

The ObjectWeb Consortium
Interface Specification

MonoLog
-

Logging and Monitoring Specifications

 AUTHORS:
 S. Chassande-Barrioz (INRIA)
 CONTRIBUTORS:
 JB. Stefani (INRIA)
 B. Dumant (Kelua)

 Released: March 26, 2002
 Status: Final Release
 Version: 1.0

 Interface Specification

TABLE OF CONTENTS

1 INTRODUCTION.. 4
1.1 GOALS... 4
1.2 TARGET AUDIENCE.. 4
1.3 OVERVIEW .. 4
1.4 DOCUMENT CONVENTION ... 4

2 LOGGING API OVERVIEW... 5
2.1 ARCHITECTURE ... 5

2.1.1 Overview of Control flow ... 5
2.1.2 Granularity of logging ... 5

2.2 LEVEL INTERFACE & BASICLEVEL CLASS ... 6
2.2.1 Level ... 6
2.2.2 BasicLevel .. 6
2.2.3 Level extension ... 7

2.3 HANDLER .. 8
2.4 LOGGER... 8

2.4.1 How to find a Logger ? .. 9
2.5 TOPICALLOGGER... 10

2.5.1 Definition & properties .. 10
2.5.2 The use.. 10
2.5.3 TopicalLogger API... 11

2.6 LOGGERFACTORY ... 12
2.6.1 Goals .. 12
2.6.2 Api .. 12
2.6.3 How to find a LoggerFactory ?.. 12

2.7 ARCHITECTURE: SUMMARY .. 13
2.7.1 Relation between interfaces and aspects: .. 13

3 INSTRUMENTATION CONVENTION ... 14

3.1 HEADER & DECLARATION ... 14
3.2 LOGGING AN EVENT .. 14

3.2.1 Pre checking... 14
3.2.2 Parameters of log methods... 14

4 IMPLEMENTATIONS & WRAPPERS.. 15
4.1 LOG4J WRAPPER ... 15
4.2 JAVALOG WRAPPER.. 15

The ObjectWeb Consortium 2 Final Release 1.0

 Interface Specification

TABLE OF FIGURES
FIGURE 1 : EVENT LOGGING ON A LOGGER ... 5
FIGURE 2 : EVENT LOGGING ON A TOPICALLOGGER.. 5
FIGURE 3 : EVENT ROUTING.. 5
FIGURE 4 : PREDEFINED LEVELS.. 7
FIGURE 5 : TOPICALLOGGER AND ITS HANDLERS ... 10
FIGURE 6 : HIERARCHICAL NAMESPACE .. 10
FIGURE 7 : MULTIPLE NAMES.. 11
FIGURE 8: INTERACTIONS.. 13
FIGURE 9: TYPE MAPPING BETWEEN MONOLOG AND LOG4J... 15
FIGURE 10: LEVEL MAPPING BETWEEN MONOLOG AND JAVA LOG.. 15
FIGURE 11: TYPE MAPPING BETWEEN MONOLOG AND JAVA LOG ... 15

The ObjectWeb Consortium 3 Final Release 1.0

 Interface Specification

1 INTRODUCTION

A product must contain a log system in order to provide debug or log information at runtime.
The source code is instrumented by log actions. Java log (JSR 0047) and Log4j are two
standard specifications of logging. Both products contain only class specifications without
interfaces.

1.1 Goals

The MonoLog specification has been designed with the following goals:

• to standardize the instrumentation code,
• to support a component architecture,
• to allow an efficient implementation of logging,
• to abstract source code instrumentation from a specific implementation of logging,
• to support internationalisation,
• to support monitoring.

1.2 Target audience

This specification concerns all ObjectWeb developers, but also all developers who do not
want to depend on a logging implementation. The use of this specification also permits to
provide additional functionalities between the application and the log system.

1.3 Overview

The document describes a set of interfaces for the source code instrumentation and a
convention to instrument the source code. The full javadoc for Monolog is available at the
following URL: www.objectweb.org/archi/log/.
This specification does not contain a complete solution to the log system configuration
problem. At this step, our main objective is not to abstract the configuration from an
implementation, but only to abstract the source code instrumentation from an implementation.
Nevertheless, as it is impossible to talk about instrumentation without considering the start of
the log system, the configuration remains specific to an implementation or platform.

