
CORBA 3.0 New Components
Chapters
CCMFTFDraft ptc/99-10-04
Document Editor: Jeff Mischkinsky

jeff_mischkinsky@omg.org

OMG TC Document ptc/99-10-04

October 29, 1999
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999 -1



-2 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999



Table of Contents
9

60 OMG CIDL Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 9

60.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
60.2 Lexical Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

60.2.1 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
60.3 OMG CIDL Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
60.4 OMG CIDL Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
60.5 Composition Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

60.5.1 Life cycle category and constraints . . . . . . . . . . . . . . . . . . . . . . . . . 14
60.6 Catalog Usage Declaration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
60.7 Home Executor Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
60.8 Home Implementation Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
60.9 Storage Home Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
60.10 Home Persistence Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
60.11 Executor Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
60.12 Segment Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
60.13 Segment Persistence Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
60.14 Facet Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
60.15 Feature Delegation Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
60.16 Abstract Storage Home Delegation Specification . . . . . . . . . . . . . . . . . . 21
60.17 Executor Delegation Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
60.18 Abstract Spec Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
60.19 Proxy Home Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
60.20 Scoping Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

61 Component Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

61.1 Component Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10/29/99 Object Services: The Book -3



61.1.1 Component levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
61.1.2 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
61.1.3 Components and facets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
61.1.4 Component identity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
61.1.5 Component homes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

61.2 Component Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
61.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Component Declaration29

61.3.1 Basic Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
61.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Equivalent IDL30
61.3.3 Component Body. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

61.4 Facets and Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
61.4.1 Equivalent IDL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
61.4.2 Semantics of facet references. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
61.4.3 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
61.4.4 Provided References and Component Identity. . . . . . . . . . . . . . . . . 36
61.4.5 Supported interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

61.5 Receptacles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
61.5.1 Equivalent IDL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
61.5.2 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
61.5.3 Receptacles interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

61.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Events44
61.6.1 Event types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
61.6.2 Integrity of value types contained in anys . . . . . . . . . . . . . . . . . . . . 45
61.6.3 EventConsumer interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
61.6.4 Event service provided by container . . . . . . . . . . . . . . . . . . . . . . . . 46
61.6.5 Event Sources—publishers and emitters. . . . . . . . . . . . . . . . . . . . . 46
61.6.6 Publisher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
61.6.7 Emitters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
61.6.8 Module scope of generated event consumer interfaces. . . . . . . . . . 50
61.6.9 Event Sinks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
61.6.10 Events interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

61.7 Homes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
61.7.1 Equivalent interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
61.7.2 Primary key declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
61.7.3 Explicit operations in home definitions . . . . . . . . . . . . . . . . . . . . . . 57
61.7.4 Home inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
61.7.5 Semantics of home operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
61.7.6 CCMHome interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
61.7.7 KeylessCCMHome interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

61.8 Home Finders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
61.9 Component Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

61.9.1 Exclusive configuration and operational life cycle phases . . . . . . . 66
61.10 Configuration with attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
-4 CORBA 3.0 CCM FTF Draft ptc/99-10-04 29 October 1999 10/29/99



90
61.10.1 Attribute Configurators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
61.10.2 Factory-based configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

61.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Component Inheritance70
61.11.1 CCMObject Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

61.12 Conformance Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
61.12.1 A Note on Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
61.12.2 Changes to Object Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

615 CCM Implementation Framework . . . . . . . . . . . . . . . . . . . . . . . 77

615.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
615.2 Component Implementation Framework (CIF) architecture. . . . . . . . . . 78

615.2.1 Component Implementation Definition Language (CIDL). . . . . . 78
615.2.2 Component persistence and behavior. . . . . . . . . . . . . . . . . . . . . . . 78
615.2.3 Implementing a CORBA Component. . . . . . . . . . . . . . . . . . . . . . 78
615.2.4 Behavioral elements: Executors. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
615.2.5 Unit of implementation : Composition. . . . . . . . . . . . . . . . . . . . . 79
615.2.6 Composition structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
615.2.7 Compositions with managed storage. . . . . . . . . . . . . . . . . . . . . . . 87
615.2.8 Relationship between home executor and abstract storage home .
615.2.9 Executor definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
615.2.10 Proxy homes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
615.2.11 Component object references. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

615.3 Language Mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

62 The Container Programming Model. . . . . . . . . . . . . . . . . . . . . . 117

62.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
62.1.1 External API Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
62.1.2 Container API Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
62.1.3 CORBA Usage Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
62.1.4 Component Categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

62.2 The Server Programming Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 121
62.2.1 Component Containers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
62.2.2 CORBA Usage Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
62.2.3 Component Factories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
62.2.4 Component Activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
62.2.5 Servant Lifetime Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
62.2.6 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
62.2.7 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
62.2.8 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
62.2.9 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
62.2.10 Application Operation Invocation . . . . . . . . . . . . . . . . . . . . . . . . 131
10/29/99 CORBA 3.0 CCM FTF Draft ptc/99-10-04 29 October 1999 -5



4

9

83
6

62.2.11 Component Implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
62.2.12 Component Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
62.2.13 Component Categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

62.3 Server Programming Interfaces - Basic Components. . . . . . . . . . . . . . . 137
62.3.1 Component Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
62.3.2 Interfaces Common to both Container API Types. . . . . . . . . . . . . 138
62.3.3 Interfaces Supported by the Session Container API Type. . . . . . . 143
62.3.4 Interfaces Supported by the Entity Container API Type. . . . . . . . 146

62.4 Server Programming Interfaces - Extended Components. . . . . . . . . . . . 149
62.4.1 Interfaces Common to both Container API Types. . . . . . . . . . . . . 150
62.4.2 Interfaces Supported by the Session Container API Type. . . . . . . 155
62.4.3 Interfaces Supported by the Entity Container API Type. . . . . . . . 156

62.5 The Client Programming Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
62.5.1 Component-aware Clients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
62.5.2 Component-unaware Clients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

64 Integrating with Enterprise JavaBeans . . .. . . . . . . . . . . . . . . . 171

64.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
64.2 Enterprise JavaBeans Compatibility Objectives and Requirements . . . . 17
64.3 CORBA Component views for EJBs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

64.3.1 Mapping of EJB to Component IDL definitions. . . . . . . . . . . . . . 176
64.3.2 Translation of CORBA Component requests into EJB requests . . 17
64.3.3 CORBA Component view Example. . . . . . . . . . . . . . . . . . . . . . . 182

64.4 EJB views for CORBA Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
64.4.1 Mapping of Component IDL to Enterprise JavaBeans specifications1
64.4.2 Translation of EJB requests into CORBA Component requests . . 18
64.4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

64.5 Comparing CCM and EJB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
64.5.1 The Home Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
64.5.2 The Component Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
64.5.3 The Callback Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
64.5.4 The Context Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
64.5.5 The Transaction Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
64.5.6 The Metadata Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

66 Component Container Architecture . . . . . . . . . . . . . . . . . . . . . . 199

66.1 Component Server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
66.1.1 Component Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
66.1.2 POA Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
66.1.3 Binding the Container to CORBA services . . . . . . . . . . . . . . . . . . 203
66.1.4 Container API Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
-6 CORBA 3.0 CCM FTF Draft ptc/99-10-04 29 October 1999 10/29/99



0

1

66.2 Containers Categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
66.2.1 The Empty Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
66.2.2 The Service Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
66.2.3 The Session Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
66.2.4 The Process Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
66.2.5 The Entity Container. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
66.2.6 The EJBSession Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
66.2.7 The EJBEntity Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

66.3 Persistence Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
66.3.1 Container-managed Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
66.3.2 Self-managed Persistence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
66.3.3 Interactions between the Container and the Persistence Provider . 25

66.4 Event Management Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
66.4.1 Channel setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
66.4.2 Transmitting an event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
66.4.3 Receiving an event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

69 Packaging and Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

69.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
69.2 Component Packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
69.3 Software Package Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

69.3.1 A softpkg Descriptor Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
69.3.2 The Software Package Descriptor XML Elements . . . . . . . . . . . . 261

69.4 CORBA Component Descriptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
69.4.1 Component Feature Description. . . . . . . . . . . . . . . . . . . . . . . . . . . 273
69.4.2 Deployment Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
69.4.3 CIDL Compiler Responsibilities. . . . . . . . . . . . . . . . . . . . . . . . . . 274
69.4.4 CORBA Component Descriptor Example. . . . . . . . . . . . . . . . . . . 275
69.4.5 The CORBA Component Descriptor XML Elements. . . . . . . . . . 277

69.5 Component Assembly Packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
69.6 Component Assembly File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
69.7 Component Assembly Descriptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

69.7.1 Component Assembly Descriptor Example. . . . . . . . . . . . . . . . . . 300
69.7.2 Component Assembly Descriptor XML Elements. . . . . . . . . . . . . 302

69.8 Property File Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
69.8.1 Property File Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
69.8.2 Property File XML Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

69.9 Component Deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
69.9.1 Participants in Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
69.9.2 ComponentInstallation Interface. . . . . . . . . . . . . . . . . . . . . . . . . . 330
69.9.3 AssemblyFactory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
69.9.4 Assembly Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
10/29/99 CORBA 3.0 CCM FTF Draft ptc/99-10-04 29 October 1999 -7



69.9.5 Component Entry Points (Component Home Factories). . . . . . . . 332
695.1 softpkg.dtd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
695.2 corbacomponent.dtd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
695.3 properties.dtd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
695.4 componentassembly.dtd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
-8 CORBA 3.0 CCM FTF Draft ptc/99-10-04 29 October 1999 10/29/99



OMGCIDLSyntax and Semantics 60
L)
Note – In this draft all text in black is from the CCM specification.Text in Brown is
from the PSS specifications. Editorial modifications to improve readability are in Dark
Green.

Note – Last modified - Jeff Mischkinsky

Note – All cross-references need to be fixed.

This chapter describes OMG Component Implementation Definition Language (CID
semantics and gives the syntax for OMG CIDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 60-10

“Lexical Conventions” 60-11

“OMG CIDL Grammar” 60-11

“OMG CIDL Specification” 60-13

“Composition Definition” 60-13

“Catalog Usage Declaration” 60-15

“Home Executor Definition” 60-15
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999 60-9



60

e

.

ifiers

a

n

60.1 Overview

The OMG Compponent Implementation Definition Language (CIDL) is the languag
used to describe the

OMG CIDL obeys the same lexical rules as OMG IDL, although new keywords are
introduced to support concepts specific to component implementation descriptions

The description of OMG CIDL’s lexical conventions is presented in Section 60.2,
“Lexical Conventions,” on page 60-11. A description of OMG IDL preprocessing is
presented in Section 3.3, “Preprocessing,” on page 3-12. The scope rules for ident
in an OMG IDL specification are described in Section 3.18, “CORBA Module,” on
page 3-60.

The OMG CIDL grammar is an extension of the OMG IDL grammar. OMG CIDL is
declarative language. The grammar is presented in Section 60.3, “OMG CIDL
Grammar,” on page 60-11.

A source file containing interface specifications written in OMG CIDL must have a
“.cdl” extension.

“Home Implementation Declaration” 60-16

“Storage Home Binding” 60-17

“Home Persistence Declaration” 60-17

“Executor Definition” 60-17

“Segment Definition” 60-18

“Segment Persistence Declaration” 60-19

“Facet Declaration” 60-19

“Feature Delegation Specification” 60-19

“Abstract Storage Home Delegation Specification” 60-21

“Executor Delegation Specification” 60-23

“Abstract Spec Declaration” 60-23

“Proxy Home Declaration” 60-23

Section Title Page
60-10 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Overview 29 October 1999



60

d to
is

s

ay

L,
The description of OMG CIDL grammar uses the same syntax notation that is use
describe OMG IDL in xxxxx. For reference, Table 60-1 lists the symbols used in th
format and their meaning.

60.2 Lexical Conventions

This section presents the lexical conventions of OMG CIDL. In general OMG CIDL
uses the same lexical conventions as OMG IDL. It does use additional keywords a
described below.

60.2.1 Keywords

The identifiers listed in Table 60-2 are reserved for use as keywords in CIDL, and m
not be used otherwise in CIDL, unless escaped with a leading underscore. These are in
addition to the ones defined by IDL, which may also not be used otherwise in CID
unless escaped with a leading underscore.

60.3 OMG CIDL Grammar

The grammar for CIDL is defined by the following BNF productions:

(1) <composition> ::= “composition” <category> <identifier>
“{” <composition_body> “}”

(2) <category> ::= “entity”
| “process”
| “service”
| “session”

(3) <composition_body> ::= [ <catalog_use_dcl> ] <home_executor_def>
[ <proxy_home_def> ]

(4) <catalog_use_dcl> ::= “uses” “catalog” “{“ <catalog_dcl>+ “}” “;”

Table 60-1 IDL EBNF

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional—may occur zero or one time

Table 60-2 Keywords

bindsTo delegatesTo implements segment storageHome

catalog entity process service storedOn

composition executor proxy session
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Lexical Conventions 29 October 199960-11



60
(5) <catalog_dcl> ::= <catalog_type_spec> <catalog_label>
(6) <catalog_type_spec> ::= <scoped_name>
(7) <catalog_label> ::= <identifier>
(8) <home_executor_def> ::= “home” “executor” <identifier> “{”

<home_executor_body> “}” “;”
(9) <home_executor_body> ::= <home_impl_dcl>

| [ <abstract_storage_home_binding> ]
| [ <stored_on_dcl> ]
| <executor_def>
| [<abstract_storage_home_delegation_spec>]
| [ <executor_delegation_spec> ]
| [ <abstract_spec> ]

(10) <home_impl_dcl> ::= “implements” <home_type_name> “;”
(11) <home_type_name> ::= <scoped_name>
(12)<abstract_storage_home_binding>::= “bindsTo”

<abstract_storage_home_name> “;”
(13)<abstract_storage_home_name>::= <catalog_label> “.”

<abstract_storage_home_label>
(14)<abstract_storage_home_label>::= <identifier>
(15) <home_persistence_dcl> ::= “storedOn” <abstract_storage_home_name>

“;”
(16) <executor_def> ::= “manages” <identifier>

[ <executor_body> ] “;”
(17) <executor_body> ::= “{” <executor_member>+ “}”
(18) <executor_member> ::= <segment_def>

| <feature_delegation_spec>
(19) <segment_def> ::= “segment” <identifier>

“{” <segment_member>+ “}”
(20) <segment_member> ::= <segment_persistence_dcl> “;”

| <facet_dcl> “;”
(21)<segment_persistence_dcl>::= “storedOn” <abstract_storage_home_name>

“;”
(22) <facet_dcl> ::= “provides” “facet” <identifier>

{ “,” <identifier> }*
(23)<feature_delegation_spec> ::=“delagatesTo” “storage”

<feature_delegation_list>
(24) <feature_delegation_list> ::= “(” <feature_delegation> { “,”

<feature_delegation> }* “)”
(25) <feature_delegation> ::= <feature_name> “:”

<storage_member_name>
(26) <feature_name> ::= <identifier>
(27)<storage_member_name> ::= <identifier>
(28)<abstract_storage_home_delegation_spec>::= “delegatesTo” “abstract”

“storagehome” <delegation_list> “;”
(29)<executor_delegation_spec> ::= “delegatesTo” “executor”

<delegation_list> “;”
60-12 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 OMG CIDL Grammar 29 October 1999



60

n.
ded

he
(30) <delegation_list> ::= “(” <delegation> { “,” <delegation> }* “)”
(31) <delegation> ::= <operation_name> [ “:” <operation_name> ]
(32) <operation_name> ::= <identifier>
(33) <abstract_spec> ::= “abstract” <operation_list> “;”
(34) <operation_list> ::= “(” <operation_name>

{ “,” <operation_name> }* “)”
(35) <proxy_home_def> ::= “proxy” “home” <identifier>

“{” <proxy_home_member>+ “}” “;”
(36) <proxy_home_member> ::= <home_delegation_spec> “;”

| <abstract_spec>
(37) <home_delegation_spec> ::= “delegatesTo” “home” <delegation_list>

60.4 OMG CIDL Specification

Note – We need to say here how a CIDL specification relates to an IDL specificatio
The easiest way to handle this may be to simply say that in CIDL one option is ad
to IDL grammar rule 1 and the rule is:

Note – | <composition>

60.5 Composition Definition

The syntax for composition definitions is as follows:

(1) <composition> ::= “composition” <category> <identifier> “{”
<composition_body> “}”

(2) <category> ::= “entity”
| “process”
| “service”
| “session”

(3) <composition_body> ::= [ <catalog_use_dcl> ] <home_executor_def>
[ <proxy_home_def> ]

A composition definition is a named scope that contains elements that constitute t
composition. The elements of a composition definitions are as follows:

• the keywordcomposition

• the specification of the life cycle category, one of the keywordsservice , session ,
process , or entity . Subsequent definitions and declarations in the composition
must be consistent with the declared category, as defined in Section 60.5.1.

• an identifier that names the composition in the enclosing module scope

• the composition body

The composition body consists of the following elements:

• an optional catalog usage declaration
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 OMG CIDL Specification 29 October 1999



60

g
ted

IDL
n, it

as
• a mandatory home executor definition

• an optional proxy home definition.

60.5.1 Life cycle category and constraints

Certain composition configurations are only valid for certain life cycle categories.
Chapter 62, “The Container Programming Model” describes the life cycle-related
constraints from the perspective of the container. These constraints map onto
corresponding constraints in component and composition definitions. The followin
lists define the CIDL constructs that are either mandatory or invalid for the designa
life cycle category.

Note that these constraints supersede the conditionality of constructs based on C
syntax. If a construct is described below as mandatory for the category in questio
is mandatory regardless of it’s syntactic properties. All of the constructs described
invalid for a particular category are, of necessity, syntactically optional.

Table 60-1 Constraints for service and session components

Service and
Session

Mandatory None

Invalid abstract storage home bound to home executor:
<abstract_storage_home_binding> in home
executor body

component home implemented by home executor
specifies a primary key

component home implemented by home executor
specifies explicit finder operations

segmented executor:<segment_def> in executor
body

Table 60-2 Constraints for process components

Process Mandatory None

Invalid component home implemented by home executor
specifies a primary key

Table 60-3 Constraints for entity components

Entity Mandatory component home implemented by home executor
specifies a primary key

Invalid none
60-14 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Composition Definition 29 October 1999



60

e of

ion
to a
CIF

ion

by
60.6 Catalog Usage Declaration

The syntax for a catalog usage declaration is as follows:

(4) <catalog_use_dcl> ::= “uses” “catalog” “{“ <catalog_dcl>+ “}” “;”
(5) <catalog_dcl> ::= <catalog_type_spec> <catalog_label>
(6) <catalog_type_spec> ::= <scoped_name>
(7) <catalog_label> ::= <identifier>

A catalog usage declaration consists of the following elements:

• the keywordsuses andcatalog

• a block containing one or more catalog label declarations

A catalog label declaration consists of the following elements:

• a scoped name denoting a previously-defined catalog

• an identifier that denotes a putative catalog of the specified type within the scop
the composition

A catalog usage declaration identifies catalog types that are used by the composit
and assigns them labels that are used within the scope of the composition to refer
putative catalog of the specified type. A catalog usage declaration also causes the
to generate implementation of the following behaviors:

During the activation of a home executor, the CIF-generated activate implementat
on the home executor shall obtain theCosPersistentState::CatalogBase interface
from the component context, and invokeget_catalog on it, requesting a catalog of
each type specified in the catalog usage declaration. The catalogs are requested
their repository ID values. The home shall maintain references to the specified
catalogs, and make them available to the executors.

60.7 Home Executor Definition

The syntax for a home executor definition is as follows:

(8) <home_executor_def> ::= “home” “executor” <identifier>
“{” <home_executor_body> “}” “;”

(9) <home_executor_body> ::= <home_impl_dcl>
| [ <abstract_storage_home_binding> ]
| [ <stored_on_dcl> ]
| <executor_def>
| [<abstract_storage_home_delegation_spec>]
| [ <executor_delegation_spec> ]
| [ <abstract_spec> ]

A home executor definition consists of the following elements:

• the keywordshome andexecutor

• an identifier that names the home executor definition within the scope of the
composition.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Catalog Usage Declaration 29 October 1999



60

hich

upon

e

to

at

for

ge

e

.8,
• a home executor body.

The home executor body consists of the following elements:

• a home implementation declaration

• an optional abstract storage home binding, specifying the storage home upon w
the components managed by the home are stored

• an optional home persistence declaration, identifying an abstract storage home
which the state of the home executor itself is to be stored

• an executor definition, describing the component executor managed by the hom
executor

• an optional delegation specification describing the mapping of home operations
storage home operations

• an optional delegation specification describing the mapping of home factory
operations to the operations on the component executor

• an optional abstract specification, declaring operations on the home executor th
are to be left unimplemented, overriding default generated implementations

The <identifier> in the header of the home executor definition is used as the basis
the name of the skeleton artifact generated by the CIF. The specific forms of the
executors are defined in language mappings. The general requirements for langua
mappings of homes executors are defined in Section 60.7, “Home Executor
Definition,” on page 60-15.

60.8 Home Implementation Declaration

The syntax of a home implementation declaration is as follows:

(10) <home_impl_dcl> ::= “implements” <home_type_name> “;”
(11) <home_type_name> ::= <scoped_name>

The home implementation declaration consists of the following elements:

• the keywordimplements

• a scoped name denoting a component home imported from IDL

The home implementation declaration specifies the component home which is to b
implemented by the home executor being defined. The generated skeleton must
support the home equivalent interface, as defined in Section 61.7.1, “Equivalent
interfaces,” on page 61-53. Implementations of orthodox home operations are
generated if the life cycle category of the composition is eitherentity or process and
the home executor specifies an abstract storage home binding, or if the life cycle
category of the executor is eithersession or service .

The detailed semantics of generated implementations are described in Section 60
“Home Implementation Declaration,” on page 60-16.
60-16 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Home Implementation Declaration 29



60

d a
n the
abel
d with

tent,
e of
The
are
60.9 Storage Home Binding

The syntax for a storage home binding is as follows:

(12)<abstract_storage_home_binding>::= “bindsTo”
<abstract_storage_home_name> “;”

(13)<abstract_storage_home_name>::= <catalog_label> “.”
<abstract_storage_home_label>

(14)<abstract_storage_home_label>::= <identifier>

An abstract storage home binding declaration consists of the following elements:

• the keywordbindsTo

• an abstract storage home name

An abstract storage home name consists of a catalog label, a period separator, an
storage home label. The catalog label must denote a catalog previously declared i
catalog usage declaration in the current composition definition. The storage home l
must denote a storage home declared as a member of the catalog type associate
the catalog label.

60.10 Home Persistence Declaration

The syntax for a home persistence declaration is as follows:

(15) <home_persistence_dcl> ::= “storedOn” <abstract_storage_home_name>
“;”

A home persistence declaration consists of the following elements:

• the keywordstoredOn

• an abstract storage home name

A home persistence declaration establishes that the home executor is itself persis
and that it’s persistent state is managed by the container. The abstract storage typ
the specified abstract storage home constitutes the state of the component home.
specific responsibilities of generated home executors related to home persistence
described in Section 60.9, “Storage Home Binding,” on page 60-17.

60.11 Executor Definition

The syntax for an executor definition is as follows:

(16) <executor_def> ::= “manages” <identifier>
[ <executor_body> ] “;”

(17) <executor_body> ::= “{” <executor_member>+ “}”
(18) <executor_member> ::= <segment_def>

| <feature_delegation_spec>

An executor definition has the following elements:

• the keywordmanages
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Storage Home Binding 29 October 199960-17



60

n,”

r is

cutor.
tifier,

n.

ts the
he
does

in
• and identifier that names the component executor being defined

• an executor body, containing one or more members enclosed in braces

An executor member is either asegment definitionor a feature delegation specification,
as defined below.

The identifier in the executor definition forms the basis of the name of the
programming artifact generated as the executor skeleton. The details of executor
structure and responsibilities are defined in Section 60.7, “Home Executor Definitio
on page 60-15, and in CIDL language mappings.

60.12 Segment Definition

The syntax for a segment definition is as follows:

(19) <segment_def> ::= “segment” <identifier>
“{” <segment_member>+ “}”

(20) <segment_member> ::= <segment_persistence_dcl> “;”
| <facet_dcl> “;”

A segment definition consists of the following elements:

• the keywordsegment

• an identifier that names the segment in the scope of the executor definition

• one or more segment members enclosed in braces

A segment member is either asegment persistence declaration, or a facet declaration,
as described below.

If a segment definition occurs in an executor definition, the corresponding executo
said to be a segmented executor. If no segment definition occurs in a executor
definition, the executor is said to be monolithic.

A separate skeleton is generated by the CIF for each segment of a segmented exe
Segments are independently activated. Each segment is assigned a segment iden
which as a numeric value of type short, by the CIF implementation. The segment
identifier is interpreted internally by the generated implementation during activatio
Segment identifiers are also used in component identities, as described in
Section 62.4.3.1, “Component Identifiers,” on page 62-156. There is no canonical
mechanism for assigning segment identifier values (other than the component
segment), as the values of segment identifiers does not affect portability or
interoperability.

All executors have a distinguished segment, the component segment, that suppor
component facet (i.e., the facet supporting the component equivalent interface). T
segment identifier value of the component segment is always zero. If a component
not explicitly declare segments, the monolithic executor is still considered in some
contexts to be the component segment executor.

The details of segment structure and implementation responsibilities are described
Section 60.12, “Segment Definition,” on page 60-18.
60-18 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Segment Definition 29 October 1999



60

h the

ect

facet

utor

he
nly

ect
-19.
60.13 Segment Persistence Declaration

The syntax for a segment persistence declaration is as follows:

(21)<segment_persistence_dcl>::= “storedOn” <abstract_storage_home_name>
“;”

A segment persistence declaration has the following elements:

• the keywordstoredOn

• an abstract storage home name

A segment persistence declaration specifies the abstract storage home upon whic
state of the segment will be stored. The abstract storage type of the storage home
constitutes the state of the segment.

The detailed structure of segments, and implementations responsibilities with resp
to segment persistence are described in Section 60.13, “Segment Persistence
Declaration,” on page 60-19.

60.14 Facet Declaration

The syntax for a facet declaration is as follows:

(22) <facet_dcl> ::= “provides” “facet” <identifier>
{ “,” <identifier> }*

A facet declaration has the following elements:

• the keywordsprovides and facet

• one or more identifiers separated by commas, where each identifier denotes a
defined by the component type implemented by the composition (i.e., the
component type managed by the home which is implemented by the home exec
defined in the composition).

A facet declaration associates one or more component facets with the segment. T
generated segment executor will provide the specified facets. A facet name may o
appear in a single segment definition. Facets that are not explicitly declared in a
segment definition are provided by the component segment.

The detailed structure of segments, and implementations responsibilities with resp
to providing facets are described in Section 60.14, “Facet Declaration,” on page 60

60.15 Feature Delegation Specification

The syntax for a feature delegation specification is as follows:

(23)<feature_delegation_spec> ::=“delagatesTo” “storage”
<feature_delegation_list>

(24) <feature_delegation_list> ::= “(” <feature_delegation> { “,”
<feature_delegation> }* “)”

(25) <feature_delegation> ::= <feature_name> “:”
<storage_member_name>
CORBA 3.0CCM FTF DRAFT ptc/99-10-04 Segment Persistence Declaration 29 October 1999



60

d by

e

utor

e of
t

nt

the

e

e

(26) <feature_name> ::= <identifier>
(27)<storage_member_name> ::= <identifier>

A feature delegation specification has the following elements:

• the keywordsdelegatesTo , abstract andstoragetype

• a list of feature delegation specifications, enclosed in parentheses and separate
commas.

A feature delegation specification consists of the following elements:

• an identifier that denotes a stateful feature of the component implemented by th
composition

• a colon

• an identifier that denotes a member of the abstract storage type of the abstract
storage home specified in the abstract storage home binding in the home exec
definition

A feature delegation specification defines an association between a stateful featur
the component being implemented and a member of the abstract storage type tha
incarnates the component (or the component segment). The component executor
skeleton generated by the CIF will provide implementations of feature manageme
operations that store the feature’s state in the specified storage member. Stateful
features include attributes, receptacles, and event sources.

The following constraints regarding feature delegation must be observed:

• Feature delegation specifications may only occur in an executor definition when
home executor specified an abstract storage home binding.

• The type of the storage member specified in a feature delegation must be
compatible with the type of the feature. Compatibility, for the purposes of featur
delegation is defined in Table 60-4 on page 20.

Table 60-4 Type compatibility for feature delegation purposes

Feature Storage member type

attribute must be identical to feature for all types
except object reference and valuetype;
for object reference and valuetype
storage member must be of identical
type or base type (direct or indirect)

receptacle (simplex) must be identical to feature type or bas
interface (direct or indirect) of feature
type
60-20 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Feature Delegation Specification 29 October



60

mmas

ted

(i.e.,

home

e

such

rage

e

* The persistent state maintained internally by the component is theChannelId of the
notification channel created by the container.

60.16 Abstract Storage Home Delegation Specification

The syntax for a storage home delegation specification is as follows:

(28)<abstract_storage_home_delegation_spec>::= “delegatesTo” “abstract”
“storagehome” <delegation_list> “;”

(30) <delegation_list> ::= “(” <delegation> { “,” <delegation> }* “)”
(31) <delegation> ::= <operation_name> [ “:” <operation_name> ]
(32) <operation_name> ::= <identifier>

An abstract storage home delegation specification has the following elements:

• the keywordsdelegatesTo , abstract , andstoragehome

• a list of delegation specifications enclosed in parentheses and separated by co

A delegation specification has the following elements:

• an identifier that denotes an operation on the home equivalent interface suppor
by the home executor

• an optional delegation target, consisting of a colon, followed by identifier that
denotes an operation on the abstract storage home to which the home is bound
the abstract storage home specified in the abstract storage home binding)

An abstract storage home delegation specification associates an operation on the
interface with an operation on the abstract storage home interface. The CIF shall
generated an implementation of the specified home operation that delegates to th
specified abstract storage home operation.

If the optional delegation target is omitted, the home operation is assumed to be
delegated to an operation on the abstract storage home with the same name. If no
operation exists on the abstract storage home, the specification is not legal.

The signature of the abstract storage home operation must be compatible with the
abstract storage home. Signature compatibility, from the perspective of abstract sto
home delegation, has the following definition:

receptacle (multiplex) sequence of type compatible with
receptacle type as defined above

emitter event source must be identical to feature type or bas
interface (direct or indirect) of feature
type

publisher event source long*

Table 60-4 Type compatibility for feature delegation purposes

Feature Storage member type
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Abstract Storage Home Delegation Specification



60

t be
the

me
age
e

l

t
ition

s:

r a
ome

age

eter

tion.

the

st

y

ons
ge
f an
d to
• If the home operation is an explicitfactory operation, the abstract storage home
operation must be an explicitfactory operation.

• If the home operation is not a factory, the return type of the home operation mus
identical to the return type of the abstract storage home operation, except when
return type is an object reference type or a value type. If the return type of the ho
operation is an object reference type or a value type, the return type of the stor
home operation must be identical to, or more derived than, the return type of th
home operation.

• For each exception explicitly raised by the storage home operation, an identica
exception must appear in theraises clause of the home operation. The inverse is
not true—the home operation may raise exceptions not raised by the abstract
storage home operation.

• The number of parameters in the parameter lists of the home operation and the
abstract storage home operation must be equal. Each parameter in the abstrac
storage home operation must be compatible with the parameter in the same pos
in the signature of the home operation, where compatibility is defined as follow

• If the parameter in the home operation is neither an object reference type no
value type, the type of the corresponding parameter in the abstract storage h
operation must be identical.

• If the parameter type in the home operation is an object reference and the
parameter is anin parameter, the corresponding parameter in the abstract stor
home operation must be identical to, or a base type (direct or indirect) of, the
parameter in the home operation.

• If the parameter type in the home operation is an object reference and the
parameter is anout parameter, the corresponding parameter in the abstract
storage home operation must be identical to, or more derived than, the param
in the home operation.

• If the parameter type in the home operation is an object reference and the
parameter is aninout parameter, the corresponding parameter in the abstract
storage home operation must be identical to the parameter in the home opera

The following additional constraints and rules apply to abstract storage home
delegation:

• An operation on the home interface may delegate to at most one operation on
abstract storage home interface.

• An operation on the abstract storage home interface may be the target of at mo
one delegation from the home interface.

• Implicitly defined operations on the home (i.e., orthodox operations) delegate b
default to cognate operations on the abstract storage home, as described by
Section 61.7.5.1, “Orthodox operations,” on page 61-60. These default delegati
may be over-ridden by explicit delegations. If an operation on the abstract stora
home that is normally the default target of a delegation appears as the target o
explicit delegation, then the home operation that normally would have delegate
that target by default shall have no generated implementation (unless one is
explicitly defined).
60-22 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Abstract Storage Home Delegation Specification



60

ge

tor,

tor

the
ey.

the

” on
The detailed semantics and implementation responsibilities of delegated abstract
storage home operations are described in Section 60.16, “Abstract Storage Home
Delegation Specification,” on page 60-21.

60.17 Executor Delegation Specification

The syntax for an executor delegation specification has the following form:

(29)<executor_delegation_spec> ::= “delegatesTo” “executor”
<delegation_list> “;”

An executor delegation specification consists of the following elements;

• the keywordsdelegatesTo andexecutor

• a delegation list, identical structurally to the delegation list of the abstract stora
home delegation specification

An executor delegation specification defines an operation on the component execu
to which the specified home operation will be delegated. The following constraints
apply to executor delegation specifications:

• Only factory operations may be delegated to the executor, including explicitly
declared factories and implicit create operations.

• If no delegation target is explicitly specified, the operation defined on the execu
shall have the same name as the delegating home operation.

• The signature of the defined operation on the executor shall be identical to the
signature of the home operation, with the exception that the return type of the
executor operation shall be void if the home does not specify a primary key, or
return type shall be the type of the primary key if the home specifies a primary k

The CIF shall generate an implementation of the home operation that delegates to
defined operation on the executor. The detailed semantics and implementation
responsibilities are described in Section 60.17, “Executor Delegation Specification,
page 60-23.

60.18 Abstract Spec Declaration

The syntax for an abstract spec has the following form:

(33) <abstract_spec> ::= “abstract” <operation_list> “;”
(34) <operation_list> ::= “(” <operation_name>

{ “,” <operation_name> }* “)”

Note – Description mmissing in submitted text

60.19 Proxy Home Declaration

The syntax for a proxy home declaration has the following form:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Executor Delegation Specification 29 October



60

i.e.
(35) <proxy_home_def> ::= “proxy” “home” <identifier>
“{” <proxy_home_member>+ “}” “;”

(36) <proxy_home_member> ::= <home_delegation_spec> “;”
| <abstract_spec>

(37) <home_delegation_spec> ::= “delegatesTo” “home” <delegation_list>

Note – Description missing in submitted text

60.20 Scoping Rules

Note – Here we need to state the scoping rules that apply to the CIDL extensions,
which constructs introduce a new scope, etc.
60-24 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Scoping Rules 29 October 1999



ComponentModel 61
the
This chapter describes the semantics of the CORBA Component Model (CCM) and
conformance requirements for vendors.

Issue – It contains all new text taken from the CCM final submission
orbos/99-07-01 with only minor editorial changes - Jeff Mischkinsky

61.0.0.1 Contents

This chapter contains the following sections.

Section Title Page

“Component Model” 61-26

“Component Definition” 61-29

“Component Declaration” 61-29

“Facets and Navigation” 61-31

“Receptacles” 61-38

“Events” 61-44

“Homes” 61-53

“Home Finders” 61-62

“Component Configuration” 61-64

“Configuration with attributes” 61-67

“Component Inheritance” 61-70

“Conformance Requirements” 61-73
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999 61-25



61

ion
and

nent

d by
ry.
port
ned
e
.,
n
tities

t
e

nts
t, .
Issue – what to do about “paranthetical indented comments”

61.1 Component Model

Componentis a basic meta-type in CORBA. The component meta-type is an extens
and specialization of the object meta-type. Component types are specified in IDL
represented in the Interface Repository. A component is denoted by a component
reference, which is represented by an object reference. Correspondingly, a compo
definition is a specialization and extension of an interface definition.

A component type is a specific, named collection of features that can be describe
an IDL component definition or a corresponding structure in an Interface Reposito
Although the current specification does not attempt to provide mechanisms to sup
formal semantic descriptions associated with component definitions, they are desig
to be associated with a single well-defined set of behaviors. Although there may b
several realizations of the component type for different run-time environments (e.g
OS/hardware platforms, languages, etc.), they should all behave consistently. As a
abstraction in a type system, a component type is instantiated to create concrete en
(instances) with state and identity.

A component type encapsulates its internal representation and implementation.
Although the component specification includes standard frameworks for componen
implementation, these frameworks, and any assumptions that they might entail, ar
completely hidden from clients of the component.

61.1.1 Component levels

There are two levels of components:basicand extended. Both are managed by
component homes, but they differ in the capabilities they can offer. Basic compone
essentially provide a simple mechanism to “componentize” a regular CORBA objec
Extended components, on the other hand, provide a richer set of functionality.

A basic component is very similar in functionality to an EJB as defined in
the Enterprise JavaBeans 1.1 specification. This allows mapping and inte-
gration at this level much easier.

Section Title Page
61-26 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Model 29 October 1999



61

face

t

d

d

inks.

t

t
to

acets
61.1.2 Ports

Components support a variety of surface features through which clients and other
elements of an application environment may interact with a component. These sur
features are calledports. The component model supports four basic kinds of ports:

• Facets, which are distinct named interfaces provided by the component for clien
interaction

• Receptacles, which are named connection points that describe the component’s
ability to use a reference supplied by some external agent

• Event sources, which are named connection points that emit events of a specifie
type to one or more interested event consumers, or to an event channel

• Event sinks, which are named connection points into which events of a specifie
type may be pushed.

• Attributes , which are named values exposed through accessor and mutator
operations. Attributes are primarily intended to be used for component
configuration, although they may be used in a variety of other ways.

Basic components or not allowed to offer facets, receptacles, event sources and s
They may only offer attributes.

Extended components may offer any type of port.

61.1.3 Components and facets

A component can provide multiple object references, calledfacets, which are capable
of supporting distinct (i.e., unrelated by inheritance) IDL interfaces. The componen
has a single distinguished reference whose interface conforms to the component
definition. This reference supports an interface, called the component’sequivalent
interface, that manifests the component’s surface features to clients. The equivalen
interface allows clients to navigate among the component’s facets, and to connect
the component’s ports.

Basic components cannot support facets, therefore attempts to navigate to other f
will always fail. The equivalent interface of a basic component is the only object
available with which a client may interact.

The other interfaces provided by the component are referred to asfacets. Figure 61-1
illustrates the relationship between the component and its facets.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Model 29 October 199961-27



61

, and
t is

can
Figure 61-1 Component Interfaces and Facets

The relationship between the component and its facets is characterized by the
following observations:

• The implementations of the facet interfaces are encapsulated by the component
considered to be “parts” of the component. The internal structure of a componen
opaque to clients.

• Clients can navigate from any facet to the component equivalent interface, and
obtain any facet from the component equivalent interface.

• Clients can reliably determine whether any two references belong to the same
component instance.

• The life cycle of a facet is bounded by the life cycle of its owning component.

61.1.4 Component identity

A component instance is identified primarily by its component reference, and
secondarily by its set of facet references (if any). The component model provides
operations to determine whether two references belong to the same component
instance, and (as mentioned above) operations to navigate among a component’s
references. The definition of “same” component instance is ultimately up to the

Component

Component reference supports
component’s equivalent interface

facet references
support independent
facet interfaces

Implementations
of facet
interfaces are
encapsulated
61-28 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Model 29 October 1999



61

this
ns

d in

nent
and
tent

ss

es

s a
component implementor, in that they may provide a customized implementation of
operation. However, a component framework shal provide standard implementatio
that constitutede factodefinitions of “sameness” when they are employed.

Components may also be associated withprimary key valuesby a component home.
Primary keys are data values exposed to the component’s clients that may be use
the context of a component home to identify component instances and obtain
references for them. Primary keys are not features of components themselves; the
association between a component instance and a particular primary key value is
maintained by the home that manages the component.

61.1.5 Component homes

A component homeis meta-type that acts as a manager for instances of a specified
component type. Component home interfaces provide operations to manage compo
life cycles, and optionally, to manage associations between component instances
primary key values. A component home may be thought of as a manager for the ex
of a type (within the scope of a container).

Component types are defined in isolation, independent of home types. A home
definition, however, must specify exactly one component type that it manages.
Multiple different home types can manage the same component type, though they
cannot manage the same set of component instances.

At execution time, a component instance is managed by a single home object of a
particular type. The operations on the home are roughly equivalent to static or cla
methods in object-oriented programming languages.

61.2 Component Definition

A component definition in IDL implicitly defines an interface that supports the featur
defined in the component definition body. It extends the concept of an interface
definition to support features that are not supported in interfaces. Component
definitions also differ from interface definitions in that they support only single
inheritance from other component types.

The IDL grammar for components may be found in <<Chap 3 rrr>>.

61.3 Component Declaration

61.3.1 Basic Components

Basic components cannot avail themselves of certain features in the model. In
particular, they cannot inherit from other components, nor can they provide or use
interfaces, or make any event declarations. A basic component is declared using a
restricted version of a<component_dcl> . See Section 3.16.1, “Component for the
syntax.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Definition 29 October 199961-29



61

tion

for

eta-

that

hem.
To avoid ambiguity between basic and extended definitions, any component declara
that matches the following pattern is a basic component:

“component” <identifier> [<supported_interface_spec>]
“{“ {<attr_dcl> “;”}* “}”

Ideally the syntax should explicitly represent these rules. However this can
only be achieved by introducing a new keyword to distinguish between
basic and extended components.It was felt that an extra keyword would
cause problems in the future, as the distinction between basic and extended
components gets blurred. This blurring may occur due to future develop-
ment of both the CORBA Component Model and the Enterprise JavaBeans
specifications.

61.3.2 Equivalent IDL

The client mappings (i.e., mappings of the externally-visible component features)
component declarations are described in terms ofequivalent IDL.

As described above, the component meta-type is a specialization of the interface m
type. Each component definition has a correspondingequivalent interface. In
programming language mappings, components are denoted by object references
support the equivalent interface implied by the component definition.

