * scripts generated in the previous step to
all the server machines (their addresses and locations of the run-time files have been and con-
figured before). Use run- * scripts to run the servers. The master data service must be running be-
fore simulation servers can be launched.

5. Running Demo Client With Root Account

Configuration of the client has already been generated. Copy contents of the client directory
to the directory specified by massiv-setup config. You can use this config on any machine
as long as it's stored in a correct directory. Use run-client to run the client. Use default as lo-
gin name and no password.

Warning

This is pretty insecure, make sure that no one can read contents of the client/lo-
gin/default file). Or you can reencrypt this file using massiv-decrypt (with no pass-
word) and massiv-encrypt (with new password).

6. Provide the Client Installation Package

To run the demo, the massiv-client binary and libmassiv.so library is required. To create the ini-
tial run-time environment for the client, copy contents of the c1ient directory created in step 3
without login/default file, anywhere, and modify config/paths.conf. Distribute
contents of this directory to clients.

Users can then run Massiv client from the same directory on any computer, or optionally edit
config/paths.conf if they want to store config files and run-time data in other directories.
As the first step, they must create a new account. Any client can create accounts from the login
dialog in Massiv Demo. However, unlike the "default”" root account, new accounts created from
the login dialog can't be used to edit the world terrain and entities, unless their privileges are
modified by user with root account. If client wants to use her account on other computer, she can
simply copy Login/LOGINNAME to corresponding directory on the new computer.

E.2. Compilation of Documentation

You probably won't have to recompile documentation as it is already provided within the distribution.
However, if you want to make some change to the documentation, please refer to massiv/
doc/tech/documentation. txt for information about how to compile the user documentation
from the DocBook sources and to massiv/doc/tech/documentation doxy.txt for in-
formation how to generate programmer's documentation from the C++ source code.
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This chapter contains listings of all example sources stored in the src/example directory.

F.1. Creating Managed Class

Listings of examples described in Chapter 13, Creating Managed Class. Their sources are in src/
example/server lib.

Example F.1. makefile.gen

(1) # "Creating Managed Class" example.
(2) # mkgen.pl will generate makefiles for selected platforms from this file.
(3)
(4) # Required for all C++ projects.
(5)
(6) STDCPP
(7)
(8) # Include makefile.gen part generated by genmkgen.pl from idl.list.
(9)
(10) include makefile idl.gen
(11)
(12) # Directories to include from.
(13)
(14) includes = . ../../core
(15)
(16) # Precompile the massive core.h header if the compiler supports it.
(17)
(18) precompile = core.h
(19)
(20) # Create a library in this directory, containing objects compiled from
(21) # all C++ sources, including the generated sources. This library will
(22) # reference symbols from the Massiv Core shared library.
(23)
(24) library example lib server

(25) sources = *.cpp
(26) sources += @GENERATED SOURCES(E
(27) shlibs = ../../core/massiv

(28) endlibrary

Example F.2. id1.1ist

(1) # "Creating Managed Class" example.

(2) # Contents of this file are read by genmkgen.pl which
(3) # generates parts of makefile.gen.

(4)

290



Example Listings

(5) # We use managed classes from the Core library.
(6)

(7) depends ../../core

(8)

(9) # List of files containing descriptions of managed classes.
(10)

(11) idl hello interface.idl

(12) idl hello.idl

(13)

(14) # This not the main managed class library,

(15) # so do not generate a class list here.

(16) #class list SHARED SERVER

Example F.3. hello_interface.idl

(1) #import "core.idl"
(2)
(3) namespace example {
(4)

(5) class

(6) <

(7) abstract,

(8) kind = SERVER,

(9) root

(10) >

(11) HelloInterface : ::Massiv::Core::0Object
(12) {

(13) method< virtual > hello
(14) (

(15) in string callee name
(16) ) : string;

(17) }

(18)

(19) '} // namespace example

Example F.4. hello_interface.h

(1) #ifndef EXAMPLE HELLO INTERFACE H
(2) #define EXAMPLE HELLO INTERFACE H
(3)

(4) #ifndef MASSIV CORE H

(5) #include "core.h"

(6) #endif

(7)

(8) #include <string>

(9)