1.4 Document Convention

Description of MonoLog: Times New Roman:12
Example or source code: Courier New:10

The ObjectWeb Consortium 4 Final Release 1.0

 Interface Specification

2 LOGGING API OVERVIEW

2.1 Architecture

2.1.1 Overview of Control flow
Applications make logging calls on objects which implement the Logger interface. The
Logger interface provides methods to publish events:

log(…, event)
Application Logger

Figure 1 : Event logging on a Logger

As an anonymous Logger is not enough to have a complete log system, the TopicalLogger
interface is defined as an extension of a Logger. A TopicalLogger is a named Logger.

log(…, event)
Application TopicalLogger

"myName"

Figure 2 : Event logging on a TopicalLogger

A TopicalLogger can also route events to Handlers:

TopicalLogger
"myName"

Handler

Object Instance log(…, event)

log(…, event) Handler

Figure 3 : Event Routing
The Handler interface is empty and is used as a tag to represent an output. As the Logger
interface extends the Handler interface and the TopicalLogger interface extends the Logger
interface, a TopicalLogger can also route events to other Loggers or other TopicalLoggers.

2.1.2 Granularity of logging
It appears desirable to support granularity of logging in two different ways, first by topic and
second by priority or level.
To each logger is associated a topic or a set of topics. A topic is often the identifier of a sub-
system. A topic could be a simple string or a complex entity.
Among log events of a sub-system, there are many sorts of events. Some events are very
important and others are just used for debugging purposes. It appears desirable to allow
logging to be enabled according to a limited number of predefined system levels, so that a
program can be configured to output logging for some levels while ignoring output for other
levels.

The ObjectWeb Consortium 5 Final Release 1.0

 Interface Specification

2.2 Level interface & BasicLevel class

2.2.1 Level

An event must be registered with a level which represents its importance. This specification
provides a Level interface to represent this concept. Levels can be ordered, and enabling
logging at a given level also enables logging at all higher levels.

An object which implements the Level interface can be used in log methods to specify the
event importance. This interface provides a method to determine if two Level instances are
comparable (ie ordered), a method to compare Level instances, and a method to get an integer
value representing the level.

… // Level interface definition

boolean isComparableWith(Level level);

 int compareTo(Level level);

int getIntValue();

…

This specification also suggests applying the flyweight pattern to this Level interface. A Level
can be represented by a simple integer value. To apply the pattern, all log methods are
duplicated to take into consideration an integer parameter instead of a Level parameter. The
Level interface is defined in the org.objectweb.util.monolog.api package.

2.2.2 BasicLevel

To be complete, this specification must predefine a set of levels. Indeed during the
instrumentation, developers must write calls to log an event with a specific level. One of the
goals of this specification is to be independent of the logging implementation. To respect this
goal, predefined variables or constants are needed. This specification provides the
org.objectweb.util.monolog.api.BasicLevel class which contains only static but not final
variables to represent these predefined levels.
To respect the flyweight pattern chosen before, for each predefined level, a Level variable and
an integer variable are declared.
Their values are not defined, in order to leave it to the implementation to set them. The
following table describes the meaning of the five predefined levels. The declaration of the
BasicLevel class is just after the array.

The ObjectWeb Consortium 6 Final Release 1.0

 Interface Specification

Level name Details
FATAL In general, FATAL messages should describe events that are of considerable

importance and which will prevent continuation of the program execution.
They should be intelligible to end users and to system administrators.

ERROR The ERROR level designates error events that might still allow the
application to continue running.

WARN In general, WARN messages should describe events that will be of interest to
end users or system managers, or which indicate potential problems.

INFO The INFO level designates informational messages that highlight the progress
of the application at a coarse-grained level.

DEBUG DEBUG messages might include things like minor (recoverable) failures.
Logging calls for entering, returning, or throwing an exception can be traced
at this level.

… // BasicLevel interface definition
 public static Level LEVEL_FATAL ;
 public static int FATAL ;

 public static Level LEVEL_ERROR ;
 public static int ERROR ;

 public static Level LEVEL_WARN ;
 public static int WARN ;

 public static Level LEVEL_INFO ;
 public static int INFO ;

 public static Level LEVEL_DEBUG ;
 public static int DEBUG ;

Figure 4 : Predefined levels

2.2.3 Level extension

This specification defines five basic levels. But it is possible to a MonoLog user to define
additional levels. This specification allows this type of extension with some constraints or
advices:
 If levels are not ordered, the additional levels must be defined by an implementation of the

Level interface.
 If levels are ordered, all additional level must have an integer value between the FATAL

level and the DEBUG level.
 If levels are ordered, it is possible to define a level with relative integer value with an

existent level (MyLevel.FINE = BasicLevel.DEBUG + 2). This possibility imposes that
all MonoLog implementations define a set of sparse integer values for the levels.