Since basic components are essentially a profile, no specific rules are defined for t

61.3.2.1 Simple declaration

For a component declaration with the following form:

component component_name { … };

the equivalent interface shall have the following form:

interface component_name
: Components::CCMObject { … };

61.3.2.2 Supported interfaces

For a component declaration with the following form:

component <component_name>
supports <interface_name_1>, <interface_name_2> { … };

the equivalent interface shall have the following form:

interface < component_name>
: Components::CCMObject,

<interface_name_1>, <interface_name_2> { … };

Supported interfaces are described in detail in Section 61.4.5
61-30 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Declaration 29 October 1999



61

ent

map
their

orm
nt

ss to
61.3.2.3 Inheritance

For a component declaration with the following form:

component < component_name> : <base_name> { … };

the equivalent interface shall have the following form:

interface < component_name> : <base_name> { … }

61.3.2.4 Inheritance and supported interfaces

For a component declaration with the following form:

component <component_name> : <base_name>
supports <interface_name_1>, <interface_name_2> { … };

the equivalent interface shall have the following form:

interface <component_name>
: <base_name>, <interface_name_1>, <interface_name_2> { … };

61.3.3 Component Body

A component forms a naming scope, nested within the scope in which the compon
is declared.

Declarations for facets, receptacles, events sources, event sinks and attributes all
onto operations on the component’s equivalent interface. These declarations and
meanings are described in detail below.

61.4 Facets and Navigation

A component type may provide several independent interfaces to its clients in the f
of facets. Facets are intended to be the primary vehicle through which a compone
exposes its functional application behavior to clients during normal execution. A
component may exhibit zero or more facets.

61.4.1 Equivalent IDL

Facet declarations imply operations on the component interface that provide acce
the provided interfaces by their names. A facet declaration of the following form:

provides <interface_type> <name> ;

results in the following operation defined on the equivalent interface:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 199961-31



61

ction
, and

f a
the

in

is

for
s

ject

ys:

the

ric
<interface_type> provide_ <name> ();

The mechanisms for navigating among a component’s facets are described in Se
61.4.3. The relationships between the component identity and the facet references
assumptions regarding facet references, are described in Section 61.4.4. The
implementation of navigation operations are provided by the component
implementation framework in generated code; the user-provided implementation o
component type is not responsible for navigation operations. The responsibilities of
component servant framework for supporting navigation operations are described
detail in <<< rrr Chapter ? CIDL>>>.

61.4.2 Semantics of facet references

Clients of a component instance can obtain a reference to a facet by invoking the
provide_ <name> operation on the equivalent interface corresponding to the
provides declaration in the component definition. The component implementation
responsible for guaranteeing the following behaviors:

• In general, a component instance shall be prepared to return object references
facets throughout the instance’s life cycle. A component implementation may, a
part of its advertised behavior, return a nil object reference as the result of a
provide_ <name> operation.

• An object reference returned by aprovide_ <name> operation shall support the
interface associated with the correspondingprovides declaration in the component
definition. Specifically, when the_is_a operation is invoked on the object reference
with the RepositoryId of the provided interface type, the result shall beTRUE,
and legal operations of the facet interface shall be able to be invoked on the ob
reference. If the type specified in theprovides declaration isObject , then there
are no constraints on the interface types supported by the reference.

A facet reference provided by a component may support additional inter-
faces, such as interfaces derived from the declared type, as long as the
stated contract is satisfied.

• Facet references must behave properly with respect to component identity and
navigation, as defined in Section 61.4.4 and Section 61.4.3.

61.4.3 Navigation

Navigation among a component’s facets may be accomplished in the following wa

• A client may navigate from any facet reference to the component that provides
reference viaCORBA::Object::get_component .

• A client may navigate from the component interface to any facet using the
generatedprovide_ <name> operations on the equivalent interface.

• A client may navigate from the component interface to any facet using the gene
provide_facet operation on theNavigation interface (inherited by all component
interfaces throughComponents::CCMObject ). Other operations on the
Navigation interface (i.e.,provide_all_facets and provide_named_facets )
61-32 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 1999



61

eric

y the

d

e
get
return multiple references, and can also be used for navigation. When using gen
navigation operations onNavigation , facets are identified by string values that
contain their declared names.

• A client may navigate from a facet interface that derives from theNavigation
interface directly to any other facet on the same component, usingprovide_facet ,
provide_all_facets , andprovide_named_facets .

• For components, such as basic components, that do not provide interfaces, onl
generic navigation operations are available on the equivalent interface. The
behavior of these operations, where there are no facets to navigate to, is define
below.

The detailed descriptions of these mechanisms follow.

61.4.3.1 get_component()

module CORBA {
interface Object { // PIDL

...
Object get_component ( );

};
};

If the target object reference is itself a component reference (i.e., it denotes the
component itself), theget_component operation returns the same reference (or
another equivalent reference). If the target object reference is a facet reference th
get_component operation returns an object reference for the component. If the tar
reference is neither a component reference nor a provided reference,get_component
returns a nil reference.

Implementation of get_component

As with other operations onCORBA::Object , get_component is implemented as a
request to the target object. Following the pattern of otherCORBA::Object operations
(i.e., _interface , _is_a , and_non_existent ; see section 15.4.1.2 << rrr>>), the
operation name in GIOP request corresponding toget_component shall be
“ _component ”.

61.4.3.2 Component-specific provide operations

The provide_< name> operation implicitly defined by aprovides declaration can be
invoked to obtain a reference to the facet.

61.4.3.3 Navigation interface on the component

As described in Section 61.3 all component interfaces implicitly inherit directly or
indirectly from CCMObject , which inherits fromComponents::Navigation . The
definition of theComponents::Navigation interface is as follows:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 199961-33



61

ent
ed

in
tual

its
module Components {

valuetype FacetDescription {
public CORBA::RepositoryId InterfaceID;
public FeatureName Name;

};

valuetype Facet : FacetDescription {
public Object ref;

};

typedef sequence<Facet> Facets;
typedef sequence<FacetDescription> FacetDescriptions;

exception InvalidName { };

interface Navigation {

Object provide_facet (in FeatureName name)
raises (InvalidName);

FacetDescriptions describe_facets();

Facets provide_all_facets();

Facets provide_named_facets (in NameList names)
raises (InvalidName);

boolean same_component (in Object ref);

};
};

This interface provides generic navigation capabilities. It is inherited by all compon
interfaces, and may be optionally inherited by any interface that is explicitly design
to be a facet interface for a component. The descriptions ofNavigation operations
follow.

provide_facet

The provide_facet operation returns a reference to the facet denoted by thename
parameter. The value of thename parameter must be identical to the name specified
the provides declaration. The valid names are defined by inherited closure of the ac
type of the component, i.e., the names of facets of the component type and all of
inherited component types. If the value of thename parameter does not correspond to
one of the component’s facets, theInvalidName exception shall be raised. A
component that does not provide any facets (e.g., a basic component) will have no
valid name parameter to this operation and thus shall always raise theInvalidName
exception.
61-34 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 1999



61

f

cope.

a

ich

all of
es
ets

the

asic
s

y
.,

e
d the

rk
ent
describe_facets

The describe_facets operation returns a sequence containing descriptions of all o
the facets provided by the target component. Each description is a value type
containing theRepositoryId of the facet’s interface and the name of the facet,
expressed as an unscoped local name relative to the owning component’s name s
The order in which these descriptions occur in the sequence is not specified. A
component that does not provide any facets (e.g., a basic component) shall return
sequence of length zero.

provide_all_facets

The provide_all_facets operation returns a sequence of value objects, each of wh
contains theRepositoryId of the facet interface andname of the facet, along with a
reference to the facet. The sequence shall contain descriptions and references for
the facets in the component’s inheritance hierarchy. The order in which these valu
occur in the sequence is not specified. A component that does not provide any fac
(e.g., a basic component) shall return a sequence of length zero.

provide_named_facets

The provide_named_facets operation returns a sequence of described references
(identical to the sequence returned byprovide_all_facets ), containing descriptions
and references for the facets denoted by thenames parameter. If any name in the
names parameter is not a valid name for a provided interface on the component,
operation raises theInvalidName exception. The order of values in the returned
sequence is not specified. A component that does not provide any facets (e.g., a b
component) will have no validname parameter to this operation and thus shall alway
raise theInvalidName exception.

The same_component operation onNavigation is described in Section 61.4.4.

61.4.3.4 Navigation interface on facet interfaces

Any interface that is designed to be used as a facet interface on a component ma
optionally inherit from theNavigation interface. When the navigation operations (i.e
provide_facet , provide_all_facets , provide_named_facets , and
describe_facets ) are invoked on the facet reference, the operations shall return th
same results as if they had been invoked on the component interface that provide
target facet. The skeletons generated by the Component Implementation Framewo
shall provide implementations of these operations that will delegate to the compon
interface.

This option allows navigation from one facet to another to be per-
formed in a single request, rather than a pair of requests (to get the
component reference and navigate from there to the desired facet).
To illustrate, consider the following component definition:

module example {
interface foo : Components::Navigation {... };
interface bar { ... };
component baz session {
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 199961-35



61

, that
ance.

e
d

shall

se

lows:
provides foo a;
provides bar b;

};
};

A client could navigate from a to b as follows:

foo myFoo;
// assume myFoo holds a reference to a foo provided by a baz
baz myBaz = bazHelper.narrow(myFoo.get_component());
bar myBar = myBaz.provide_b();

Or, it could navigate directly:

foo myFoo;
// assume myFoo holds a reference to a foo provided by a baz
bar myBar = barHelper.narrow(myFoo.provide_interface(“b”);

61.4.4 Provided References and Component Identity

The same_component operation on theNavigation interface allows clients to
determine reliably whether two references belong to the same component instance
is, whether the references are facets of or directly denote the same component inst
The component implementation is ultimately responsible for determining what the
“same component instance” means. The skeletons generated by the Component
Implementation Framework shall provide an implementation ofsame_component ,
where “same instance” is defined in terms of opaque identity values supplied by th
component implementation or the container in the container context. User-supplie
implementations can provide different semantics.

If a facet interface inherits theNavigation interface, then thesame_component
operation on the provided interface shall give the same results as the
same_component operation on the component interface that owns the provided
interface. The skeletons generated by the Component Implementation Framework
provide an implementation ofsame_component for facets that inherit the
Navigation interface.

61.4.5 Supported interfaces

Issue – dupe of 3.16.2.2 - DELETE description from there

A component definition may optionally support one or more interfaces, or in the ca
of extended components, inherit from a component that supports one or more
interfaces. When a component definition header includes a supports clause as fol
61-36 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 1999



61

-

on
’s
all
component < component_name> supports <interface_name> { … };

the equivalent interface inherits bothCCMObject and any supported interfaces, as fol
lows:

interface <component_name>
: Components::CCMObject, <interface_name> { … };

The component implementation shall supply implementations of operations defined
supported interfaces. Clients shall be able to widen a reference of the component
equivalent interface type to the type of any of the supported interfaces. Clients sh
also be able to narrow a reference of typeCCMObject to the type of any of the
component’s supported interfaces.

For example, given the following IDL:

module M {
interface I {

void op();
};
component A supports I {

provides I foo;
};
home AManager manages A { };

};

The AManager interface shall be derived from KeylessCCMHome, sup-
porting the create_component operation, which returns a reference of type
CCMObject. This reference shall be able to be narrowed directly from
CCMObject to I:

// java
...
M.AManager aHome = ...; // get A’s home
org.omg.Components.CCMObject myComp =
aHome.create_component();
M.I myI = M.IHelper.narrow(myComp);
// must succeed

For example, given the following IDL:

module M {
interface I {

void op();
};
component A supports I {

provides I foo;
};
component B : A { ... };
home BHome manages B {};

};

The equivalent IDL is:

module M {
interface I {
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 199961-37



61

ich
ence

alled
void op();
};
interface A :
org.omg.Components.CCMObject, I { ... };
interface B : A { ... };

};

which allows the following usage:

M.BHome bHome = ... // get B’s home
M.B myB = bHome.create();
myB.op(); // I’s operations are supported

// directly on B’s interface

The supports mechanism provides programming convenience for light-
weight components that only need to implement a single operational inter-
face. A client can invoke operations from the supported interface directly
on the component reference, without narrowing or navigation:

M.A myA = aHome.create();
myA.op();

as opposed to

M.A myA = aHome.create();
M.I myI = myA.provide_foo();
myI.op();

or, assuming that the client has A’s home, but doesn’t statically know about
A’s interface or home interface:

org.omg.Components.KeylessCCMHome genericHome =
... // get A’s home;
org.omg.Components.CCMObject myComp =
genericHome.create_component();

M.I myI = M.IHelper.narrow(myComp);
myI.op();

as opposed to

org.omg.CORBA.Object obj =
myComp.provide_interface(“foo”);
M.I myI = M.IHelper.narrow(obj);
myI.op();

This mechanism allows component-unaware clients to receive a reference
to a component (passed as type CORBA::Object) and use the supported
interface.

61.5 Receptacles

A component definition can describe the ability to accept object references upon wh
the component may invoke operations. When a component accepts an object refer
in this manner, the relationship between the component and the referent object is c
a connection; they are said to beconnected. The conceptual point of connection is
61-38 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Receptacles 29 October 1999



61

a
called areceptacle. A receptacle is an abstraction that is concretely manifested on
component as a set of operations for establishing and managing connections. A
component may exhibit zero or more receptacles.

Receptacles are intended as a mechanical device for expressing a wide
variety of relationships that may exist at higher levels of abstraction. As
such, receptacles have no inherent higher-order semantics, such as imply-
ing ownership, or that certain operations will be transient across connec-
tions.

61.5.1 Equivalent IDL

A uses declaration of the following form:

uses <interface_type> <receptacle_name> ;

results in the following equivalent operations defined in the component interface:

void connect_< receptacle_name> ( in <interface_type> conxn ) raises (
Components::AlreadyConnected,
Components::InvalidConnection );

<interface_type> disconnect_ <receptacle_name> ( )
raises ( Components::NoConnection );

<interface_type> get_connection_ <receptacle_name> ( );

A uses declaration of the following form:

uses multiple <interface_type> <receptacle_name> ;

results in the following equivalent operations defined in the component interface:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Receptacles 29 October 1999 61-39



61

ant

a
its
rely
y of

t
ation
struct <receptacle_name> Connection {
<interface_type> objref;
Components::Cookie ck;
};

sequence < <receptacle_name >Connection> <receptacle_name >Connec-
tions;

Components::Cookie
connect_ <receptacle_name> ( in <interface_type> connection ) raises (

Components::ExceededConnectionLimit,
Components::InvalidConnection

);

<interface_type> disconnect_ <receptacle_name> (
in Components::Cookie ck)

raises ( Components::InvalidConnection );

<receptacle_name >Connections get_connections_ <receptacle_name> ( );

61.5.2 Behavior

61.5.2.1 Connect operations

Operations of the formconnect_ <receptacle_name> are implemented in part by
the component implementor, and in part by generated code in the component serv
framework. The responsibilities of the component implementation and servant
framework for implementing connect operations are described in detail in << rrr
Chapter 6 CIDL>>. The receptacle holds a copy of the object reference passed as
parameter. The component may invoke operations on this reference according to
design. How and when the component invokes operations on the reference is enti
the prerogative of the component implementation. The receptacle shall hold a cop
the reference until it is explicitly disconnected.

Simplex receptacles

If a receptacle’suses declaration does not include the optionalmultiple keyword,
then only a single connection to the receptacle may exist at a given time. If a clien
invokes a connect operation when a connection already exists, the connection oper
shall raise theAlreadyConnected exception.

The component implementation may refuse to accept the connection for arbitrary
reasons. If it does so, the connection operation shall raise theInvalidConnection
exception.
61-40 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Receptacles 29 October 1999



61

is

not

s
s to
the

nect
d.

he
Multiplex receptacles

If a receptacle’suses declaration includes the optionalmultiple keyword, then
multiple connections to the receptacle may exist simultaneously. The component
implementation may choose to establish a limit on the number of simultaneous
connections allowed. If an invocation of a connect operation attempts to exceed th
limit, the operation shall raise theExceededConnectionLimit exception.

The component implementation may refuse to accept the connection for arbitrary
reasons. If it does so, the connection operation shall raise theInvalidConnection
exception.

Connect operations for multiplex receptacles return values of type
Components::Cookie . Cookie values are used to identify the connection for
subsequent disconnect operations. Cookie values are generated by the receptacle
implementation (the responsibility of the supplier of the component-enabled ORB,
the component implementor). Likewise, cookie equivalence is determined by the
implementation of the receptacle implementation.

The client invoking connection operations is responsible for retaining cookie value
and properly associating them with connected object references, if the client need
subsequently disconnect specific references. Cookie values must be unique within
scope of the receptacle that created them. If a cookie value is passed to a discon
operation on a different receptacle than that which created it, results are undefine

Cookie values are described in detail in Section 61.5.2.4, “Cookie type”.

Cookie values are required because object references cannot be reliably
tested for equivalence.

61.5.2.2 Disconnect operations

Operations of the formdisconnect_ receptacle_name terminate the relationship
between the component and the connected object reference.

Simplex receptacles

If a connection exists, the disconnect operation will return the connected object
reference. If no connection exists, the operation shall raise aNoConnection
exception.

Multiplex receptacles

The disconnect_ receptacle_name operation of a multiplex receptacle takes a
parameter of typeComponents::Cookie . The ck parameter must be a value
previously returned by theconnect_ receptacle_name operation on the same
receptacle. It is the responsibility of the client to associate cookies with object
references they connect and disconnect. If the cookie value is not recognized by t
receptacle implementation as being associated with an existing connection, the
disconnect_ receptacle_name operation shall raise anInvalidConnection
exception.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Receptacles 29 October 1999 61-41



61

nce.

ns a
are

nnect

neric
ior in
61.5.2.3 get_connection and get_connections operations

Simplex receptacles

Simplex receptacles have operations namedget_connection_ receptacle_name . If
the receptacle is currently connected, this operation returns the connected object
reference. If there is no current connection, the operation returns a nil object refere

Multiplex receptacles

Multiplex receptacles have operations namedget_connections_ receptacle_name .
This operation returns a sequence of structures, where each structure contains a
connected object reference and its associated cookie value. The sequence contai
description of all of the connections that exist at the time of the invocation. If there
no connections, the sequence length will be zero.

61.5.2.4 Cookie type

The Cookie valuetype is defined by the following IDL:

module Components {
valuetype Cookie {
private sequence<octet> CookieValue;
};

};

Cookie values are created by multiplex receptacles, and are used to correlate a co
operation with a disconnect operation on multiplex receptacles.

Implementations of component-enabled ORBs may employ value type derived from
Cookie , but any derived cookie types shall be truncatable toCookie , and the
information preserved in theCookieValue octet sequence shall be sufficient for the
receptacle implementation to identify the cookie and its associated connected
reference.

61.5.3 Receptacles interface

The Receptacles interface provides generic operations for connecting to a
component’s receptacles. TheCCMObject interface is derived fromReceptacles .
For components, such as basic components, that do not use interfaces, only the ge
receptacles operations are available on the equivalent interface. The default behav
such cases is defined below.

The Receptacles interfaces is defined by the following IDL:
61-42 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Receptacles 29 October 1999



61

.

tacle

e

module Components {

valuetype ConnectionDescription {
public Cookie ck;
public Object objref;
};

typedef sequence<ConnectionDescription> ConnectedDescriptions;

interface Receptacles {

Cookie connect ( in FeatureName name, in Object connection )
raises (

InvalidName,
InvalidConnection,
AlreadyConnected,
ExceededConnectionLimit);

void disconnect (
in FeatureName name,
in Cookie ck) raises (

InvalidName,
InvalidConnection,
CookieRequired,
NoConnection);

ConnectionList get_connections (in FeatureName name)
raises (InvalidName);

};
};

connect

The connect operation connects the object reference specified by theconnection
parameter to the receptacle specified by thename parameter on the target component
If the specified receptacle is a multiplex receptacle, the operation returns a cookie
value that can be used subsequently to disconnect the object reference. If the recep
is a simplex receptacle, the return value is a nil. The following exceptions may be
raised:

• If the name parameter does not specify a valid receptacle name, then the
InvalidName exception is raised.

• If the receptacle is a simplex receptacle and it is already connected, then the
AlreadyConnected exception is raised.

• If the object reference in theconnection parameter does not support the interfac
declared in the receptacle’suses statement, theInvalidConnection exception is
raised.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Receptacles 29 October 1999 61-43



61

to

have

cle.

as
e

e

have

ed in

nt)

ent
n,

can
• If the receptacle is a multiplex receptacle and the implementation-defined limit
the number of connections is exceeded, theExceededConnectionLimit
exception is raised.

• A component that does not have any receptacles (e.g., a basic component) will
no valid name parameter to this operation and thus shall always raise the
InvalidName exception.

disconnect

If the receptacle identified by thename parameter is a simplex receptacle, the
operation will disassociate any object reference currently connected to the recepta
The cookie value in theck parameter is ignored. If the receptacle identified by the
name parameter is a multiplex receptacle, thedisconnect operation disassociates the
object reference associated with the cookie value (i.e., the object reference that w
connected by the operation that created the cookie value) from the receptacle. Th
following exceptions may be raised:

• If the name parameter does not specify a valid receptacle name, then the
InvalidName exception is raised.

• If the receptacle is a simplex receptacle there is no current connection, then th
NoConnection exception is raised.

• If the receptacle is a multiplex receptacle and the cookie value in theck parameter
does not denote an existing connection on the receptacle, theInvalidConnection
exception is raised.

• If the receptacle is a multiplex receptacle and a null value is specified in theck
parameter, theCookieRequired exception is raised.

• A component that does not have any receptacles (e.g., a basic component) will
no valid name parameter to this operation and thus shall always raise the
InvalidName exception.

get_connections

The get_connections operation returns a sequence ofConnectionDescription
structs. Each struct contains an object reference connected to the receptacle nam
the name parameter, and a cookie value that denotes the connection. If thename
parameter does not specify a valid receptacle name, then theInvalidName exception
is raised. A component that does not have any receptacles (e.g., a basic compone
will have no validname parameter to this operation and thus shall always raise the
InvalidName exception.

61.6 Events

The CORBA component model supports a publish/subscribe event model. The ev
model for CORBA components is designed to be compatible with CORBA notificatio
as defined in OMG document telcom/98-11-01. The interfaces exposed by the
component event model provide a simple programming interface whose semantics
be mapped onto a subset of CORBA notification semantics.
61-44 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999



61

the

by
of

nt is
nt

ted
e
or

the

odel

m.
g.,
61.6.1 Event types

Event types in the CORBA Component event model are value types derived from
abstract value typeComponents::EventBase , which is defined as follows:

module Components {
abstract valuetype EventBase { };

};

Applications derive specific concrete event types from this base type.

Since the underlying implementation of the component event mechanism provided
the container is CORBA notification, event values shall be inserted into instances
the any type. The resultingany values shall be inserted into a CORBA notification
structured event. The mapping between a component event and a notification eve
implemented by the container and is described in Section 66.4, “Event Manageme
Integration,” on page 66-252.

61.6.2 Integrity of value types contained in anys

To ensure proper transmission of value type events, this specification makes the
following clarifications to the semantics of value types when inserted intoanys:

When anany containing a value type is received as a parameter in an ORB-media
operation, the value contained in theany shall be preserved, regardless of whether th
receiving execution context is capable of constructing the value (in its original form
a truncated form), or not. If the receiving context attempts to extract the value, the
extraction may fail, or the extracted value may be truncated. The value contained in
any shall remain unchanged, and shall retain its integrity if theany is passed as a
parameter to another execution context.

Issue - Above should be in valuetype chapter

61.6.3 EventConsumer interface

The component event model is a push model. The basic mechanics of this push m
are defined by consumer interfaces. Event sources hold references to consumer
interfaces and invoke various forms of push operations to send events.

Component event sources hold references to consumer interfaces and push to the
Component event sinks provide consumer references, into which other entities (e.
channels, clients, other component event sources) push events.

Event consumer interfaces are derived from the
Components::EventConsumerBase interface, which is defined as follows:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999 61-45



61

-

the

e the
r

vent

.

tics.

ts.

.

to
module Components {
exception BadEventType {CORBA::RepositoryId expected_event_type};
interface EventConsumerBase {

void push_event(in EventBase evt) raises (BadEventType);
};

};

Type-specific event consumer interfaces are derived from theEventConsumerBase
interface. Event source and sink declarations in component definitions cause type
specific consumer interfaces to be generated for the event types used in the
declarations.

The push_event operation pushes the event denoted by theevt parameter to the
consumer. The consumer may choose to constrain the type of event it accepts. If
actual type of theevt parameter is not acceptable to the consumer, the
BadEventType exception shall be raised. Theexpected_event_type member of
the exception contains theRepositoryId of the type expected by the consumer.

Note that this exception can only be raised by the consumer upon whose referenc
push_event operation was invoked. The consumer may be a proxy for an event o
notification channel with an arbitrary number of subscribers. If any of those
subscribers raise any exceptions, they will not be propagated back to the original e
source (i.e., the component).

61.6.4 Event service provided by container

Container implementations provide event services to components and their clients
Component implementations obtain event services from the container during
initialization, and mediate client access to those event services. The container
implementation is free to provide any mechanism that supports the required seman
The container is responsible for configuring the mechanism and determining the
specific quality of service and routing policies to be employed when delivering even
More detail is defined in Chapter 66, “Component Container Architecture”,
specifically Section 66.4, “Event Management Integration,” on page 66-252.

61.6.5 Event Sources—publishers and emitters

An event source embodies the potential for the component to generate events of a
specified type, and provides mechanisms for associating consumers with sources

There are two categories of event sources,emittersandpublishers. Both are
implemented using event channels supplied by the container. An emitter can be
connected to at most one proxy provider by the container. A publisher can be
connected through the channel to an arbitrary number of consumers, who are said
subscribeto the publisher event source. A component may exhibit zero or more
emitters and publishers.

A publisherevent source has the following characteristics:

• The equivalent operations for publishers allow multiple subscribers (i.e.,
consumers) to connect to the same source simultaneously.
61-46 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999



61

hing

d to

by
nnel.
mer
• Subscriptions to a publisher are delegated to an event channel supplied by the
container at run time. The component is guaranteed to be the only source publis
to that event channel.

An emitterevent source has the following characteristics:

• The equivalent operations for emitters allow only one consumer to be connecte
the emitter at a time.

• The events pushed from an emitter are delegated to an event channel supplied
the container at run time. Other event sources, however, may use the same cha
Events pushed from an emitter are then pushed by the container into the consu
interface supplied as a parameter to the connect_<source> operation.

In general, emitters are not intended to be exposed to clients. Rather, they
are intended to be used for configuration purposes. It is expected that emit-
ters will be connected at the time of component initialization and configu-
ration to consumer interfaces that are proxies for event channels that may
be shared between arbitrary clients, components and other system ele-
ments.

In contrast, publishers are intended to provide clients with direct access to
a particular event stream being generated by the component (embodied by
the publisher event source). It is our intent that clients subscribe directly to
the publisher source.

61.6.6 Publisher

61.6.6.1 Equivalent IDL

For an event source declaration of the following form:

module <module_name> {
component <component_name> {

publishes <event_type> <source_name> ; };
};

The following equivalent IDL is implied:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999 61-47



61

n

that
ould

alue
module <module_name> {
module <component_name> EventConsumers {

interface <event_type> Consumer;
};

interface <component_name> : Components::CCMObject {

Components::Cookie subscribe_ <source_name> (
in <component_name> EventConsumers:: <event_type> Consumer

consumer)
raises (Components::ExceededConnectionLimit);

<component_name> EventConsumers:: <event_type> Consumer
unsubscribe_ <source_name> (in Components::Cookie ck)

raises (Components::InvalidConnection);
};

module <component_name> EventConsumers {
interface <event_type> Consumer : Components::EventConsumerBase {

void push (in <event_type> evt);
};

};
};

61.6.6.2 Event publisher operations

subscribe_ <source_name>

The subscribe_ <source_name> operation connects the consumer parameter to a
event channel provided to the component implementation by the container. The
component shall be the only publisher to that channel. If the implementation of the
component or the channel place an arbitrary limit on the number of subscriptions
can be supported simultaneously, and the invocation of the subscribe operation w
cause that limit to be exceeded, the operation raises theExceededConnectionLimit
exception.TheCookie value returned by the operation identifies the subscription
formed by the association of the subscriber with the publisher event source. This v
can be used subsequently in an invocation ofunsubscribe_ <source_name> to
disassociate the subscriber from the publisher.

unsubscribe_<source_name>

The unsubscribe_ <source_name> operation destroys the subscription identified
by theck parameter value, returning the reference to the subscriber. If theck
parameter value does not identify an existing subscription to the publisher event
source, the operation shall raise aInvalidConnection exception.
61-48 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999



61

y
a

n

61.6.7 Emitters

61.6.7.1 Equivalent IDL

For an event source declaration of the following form:

module <module_name> {
component <component_name> {emits <event_type> <source_name> ;};

};

The following equivalent IDL is implied:

module <module_name> {
module <component_name> EventConsumers {

interface <event_type> Consumer;
};

interface <component_name> : Components::CCMObject {

void connect_ <source_name> (
in <component_name> EventConsumers:: <event_type> Consumer
consumer ) raises (Components::AlreadyConnected);

<component_name> EventConsumers:: <event_type> Consumer
disconnect_ <source_name> ()
raises (Components::NoConnection);
};

module <component_name> EventConsumers {
interface <event_type> Consumer

: Components::EventConsumerBase {
void push (in <event_type> evt);
};

};
};

61.6.7.2 Event emitter operations

connect_ <source_name>

The connect_ <source_name> operation connects the event consumer denoted b
the consumer parameter to the event emitter. If the emitter is already connected to
consumer, the operation shall raise theAlreadyConnected exception.

disconnect_ <source_name>

The disconnect_ <source_name> operation destroys any existing connection by
disassociating the consumer from the emitter. The reference to the previously
connected consumer is returned. If there was no existing connection, the operatio
raises theNoConnection exception.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999 61-49



61

ule
The
he
alent

” to
ique

ified

he

of

ntrol

rary
61.6.8 Module scope of generated event consumer interfaces

The following observations and constraints apply to the equivalent IDL for event
source declarations:

• The need for a typed event consumer interface requires the definition of a mod
scope to guarantee that the interface name for the event subscriber is unique.
module (whose name is formed by appending the string “EventConsumers” to t
component type name) is defined in the same scope as the component’s equiv
interface. The module is opened before the equivalent interface definition to
provide forward declarations for consumer interfaces. It is re-opened after the
equivalent interface definition to define the consumer interfaces.

• The name of a consumer interface is formed by appending the string “Consumer
the name of the event type. One consumer interface type is implied for each un
event type used in event source and event sink declarations in the component
definition.

61.6.9 Event Sinks

An event sink embodies the potential for the component to receive events of a spec
type. An event sink is, in essence, a special-purpose facet whose type is an event
consumer. External entities, such as clients or configuration services, can obtain t
reference for the consumer interface associated with the sink.

Unlike event sources, event sinks do not distinguish betweenconnectionand
subscription. The consumer interface may be associated with an arbitrary number
event sources, unbeknownst to the component that supplies the event sink. The
component event model provides no inherent mechanism for the component to co
which events sources may be pushing to its sinks. By exporting an event sink, the
component is, in effect, declaring its willingness to accept events pushed from arbit
sources. A component may exhibit zero or more consumers.

If a component implementation needs control over which sources can push
to a particular sink it owns, the sink should not be exposed as a port on the
component. Rather, the component implementation can create a consumer
internally and explicitly connect or subscribe it to sources.

61.6.9.1 Equivalent IDL

For an event sink declaration of the following form:

module <module_name> {
component <component_name> {

consumes <event_type> <sink_name> ;
};

};

The following equivalent IDL is implied:
61-50 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999



61

ases
module <module_name> {
module <component_name> EventConsumers {

interface <event_type> Consumer;
};

interface <component_name> : Components::CCMObject {
<component_name> EventConsumers:: <event_type> Consumer

get_consumer _<sink_name> ();
};

module <component_name> EventConsumers {
interface <event_type> Consumer :

Components::EventConsumerBase {
void push (in <event_type> evt);
};

};
};

61.6.9.2 Event sink operations

The get_consumer_ <sink_name> operation returns a reference that supports the
consumer interface specific to the declared event type.

61.6.10 Events interface

The Events interface provides generic access to event sources and sinks on a
component.CCMObject is derived fromEvents . For components, such as basic
components, that do not declare participation in events, only the genericEvents
operations are available on the equivalent interface. The default behavior in such c
is described below.

The Events interface is described as follows:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999 61-51



61

ill
e

event

nt,
module Components {

exception InvalidName { };
exception InvalidConnection { };
exception AlreadyConnected { };
exception NoConnection { };

interface Events {
EventConsumerBase get_consumer (in FeatureName sink_name)

raises (InvalidName);
Cookie subscribe (in FeatureName publisher_name,

in EventConsumerBase subscriber)
raises (InvalidName);

void unsubscribe (in FeatureName publisher_name,
in Cookie ck)
raises (InvalidName, InvalidConnection);

void connect_consumer (in FeatureName emitter_name,
in EventConsumerBase consumer)
raises (InvalidName, AlreadyConnected);

EventConsumerBase
disconnect_consumer (in FeatureName source_name)

raises (InvalidName, NoConnection);

};

};

get_consumer

The get_consumer operation returns theEventConsumerBase interface for the
sink specified by thesink_name parameter. If thesink_name parameter does not
specify a valid event sink on the component, the operation raises theInvalidName
exception. A component that does not have any sinks (e.g., a basic component) w
have no validsink_name parameter to this operation and thus shall always raise th
InvalidName exception.

subscribe

The subscribe operation associates the subscriber denoted by thesubscriber
parameter with the event source specified by thepublisher_name parameter. If the
publisher_name parameter does not specify a valid event publisher on the
component, the operation raises theInvalidName exception. The cookie return value
can be used to unsubscribe from the source. A component that does not have any
sources (e.g., a basic component) will have no validpublisher_name parameter to
this operation and thus shall always raise theInvalidName exception.

unsubscribe

Theunsubscribe operation disassociates the subscriber associated withck parameter
with the event source specified by thepublisher_name parameter. If the
publisher_name parameter does not specify a valid event source on the compone
61-52 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999



61

nent)
s

ve no

he
., a

s

ns

ame
y the
the operation raises theInvalidName exception. If theck parameter does not identify
a current subscription on the source, the operation raises theInvalidConnection
exception. A component that does not have any event sources (e.g., a basic compo
will have no validpublisher_name parameter to this operation and thus shall alway
raise theInvalidName exception.

connect_consumer

The connect_consumer operation associates the consumer denoted by the
consumer parameter with the event source specified by theemitter_name
parameter. If theemitter_name parameter does not specify a valid event emitter on
the component, the operation raises theInvalidName exception. If a consumer is
already connected to the emitter, the operation raises theAlreadyConnected
exception. The cookie return value can be used to disconnect from the source. A
component that does not have any event sources (e.g., a basic component) will ha
valid emitter_name parameter to this operation and thus shall always raise the
InvalidName exception.

disconnect_consumer

The disconnect_consumer operation disassociates the currently connected
consumer from the event source specified by theemitter_name parameter, returning
a reference to the disconnected consumer. If theemitter_name parameter does not
specify a valid event source on the component, the operation raises theInvalidName
exception. If there is no consumer connected to the emitter, the operation raises t
NoConnection exception. A component that does not have any event sources (e.g
basic component) will have no validemitter_name parameter to this operation and
thus shall always raise theInvalidName exception.

61.7 Homes

An IDL specification may include home definitions. A home definition describes an
interface for managing instances of a specified component type. The salient
characteristics of a home definition are as follows:

• A home definition implicitly defines an equivalent interface, which can be
described in terms of IDL.

• The presence of a primary key specification in a home definition causes home’
equivalent interface to contain a set of implicitly defined operations whose
signatures are determined by the types of the primary key and the managed
component. These operations are specified in Section 61.7.1.2, “Home definitio
with primary keys”.

61.7.1 Equivalent interfaces

Every home definition implicitly defines a set of operations whose names are the s
for all homes, but whose signatures are specific to the component type managed b
home and, if present, the primary key type specified by the home.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999 61-53



61

mes,

of

t
me.

in
Because the same operation names are used for these operations on different ho
the implicit operations cannot be inherited. The specification for home equivalent
interfaces accommodates this constraint. A home definition results in the definition
three interfaces, called theexplicit interface, theimplicit interface, and theequivalent
interface. The name of the explicit interface has the form<home_name> Explicit ,
where<home_name> is the declared name of the home definition. Similarly, the
name of the implicit interface has the form<home_name> Implicit , and the name of
the equivalent interface is simply the name of the home definition, with the form
<home_name> . All of the operations defined explicitly on the home (including
explicitly-defined factory and finder operations) are represented on the explicit
interface. The operations that are implicitly defined by the home definition are
exported by the implicit interface. The equivalent interface inherits both the explici
and implicit interfaces, forming the interface presented to programmer using the ho

The same names are used for implicit operations in order to provide clients
with a simple, uniform view of the basic life cycle operations—creation,
finding, and destruction. The signatures differ to make the operations spe-
cific to the storage type (and, if present, primary key) associated with the
home. These two goals—uniformity and type safety—are admittedly con-
flicting, and the resulting complexity of equivalent home interfaces reflects
this conflict. Note that this complexity manifests itself in generated inter-
faces and their inheritance relationships; the model seen by the client pro-
grammer is relatively simple.

61.7.1.1 Home definitions with no primary key

Given a home definition of the following form:

home <home_name> manages <component_type> {
<explicit_operations>

};

The resulting explicit, implicit, and equivalent local interfaces have the following
forms:

interface <home_name> Explicit : Components::CCMHome {
<equivalent_explicit_operations>

};

interface <home_name> Implicit : Components::KeylessCCMHome {
<component_type> create();

};

interface <home_name> : <home_name> Explicit, <home_name> Implicit { };

where<equivalent_explicit_operations>are the operations defined in the home
declaration (<explicit_operations>), with factory and finder operations transformed
to their equivalent operations, as described in Section 61.7.3, “Explicit operations
home definitions”.
61-54 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999



61

e.

y

ion
l

create

This operation creates a new component instance of the type managed by the hom

61.7.1.2 Home definitions with primary keys

Given a home of the following form:

home <home_name> manages <component_type> primaryKey <key_type> {
<explicit_operations>

};

The resulting explicit, implicit, and equivalent interfaces have the following forms:

interface <home_name> Explicit : Components::CCMHome {
<equivalent_explicit_operations>

};

interface <home_name> Implicit {
<component_type> create (in <key_type> key)
raises (Components::DuplicateKeyValue, Components::InvalidKey);

<component_type> find_by_primary_key (in <key_type> key)
raises (Components::UnknownKeyValue, Components::InvalidKey);

void remove (in <key_type> key)
raises (Components::UnknownKeyValue, Components::InvalidKey);

<key_type> get_primary_key (in <component_type> comp);

};

interface <home_name> : <home_name>Explicit , <home_name> Implicit { };

where<equivalent_explicit_operations>are the operations defined in the home
declaration (<explicit_operations>), with factory and finder operations transformed to
their equivalent operations, as described in Section 61.7.3, “Explicit operations in
home definitions.

create

This operation creates a new component associated with the specified primary ke
value, returning a reference to the component. If the specified key value is already
associated with an existing component managed by the storage home, the operat
raises anDuplicateKeyValue exception. If the key value was not a well-formed, lega
value, the operation shall raise theInvalidKey exception.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999 61-55



61

me,

fy

the
me

t
e
een
for

ber.

and
find_by_primary_key

This operation returns a reference to the component identified by the primary key
value. If the key value does not identify an existing component managed by the ho
an UnknownKeyValue exception is raised. If the key value was not a well-formed,
legal value, the operation shall raise theInvalidKey exception.

remove

This operation removes the component identified by the specified key value.
Subsequent requests to any of the component’s facets shall raise a
OBJECT_NOT_EXIST system exception. If the specified key value does not identi
an existing component managed by the home, the operation shall raise an
UnknownKeyValue exception. If the key value was not a well-formed, legal value,
the operation shall raise theInvalidKey exception.

61.7.2 Primary key declarations

Primary key values shall uniquely identify component instances within the scope of
home that manages them. Two component instances cannot exist on the same ho
with the same primary key value.

Different home types that manage the same component type may specify differen
primary key types. Consequently, a primary key type is not inherently related to th
component type, and vice versa. A home definition determines the association betw
a component type and a primary key type The home implementation is responsible
maintaining the association between specific primary key values and specific
component identities.

Note that this discussion pertains to component definitions as abstractions.
A particular implementation of a component type may be cognizant of, and
dependent upon, the primary keys associated with its instances. Such
dependencies, however, are not exposed on the surface of the component
type. A particular implementation of a component type may be designed to
be manageable by different home interfaces with different primary keys, or
it may be inextricably bound to a particular home definition. Generally, an
implementation of a component type and the implementation of its associ-
ated home are inter-dependent, although this is not absolutely necessary.

61.7.2.1 Primary key type constraints

Primary key and types are subject to the following constraints:

• A primary key type must be a value type derived from
Components::PrimaryKeyBase .

• A primary key type must be a concrete type with at least one public state mem

• A primary key type may not contain private state members.

• A primary key type may not contain any members whose type is a CORBA
interface reference type, including references for interfaces, abstract interfaces,
local interfaces.
61-56 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999



61

bers
rface
e, it

n

ry

r

• These constraints apply recursively to the types of all of the members, i.e., mem
which are structs, unions, value types, sequences or arrays may not contain inte
reference types. If the type of a member is a value type or contains a value typ
must meet all of the above constraints.

61.7.2.2 PrimaryKeyBase

The base type for all primary keys is the abstract value type
Components::PrimaryKeyBase . The definition ofPrimaryKeyBase is as
follows:

module Components {
abstract valuetype PrimaryKeyBase { };

};

61.7.3 Explicit operations in home definitions

A home body may include zero or more operation declarations, where the operatio
may be afactory operation, afinder operation, or a normal operation or attribute.

61.7.3.1 Factory operations

A factory operation is denoted by thefactory keyword. A factory operation has a
corresponding equivalent operation on the home’s explicit interface. Given a facto
declaration of the following form:

home <home_name> manages <component_type> {
factory <factory_operation_name> (<parameters> )
raises ( <exceptions> );

};

The equivalent operation on the explicit interface is as follows:

<component_type> <factory_operation_name> ( <parameters> )
raises ( <exceptions> );

A factory operation is required to support creation semantics, i.e., the reference
returned by the operation shall identify a component that did not exist prior to the
operation’s invocation.

61.7.3.2 Finder operations

A finder operation is denoted by thefinder keyword. A finder operation has a
corresponding equivalent operation on the home’s explicit interface. Given a finde
declaration of the following form:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999 61-57



61

by
.

ased

o
ce or

es
home <home_name> manages <component_type> {
finder <finder_operation_name> (<parameters> ) raises ( <exceptions> );

};

The equivalent operation on the explicit interface is as follows:

<component_type> <finder_operation_name> ( <parameters> )
raises ( <exceptions> );

A finder operation shall to support the following semantics. The reference returned
the operation shall identify a previously-existing component managed by the home
The operation implementation determines which component’s reference to return b
on the values of the operation’s parameters.