(10) namespace example {

(11) /**
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(12) * Interface of hello classes.
(13) *
(14) * This is generic interface of all classes that implement the
(15) * hello() method.
(16) *
(17) * As described in the IDL, all Hello classes should be root objects
(18) * of KIND SERVER kind.
(19) 74
(20) class HelloInterface : public ::Massiv::Core::0Object
(21) {
(22) public:
(23)
(24) /R
(25) * The "say hello" method.
(26) *
(27) * It should generate a hello message for the callee @a callee name,
(28) * print it anywhere it wants and return it.
(29) */
(30) virtual std::string hello
(31) (
(32) const std::string & callee name
(33) ) = 0;
(34)
(35) }; // class HelloInterface
(36)
(37) '} // namespace example
(38)
(39) #endif // EXAMPLE HELLO INTERFACE H
Example F.5. hello.idl
(1) #import "hello interface.idl"
(2)
(3) namespace example {
(4)
(5) class
(6) <
(7) simulation startup notify
(8) >
(9) Hello : HelloInterface
(10) {
(11) method register to naming
(12) (
(13) in string name
(14) ) : bool;
(15)
(16) property string name;
(17) property vlint32 total call count;
(18) property v1int32 current call count;
(19) }
(20)
(21) } // namespace example
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Example F.6. hello.h
(1) #ifndef EXAMPLE HELLO H
(2) #define EXAMPLE HELLO H
(3)
(4) #ifndef MASSIV CORE_H
(5) #include "core.h"
(6) #endif
(7)
(8) #ifndef EXAMPLE HELLO INTERFACE H
(9) #include "hello interface.h"
(10) #endif
(11)
(12) namespace example {
(13)
(14) /**
(15) * Simple implementation of the HellolInterface.
(16) 7
(17) <class Hello : public HellolInterface
(18) {
(19) public:
(20)
(21) /=%
(22) * Object initialization.
(23) *
(24) * The internal name of the object (not to be confused with
(25) * name under which it's registered to the garbarge collector)
(26) * will be set to @a the name.
(27) =y
(28) void initialize
(29) (
(30) const std::string & the name
(31) )
(32)
(33) Vi
(34) * The "say hello" method.
(35) *
(36) * The message generated by this implementation will contain
(37) * the callee name, name of the Hello object, and counters
(38) * indicating how many times this method has been called since
(39) * creation of this object and since last simulation startup.
(40) 7
(41) virtual std::string hello
(42) (
(43) const std::string & callee name
(44) )
(45)
(46) /=
(47) * Register the object to global naming service.
(48) *
(49) * This method will change name of the object to (@a the name,
(50) * and try to register the object to the global naming service
(51) * under that name. If the registration fails it will destroy
(52) * the object.
(53) *
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(54) * @note This method will fail unless the example library 1is
(55) * linked with the Massiv Demo. However, because it uses
(56) & dynamic RPC, it can be compiled without the library.
(57) 7
(58) bool register to naming
(59) (
(60) const std::string & the name
(61) );
(62)
(63) protected:
(64)
(65) Jx*
(66) * Object update callback.
(67) 7
(68) virtual void object updated
(69) (
(70) UpdateReason reason
(71) )
(72)
(73) public:
(74)
(75) Massiv::Core: :PString name;
(76) /**< Internal name of the object.
(77) It's used to print the hello message and to register
(78) the object to the global naming service. */
(79)
(80) Massiv::Core::PV1Int32 total call count;
(81) /**< Number of calls to hello() since object creation. */
(82)
(83) Massiv::Core::PV1Int32 current call count;
(84) /**< Number of calls to hello() since node startup. */
(85)
(86) }; // class Hello
(87)
(88) } // namespace example
(89)
(90) #endif // EXAMPLE HELLO H
Example F.7. hello. cpp
(1) #include "core.h"
(2) #include "hello.h"
(3) #include "database/well known object id database.h"
(4) #include <sstream>
(5)
(6) using namespace Massiv::Core;
(7)
(8) namespace example {
(9)
(10) void Hello::initialize
(11) (
(12) const std::string & the name
(13) )
(14) {
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(15) name = the name;

(16) }

(17)

(18) std::string Hello::hello

(19) (

(20) const std::string & callee name

(21) )

(22) {

(23) std::ostringstream oss;

(24) oss << "Hello to " << callee name << " from " << name << std::endl;
(25) oss << "(called " << total call count << " times, " <<

(26) current call count << " since startup)" << std::endl;
(27) const std::string s = oss.str();

(28)

(29) total call count++;

(30) current call count++;

(31)

(32) Global::log info( Status::FACILITY LIB, Status::PRIORITY LOW, s );
(33) return s;

(34) }

(35)

(36) bool Hello::register to naming

(37) (

(38) const std::string & the name

(39) )

(40) {

(41) initialize( the name );

(42)

(43) const WeakPointer< Object > self( this );

(44) bool failed = true;

(45) try

(46) {

(47) const ObjectId naming id = Global::well known object id database() .
(48) get naming service object();

(49) const Remote< Object > naming( naming id );

(50)

(51) const MetaObject * const metaobject = Global::class manager() .
(52) get metaobject( "Demo::Lib::NamingService" );

(53)

(54) std::stringstream ss;

(55) {

(56) TextWriter tw( ss );

(57) const Serializer::Description desc;

(58) name.text write( tw, desc );

(59) tw.write space();

(60) self.text write( tw, desc );

(61) tw.write space();

(62) const SBool replace = false;

(63) replace.text write( tw, desc );

(64) }

(65)

(66) TextReader tr( ss );

(67) std::auto_ptr< MethodPacket > results = metaobject->
(68) remote call method( naming, "register object", tr );
(69)

(70) if ( results->get argument value( -1 ) == "true" )

(71) {

(72) failed = false;

(73) }
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(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)
(94)
(95)
(96)
(97)
(98)
(99)
(100)
(101)
(102)
(103)
(104)
(105)
(106)
(107)
(108)
(109)
(110)

else
{
std::ostringstream oss;
o0ss << "Object " << name << " already registered "
" to the global naming service." << std::endl;
Global::log warning( Status::FACILITY LIB,
Status::PRIORITY HIGH, oss.str() );

}

catch( std::exception & e )

{

std::ostringstream oss;

0ss << "Failed to register " << name << " to naming service:

<< e.what ();
Global::log warning( Status::FACILITY LIB,
Status::PRIORITY HIGH, oss.str() );

if( failed )
{
Massiv::System::dispose gc root( self );
}

return failed ? false : true;

}

void Hello::object updated
(
UpdateReason reason
)
{
if ( reason == SIMULATION STARTUP )

{

current call count = 0;

}

} // namespace example
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