The ObjectWeb Consortium 7 Final Release 1.0

 Interface Specification

2.3 Handler
Handler is an empty interface that represents an output. For example a handler might be a
console, a file, a socket, or a Logger.
It is not necessary to specify methods in the Handler interface. Indeed methods that could be
defined in this interface will concern only the configuration aspect. This version of the
specification only describes the instrumentation aspect. At the moment these methods are
specific to an implementation, and only used by the implementation of the log system. The
application does not need to know the Handler interface during the instrumentation step.

2.4 Logger

A Logger implementation receives event messages from an object and exports them. Each
Logger is associated with a log level and discards log requests that are below this level.
Furthermore the Logger interface extends the Handler interface and represents therefore a
type of output.

log Methods
These methods are used to log an event at a specific level. The type of the event parameter is
java.lang.Object, in order not to impose a specific type. When the log method is called, the
Logger checks if the event parameter is loggable at the specified level. This interface provides
log methods with many parameters. The list of log methods is the following:

… // Logger interface definition
void log(Level l, Object evt);
void log(int l, Object evt);
void log(Level l, Object evt, Throwable t);
void log(int l, Object evt, Throwable t);
void log(Level l, Object evt, Object location, Object method);
void log(int l, Object evt, Object location, Object method);
void log(Level l, Object evt, Throwable t, Object location, Object method);
void log(int l, Object evt, Throwable t, Object location, Object method);
…

All these methods are duplicated with an int parameter instead of Level. The "evt" parameter
is usually a textual representation of the event. Three methods have been added to the basic
methods in order to simplify the instrumentation.
In some cases, it appears to be desirable to log an exception. Giving the exception instance as
parameter can be interesting to unify the format of output.
Furthermore, in order to localize better an event, it is interesting to give as parameters two
objects which represent the object and the method of the object where the event has occurred.
A reference to the current object could be used as location parameter.
If it is not necessary to specify the instance, but only the class name, two solutions are
possible:
 either the class name could be used as location parameter,
 or the implementation knows how to find it in the execution context. Indeed it is possible

with the java.lang.Throwable class to obtain a string which represents the calls stack. It is
then easy to extract the object class name and the method name during the log action.

The ObjectWeb Consortium 8 Final Release 1.0

 Interface Specification

Level management

… // Logger interface definition

void setIntLevel(int level);
 void setLevel(Level l);

int getCurrentIntLevel();
Level getCurrentLevel();

…

These methods are accessors to the current logger level. These methods are duplicated to
apply the flyweight pattern and to allow using either an integer value or a Level
implementation.

Activation of Logger

… // Logger interface definition

void turnOn();
 void turnoff();

boolean isOn();
…

A Logger can be enabled or disabled by these methods. Even if the logger is disabled, the
accessors to the level information return the right value.

Level check

… // Logger interface definition
 boolean isLoggable(int level);
 boolean isLoggable(Level l);
…

These methods allow checking if a level parameter is loggable by the current Logger. The
level parameter is compared to the current level. These methods return always false if the
logger is disabled.

2.4.1 How to find a Logger ?

Two possibilities to obtain a Logger are considered:
 either find a LoggerFactory, and call a "getLogger" method,
 or initialise a component with a Logger. This allows specifying the Logger that a given

component must use.

The ObjectWeb Consortium 9 Final Release 1.0

 Interface Specification

2.5 TopicalLogger

2.5.1 Definition & properties
A TopicalLogger is a Logger extension with the following properties:

 A TopicalLogger dispatches events to a set of Handlers. A TopicalLogger is a sort
of message router.

Figure 5 : TopicalLogger and its Handlers

 A topic is associated with each TopicalLogger. A topic is represented by a dotted

string, which is used to build a hierarchical namespace. The latter should typically
be aligned with the Java packaging namespace.

TopicalLogger
« a.b.c »

TopicalLogger
« a.b »

Handler
log(level, event)

Handler

TopicalLogger

TopicalLogger
« a.b.d »

Figure 6 : Hierarchical namespace

 The name hierarchy of TopicalLogger allows adding properties inheritance. For

example, a TopicalLogger with the “a.b.c” name can inherit of the Handlers list and
the level from the “a.b” parent (see an example in 2.5.3 section).

 Another property for a TopicalLogger is the capacity to have several topics. This is
important when a component is used by several other components. This will allow
events logged by the shared component to appear for each component using this
shared component. A consequence of this property is that a Logger may have several
parents.