61.7.3.3 Miscellaneous exports

All of the exports, other than factory and finder operations, that appear in a home
definition are duplicated exactly on the home’s explicit interface.

61.7.4 Home inheritance

Given a derived home definition of the following form:

home <home_name> : <base_home_name> manages <component_type> {
<explicit_operations>

};

The resulting explicit interface has the following form:

interface <home_name> Explicit : <base_home_name> Explicit {
<equivalent_explicit_operations>

};

where<equivalent_explicit_operations>are the operations defined in the home
declaration (<explicit_operations>), with factory and finder operations transformed to
their equivalent operations, as described in Section 61.7.3, “Explicit operations in
home definitions. The forms of the implicit and equivalent interfaces are identical t
the corresponding forms for non-derived storage homes, determined by the presen
absence of a primary key specification.

A home definition with no primary key specification constitutes a pair(H, T) whereH
is the home type andT is the managed component type. If the home definition includ
a primary key specification, it constitutes a triple(H, T, K), whereH andT are as
previous andK is the type of the primary key. Given a home definition(H’, T’) or (H’,
T’, K) , whereK is a primary key type specified onH’ , such thatH’ is derived fromH,
thenT’ must be identical toT or derived (directly or indirectly) fromT.
61-58 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999



61

s
e

y
of

itly

y a

of
ORB
f
d
efer

se
Given a base home definition with a primary key(H, T, K), and a derived home
definition with no primary key(H’, T’) , such thatH’ is derived fromH, then the
definition of H’ implicitly includes a primary key specification of typeK, becoming
(H’, T’, K) . The implicit interface forH’ shall have the form specified for an implicit
interface of a home with primary keyK and component typeT’ .

Given a base home definition(H, T, K), noting thatK may have been explicitly
declared in the definition ofH, or inherited from a base home type, and a home
definition (H’, T’, K’) such thatH’ is derived fromH, thenT’ must be identical to or
derived fromT andK’ must be identical to or derived fromK.

Note the following observations regarding these constraints and the structure of
inherited equivalent interfaces:

• If a home definition does not specify a primary key directly in its header, but it i
derived from a home definition that does specify a primary key, the derived hom
inherits the association with that primary key type, precisely as if it had explicitl
specified that type in its header. This inheritance is transitive. For the purposes
the following discussion, home definitions that inherit a primary key type are
considered to have specified that primary key type, even though it did not explic
appear in the definition header.

• Operations onCCMHome are inherited by all home equivalent interfaces. These
operations apply equally to homes with and without primary keys.

• Operations onKeylessCCMHome are inherited by all homes that do not specify
primary keys

• Implicitly-defined operations (i.e., that appear on the implicit interface) are only
visible to the equivalent interface for the specific home type that implies their
definitions. Implicitly-defined operations on a base home type are not inherited b
derived home type. Note that the implicit operations for a derived home may be
identical in form to the corresponding operations on the base type, but they are
defined in a different name scope.

• Explicitly-defined operations (i.e., that appear on the explicit interface) are
inherited by derived home types.

61.7.5 Semantics of home operations

Operations in home interfaces fall into two categories:

• Operations that are defined by the component model. Default implementations
these operations must, in some cases, be supplied by the component-enabled
product, without requiring user programming or intervention. Implementations o
these operations must have predictable, uniform behaviors. Hence, the require
semantics for these operations are specified in detail. For convenience, we will r
to these operations asorthodoxoperations.

• Operations that are defined by the user The semantics of these operations are
defined by the user-supplied implementation. Few assumptions can be made
regarding the behavior of such operations. For convenience, we will refer to the
operations asheterodoxoperations.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999 61-59



61

ce”,

in

for

mal
the

of a
tutes

ll of
are

qual

bers

es.
Orthodox operations include the following:

• Operations defined onCCMHome andKeylessCCMHome .

• Operations that appear on the implicit interface for any home.

Heterodox operations include the following:

• Operations that appear in the body of the home definition, including factory
operations, finder operations, and normal IDL operations and attributes.

61.7.5.1 Orthodox operations

Because of the inheritance structure described in Section 61.7.4, “Home inheritan
problems relating to polymorphism in orthodox operations are limited. For the
purposes of determining key uniqueness and mapping key values to components
orthodox operations, equality of value types (given the constraints on primary key
types specified in Section 61.7.2.1, “Primary key type constraints) are defined as
follows:

• Only the state of the primary key type specified in the home definition (which is
also the actual parameter type in operations using primary keys) shall be used
the purposes of determining equality. If the type of the actual parameter to the
operation is more derived that the formal type, the behavior of the underlying
implementation of the operation shall be as if the value were truncated to the for
type before comparison. This applies to all value types that may be contained in
closure of the membership graph of the actual parameter value, i.e., if the type
member of the actual parameter value is a value type, only the state that consti
the member’s declared type is compared for equality.

• Two values are equal if their types are precisely equivalent and the values of a
their public state members are equal. This applies recursively to members which
value types.

• If the values being compared constitute a graph of values, the two values are e
only if the graphs are isomorphic.

• Union members are equal if both the discriminator values and the values of the
union member denoted by the discriminator are precisely equal.

• Members which are sequences or arrays are considered equal if all of their mem
are precisely equal, where order is significant.

61.7.5.2 Heterodox operations

Polymorphism in heterodox operations is somewhat more problematic, as they are
inherited by homes that may specify more-derived component and primary key typ
Assume a home definition(H, T, K), with an explicit factory operationf that takes a
parameter of typeK, and a home definition(H’, T’, K’) , such thatH’ is derived from
H, T’ is derived fromT, andK’ is derived fromK. The operationf (whose parameter
type isK) is inherited by equivalent interface forH’ . It may be the intended behavior
of the designer that the actual type of the parameter to invocations off on H’ should be
K’ , exploiting the polymorphism implied by inheritance ofK by K’ . Alternatively, it
61-60 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999



61

er

y
n of

g

e for

it

ce

y

may be the intended behavior of the designer that actual parameter values of eithK
or K’ are legitimate, and the implementation of the operation determines what the
appropriate semantics of operation are with respect to key equality.

This specification does not attempt to define semantics for polymorphic equality.
Instead, we define the behavior of operations on home that depend on primary ke
values in terms of abstract tests for equality that are provided by the implementatio
the heterodox operations.

Implementations of heterodox operations, including implementations of key value
comparison for equality, are user-supplied. This specification imposes the followin
constraints on the tests for equality of value types used as keys in heterodox
operations:

• For any two actual key values A and B, the comparison results must be the sam
all invocations of all operations on the home.

• The comparison behavior must meet the general definition of equivalence, i.e.,
must be symmetric, reflexive, and transitive.

61.7.6 CCMHome interface

The definition of theCCMHome interface is as follows:

module Components {
interface CCMHome {

CORBA::IRObject get_component_def();
CORBA::IRObject get_home_def ();
void remove_component ( in CCMObject comp);

};
};

get_component_def

The get_component_def operation returns an object reference that supports the
IR::ComponentDef interface, describing the component type associated with the
home object. In strongly typed languages, theIRObject returned must be narrowed to
IR::ComponentDef before use.

get_home_def

The get_home_def operation returns an object reference that supports the
IR::HomeDef interface describing the home type. In strongly typed languages, the
IRObject returned must be narrowed toIR::HomeDef before use.

remove_component

The remove_component operation causes the component denoted by the referen
to cease to exist. Subsequent invocations on the reference will cause an
OBJECT_NOT_EXIST system exception to be raised. If the component denoted b
the parameter does not exist in the container associated with target home object,
remove_component raises aBAD_PARAM system exception.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999 61-61



61

he

es
61.7.7 KeylessCCMHome interface

The definition of theKeylessCCMHome interface is as follows:

module Components {
interface KeylessCCMHome {

CCMObject create_component();
};

};

create_component

The create_component operation creates a new instance of the component type
associated with the home object. A home implementation may choose to disable t
parameter-lesscreate_component operation, in which case it shall raise a
NO_IMPLEMENT system exception.

61.8 Home Finders

The HomeFinder interface is, conceptually, a greatly simplified analog of the
CosLifeCycle::FactoryFinder interface. Clients can use theHomeFinder interface
to obtain homes for particular component types, of particularly home types, or hom
that are bound to specific names in a naming service.

A reference that supports theHomeFinder interface may be obtained from the ORB
pseudo-object by invokingCORBA::ORB::resolve_initial_references , with the
parameter value “ComponentHomeFinder ”. This requires the following
enhancement to theORB interface definition:

module CORBA {

interface ORB {
Object resolve_initial_references (in ObjectID identifier)

raises (InvalidName);
};

};

Issue – The string,“ComponentHomeFinder” is added to the list of valid
ObjectID values. Make sure and DELETE

The HomeFinder interface is defined by the following IDL:
61-62 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Home Finders 29 October 1999



61

e

nent

all
module Components {

exception HomeNotFound { };

interface HomeFinder {
CCMHome find_home_by_component_type (

in CORBA::RepositoryId comp_repid)raises (HomeNotFound);
CCMHome find_home_by_home_type (

in CORBA::RepositoryId home_repid) raises (HomeNotFound);
CCMHome find_home_by_name (

in string home_name) raises (HomeNotFound);
};

};

find_home_by_component_type

The find_home_by_component_typeoperation returns a reference which supports th
interface of a home object that manages the component type specified by the
comp_repid parameter. This parameter contains the repository identifier of the
component type required. If there are no homes that manage the specified compo
type currently registered, the operation shall raise theHomeNotFound exception.

Little is guaranteed about the home interface returned by this operation. If
the definition of the returned home specified a primary key, there is no
generic factory operation available on any standard interface (i.e, pre-
defined, as opposed to generated type-specific interface) supported by the
home. The only generic factory operation that is potentially available is
Components::KeylessCCMHome::create_component. The client must
first attempt to narrow theCCMHome reference returned by the
find_home_by_component_typeto KeylessCCMHome. Otherwise, the
client must have specific out-of-band knowledge regarding the home inter-
face that may be returned, or the client must be sophisticated enough to
obtain theHomeDeffor the home and use the DII to discover and invoke a
create operation on a type-specific interface supported by the home.

find_home_by_home_type

The find_home_by_home_typeoperation returns a reference that supports the
interface of the type specified by the repository identifier in thehome_repid
parameter. If there are no homes of this type currently registered, the operation sh
raise theHomeNotFound exception.

The current LifeCycle find_factories operation returns a sequence of facto-
ries to the client requiring the client to choose the one which will create the
instance. Based on the experience of the submitters, CORBA components
defines operations which allows the server to choose the “best” home for
the client request based on its knowledge of workload, etc.

Since the operation returns a reference toCCMHome , it must be narrowed to the
specific home type before it can be used.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Home Finders 29 October 1999 61-63



61

e
8-
be
he
as

to

he
es or

the
find_home_by_name

Issue – replace with proper INS ref - “param shall contain...”

The find_home_by_nameoperation returns a home reference bound to the name
specified in thehome_nameparameter. This parameter is expected to contain a nam
in the format described in the Interoperable Naming Service specification (orbos/9
10-11), section 4.5, “Stringified Names”. The implementation of this operation may
delegated directly to an implementation of CORBA naming, but it is not required. T
semantics of the implementation are considerably less constrained, being defined
follows:

• The implementation is free to maintain multiple bindings for a given name, and
return any reference bound to the name.

It is generally expected that implementations that do not choose to use
CORBA naming will do so for reasons of scalability and flexibility, in
order, for example, to provide a home which is logically more “local” to
the home finder (and thus, the client).

• The client’s expectations regarding the returned reference, other than that it
supports theCCMHome interface, are not guaranteed or otherwise mediated by t
home. The fact that certain names may be expected to provide certain home typ
qualities of implementation are outside of the scope of this specification.

This is no different than any application of naming services in general.
Applications that require clients to be more discriminating are free to use
the Trader service, or any other similar mechanism that allows query or
negotiation to select an appropriate home. This mechanism is intentionally
kept simple.

If the specified name does not map onto a home object registered with the finder,
operation shall raise theHomeNotFound exception.

61.9 Component Configuration

The CORBA component model provides mechanisms to support the concept of
componentconfigurability.

Issue – How much and where of this do we keep

Experience has proven that building re-usable components involves mak-
ing difficult trade-offs between providing well-defined, reasonably-scoped
functionality, and providing enough flexibility and generality to be useful
(or re-useful) across a variety of possible applications. Packaging assump-
tions of the component architecture preclude customizing a component’s
behavior by directly altering its implementation or (in most cases) by
deriving specialized sub-types. Instead, the model focuses on extension and
customization through delegation (e.g., via dependencies expressed with
uses declarations) and configuration. Our assumption is that generalized
components will typically provide a set of optional behaviors or modalities
that can be selected and adjusted for a specific application.
61-64 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Configuration 29 October 1999



61

sed
,

ility

er

or

cle,
The configuration framework is designed to provide the following capabili-
ties:

• The ability to define attributes on the component type that are used to
establish a component instance’s configuration. Component attributes
are intended to be used during a component instance’s initialization to
establish its fundamental behavioral properties. Although the compo-
nent model does not constrain the visibility or use of attributes defined
on the component, it is generally assumed that they will not be of
interest to the same clients that will use the component after it is con-
figured. Rather, it is intended for use by component factories or by
deployment tools in the process of instantiating an assembly of com-
ponents.

• The ability to define a configuration in an environment other than the
deployment environment (e.g., an assembly tool), and store that con-
figuration in a component package or assembly package to be used
subsequently in deployment.

• The ability to define such a configuration without having to instantiate
the component type itself.

• The ability to associate a pre-defined configuration with a component
factory, such that component instances created by that factory will be
initialized with the associated configuration.

• Support for visual, interactive configuration tools to define configura-
tions. Specifically, the framework allows component implementors to
provide a configuration manager associated with the component
implementation. The configuration manager interface provides
descriptive information to interactive users, constrains configuration
options, and performs validity checks on proposed configurations.

The CORBA component model allows a distinction to be made between interface
features that are used primarily for configuration, and interface features that are u
primarily by application clients during normal application operation. This distinction
however, is not precise, and enforcement of the distinction is largely the responsib
of the component implementor.

It is the intent of this specification (and a strong recommendation to component
implementors and users) that operational interfaces should be either provided
interfaces or supported interfaces. Features on the component interface itself, oth
than provided interfaces, (i.e., receptacles, event sources and sinks) are generally
intended to be used for configuration, although there is no structural mechanism f
limiting the visibility of the features on a component interface. A mechanism is
provided for defining configuration and operational phases in a component’s life cy
and for disabling certain interfaces during each phase.

The distinction between configuration and operational interfaces is often
hard to make in practice. For example, we expect that operational clients
of a component will want to receive events generated by a component. On
the other hand, some applications will want to establish a fixed set of event
source and sink connections as part of the overall application structure,
and will want to prevent clients from changing those connections. Likewise,
the responsibility for configuration may be hard to assign—in some appli-
cations the client that creates and configures a component may be the same
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Configuration 29 October 1999



61

ion
n.

n
idity
ete.
)

from

port

M

client that will use it operationally. For this reason, the CORBA component
model provides general guidelines and optional mechanisms that may be
employed to characterize configuration operations, but does not attempt to
define a strict separation of configuration and operational behaviors.

61.9.1 Exclusive configuration and operational life cycle phases

A component implementation may be designed to implement an explicit configurat
phase of its life cycle, enforcing serialization of configuration and functional operatio
If this is the case, the component life cycle is divided into two mutually exclusive
phases, theconfiguration phaseand theoperational phase.

The configuration_complete operation (inherited from
Components::CCMObject ) is invoked by the agent effecting the configuration to
signal the completion of the configuration phase. TheInvalidConfiguration
exception is raised if the state of the component configuration state at the time
configuration_complete is invoked does not constitute an acceptable configuratio
state. It is possible that configuration may be a multi-step process, and that the val
of the configuration may not be determined until the configuration process is compl
Theconfiguration_complete operation should not return to the caller until either 1
the configuration is deemed invalid, in which case theInvalidConfiguration
exception is raised, or 2) the component instance has performed whatever work is
necessary to consolidate the final configuration and is prepared to accept requests
arbitrary application clients.

In general, component implementations should defer as much consolida-
tion and integration of configuration state as possible until
configuration_complete is invoked. In practice, configuring a highly-con-
nected distributed object assembly has proven very difficult, primarily
because of subtle ordering dependencies that are difficult to discover and
enforce. If possible, a component implementation should not be sensitive to
the ordering of operations (interface connections, configuration state
changes, etc.) during configuration. This is one of the primary reasons for
the definition of configuration_complete.

61.9.1.1 Enforcing exclusion of configuration and operation

The implementation of a component may choose to disable changes to the
configuration afterconfiguration_complete is invoked, or to disable invocations of
operations on provided interfaces untilconfiguration_complete is invoked. If an
implementation chooses to do either (or both), an attempt to invoke a disabled
operations should raise aBAD_INV_ORDER system exception.

Alternatively, a component implementation may choose not to distinguish between
configuration phase and deployment phase. In this case, invocation of
configuration_complete will have no effect.

The component implementation framework provides standard mechanisms to sup
disabling operations during configuration or operation. Certain operations are
implemented by the component implementation framework (see Chapter 615, “CC
Implementation Framework”), and may not be disabled.
61-66 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Configuration 29 October 1999



61

set

can
any
eral,
nt.

the
61.10 Configuration with attributes

A component’s configuration is established primarily through its attributes. An
attribute configurationis defined to be a description of a set of invocations on a
component’s attribute set methods, with specified values as parameters.

There are a variety of possible approaches to attribute configuration at run time,
depending on the design of the component implementation and the needs of the
application and deployment environments. The CORBA component model defines a
of basic mechanisms to support attribute configuration. These mechanisms can be
deployed in a number of ways in a component implementation or application.

61.10.1 Attribute Configurators

A configurator is an object that encapsulates a specific attribute configuration that
be reproduced on many instances of a component type. A configurator may invoke
operations on a component that are enabled during its configuration phase. In gen
a configurator is intended to invoke attribute set operations on the target compone

61.10.1.1 The Configurator interface

The following interface is supported by all configurators:

module Components {

interface Configurator {
void configure (in CCMObject comp)

raises (WrongComponentType);};
};

configure

The configure operation establishes its encapsulated configuration on the target
component. If the target component is not of the type expected by the configurator,
configure operation shall raise theWrongComponentType exception.

61.10.1.2 The StandardConfigurator interface

The StandardConfigurator has the following definition:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Configuration with attributes 29 October 1999



61

r

tes

n a

ying

te
module Components {

valuetype ConfigValue {
FeatureName name;
any value;

};

typedef sequence<ConfigValue> ConfigValues;

interface StandardConfigurator : Configurator {
void set_configuration (in ConfigValues descr);

};
};

The StandardConfigurator interface supports the ability to provide the configurato
with a set of values defining an attribute configuration.

set_configuration

The set_configuration operation accepts a parameter containing a sequence of
ConfigValue instances, where eachConfigValue contains the name of an attribute
and a value for that attribute, in the form of anany. The name member of the
ConfigValue type contains the unqualified name of the attribute as declared in the
component definition IDL. After a configuration has been provided with
set_configuration , subsequent invocations ofconfigure will establish the
configuration on the target component by invoking the set operations on the attribu
named in the value set, using the corresponding values provided in theanys.
Invocations on attribute set methods will be made in the order in which the values
occur in the sequence.

61.10.2 Factory-based configuration

Factory operations on home objects may participate in the configuration process i
variety of ways.

• A factory operation may be explicitly implemented to establish a particular
configuration.

• A factory operation may apply a configurator to newly-created component
instances. The configurator may be supplied by an agent responsible for deplo
a component implementation or a component assembly.

• A factory operation may apply an attribute configuration (in the form of a
Components::ConfigValues sequence) to newly-created instances. The attribu
configuration may be supplied to the home object by an agent responsible for
deploying a component implementation or a component assembly.

• A factory operation may be explicitly implemented to invoke
configuration_complete on newly-created component instances, or to leave
component instances open for further configuration by clients.
61-68 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Configuration with attributes 29 October



61

nts.

ed

e

ner,

by
• A factory operation may be directed by an agent responsible for deploying a
component implementation or assembly to invokeconfiguration_complete on
newly-created instances, or to leave them open for further configuration by clie

If no attribute configuration is applied by a factory or by a client, the state establish
by the component implementation’s instance initialization mechanism (e.g., the
component servant constructor) constitutes the default configuration.

61.10.2.1 HomeConfiguration interface

The implementation of a component type’s home object may optionally support th
HomeConfiguration interface. TheHomeConfiguration interface is derived from
Components::CCMHome . In general, theHomeConfiguration interface is
intended for use by an agent deploying a component implementation into a contai
or an agent deploying an assembly.

The HomeConfiguration interface allows the caller to provide aConfigurator
object and/or a set of configuration values that will be applied to instances created
factory operations on the home object. It also allows the caller to cause the home
object’s factory operations to invokeconfiguration_complete on newly-created
instances, or to leave them open for further configuration.

The HomeConfiguration allows the caller to disable further use of the
HomeConfiguration interface on the home object.

TheConfigurator interface and theHomeConfiguration interface are
designed to promote greater re-use, by allowing a component implementor
to offer a wide range of behavioral variations in a component implementa-
tion. As stated previously, the CORBA component specification is intended
to enable assembling applications from pre-built, off-the-shelf component
implementations. An expected part of the assembly process is the customi-
zation (read: configuration) of a component implementation, to select from
among available behaviors the behaviors suited to the application being
assembled. We anticipate that assemblies will need to define configurations
for specific component instances in the assembly, but also that they will
need to define configurations for a deployed component type, i.e., all of the
instances of a component type managed by a particular home object.

The HomeConfiguration interface is defined by the following IDL:

module Components {

interface HomeConfiguration : CCMHome {
void set_configurator (in Configurator cfg);
void set_configuration_values (
in ConfigValues config);
void complete_component_configuration (in boolean b);
void disable_home_configuration();

};

};
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Configuration with attributes 29 October 1999



61

y
es.

an

ill

s

d
and
s and

es,

ied

ory
ll
t

nent

ips
nt
set_configurator

This operation establishes a configurator object for the target home object. Factor
operations on the home object will apply this configurator to newly-created instanc

set_configuration_values

This operation establishes an attribute configuration for the target home object, as
instance ofComponents::ConfigValues . Factory operations on the home object
will apply this configurator to newly-created instances.

complete_component_configuration

This operation determines whether factory operations on the target home object w
invoke configuration_complete on newly-created instances. If the value of the
boolean parameter isTRUE, factory operations will invoke
configuration_complete on component instances after applying any required
configurator or configuration values to the instance. If the parameter isFALSE,
configuration_complete will not be invoked.

disable_home_configuration

This operation serves the same function with respect to the home object that the
configuration_complete operation serves for components. This operation disable
further use of operations on theHomeConfiguration interface of the target home
object. If a client attempts to invokeHomeConfiguration operations, the request will
raise aBAD_INV_ORDER system exception. This operation may also be interprete
by the implementation of the home as demarcation between its own configuration
operational phases, in which case the home implementation may disable operation
attributes on the home interface.

If a home object is supplied with both a configurator and a set of configuration valu
the order in whichset_configurator andset_configuration_values are invoked
determines the order in which the configurator and configuration values will be appl
to component instances. Ifset_configurator is invoked before
set_configuration_values , the configurator will be applied before the configuration
values, and vice-versa.

The component implementation framework defines default implementations of fact
operations that are automatically generated. These generated implementations wi
behave as specified here. Component implementors are free to replace the defaul
factory implementations with customized implementations. If a customized home
implementation chooses to support theHomeConfiguration interface, then the
factory operation implementations must behave as specified, with respect to compo
configuration.

61.11 Component Inheritance

The mechanics of component inheritance are defined by the inheritance relationsh
of the equivalent IDL component interfaces. The following rules apply to compone
inheritance:
61-70 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Inheritance 29 October 1999



61

nt

ase

rface
• All interfaces for non-derived component types are derived fromCCMObject .

• If a component type directly supports one or more IDL interfaces, the compone
interface is derived from bothCCMObject and the supported interfaces.

• A derived component type may not directly support an interface.

• The interface for a derived component type is derived from the interface of its b
component type.

• A component type may have at most one base component type.

• The features of a component that are expressed directly on the component inte
are inherited as defined by IDL interface inheritance. These include:

• operations implied byprovides statements

• operations implied byuses statements

• operations implied byemits statements

• operations implied bypublishes statements

• operations implied byconsumes statements

• attributes
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Inheritance 29 October 1999



61
Figure 61-1 Component inheritance and related interface inheritance

61.11.1 CCMObject Interface

The CCMObject interface is defined by the following IDL:

module Components

interface CCMObject : Navigation, Receptacles, Events {
CORBA::IRObject get_component_def ( );
CCMHome get_ccm_home( );
PrimaryKeyBase get_primary_key( ) raises (NoKeyAvailable);
void configuration_complete( ) raises (InvalidConfiguration);
void remove();
};

};

component A supports I

interface I

component B interface B

interface A

interface CCMObject

interface Navigation

interface Events

interface Receptacles

interface CCMHome

pre-defined

user-defined

generated

home AHome manages A

home BHome manages A

interface AHome

interface BHome
61-72 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Inheritance 29 October 1999



61

ined

ace.
h

ent

ons

e
BA
get_component_def

This operation returns anIRObject reference to the component definition in the
Interface Repository. The interface repository representation of a component is def
in Volume III of this specification. In strongly typed languages, theIRObject returned
must be narrowed toIR::ComponentDef before use.

get_ccm_home

This operation returns aCCMHome reference to the home which manages this
component.

get_primary_key

This operation is equivalent to the same operation on the component’s home interf
It returns a primary key value if the component is being managed by a home whic
defines a primary key. Otherwise, theNoKeyAvailable exception shall be raised.

configuration_complete

This operation is called by a configurator to indicate that the initial component
configuration has completed. If the component determines that it is not sufficiently
configured to allow normal client access, it raises theInvalidConfiguration
exception.The component configuration process is described in Section 61.9.

remove

This operation is called when a component is about to be destroyed. The compon
can perform any cleanup processing required (e.g. releasing resources) prior to its
destruction.

61.12 Conformance Requirements

This section identifies the conformance points required for compliant implementati
of the CORBA Component model.

The following conformance points are defined:

1. A CORBA COS vendor shall provide the relevant changes to the Lifecycle,
Transaction, and Security Services identified in the following Section 61.12.2,
“Changes to Object Services,” on page 61-75.

2. A CORBA ORB vendor need not provide implementations of Components asid
from the changes made to the Core to support components. Conversely a COR
Component vendor need not be a CORBA ORB vendor.

3. A CORBA Component vendor shall provide a conforming implementation of the
Basic Level of CORBA Components.

4. A CORBA Component vendor may provide a conforming implementation of the
Extended Level of CORBA Components.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Conformance Requirements 29 October 1999



61

t (at

s in

a

ced

ith

on

his
arse
5. In order to be conformant at the Basic level a non-Java product shall implemen
a minimum) the following:

• the IDL extensions and generation rules to support the client and server side
component model for basic level components.

• CIDL. The multiple segment feature of CIDL (Section 60.12, “Segment
Definition,” on page 60-18) need not be supported for basic components.

• a container for hosting basic level CORBA components.

• the XML deployment descriptors and associated zip files for basic component
the format defined in Section 69.1, “Introduction,” on page 69-258.

Such implementations shall work on a CORBA ORB as defined in 1. above.

6. In order to be conformant at the Basic level a Java product shall implement (at
minimum):

• EJB1.1, including support for the EJB 1.1 XML DTD,

• the java to IDL mapping, also known as RMI/IIOP

• EJB to IDL mapping as defined in Section 64.3.2, “Translation of CORBA
Component requests into EJB requests,” on page 64-179.

Such implementations shall work in a CORBA interoperable environment,
including interoperable support for IIOP, CORBA transactions and CORBA
security.

7. In order to be conformant at the extended level, a product shall implement (at a
minimum) the requirements needed to achieve Basic PLUS

• IDL extensions to support the client and server side component model for
extended level components

• A container for hosting extended level CORBA components.

• the XML deployment descriptors and associated zip files for basic and enhan
level components in the format defined in Section 69.1, “Introduction,” on
page 69-258.

Such implementations shall work on a CORBA ORB as defined in 1. above.

8. A CORBA Component vendor may optionally support EJB clients interacting w
CORBA Components, by implementing the IDL to EJB mapping as defined in
Section 64.4.2, “Translation of EJB requests into CORBA Component requests,”
page 64-186.

9. This specification includes extensions to IDL, in the form of new keywords and
grammar. Although a CORBA ORB vendor need not be a CORBA Component
vendor, and vice-versa, it is important to maintain IDL as a single language. To t
end, all compliant products of any conformance points above shall be able to p
any valid IDL definitions. However, it is permitted to raise errors, or to ignore,
those parts of the grammar that relate to another conformance point.

Conforming implementations as defined above may also implement any additional
features of this specification not required by the above conformance points.
61-74 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Conformance Requirements 29 October 1999



61

le to
f

y be
vant

to
t

ow

is

can

:

61.12.1 A Note on Tools

Component implementations are expected to be supported by tools. It is not possib
define conformance points for tools, since a particular tool may only support part o
the component development and deployment life-cycle. Hence a suite of tools ma
needed. The Component architecture contains a number of definitions that are rele
to tools, including zip files and XML formats, as well as IDL interfaces for
customization and installation. Although it cannot be enforced, tools are expected
conform to the relevant areas with which they are dealing. For example, a tool tha
generates implementations for a particular platform is expected to generate XML
according to the<implementation> clauses in the DTD defined in 10.

61.12.2 Changes to Object Services

61.12.2.1 Life Cycle Service

To support the factory design pattern for creating a component instance and to all
the server, rather than a client, to select from a group of functionally equivalent
factories based on load or other server-side visible criteria, the following operation
added to theFactoryFinder interface of theCosLifeCycle module:

module CosLifeCycle {
interface FactoryFinder {
Factory find_factory (in Key factory_key) raises (noFactory);
};

};

The parameters of the above operation are as defined byCosLifeCycle with the
following clarifications:

• The factory_key parameter is a name conforming to the Interoperable Naming
Specification (orbos/98-10-11) for stringified names

• The factory_key parameter is used as an input to thefind_home_by_name
operation onComponents::HomeFinder

• The default factory operation on the home is used to obtain a reference which
be narrowed to theCosLifeCycle::GenericFactory type.

61.12.2.2 Transaction Service

The following CORBA transaction service interface is changed to a local interface

• CosTransactions::Current

61.12.2.3 Security Service

The following CORBA Security interfaces are changed to local interfaces:

• SecurityLevel1::Current

• SecurityLevel2::PrincipalAuthenticator
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Conformance Requirements 29 October 1999



61
• SecurityLevel2::Credentials

• SecurityLevel2::ReceivedCredentials

• SecurityLevel2::AuditChannel

• SecurityLevel2::AuditDecision

• SecurityLevel2::AccessDecision

• SecurityLevel2::QOPPolicy

• SecurityLevel2::MechanismPolicy

• SecurityLevel2::InvocationCredentialsPolicy

• SecurityLevel2::EstablishTrustPolicy

• SecurityLevel2::DelegationDirectivePolicy

• SecurityLevel2::Current

• SecurityReplacable::Vault

• SecurityReplacable::SecurityContext

• SecurityReplacable::ClientSecurityContext

• SecurityReplacable::ServerSecurityContext
61-76 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Conformance Requirements 29 October 1999



CCM Implementation Framework 615
tion
This chapter describes the semantics of the CORBA Component Model Implemena
Framework.

Issue – It contains all new text taken from the CCM final submission
orbos/99-07-01 with only minor editorial changes - Jeff Mischkinsky

615.0.0.1 Contents

This chapter contains the following sections.

Section Title Page

“Introduction” 615-78

“Language Mappings” 615-78

“Language Mappings” 615-115
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999 615-77



615

for

d
ate
,

ting
r,
ctly

),

eate

e
e

F and

of a

ion
615.1 Introduction

The Component Implementation Framework (CIF) defines the programming model
constructing component implementations. Implementations of components and
component homes are described in CIDL. See Chapter 60, “OMG CIDL Syntax an
Semantics” for the definition and syntax. The CIF uses CIDL descriptions to gener
programming skeletons that automate many of the basic behaviors of components
including navigation, identity inquiries, activation, state management, lifecycle
management, and so on.

615.2 Component Implementation Framework (CIF) architecture

As a programming abstraction, the CIF is designed to be compatible with the exis
POA framework, but also to insulate programmers from its complexity. In particula
the CIF can be implemented using the existing POA framework, but it does not dire
expose any elements of that framework.

615.2.1 Component Implementation Definition Language (CIDL)

The focal point of the CIF is Component Implementation Definition Language (CIDL
a declarative language for describing the structure and state of component
implementations. Component-enabled ORB products generate implementation
skeletons from CIDL definitions. Component builders extend these skeletons to cr
complete implementations.

615.2.2 Component persistence and behavior

CIDL is a superset of the Persistent State Definition Language, defined in the
Persistent State Service specification (document orbos/99-07-07).

Issue – Above statement needs to be clarified.

A CIDL implementation definition may optionally associate an abstract storage typ
with the component implementation, such that the abstract storage type defines th
form of the internal state encapsulated by the component. When a component
implementation declares an associated abstract storage type in this manner, the CI
the run-time container environment cooperate to manage the persistence of the
component state automatically.

This chapter addresses the elements of the CIF that pertain to the implementation
component’s behavior.

615.2.3 Implementing a CORBA Component

The remainder of section 615.2 provides an overview of the concepts involved in
building component implementations. It is intended to provide a high-level descript
that will serve as a framework for understanding the more formal descriptions that
615-78 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October 1999



615

ith
or

e

s

a
ely

n,

e
ch

the
follow in subsequent sections. While the information in this section is normative (w
the exception of italicized, indented rationale), it is not intended to be a complete
precise specification of the CIF, or all of the possible design options from which a
component implementor may choose.

615.2.4 Behavioral elements: Executors

We coin the termexecutorto indicate the programming artifact that supplies the
behavior of a component or a component home. In general, the termsexecutoror
component executorrefer to the artifact that implements the component type, and th
term home executorrefers to the artifact that implements the component home.

We chose to use the wordexecutorrather thanservantto avoid confusion
with POA servants. POA servants, while conceptually similar to executors,
are significantly different in detail, and map to different types in program-
ming languages. Executor is pronounced with the accent on the second syl-
lable (e.g.-ZEK-yoo-tor).

We have tried to avoid terminology that is specific to object-oriented pro-
gramming languages, such as class, base class, derive, and so on, in an
attempt to be precise and acknowledge that the CIF framework may be
mapped to procedural programming languages. Hence, we typically use
the wordartifactor programming artifactto denote what may conveniently
be thought of as a class, and likewise, the termskeletonto denote a gener-
ated abstract base class that is extended to form a complete implementa-
tion class. We hope this is not overly distracting to the reader.

615.2.5 Unit of implementation : Composition

An implementation of a component comprises a potentially complex set of artifact
that must exhibit specific relationships and behaviors in order to provide a proper
implementation. The CIDL description of a component implementation is actually
description of this aggregate entity, of which the component itself may be a relativ
small part. In order to enable more concise discussion, we coin the termcompositionto
denote both the set of artifacts that constitute the unit of component implementatio
and the definition itself.composition is the CIDL meta-type that corresponds to an
implementation definition.

A composition definition specifies the following elements:

Component home

A composition definition specifies a component home type, imported from IDL. Th
specification of a component home implicitly identifies the component type for whi
the composition provides an implementation (i.e., the component type managed by
home, as specified in the IDL home definition).
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

ent

p

n a

me
s)
ome

er
e

is
n of

lso

.

IF
utor,

o
the
some
out
tion.

nt
ome
Abstract Storage home binding

A composition optionally specifies an abstract storage home to which the compon
home is bound. The specification of an abstract storage home binding implicitly
identifies the abstract storage type that incarnates the component. The relationshi
between a home and the component it manages to isomorphic to the relationship
between an abstract storage home and the abstract storage type it manages. Whe
home binds to an abstract storage home, the component managed by the home is
implicitly bound to the abstract storage type of this abstract storage home.

Home executor

A composition definition specifies a home executor definition. The name of the ho
executor definition is used as the name of the programming artifact (e.g., the clas
generated by the CIF as the skeleton for the home executor. The contents of the h
executor definition describe the relationships between the home executor and oth
elements of the composition, determining the characteristics of the generated hom
executor skeleton.

Component executor

A composition specifies an executor definition. The name of the executor definition
used as the name of the programming artifact generated by the CIF as the skeleto
the component executor. The body of the executor definition optionally specifies
executorsegments, which are physical partitions of the executor, encapsulating
independent state and capable of being independently activated. Segments are
described in Section 615.2.9.1, “Segmented executors”. The executor body may a
specify a mapping, ordelegation, of certain component features (e.g., attributes) to
storage members.

Delegation specification

A composition may optionally provide a specification of home operation delegation
This specification maps operations defined on the component home to isomorphic
operations on either the abstract storage home or the component executor. The C
uses this description to generate implementations of operations on the home exec
and to generate operation declarations on the component executor.

Proxy home

A composition may optionally specify a proxy home. The CIF supports the ability t
define proxy home implementations, which are not required to be collocated with
container that executes the component implementation managed by the home. In
configurations, proxy homes can provide implementations of home operations with
contacting the container that executes the actual home and component implementa
Support for proxy homes is intended to increase the scalability of the CORBA
Component Model. The use of proxy homes is completely transparent to compone
clients and, to a great extent, transparent to component implementations. Proxy h
behavior is described in Section 615.2.10.1, “Proxy home delegation”.
615-80 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

s

ey
e.

the

e

e,
615.2.6 Composition structure

A composition binds all of the previously-described elements together, and require
that the relationships between the bound entities define a consistent whole.

Note that a component home type necessarily implies a component type (i.e., the
managed component type specified in the home definition). Likewise, an abstract
storage home implies an abstract storage type. It is unnecessary, therefore, for a
composition to explicitly specify a component type or an abstract storage type. Th
are implicitly determined by the specification of a home and abstract storage hom

It may seem odd that the center of focus for compositions is the home
rather than the component, but this works out to be reasonably intuitive in
practice. The home is the primary point of contact for a client, and the
home’s interface and behavior have a major influence on the interaction
between the client and the component.

A composition definition specifies a name that identifies the composition within the
enclosing module scope, and which constitutes the name of a scope within which
contents of the composition are contained. The essential parts of a composition
definition are the following:

• the name of the composition

• the life cycle category of the component implementation, eitherservice , session ,
process , or entity , as defined in Section 62.1.4, “Component Categories.

• the home type being implemented (which implicitly identifies the component typ
being implemented)

• the name of the home executor to be generated

• the name of the component executor skeleton to be generated

A composition definition has the following essential form:

composition <category> <composition_name> {
home executor <home_executor_name> {

implements <home_type> ;
manages <executor_name> ;

};
};

where<composition_name>is the name of the composition,<category> identifies the
life cycle category supported by the composition,<home_executor_name>is the name
assigned to the generated home executor skeleton,<home_type>is the name of a
component home type imported from IDL, and<executor_name>is the name assigned
to the generated component executor skeleton.

This is a schematic representation of the minimal form of a composition, which
specifies no state management. The structure of the composition specified by this
schematic is illustrated in Figure 615-1. Note that the component type itself is not
explicitly specified. It is unambiguously implied by the specification of the home typ
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

utor
as is the relationship between the executor and the component (i.e., that the exec
implementsthe component).
.

Figure 615-1Minimal composition structure and relationships

General disclaimer and abdication of responsibility with regards to pro-
gramming examples:

Before presenting programming examples, it should be noted that all exam-
ples are non-normative illustrations. In particular, the implementations
provided in the examples of code that is to be generated by the CIF are
merely schematic representations of the intended behaviors; they are by no
means indicative of the actual content of a real implementation (e.g., they
generally don’t include exception handling, testing for validity, etc.).

Although the grammar for CIDL has not been presented yet, a simple
example will help illustrate the concepts described in the previous sections.
Assume the following IDL component and home definitions:

--------------------------------------------------------------------------------------
// Example 1
//
// USER-SPECIFIED IDL
//
module LooneyToons {

interface Bird {
void fly (in long how_long);

};

component home

CIDL

IDL

component

manages

home executor

executor

manages

implements

implements

composition <category> <composition_name> {
home executor <home_executor_name>
implements <home_type> ;
manages <executor_name> ;

explicitly defined in composition

implicitly defined by composition

explicitly defined elsewhere in IDL/CIDL
615-82 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
interface Cat {
void eat (in Bird lunch);

};
component Toon {

provides Bird tweety;
provides Cat sylvester;

};
};
--------------------------------------------------------------------------------------

The following example shows a minimal CIDL definition that describes an
implementation binding for those IDL definitions:

--------------------------------------------------------------------------------------
// Example 1
//
// USER-SPECIFIED CIDL
//
import ::LooneyToons;

module MerryMelodies {

// this is the composition:

composition session ToonImpl {
home executor ToonTownImpl {

implements LooneyToons::ToonTown;
manages ToonSessionImpl;

};
};

};
--------------------------------------------------------------------------------------

In this example,ToonImpl is the name of the composition. It defines the
name of the generated home executor to beToonTownImpl, which imple-
mented theToonTown home interface imported from IDL. The home exec-
utor definition also specified the name of the component executor,
ToonSessionImpl, which is managed by the home executor. Note that the
component type (Toon) is not explicitly named—it is implied by the specifi-
cation of the homeToonTown, which is known to manage the component
type Toon. Thus, the declaration “manages ToonSessionImpl” implic-
itly defines the component executorToonSessionImpl to be the implemen-
tation of the component typeToon.

This CIDL specification would cause the generation of the following arti-
facts:

• The skeleton for the component executorToonSessionImpl

• The complete implementation of the home executorToonTownImpl

We provide the following brief sketches of generated implementation skele-
tons in Java to help illustrate the programming model for component
implementations.