2.5.2 The use

The use of the TopicalLogger interface is not the same as that of the Logger interface. The
provided methods are used during the configuration of the log system. This configuration is
done during the start of the log system, but can also be done dynamically. The configuration
actions on a TopicalLogger are the change of the hierarchical namespace or the Handler list.
The TopicalLogger interface also provides the inherited methods of the Logger interface.

The ObjectWeb Consortium 10 Final Release 1.0

 Interface Specification

2.5.3 TopicalLogger API

Handlers list management

… // TopicalLogger interface definition

boolean addHandler(Handler h);
 Handler removeHandler(Handler h);
…

A TopicalLogger manages a list of Handler instances. These methods allow adding or
removing a handler from this list. The addHandler method returns true only if the Handler did
not exist. The removeHandler method returns the removed handler or null if did not exist.

Topics management

… // TopicalLogger interface definition

boolean addTopic(String topic);
 Enumeration getTopics();
 String removeTopic(String topic);
…

These methods allow adding or removing a topic to/from a TopicalLogger. These actions
change the hierarchical structure, but also the list of handlers. The list of handlers of a
TopicalLogger is composed of its handlers and all handlers inherited from its parents. Adding
or removing a topic changes the inherited handlers list.

Example:

TopicalLogger
“a.b”, WARN

TopicalLogger
“x.y”, INFO

TopicalLogger
“a.b.o” & “x.y.o”, INFO

forward to Handler
M1

forward to by
inheritance

forward to
Handler

M2

Figure 7 : Multiple names

This example presents a TopicalLogger “o” with two topics: ‘a.b.o’ and ‘x.y.o’. Each
TopicalLogger parent has a handler. The children inherit handlers from their parents. The
children level is the lowest of their parents.
If the ‘a.b.o’ topic is removed, then the TopicalLogger children will not forward events to the
M1 Handler.

The ObjectWeb Consortium 11 Final Release 1.0

 Interface Specification

2.6 LoggerFactory

2.6.1 Goals

• To provide Logger instances
• To allow instrumentation to be independent of the logging implementation.
• To allow the use of the same logging implementation for all the components of a given

application.

2.6.2 Api
The org.objectweb.util.monolog.api.LoggerFactory interface provides two methods to fetch
Logger. If the Logger described by the parameters does not exist, then the LoggerFactory
must return a new instance of Logger. The list of methods is the following:

… // LoggerFactory interface definition

Logger getLogger(String key) ;
Logger getLogger(String key, String resourceBundleName) ;
void setResourceBundleName(String resourceBundleName) ;
String getResourceBundleName() ;

The key parameter is a description of the expected Logger. In simple cases, the key is the
initial topic of the Logger.
The second log method allows specifying the name of a resource bundle in order to
internationalise the logging. This option is useful when a resource bundle needs to be
specified by component.
The LoggerFactory interface also provides accessors to a resource bundle name associated to
a LoggerFactory. This interface allows defining a resource bundle name used by all Logger.

2.6.3 How to find a LoggerFactory ?
In a component-based approach, there are two ways to fetch a LoggerFactory:
 Either among initialisation parameters there is a LoggerFactory reference registered with a

well-known name
 Or the component lookup up the naming service the well-known name.

In simpler architecture types, this specification suggests to keep a static reference within an
intermediate class. This is a sort of LoggerFactory manager. This specification presents an
example of LoggerFactory Manager which provides only two static methods to set or get the
unique LoggerFactory instance:

package org.Objectweb.util.monolog.lib;
public class DefaultLoggerFactoryManager {

private static LoggerFactory factory = null;
public static LoggerFactory getLoggerFactory() {

return factory;
}

 public static void setLoggerFactory(LoggerFactory lf) {
factory= lf;

 }
}

The ObjectWeb Consortium 12 Final Release 1.0

 Interface Specification

2.7 Architecture: Summary

TopicalLogger

Logger

Handler

Application
extends

uses

LoggerFactory

uses
manages

configures

Instance providing these interfaces

extends

uses

Figure 8: Interactions

This schema shows all interactions between an application and the MonoLog interfaces. The
application interacts with the LoggerFactory to obtain a Logger reference. With this reference
the application can log events. This scenario concerns the instrumentation aspect.
In most cases, the Logger instance implements the TopicalLogger interface too and can be
cast to the TopicalLogger type. The TopicalLogger interface allows configuring the instance.
The application or an administrator can configure the instance.

2.7.1 Relation between interfaces and aspects:

This following array shows the relations between interfaces and aspects. Each interface is
only linked to one aspect.

 Logger TopicalLogger Handler LoggerFactory Level
Instrumentation X X [X]
Configuration X X [X]

The ObjectWeb Consortium 13 Final Release 1.0

 Interface Specification

3 INSTRUMENTATION CONVENTION
This part of the specification gives an example of source code instrumentation.

3.1 Header & declaration
To log event is necessary to fetch a Logger implementation from a LoggerFactory. As
explained in section 2.5, a component must first fetch a LoggerFactory. The example below
shows the use of DefaultLoggerFactoryManager, and the needed imports.

import org.objectweb.util.monolog.api.Logger;
import org.objectweb.util.monolog.api.LoggerFactory;
import org.objectweb.util.monolog.lib.DefaultLoggerFactoryManager;

static Logger logger = DefaultLoggerFactoryManager.

getLoggerFactory().getLogger(“org.ow.toto”);

A static final variable ‘trace’ can be also defined. This variable is not necessary but allows
withdrawing the logging source code at the compilation time.

static final boolean trace = true; //or false

3.2 Logging an event
3.2.1 Pre checking
To log an event, there are several alternatives:
 The simple way is to call the log method with the level and the message:

logger.log(BasicLevel.DEBUG, ...);

 It is possible to prefix the call by a test of the Logger level. This allows avoiding to build

the message if it is not necessary (This is useful as a message is often a complex argument
built with many objects).

if (logger.isLoggable(BasicLevel.DEBUG))
logger.log(BasicLevel.DEBUG, ...);

 Another possibility allows withdrawing logging code at compile time, by adding the test

of the static constant ‘trace’ to the previous example:
if (trace && logger.isLoggable(BasicLevel.DEBUG))

logger.log(BasicLevel.DEBUG, ...);

3.2.2 Parameters of log methods
The Logger provides several methods to log an event, each one corresponding to a use case
as described here:
 log(level, message): This is the basic log method. The log implementation can find the

context via methods of the java.lang.Throwable class.
 log(level, message, throwable): This methods permits to give a message and a Throwable

which represents the context. The throwable parameter can be used to give an Exception.
 log(level, message, location, method): This method permits to specify an instance and a

method. The location parameter is the instance, and the method parameter can be the
name of the method or the object java.lang.reflect.Method.

 log(level, message, throwable, location, method): this method permits to log a error and to
specify the instance where the error occurred.

The ObjectWeb Consortium 14 Final Release 1.0

 Interface Specification

4 IMPLEMENTATIONS & WRAPPERS

4.1 Log4j Wrapper

The proposed levels are the same as the log4j Priorities. The log4j wrapper has to manage the
multiple topic property, and provide a LoggerFactory implementation.

Monolog types Java Log types
Handler Appender
Logger

TopicalLogger
Category

LoggerFactory CategoryFactory
Level Priority

Figure 9: Type mapping between Monolog and log4j

4.2 JavaLog Wrapper

The mapping of MonoLog level to Java Log Level is the following:

MonoLog levels Java Log Priorities
FATAL SEVERE
ERROR SEVERE
WARN WARNING
INFO INFO

DEBUG FINEST

Figure 10: Level mapping between Monolog and Java log

For example, when logging an event with the ERROR Level, Java Log will receive a log call
with SEVERE Level.

In addition of the level conversion, the Java Log wrapper has to implement the multiple topic
property, and provide a LoggerFactory implementation.

Monolog types Java Log types
Handler Handler
Logger

TopicalLogger
Logger

LoggerFactory LogManager
Level Level

Figure 11: Type mapping between Monolog and Java Log

The ObjectWeb Consortium 15 Final Release 1.0

	Introduction
	Goals
	Target audience
	Overview
	Document Convention

	Logging API overview
	Architecture
	Overview of Control flow
	Granularity of logging

	Level interface & BasicLevel class
	Level
	BasicLevel
	Level extension

	Handler
	Logger
	How to find a Logger ?

	TopicalLogger
	Definition & properties
	The use
	TopicalLogger API

	LoggerFactory
	Goals
	Api
	How to find a LoggerFactory ?

	Architecture: Summary
	Relation between interfaces and aspects:

	Instrumentation Convention
	Header & declaration
	Logging an event
	Pre checking
	Parameters of log methods

	Implementations & Wrappers
	Log4j Wrapper
	JavaLog Wrapper