Java<interface>Operations interfaces for all of the IDL interfaces are
generated, precisely as currently specified by the current Java IDL lan-
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
guage mapping:

-------------------------------------------------
// Example 1
//
// GENERATED FROM IDL SPECIFICATION:
//
package LooneyToons;

import org.omg.Components.*;

public interface BirdOperations {
public void fly (long how_long);

}

public interface CatOperations {
void eat(LooneyToons.Bird lunch);

}

public interface ToonOperations
extends CCMObjectOperations {

LooneyToons.Bird provide_tweety();
LooneyToons.Cat provide_sylvester();

}

public interface ToonTownExplicitOperations
extends CCMHomeOperations { }

public interface ToonTownImplicitOperations
extends KeylessCCMHomeOperations {

Toon create();
}

public interface ToonTownOperations extends
ToonTownExplicitOperations,
ToonTownExplicitOperations {}
--------------------------------------------------

The ToonImpl executor skeleton class has the following form:

-------------------------------------------------
// Example 1
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;
import org.omg.Components.*;

abstract public class ToonSessionImpl
implements ToonOperations, SessionComponent,
ExecutorSegmentBase
{

// Generated implementations of operations
// inherited from SessionComponent and
// ExecutorSegmentBase are omitted here.
615-84 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
//

protected ToonSessionImpl() {
// generated implementation ...

}

// The following operations must be implemented
// by the component developer:

abstract public BirdOperations
_get_facet_tweety();

abstract public CatOperations
_get_facet_sylvester();

}
--------------------------------------------------

The generated executor abstract base classToonSessionImpl imple-
ments all of the operations inherited by ToonOperations, including opera-
tions onCCMObject and its base interfaces. It also implements all of the
operations inherited throughSessionComponent , which are internal
operations invoked by the container and the internals of the home imple-
mentation to manage executor instance lifecycle.

A complete implementation of the home executorToonTownImpl is gener-
ated from the CIDL specification:

-------------------------------------------------
// Example 1
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;
import org.omg.Components.*;

public class ToonTownImpl
implements LooneyToons.ToonTownOperations,
ExecutorSegmentBase, CCMHome
{

// Implementations of operations inherited
// from ExecutorBase and CCMHome
// are omitted here.
//
// ToonHomeImpl also provides implementations
// of operations inherited from the component
// home interface ToonTown

CCMObject create_component()
{

return create();
}

void remove_component(CCMObject comp)
{
}

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
Toon create()
{
}
// and so on...

}
------------------------------------------------

The user-provided executor implementation must supply the following:

• Implementations of the operations _get_tweety and
_get_sylvester , which must return implementations of the
BirdOperations andCatOperations interfaces

• said implementations of the behaviors of the facetstweety and
sylvester, respectively

The following example shows one possible implementation strategy:

-------------------------------------------------
// Example 1
//
// PROVIDED BY COMPONENT PROGRAMMER:
//
import LooneyToons.*;
import MerryMelodies.*;

public class myToonImpl extends ToonImpl
implements BirdOperations, CatOperations {

protected long timeFlown;
protected Bird lastBirdEaten;

public myToonImpl() {
super();
timeFlown = 0;
lastBirdEaten = nil;

}

public void fly (long how_long) {
timeFlown += how_long);

}
public void eat (Bird lunch) {

lastBirdEaten = lunch;
}
public BirdOperations _get_facet_tweety() {

return (BirdOperations) this;
}
public CatOperations _get_facet_sylvester() {

return (CatOperations) this;
}

}
--------------------------------------------------

This simple example implements all of the facets directly on the executor.
This is not the only option; the programming objects that implement
BirdOperations andCatOperations could be constructed separately and
managed by the executor class.
615-86 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

of

ies
The final bit of implementation that the component programmer must pro-
vide is an extension of the home executor that acts as a component executor
factory, by implementing thecreate_executor_segment method. This
class must also provide an implementation of a static method called
create_home_executor that returns a new instance of the home executor
(as anExecutorSegmentBase). This static method acts as an entry point
for the entire composition.

-------------------------------------------------
// Example 1
//
// PROVIDED BY COMPONENT PROGRAMMER:
//
import LooneyToons.*;
import MerryMelodies.*;

public class myToonTownImpl extends ToonTownImpl
{

protected myToonTownImpl() { super(); }

ExecutorSegmentBase
create_executor_segment (int segid) {

return new myToonImpl();
}

public static ExecutorSegmentBase
create_home_executor() {

return new myToonTownImpl();
}

}
--------------------------------------------------

Note that these last two classes constitute the entirety of the code that must
be supplied by the programmer. The implementations of operations for nav-
igation, executor activation, object reference creation and management,
and other mechanical functions are either generated or supplied by the
container.

615.2.7 Compositions with managed storage

A composition definition may also contain a variety of optional specifications, most
which are related to state management. These include the following elements:

• one or more catalogs that provide the storage homes to the composition
implementation. Each specified catalog is assigned a alias, or label, that identif
the catalog within the context of the composition.

• an abstract storage home type to which the component home is bound (this
implicitly identifies the abstract storage type to which the component itself is
bound)

• the life cycle category of the composition must be eitherentity or process to
support managed storage
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

the
When state management is added to a composition definition, the definition takes
following general form, expressed as a schematic:
615-88 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

ents
composition <category> <composition_name> {
uses catalog {

<catalog_type> <catalog_label> ;
};
home executor <home_executor_name> {

implements < home_type> ;
bindsTo

<catalog_label .abstract_storage_home> ;
manages <executor_name> ;

};
};

where the additional elements are as follows:<catalog_type>identifies the type of a
catalog previously defined in PSDL,<catalog_label> is an alias by which the catalog
can be identified in the composition definition, and
<catalog_label.abstract_storage_home>denotes a particular abstract storage home
provided by the catalog.

The structure of the resulting composition and the relationships between the elem
is illustrated in Figure 615-2.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

e
ines
.

Figure 615-2Structure of composition with managed storage

In many cases, it is expected that an abstract storage home will be intentionally
designed to support a particular component home.

615.2.8 Relationship between home executor and abstract storage home

When a composition specifies managed storage, the relationship between the hom
executor and the abstract storage home to which the home executor binds determ
many of the characteristics of the implementation, including what implementation
elements may be generated and how they will behave. This section provides an
overview of the basic concepts involved in home implementations and their
relationships to abstract storage homes.

component home

CIDL

IDL

component

manages

home executor

executor

manages

implements

implements

composition <category> <composition_name> {

home executor <home_executor_name>
implements <home_type> ;

bindsTo <catalog_label.storage_home> ;

uses catalog {

<catalog_type> <catalog_label> ;
};

manages <executor_name> ;

storage home

storage object

manages stored as

binds to

catalog

provides

explicitly defined in composition

implicitly defined by composition

explicitly defined elsewhere in IDL/CIDL
615-90 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

the

blic

In
In general, operations on a home interface provide life cycle management. As
described in Section 61.7, when a home definition does not specify a primary key,
resulting equivalent home interface has the following operations:

• a genericcreate_component operation inherited fromKeylessCCMHome

• a remove_component operation inherited fromCCMHome

• an implicitly-defined type-specific parameter-lesscreate operation

When a home definition specifies a primary key, the resulting equivalent home
interface has the following operations:

• a remove_component operation inherited fromCCMHome

• an implicitly-defined type-specificcreate operation with a primary key parameter

• an implicitly-defined type-specificremove operation with a primary key parameter

• an implicitly-defined type-specificfind_by_primary_key operation

615.2.8.1 Primary Key Binding

A component home can define its primary key as a valuetype with a number of pu
data members, whereas abstract storage home define keys as lists of attributes. A
composition can only bind a component home with a primary key to an abstract
storage home that defines a key on a state member whose type is this valuetype.
there are more than one key satisfying this condition, the first key is used.

For example:
valuetype SSN {

public string social_security_number;
};

abstract storagetype Person {
readonly state SSN social_security_number;
state string name;
state string address;

};

abstract storagehome PersonStore of Person {
key social_security_number;

};

A home with primary key SSN can be bound toPersonStore . The key
social_security_number is called the matching key.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

nted
utor

nent

valid

e

ated

d

ent
s to
615.2.8.2 Implicit delegation of home operations

When a composition specifies managed storage, finder operations can be impleme
in terms of finder operations on the abstract storage home to which the home exec
is bound.

• The find_by_primary_key operation uses the
find_ref_by_ matching_key_name operation on the abstract storagehome. The
returned storage reference is used to create an object reference for the compo
and returned to the invoking client.

• Destruction operations delegate todestroy_object operations on the reference.

The validity of these implementation semantics are predicated on the following
assumptions:

• The initial state of the storage object created by the storage home constitutes a
initial state for the component.

• All of the persistent state of the component is defined on (or reachable from) th
storage object whose PID is associated with the component instance.

• The executor is monolithic, not segmented. Home operations can also be deleg
to abstract storage homes when the executor is segmented, but the process is
slightly more complex, and is discussed in full in Section 615.2.9.1, “Segmente
executors,” on page 615-104.

If these assumptions do not hold (in particular, either of the first two), the compon
implementor can provide custom implementations of one or more home operation
accomodate the implementation requirements.

The following example extends the previous example to illustrate managed
storage and storage home delegation. The example highlights differences
from the previous, and does not repeat elements that are identical:

--------------------------------------------------------------------------------------
// Example 2
//
// USER-SPECIFIED IDL
//
module LooneyToons { // IDL

... identical to previous example, except for the addition of the
primary key:

valuetype EpisodeName : Components::PrimaryKeyBase {
public string name;

Table 615-1Delegation of finder operations to finder operations on the bound abstract
storagehome

home operation abstract storagehome operation

componentfind_by_primary_key (key) ref<X> find_ref_by_matching_key_name
(matching_key)
615-92 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
};
home ToonTown manages Toon primaryKey EpisodeName {
};

};
--------------------------------------------------------------------------------------

The CIDL now defines abstract storage types, abstract storage homes, and
a catalog. The composition binds :

--------------------------------------------------------------------------------------
// Example 2
//
// USER-SPECIFIED CIDL
//
import ::LooneyToons;

module MerryMelodies {

abstract storagetype ToonState {
state LooneyToons::EpisodeName episode_name;
state string name;
state unsigned long time_flown;
state LooneyToons::Bird last_bird_eaten;

};

abstract storagehome ToonStateHome of ToonState
{

key episode_name;
factory create(episode_name);

};

catalog ToonCatalog {
provides ToonStateHome TSHome;

};

// this is the composition:

composition entity ToonImpl {
uses catalog { ToonCatalog store; };
home executor ToonTownImpl {

implements LooneyToons::ToonTown {
bindsTo store.TSHome;
manages ToonEntityImpl;

};
};

};
--------------------------------------------------------------------------------------

In this example, the composition binds the component homeToonTown to
the abstract storage homeToonStateHome, and thus, implicitly binds the
component typeToon to the abstract storage typeToonState. Note that
the primary key (if any) in the home must match a key in the abstract stor-
age home. As will be seen later in the CIDL grammar specification, the
keywordentity in the implementation binding declaration specifies a par-
ticular lifecycle model for the resulting implementation.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
This CIDL specification would cause the generation of the following pro-
gramming objects:

• The skeleton for the component executorToonEntityImpl

• The implementation of the home executorToonTownImpl

• The incarnation interface for the abstract storage typeToonState

• The interface for the abstract storage homeToonStateHome

• The interface for the catalog ToonCatalog.

Note that the complete implementation of the home executor may not be
able to be generated in some cases, e.g., when no abstract storage type is
declared or when user-defined operations with arbitrary signatures appear
on the component home definition.

Note also that the implementations of the storage-related interfacesToon-
State andToonStateHome are not necessarily provided by the same
product that generates the component implementation skeletons. The CIF
is specifically designed to decouple the executor implementation from the
storage implementation, so that these capabilities may be provided by dif-
ferent products. A component-enabled ORB product is only required to
generate the programming interfaces for the abstract storage type and
homes through which the executor implementation will interact with one or
more storage mechanisms. The implementations of these interfaces may be
supplied separately, perhaps deferred until run-time.

The interfaces generated from the IDL are identical, with the exception of
the addition of the primary key:

-------------------------------------------------
// Example 2
//
// GENERATED FROM IDL SPECIFICATION:
//
package LooneyToons;

import org.omg.Components.*;

... same as previous except for the following:

public interface ToonTownImplicitOperations {
Toon create(LooneyToons.EpisodeName key)

throws DuplicateKey, InvalidKey;
Toon find_by_primary_key

(LooneyToons.EpisodeName key)
throws UnknownKey, InvalidKey;

void remove(LooneyToons.EpisodeName key)
throws UnknownKey, InvalidKey;

LooneyToons.EpisodeName
get_primary_key(Toon comp);

}

public interface ToonTownOperations extends
ToonTownExplicitOperations,
ToonTownExplicitOperations {}
615-94 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
--------------------------------------------------

The abstract storage type ToonState results in the generation of the follow-
ing incarnation interfaces:

-------------------------------------------------
// Example 2
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import org.omg.CosPersistentState.*;
import LooneyToons.*;

public interface ToonState extends StorageObject {
public string name();
public void name (String val);
public long time_flown();
public void time_flown (long val);
public Bird last_bird_eaten();
public void last_bird_eaten (Bird val);

}

The storage homeToonStateHome results in the generation of the follow-
ing interface:

-------------------------------------------------
// Example 2
//
// GENERATED FROM CIDL SPECIFICATION:
//

// no explicit operations
public interface ToonStateHome

extends StorageHomeBase {

public ToonState
find_by_episode_name (EpisodeName k);

public ToonStateRef
find_ref_by_episode_name (EpisodeName k);

}

--------------------------------------------------

The ToonImpl executor skeleton class has the following form:

-------------------------------------------------
// Example 2
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;

abstract public class ToonImpl
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
implements LooneyToons.ToonOperations,
ExecutorSegmentBase, PersistentComponent
{

// Generated implementations of operations
// inherited from CCMObject and
// ExecutorSegmentBase and PersistentComponent
// are omitted here.
//
// ToonImpl also provides implementations of
// operations inherited from ToonState, that
// delegate to a separate incarnation object:

protected ToonStateIncarnation _state;

protected ToonImpl() { _state = null; }

public void set_incarnation (ToonState state) {
_state = state;

}

// The following operations must be implemented
// by the component developer:

abstract public BirdOperations
_get_facet_tweety();

abstract public CatOperations
_get_facet_sylvester();

}
--------------------------------------------------

An implementation of the home executor ToonHomeImpl is generated from
the CIDL specification:

-------------------------------------------------
// Example 2
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;

public class ToonTownImpl
implements LooneyToons.ToonTownOperations,
PersistentComponent, ExecutorSegmentBase
{

// Implementations of operations inherited
// from PersistentComponent and
// ExecutorSegmentBase
// are omitted here.
//
// ToonHomeImpl also provides implementations
// of operations inherited from the component
// home interface ToonTown, that delegate
// designated operations on the storage home
//
615-96 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
// values set during initialization
// and activation:
protected Entity2Context _origin;
protected ToonStateHome _storageHome;
...

Toon create(EpisodeName key)
{

// create a storage object with the key

ToonStatenew_state=_storageHome.create(key);

// REVISIT - Bernard Normier 7/27/1999
// don’t know how to complete this method

}

Toon find(EpisodeName key)
{

ToonStateRef ref =
_storageHome.find_ref_by_episode_name(key);
// create reference from ref
// and return , same as above...

}

// and so on...

}
------------------------------------------------

The user-provided executor uses the storage accessors and mutators on the
incarnation:

-------------------------------------------------
// Example 2
//
// PROVIDED BY COMPONENT PROGRAMMER:
//
import LooneyToons.*;
import MerryMelodies.*;

public class myToonImpl extends ToonImpl
implements BirdOperations, CatOperations {

public myToonImpl() { super(); }

void fly (long how_long) {
_state.timeFlown

( _state.timeFlown() + how_long);
}
void eat (Bird lunch) {

_state.last_bird_eaten(lunch);
}
BirdOperations get_facet_tweety() {

return (BirdOperations) this;
}
CatOperations get_facet_sylvester() {
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

d by
me

d on
(i.e.,

for

L
ox
ly

ation
of the
on
ome
return (CatOperations) this;
}

}

615.2.8.3 Explicit delegation of home operations

The previous section described the default home executor implementation generate
the CIF. Default delegation can only be implemented for home operations or the ho
base interfaces, and implicitly-defined home operations (i.e.,orthodoxhome
operations). The syntax for home definitions permits explicitly-defined factory
operations, finder operations, and operations with arbitrary signatures to be declare
the home. The CIF makes no assumptions about the semantics of these operations
the heterodoxoperations), other than the assumptions that factory operations return
references for newly-created components, and finder operations return references
existing components that were indirectly identified by the parameters of the finder
operation. Implementations of these operations are not generated by default. CID
does, however, allow the component implementor to specify explicitly how heterod
home operations are implemented. A CIDL home executor definition may optional
include the declarations illustrated in the following schematic CIDL example:

composition <category> <composition_name> {
...
home executor <home_executor_name> {

... // assume storage management specified

delegatesTo abstract storagehome (
<home_op 0> : <storage_home_op 0>,
<home_op 1> : <storage_home_op 1>, ...

);
delegatesTo executor(

<home_op 2> : <executor_op 2>, ...
);
abstract( <home_op 3>, <home_op 4>, ...);

};
};

Delegation to abstract storage home

The delegatesTo abstract storagehome declaration specifies a sequence of
operation mappings, where each operation mapping specifies the name of an oper
on the home, and the name of an operation on the storage home. The signatures
operations must be compatible, as defined in Section 61.7.4, “Home inheritance,”
page 61-58. Based on this declaration, the CIF generates implementations of the h
operations on the home executor that delegate to the specified operations on the
abstract storage home.
615-98 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

s,

nt
r

tions

to

the
acet.
nce,

e of

the

x
be
nt
tions
Delegation to executor

The delegatesTo executor declaration specifies a sequence of operation mapping
similar to thedelegatesTo abstract storagehome declaration. The name on the
left hand side of the mapping (i.e., to the left of the colon, ‘:’) must denote an
explicitly-declared factory operation on the home, or the identifier“create” , denoting
the implicitly-declared factory operation. The right hand side of each mapping
specifies the name of an abstract operation that will be generated on the compone
executor. The component implementor provides the implementation of the executo
operation, and the CIF provides an implementation of the operation on the home
executor that delegates to the executor.

The delegation of home operations to executors is problematic, since home opera
(other than factories) have no target component. For this reason, only factory
operations may be delegated to the component executor. The CIF implements this
delegation by defining an additional facet on the component executor, called afactory
facet. A factory facet is only exposed to the home executor; clients cannot navigate
the factory facet, and the factory facet is not exposed in component meta-data, or
described in theFacetDescription values returned from
Navigation::describe_facets or Navigation::provide_all_facets .

The implementation of the factory operation on the home executor that delegates to
component executor must first create an object reference that denotes the factory f
The home operation then invokes the mapped factory operation on the object refere
causing the activation of the component and ensuring that the execution of the
operation on the component occurs in a proper invocation context.

If the factory operation being delegated is any operation other than the orthodox
create operation, and the home definition includes a primary key specification, the
operation generated on the factory facet of the component executor returns a valu
the specified primary key type. The delegating operation on the home executor
associates the primary key value returned from the component executor with the
storage object (i.e., the storage object’s PID) created to incarnate the component
instance.

The use of PID values to create object references obviates the need to have
two versions of a create method on the executor, as is the case in EJB with
create and postCreate methods. An appropriate calling context can be cre-
ated before the factory operation is invoked on the executor.

These precise semantics of and requirements for factory operations delegated to
executor are described in detail in Section 61.7.3.1, “Factory operations,” on
page 61-57.

Suppressing generated implementation

The abstract specification overrides the generation of implementations for orthodo
home operations. The name of any explicitly-defined operation on the home may
specified in the operation list of the abstract declaration. The CIF will not impleme
the specified operations, instead leaving unimplemented abstract operation declara
(on whatever appropriate equivalent exists for the particular language mapping).

The following example extends the previous example to illustrate delega-
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
tion of home operations to the abstract storage home and the executor. The
example highlights differences from the previous, and does not repeat ele-
ments that are identical:

--------------------------------------------------------------------------------------
// Example 3
//
// USER-SPECIFIED IDL
//
module LooneyToons { // IDL

... identical to previous example, except for the home:

home ToonTown manages Toon primaryKey EpisodeName {
factory createToon(

in string name, in long num, in Bird bref);
void arbitrary_operation();

};
};
--------------------------------------------------------------------------------------

The CIDL now defines abstract storage types, abstract storage homes, and
a catalog. The composition binds:

--------------------------------------------------------------------------------------
// Example 3
//
// USER-SPECIFIED CIDL
//
import ::LooneyToons;

module MerryMelodies {

... identical to the previous example, except for:

abstract storagehome ToonStateHome of ToonState
{

key episode_name;
factory create();
void do_something();

};

composition entity ToonImpl {
uses catalog { ToonCatalog store; };
home executor ToonTownImpl {

implements LooneyToons::ToonTown;
bindsTo store.TSHome;
manages ToonEntityImpl;
delegatesTo abstract storagehome

(arbitrary_operation : do_something);
delegatesTo executor ( createToon : createToon );

};
};

};
--------------------------------------------------------------------------------------
615-100 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
In this example, thearbitrary_operation on the home interfaceToonTown
is delegated to the storage home operationdo_something. Note that the
operations have identical signatures. ThecreateToon factory operation is
delegated to an operation of the same name on the executor. This delega-
tion causes the implicit definition of a factory facet on the component with
the following interface:
--------------------------------------------------------------------------------------

interface ToonImplFactoryFacet {
EpisodeName createToon(

in string name, in long num, in Bird bref);
};
--------------------------------------------------------------------------------------

This interface is not part of the public interface of the component; its use is
restricted to the home executor. In fact, the IDL need not be generated. All
of the code that uses the factory facet is either generated by the CIF, or
derived from CIF-generated skeletons, so the CIF can simply generate lan-
guage mappings for the interface without actually providing any IDL for it.
Note also that only a subset of the normal language mapping artifacts are
required, including (in the case of Java) the abstract Operations interface,
the POA tie class to be used internally by the executor, and a local stub to
allow the home executor to make a delegating invocation. There is no need
to generate a remote stub, as the facet is never exposed outside of the con-
tainer.

The abstract storage homeToonStateHome interface has the added
do_something operation on the explicit interface:

-------------------------------------------------
// Example 3
//
// GENERATED FROM CIDL SPECIFICATION:
//
public interface ToonStateHome
extends StorageHomeBase {

public void do_something();
// ...

}

--------------------------------------------------

TheToonImpl executor skeleton class supports an additional facet (the
factory facet), which is returned by the_get_factory_facet operation:

-------------------------------------------------
// Example 3
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;

abstract public class ToonImpl
implements LooneyToons.ToonOperations,
ExecutorSegmentBase, PersistentComponent {

... same as previous
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
// The following operations must be implemented
// by the component developer:

abstract public ToonImplFactoryFacetOperations
_get_factory_facet();

abstract public BirdOperations
_get_facet_tweety();

abstract public CatOperations
_get_facet_sylvester();

}
--------------------------------------------------

The CIF generates implementations of the delegated operations on the
home executor:

-------------------------------------------------
// Example 3
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;

public class ToonTownImpl
implements LooneyToons.ToonTownOperations,
CCMHome, ExecutorSegmentBase

// values set during initialization
// and activation:
protected ToonStateHome _storageHome;
protected Entity2Context _origin;

...

Toon createToon(
String name, long num, Bird bref)

{
ToonState new_state=

_storageHome.create();
// etc.

}

void arbitrary_operation() {
_storageHome.do_something();

}

...

}
------------------------------------------------

The user-provide executor must implement the factory facet and operation:

-------------------------------------------------
// Example 3
//
615-102 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

r

.
dently

of

the

ted
ide
// PROVIDED BY COMPONENT PROGRAMMER:
//
import LooneyToons.*;
import MerryMelodies.*;

public class myToonImpl extends ToonImpl
implements BirdOperations, CatOperations,
ToonImplFactoryFacetOperations{

...

...

EpisodeName
createToon(String name, long num, Bird bref) {

// presumably, the main reason for doing
// this kind of delegation is to initialize
// state in the context of the component:
how_long(num);
last_bird_eaten(bref);
EpisodeNameDefaultFactory _keyFactory

= new EpisodeNameDefaultFactory();
return _keyFactory.create(name);

}

ToonImplFactoryFacetOperations
_get_factory_facet() {

return
(ToonImplFactoryFacetOperations) this;

}
...

}

615.2.9 Executor definition

The home executor definition must include an executor definition. An executor
definition specifies the following characteristics of the component executor:

• The name of the executor, which is used as the name of the generated executo
skeleton

• Optionally, one or more distinct segments, or physical partitions of the executor
Each segment encapsulates independent state and is capable of being indepen
activated. Each segment also provides at least one facet.

• Optionally, the generation of operation implementations that manage the state
stateful component features (i.e., receptacles, attributes, and event sources) as
members of the component incarnation.

• a delegation declaration that describes a correspondence between stateful
component features and members of the abstract storage type that incarnates
component. The CIF uses this declaration to generate implementations of the
feature-specific operations (e.g.,connect_ and disconnect_ operations for
receptacles, accessors and mutators for attributes) that store the state associa
with each specified feature in the storage member indicated on the right hand s
of the delegation.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

f

ent

bset
be

quest

r will
te (i.e.,
act
he

t. The
ed
rfaces.

d
hese
cet
615.2.9.1 Segmented executors

A component executor may bemonolithicor segmented. A monolithic executor is,
from the container’s perspective, a single artifact. A segmented executor is a set o
physically distinct artifacts. Each segment may have a separate abstract state
declaration. Each segment must provide at least one facet defined on the compon
definition. The life cycle category of the composition must beentity or process if the
executor specifies segmentation.

The primary purpose for defining segmented executors is to allow requests on a su
of the component’s facets to be serviced without requiring the entire component to
activated. Segments are independently activated. When the container receives a re
whose target is a facet of a segmented executor, the container activates only the
segment that provides the required facet.

The following schematic CIDL illustrates the declaration of a segmented executor:

composition <category> <composition_name> {
...
home executor <home_executor_name> {

... // assume storage management specified

...
manages <executor_name> {

segment <segment_name 0> {
storedOn

<catalog_label .abstract_storage_home> ;
provides ( <facet_name 0> ,

<facet_name 1> , ... );
};
segment <segment_name 1> { ... };
...

};
};

The abstract storage home specified in the segment’sstoredOn declaration implicitly
specifies the abstract storage type that incarnates the segment. The home executo
use this abstract storage home to create and manage instances of the segment sta
incarnations). If the component home specifies a primary key, then all of the abstr
storage homes associated with executor segments must specify a matching key. T
facets specified in the segment’sprovides declaration are implemented on the
segment.

A segmented executor has a distinguished segment associated with the componen
component segment is implicitly declared, and supplies all of the facets not provid
by separate segments, as well as all other component features and supported inte

Figure 615-1, and Figure 615-2, illustrate the structure of monolithic and segmente
executors, and the relationships between facets, storage objects, and segments. T
figures also illustrate the identity information that is embedded in component and fa
object references. Component identity information is described in more detail in
Section 61.1.4, “Component identity,” on page 61-28.
615-104 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
Figure 615-1Monolithic executor and reference information structure

component facet

incarnation

facet ID = 0

facet ID= F1

facet ID = F2

facet ID = F3

component segment (segment ID = 0)

(PID = p)

0 P

target facet state ID (PID)

component reference info

F1 Pfacet A reference info

facet A

facet B

facet C
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
Figure 615-2Segmented executor and reference information structure

The details of the structure and behavior of segments and requirements for their
implementation are specified in Section 615.2.9.1, “Segmented executors,” on
page 615-104.

The following example extends the previous example 2 to illustrate seg-
mented executors. The example highlights differences from the previous,
and does not repeat elements that are identical:

component facet

incarnation

facet ID = 0

facet ID= F1

component segment (segment ID = 0)

(PID = P0)

incarnation

facet ID = F2

facet ID = F3

segment (segment ID = S1)
(PID = P1)

0 0 0 P0

S1 P1

F2 S1 0 P0

S1 P1

component reference info

facet A

facet B

facet C

facet B reference info

target facet ID

target segment ID
segment descriptors

segment ID state ID
615-106 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
--------------------------------------------------------------------------------------
//
// USER-SPECIFIED IDL
//
module LooneyToons { // IDL

... identical to previous example 2
};
--------------------------------------------------------------------------------------

The CIDL now defines abstract storage types, abstract storage homes, and
a catalog. The composition binds :

--------------------------------------------------------------------------------------
//
// USER-SPECIFIED CIDL
//
import ::LooneyToons;

module MerryMelodies {

... identical to example 2 except for new storage, storage home
and executor definitions

abstract storagetype ToonState {
state LooneyToons::EpisodeName episode_name;
state string name;
state LooneyToons::Bird last_bird_eaten;

};

abstract storagehome ToonStateHome of ToonState {
key episode_name;

}; };

abstract storagetype BirdSegState {
state unsigned long time_flown;

};

abstract storagehome BirdSegStateHome of BirdSegState {
key episode_name;

};

catalog ToonCatalog {
provides ToonStateHome TSHome;
provides BirdSegStateHome BSSHome;

};

composition entity ToonImpl {
uses Catalog { ToonCatalog store; };
home executor ToonTownImpl {

implements LooneyToons::ToonTown {
bindsTo store.TSHome;
manages ToonEntityImpl {

segment BirdSegment {
storedOn ToonPS.BSSHome;
provides (tweety);

};
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
};
};

};
};
--------------------------------------------------------------------------------------

The storage home BSSHome on the ToonCatalog catalog is bound to the
segment BirdSegment, which implicitly binds the segment executor for
BirdSegment to the abstract storage type BirdSegState. This segment pro-
vides the facet tweety, leaving the remaining facet (sylvester) on the compo-
nent segment.

The mappings of the CIDL abstract storage types, abstract storage homes,
and the catalog e are not presented, as they are not affected by the segmen-
tation.

The generated component executor base class ToonImpl is also not pre-
sented, as the changes are trivial. The facet accessor _get_facet_tweety is
no longer present on the component executor. There are other internal
changes that are not visible to the component implementor. The executor
for the new BirdSegment has the following form:

-------------------------------------------------
// Example 4
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;

abstract public class BirdSegment
implements ExecutorSegmentBase,
PersistentComponent
{

// Generated implementations of operations
// inherited from CCMObject and
// ExecutorSegmentBase and PersistentComponent
// are omitted here.
//

protected BirdSegState _state;

protected BirdSegment() { _state = null; }

public void set_incarnation (
BirdSegState state) {
_state = state;

}

// The following operations must be implemented
// by the component developer:

abstract public BirdOperations
_get_facet_tweety();

}
--------------------------------------------------
615-108 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
Note that the BirdSegment executor does not implement any IDL interface
directly, as does the component segment. It is remotely accessible only
through a provided facet.

A generated implementation of the home executor ToonHomeImpl is con-
siderably different from the previous example 2. The create method must
create references for all of the segments and construct a ComponentId with
the proper information::

-------------------------------------------------
//
// GENERATED FROM CIDL SPECIFICATION:
//
package MerryMelodies;
import LooneyToons;

public class ToonTownImpl
implements LooneyToons.ToonTownOperations,
CCMHome, ExecutorSegmentBase
{

// Implementations of operations inherited
// from CCMHome and ExecutorSegmentBase
// are omitted here.
//
// ToonHomeImpl also provides implementations
// of operations inherited from the component
// home interface ToonTown, that delegate
// designated operations on the storage home
//

// values set during initialization
// and activation:

protected Entity2Context _origin;
protected ToonStateHome _toonStorageHome;
protected BirdSegStateHome _birdStorageHome;
...

Toon create(EpisodeName key)
{

ToonState new_toon =
_toonStorageHome.create(key);

// etc.
}

------------------------------------------------

There are now two segment executors to implement:

-------------------------------------------------
//
// PROVIDED BY COMPONENT PROGRAMMER:
//
import LooneyToons.*;
import MerryMelodies.*;

public class myToonImpl extends ToonImpl
implements CatOperations {
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615
public myToonImpl() { super(); }

void fly (long how_long) {
_state.timeFlown
( _state.timeFlown() + how_long);

}
void eat (Bird lunch) {

_state.last_bird_eaten(lunch);
}
BirdOperations get_facet_tweety() {

return (BirdOperations) this;
}
CatOperations get_facet_sylvester() {

return (CatOperations) this;
}

}

public class myBirdSegImpl extends BirdSegment
implements BirdOperations {

public myBirdSegImpl() { super(); }

void fly (long how_long) {
_state.timeFlown
( _state.timeFlown() + how_long);

}

BirdOperations get_facet_tweety() {
return (BirdOperations) this;

}
}

-------------------------------------------------

The programmer must also supply a different implementation of the
create_executor_segment operation on the home executor, that uses the
segment ID value to determine which executor to create.

-------------------------------------------------
// Example 4
//
// PROVIDED BY COMPONENT PROGRAMMER:
//
import LooneyToons.*;
import MerryMelodies.*;

public class myToonTownImpl extends ToonTownImpl
{

protected myToonTownImpl() { super(); }

ExecutorSegmentBase
create_executor_segment (int segid) {

// case discriminator values are constants
// generated on the executor segment classes
615-110 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

nent
f the
ent

store
n the

re

the
e

l
or
event
switch (segid) {
case ToonImpl._segment_id_value :

return new myToonImpl();
case BirdSegment._segment_id_value :

return new myBirdSegImpl();
default

... raise an exception
}

}
...

}
--------------------------------------------------

615.2.9.2 Delegation of feature state

An executor may also optionally declare a correspondence between stateful compo
features (which include receptacles, attributes and event sources) and members o
abstract storage type that incarnates the component (or the distinguished compon
segment, in the case of a segmented executor). The CIF uses this declaration to
generate implementations of the feature-specific operations (e.g., connect_ and
disconnect_ operations for receptacles, accessors and mutators for attributes) that
the state associated with each specified feature in the storage member indicated o
right hand side of the delegation. The following schematic CIDL illustrates a featu
delegation:

composition <category> <composition_name> {
...
home executor <home_executor_name> {

... // assume storage management specified

...
manages <executor_name> {

delegatesTo abstract storagetype (
<feature_name 0> :

<storage_member_name 0> ,
<feature_name 1> :

<storage_member_name 1> , ...
};

};
};

};

The type of the storage member must be compatible with the type associated with
feature, as defined in Chapter 61, “Component Model”. In the case of attributes, th
CIF-generated implementations of accessors and mutators retrieve and store the
attribute value in the specified storage member. The executor programming mode
allows implementors to intercept invocations of the generated accessor and mutat
invocations and replace or extend their behaviors. In the case of receptacles and
sources, the implementations of theconnect_<receptacle_name>,
disconnect_<receptacle_name>, connect_<source_name>,
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

in

but

ion,

on.
the

the
ainer
The

ed

e

for

ich
e
ome.
disconnect_<source_name>, subscribe_<source_name> and
unsubscribe_<source_name> operations store the connected object references
the specified members of the storage object that incarnates the component.

This mechanism is only particularly useful if the connected object refer-
ences are persistent references, capable of causing server and object acti-
vation if necessary.

615.2.10 Proxy homes

A composition definition may include aproxy homedeclaration. A proxy home
implements the component home interface specified by the composition definition,
the implementation is not required to be collocated with the container where the
components managed by the home are activated.

Proxy homes are, in essence, remote projections of the actual home implementat
which is always collocated with the executing component implementation. A proxy
home may be able to implement some subset (or potentially, all) of the operations
defined on the component home without contacting the actual home implementati
Operations that cannot be locally implemented by the proxy home are delegated to
actual home. The run-time implementation of the CIF (including the supporting
infrastructure of the container and the home finder) is responsible for maintaining
associations between proxy homes and the actual home they represent. The cont
provides an interface for registering proxy homes, described in Section 62.4.1.3, “
ProxyHomeRegistration Interface,” on page 62-152.

Proxy homes offer the capacity for considerably increased scalability over collocat
homes, particularly when the home operations can be implemented locally by the
proxy home implementation. The following schematic CIDL illustrates a proxy hom
definition:

composition <category> <composition_name> {
...
home executor <home_executor_name> {

implements < home_type> ;
bindsTo

<catalog_label .abstract_ storage_home> ;
...

};
proxy home <proxy_executor_name> {

delegatesTo home ( <home_op 0>, <home_op 1>,
... );

abstract ( <home_op 2>, <home_op 3>, ...);
};

};

The<proxy_executor_name>is used as the name of the generated skeleton artifact
the proxy home executor. The proxy home declaration implicitly acquires the
characteristics of the actual home, as declared in the home executor definition (wh
must precede the proxy home definition in the composition scope). In particular, th
proxy home implements the same home, and binds to the same abstract storage h
615-112 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

ules

t the
ed on

the
e, by

me

an
ard
nd
nd

use
e

is
for

on

are
nt of

r to
no

e
turn
The operation delegations specified in the actual home executor definition are also
acquired by the proxy home, but certain delegations are transformed according to r
specified in Section 615.2.10.1.

615.2.10.1 Proxy home delegation

For proxy homes in compositions that specify managed state, the CIF assumes tha
proxy home has connectivity to the same persistent store as the actual home. Bas
this assumption, the default implementations of orthodox operations on the proxy
home executor are delegated directly to the storage home, precisely as they are in
actual home executor. In general, other operations are delegated to the actual hom
default, although the specific rules for determining the implementation of proxy ho
operations are somewhat more involved, and are described completely in
Section 615.2.3, “Implementing a CORBA Component,” on page 615-78.

615.2.11 Component object references

The CIF defines an information model for component object references. This
information model is encapsulated within the object_key field of an IIOP profile, or
equivalent field in other profiles. The information model is an abstraction; no stand
encoding within an object_key is specified. It is the responsibility of the container a
the underlying ORB to encode this information for insertion into object references a
to extract this information from the object_key in incoming requests, decode it, and
it to activate the appropriate component or segment and dispatch the request to th
proper facet.

The Entity2Context interface, described in Section 62.4.3.7, “The Entity2Context
Interface,” on page 62-162 is used by the component implementation to provide th
information to the container, with which the container creates the object references
the component and its facets. TheComponentId interface encapsulates the
component reference information. Examples 2, 3, and 4 in the previous sections
illustrate the use of theEntity2Context andComponentId interfaces to create object
references. Figure 615-1, and Figure 615-2, illustrate the structure of the informati
encapsulated inComponentId , and its relationship to executor structure.

615.2.11.1 Facet identifiers

The CIF implementation allocates numeric identifiers to facets. The facet ID values
interpreted by generated code in the component implementation, so the assignme
values does not need to be uniformly specified; the a given CIF implementation’s
choice of facet ID values does not affect portability or interoperability.

615.2.11.2 Segment identifiers

The CIF implementation must also allocate numeric identifiers to segments. Simila
facet IDs, segment IDs are also interpreted by the component implementation, so
uniform allocation mechanism is specified. The implementation of
create_executor_segment (on the home executor implementation) provided by th
component implementor must interpret segment ID values in order to create and re
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

cutor

cet

d
, the

d the
The
g the

nent,
the appropriate segment executor. The generated implementations of segment exe
skeletons define symbolic constants to assist the component implementor in this
mapping.

615.2.11.3 State identifiers

State identifier is an abstraction that generalizes different representations of state
identifiers, the primary of which is thepid of the CORBA persistent state service. The
generic representation of a state identifier isStateIdValue , an abstract valuetype from
which specific, concrete state identity types are derived. Implementations of the
concrete sub-types are responsible for converting their representations to byte
sequences and back again.

615.2.11.4 Monolithic reference information

Monolithic references contain a facet identifier and a single state identifier. The fa
identifier denotes the target facet of the reference (or, of requests made on the
reference). The state identifier is interpreted by the component implementation an
used to retrieve the component’s state. In the case of automatically managed state
CIF-generated implementation interprets the state identifier as apid , using it to
incarnate the component’s storage object.

Note that navigation from one facet’s reference to another consists of
merely replacing the target facet identifier with the facet identifier of the
desired facet. This can be accomplished without activating the component.

615.2.11.5 Segmented reference information

The reference information for segmented executors consists of the following:

• a target facet identifier

• a target segment identifier

• a sequence of segment descriptors, each of which contains:

• the segment identifier of the segment being described

• the state identifier for the segment

The target facet identifier denotes the target of requests made on the reference, an
target segment identifier denote the segment on which that facet is implemented.
sequence of segment descriptors contains one element for each segment, includin
component segment. This sequence is invariant for all references to a given compo
over the lifetime of the component.

In the case of segmented executors, navigation is accomplished by replac-
ing the facet and segment identifiers.
615-114 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)



615

ase
hin
615.2.11.6 Component identity

The state identifier of the component segment (or the single state identifier in the c
of monolithic executors) is interpreted as the unique identity of the component, wit
the scope of the home to which it belongs. Equivalence of component identity is
defined as equivalence of state identifier values of the component segment.

615.3 Language Mappings

Issue – To be provided
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Language Mappings 29 October 1999615-115



615
615-116 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Language Mappings 29 October 1999



TheContainer Programming Model 62
This chapter describes the CORBA componentcontainer programming model.

Issue – It contains all new text taken from the CCM final submission
orbos/99-07-01 with only minor editorial changes - Jeff Mischkinsky

62.0.0.1 Contents

This chapter contains the following sections.

Section Title Page

“Introduction” 62-118

“The Server Programming Environment” 62-121

“Server Programming Interfaces - Basic Components” 62-137

“Server Programming Interfaces - Extended Components” 62-149

“The Client Programming Model” 62-163
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999 62-117



62

as
m

a

e

ntor

t

e
e
it

to

e to

ed
nts,

d
t

The container is the server’s runtime environment for a CORBA component
implementation. This environment is implemented by a deployment platform such
an application server or a development platform like an IDE. A deployment platfor
typically provides a robust execution environment designed to support very large
numbers of simultaneous users. A development platform would provide enough of
runtime to permit customization of CORBA components prior to deployment but
perhaps support a limited number of concurrent users. From the point of view of th
CORBA component implementation, such differences are “qualities of service”
characteristics and have no effect on the set of interfaces the component impleme
can rely on. This chapter is organized as follows:

• Section 62.1 introduces the programming model and defines the elements tha
comprise it.

The container programming model is an API framework designed to simplify th
task of building a CORBA application. Although the framework does not exclud
the component developer from using any function currently defined in CORBA,
is intended to be complete enough in itself to support a broad spectrum of
applications.

• Section 62.2 describes the programming model the component implementor is
follow.

The programming model identifies the architectural choices which must be mad
develop a CORBA component which can be deployed in a container.

• Section 62.3 describes the interfaces seen by the component developer.

These interfaces constitute the contract between the container provider and the
component implementor. Together with the client programming interfaces defin
in Chapter 61, “Component Model” which can be used by servers as well as clie
they define the server programmer’s API.

• Section 62.5 describes the client view of a CORBA component.

The client programming model has been described previously (Chapter 61,
“Component Model”). This section describes the specific use of CORBA require
by a client, which isNOT itself a CORBA component, to use a CORBA componen
written to the server programming model described in Section 62.3.

62.1 Introduction

The container programming model is made up of several elements:

Section Title Page
62-118 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October 1999



62

nt

t

and

.

• The external API types which define the interfaces available to a component clie

• The container API type which defines the API framework used by the componen
developer

• The CORBA usage model which defines the interactions between the container
the rest of CORBA (including the POA, the ORB and the CORBA services)

• The component category which is the combination of the container API type (i.e
the server view) and the external API types (i.e. the client view)

The overall architecture is depicted in Figure 62-1 below::

Figure 62-1 The Architecture of the Container Programming Model

The external API types are defined by the component IDL including the home
specification. These interfaces are righteous CORBA objects and are stored in the
Interface Repository for client use.

The container API type is a framework made up of internal interfaces and callback
interfaces used by the component developer. These are defined using the newlocal
interface declaration in IDL for specifying locality-constrained interfaces. The
container API type is selected using CIDL which describes component
implementations.

CORBA
Component

Container

Home

Callbacks

External

C

l
i

e
n
t

P
O

A

Internal

Transactions Security Persistence Notification

ORB
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October 1999 62-119



62

n

he

iner
y.

API

one
tive,
for

fic
e

e
ect
g

ey
The EJB session bean and entity bean can be viewed as two examples of
container API type since they offer different sets of framework APIs to the
EJB programmer. However, each of them also implies a client view i.e. the
external API types. EJB does not define a term for the two framework API
sets it supports.

The CORBA usage model is controlled by policies which specify distinct interactio
patterns with the POA and a set of CORBA services. These are defined by CIDL,
augmented using XML, and used by the container factory to create a POA when t
container is created.

The component category is a specific combination of external API types and conta
API type used to implement an application with the CORBA component technolog

62.1.1 External API Types

The external API types of a component are the contract between the component
developer and the component client. We distinguish between two forms of external
types: thehome interface and theapplication interfaces.

These are analogous to theEJBHome andEJBObject interfaces of
Enterprise JavaBeans.

Home interfaces support operations which allow the client to obtain references to
of the application interfaces the component implements. From the client’s perspec
two design patterns are supported - factories for creating new objects and finders
existing objects. These patterns are distinguished by the presence of aprimaryKey
parameter in the home IDL declaration.

• A home interface with aprimaryKey declaration supports finders and its client is a
keyfull client.

• A home interface without aprimaryKey declaration does not support finders and
its client is akeylessclient. All home types support factory operations.

62.1.2 Container API Type

Thecontainer API type defines an API framework, i.e. the contract between a speci
component and its container. This specification defines two base types which defin
the common APIs and a set of derived types which provide additional function. Th
sessioncontainer API type defines a framework for components using transient obj
references. Theentity container API type defines a framework for components usin
persistent object references.

62.1.3 CORBA Usage Model

A CORBA usage model specifies the required interaction pattern between the
container, the POA and the CORBA services. We define threeCORBA usage models
as part of this specification. Since all support the same set of CORBA services, th
are distinguished only by their interaction with the POA.
62-120 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October 1999



62

ant

nt

at

pes,

nce)
s of

ade
iner
s.

ce
ns

e

• stateless- which uses transient object references in conjunction with a POA serv
which can support anyObjectId

• conversational- which uses transient references in conjunction with a POA serva
that is dedicated to a specificObjectId

• durable - which uses persistent references in conjunction with a POA servant th
is dedicated to a specificObjectId

It should be obvious that the fourth possibility (persistent references with a
POA servant that can support any ObjectId) makes no sense and is there-
fore not included.

62.1.4 Component Categories

The component categories are defined as the valid combinations of external API ty
container API type, and CORBA usage model. The following table summarizes the
categories and identifies their EJB equivalent:

62.2 The Server Programming Environment

The component container provides interfaces to the component. These interfaces
support access to CORBA services (transactions, security, notification, and persiste
and to other elements of the component model. This section describes the feature
the container which are selected by the deployment descriptor packaged with the
component implementation. These features comprise the design decisions to be m
in developing a CORBA component. Details of the interfaces provided by the conta
are provided in Section 62.3, “Server Programming Interfaces - Basic Component

62.2.1 Component Containers

Containers provide the run-time execution environment for CORBA components. A
container is aframework for integrating transactions, security, events, and persisten
into a component’s behavior at runtime. A container provides the following functio
for its component:

• all component instances are created and managed at runtime by its container

• containers provide a standard set of services to a component, enabling the sam
component to be hosted by different container implementations

Table 62-1Definition of the Component Categories

CORBA Usage Model
Container
API Type

Primary
Key

Component
Categories

EJB Bean
Type

stateless session No Service -

conversational session No Session Session

durable entity No Process -

durable entity Yes Entity Entity
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

cific
cts

nent

t

ts,

This
st
hin
e

Components and homes are deployed into containers with the aid of container spe
tools. These tools generate additional programming language and metadata artifa
needed by the container. The tools provide the following services:

• editing the configuration metadata

• editing the deployment metadata

• generating the implementations needed by the containers to support the compo

The container framework defines two forms of interfaces:

• Internal interfaces - These are locality-constrained interfaces defined aslocal
interface types which provide container functions to the CORBA component.

These are similar to theEJBContext interface in Enterprise JavaBeans.

• Callback interfaces - These are alsolocal interface types invoked by the container
and implemented by a CORBA component.

These interfaces provide functions analogous to theSessionBeanand
EntityBean interfaces defined by Enterprise JavaBeans.

This architecture is depicted in Figure 62-1 on page 119.

We define a small set ofcontainer API types to support a broad spectrum of
component behavior with their associatedinternal andcallback interfaces as part of
this specification. Thesecontainer API types are defined using local interfaces.

Additional component behavior is controlled by policies specified in the deploymen
descriptor. This specification defines policies which support POA interactions
(CORBA usage model), servant lifetime management, transactions, security, even
and persistence. See the deployment chapter (Chapter 69, “Packaging and
Deployment”), specifically Section 69.3, “Software Package Descriptor,” on
page 69-259, for details of how container policies are specified.

CORBA containers are designed to be used as Enterprise JavaBeans containers.
allows a CORBA infrastructure to be the foundation of EJB, enabling a more robu
implementations of the EJB specification. To support enterprise Beans natively wit
a CORBA container, the container must support the API frameworks defined by th
EJB specification. This architecture is defined in Chapter 64, “Integrating with
Enterprise JavaBeans” of this specification.
62-122 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

r

ly

ct a

hen
the

tate

ng
62.2.2 CORBA Usage Model

The CORBA Component Specification defines a set ofCORBA usage modelswhich
create eitherTRANSIENT or PERSISTENT object references and use either a 1:1 o
1:N mapping ofServant to ObjectId . These CORBA usage models are summarized
in Table 62-2 below. A given component implementation shall support one and on
one CORBA usage model.

A CORBA usage model is specified using CIDL and is used to either create or sele
component container at deployment time.

62.2.2.1 Component References

TRANSIENT objects support only the factory design pattern. They are created by
operations on the home interface defined in thecomponent declaration.

PERSISTENT objects support either the factory design pattern or the finder design
pattern, depending on the component category.PERSISTENT objects supportself-
managedor container-managedpersistence.PERSISTENT objects can be used with
the CORBA persistent state service or any user-defined persistence mechanism. W
the CORBA persistent state service is used, servant management is aligned with
PersistentId defined by the CORBA persistent state service and the container
supports the transformation of anObjectId to and from aPersistentId . A
PersistentId provides a persistent handle for a class of objects whose permanent s
resides in a persistent store (e.g. a database).

Home references are exported for client use by registering them with aHomeFinder
which the client subsequently interrogates or by binding them to the CORBA nami
service in the form of externally visible names.

EJB clients find references to EJBHome using JNDI, the Java API for Cos-
Naming. Placing home references is CosNaming supports both the CORBA
component client and the EJB client programming models.

62.2.2.2 Servant to ObjectId Mapping

Component implementations may use either the 1:1 or 1:N mapping ofServant to
ObjectId with TRANSIENT references (statelessandconversationalCORBA usage
model, respectively) but may use only the 1:1 mapping withPERSISTENT references.

Table 62-2CORBA Usage Model Definitions

CORBA Usage Model Object Reference Servant:OID Mapping

stateless TRANSIENT 1:N

conversational TRANSIENT 1:1

durable PERSISTENT 1:1

(Invalid) PERSISTENT 1:N
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

).

sing

s are
of
e

the
ent

on the

er to

ssary.

ation

y
ory
• A 1:N mapping allows aServant to be shared among all requests for the same
interface and therefore requires the object to be stateless (i.e. it has no identity

• A 1:1 mapping binds aServant to a specificObjectId for an explicit servant
lifetime policy (see Section 62.2.5) and therefore is stateful.

62.2.2.3 Threading Considerations

CORBA components support two threading models:serialize andmultithread . A
threading policy ofserialize means that the component implementation is not thread
safe and the container will prevent multiple threads from entering the component
simultaneously. A threading policy ofmultithread means that the component is
capable of mediating access to its state without container assistance and multiple
threads will be allowed to enter the component simultaneously. Threading policy is
specified in CIDL.

A threading policy ofserialize is required to support an enterprise Bean
since they are defined to be single-threaded.

62.2.3 Component Factories

A home is a component factory, responsible for creating instances of all interfaces
exported by a component. Factory operations are defined on the home interface u
the factory declaration. A default factory is automatically defined whose
implementation may be generated by tools using the information provided in the
component IDL. Specialized factories (e.g. factories that accept user-defined input
arguments) must be implemented by the component developer. Factory operation
typically invoked by clients but may also be invoked as part of the implementation
the component. A CORBA component implementation can locate its home interfac
using an interface provided by the container.

62.2.4 Component Activation

CORBA components rely on the automatic activation features of the POA to tailor
behavior of the components using information present in the component’s deploym
descriptor. Once references have been exported, clients make operation requests
exported references. These requests are then routed by the ORB to the POA that
created the reference and then the component container. This enables the contain
control activation and passivation for components, apply policies defined in the
component’s descriptor, and invoke callback interfaces on the component as nece

62.2.5 Servant Lifetime Management

Servants are programming language objects which the POA uses to dispatch oper
requests based on theObjectId contained in the object key. The server programming
model for CORBA components includes facilities to efficiently manage the memor
associated with these programming objects. To implement this sophisticated mem
management scheme, the server programmer makes several design choices:
62-124 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

s

on

but

ent

ent
on

nt
eds

to

e

• The container API type must be chosen.

• The CORBA usage model must be chosen.

• A servant lifetime policy is selected. CORBA components support four servant
lifetime policies (method, transaction, component, andcontainer).

• The designer is required to implement the callback interface associated with hi
choice.

The servant lifetime policies are defined as follows:

method

The method servant lifetime policy causes the container to activate the component
every operation request and to passivate the component when that operation has
completed. This limits memory consumption to the duration of an operation request
incurs the cost of activation and passivation most frequently.

transaction

The transaction servant lifetime policy causes the container to activate the compon
on the first operation request within a transaction and leave it active until the
transaction completes and which point the component will be passivated. Memory
remains allocated for the duration of the transaction.

component

The componentservant lifetime policy causes the container to activate the compon
on the first operation request and leave it active until the component implementati
requests it to be passivated. After the operation which requests the passivation
completes, the component will be passivated by the container. Memory remains
allocated until explicit application request.

container

The container servant lifetime policy causes the container to activate the compone
on the first operation request and leave it active until the container determines it ne
to be passivated. After the current operation completes, the component will be
passivated by the container. Memory remains allocated until the container decides
reclaim it.

The following table (Table 62-3) shows the relationship between the CORBA usag
model, the container API type, and the servant lifetime policies.

Table 62-3Servant Lifetime Policies by Container API Type

CORBA Usage Model
Container API

Type Valid Servant Lifetime Policies

stateless session method

conversational session method, transaction, component, con-
tainer
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

or

riptor.
a

s are

the
an
ent’s
Servant lifetimes policies may be defined for each segment within a component.

62.2.6 Transactions

CORBA components may support eitherself-managed transactions(SMT) or
container-managed transactions(SMT). A component using self-managed
transactions will not have transaction policies defined with its deployment descript
and is responsible for transaction demarcation using either the container’s
UserTransaction interface or the CORBA transaction service. A component using
container-managed transactions defines transaction policies in its associated desc
The selection of container-managed transactions vs. self-managed transactions is
component-level specification.

When container-managed transactions are selected, additional transaction policie
defined in the component’s deployment descriptor. The container uses these
descriptions to make the proper calls to the CORBA transaction service. The
transaction policy defined in the component’s deployment descriptor is applied by
container prior to invoking the operation. Differing transaction policy declarations c
be made for operations on any of the component’s ports as well as for the compon
home interface.

The following table (Table 62-4) summarizes the effect of the various transaction
policy declarations and the presence or absence of a client transaction on the
transaction which is used to invoke the requested operation on the component.

durable entity method, transaction, component, con-
tainer

Table 62-4Effects of Transaction Policy Declaration

Transaction Attribute Client Transaction Component’s Transaction

NOT_SUPPORTED - -

T1 -

REQUIRED - T2

T1 T1

SUPPORTS - -

T1 T1

REQUIRES_NEW - T2

T1 T2

MANDATORY - EXC (TRANSACTION_REQUIRED )

Table 62-3Servant Lifetime Policies by Container API Type

CORBA Usage Model
Container API

Type Valid Servant Lifetime Policies
62-126 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

rent

he

he

tion

tion
. If
not_supported

This component does not support transactions. If the client does not provide a cur
transaction the operation is invoked immediately. If the client provides a current
transaction, it is suspended (CosTransactions::Current::suspend ) before the
operation is invoked and resumed (CosTransactions::Current::resume ) when the
operation completes.

required

This component requires a current transaction to execute successfully. If one is
supplied by the client, it is used to invoke the operation. If one is not provided by t
client, the container starts a transaction (CosTransactions::Current::begin ) before
invoking the operation and attempts to commit the transaction
(CosTransactions::Current::commit ) when the operation completes.

supports

This component will support transactions if one is available. If one is provided by t
client, it is used to invoke the operation. If one is not provided by the client. the
operation is invoked outside the scope of a transaction.

requires_new

This component requires its own transaction to execute successfully. If no transac
is provided by the client, the container starts one
(CosTransactions::Current::begin ) before invoking the operation and tries to
commit it (CosTransactions::Current::commit ) when the operation completes. If a
transaction is provided by the client, it is first suspended
(CosTransactions::Current::suspend ), a new transaction is started
(CosTransactions::Current::begin ), the operation invoked, the component’s
transaction attempts to commit (CosTransactions::Current::commit ), and the
client’s transaction is resumed (CosTransactions::Current::resume ).

mandatory

The component requires that the client be in a current transaction before this opera
is invoked. If the client is in a current transaction, it is used to invoke the operation
not, theTRANSACTION_REQUIRED exception shall be raised.

never

This component requires that the client not be in a current transaction to execute
successfully. If no current transaction exist, the operation is invoked. If a current
transaction exists, theINVALID_TRANSACTION exception shall be raised.

T1 T1

NEVER - -

T1 EXC (INVALID_TRANSACTION )

Table 62-4Effects of Transaction Policy Declaration

Transaction Attribute Client Transaction Component’s Transaction
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

er

The

set
ed
ined

it

the
g

vent

the
62.2.7 Security

Security policy is applied consistently to all categories of components. The contain
relies on CORBA security to consume the security policy declarations from the
deployment descriptor and to check the active credentials for invoking operations.
security policy remains in effect until changed by a subsequent invocation on a
different component having a different policy.

Access permissions are defined by the deployment descriptor associated with the
component. The granularity of permissions must be aligned by the deployer with a
of rights recognized by the installed CORBA security mechanism since it will be us
to check permissions at operation invocation time. Access permissions can be def
for any of the component’s ports as well as the component’s home interface.

Issue – The security model used by EJB and being adopted by CORBA
components requires the secure transportation of security credentials
between systems. Today that is only possible if SECIOP is used as the
CORBA transport.

62.2.8 Events

CORBA components use a simple subset of the CORBA notification service to em
and consume events. The subset can be characterized by the following attributes:

• Events are represented asvaluetypesto the component implementor and the
component client

• The event data structure is mapped to anany in the body of a structured event
presented to and received from CORBA notification.

• The fixed portion of the structured event is added to the event data structure by
container on sending and removed from the event data structure when receivin

• Components support two forms of event generation using the push model:

• a component may be an exclusive supplier of a given type of event.

• a component may supply events to a shared channel that other CORBA
notification users are also utilizing

• A CORBA component consumes both forms of events using the push model.

• Events have transaction and security policies associated with the component’s e
ports as defined in the deployment descriptor.

• All channel management is implemented by the container, not the component.

• Filters are set administratively by the container, not the component

Because events can be emitted and consumed by clients as well as component
implementations, operations for emitting and consuming events are generated from
specifications in component IDL. The container is responsible for mapping these
operations to the CORBA notification service to provide a robust event distribution
network.
62-128 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

nts

de

less
tion

thin
ted
the
te.

ch

ted
ng
ng
role

ing

iated
62.2.8.1 Transaction Policies for Events

Transaction policies are defined for component event ports which include both eve
being generated and events being consumed. The possible values are as follows:

normal

A normal event policy indicates the event should be generated or consumed outsi
the scope of a transaction. If a current transaction is active, it is suspended before
sending the event or invoking the operation on the proxy object provided by the
component.

default

A default event policy indicates the event should be generated or consumed regard
of whether a current transaction exists. If a current transaction is active, the opera
is transactional. If not, it is non-transactional.

transaction

A transaction event policy indicates the event should be generated or consumed wi
the scope of a transaction. If a current transaction is not active, a new one is initia
before sending the event or invoking the operation on the proxy object provided by
component. The new transaction is committed as soon as the operation is comple

Transaction policy declarations can be defined in the deployment descriptor for ea
event port defined by the component.

62.2.8.2 Security Policies for Events

CORBA components permits access control policies based on roles to be associa
with the generation and consumption of events. This is accomplished by associati
ACLs with the component ports used to emit/publish and consume events and usi
CORBA security to restrict access. These policies provide access control based on
for both event generation and consumption.

62.2.9 Persistence

Theentity container API type supports the use of a persistence mechanism for mak
component state durable, e.g. storing it in a persistent store like a database. Theentity
container API type defines two forms of persistence support:

• container-managed persistence (CMP)- the component developer simply defines
the state which is to be made persistent and the container (in conjunction with
generated code) automatically saves and restores state as required.

Container-managed persistence is selected by defining the abstract state assoc
with a component segment using the state declaration language of the CORBA
persistent state service and connecting that state declaration to a component
segment using CIDL.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

nt)

nt
istent

ered
t

tence
sses

stent
• self-managed persistence (SMP)- the component developer assumes the
responsibility for saving and restoring state when requested to do so by the
container.

Self-managed persistence is selected via CIDL declaration and triggered by the
container invoking the callback interfaces (which the component must impleme
defined later in this chapter ( Section 62.3).

The following table (Table 62-5) summarizes the choices and their required
responsibilities:

Container-managed vs. self-managed persistence is selected via the deployment
descriptor for each segment of the component.

62.2.9.1 Container-managed Persistence

Container-managed persistence may be accomplished using the CORBA persiste
state service or any user-defined persistence mechanism. When the CORBA pers
state service is used, the container manages all interactions with the persistence
provider and the component developer need not use the persistence interfaces off
by the container. With container-managed persistence using the CORBA persisten
state service, it is possible to provide automatic code generation for the storage
factories, finders, and some callback operations.

If container-managed persistence is to be accomplished with a user-defined persis
mechanism, the component developer must implement the various persistence cla
defined in the persistence framework.

Container-managed persistence is selected using CIDL and tailored using XML at
deployment time to specify connections to specific persistence providers and persi
stores.

Table 62-5Persistence Support for Entity Container API Type

Persistence
Support

Persistence
Mechanism Responsibility

Persistence
Classes

Callback
Interfaces

Container
Managed

CORBA Container Generated
Code

Generated
Code

Container
Managed

User Container Component
implements

Generated
Code

Self-managed CORBA Component Generated
Code

Component
implements

Self-managed User Component Component
implements

Component
implements
62-130 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

the
t

the

stent

nt’s
RBA

e
re
t
lient

e

facet.
h is

tly
eived.

ich
ers:
62.2.9.2 Self-managed Persistence

Self-managed persistence is also supported by theentity container API type. Like
container-managed persistence, the component developer has two choices: to use
CORBA persistent state service or some user-defined persistence mechanism. Bu
since no declarations are available to support code generation, the component
developer is responsible for implementing both the callback interfaces and the
persistence classes. The container supports access to a component persistence
abstraction provided by the CORBA persistent state service, which hides many of
details of the underlying persistence mechanism from the component developer.

Self-managed persistence is selected using CIDL and tailored using XML at
deployment time to specify connections to specific persistence providers and persi
stores.

62.2.10 Application Operation Invocation

The application operations of a component can be specified on both the compone
supported interfaces and the provided interfaces. These operations are normal CO
object invocations.

Application operations may raise exceptions, both application exceptions (i.e. thos
defined as part of the IDL interface definition) and system exceptions (those that a
not). Exceptions defined as part of the IDL interfaces defined for a component (tha
includes both provided interfaces and supported interfaces) are raised back to the c
directly and do not affect the current transaction. All other exceptions raised by th
application are intercepted by the container which then raises the
TRANSACTION_ROLLEDBACK exception to the client, if a transaction is active.
Otherwise they are reported back to the client directly.

62.2.11 Component Implementations

A component implementation consists of one or moreexecutorsas described in . Each
executor describes the implementation characteristics of a particular component
segment. The session container API type consists of a singleexecutor with a single
segment which is activated in response to an operation request on any component
The entity container API type can be made up of multiple segments, each of whic
associated with a different abstract state declaration. Each segment is independen
activated when an operation request on a facet associated with that segment is rec

62.2.12 Component Levels

The CORBA component specification defines two levels of component function wh
can be used by component developers and supported by CORBA container provid
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

ces

n its

d

es

hich

ent

n
ve

o

• basic - The basic CORBA component supports a single interface (or multiple
interfaces related by inheritance) and does not define any ports (provided interfa
or event source/sinks). The implementation of a basic component may use
transaction, security, and simple persistence (i.e. a single segment) and relies o
container to manage the construction of CORBA object references.

The basic component is functionally equivalent to the EJB 1.1 Component
Architecture.

• extended- The extended component is a basic component with multiple ports
(supported interfaces, provided interfaces and/or event source/sinks). The
implementation of the extended component may use all basic function, advance
persistence (multiple segments) plus the event model and participates in the
construction of component object references.

The component interfaces defined in this specification have been structured into
functional modules corresponding to the two levels of components defined above.

• Basic container APIs are defined in Section 62.3.

• Extended container APIs are defined in Section 62.4.

Partitioning the component function into two discrete packages permits the
EJB 1.1 APIs to be used to implement basic CORBA components in Java. It
also supports the construction of CORBA components in any supported
CORBA language which can be accessed by EJB clients. This is described
further in Chapter 64, “Integrating with Enterprise JavaBeans”.

62.2.13 Component Categories

As indicated in Section 62.1.4, this specification defines four component categori
whose behavior is specified by the twocontainer API types. Additionally we reserve
a component category to describe the empty container (i.e. a container API type w
does not use one of the API frameworks defined in this specification). The four
component categories are described briefly in the following sections. The compon
categories are independent of the component levels defined in Section 62.2.12.

62.2.13.1 The Service Component

The servicecomponent is a CORBA component with the following properties:

• no state

• no identity

• behavior

The lifespan of aservicecomponent is equivalent to the lifetime of a single operatio
request (i.e.method) so it is useful for functions such as command objects which ha
no duration beyond the lifetime of a single client interaction with them. A service
component can also be compared to a traditional TP monitor program like a Tuxed
service or a CICS transaction. A service component provides a simple way of
wrapping existing procedural applications.
62-132 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

ny
as

ntity,

ctions.

h
. A
A service component is equivalent to a stateless EJB session bean.

The following table (Table 62-6) summarizes the characteristics of a service
component as seen by the server programmer:

Because of its absence of state, any programming language servant can service a
ObjectId , enabling such servants to be managed as a pool or dynamically created
required, depending on usage patterns. Because a service component has no ide
ObjectIds can be managed by the POA, not the component implementor, and the
client sees only the factory design pattern.

The service component can use either container-managed or self-managed transa

62.2.13.2 The Session Component

The sessioncomponent is a CORBA component with the following properties:

• transient state

• identity which is not persistent

• behavior

The lifespan of asessioncomponent is specified using the servant lifetime policies
defined in Section 62.2.5. A session component (with atransaction lifetime policy) is
similar to an MTS component and is useful for modeling things like iterators, whic
require transient state for the lifetime of a client interaction but no persistent store
session component is equivlent to the stateful session bean found in EJB.

Table 62-6Service Component Design Characteristics

Design Characteristic Property

External Interfaces As defined in the component IDL

Internal Interfaces Base Set plus

SessionContext (basic)

Session2Context (extended)

Callback Interfaces SessionComponent

CORBA Usage Model stateless

External API Types keyless

Client Design Pattern Factory

Persistence No

Servant Lifetime Policy method

Transactions May use, but not included in current transaction

Events Transactional or Non-transactional

Executor Single segment with a single servant and no managed storage
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

l

has no

lient
The following table (Table 62-7) summarizes the characteristics of a session
component as seen by the server programmer:

A programming language servant is allocated to anObjectId for the duration of the
servant lifetime policy specified. At that point, the servant can be returned to a poo
and re-used for a differentObjectId . Alternatively, servants may be dynamically
created as required, depending on usage patterns. Because a session component
persistent identity,ObjectIds can be managed by the container, however extended
components may choose to participate in creating references if desired, and the c
sees only the factory design pattern.

The session component shall use either container-managed or self-managed
transactions.

62.2.13.3 The Process Component

The process component is a CORBA component with the following properties:

• persistent state which is not visible to the client and is managed by theprocess
component implementation or the container

• persistent identity which is managed by theprocesscomponent and can be made
visible to the client only through user-defined operations

• behavior which may be transactional.

Table 62-7Session Component Design Characteristics

Design Characteristic Property

External Interfaces As defined in the component IDL

Internal Interfaces Base Set plus

SessionContext (basic)

Session2Context (extended)

Callback Interfaces SessionComponent plus (optionally)

SessionSynchronization

CORBA usage model conversational

Client Design Pattern Factory

External API Types keyless

Persistence No

Servant Lifetime Policy Any

Transactions May use, but not included in current transaction

Events Transactional or Non-transactional

Executor Single segment with a single servant and no managed storage
62-134 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

esses
rs,

he

nent

ith

.9.
t’s
The process component is intended to model objects that represent business proc
(e.g. applying for a loan, creating an order, etc.) rather than entities (e.g. custome
accounts, etc.). The major difference betweenprocesscomponents andentity
components is that theprocesscomponent does not expose its persistent identity to t
client (except through user-defined operations).

The following table (Table 62-8) summarizes the characteristics of process compo
as seen by the server programmer:

A process component may have transactional behavior. The container will interact w
the CORBA transaction service to participate in the commit process.The process
component shall use container-managed transactions. This is identical to the EJB
restrition for Entity Beans.

The process component can usecontainer-managedor self-managedpersistence
using either the CORBA persistent state service or a user-defined persistence
mechanism. The implications of the various choices are described in Section 62.2
The entity container uses callback interfaces which enable the process componen
implementation to retrieve and save state data at activation and passivation
respectively.

62.2.13.4 The Entity Component

The entity component is a CORBA component with the following properties:

Table 62-8Process Component Design Characteristics

Design Characteristic Property

External Interfaces As defined in component IDL

Internal Interfaces Base set plus

EntityContext (basic)

Entity2Context (extended)

Callback Interfaces EntityComponent

CORBA usage model durable

Client Design Pattern Factory

External API Types keyless

Persistence Self-managed with or without PSS

or Container-managed with or without PSS

Servant Lifetime Policy Any

Transactions May use, and can be included in current transaction

Events Non-transactional or transactional events

Executor Multiple segments with associated managed storage
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

JB.

all
his

m.
y
tion
• persistent state which is visible to the client and is managed by theentity
component implementation or the container

• identity which is architecturally visible to its clients through aprimaryKey
declaration

• behavior which may be transactional.

As a fundamental part of the architecture,entity components expose their persistent
state to the client as a result of declaring aprimaryKey value on their home
declaration. The entity component may be used to implement the entity bean in E

The following table (Table 62-9) summarizes the characteristics ofentity component
as seen by the server programmer:

The entity component shall use container-managed transactions. The container sh
interact with the CORBA transaction service to participate in the commit process. T
is identical to the EJB restriction for Entity Beans.

The entity component can usecontainer-managedor self-managedpersistence using
either the CORBA persistent state service or a user-defined persistence mechanis
The implications of the various choices are described in Section 62.2.9. The entit
container uses callback interfaces which enable the entity component’s implementa
to retrieve and save state data at activation and passivation, respectively.

Table 62-9Entity Component Design Characteristics

Design Characteristic Property

External Interfaces As defined in the component IDL

Internal Interfaces Base set plus

EntityContext (basic)

Entity2Context (extended)

Callback Interfaces EntityComponent

CORBA usage model durable

Client Design Pattern Factory or Finder

External API Types keyfull

Persistence Self-managed with or without PSS

or Container-managed with or without PSS

Servant Lifetime Policy Any

Transactions May use, and can be included in current transaction

Events Non-transactional or transactional events

Executor Multiple segments with associated managed storage
62-136 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29



62

loper

the

ent

e

t
thers

r

to its
vices

its
62.3 Server Programming Interfaces - Basic Components

This section defines the local interfaces used and provided by the component deve
for basic components. These interfaces are then grouped as follows:

• interfaces common to both container API types

• interfaces supported by the session container API type only

• interfaces supported by the entity container API type only

Unless otherwise indicated, all of these interfaces are defined within theBasic module
embedded within theComponents module.

62.3.1 Component Interfaces

All components deal with three sets of interfaces:

• internal interfaces which are used by the component developer and provided by
container to assist in the implementation of the component’s behavior,

• external interfaces which are used by the client and implemented by the compon
developer, and

• callback interfaces which are used by the container and implemented by the
component, either in generated code or directly, in order for the component to b
deployed in the container.

A container API type defines a base set of internal interfaces which the componen
developers use in their implementation. These interfaces are then augmented by o
that are unique to the component category being developed.

• CCMContext - which serves as a bootstrap and provides accessors to the othe
internal interfaces including access to the runtime services implemented by the
container.

Each container API type has it’s own specialization ofCCMContext which we
refer to as a context.

• UserTransaction - which wraps the demarcation subset of the CORBA
transaction service required by the application developer.

• EnterpriseComponent - which is the base class that allcallback interfaces
derive from.

All components implement a callback interface which is determined by the
component category. It serves the same role as EnterpriseBean in EJB.

When a component instance is instantiated in a container, it is passed a reference
context, a local interface used to invoke services. For basic components, these ser
include transactions and security The component uses this reference to invoke
operations required by the implementation at runtime beyond what is specified in
deployment descriptor.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic



62

h

r

by

ct
he

to

.

62.3.2 Interfaces Common to both Container API Types

This section describes the interfaces and operations provided by bothcontainer API
types to support all categories of CORBA components.

62.3.2.1 The CCMContext Interface

The CCMContext is an internal interface which provides a component instance wit
access to the common container-provided runtime services applicable to both
container API types. It serves as a “bootstrap” to the various services the containe
provides for the component.

The CCMContext provides the component access to the various services provided
the container. It enables the component to simply obtain all the references it may
require to implement its behavior.

typedef SecurityLevel2::Credentials Principal; exception IllegalState { };

local interface CCMContext {
Principal get_caller_principal();
CCMHome get_CCM_home();
boolean get_rollback_only() raises (IllegalState);
Transaction::UserTransaction get_user_transaction()

raises (IllegalState);
boolean is_caller_in_role (in string role);
void set_rollback_only() raises (IllegalState);

};

get_caller_principal

Theget_caller_principal operation obtains the CORBA security credentials in effe
for the caller. Security on the server is primarily controlled by the security policy in t
deployment descriptor for this component. The component may use this operation
determine the credentials associated with the current client invocation.

get_CCM_home

The get_CCM_home operation is used to obtain a reference to the home interface
The home is the interface which supports factory and finder operations for the
component and is defined by thehome declaration in component IDL.

get_rollback_only

The get_rollback_only operation is used by a component to test if the current
transaction has been marked for rollback. Theget_rollback_only operation returns
TRUE if the transaction has been marked for rollback, otherwise it returnsFALSE . If
no transaction is active, theIllegalState exception shall be raised. When
get_rollback_only is issued by a component, it results in a
CosTransaction::Current::get_status being issued to the CORBA transaction
service and thestatus value returned being tested for theMARKED_ROLLBACK
state.
62-138 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic



62

s of

ions,

with
ode.

ion
pler

ion
get_user_transaction

The get_user_transaction operation is used to access the
Transaction::UserTransaction interface. TheUserTransaction interface is used
to implement self-managed transactions. TheIllegalState exception shall be raised if
this component is using container-managed transactions.

is_caller_in_role

The is_caller_in_role operation is used by the CORBA component to compare the
current credentials to the credentials defined by the role parameter. If they match,
TRUE is returned. If not,FALSE is returned.

set_rollback_only

The set_rollback_only operation is used by a component to mark an existing
transaction for abnormal termination. If no transaction is active, theIllegalState
exception shall be raised. Whenset_rollback_only is issued by a component, it
results in aCosTransaction::Current::rollback_only being issued to the CORBA
transaction service. The rules for the use of this operation are equivalent to the rule
its corresponding CORBA transaction service operation.

62.3.2.2 The Home Interface

A home is anexternal interface which supports factory and finder operations for the
component. These operations are generated from thehome IDL declaration (see
Section 61.7, “Homes,” on page 61-53). The context supports an operation
(get_CCM_home) to obtain a reference to the component’s home interface.

62.3.2.3 The UserTransaction Interface

A CORBA component may use either container-managed or self-managed transact
depending on the component category. With container-managed transactions, the
component implementation relies on the transaction policy declarations packaged
the deployment descriptor and contains no transaction APIs in its implementation c

This is identical to container-managed transactions in EJB or the default
processing of an MTS component.

A component specifying self-managed transactions may use the CORBA transact
service directly to manipulate the current transaction or it may choose to use a sim
API, defined by this specification, which exposes only those transaction demarcat
functions needed by the component implementation.

Manipulation of the current transaction shall be consistent between the client, the
transaction policy specified in the deployment descriptor, and the component
implementation.

For example, if the client or the container starts a transaction, the compo-
nent may not end it (commit or rollback ). The rules to be used are defined
by the CORBA transaction service.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic



62

h

e

he
If the component uses theCosTransactions::Current interface, all operations
defined forCurrent may be used as defined by the CORBA transaction service wit
the following exceptions:

• The Control object returned bysuspendmay only be used withresume.

• Operations onControl are not supported with CORBA components and may rais
the NO_IMPLEMENT system exception.

TheControl interface in the CORBA transaction service supports acces-
sors to theCoordinator andTerminator interfaces. TheCoordinator is
used to build object versions of XA resource managers. TheTerminator is
used to allow a transaction to be ended by someone other than the origina-
tor. Since neither function is within the scope of the demarcation subset of
CORBA transactions used with CORBA components, we allow CORBA
transaction services implementations used with CORBA components to
raise theNO_IMPLEMENT exception. This provides the same level of
function as thebean-managedtransaction policy in Enterprise Java-
Beans.

The UserTransaction is an internal interface implemented by the container and is
defined within its own module,Transaction , within the Components module
(Components::Transaction ). Because theUserTransaction is a wrapper over
CosTransactions::Current , it is thread specific. TheUserTransaction exposes a
simple demarcation subset of the CORBA transaction service to the component. T
context supports an operation (get_user_transaction) to obtain a reference to the
UserTransaction interface. TheUserTransaction interface is defined by the
following IDL:
62-140 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic



62

te it

re
The

iners,
typedef sequence<octet> TranToken;
exception NoTransaction { };
exception NotSupported { };
exception SystemError { };
exception Rollback { };
exception HeuristicMixed { };
exception HeuristicRollback { };
exception Security { };
exception InvalidToken { };

enum Status {
ACTIVE,
MARKED_ROLLBACK,
PREPARED,
COMMITTED,
ROLLED_BACK,
NO_TRANSACTION,
PREPARING,
COMMITTING,
ROLLING_BACK
};

local interface Transaction {
void begin () raises (NotSupported, SystemError);
void commit () raises (Rollback, NoTransaction,

HeuristicMixed, HeuristicRollback,
Security, SystemError);

void rollback () raises (NoTransaction, Security, SystemError);
void set_rollback_only () raises (NoTransaction, SystemError);
Status get_status() raises (SystemError);
void set_timeout (in long to) raises (SystemError);
TranToken suspend () raises (NoTransaction, SystemError);
void resume (in TranToken txtoken)

raises (InvalidToken, SystemError);
};

begin

Thebegin operation is used by a component to start a new transaction and associa
with the current thread. Whenbegin is issued by a component, it results in a
CosTransaction::Current::begin with report_heuristics set toTRUE being
issued to the CORBA transaction service. The rules for the use of this operation a
equivalent to the rules of its corresponding CORBA transaction service operation.
NotSupported exception is return if it is received from the CORBA transaction
service. Since nested transactions are not supported by CORBA component conta
this indicates an attempt to start a new transaction when an existing transaction is
active. All other exceptions are converted to theSystemError exception.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic



62

.
ing

n

e

lent

ation
e

ith
commit

The commit operation is used by a component to terminate an existing transaction
normally. Whencommit is issued by a component, it results in a
CosTransaction::Current::commit being issued to the CORBA transaction service
The rules for the use of this operation are equivalent to the rules of its correspond
CORBA transaction service operation. If no transaction is active, theNoTransaction
exception shall be raised. If theTRANSACTION_ROLLEDBACK system exception
is returned, it is converted to theRollback exception. The
CosTransaction::HeuristicMixed andCosTransaction::HeuristicRollback
exceptions are reported as theHeuristicMixed andHeuristicRollback exceptions
respectively. TheNO_PERMISSION system exception is converted to theSecurity
exception. All other exceptions are converted to theSystemError exception.

rollback

The rollback operation is used by a component to terminate an existing transactio
abnormally. Whenrollback is issued by a component, it results in a
CosTransaction::Current::rollback being issued to the CORBA transaction
service. The rules for the use of this operation are equivalent to the rules of its
corresponding CORBA transaction service operation. If no transaction is active, th
NoTransaction exception shall be raised. TheNO_PERMISSION system exception
is converted to theSecurity exception. All other exceptions are converted to the
SystemError exception.

set_rollback_only

The set_rollback_only operation is used by a component to mark an existing
transaction for abnormal termination. Whenset_rollback_only is issued by a
component, it results in aCosTransaction::Current::rollback_only being issued to
the CORBA transaction service. The rules for the use of this operation are equiva
to the rules of its corresponding CORBA transaction service operation. If no
transaction is active, theNoTransaction exception shall be raised. All other
exceptions shall be converted to theSystemError exception.

get_status

The get_status operation is used by a component to determine the status of the
current transaction. If no transaction is active, it returns theNoTransaction status
value. Otherwise it returns the state of the current transaction. Whenget_status is
issued by a component, it results in aCosTransaction::Current::get_status being
issued to the CORBA transaction service. The status values returned by this oper
are equivalent to the status values of its corresponding CORBA transaction servic
operation. All exceptions shall be converted to theSystemError exception.

set_timeout

The set_timeout operation is used by a component to associate a time-out value w
the current transaction. The timeout value (to) is specified in seconds. When
set_timeout is issued by a component, it results in a
CosTransaction::Current::set_timeout being issued to the CORBA transaction
62-142 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic



62

to

tion

the

sly

tive

er

This
service. The rules for the use of this operation are equivalent to the rules of its
corresponding CORBA transaction service operation. All exceptions are converted
the SystemError exception.

suspend

The suspend operation is used by a component to disconnect an existing transac
from the current thread. Thesuspend operation returns aTranToken which can only
be used in a subsequentresume operation. Whensuspend is issued by a component,
it results in aCosTransaction::Current::suspend being issued to the CORBA
transaction service. The rules for the use of this operation are more restrictive than
rules of its corresponding CORBA transaction service operation:

• Only one transaction may be suspended

• The suspended transaction is the only transaction that may be resumed.

If no transaction is active, theNoTransaction exception shall be raised. All other
exceptions are converted to theSystemError exception.

resume

The resume operation is used by a component to reconnect a transaction previou
suspended to the current thread. TheTranToken identifies the suspended transaction
which is to be resumed. If the transaction identified byTranToken has not been
suspended, theInvalidToken exception shall be raised. Whenresume is issued by a
component, it results in aCosTransaction::Current::resume being issued to the
CORBA transaction service. The rules for the use of this operation are more restric
than the rules of its corresponding CORBA transaction service operation since the
single suspended transaction is the only transaction that may be resumed. All oth
exceptions are converted to theSystemError exception.

TheUserTransaction interface is equivalent to theUserTransaction
interface (javax.transaction.UserTransaction) in EJB with the addition
of thesuspendandresumeoperations.

62.3.2.4 The EnterpriseComponent Interface

All CORBA components must implement an interface derived from the
EnterpriseComponent interface to be housed in a component container.
EnterpriseComponent is a callback interface which defines no operations.

local interface EnterpriseComponent { };

62.3.3 Interfaces Supported by the Session Container API Type

This section describes the interfaces supported by the session container API type.
includes bothinternal interfaces provided by the container andcallback interfaces
which must be implemented by components deployed in this container API type.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic



62

the

or
ued

and
62.3.3.1 The SessionContext Interface

The SessionContext is an internal interface which provides a component instance
with access to the container-provided runtime services. It serves as a “bootstrap” to
various services the container provides for the component.

The SessionContext enables the component to simply obtain all the references it
may require to implement its behavior.

exception IllegalState { };

local interface SessionContext : CCMContext {
Object get_CCM_object() raises (IllegalState);

};

get_CCM_object

The get_CCM_object operation is used to get the reference used to invoke the
component. For basic components, this will always be the component reference. F
extended components, this will be a specific facet reference. If this operation is iss
outside of the scope of acallback operation, theIllegalState exception is returned.

62.3.3.2 The SessionComponent Interface

The SessionComponent is a callback interface implemented by a session CORBA
component. It provides operations for disassociating a context with the component
to manage servant lifetimes for a session component.

enum CCMExceptionReason {
SYSTEM_ERROR,
CREATE_ERROR,
REMOVE_ERROR,
DUPLICATE_KEY,
FIND_ERROR,
OBJECT_NOT_FOUND,
NO_SUCH_ENTITY};

exception CCMException {CCMExceptionReason reason};

local interface SessionComponent : EnterpriseComponent {
void set_session_context ( in SessionContext ctx)

raises (CCMException);
void ccm_activate() raises (CCMException);
void ccm_passivate() raises (CCMException);
void ccm_remove () raises (CCMException);

};
62-144 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic



62

n

nt
tion

el

e any

el

be
nt

d of
set_session_context

The set_session_context operation is used to set theSessionContext of the
component. The container calls this operation after a component instance has bee
created. This operation is called outside the scope of an active transaction.The
component may raise theCCMException with theSYSTEM_ERROR minor code to
indicate a failure caused by a system level error.

ccm_activate

The ccm_activate operation is called by the container to notify a session compone
that it has been made active. The component instance should perform any initializa
required prior to operation invocation.The component may raise theCCMException
with the SYSTEM_ERROR minor code to indicate a failure caused by a system lev
error.

ccm_passivate

The ccm_passivate operation is called by the container to notify a session
component that it has been made inactive. The component instance should releas
resources it acquired at activation time.The component may raise theCCMException
with the SYSTEM_ERROR minor code to indicate a failure caused by a system lev
error.

ccm_remove

Theccm_remove operation is called by the container when the servant is about to
destroyed. It informs the component that it is about to be destroyed.The compone
may raise theCCMException with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

62.3.3.3 The SessionSynchronization Interface

TheSessionSynchronization interface is acallback interface which may optionally
be implemented by the session component. It permits the component to be notifie
transaction boundaries by its container.

exception CCMException {CCMExceptionReason reason};

local interface SessionSynchronization {
void after_begin () raises (CCMException);
void before_completion () raises (CCMException);
void after_completion (
in boolean committed) raises (CCMException);

};
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic



62

t
ed in

f

e

may

his

h

ay
after_begin

The after_begin operation is called by the container to notify a session componen
that a new transaction has started, and that the subsequent operations will be invok
the context of the transaction.The component may raise theCCMException with the
SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

before_completion

The before_completion operation is called by the container just prior to the start o
the two-phase commit protocol. The container implements the
CosTransactions::Synchronization interface of the CORBA transaction service
and invokes thebefore_completion operation on the component before starting its
own processing. The component may raise theCCMException with the
SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

after_completion

Theafter_completion operation is called by the container after the completion of th
two-phase commit protocol. If the transaction has committed thecommitted value is
set toTRUE . If the transaction has been rolled back, thecommitted value is set to
FALSE. The container implements theCosTransactions::Synchronization
interface of the CORBA transaction service and invokes theafter_completion
operation on the component after completing its own processing. The component
raise theCCMException with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

62.3.4 Interfaces Supported by the Entity Container API Type

This section describes the interfaces supported by the entity container API type. T
includes bothinternal interfaces provided by the container andcallback interfaces
which must be implemented by components deployed in this container API type.

62.3.4.1 The EntityContext Interface

TheEntityContext is aninternal interface which provides a component instance wit
access to the container-provided runtime services. It serves as a “bootstrap” to the
various services the container provides for the component.

The EntityContext enables the component to simply obtain all the references it m
require to implement its behavior.
62-146 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic



62

or
ued

t to

r

).
exception IllegalState { };

local interface EntityContext : CCMContext {
Object get_CCM_object () raises (IllegalState);
PrimaryKeyBase get_primary_key () raises (IllegalState);

};

get_CCM_object

The get_CCM_object operation is used to obtain the reference used to invoke the
component. For basic components, this will always be the component reference. F
extended components, this will be a specific facet reference. If this operation is iss
outside of the scope of acallback operation, theIllegalState exception is returned.

get_primary_key

The get_primary_key operation is used by anentity component to access the
primary key value declared for this component’s home. This operation is equivalen
issuing the same operation on the component’s home interface. If this operation is
issued outside of the scope of acallback operation, theIllegalState exception is
returned.

62.3.4.2 The EntityComponent Interface

The EntityComponent is a callback interface implemented by both process and
entity components. It contains operations to manage the persistent state of the
component.

Issue – As currently defined, any operation request will cause the containe
to activate the component segment, if required. Since the component
reference is well-structured, we could consider the possibility of trapping
navigation operations prior to activation and executing them without actually
activating the component (or we could leave that to clever implementations

exception CCMException {CCMExceptionReason reason};

local interface EntityComponent : EnterpriseComponent {
void set_entity_context (in EntityContext ctx)

raises (CCMException);
void unset_entity_context ()raises (CCMException);
void ccm_activate () raises (CCMException);
void ccm_load ()raises (CCMException);
void ccm_store ()raises (CCMException);
void ccm_passivate ()raises (CCMException);
void ccm_remove ()raises (CCMException);
};
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic



62

n

it
s

d

ner-
his
eing

y

his
eing

s
y

set_entity_context

The set_entity_context operation is used to set theEntityContext of the
component. The container calls this operation after a component instance has bee
created. This operation is called outside the scope of an active transaction.The
component may raise theCCMException with theSYSTEM_ERROR minor code to
indicate a failure caused by a system level error.

unset_entity_context

The unset_entity_context operation is used to remove theEntityContext of the
component. The container calls this operation just before a component instance is
destroyed. This operation is called outside the scope of an active transaction. The
component may raise theCCMException with theSYSTEM_ERROR minor code to
indicate a failure caused by a system level error.

ccm_activate

The ccm_activate operation is called by the container to notify the component that
has been made active. For most CORBA component implementations, no action i
required. The component instance should perform any initialization (other than
establishing its state) required prior to operation invocation. This operation is calle
within an unspecified transaction context.The component may raise the
CCMException with the SYSTEM_ERROR minor code to indicate a failure caused
by a system level error.

ccm_load

The ccm_load operation is called by the container to instruct the component to
synchronize its state by loading it from its underlying persistent store. When contai
managed persistence is implemented using the CORBA persistent state service, t
operation can be implemented in generated code. If self-managed persistence is b
used, the component is responsible for locating its state in a persistent store. This
operation executes within the scope of the current transaction. The component ma
raise theCCMException with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

ccm_store

The ccm_store operation is called by the container to instruct the component to
synchronize it state by saving it in its underlying persistent store. When container-
managed persistence is implemented using the CORBA persistent state service, t
operation can be implemented in generated code. If self-managed persistence is b
used, the component is responsible for saving its state in the persistent store. Thi
operation executes within the scope of the current transaction. The component ma
raise theCCMException with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.
62-148 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic



62

at
n is
er

thin

el

be
n is

loper
ss

the

A

ccm_passivate

The ccm_passivate operation is called by the container to notify the component th
it has been made inactive. For most CORBA component implementations, no actio
required. The component instance should perform any termination processing (oth
than saving its state) required prior to being passivated. This operation is called wi
an unspecified transaction context. The component may raise theCCMException
with the SYSTEM_ERROR minor code to indicate a failure caused by a system lev
error.

ccm_remove

Theccm_remove operation is called by the container when the servant is about to
destroyed. It informs the component that it is about to be destroyed. This operatio
always called outside the scope of a transaction. The component raises the
CCMException with the REMOVE_ERROR minor code if it is does not allow the
destruction of the component. The component may raise theCCMException with the
SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

TheEntityComponent interface is equivalent to theEntityBean interface
in Enterprise JavaBeans. Container-managed persistence with the CORBA
persistent state service supports automatic code generation forccm_load
andccm_store.For self-managed persistence, the component implementor
provides theccm_loadandccm_storemethods. Since both process and
entity components have persistent state and container-managed persis-
tence, the same callback interfaces can be used.

62.4 Server Programming Interfaces - Extended Components

This section defines the local interfaces used and provided by the component deve
for extended components. These interfaces are grouped as in Section 62.3. Unle
otherwise indicated, all of these interfaces are defined within theExtended module
embedded within theComponents module. Extended components add interfaces in
the following areas:

• CCM2Context - adds functions unique to extended components.

Each container API type has it’s own specialization ofCCM2Context which we
refer to as a context. The context for extended components adds accessors to
persistence and event services and supports operations for managing servant
lifetime policy, and creating and managing object references in conjunction with
POA.

• ComponentId - encapsulates a component identifier, which is an abstract
information model used to locate the component’s state.

Only theentity container API type supports theComponentId interface.

• Event - offers the subset of the CORBA notification service supported by CORB
components.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62

nents

sing
nts

t it
62.4.1 Interfaces Common to both Container API Types

This section describes the interfaces and operations provided for extended compo
by bothcontainer API types to support all categories of CORBA components.

62.4.1.1 The CCM2Context Interface

TheCCM2Context is aninternal interface which extends theCCMContext interface
to provide the extended component instance with access to additional container-
provided runtime services applicable to bothcontainer API types. These services
include advanced persistence using the CORBA persistent state service, events u
CORBA notification, and runtime management of component references and serva
using the POA.TheCCM2Context is defined by the following IDL:

typedef CosPersistentState::CatalogBase CatalogBase;
typedef CosPersistentState::TypeId TypeId;

exception PolicyMismatch { };
exception PersistenceNotAvailable { };

local interface CCM2Context : CCMContext {
HomeRegistration get_home_registration ();
Events::Event get_event();
void req_passivate () raises (PolicyMismatch);
CatalogBase get_persistence (in TypeId catalog_type_id)

raises (PersistenceNotAvailable);
};

get_home_registration

The get_home_registration operation is used to obtain a reference to the
HomeRegistration interface. TheHomeRegistration is used to register component
homes so they may be located by theHomeFinder .

get_event

The get_event operation is used to obtain a reference to theEvent interface. The
Event interface is used by the component to emit or publish events for external
consumption or to subscribe to events it needs to process.

req_passivate

The req_passivate operation is used by the component to inform the container tha
wishes to be passivated when its current operation completes. To be valid, the
component must have a servant lifetime policy ofcomponentor container. If not the
PolicyMismatch exception shall be raised.
62-150 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62

. It
get_persistence

The get_persistence operation provides the component access to a persistence
framework provided by an implementation of the CORBA persistence state service
returns aCosPersistentState::CatalogBase which serves as an index to the
available storage homes. TheCatalogBase is identified by its
CosPersistentState::TypeId catalog_type_id. If the CatalogBase identified by
catalog_type_idis not available on this container, thePersistenceNotAvailable
exception shall be raised.

62.4.1.2 The HomeRegistration Interface

The HomeRegistration is an internal interface which may be used by the CORBA
component to register its home so it can be located by aHomeFinder .

TheHomeRegistration interface allows a component implementation to
advertise a home instance that can be used to satisfy a client’s find_home
request. It may also be used by an administrator to do the same thing. It is
likely that the combination ofHomeRegistrationandHomeFinder inter-
faces will work within the domain of a single container provider unless
multiple implementations use other shareable directory mechanisms, e.g.
an LDAP global directory. FederatingHomeFinders is a similar problem
to federating CORBA security domains and we defer to the security people
for an architecture for such federation rather than attempting to specify
such an architecture in this specification.

The HomeRegistration interface is defined by the following IDL:

local interface HomeRegistration {
void register_home (

in CCMHome home,
in string home_name);

void unregister_home (in CCMHome home);
};

register_home

The register_home operation is used to register a component home with the
HomeFinder so it can be located by a component client. Thehome parameter
identifies the home being registered and can be used to obtain both the
IR::ComponentDef (CCMHome::get_component_def ) and theIR::InterfaceDef
(CORBA::Object::get_interface_def ) to support both
HomeFinder::find_home_by_component_type and
HomeFinder::find_home_by_home_type . Thehome_name parameter identifies
an Interoperable Naming Service (INS) name that can be used as input to the
HomeFinder::find_home_by_name operation. If thehome_name parameter is
NULL, no name is associated with this home so this home cannot be retrieved by
name.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62

it is
the
in

rt

e

unregister_home

The unregister_home operation is used to remove a component home from the
HomeFinder . Onceunregister_home completes, a client will never be returned a
reference to the home specified as being unregistered. Thehome parameter identifies
the home being unregistered.

62.4.1.3 The ProxyHomeRegistration Interface

Because CORBA components exploit the dynamic activation features of the POA,
possible for some component types to provide a home which is not collocated with
component instances it creates. This permits load balancing criteria to be applied
selecting the actual server and POA where this instance will be created. The
ProxyHomeRegistration is an internal interface, derived from
HomeRegistration , which can be used by the CORBA component to register a
remote home (i.e. one that isNOT collocated with the component) so it can be
returned by aHomeFinder . The ProxyHomeRegistration interface is defined by
the following IDL:

exception UnknownActualHome { };
exception ProxyHomeNotSupported { };

local interface ProxyHomeRegistration : HomeRegistration {
void register_proxy_home (

in CCMHome rhome,
in CCMHome ahome)
raises (UnknownActualHome, ProxyHomeNotSupported);

};

register_proxy_home

The register_proxy_home operation is used to register a component home, not
collocated with the instances that it can create, with theHomeFinder so the proxy
home can be used by component clients. Therhome parameter identifies the proxy
home being registered. Theahomeparameter identifies the actual home which the
rhome is associated with. If the actual home specified byahome is not known, the
UnknownActualHome exception shall be raised. If this component does not suppo
proxy homes, theProxyHomeNotSupported exception shall be raised. Support for
proxy homes is a component implementation option.

62.4.1.4 The Event Interface

The Event is an internal interface which supports operations for emitting and
publishing events and for subscribing to events emitted or published by others. Th
Event and LocalCookie interfaces are defined in their own module
(Components::Events ) and provide a simple mechanism for connecting the
component to a CORBA notification channel established and managed by the
container. The implementations of the operations generated from theemits, publishes,
andconsumesdeclaration in the component’s IDL (see Section 61.6, “Events,” on
62-152 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62

el
page 61-44) delegate to these interfaces. The context supports an operation
(get_event) to obtain a reference to theEvent interface. TheEvent interface is
defined by the following IDL:

typedef CosNotification::EventHeader EventHeader;
typedef CosNotifyChannnelAdmin::ChannelId Channel;

exception ChannelUnavailable { };
exception InvalidSubscription { };
exception InvalidName { };
exception InvalidChannel { };

local interface LocalCookie {
boolean same_as (in LocalCookie cookie);};

local interface Event {
EventConsumerBase create_channel

(out Channel chid)
raises (ChannelUnavailable);

LocalCookie subscribe (
in EventConsumerBase ecb,
in Channel chid)raises (ChannelUnavailable);

void unsubscribe (in LocalCookie cookie)
raises (InvalidSubscription);

EventConsumerBase obtain_channel (
in string supp_name,
in EventHeader hdr) raises (InvalidName);

void listen (in EventConsumerBase ecb,
in string csmr_name) raises (InvalidName);

void push (in EventBase evt);
void destroy_channel (in Channel chid)raises (InvalidChannel);

};

same_as

The same_as operation compares twoLocalCookie instances for equivalence and
returnsTRUE if equivalent, otherwise it returnsFALSE.

create_channel

The create_channel operation is used by a component to bind a notification chann
to be used to push component events. This operation corresponds to apublishes
declaration in component IDL. It returns anEventConsumerBase which can be
used to push events into the channel. When acreate_channel operation is issued by
a component, the container interacts with CORBA notification to create an event
channel for the components exclusive use. If the container cannot connect to the
channel, theChannelUnavailable exception shall be raised. Thechid is returned to
the component as an identifier of the channel.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62

or

to

e

d

subscribe

Thesubscribe operation allows the component to express interest in receiving one
more events. Theecb identifies anEventConsumerBase which the container will
use to push the event to the component. If the container is not connected to the
channel, theChannelUnavailable exception shall be raised. The
EventConsumerBase must implement thepush operation defined by the
<event_type>Consumer interface. Thesubscribe operation returns acookie
which is used to delete the subscription.

unsubscribe

The unsubscribe operation deletes the subscription specified by thecookie
previously returned bysubscribe . If no subscription is associated with thecookie, the
InvalidSubscription exception shall be raised.

obtain_channel

The obtain_channel operation is used by the component to obtain an
EventConsumerBase which it can use to push events. This operation corresponds
an emits declaration in component IDL. Thesupp_namestring identifies an
Interoperable Naming Service (INS) name which is used to identify the
SupplierAdmin to be used by CORBA notification. The name is associated with th
SupplierAdmin thorough container specific configuration data. The
obtain_channel operation may optionally specify theEventHeader required by
CORBA notification which will be used for all events pushed to this channel. Ifhdr is
present, it is prefixed to all events pushed to this channel. If not, it is defaulted as
described in Section 66.4, “Event Management Integration,” on page 66-252. If the
supp_nameis not recognized, theInvalidName exception shall be raised.

listen

The listen operation is used by the component to inform the container that it woul
like to receive events of a particular type. This corresponds to theconsumes
declaration in component IDL. Thecmsr_namestring identifies an INS name which is
used to identify theConsumerAdmin to be used by CORBA notification. The name
is associated with theConsumerAdmin thorough container specific configuration
data. The component provides anEventConsumerBase interface that implements
the push operation on the<event_type>Consumer interface. If thecmsr_nameis
not recognized, theInvalidName exception shall be raised.

push

The push operation is used by a component to transmit an event. The eventevt is a
valuetype derived fromEventBase .

destroy_channel

The destroy_channel operation is used by a component to delete the channel
identified bychid. The InvalidChannel exception can be raised if thechid parameter
is not the value previously returned bycreate_channel .
62-154 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62

ssion

is

time
for
EJB does not have an event API yet, but one is under development. The
Java 2 Platform, Enterprise Edition (J2EE) does however have a messag-
ing API (JMS) which supports publish/subscribe. This is an area that will
need to be harmonized with EJB in the future.

62.4.2 Interfaces Supported by the Session Container API Type

This section describes the interfaces supported for extended components by the se
container API type. This includes bothinternal interfaces provided by the container
andcallback interfaces which must be implemented by components deployed in th
container API type.

62.4.2.1 The Session2Context Interface

The Session2Context is an internal interface which extends theSessionContext
to provides a component instance with access to additional container-provided run
services for the session container API type. It adds the ability to create references
components deployed in asession container API type. TheSession2Context is
defined by the following IDL:

enum BadComponentReferenceReason {
NON_LOCAL_REFERENCE,
NON_COMPONENT_REFERENCE,
WRONG_CONTAINER,

};

exception BadComponentReference {
BadComponentReferenceReason reason

};
exception IllegalState { };

local interface Session2Context : SessionContext, CCM2Context {
Object create_ref (in CORBA::RepositoryId repid);
Object create_ref_from_oid (

in PortableServer::ObjectId oid,
in CORBA::RepositoryId repid);

PortableServer::ObjectId get_oid_from_ref (in Object ref)
raises (IllegalState, BadComponentReference);

};

create_ref

The create_ref operation is used to create a reference to be exported to clients to
invoke operations. Therepid parameter identifies theRepositoryId associated with
the interface for which a reference is being created.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62

o

s

tity

is

e

del.

nces

r in

f

st is
create_ref_from_oid

The create_ref_from_oid operation is used to create a reference to be exported t
clients which includes information provided by the component which it can use on
subsequent operation requests. Theoid parameter identifies theObjectId to be
encapsulated in the reference and therepid parameter identifies theRepositoryId
associated with the interface for which a reference is being created.

get_oid_from_ref

The get_oid_from_ref operation is used by the component to extract theoid
encapsulated in the reference. Theref parameter specifies the reference which contain
the oid. This operation must be called within an operation invocation. If not the
IllegalState exception shall be raised. If the reference was not created by this
container, theBadComponentReference with the WRONG_CONTAINER minor
code is raised.

62.4.3 Interfaces Supported by the Entity Container API Type

This section describes the interfaces provided for extended components by the en
container API type. This includes bothinternal interfaces provided by the container
andcallback interfaces which must be implemented by components deployed in th
container API type.

62.4.3.1 Component Identifiers

The ComponentId interface is aninternal interface provided by the entity container
API type through which the component implementation and the container exchang
identity information, referred to ascomponent identifiers. The ComponentId
interface encapsulates a component identifier, which is an abstract information mo
The ComponentId interface is used in the following ways:

• Component implementations (usually home executor implementations) create
component identifiers to describe new components, and to create object refere
that encapsulate the provided description. TheEntity2Context interface acts as a
factory for component identifiers and as the factory for object references.

• The container encodes the information encapsulated by the component identifie
the object identifier value it uses internally to create the object reference on the
encapsulated POA. The encoding is not specified, since a container’s choice o
encoding does not affect interoperability or portability.

• While dispatching an incoming request, the container extracts and decodes the
component identifier from theObjectId . The extracted component identifier is
made available to the component executor through the context before the reque
dispatched to the component.

• When the container invokesccm_load in the component executor, the
implementation ofccm_load uses the contents of the component identifier to
locate and incarnate the required component state.
62-156 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62

es
o-one
the

nce”
on”,

re of
a

ce

fier is
gle

facet
ro is

y
that
In the following discussions, component identifiers and component object referenc
are sometimes used as though the terms were synonymous. Since there is a one-t
relationship between a component identifier and an object reference created from
component identifier, this discussion occasionally uses the term “component refere
to mean “the component reference created from the component identifier in questi
for the sake of brevity.

The ComponentId interface does not explicitly specify the state representation it
encapsulates. The abstract state is implied by the interface and reflects the structu
the executor it describes (see Chapter 615, “CCM Implementation Framework” for
complete discussion of executor structure).

A component identifier encapsulates the following information:

• A facet identifiervalue denoting the target facet of the component reference

• A segment identifiervalue denoting the target segment of the component referen
(i.e., the segment that supports the target facet)

• A sequence ofsegment descriptors

A segment descriptor includes the following:

• A segment identifier denotes the segment being described

• A state identifiervalue that denotes the persistent state of the segment in some
storage mechanism.

A monolithic executor is represented as a degenerate case of the generalized
component identifier, where the target segment identifier is set to zero and the
sequence of segment descriptors contains a single element, whose segment identi
zero and whose state identifier denotes the persistent state of the component’s sin
segment.

The facet identifier value zero is reserved to denote the component facet, i.e., the
that supports the component equivalent interface. The segment identifier value ze
reserved to denote the segment that supports the component facet. For monolithic
executors, the segment identifier values is always zero.

State identifier is an abstraction that generalizes a variety of possible state identit
schemes. This specification provides a mechanism for describing state identifiers
can be extended by component implementors, allowing customization for storage
mechanisms that do not support the standard persistence interfaces.

The ComponentId local interface and supporting constructs are defined by the
following IDL:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62
typedef short SegmentId;
const SegmentId COMPONENT_SEGMENT = 0;

typedef short FacetId;
const FacetId COMPONENT_FACET = 0;

typedef sequence<octet> IdData;
typedef CosPersistentState::pid PersistentId;

exception InvalidStateIdData {};

typedef short StateIdType;
const StateIdType PERSISTENT_ID = 0;

abstract valuetype StateIdValue {
StateIdType get_sid_type();
IdData get_sid_data();

};

local interface StateIdFactory {
StateIdValue create (in IdData data) raises (InvalidStateIdData);

};

valuetype PersistentIdValue : StateIdValue {
private PersistentId pid;
PersistentId get_pid();
init (in PersistentId pid);

};

valuetype SegmentDescr {
private StateIdValue sid;
private SegmentId seg;
StateIdValue get_sid();
SegmentId get_seg_id();
init (in StateIdValue sid, in SegmentId seg);

};

typedef sequence<SegmentDescr> SegmentDescrSeq;

local interface ComponentId {
FacetId get_target_facet();
SegmentId get_target_segment();
StateIdValue get_target_state_id (in StateIdFactory sid_factory)

raises (InvalidStateIdData);
StateIdValue get_segment_state_id (

in SegmentId seg,
in StateIdFactory sid_factory)
raises (InvalidStateIdData);

ComponentId create_with_new_target (
in FacetId new_target_facet,
in SegmentId new_target_segment);
62-158 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62

his

f
l can

ete
r

e

ion
SegmentDescrSeq get_segment_descrs (
in StateIdFactory sid_factory)
raises (InvalidStateIdData);

};

62.4.3.2 StateIdValue abstract valuetype

The StateIdValue type is the base valuetype for concrete, storage-specific state
identity values. The container interacts with state identities completely in terms of t
interface. A single pre-defined concrete value type derived fromStateIdValue is
provided forPersistentId state identities. Component implementors, or suppliers o
storage mechanisms that do not support the CORBA component persistence mode
provide their own state identity types by deriving fromStateIdValue and
implementing the required behaviors properly.

get_sid_type

The get_sid_type operation returns a discriminator (physically, a short) that
identifies the type of the state identity encapsulated by theStateIdValue . This
specification defines the value zero (0) to denote a
Components::Extended::PersistentId state identifier.

Issue – do we need to define this as an OMG-allocated space?

get_sid_data

The get_sid_data operation returns the encapsulated state identity expressed in a
canonical form, as a sequence of octets. The implementation of the derived concr
value type is responsible for converting its encapsulated data into this form, and fo
supplying a factory which can construct an instance of the concrete type from an
IdData value (a sequence of octets).

62.4.3.3 StateIdFactory Interface

StateIdFactory is the abstract base interface for factories of state identity values
derived fromStateIdValue . An implementation ofStateIdFactory must be supplied
with the implementation of a concrete state identity type. If theIdData octet sequence
provided in thedata parameter cannot be decoded to create a proper instance of th
expected state identity concrete type, the operation raises anInvalidStateIdData
exception.

create

The create operation constructs an instance of a concrete state identifier from the
octet sequence parameter. This operation performs the inverse of the transformat
performed by theget_sid_data .
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62

.

t

bed.

tifier

s of

he
62.4.3.4 PersistentIdValue valuetype

The PersistentIdValue type is a specialization ofStateIdValue that encapsulates a
PersistentId value for inclusion in a component identifier.

get_pid

The get_pid operation returns thePersistentId value encapsulated by the value type

init

The initializer forPersistentIdValue creates an instance of the valuetype that
encapsulates thePersistentId value passed as a parameter.

get_sid_value

The implementation ofget_sid_value for PersistentIdValue performs no
transformation on the encapsulatedPersistentId value. The sequence of octets
returned byget_sid_value is identical to the encapsulatedPersistentId value.

62.4.3.5 SegmentDescr valuetype

The SegmentDescr type describes an executor segment, encapsulating a segmen
identifier and a state identifier. A component identifier for a segmented executor
encapsulates a sequence ofSegmentDescr instances.

get_sid

The get_sid operation returns the state identity value of the segment being descri

get_seg_id

The get_seg_id operation returns the segment identifier of the segment being
described.

init

This initializer sets the value of the encapsulated segment identifier and state iden
to the values of the respective parameters.

62.4.3.6 ComponentId Interface

TheComponentId interface encapsulates a complete component identity. Instance
ComponentId can only be created by theEntity2Context interface, which is
supplied by the container, or by duplicating an existing component identifier with a
new target value, withComponentId::create_with_new_target . Instances of
ComponentId are also provided by theEntityContext interface in the context of a
CORBA invocation. The value of the component identifier provided by the
Entity2Context shall be identical to the component identifier value used to create t
object reference on which the invocation was made. TheComponentId interface is a
62-160 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62

e

nent

t.

of

ted
r, the

copy

the
n

read-only interface. Once a component identifier is constructed by the
create_component_id operation or constructed internally and provided through th
Entity2Context interface, the value of the component identifier cannot be altered.

get_target_facet

The get_target_facet operation returns the facet identifier of the facet which is the
target of the component reference, i.e., the target of requests made on the compo
reference.

get_target_segment

The get_target_segment operation returns the segment identifier of the target
segment, i.e., the segments that provides the target facet.

get_target_state_id

The get_target_state_id operation returns the state identifier of the target segmen
The StateIdFactory specified in thesid_factory parameter is used by the
implementation ofget_target_state_id to construct the proper state identifier from
the octet sequence encapsulated by the component identifier. If the state identifier
the target segment is aPersistentIdValue , the sid_factory parameter may be nil.
Container implementations shall provide a default implementation ofStateIdFactory
to be used when the encapsulated state identifier value is aPersistentIdValue . If
provided (or default) factory cannot construct a correct state identifier of the expec
type from the undecoded octet sequence encapsulated by the component identifie
operation raises anInvalidStateIdData exception.

get_segment_state_id

The get_segment_state_id operation returns the state identifier of the segment
specified by thesegparameter. The semantics are otherwise identical to
get_target_state_id , with respect the meaning and use of thesid_factory parameter.

get_segment_descrs

The get_segment_descrs operation returns a sequence containing all of the
segment descriptors encapsulated by the component identifier. The sequence is a
of the encapsulated sequence. The state identifier factory in thesid_factory parameter
(or the default) is used by the implementation ofget_segment_descrs to construct
state identifiers of the appropriate concrete subtype ofStateIdValue . If provided (or
default) factory cannot construct a correct state identifier of the expected type from
undecoded octet sequence encapsulated by the component identifier, the operatio
raises anInvalidStateIdData exception.

create_with_new_target

The create_with_new_target operation creates a new component identifier that is
identical to the target component identifier, except that the target facet and target
segment values are replaced with the values of thenew_target_facetand
new_target_segmentparameters, respectively.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62

ce.
ose

s

This operation is intended primarily to be used in implementing navigation
operations.

62.4.3.7 The Entity2Context Interface

The Entity2Context is an internal interface which extends theEntityContext
interface to provide the extended component with access to additional container-
provided runtime services for managing object references and advanced persisten
Object references for components deployed in a entity container API type can cho
to use the CORBA persistent state service or some user defined persistence
mechanism. TheComponentId interface (defined in Section 62.4.3.6) encapsulate
this distinction when a reference is to be used. TheEntity2Context is defined by the
following IDL.

exception BadComponentReference {
BadComponentReferenceReason reason };

exception IllegalState { };

local interface Entity2Context : EntityContext, CCM2Context {
ComponentId get_component_id ()

raises (IllegalState);
ComponentId create_component_id (

in FacetId target_facet,
in SegmentId target_segment,
in SegmentDescrSeq seq_descrs);

ComponentId create_monolithic_component_id (
in FacetId target_facet,
in StateIdValue sid);

Object create_ref_from_cid (
in CORBA::RepositoryId repid,
in ComponentId cid);

ComponentId get_cid_from_ref (
in Object ref) raises (BadComponentReference);

};

get_component_id

The get_component_id operation is used to obtain a reference to the
ComponentId interface. TheComponentId interface encapsulates a persistence
identifier which can be used to access the component’s persistence state. If this
operation is issued outside of the scope of acallback operation, theIllegalState
exception is returned.

create_component_id

The create_component_id operation creates a component identifier value,
initializing it with the values specified in the parameters. Thetarget_facet parameter
contains the facet identifier of the target facet, thetarget_segmentparameter contains
62-162 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended



62

gle

. The
nd
s a
lue

g

al

een
ons
ses

et.
the segment identifier of the target segment, and theseq_descrsparameter contains a
sequence of segment descriptors describing all of the segments that constitute the
component executor.

create_monolithic_component_id

The create_monolithic_component_id operation provides a simplified signature
for creating a component identifier value for monolithic executors, which have a sin
segment. Thetarget_facet parameter contains the facet identifier of the target facet,
and the sid parameter contains the state identifier for the single executor segment
target segment identifier encapsulated by the component identifier is set to zero, a
the sequence of segment descriptors encapsulated by the component identifier ha
single element, initialized with segment identifier value zero, and state identifier va
specified by the sid parameter.

create_ref_from_cid

The create_ref_from_cid operation is used by a component factory to create an
object reference which can be exported to clients. Thecid parameter specifies the
ComponentId value to be placed in the object reference and made available (usin
the get_component_id operation on the context) when theEntityComponent
callback operations are invoked. Therepid parameter identifies theRepositoryId
associated with the interface for which a reference is being created.

get_cid_from_ref

The get_cid_from_ref operation is used by a persistent component to retrieve the
ComponentId encapsulated in the reference (ref). The ComponentId interface
supports operations to locate the state in some persistent store. The
BadComponentReference exception can be raised if the input reference is not loc
(NON_LOCAL_REFERENCE ), not a component reference
(NON_COMPONENT_REFERENCE), or created by some other container
(WRONG_CONTAINER ).

TheComponentId structure is dependent on the home implementation and
the container, in particular, its implementation of theEntity2Context
interface. It is likely that aComponentId created by one container will not
be understandable by another, hence the possibility of the
WRONG_CONTAINER exception.

62.5 The Client Programming Model

This section describes the architecture of the component programming model as s
by the client programmer. The client programming model as defined by IDL extensi
has been described previously (Chapter 61, “Component Model”). This section focu
on the use of standard CORBA by the client who wishes to communicates with a
CORBA component implemented in aComponent Server. It enables a CORBA client,
which is not itself a CORBA component to communicate with a CORBA componen
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Client Programming Model 29 October 1999



62

r

e

rn

st a

are
only

e

el”

BA
d in
The client interacts with a CORBA component through two forms of external
interfaces - ahome interface and one or moreapplication interfaces. Home interfaces
support operations which allow the client to obtain references to an application
interface which the component implements.

From the client’s perspective, the home supports two design patterns - factories fo
creating new objects and finders for existing objects. These are distinguish by the
presence of aprimaryKey parameter in the home IDL.

• if a primaryKey is defined, the home supports both factories and finders and th
client may use both.

• if a primaryKey is not defined, the home supports only the factory design patte
and the client must create new instances.

Two forms of clients are supported by the CORBA component model:

• Component-aware clients - These clients know they are making requests again
component (as opposed to an ordinary CORBA object) and can therefore avail
themselves of unique component function, e.g. navigation among multiple
interfaces and component type factories.

• Component-unaware clients - These clients do not know that the interface they
making requests against is implemented by a CORBA component so they can
invoke functions supported by an ordinary CORBA object, e.g. looking up a nam
in a Naming or Trader service, searching for a particular type of factory using a
factory finder, etc.

62.5.1 Component-aware Clients

Clients that are defined using the IDL extensions in Chapter 61, “Component Mod
are referred to ascomponent-awareclients. Such clients can avail themselves of the
unique features of CORBA components which are not supported by ordinary COR
objects. The interaction between these clients and a CORBA component are outline
the following sections. Acomponent-awareclient interact with a component through
one or more CORBA interfaces:

• the equivalent interface implied by thecomponent IDL declaration,

• zero or more supported interface declared on thecomponentspecification.

• zero or more interfaces defined by theprovides clauses in thecomponent
definition,

• the home interface which supports factory and finder operations

Furthermore a component-aware client locates those interfaces using the
Components::HomeFinder or a naming service. The starting point for client
interactions with the component is theresolve_initial_references operation on
CORBA::ORB which provides the initial set of object references.
62-164 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Client Programming Model 29 October



62

e

on

ode

e

ons
that

ent
62.5.1.1 Initial References

Initial references for all services used by a component client are obtained using th
CORBA::ORB::resolve_initial_references operation. This operation currently
supports the following references required by a component client:

• Name Service (“NameService” )

• Transaction Current (“TransactionCurrent” )

• Security Current (“SecurityCurrent” )

• Notification Service (“NotificationService” )

• Interface Repository (“InterfaceRepository” ) for DII clients.

• Home Finder (“ComponentHomeFinder ”)

The client uses ComponentHomeFinder (defined in Section 61.8, “Home Finders,”
page 61-62) to obtain a reference to theHomeFinder interface.

62.5.1.2 Factory Design Pattern

For factory operations, the client invokes acreate operation on the home. Default
create operations are defined for each category of CORBA components for which c
can be automatically generated. These operations return an object of type
CORBA::Component which must be narrowed to the specific type. Alternatively, th
component designer may specify custom factories as part of thecomponentdefinition
to define a type-specific signature for the create operation. Because these operati
are defined in IDL, operation names can be chosen by the component designer. All
is required is that the operations return an object of the appropriate type.

A client using the factory design pattern uses theHomeFinder to locate the
component factory (CCMHome ) by interface type. TheHomeFinder returns a type-
specific factory reference which can then be used to create new instances of the
component interface. Once created, the client makes operation requests on the
reference representing the interface. This is illustrated by the following code fragm
below:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Client Programming Model 29 October 1999



62

than

to

e of
nce
:

to
// Resolve HomeFinder
org.omg.CORBA.Object objref =
orb.resolve_initial_references(“ComponentHomeFinder”);

ComponentHomeFinder ff =
ComponentHomeFinderHelper.narrow(objref);

org.omg.CORBA.Object of =
ff.find_home_by_type(AHomeHelper.id());

AHome F = AHomeHelper.narrow (of);
org.omg.Components.ComponentBase AInst = F.create();
A Areal = AHelper.narrow (AInst);

// Invoke Application Operation
answer = A.foo(input);

62.5.1.3 Finder Design Pattern

A component-aware client wishing to use an existing component instance (rather
create a new instance) uses afinder operation. Finders are supported for entity
components only. Client’s may use theHomeFinder as described in Section 61.8,
“Home Finders to locate the component’s home or they may use CORBA naming
look up a specific instance of the home by symbolic name.

A client using the finder design pattern uses theCosNaming::NamingContext
interface to lookup a symbolic name. The naming service returns an object referenc
the type previously bound. The client then makes operation requests on the refere
representing the interface. This is illustrated by the following code fragment below

org.omg.CORBA.Object objref =
orb.resolve_initial_references(“NamingService”);

NamingContext ncRef = NamingContextHelper.narrow(objref);

// Resolve the Object Reference in Naming
NameComponent nc = new NameComponent(“A“,””);
NameComponent path[] = {nc};
A aRef = AHelper.narrow(ncref.resolve(path));

// Invoke Application Operation
answer = A.foo(input);

62.5.1.4 Transactions

A component-aware client may optionally define the boundaries of the transaction
be used with CORBA components. If so, it uses the CORBA transaction service to
ensure that the active transaction is associated with subsequent operations on the
CORBA component.
62-166 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Client Programming Model 29 October



62

t’s

ge

SL

ient

r
the
The client obtains a reference toCosTransactions::Current by using the
CORBA::ORB::resolve_initial_references operation specifying anObjectID of
“TransactionCurrent” . This permits the client to define the boundaries of the
transaction, i.e. how many operations will be invoked within the scope of the clien
transaction. All operations defined forCurrent may be used as defined by the CORBA
transaction service with the following exceptions:

• TheControl object returned byget_control andsuspend may only be used with
resume .

• Operations onControl may raise theNO_IMPLEMENT exception with CORBA
components.

TheControl interface in the CORBA transaction service supports acces-
sors to theCoordinator andTerminator interfaces. TheCoordinator is
used to build object versions of XA resource managers. TheTerminator is
used to allow a transaction to be ended by someone other than the origina-
tor. Since neither function is within the scope of the demarcation subset of
CORBA transactions used with CORBA components, we allow CORBA
transaction services implementations used with CORBA components to
raise theNO_IMPLEMENT exception.

The following code fragment shows a typical usage:

org.omg.CORBA.Object objref =
orb.resolve_initial_references(“TransactionCurrent”);

Current txRef = CurrentHelper.narrow(objRef);
txRef.begin();
// Invoke Application Operation
answer = A.foo(input);
txRef.commit();

62.5.1.5 Security

A component-aware client uses the existing CORBA security mechanism to mana
security for a CORBA component. There are two scenarios possible:

• Use of SSL for establishing client credentials

CORBA security today does not define a standard API for clients to use with S
to set the credentials which will be used to authorize subsequent requests. The
credentials must be set in a way which is proprietary to the client ORB.

• Use of SECIOP by the client ORB.

In this case, CORBA security does define an API and it must be used by the cl
to establish the credentials to be used to authorize subsequent requests.

Security processing for CORBA components uses a subset of CORBA security. Fo
SECIOP, the client sets the credentials to be used with subsequent operations on
component by using operations on theSecurityLevel2::PrincipalAuthenticator .
The client obtains a reference toSecurityLevel2::Current by using the
CORBA::ORB::resolve_initial_references operation specifying anObjectID of
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Client Programming Model 29 October 1999



62

ng

ee

king

BA
ng

re
“SecurityCurrent” . This permits the client to access thePrincipalAuthenticator
interface to associate security credentials with subsequent operations. The followi
code fragment shows a typical usage:

org.omg.CORBA.Object objref =
orb.resolve_initial_references(“SecurityCurrent”);

org.omg.SecurityLevel2.PrincipalAuthenticator secRef =
org.omg.SecurityLevel2.PrincipalAuthenticatorHelper.narrow
(objRef);

secRef.authenticate(...);

// Invoke Application Operation
answer = A.foo(input);

62.5.1.6 Events

Component-aware clients wishing toemit or consumeevents use the component APIs
defined in Chapter 61, “Component Model”. Alternatively, they may use CORBA
notification directly and conform to the subset supported by CORBA components (s
Section 62.5.2.6 for details).

62.5.2 Component-unaware Clients

CORBA components can also be used by clients who are unaware that they are ma
requests against a component. Such clients can see only a single interface (the
supported interface of a component) and do not support navigation.

62.5.2.1 Initial References

Component-unaware clients obtain initial references using existing CORBA
mechanisms, viz.CORBA::ORB::resolve_initial_references . It is unlikely,
however, that this mechanism would be used to obtain a reference to theHomeFinder .

62.5.2.2 Factory Design Pattern

The factory design pattern can be used by component-unaware clients only if the
supported interface has application operations defined. This permits existing COR
objects to be easily converted to CORBA components, transparently to their existi
clients. The following techniques can be used:

• The reference to a factory finder (typically theCosLifeCycle::FactoryFinder )
can be stored in the Naming or Trader service and looked up by the client befo
creating the instance.

• A reference to the home interface can be obtained from the Naming service.

• The reference to the home interface can be obtained from a Trader service.
62-168 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Client Programming Model 29 October



62

t

nt-

t
rts at
the
he

ent
g

r

e

• After locating a factory finder, the factory can be located using the existing
find_factories operation or by using the newfind_factory operation on the
CosLifeCycle::FactoryFinder interface. Thefind_factory is defined in Section
11.3.1 on page 397.

The currentCosLifeCycle find_factoriesoperation returns a sequence
of factories to the client requiring the client to choose the one which will
create the instance. To allow the server (i.e. the FactoryFinder) to make the
selection, we also add a newfind_factory operation toCosLifeCycle
which allows the server to choose the “best” factory for the client request
based on its knowledge of workload, etc.

A FactoryFinder will return anObject . A component-unaware client may expec
to narrow this toCosLifeCycle::GenericFactory and use the generic create
operation. For this reason, we allow the default creation operation on home to
return aGenericFactory interface. This is fully described in Section 61.7,
“Homes.

• A stringified object reference can be retrieved from a file known by the compone
unaware client.

Once a reference to the home has been obtained, the client can create componen
instances and make operation requests on the component. Each component expo
least one IDL interface. A supported interface must be used by the client to invoke
component’s application operations. Provided interfaces cannot be located using t
factory design pattern.

62.5.2.3 Finder Design Pattern

A component-unaware client can use CORBA naming to locate an existingentity
component. Unlike the factory design pattern, the name to be looked up by the cli
can be either a supported interface or any of the provided interfaces. The followin
techniques can be used:

• A symbolic name associated with the component’s home can be looked up in a
Naming service to make an invocation of the finder operations.

• Alternatively, the reference to the home interface can be obtained from a Trade
service.

• the finder operation can be invoked on theentity component to return a reference to
the client.

62.5.2.4 Transactions

This is the same as component-aware clients (See Section 62.5.1.4). However, th
possibility of theNO_IMPLEMENT exception being raised for operations onControl
may have a more serious impact, since the component-unaware client may not be
expecting that to happen.

62.5.2.5 Security

This is the same as component-aware clients (See Section 62.5.1.5).
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Client Programming Model 29 October 1999



62
62.5.2.6 Events

Component-unaware clients wishing toemit or consumeevents must use the
equivalent CORBA notification interfaces and stay within the subset supported by
CORBA components (see Section 62.2.8 for details). This is illustrated by the
following code fragment:

org.omg.CORBA.Object objref =
orb.resolve_initial_references(“NotificationService”);

org.omg.CosNotififyChannelAdmin.EventChannelFactory evfRef =
org.omg.EventChannelFactoryHelper.narrow(objRef);

// Create an Event Channel
org.omg.CosNotifyChannelAdmin.EventChannel evcRef =
evfRef.create_channel(...);

// Obtain a SupplierAdmin
org.omg.CosNotifyChannelAdmin.SupplierAdmin publisher =
evcRef.new_for_suppliers (...);

// And a ConsumerProxy
org.omg.CosNotifyComm.ProxyConsumer proxy =
publisher.obtain_notification_push_comsumer (...);

// Publish a structured event
proxy.push_structured_event(...);
62-170 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Client Programming Model 29 October



Integrating with Enterprise JavaBeans 64
This chapter describes the integration of CORBA components with Enterprise
JavaBeans.

Issue – It contains all new text taken from the CCM final submission
orbos/99-07-01 with only minor editorial changes - Jeff Mischkinsky

64.0.0.1 Contents

This chapter contains the following sections.

Section Title Page

“Introduction” 64-172

“Enterprise JavaBeans Compatibility Objectives and
Requirements”

64-174

“CORBA Component views for EJBs” 64-175

“EJB views for CORBA Components” 64-183

“Comparing CCM and EJB” 64-190
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999 64-171



64

ed by

nt,
an

d
ws:

l,
be

to

ject

ct
d to
64.1 Introduction

This chapter describes how an Enterprise JavaBeans (EJB) component can be us
CORBA clients, including CORBA components. The EJB will have a CORBA
component style remote interface that is described by CORBA IDL (including the
component extensions).

This chapter also describes how a CORBA component can be used by a Java clie
including an Enterprise JavaBeans component. The CORBA component will have
EJB style remote interface that is defined following the Enterprise JavaBeans
specification.

The concepts in this chapter follow in the same prescription for interworking as lai
out in Chapter 17 of the CORBA CORE specification where it is discussed as follo

How interworking can be practically achieved is illustrated in an Interworking Mode
shown in Figure 64-1 on page 173. It shows how an object in Object System B can
mapped and represented to a client in Object System A. From now on, this will be
called a B/A mapping. For example, mapping a CORBA Component Model object
be visible to an EJB client is a CCM/EJB mapping.

On the left is a client in object system A, that wants to send a request to a target ob
in system B, on the right. We refer to the entire conceptual entity that provides the
mapping as a bridge. The goal is to map and deliver any request from the client
transparently to the target.

To do so, we first provide an object in system A called a View. The View is an obje
in system A that presents the identity and interface of the target in system B mappe
the vernacular of system A, and is described as an A View of a B target. The View
exposes an interface, called the View Interface, which is isomorphic to the target’s
64-172 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October 1999



64

tem
ent

B,
een

e
the
that
ance

,
e

t.
interface in system B. The methods of the View Interface convert requests from sys
A clients into requests on the target’s interface in system B. The View is a compon
of the bridge. A bridge may be composed of many Views.

The bridge maps interface and identify forms between different object systems.
Conceptually, the bridge holds a reference in B for the target (although this is not
physically required). The bridge must provide a point of rendezvous between A and
and may be implemented using any mechanism that permits communication betw
the two systems (IPC, RPC, network, shared memory, and so forth) sufficient to
preserve all relevant object semantics.

The client treats the View as though it is the real object in system A, and makes th
request in the vernacular request form of system A. The request is translated into
vernacular of object system B, and delivered to the target object. The net effect is
a request made on an interface in A is transparently delivered to the intended inst
in B.

The Interworking Model works in either direction. For example, if system A is EJB
and system B is CCM, then the View is called the EJB View of the CCM target. Th
EJB View presents the target’s interface to the EJB client. Similarly if system A is
CCM and system B is EJB, then the View is called the CCM View of the EJB targe
The CCM View presents the target’s interface to the CCM client.

Object System A Object System B
Bridge

Object reference in B

Object reference in A

View in A of target in B
(object in system A)

Target object
implementation in B

Figure 64-1 B/A Interworking Model
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October 1999 64-173



64

in

g

of

eir
ally

ost
ring

ar
th
64.2 Enterprise JavaBeans Compatibility Objectives and Requirements

The objective is to allow the creation of distributed applications which mix CORBA
components running in CORBA component servers with EJB components running
an EJB technology-based server. This objective allows a developer to create an
application by reusing existing components of either kind.

This requires development time and runtime translations between the CORBA
component and EJB domains provided by mediated bridges. It also requires that:

• A CORBA component view for an EJB comply with the EJB to CORBA mappin
specification. In particular, this requires that:

• An EJB definition be mapped to a CORBA component definition following the
Java Language to IDL mapping plus the extensions to that mapping that are
specified in this chapter.

• Value objects of one kind (e.g. Keys for EJB) have counterpart value objects
the other kind.

• CORBA components accessible viaCosNaming have their EJB views accessible
via JNDI , and vice versa.

• An EJB view for a CORBA component comply with the EJB specification.

An application is to be built using both EJB and CORBA components deployed in th
respective containers. At component development time, EJB components are origin
defined in Java and CORBA components are originally defined in IDL. When
applications are assembled using both, the application assembly environment will m
commonly dictate which model these components must present to developers. Du
application assembly, developers construct clients(which themselves may be
components) that make use of components in the way most natural to the particul
environment. Thus in a CORBA environment clients will expect to make use of bo
64-174 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Enterprise JavaBeans Compatibility Objectives



64

our
.

r by

in
s on

e
as a

ace
the CCM model and the EJB model as CORBA components, and in an EJB
environment, clients will expect to make use of both kinds as enterprise beans. All f
combinations of clients and components are illustrated in Figure 64-2 on page 175

In this scenario, components of one kind are made accessible to clients of anothe
way of two mechanisms: generation of bindings at development time and method
translation at runtime. Thus, the containers provide an EJB view of a CORBA
component and a CCM view of an EJB.

For application developers in a CORBA environment, EJBs specified in Java are
mapped to CORBA IDL for use by CCM clients, and at runtime client calls on CCM
methods are translated by a bridge into EJB methods. In effect, the EJBsare CORBA
components.

For application developers in an EJB environment, CORBA components specified
IDL are mapped to Java interfaces for use by EJB clients, and at runtime client call
EJB methods are translated by a bridge into CCM methods. In effect, the CORBA
componentsare EJBs.

64.3 CORBA Component views for EJBs

This kind of view allows a CORBA client -- either a CORBA component or any piec
of code that uses CORBA, and either component-aware or not -- to access an EJB
CORBA component. To do this, two things are needed:

• A mapping of the definition of the existing EJB into the definition of a CORBA
component. This mapping takes an EJB’s RMI remote interface and home interf
and produces an equivalent CORBA component definition.

EJB Container

EJB

CCM Container

CCM

Component/Container

CCM Client

Figure 64-2 Interoperation in a mixed environment

EJB Client

Contract

Bridge

CCM View

EJB Client

CCM Client

Bridge

EJB View
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29



64

BA

f

ped

tion

s.

by
n

• A translation, at run-time, of CORBA component requests performed by a COR
client into EJB requests. This translation can be performed in terms of either
straight delegation, or as an interpretation of a CORBA client request in terms o
EJB requests.

64.3.1 Mapping of EJB to Component IDL definitions

An EJB definition includes the following EJB interfaces:

• An EJB home interface. This interface extends the pre-definedEJBHome
interface.

• An EJB remote interface. This interface extends the pre-definedEJBObject
interface.

Thus, for the purposes of this chapter, at least these EJB interfaces must be map
into IDL in order to obtain a CORBA component definition of a view that a CORBA
client can use to make requests on an existing EJB. An EJB home interface defini
maps into a CORBA component’s home definition, whose implied IDL inherits from
CCMHome . This means thatEJBHome is mapped intoCCMHome . Likewise, an
EJB remote interface definition maps into a basic CORBA component definition,
whose implied IDL inherits fromCCMObject . This means thatEJBObject is
mapped intoCCMObject .

In addition,EJBHome andEJBObject make use of the following pre-defined EJB
interfaces:

• The HomeHandle interface.

• The Handle interface.

• The EJBMetaData interface.

Handles are an EJB concept that has no direct counterpart in CORBA component
Thus,HomeHandle andHandle are not directly mapped into equivalent IDL.

Notice that although Interoperable Object References (IORs) and the ORB
provided operations that manipulate them (string_to_object and
object_to_string) are conceptually similar to Handles, there are enough
differences between IORs and Handles to preclude a mapping from Han-
dles to IORs.

Meta data is available to a CORBA client but not in the same form as that provided
EJBMetaData . Given that an EJB maps into a CORBA component, whose definitio
produces the meta data that a CORBA client expects, mappingEJBMetaData into
equivalent IDL is not required.

64.3.1.1 Java Language to IDL Mapping

The reader is assumed to be familiar with the specification for the Java to IDL
mapping, whose major aspects are repeated here for convenience.
64-176 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29



64

y

or

h
he

.

e
to a
of

ct

an
ing

at

he
• A Java interface is an RMI/IDL remote interface if it at least extends
java.rmi.Remote and all of its methods throw
java.rmi.RemoteException .

• get- and set- name pattern names are translated to IDL attributes.

• IDL generated methods have onlyin parameters (but these can include object
references to remote objects, allowing reference semantics normally obtained b
using parameters of typejava.rmi.Remote ).

• Java objects that inherit fromjava.io.Serializable or
java.io.Externalizable are mapped to a CORBA valuetype. All object
types appearing in RMI remotable interfaces must inherit from these interfaces
from java.rmi.Remote . EJB Key andHandle types must inherit from
java.io.Serializable .

• However, the mapping does NOT require that methods on such objects or
constructors be mapped to corresponding IDL operations onvaluetypes and
init specifications. The developer is expected to select those methods whic
should be mapped to IDL operations, and the method signatures must meet t
requirements of the mapping.

• Objects which inherit fromjava.io.Externalizable or which implement
writeObject are understood to perform custom marshalling and the
corresponding custom marshallers must be created for the CORBA valuetype

• Arrays are mapped to “boxed” CORBAvaluetypescontaining sequences because
Java arrays are dynamic.

• Java exceptions are subclassable; IDL exceptions are not. Consequently a nam
pattern is used to map to IDL exceptions. The Java exception object is mapped
CORBA valuetype. The CORBA valuetype has an inheritance hierarchy like that
the corresponding Java exception object.

• Some additional programming is required to define Java classes (including EJB
implementations) that are accessible via RMI/IIOP. This is to account for the fa
that IIOP does not support distributed garbage collection.

64.3.1.2 EJB to IDL mapping

In general, the CORBA component that results from mapping an EJB will support
interface that is the Java to IDL map of the Remote interface of the EJB. The mapp
rules are as follows.

Mapping the Remote Interface
• An EJB’s remote interface maps to a definition of a basic CORBA component th

supports the default interface. The form of the CORBA component definition is
component XXX supports XXXDefault .

• An EJB’s remote interface declaration is used to create asupports declaration and
the corresponding IDL for the primary interface of the CORBA component that t
EJB maps to. The identifier of this supported interface on the component is
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29



64

d

y

ed

he

a
B

s,

n.
pes

e
ect

he
and
XXXDefault , whereXXX is the name of the EJB remote interface. This generate
interface is referred to as theDefault interface of the component that the given EJB
maps to.

• Each operation on the Remote interface is mapped under Java to IDL to an
equivalent operation on theXXXDefault interface. Note that pairs ofget XXX and
set XXX methods in the EJB remote interface will be mapped to IDL attributes.
Any exceptions thrown by aget XXX method is mapped to an exception in the
getRaises clause of the mapped IDL attribute. Likewise, any exception thrown b
a set XXX method is mapped to an exception in thesetRaises clause of the
mapped IDL attribute. The actual definitions of the exceptions thrown are mapp
following the Java to IDL rules.

Mapping the Home Interface
• An EJB’s home interface maps to a definition of a CORBA component home. T

form of the CORBA component home definition ishome YYY manages XXX,
whereYYY is the name of the EJB home interface. Mapping an EJB home into
CORBA component home requires the existence of meta data that links the EJ
home to the EJB that it hosts. These meta data are obtained from the EJB’s
deployment descriptor. ThusXXX is the name of the EJB that the EJB home host
as it is given in the EJB deployment descriptor.

• The EJB home methods calledcreate are mapped into homefactory declarations
in IDL. The actual names of each of thefactory operations are produced following
the rules for mapping Java names to IDL names in the Java to IDL specificatio
The Java parameters of the operation are mapped to their corresponding IDL ty
and names as defined by Java to IDL.

• An EJB Primary Key class is mapped to a CORBAvaluetype using the mapping
rules in Java to IDL. Thisvaluetype will be declared in the IDL for the CORBA
component home as the primary keyvaluetype for the component. The key
valuetype will inherit from Components::PrimaryKeyBase . If an EJB home
uses a primary key, then the form of the CORBA component home definition is
home YYY manages XXX primaryKey KKK , whereKKK is the name of the
valuetype that the EJB primary key class maps to.

• The EJB home operation namedfindByPrimaryKey is mapped into the
find_by_primary_key( in <key-type> primaryKey ) operation on the
component’s implicit home interface.

• Finder and Creator EJB operations that return an RMI style object reference ar
mapped into Component IDL operations which return a CORBA Component Obj
Reference(Components::CCMObject) .

• EJB home operations prefixedfind whose return type is the type of the EJB
hosted by the EJB home are mapped into component homefinder operations in
IDL. The actual names of each of thefinder operations are produced following the
rules for mapping Java names to IDL names in the Java to IDL specification. T
Java parameters of the operation are mapped to their corresponding IDL types
names as defined by Java to IDL.
64-178 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29



64

ype

a
ent

e to

and
• Finder EJB operations that return a Java Enumeration are mapped into CORBA
component operations which return an IDL Object Reference to an interface of t
Enumeration . This interface is declared as:

module Components {

interface Enumeration {
boolean has_more_elements();
CCMObject next_element();

};
};

The Enumeration interface is just the RMI/IIOP image of the Java Enumer-
ation class as defined in the JDK 1.1.6+. Sun has said that they intend to
replace this with the JDK 1.2 (Java 2.0) Collections in a future version of
the EJB specification. Subsequent to such a specification being issued, the
CORBA components specification will be updated to correspond.

• In order for an EJB home definition that definesfindByPrimaryKey to be
successfully mapped onto a CORBA component home definition, it must define
create method that takes the primary key of the hosted EJB as its sole argum
and returns an instance of the hosted EJB. This create method is mapped tocreate(
in <key-type> key ) on the CORBA component implicit home interface.

64.3.2 Translation of CORBA Component requests into EJB requests

A CORBA client that uses a CORBA component view on an EJB expects to be abl
perform CORBA component requests on such a view. These requests need to be
translated into EJB requests at run-time. This translation can be performed at the
client-side, server-side, or a combination of the two. Table 64-1 lists the CORBA
component operations that a CORBA client can perform requests on by interface,
it lists the corresponding EJB methods that these requests translate into, also by
interface.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29



64

B
y are
Notice that a CORBA client may use operations on object references such as
string_to_object andobject_to_string that may be considered as analogous to EJ
Handle methods. However, these operations are not seen by the bridge since the

Table 64-1Translation of CCM operation requests into EJB method requests

CCM Interface
Operation called by
client

EJB
interface

Method invoked by
bridge

CCMHome ComponentDef
get_component_def ();

void remove_component (
in CCMObject comp )
raises (CCMException);

EJBHome EJBMetaData
getEJBMetaData ()
throws RemoteException;

void remove ( Handle handle
) throws RemoveException,
RemoteException;

<home-name>Explicit

<home-name>Implicit

<name> createXXX (
<arg-list> )
raises (DuplicateKeyValue,
InvalidKey);

<name> findXXX (
<arg-list> )
raises (<exceptions>);

<name> create (
in <key-type> key )
raises (DuplicateKeyValue,
InvalidKey);

<name>
find_by_primary_key (
in <key-type> key )
raises (UnknownKeyValue,
InvalidKey);

void remove (
in <key-type> key )
raises (UnknownKeyValue,
InvalidKey);

<key_type> get_primary_key
(in <name> comp );

<home-name>

EJBHome

EJBObject

<name> create (
<arg-list> )
throws CreateException,
DuplicateKeyException;

<name> findXXX (
<arg-list> )
throws <exceptions>;

<name> create (
Object primaryKey )
throws CreateException,
DuplicateKeyException;

<name> findByPrimaryKey (
<key-type> key )
throws FinderException,
ObjectNotFoundException;

void remove (
Object primaryKey )
throws RemoveException,
RemoteException;

Object getPrimaryKey ()
throws RemoteException;
64-180 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29



64

the
performed on the ORB and thus no translation for these operations on the part of
bridge is required.

The following restrictions apply:

• create (in <key_type> key) on the component implicit home interface can only
be validly invoked by a CORBA client if the underlying EJB home declares the
findByPrimaryKey operation.

• remove (in < key_type> key) on the component implicit home interface can only
be validly invoked by a CORBA client if the underlying EJB home declares the
findByPrimaryKey operation.

• get_primary_key on the component implicit home and onCCMObject can only
be validly invoked by a CORBA client if the underlying EJB home declares the
findByPrimaryKey operation.

• configuration_complete on CCMObject is not translated by the bridge, a
request on this operation by a CORBA client raises theNO_IMPLEMENT
exception.

CCMObject ComponentDef
get_component_def ();

CCMHome get_home ();

PrimaryKeyBase
get_primary_key ();

void remove();

void
configuration_complete ()
raises (InvalidConfiguration);

EJBHome

EJBObject

EJBMetaData
getEJBMetaData ()
throws RemoteException;

EJBHome getEJBHome ()
throws RemoteException;

Object getPrimaryKey ()
throws RemoteException;

void remove ()
throws RemoveException,
RemoteException;

Translation performed by
bridge is to raise the
NO_IMPLEMENT exception

<name> <res-type> <operation> (
<arg-list> )
raises (<exceptions>);

<res-type> getXXX ()
throws <exceptions>;

void setXXX ( <arg-list> )
throws <exceptions>;

<name> <res-type> <operation> (
<arg-list> )
throws <exceptions>;

<res-type> getXXX ()
throws <exceptions>;

void setXXX ( <arg-list> )
throws <exceptions>;

Table 64-1Translation of CCM operation requests into EJB method requests

CCM Interface
Operation called by
client

EJB
interface

Method invoked by
bridge
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29



64

DL.
ause
64.3.3 CORBA Component view Example

In this section we show a simple EJB together with the corresponding Component I
Note that the EJB deployment metadata is needed to generate the IDL; this is bec
the metadata binds together the Remote interface and the Home interface.

Below are the remote interfaces of the EJB.

package example;

class CustInfo implements java.io.Serializable
{

public int custNo;
public String custName;
public String custAddr;

};

class CustBal implements java.io.Serializable
{

public int custNo;
public float acctBal;

};

interface CustomerInquiry extends javax.ejb.EJBObject
{

CustInfo getCustInfo(int iCustNo)
throws java.rmi.RemoteException;

CustBal getCustBal(int iCustNo)
throws java.rmi.RemoteException;

};

interface CustomerInquiryHome extends javax.ejb.EJBHome
{

CustomerInquiry create()
throws java.rmi.RemoteException;

};

Below are the contents of the descriptor classes as they might be expressed in an
equivalent XML document.

<ejb-jar>
<session>

<description>
</description>
<ejb-name> CustomerInquiry </ejb-name>
<home> example.CustomerInquiryHome </home>
<remote> example.CustomerInquiry </remote>
<ejb-class> example.CustomerInquiryBean </ejb-class>
<session-type> Stateful </session-type>

</session>
</ejb-jar>
64-182 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29



64

he

de

B

s the

BA

s

d to
nt
The EJB is a session bean, and in this case, itscreate operation requires no
parameters. The two operations take a key value and return values to the caller. T
EJB implementation will useJDBC to retrieve the information to be returned by the
operations on theCustomerInquiry EJB.

The serializable value classes are translated by RMI/IIOP into CORBA concrete
valuetypesas follows:

valuetype CustInfo {
public long custNo;
public ::CORBA::WStringValue custName;
public ::CORBA::WStringValue custAddr;

};

valuetype CustBal {
public long custNo;
public float custBal;

};

The information in the deployment descriptor and the home and remote interface
declarations is introspected and used to generate the following IDL.

interface CustomerInquiryDefault {
CustInfo getCustInfo(in long iCustNo);
CustBal getCustBal(in long iCustNo);

};

component CustomerInquiry supports CustomerInquiryDefault {};

home CustomerInquiryHome manages CustomerInquiry {
factory create();

};

64.4 EJB views for CORBA Components

This kind of view allows a Java client -- either an EJB or any other piece of Java co
-- to access a CORBA component as an EJB. To do this, two things are needed:

• A mapping of the Component IDL definition of a CORBA component into an EJ
definition. This mapping only considers that portion of the Component IDL
language that has a counterpart in the EJB specification language and it ignore
rest.

• A translation, at run-time, of EJB requests performed by a Java client into COR
component requests.

64.4.1 Mapping of Component IDL to Enterprise JavaBeans specification

The portion of the Component extensions to the IDL language that can be mappe
the EJB specification language is denoted by the following subset of the Compone
extensions to IDL grammar.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 EJB views for CORBA Components 29



64
<component_dcl> ::= <component_header> “{” <component_body> “}”

<component_header> ::= “component” <identifier> [
<supported_interface_spec> ]

<supported_interface_spec> ::= “supports” <scoped_name> { “,”
<scoped_name> }*

<component_body> ::= <component_export>*

<component_export> ::= <attr_dcl> “;”

<attr_dcl> ::= <readonly_attr_spec> | <attr_spec>

<readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec>
<readonly_attr_declarator>

<readonly_attr_declarator> ::= <simple_declarator> [ <raises_expr> ] |
<simple_declarator> { “,” <simple_declarator> }*

<attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>

<attr_declarator> ::= <simple_declarator> <attr_raises_expr> |
<simple_declarator> { “,” <simple_declarator> }*

<attr_raises_expr> ::= <get_excep_expr> [ <set_excep_expr> ] |
<set_excep_expr>

<get_excep_expr> ::= “getRaises” <exception_list>

<set_excep_expr> ::= “setRaises” <exception_list>

<exception_list> ::= “(” <scoped_name> { “,” <scoped_name> } * “)”

<home_dcl> ::= <home_header> <home_body>

<home_header> ::= “home” <identifier> “manages” <scoped_name> [
<primary_key_spec> ]

<primary_key_spec> ::= “primaryKey” <scoped_name>

<home_body> ::= “{” <home_export>* “}”

<home_export> ::= <factory_dcl> “;” | <finder_dcl> “;”

<factory_dcl> ::= “factory” <identifier> “(“ [ <init_param_decls> ] “)” [
<raises_expr> ]

<finder_dcl> ::= “finder” <identifier> “(“ [ <init_param_decls> ] “)” [
<raises_expr> ]
64-184 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 EJB views for CORBA Components 29



64

ard

ent

e

BA

of

B

e
to

ell
The rules for mapping a CORBA component definition into an EJB definition are
defined in the following sections. Where appropriate, these rules rely on the stand
IDL to Java mapping.

Mapping the component definition
• A basic CORBA component definition is mapped to an EJB remote interface

definition.

• The name of the EJB remote interface is the name of the basic CORBA compon
in the Component IDL definition.

• For each operation defined in each interface that the CORBA component
supports , a method definition will be included in the EJB remote interface that th
CORBA component maps to. That is, the EJB to which the basic CORBA
component maps defines all the supported operations defined by the basic COR
component.

• The signatures of the CORBA component operations are mapped to signatures
EJB remote interface methods following the IDL to Java mapping rules.

• For each attributeXXX that the CORBA component defines, the corresponding EJ
remote interface defines a pair ofget XXX andset XXX methods, whereXXX is
the name of the given attribute. If the attribute definition includes agetRaises
exception clause, then the correspondingget XXX method definition in the EJB
remote interface will include a throws exception clause. Likewise, if the attribute
definition includes asetRaises exception clause, then the correspondingset XXX
method definition in the EJB remote interface will include a throws exception
clause.

• Exceptions raised by CORBA component definition operations and attributes ar
mapped to exceptions thrown by EJB method definitions using the standard IDL
Java mapping rules.

Mapping the Component Home definition
• A CORBA component’s home definition is mapped to an EJB home’s remote

interface definition. That is a definition of the formhome XXX manages YYY [
primaryKey KKK ] is mapped to an EJB home interface with nameXXX.

• The methods defined by the EJB home remote interface include the implicit as w
as the explicit methods of the CORBA component’s home definition.

• Implicit CORBA component home operations are mapped to EJB home remote
interface methods as follows:

• <component_type> create (in <key_type> key) raises
(Components::DuplicateKeyValue,
Components::InvalidKey); maps to<component_type>
create (<key_type> key) throws
DuplicateKeyException, CreateException .
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 EJB views for CORBA Components 29



64

B

e
. In

o

• <component_type> find_by_primary_key (in <key_type> key)
raises (Components::UnknownKeyValue,
Components::InvalidKey); maps to<component_type>
findByPrimaryKey( <key_type> key ) throws
ObjectNotFoundException, FinderException .

• void remove (in <key_type> key) raises
(Components::UnknownKeyValue, Components::InvalidKey);
maps to the remove by key method defined inEJBHome .

• <key_type> get_primary_key (in <component_type> comp);
has no counterpart in an EJB home definition. Given thatEJBObject already
definesgetPrimaryKey , it is not necessary to mapget_primary_key on
the implicit home to an EJB home operation.

• Explicit CORBA component basic home operations are mapped to EJB home
remote interface methods as follows:

• A factory operation maps to an overloadedcreate method with the
corresponding arguments and exceptions.

• A finder operations maps to afind<identifier> method with the corresponding
arguments and exceptions, where<identifier> is the name of thefinder
operation.

• The signatures offactory andfinder operations are mapped to signatures of EJ
home interface methods following the IDL to Java mapping rules.

• A valuetype that is used to define the primary key of a CORBA component hom
is mapped to a Java class under the rules of the standard IDL to Java mapping
addition, such a Java class is defined to extendjava.io.Serializable .

64.4.2 Translation of EJB requests into CORBA Component requests

A Java client that uses an EJB view on a CORBA component expects to be able t
perform EJB requests on such a view. These requests need to be translated into
CORBA component requests at run-time. This translation can be performed at the
client-side, the server-side, or a combination of the two. Table 64-2 lists the EJB
64-186 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 EJB views for CORBA Components 29



64

so by

methods that a Java client can perform requests on by interface, and it lists the
corresponding CORBA component operations that these requests translate into, al
interface.

Table 64-2Translation of EJB method requests into CCM operation requests

EJB Interface Method called by client
CCM
interface

Operation called by
bridge

EJBHome EJBMetaData getEJBMetadata ()
throws RemoteException;

void remove (Handle handle)
throws RemoveException, RemoteException;

void remove (
Object primaryKey )
throws RemoveException, RemoteException;

HomeHandle getHomeHandle ()
throws RemoteException;

CCMHome

<home-
name>Implicit

Translation performed by
bridge does not call a
CCM standard operation

void remove_component (
in CCMObject comp )
raises (CCMException);

void remove (
in <key-type> key )
raises
(UnknownKeyValue,
InvalidKey);

Translation performed by
bridge does not call a
CCM standard operation

<home-name> <name> create (
<arg-list> )
throws CreateException,
DuplicateKeyException;

<name> findByXXX (
<arg-list> )
throws <exceptions>;

<name>
findByPrimaryKey (
<key-type> key )
throws FinderException,
ObjectNotFoundException;

<home-
name>Explicit

<home-
name>Implicit

<name> createXXX (
<arg-list> )
raises
(DuplicateKeyValue,
InvalidKey);

<name> findXXX (
<arg-list> )
raises (<exceptions>);

<name>
find_by_primary_key (
in <key-type> key )
raises
(UnknownKeyValue,
InvalidKey);

EJBObject EJBHome getEJBHome ()
throws RemoteException;

Object getPrimaryKey ()
throws RemoteException;

void remove ()
throws RemoveException, RemoteException;

boolean isIdentical ( EJBObject object )
throws RemoteException;

Handle getHandle ()
throws RemoteException;

CCMObject

CORBA::Object

CCMHome
get_CCM_home ();

PrimaryKeyBase
get_primary_key ();

void remove ();

boolean is_equivalent ();

Translation performed by
bridge does not call a
CCM standard operation
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 EJB views for CORBA Components 29



64

nent

to
ace
In addition, the EJB programming model allows a Java client to:

• Locate EJB homes and distinguished EJB objects viaJNDI

• Demarcate transactions via aUserTransaction object, after locating this object via
JNDI

These requests are translated into similar requests provided by the CORBA compo
programming model, as follows:

• Location of home and EJB objects requires the definition of a mapping of JNDI
the COSNaming service. It also requires the mapping of a COSNaming name sp
into a JNDI name space.

• Transaction demarcation requires the definition of a mapping ofJTA to the
CORBA transaction service. It also requires that aJNDI name space location be
populated with an object that implementsUserTransaction and that maps to the
corresponding CORBA transaction service object.

<name> <res-type> <operation> (
<arg-list> )
throws <exceptions>;

<res-type> getXXX ()
throws <exceptions>;

void setXXX ( <arg-list> )
throws <exceptions>;

<name> <res-type> <operation> (
<arg-list> )
raises (<exceptions>);

<res-type> get_XXX ()
raises (<exceptions>);

<res-type> set_XXX ()
raises (<exceptions>);

EJBMetadata EJBHome getEJBHome ()
throws RemoteException;

Class getHomeInterfaceClass ()
throws RemoteException;

Class getRemoteInterfaceClass ()
throws RemoteException;

Class getPrimaryKeyClass ()
throws RemoteException;

boolean isSession ()
throws RemoteException;

boolean isStatelessSession()
throws RemoteException

Translation performed by
bridge on all these
invocations does not call
a CCM standard operation

Table 64-2Translation of EJB method requests into CCM operation requests

EJB Interface Method called by client
CCM
interface

Operation called by
bridge
64-188 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 EJB views for CORBA Components 29



64

ng.
64.4.3 Example

We show a simple CORBA component definition and its corresponding EJB mappi
The basic CORBA componentAccount is defined in terms of a regular IDL interface
AccountOps . The homeAccountHome is defined to manageAccount and to use a
primary key.

interface AccountOps {
void debit( in double amt ) raises (NotEnoughFunds);
void credit( in double amt );

};

component Account supports AccountOps {
readonly attribute double balance;

};

valuetype AccountKey {
public long acctNo;

};

home AccountHome manages Account primaryKey AccountKey {
finder largeAccount( double threshold );

};

The following EJB definition is derived from the definition ofAccount and its home.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 EJB views for CORBA Components 29



64

a
ws:

ding

er-
public interface Account extends javax.ejb.EJBObject {
public void debit( double amount )

throws NotEnoughFunds, java.rmi.RemoteException;
public void credit( double amount ) throws java.rmi.RemoteException;
public double getBalance() throws java.rmi.RemoteException;

};

public class AccountKey implements java.io.Serializable {
public long acctNo;
public AccountKey( long k ) { acctNo = k; }

};

public interface AccountHome extends javax.ejb.EJBHome {
public Account create( AccountKey key )

throws DuplicateKeyException, CreateException,
java.rmi.RemoteException;

public Account findByPrimaryKey( Account key )
throws ObjectNotFoundException, FinderException,

java.rmi.RemoteException;
public Account findByLargeAccount( double threshold )

throws java.rmi.RemoteException;
};

64.5 Comparing CCM and EJB

The following series of tables summarized the component APIs for Enterprise Jav
Beans (EJB 1.1) and Basic CORBA Components.The tables are organized as follo

1. The home interfaces that define the remote access protocols for creating or fin
EJBs or CORBA components ( Section 64.5.1).

2. The component interfaces that define the remote access protocols for invoking
business operations on EJBs or CORBA components ( Section 64.5.2).

3. The callback interfaces that the CORBA component or EJB programmer must
implement ( Section 64.5.3).

4. The Context interfaces that provide the component developer access to contain
provided services ( Section 64.5.4).

5. The Transaction interface that supports bean-managed or component-managed
transactions ( Section 64.5.5).

6. The metadata interfaces that support access to component metadata ( Section
64.5.6).
64-190 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Comparing CCM and EJB 29 October 1999



64

and

lass

and
and

ided

n

EJB
n

64.5.1 The Home Interfaces

Table 64-3 compares the home interfaces and operations which make up the EJB
CORBA component models. In EJB, theEJBHome object is created by the EJB
container provider’s tools and provides implementations for methods of the base c
and delegates factory or finder methods on a derived class (<name>Home ) to
similarly named methods on the bean itself (<name>Bean ).

In the CORBA component model, homes are defined as righteous CORBA objects
the associated factory or finder methods are generated as operations on the home
the component developer implements these directly so the container need not prov
delegation support. The component developer may not even need to provide
implementations for the default factory and finder operations if sufficient informatio
is provided with the component’s definition.

For CORBA clients to use EJB implementations, the container provider must
externalizeEJBHome to the CORBA client as a CORBA component home. This is
accomplished by extensions to the Java to IDL mapping defined in Chapter 8. For
clients to access CORBA component homes, the container provider must create a
EJBHome object that serves as a bridge between equivalent operations onEJBHome
and the CORBA component home. This bridge is also described in Chapter 8.

.

Table 64-3Comparing the home interfaces of EJB and CORBA components

Construct EJB Form CCM Form Notes

Module javax.ejb Components

Interface EJBHome extends java.rmi.Remote CCMHome

Operation public EJBMetaData get EJBMetaData ()
throws java.rmi.RemoteException

ComponentDef get_component_def (); CORBA IR supports
more metadata

public HomeHandle getHomeHandle()
throws java.rmi.RemoteException

CORBA::object_to_string
provides same function

public void remove (
HomeHandle handle)
throws java.rmi.RemoteException,
RemoveException

void remove_component (
in CCMObject component)
raises (CCMException);

CORBA references
instead of handles
REMOVE_ERROR
is minor code

public void remove (
java.lang.Object primaryKey)
throws java.rmi.RemoteException,
RemoveException

similar operation is
defined on
<home>Implicit for
Homes with primaryKey

Interface HomeHandle extends java.io.Serializable CORBA reference used
for handle

public EJBHome getEJBHome()
throws java.rmi.RemoteException

CORBA::string_to_object

Module <session-name> <session-home>

Interface <session>home extends EJBHome <session-home>::CCMHome,
<session-home>Implicit,
<session-home>Explicit
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Comparing CCM and EJB 29 October 1999



64

EJB

lass

BA
orted
need

EJB
64.5.2 The Component Interfaces

Table 64-4 compares the component interfaces and operations which make up the
and CORBA component models. In EJB, theEJBObject object is created by the EJB
container provider’s tools and provides implementations for methods of the base c
and delegates business methods to a derived class (<name>Remote ).

In the basic CORBA component model, components are defined as righteous COR
objects and the associated business methods are defined as operations on a supp
interface and the component developer implements these directly so the container
not provided delegation support.

For CORBA clients to use EJB implementations, the container provider must
externalizeEJBObject to the CORBA client as a CORBA component. This is
accomplished by extensions to the Java to IDL mapping defined in Chapter 8. Foe
clients to access CORBA components, the container provider must create an

Operation public <session-name>Remote create (
<arg-type> <arg-list>)
throws CreateException

<session-component> create (); Generated operation
Inherited from
<home>Implicit

Module <entity-name> <entity-home>

Interface <entity>home extends EJBHome <entity-home>::CCMHome,
<entity-home>Implicit,
<entity-home>Explicit

Operation public <entity-name>Remote create (
<arg-type> <arg-list>)
throws CreateException,
DuplicateKeyException

<entity-component> create ()
raises (InvalidKey,
DuplicateKey);

Generated operation
Inherited from
<home>Implicit

public <entity-name>Remote
findByPrimaryKey (
<arg-type> <arg-list>)
throws FinderException,
ObjectNotFoundException

<entity-component> find (
in <key-type> primaryKey)
raises (InvalidKey,
UnknownKeyType);

Generated operation
Inherited from
<home>Implicit

public <entity-name>Remote
find<method> (
<arg-type> <arg-list>)
throws FinderException,
ObjectNotFoundException

<entity-component> <find-method> (
in <arg-type> <arg-list>)
raises (<exceptions>);

Specified operation
Inherited from
<home>Explicit

Table 64-3Comparing the home interfaces of EJB and CORBA components

Construct EJB Form CCM Form Notes
64-192 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Comparing CCM and EJB 29 October 1999



64
EJBObject implementation that serves as a bridge between business methods on
EJBObject and the basic CORBA component’s supported interface. This bridge is
also described in Chapter 8.

Table 64-4Comparing the remote interfaces of EJB and CORBA components

Construct EJB Form CCM Form Notes

Module javax.ejb Components

Interface EJBObject extends java.rmi.Remote CCMObject

Operation public EJBHome getEJBHome()
throws java.rmi.RemoteException

CCMHome get_home();

public java.lang.Object primaryKey
getPrimaryKey()
throws java.rmi.RemoteException

operation defined on <entity>home

public void remove (
Handle handle)
throws java.rmi.RemoteException,
RemoveException

void remove()
raises (CCMException);

CORBA references instead of
handles; REMOVE_ERROR
is minor code

public Handle getHandle()
throws java.rmi.RemoteException

CORBA::object_to_string

public boolean isIdentical (
EJBObject obj)
throws java.rmi.RemoteException

boolean is_equivalent(
in Object obj);

Interface Handle extends java.io.Serializable CORBA reference used for handle

public EJBObject getEJBObject()
throws java.rmi.RemoteException

CORBA::string_to_object

Module <session-bean> <session-component>

Interface <session>Remote extends EJBObject <session>::CCMObject

<res-type> <operation> (
<arg-type> <arg-list>)
throws <exceptions>

<res-type> <operation> (
in <arg-type> <arg-list)
raises (<exceptions>);

business methods

Module <entity-bean> <entity-component>

Interface <entity>Remote extends EJBObject <entity>::CCMObject

<res-type> <operation> (
<arg-type> <arg-list>)
throws <exceptions>

<res-type> <operation> (
in <arg-type> <arg-list)
raises (<exceptions>);

business methods
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Comparing CCM and EJB 29 October 1999



64

BA
a
CM
64.5.3 The Callback Interfaces

Table 64-5summarizes the callback interfaces the EJB programmer or basic COR
component programmer must implement. The EJB interfaces are specified as Jav
interfaces in accordance with the EJB 1.1 specification dated June 28, 1999. The C
interfaces are specified in IDL as defined in this specification.

Table 64-5Comparing EJB and CCM Callback Interfaces

Construct EJB Form CCM Form Notes

Module javax.ejb Components::Basic

Interface EnterpriseBean EnterpriseComponent

Interface SessionBean extends EnterpriseBean TransientComponent::EnterpriseCompone
nt

Operation public void setSessionContext (
SessionContext ctx)
throws EJBException

void set_transient_context (
in TransientContext ctx)
raises (CCMException);

public void ejbActivate ()
throws EJBException

void ccm_activate ()
raises (CCMException);

public void ejbPassivate ()
throws EJBException

void ccm_passivate ()
raises (CCMException);

public void ejbRemove ()
throws EJBException

void ccm_remove ()
raises (CCMException);

Interface <name>Bean extends SessionBean Home operations are
not delegated in CCM.

Operation public void ejbCreate (
<Arg-type> <arg-list>)
throws CreateException,
EJBException)

Implemented on home,
CREATE_ERROR
is minor code

Interface SessionSynchronization TransientSynchronization

Operation public void afterBegin ()
throws EJBException

void after_begin ()
raises (CCMException);

public void beforeCompletion()
throws EJBException

void before_completion ()
raises (CCMException);

public void afterCompletion (
boolean committed)
throws EJBException

void after_completion (
in boolean committed)
raises (CCMException);

Interface EntityBean extends EnterpriseBean PersistentComponent::EnterpriseCompone
nt

Operation public void setEntityContext (
EntityContext ctx)
throws EJBException

void set_persistent_context (
in PersistentContext ctx)
raises CCMException;

public void unsetEntityContext ()
throws EJBException

void unset_persistent_context ()
raises (CCMException);

public void ejbActivate ()
throws EJBException

void ccm_activate ()
raises (CCMException);
64-194 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Comparing CCM and EJB 29 October 1999



64

hen
64.5.4 The Context Interfaces

The context interfaces summarized in Table 64-6 provide accessors to services
provided by the component container. The are used by the component developer w
these service are required.

public void ejbLoad ()
throws EJBException

void ccm_load ()
raises (CCMException);

public void ejbStore ()
throws EJBException

void ccm_store()
raises (CCMException);

public void ejbPassivate ()
throws EJBException

void ccm_passivate ()
raises (CCMException);

public void ejbRemove ()
throws RemoveException,
EJBException

void ccm_remove ()
raises (CCMException);

REMOVE_ERROR
is a minor code

Interface <name>Bean extends EntityBean Home operations are
not delegated in CCM.

Operation public <key-type> ejbcreate (
<Arg-type> <arg-list>)
throws CreateException,
DuplicateKeyException,
EJBException

Implemented on home,
CREATE_ERROR
and DUPLICATE_KEY
are minor codes

public void ejbPostCreate ()
throws CreateException,
DuplicateKeyException,
EJBException

post_create not
required in CCM due
to CORBA identity
model

public <key-type> findByPrimaryKey (
<Arg-type> <arg-list>)
throws FinderException,
NoSuchEntityException,
ObjectNotFoundException,
EJBException

Implemented on home,
FIND_ERROR,
NO_SUCH_ENTITY and
OBJECT_NOT_FOUND
are minor codes

public <key-type> find<method> (
<Arg-type> <arg-list>)
throws FinderException,
NoSuchEntityException,
ObjectNotFoundException,
EJBException

Implemented on home,
FIND_ERROR,
NO_SUCH_ENTITY and
OBJECT_NOT_FOUND
are minor codes

Table 64-6Comparing the EJB and CCM Context Interfaces

Construct EJB Form CCM Form Notes

Module javax.ejb Components::Basic

Interface EJBContext CCMContext

Operation public java.security.Principal getCallerPrincipal() Principal get_caller_principal();

Table 64-5Comparing EJB and CCM Callback Interfaces

Construct EJB Form CCM Form Notes
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Comparing CCM and EJB 29 October 1999



64

n in

ents
tion

ons
64.5.5 The Transaction Interfaces

Table 64-7 summarizes the transaction interfaces provided for bean-managed or
component-managed transactions. Both EJB and CCM provide an accessor functio
the context to obtain a reference to a transaction service. The transaction service
supported for EJB is JTA, a subset of JTS which is equivalent to the CORBA
transaction service (OTS). The transaction service supported for CORBA compon
is implemented by the component container as a wrapper over the CORBA transac
service.Components::Transaction is functionally equivalent to JTA (which is not a
distinct compliance level for OTS) with the addition ofsuspend and resume .

public EJBHome getEJBHome() CCMHome get_CCM_home();

public boolean getRollbackOnly()
throws java.lang.IllegalState

boolean get_rollback_only()
raises (IllegalState);

public javax.transaction.UserTransaction
getUserTransaction ()
throws java.lang.IllegalState

Transaction::UserTransaction
get_user_transaction ()
raises (IllegalState);

public boolean isCallerInRole (
java.lang.String (roleName)

boolean is_caller_in_role(
in string role);

public void setRollbackOnly()
throws java.lang.IllegalState

void set_rollback_only()
raises IllegalState;

Interface SessionContext extends EJBContext TransientContext::CCMContext

Operation public EJBObject getEJBObject()
throws java.lang.IllegalState

CORBA::Object get_CCM_Object()
raises (IllegalState);

this will be the
component reference

Interface EntityContext extends EJBContext PersistentContext::CCMContext

Operation public EJBObject getEJBObject()
throws java.lang.IllegalState

CORBA::Object get_CCM_Object()
raises (IllegalState);

this will be the
component reference

public java.lang.Object getPrimaryKey ()
throws java.lang.IllegalState

PrimaryKeyBase get_primary_key()
raises (IllegalState);

Table 64-7Comparing the EJB Transaction service (JTA) with CORBA component transacti

Construct EJB Form CCM Form Notes

Module javax.transaction Components::Transaction

Interface UserTransaction UserTransaction

Operation public void begin()
throws NotSupported,
SystemException

void begin ()
raises (NotSupported,
SystemError);

SystemError to avoid confusion
with System Exception

Table 64-6Comparing the EJB and CCM Context Interfaces

Construct EJB Form CCM Form Notes
64-196 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Comparing CCM and EJB 29 October 1999



64

a-

n of
ory
A
for

ons
64.5.6 The Metadata Interfaces

The EJB component model supports a limited set of metadata through the
EJBMetaData interface. The CORBA component model extends the CORBA
interface repository to add component-unique metadata for components. This met
data is in addition to the metadata currently provided by the IR. When EJB clients
access CORBA components, the container provider must provide an implementatio
EJBMetaData which supports the necessary metadata from the Interface Reposit
or the component descriptors. This is described further in Chapter 8. When CORB
clients access EJB implementations, the Interface Repository is already populated
the EJBHome andEJBObject interfaces, enabling client requests to be satisfied.
Table 64-8 compares the metadata supported by EJB and CORBA Components.

public void commit()
throws RollbackException,
HeuristicMixedException,
HeuristicRollbackException,
java.security.SecurityException,
java.lang.IllegalStateException,
SystemException

void commit()
raises (Rollback,
HeuristicMixed,
HeuristicRollback,
Security,
IllegalState,
SystemError

map CORBA system exceptions
TRANSACTION_ROLLED_BACK
to ROLLBACK and
NO_IMPLEMENT to SECURITY

public void rollback()
throws java.security.SecurityException,
java.lang.IllegalStateException,
SystemException

void rollback()
raises (Security,
IllegalState,
SystemError);

public void setRollbackOnly()
throws SystemException

void set_rollback_only()
raises (SystemError);

public int getStatus()
throws SystemException;

Status get_status()
raises (SystemError);

public void setTransactionTimeout (
int seconds)
throws SystemException

void set_transaction_timeout(
in long to)
raises (SystemError);

TranToken suspend()
raises (NoTransaction,
SystemError);

CCM supports suspend/resume
which JTA does not

void resume(
in TranToken)
raises (invalidToken,
SystemError);

CCM supports suspend/resume
which JTA does not

Table 64-7Comparing the EJB Transaction service (JTA) with CORBA component transacti

Construct EJB Form CCM Form Notes
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Comparing CCM and EJB 29 October 1999



64

is
Issue – This table will be completed after the Interface Repository chapter
ready.

Table 64-8Comparing component metadata between EJB and CORBA components

Construct EJB Form CCM Form
Note

s

Module javax.ejb IR

Interface EJBMetaData ComponentDef

public EJBHome getEJBHome()

public java.lang.Class getHomeInterfaceClass()

public java.lang.Class getRemoteInterfaceClass()

public java.lang.Class getPrimaryKeyClass()

public boolean isSession()

public boolean isStatelessSession()
64-198 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Comparing CCM and EJB 29 October 1999



ComponentContainer Architecture 66
e

s
ess
This chapter describes the architecture of thecomponent containeras seen by the
container provider.

Issue – It contains all new text taken from the CCM final submission

66.0.0.1 Contents

This chapter contains the following sections.

This chapter describes the architecture of thecomponent containeras seen by the
container provider. The component container is a server-side framework built on th
ORB, the Portable Object Adaptor (POA), and a set of CORBA services, which
provides the runtime environment for a CORBA component. Component container
may be implemented by an existing ORB vendor or by companies not in that busin
today using the facilities of a CORBA 3.x ORB).

Section Title Page

“Component Server” 66-200

“Containers Categories” 66-206

“Persistence Integration” 66-249

“Event Management Integration” 66-252
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999 66-199



66

n
g a
o
ade

is
.

in

ing
The container architecture in sections 66.1, and 66.2 of this chapter is described i
terms of an exemplary design for building component containers on the POA usin
ServantLocator . This is not the only possible design choice. Other designs are als
possible although there are specific combinations of POA policies that cannot be m
to work. These are indicated as rationale in the body of the text. A component
container that exhibits the same behavior as the exemplary design presented in th
chapter is conformant, even if it implements the container using a different design

66.1 Component Server

A component serveris a process which includes an arbitrary number ofcomponent
containers:

• Each container has an associatedcontainer API type, which describes it’s
interaction with the component, and an associatedCORBA usage model, which
describes its interaction with the POA, the ORB, and a set of CORBA services.

• Each container supports a single container API type and manages a specific
component category. Multiple component instances of the same component
category can be deployed in the same container.

• Each container includes (or is associated with) a specialized POA1 which is
responsible for creating references and managing servants for the components
that container.

• A container is created by acontainer manager, which is a factory for component
containers, based on descriptive information packaged with the component.

• Container managers themselves are created as part of the installation and
deployment process for CORBA components. The details of deployment are
described in Section 69.8, “Property File Descriptor,” on page 69-321.

• A component container can be an EJB container by supporting one of the EJB
container API types (Session Bean or Entity Bean). More information on integrat
EJB containers with CORBA is provided in Chapter 64, “Integrating with
Enterprise JavaBeans”.

1.The term “POA” is used to refer to not only the interfacePOA, but all the related interfaces
(ServantManager, ServantLocator, etc.) necessary to create references and activate object
instances in response to client requests.
66-200 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Server 29 October 1999



66

d in
on
ype,
les

to
del

priate

a

cies

l to
The overall architecture is depicted in Figure 66-1 below:

Figure 66-1 A Component Server

A component container is created as a result of component deployment as outline
Section 69.8, “Property File Descriptor,” on page 69-321. The container specificati
is translated by the container manager into a set of POA policies, a container API t
and a set of CORBA service bindings that will be used by the container. This enab
the container to implementinternal interfaces, based on these bindings, which offer
services to the component and invokecallback interfaces which the component
developer must implement.

66.1.1 Component Levels

CORBA components define two levels of component functionality - basic and
extended. These differ in the number of APIs and related functions made available
the component implementor. This distinction has no effect on the CORBA usage mo
or thecontainer API type but does effect reference creation and which CORBA
services are supported by the container. These distinctions are noted at the appro
points in the text.

66.1.2 POA Creation

A POA is used to create references that will be exported to clients and to handle
activation of component instances when operation requests are received. Creating
container usually involves the creation of a POA2 for container use. The CORBA usage
model associated with a particular container API type determines some of the poli
which must be associated with the POA. These have been previously described in
Section 62.2, “The Server Programming Environment. Others, which are orthogona

Container Manager

Session
Container

Entity
Container

Other
Container

POA2 POA3 POA4

ORB

Transactions Security Persistence Notification

EJB
Container

POA1
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Server 29 October 199966-201



66

t to
te a

ge
uses

POA
be

n-

JB

ory
the container functionality (e.g. the use of firewall proxies), can be passed as inpu
the container manager. It is the responsibility of the container manager to then crea
POA which satisfies these requirements.

CORBA::ORB::resolve_initial_references with an ObjectID of “RootPOA” is
used to locate the root POA. The component category determines the CORBA usa
model and some of the POA policies which must be used. The container manager
this information to create a POA and its associated interfaces and to bind the API
framework associated with the container API type.

The container manager design for creating a POA described below uses a
ServantLocator architecture which enables specializedServantManager
interfaces to implement the container function by being on the invocation
path for all requests directed to the component. The API frameworks and
their associated deployment descriptors defined for thecontainer API
types in this specification require the container to intervene before and
after each operation request to implement the required function. This pre-
cludes certain POA policy choices, e.g. the use of aServantActivator
which is only called when the requested object is not in the POA’s active
object map. While other designs using different POA policies may be possi-
ble, this one was chosen because it best describes how the container behav-
ior needs to be implemented.

The steps required are as follows:

• The CORBA::Policy objects required by the POA are created with the proper
values. The CORBA usage model requires or (in some cases) suggests specific
policies. An example of a set that will work for each CORBA usage model can
found in Section 62.2, “The Server Programming Environment.

• A POA is created using thePOA:create_poa operation specifying a sequence of
thePolicy objects created in the previous step as input. The complete set ofPolicy
objects includes the mandatory set (dictated by the CORBA usage model), the
orthogonal set (specified as input to container creation), and the implementatio
specific set (chosen by the container provider to deliver the proper semantics).

• The container API type value is used to determine whichServantManager should
be assigned to the POA (POA::set_servant_manager ).

In the exemplary design, we use a uniqueServantManager for each container API
type (session and entity) defined by CORBA components. For EJB CORBA
containers, there would also be two container API types corresponding to the E
Session BeanandEntity Bean.

• The newly created POA is then activated (POA::activate )

In this exemplary design, a different container is defined for each component categ
and the container implementation is actually provided by theServantManager . A
ServantLocator design allows the container to be on the invocation path for every
operation request. These component POAs specify theUSE_SERVANT_MANAGER

2.It may be possible in some cases to actually use the root POA. This is not excluded, but has
not been validated.
66-202 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Server 29 October 1999



66

st

se

ion

data
policy, enabling aServantManager to be used to associate a servant with the reque
to instantiate the object. In standard CORBA, theServantManager interface is
implemented by user applications, but in the exemplary design for use with
components, the specializedServantLocator is implemented by the container
provider.

There is a high degree of overlap between many of the component catego-
ries and their requirements for CORBA usage model making it feasible to
build a single container that supports more than one component category.
The exemplary design uses a container per component category for sim-
plicity. Mapping a component implementation to a container by component
category is a function of deployment and supports either a container per
component category, as in the exemplary design, or multiple component
categories in a single container as valid implementation choices.

66.1.3 Binding the Container to CORBA services

Basic CORBA components for all container API types defined in this specification u
the following CORBA services:

• security

• transactions

• naming

Extended CORBA components for all container API types defined in this specificat
also support the following additional CORBA services:

• persistence

• notification

As part of container creation, accessibility to these CORBA services must be
established and bindings created. At a minimum, this includes the use of the
resolve_initial_references operation onCORBA::ORB to obtain initial references
to these services. It also includes processing any container specific configuration
required for a particular service, e.g.

• setting up the channels to be used for emitting and consuming events,

• creating and initializing database connections to be used for persistence, and

• determining the naming context to be used to resolve component local names.

66.1.4 Container API Frameworks

The container API types defined by this specification provideframeworks into which
a CORBA component is deployed. We define two container API types and their
associated APIs in this specification. The EJBSessionBean andEntityBean
interfaces represent two additional container API types. Each framework manages
interactions with the ORB, the POA, and the CORBA services on behalf of the
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Server 29 October 199966-203



66

on
ion

t
ither

.

t

,

the
for

ess
or

ted
CORBA component it supports, allowing the component developer to concentrate
application logic. The major functions handled by the API frameworks (in associat
with the ORB, POA, and the CORBA services) include:

• creating object references

• factories and finders

• transactions

• security

• events

• persistence

A brief description of each of these is provided in the following sections.

66.1.4.1 Creating Object References

In CORBA, object references are created and managed by the POA. A componen
container creates these reference with specialized information which comes from e
the container provider, the component implementor, or the persistence provider,
depending on both the component category and the deployment options specified

For basic CORBA component containers and the EJB container API types, the
container provider must manage object reference creation itself since these are no
exposed to the programmer. The basic container is also responsible for binding
references to the component home in the CORBA naming service so they can be
accessed by the client as specified in the client programming model (Section 62.5
“The Client Programming Model). For EJB containers, onlyEJBObject and
EJBHome have externally visible object references and these are implemented by
container, not the EJB programmer (see Section 64.3, “CORBA Component views
EJBs,” on page 64-175 for more details).

66.1.4.2 Factories and Finders

Factory and finder operations are declared using thehome IDL declaration and are
associated with the component’s home interface. All basic containers provides acc
to this interface at runtime. Extended containers also support a set of operations f
externalizing component homes for use by external clients.

For EJB container API types, factories and finders are defined onEJBHome using a
naming scheme defined by the Enterprise JavaBeans 1.1 specification.

66.1.4.3 Transactions

The container interacts with the CORBA transaction service on behalf of the
component. Transaction policies, defined in the deployment descriptor, are transla
into CORBA transaction service operations. For CORBA components with self-
managed transactions, the container also provides the
66-204 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Server 29 October 1999



66

t
ort

sed
des

y the
vent

pes

, to
ent

pe
ffer a
t of

to be
r

Transaction::UserTransaction interface, a simplified form of the demarcation par
of the CORBA transaction service which the component implementor uses to supp
transaction functions at runtime.

For EJB container API types, thejavax.jts.UserTransaction interface (which is a
subset ofTransaction::UserTransaction ), is mapped to the CORBA transaction
service.

66.1.4.4 Security

The container relies on the CORBA security service to implement access control ba
on security policies defined in the deployment descriptor. The container also provi
security operations which the component implementor uses to support security
functions at runtime.

66.1.4.5 Events

Extended CORBA components shall have access to an event service supported b
container. The container provider is responsible for setting up and managing the e
channels used by CORBA notification to support the component event model. The
component event model relies on configuration information, local to the container
implementor, to handle quality of service properties, filters, and the number and ty
of event channels.The container also provides access to theEvent interface, which
provides the mapping between the component event model and CORBA notification
allow the component to both generate and process events. Integrating the compon
event model with CORBA notification is addressed in Section 66.4.

At the time this specification was produced, the EJB container API types
did not support an event API although the Java Messaging Service (JMS)
API has been defined separately (from EJB) and supports similar function.
An event API is targeted for EJB 2.0.

66.1.4.6 Persistence

For extended components, persistence is supported by containers for the entity
container API type. Component containers supporting the session container API ty
do not support persistence. Component containers for basic components do not o
persistence API. For extended components, the container provides access to a se
APIs provided by the CORBA persistent state service which offers the functions
necessary to implement self-managed persistence. Persistence considerations are
covered in more detail in Section 66.3.

For basic components, all entity container API types (including EJB Entity Beans)
support agetPrimaryKey operation on the context equivalent to the
get_primary_key operation on component homes which declare a primary key.
Component persistence (both container-managed and self-managed) is assumed
implemented using JDBC or some other unspecified persistence API (e.g. JSQL o
ODBC) and is therefore not defined as part of these container API types.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Server 29 October 199966-205



66

a

-

A

ection

ata

le

ore

oper
66.1.4.7 Threading

CORBA components support two forms of thread safety:serialize, andmultithread .
These choices are described in Section 69.4.5.54, “The threading Element,” on
page 69-295. The container implements these choices by either ensuring that only
single thread enters a component at a time (serialize) or by allowing multiple threads
to enter a component simultaneously (multithread ).

Basic container API types (including EJB) support only theserialize threading policy.

66.2 Containers Categories

The exemplary design delineatescontainer categoriescorresponding to the four
component categories with their associated container API types, twocontainer
categoriesfor the EJB container API types, and an emptycontainer category to
support creation of user-defined frameworks:

• The Servicecontainer which manages the service component designed for high
performance access to stateless CORBA components ( Section 66.2.2).

• The Sessioncontainer which manages the session component for stateful CORB
components with transient state ( Section 66.2.3).

• The Processcontainer which manages stateful process components which
encapsulates all data access in the server using any persistence mechanism ( S
66.2.4).

• The Entity container which manages stateful entity components which shares d
access responsibility between the client and the server using any persistence
mechanism ( Section 66.2.5).

• The EJBSessioncontainer which manages EJBSession Beans( Section 66.2.6).

• The EJBEntity container which manages EJBEntity Beans ( Section 66.2.7).

• The Empty container which makes the entire suite of CORBA interfaces availab
to a component’s implementation without restriction ( Section 66.2.1).

These container categories are one to one with their component categories. The
relationship between component categories, container API types and CORBA usage
models was described previously in Section 62.2, “The Server Programming
Environment. The following sections describe each of the container categories in m
detail.

66.2.1 The Empty Container

The Empty container exposes all CORBA functions directly to the component
developer. No framework is provided to simplify programming, however all the
functions necessary to build such a framework are available. The component devel
can choose any function currently defined in CORBA. The empty container is the
means by which the advanced functions of CORBA components (e.g. multiple
66-206 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

. A
in
lues
interfaces, packaging, and deployment) are made available to any CORBA
applications, including those that do not fit the profiles of the other component
categories. This is illustrated in Figure 66-1 below:

Figure 66-1 The Empty Container

Note that a CORBA component deployed in the empty container can use
any arbitrary set (including the null set) of CORBA services. This specifi-
cation places no constraints on what can be used within the existing
CORBA architecture.

66.2.2 The Service Container

Theservicecontainer implements the runtime environment for a service component
service container can be implemented using a POA with the policies enumerated
Table 66-1. Required values must be specified for all container designs. Design va
correspond to theServantLocator design used by the exemplary design.

Table 66-1POA Policies for a Service Container

Policy Name Required Value Design Value

Thread ORB_CTRL_MODEL

Lifespan TRANSIENT

Object Id Uniqueness N/A

Id Assignment SYSTEM_ID

Implicit Activation NO_IMPLICIT_ACTIVATION

Servant Retention NO_RETAIN

Service 1 Service 2 Service n Service n+1

CORBA Component Implementation

ORB
......

in the Empty Container

POA
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

ed to

-
m-
Thread

A thread policy value ofORB_CTRL__MODEL is required to allow the container to
serialize access to components that are not thread safe (serialize). Thread safe
components (multithread ) will not be protected from multiple threads entering the
component simultaneously.

Lifespan

A lifespan policy value ofTRANSIENT is required since service components have
neither state nor identity3.

Object Id uniqueness

The Object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN as it is in the exemplary design.

Id assignment

An Id assignment policy value ofSYSTEM_ID allows the POA to assignObjectId
values. Since service components have no identity, the service container has no ne
manageObjectId assignment.

implicit activation

The implicit activation policy must be set toNO_IMPLICIT_ACTIVATION when the
servant retention policy isNON_RETAIN.

servant retention

A servant retention policy value ofNO_RETAIN is required to use aServantLocator
in the exemplary design.

transaction policy

A transaction policy value ofALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

Transaction Policy ALLOWS_SHARED

Request Processing USE_SERVANT_MANAGER

3.In practice, the distinction between PERSISTENT and TRANSIENT references is difficult, if not impossible, to ob
serve. The semantics associated with the definition of TRANSIENT are closer to the semantics of this category of co
ponent.

Table 66-1POA Policies for a Service Container

Policy Name Required Value Design Value
66-208 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

s

equest
any
request processing

A request processing policy value ofUSE_SERVANT_MANAGER allows the
container to be implemented in the servant manager.

66.2.2.1 Creating Object References

For servicecomponents,ObjectIds have no meaning since aservicecomponent has
neither state or identity. The exemplary design allows the POA to create them
transparently to both the container and the component.

66.2.2.2 Factories and Instances

A component home implementation for aservicecomponent creates object reference
and component instances in response to the client’screate requests. Extendedservice
components may register their home with theHomeFinder to make it available to
clients through find operations or the component home can be bound in the name
service. Forservicecomponents, the component instance and its home need not be
collocated. Since instances have no state, they can be created anywhere when a r
is received. Object references for both the component’s supported interfaces and
provided interface are created by the POA within the service container.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

n a
66.2.2.3 Invoking an Operation

Figure 66-1 below outlines the steps necessary to make an operation invocation o
service component:

Figure 66-1 Using a Service Component

1. Component implementation registers aservicecomponent factory (i.e. its home)
with the HomeFinder (HomeRegistration.register_home ).

2. Client usesORB.resolve_initial_references to get a reference to the
ComponentHomeFinder . Since theHomeFinder is a righteous CORBA object,
it’s implementation may be located anywhere.

Operation foo on Component Z

Client Client ORB Z Z_impl

resolve_initial_references

ComponentHomeFinder

register_home(ZHome)

HomeFinder.find_home_by_type(ZHome)

ZHome

ZHome.create

Z

foo.Z

(2)

(3)

(4)

(5)

(1)

Home

POA
Servant
Locator

(6)

(7)

(8)

pre_invoke

post_invoke

invoke(foo)

lookup_servant

HomeRegistration
HomeFinder

release_servant

(9)
66-210 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

tion.

e

3. Client uses theHomeFinder.find_home_by_type operation to find a
component home (Zhome) that creates component instances of typeZ.

4. Client invokes acreate operation on the component home (ZHome.create ).
SinceZ is a servicecomponent, the home creates a reference and defers activa

5. Client invokes thefoo operation onZ (Z.foo ).

6. The POA invokes theServantLocator and requests anexecutor to process the
request (ServantLocator.pre_invoke ).The ServantLocator locates an
appropriateexecutor or creates a new one. It returns the associated servant to th
POA.

7. The POA dispatches the request to the component implementation (Invoke
Z.foo ).

8. After the request completes, the POA invokes theServantLocator
(ServantLocator.post_invoke) . The ServantLocator releases the
associatedexecutor to the pool.

9. The POA returnsfoo response to the client.

66.2.2.4 Servant Lifetime Management

The service component requires a servant lifetime policy ofmethod. A servant with a
method lifetime policy is activated on the firstpre_invoke prior to an operation being
dispatched on the component’s interface and passivated in thepost_invoke following
the operation invocation. This behavior is shown in Figure 66-1 below:

Figure 66-1 Service Container with a Method Lifetime Policy

(1)

(2)

(3)

(5)

(6)

(7)

Z.foo

Z.foo

pre_invoke

post_invoke

set_context

lookup_servant

Client POA ServantLocator ZTransient

release_servant

(4)

(8)

activate

passivate
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

s

t. A
in
lues
1. Client invokesfoo operation onZ (Z.foo ).

2. POA invokespre_invoke operation onServantLocator
(ServantLocator.pre_invoke ).

3. ServantLocator finds an availableexecutor and returns associated servant to the
POA, and invokes callback operation to set context.

4. ServantLocator then invokesactivate callback operation. The component
developer must implement theactivate operation.

5. POA then dispatchesfoo operation toZ.

6. Whenfoo operation completes, POA invokespost_invoke operation on
ServantLocator (ServantLocator.post_invoke ).

7. ServantLocator then invokespassivate callback operation. The component
developer must implement thepassivate operation.

8. POA then returnsfoo response back to client. Since the servant lifetime policy i
method, theexecutor is released.

66.2.3 The Session Container

Thesessioncontainer implements the runtime environment for a session componen
session container can be implemented using a POA with the policies enumerated
Table 66-2. Required values must be specified for all container designs. Design va
correspond to theServantLocator design used by the exemplary design.

Table 66-2POA Policies for a Session Container

Policy Name Required Value Design Value

Thread ORB_CTRL_MODEL

Lifespan TRANSIENT

Object Id Uniqueness N/A

Id Assignment USER_ID

Implicit Activation NO_IMPLICIT_ACTIVATION

Servant Retention NO_RETAIN

Transaction Policy ALLOWS_SHARED

Request Processing USE_SERVANT_MANAGER
66-212 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

-
m-
Thread

A thread policy value ofORB_CTRL__MODEL is required to allow the container to
serialize access to components that are not thread safe (serialize). Thread safe
components (multithread ) will not be protected from multiple threads entering the
component simultaneously.

Lifespan

A lifespan policy value ofTRANSIENT is required since session components have
transient state and identity4.

Object Id uniqueness

The Object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

Id assignment

An Id assignment policy value ofUSER_ID is required to allow thesessioncontainer
to assign uniqueObjectIds with input from the component. This supports a
structuring ofObjectId values which the container can exploit within its
implementation.

implicit activation

The implicit activation policy must be set toNO_IMPLICIT_ACTIVATION when the
servant retention policy isNON_RETAIN.

servant retention

A servant retention policy value ofNO_RETAIN is required to use a
ServantLocator .

transaction policy

A transaction policy value ofALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

request processing

A request processing policy value ofUSE_SERVANT_MANAGER allows the
container to be implemented in the servant manager.

4.In practice, the distinction between PERSISTENT and TRANSIENT references is difficult, if not impossible, to ob
serve. The semantics associated with the definition of TRANSIENT are closer to the semantics of this category of co
ponent.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

er
nts

ny
66.2.3.1 Creating Object References

For basic session components,ObjectIds are always managed by the session contain
without involvement from the component implementor. Extended session compone
create their own references using container APIs. The container implementor is
responsible for maintaining uniqueness. This permitsObjectIds to be encapsulated by
the container provider in implementation specific ways.

66.2.3.2 Factories and Instances

The home implementation for asessioncomponent creates object references and
component instances in response to the client’screate requests. Extendedsession
components may register their home with theHomeFinder to make it available to
clients through find operations or the component home can be bound in the name
service. Forsessioncomponents, the component instance and the factory must be
collocated. Object references for both the component’s supported interfaces and a
provided interface are created by the POA within the session container.
66-214 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

n a
66.2.3.3 Invoking an Operation

Figure 66-1 below outlines the steps necessary to make an operation invocation o
session component:

Figure 66-1 Using a Session Component

1. Component implementation registers asessioncomponent’s home with the
HomeFinder (HomeRegistration.register_home ).

2. Client usesORB.resolve_initial_references to get a reference to the
ComponentHomeFinder . Since theHomeFinder is a righteous CORBA object,
it’s implementation may be located anywhere.

Operation foo on Component A

Client Client ORB A A_impl

resolve_initial_references

ComponentHomeFinder

register_home(AHome)

HomeFinder.find_home_by_type(AHome)

AHome

AHome.create

A

foo.A

(2)

(3)

(4)

(5)

(1)

Home

POA
Servant
Locator

(6)

(7)

(8)

pre_invoke

post_invoke

invoke(foo)

lookup_servant

HomeRegistration
HomeFinder

release_servant

(9)

(10)
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

he

he

r is
3. Client uses theHomeFinder.find_home_by_type operation to find a
component home (Ahome) that creates component instances of typeA.

4. Client invokes acreate operation on the component home (AHome.create ).
SinceA is a sessioncomponent, the home creates a reference and may defer
activation until the first operation invocation.

5. Client invokes thefoo operation onA (A.foo ).

6. The POA invokes theServantLocator and requests anexecutor to process the
request (ServantLocator.pre_invoke ).The ServantLocator locates an
appropriateexecutor or creates a new one. The POA dispatches the request to t
component implementation (Invoke A.foo ).

7. After the request completes, the POA invokes theServantLocator
(ServantLocator.post_invoke) .

8. POA then returnsfoo response back to client.

9. Steps [5] through [8] are repeated until the operation following the expiration of t
servant lifetime policy. At that point, theServantLocator releases the associated
executor to the pool.

66.2.3.4 Servant Lifetime Management

The session container supports multiple servant lifetime policy values. An executo
activated on the firstpre_invoke prior to an operation being dispatched on the
component’s interface and is passivated in thepost_invoke following the expiration
of the servant lifetime policy. This is illustrated in the following sections:
66-216 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66
Method Lifetime

A session component with amethod lifetime policy has itsexecutoractivated on every
pre_invoke and passivated on everypost_invoke . This behavior is shown in
Figure 66-1:

Figure 66-1 Session component with a Method Lifetime Policy

1. Client invokesfoo operation onA (A.foo ).

2. POA invokespre_invoke operation onServantLocator
(ServantLocator.pre_invoke ).

3. ServantLocator finds an availableexecutor and returns associated servant to the
POA, and invokes callback operation to set context.

4. ServantLocator then invokesactivate callback operation. The component
developer must implement theactivate operation.

5. POA then dispatchesfoo operation toA.

6. Whenfoo operation completes, POA invokespost_invoke operation on
ServantLocator (ServantLocator.post_invoke ).

7. ServantLocator then invokespassivate callback operation. The component
developer must implement thepassivate operation.

8. POA then returnsfoo response back to client and releasesexecutor.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

A.foo

A.foo

pre_invoke

post_invoke

set_context

lookup_servant

Client POA ServantLocator A

activate

passivate

(8) release_servant
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66
Transaction Lifetime

A session component with atransaction lifetime policy is activated on the first
pre_invoke within a new transaction. Subsequentpre_invoke operations do not
cause activation. Passivation occurs when the current transaction completes
(successfully or unsuccessfully). TheServantLocator implements this policy using
the CORBA transaction serviceCosTransactions::Synchronization interface. This
behavior is shown in Figure 66-2:

Figure 66-2 Session Component with a Transaction Lifetime Policy

(2)

(4)

(5)

(6)

(7)

(9)

A.foo1

A.foo1

pre_invoke

post_invoke

set_context

Client POA
Servant

ALocatorOTS

(1)
Current.begin

(10) A.foo2
pre_invoke(11)

(12)

(13)

(14)

A.foo2

post_invoke

(15)

Current.commit

(3)

(16)

(17)

Coordinator.register_synchronization

Synchronization.before_completion

(18)

lookup_servant

activate

passivate

(8)
66-218 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66
1. Client begins a transaction with the CORBA transaction service
(Current.begin )

2. Client invokesfoo1 operation onA (A.foo1 ).

3. POA invokespre_invoke operation onServantLocator
(ServantLocator.pre_invoke ).

4. ServantLocator registers aSynchronization object with the CORBA
transaction service (Coordinator.register_synchronization ) to be
called by the CORBA transaction service at the start of the commit process.

5. ServantLocator finds an availableexecutor and returns associated servant to the
POA, and invokes callback operation to set context.

6. ServantLocator then invokesactivate callback operation. The component
developer must implement theactivate operation.

7. POA then dispatchesfoo1 operation toA.

8. Whenfoo1 operation completes, POA invokespost_invoke operation on
ServantLocator (ServantLocator.post_invoke ).

9. POA then returnsfoo1 response back to client.

10. Client invokesfoo2 operation onA.

11. POA invokespre_invoke operation onServantLocator
(ServantLocator.pre_invoke ). SinceA is already active, the
ServantLocator returns to the POA.

12. POA then dispatchesfoo2 operation toA.

13. Whenfoo2 operation completes, POA invokespost_invoke operation on
ServantLocator (ServantLocator.post_invoke ).

14. POA then returnsfoo2 response back to client.

15. Client attempts to terminate the transaction by calling commit
(Current.commit )

16. CORBA transaction service notifiesServantLocator prior to the start of phase
one of commit (Synchronization.before_completion ).

17. ServantLocator then invokespassivate callback operation. The component
developer must implement thepassivate operation.

18. CORBA transaction service continues the two-phase commit process.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

is

t it
y

Component Lifetime

A session component with acomponent lifetime policy is activated on the first
pre_invoke prior to an operation being dispatched on the component’s interface.
Passivation occurs either in thepost_invoke following an application requested
passivation or when the process terminates, whichever occurs first. This behavior
shown in Figure 66-3 on page 220.

Container Lifetime

A session component with acontainer lifetime policy is activated on the first
pre_invoke prior to an operation being dispatched on the component’s interface.
Passivation occurs either in thepost_invoke following an application-requested
passivation or in thepost_invoke following an operation when the system needs to
reclaim the memory, whichever occurs first. This behavior is identical tocomponent
behavior, except that failures can be simulated when the container determines tha
needs to reclaim the memory associated with this component making it more likel
that the final response will be returned to the client. This behavior is captured in
Figure 66-3 below.

Figure 66-3 A Session Component with Component or Container Lifetime Policy

(1)

(2)

(3)

(5)

(6)

(7)

A.foo1

A.foo1

pre_invoke

post_invoke

Client POA
Servant

ALocator

passivate

post_invoke

req_passivateFailure OR
(8)

(9)

(11)

(4) activate

(10)

set_context

A.foo2
66-220 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

nt.
ble
1. Client invokesfoo1 operation onA (A.foo1 ).

2. POA invokespre_invoke operation onServantLocator
(ServantLocator.pre_invoke ).

3. ServantLocator finds an availableexecutor and returns associated servant to the
POA, and invokes callback operation to set context.

4. ServantLocator then invokesactivate callback operation. The component
developer must implement theactivate operation.

5. POA then dispatchesfoo1 operation toA.

6. Whenfoo1 operation completes, POA invokespost_invoke operation on
ServantLocator (ServantLocator.post_invoke ). Since activation policy
is componentor container, the ServantLocator just returns to the POA.

7. POA then returnsfoo1 response back to client.

8. Client continues invokingfoo2 operation (A.foo2 ). Either a failure occurs orA
requests to be passivated (Session2Context.req_passivate ).

9. Whenfoo2 operation completes, POA invokespost_invoke operation on
ServantLocator (ServantLocator.post_invoke ).

10. ServantLocator then invokespassivate callback operation. The component
developer must implement thepassivate operation.

11. POA then returnsfoo2 response back to client (if possible).

66.2.4 The Process Container

The processcontainer implements the runtime environment for a process compone
A process container can be implemented using a POA with the policies outline in Ta
66-3. Required values must be specified for all container designs. Design values
correspond to theServantLocator design used by the exemplary design.

Table 66-3POA Policies for a Process Container

Policy Name Required Value Design Value

Thread ORB_CTRL_MODEL

Lifespan PERSISTENT

Object Id Uniqueness N/A

Id Assignment USER_ID

Implicit Activation NO_IMPLICIT_ACTIVATION

Servant Retention NO_RETAIN

Transaction Policy ALLOWS_SHARED
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

r

he
Thread

A thread policy value ofORB_CTRL__MODEL is required to allow the container to
serialize access to components that are not thread safe (serialize). Thread safe
components (multithread ) will not be protected from multiple threads entering the
component simultaneously.

Lifespan

A lifespan policy value ofPERSISTENT is required since process components have
both persistent state and identity.

Object Id uniqueness

The object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

Id assignment

An Id assignment policy value ofUSER_ID is required to allow the process containe
to assign uniqueObjectIds with input from the component implementation and the
persistence mechanism. This not only supports a structuring ofObjectId values which
the container can exploit within its implementation, but also makes it possible for t
component implementor or the persistence mechanism to locate state from the
ObjectId .

implicit activation

The implicit activation policy must be set toNO_IMPLICIT_ACTIVATION when the
servant retention policy isNON_RETAIN.

servant retention

A servant retention policy value ofNO_RETAIN is required to use a
ServantLocator .

transaction policy

A transaction policy value ofALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

request processing

A request processing policy value ofUSE_SERVANT_MANAGER allows the
container to be implemented in the servant manager.

Request Processing USE_SERVANT_MANAGER

Table 66-3POA Policies for a Process Container

Policy Name Required Value Design Value
66-222 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

That

d
o
r
load

g
used

t of

s)
nt’s
66.2.4.1 Creating Object References

The processcontainer is responsible for creating and managing uniqueObjectIds
which can be used to locate an external copy of the component’s persistent state.
state can be explicitly declared and managed by the container (container-managed
persistence) or not declared and managed by the application (self-managed
persistence). TheseObjectIds are opaque both to the client and to the container, an
may or may not use the CORBA persistence mechanism. This makes it possible t
have factories forprocesscomponents which create only object references and defe
instance creation until an operation request is actually received. This enables work
to be distributed among several functionally equivalent servers.

66.2.4.2 Factories and Instances

The processcomponent’s home is responsible for creating references and exportin
them to clients. Component instances are created on demand when a reference is
to invoke an operation.

Factory operations are typically invoked by clients but may also be invoked as par
the implementation of a specific interface provided by the component. A CORBA
component implementation locates its home (which supports the factory operation
using the context provided by its container. Object references for both the compone
interfaces and any provided interface are created by the POA which supports the
container for that component.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

ss
66.2.4.3 Invoking an Operation

Figure 66-1 outlines the steps necessary to make an operation request on a proce
component:

Figure 66-1 Using the Process Container

1. Component implementation registers aprocesscomponent home with the
HomeFinder (HomeRegistration.register_factory ).

Operation foo on Component B Flow

Client Client ORB B B_impl

resolve_initial_references

ComponentHomeFinder

register_home(Bhome)

HomeFinder.find_home_by_type(BHome)

BHome

BHome.create

B

foo.B

(1)

(2)

(3)

(4)

(5)

POA

pre_invoke

Servant
Locator

invoke (B)

lookup_servant_factory
(6)

(7)

CCMHome

HomeRegistration
HomeFinder

post_invoke

(8)

(9)

(10)
66-224 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

the
2. Client usesORB.resolve_initial_references to get a reference to the
ComponentHomeFinder . Since theHomeFinder is a righteous CORBA object,
it’s implementation may be located anywhere.

3. Client uses theHomeFinder.find_home_by_type operation to find a
component home (BHome) that creates component instances of typeB.

4. Client invokes acreate operation on the component home (BHome.create ).
SinceB is processcomponent, the home need only create a reference; instance
creation can be deferred until an operation is requested.

5. Client invokes thefoo operation onB (B.foo ). SinceB is not active, the POA
invokes thepre_invoke operation on theServantLocator
(ServantLocator.pre_invoke ).

6. TheServantLocator creates a newexecutor to handle the request. It then returns
the associated servant to the POA to process the request.

7. The POA then dispatches the request to the servant (invoke(B) )

8. After the request completes, the POA invokes theServantLocator
(ServantLocator.post_invoke) .

9. The POA returnsfoo response to client.

10. Steps [5] through [9] are repeated until the operation following the expiration of
servant lifetime policy. At that point, theServantLocator releases the associated
executor to the pool.

66.2.4.4 Servant Lifetime Management

The process component can have multiple servant lifetime policies specified in its
deployment descriptor. TheServantLocator implements these different policies by
making activation decisions duringpre_invoke and passivation decisions during
post_invoke . This is illustrated in the following sections:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

uted

ent
Method Lifetime

A process component with amethod lifetime policy has itsexecutoractivated on every
pre_invoke and passivated on everypost_invoke . This behavior is shown in
Figure 66-1:

Figure 66-1 A Process Component with a Method Lifetime Policy

1. Client invokesfoo operation onB (B.foo ).

2. POA invokespre_invoke operation on theServantLocator
(ServantLocator.pre_invoke ).

3. ServantLocator finds an availableexecutor and returns associated servant to the
POA, and invokes callback operation to set context.

4. ServantLocator creates a newB and invokes theactivate callback operation.
For most component implementations, no action is required.

5. ServantLocator then invokes theload callback operation. If the component has
declared its abstract state using CORBA persistence, this callback will be exec
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the compon
developer must implement theload operation.

6. POA then dispatchesfoo operation toB.

(1)

(2)

(3)

(5)

(6)

(7)

(8)

B.foo

B.foo

pre_invoke

post_invoke

activate

passivate

lookup_servant_factory

Client POA ServantLocator B

load

store

(9)

(10)

set_context

(4)

unset_context

(11)
66-226 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

uted

er

he
7. Whenfoo operation completes, POA invokespost_invoke operation on
ServantLocator (ServantLocator.post_invoke ).

8. ServantLocator then invokes thestore callback operation. If the component has
declared its abstract state using CORBA persistence, this callback will be exec
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the develop
must implement thestore operation.

9. ServantLocator then invokespassivate callback operation. For most
component implementations, no action is required.

10. ServantLocator invokes callback operation to unset the context and releases t
executor.

11. POA then returnsfoo response back to client.

Transaction Lifetime

A process component with atransaction lifetime policy has itsexecutor activated on
the first pre_invoke within a new transaction. Subsequentpre_invoke operations do
not cause activation. Passivation occurs when the current transaction completes
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66
(successfully or unsuccessfully). TheServantLocator implements this policy using
the CORBA transaction serviceCosTransactions::Synchronization interface. This
behavior is shown in Figure 66-2:

Figure 66-2 A Process Component with a Transaction Lifetime Policy

1. Client begins a transaction with the CORBA transaction service
(Current.begin )

(2)

(4)

(5)

(7)

(8)

(10)

B.foo1

B.foo1

pre_invoke

post_invoke

activate

Client POA
Servant

BLocatorOTS

(1)
Current.begin

(11) B.foo2
pre_invoke(12)

(13)

(14)

(15)

B.foo2

post_invoke

(16)

Current.commit

(3)

(17)

(19)

Coordinator.register_synchronization

Synchronization.before_completion

(20)

lookup_servant

load

store

passivate

(9)

(21)

set_context

(6)

unset_context

(18)
66-228 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

uted

ent

uted

er
2. Client invokesfoo1 operation onB (B.foo1 ).

3. POA invokespre_invoke operation onServantLocator
(ServantLocator.pre_invoke ).

4. ServantLocator registers aSynchronization object with the CORBA
transaction service (Coordinator.register_synchronization ) to be
called by the CORBA transaction service at the start of the commit process.

5. ServantLocator finds an availableexecutor and returns associated servant to the
POA, and invokes callback operation to set context.

6. ServantLocator creates a newB and invokesactivate callback operation. For
most component implementations, no action is required.

7. ServantLocator then invokesload callback operation.If the component has
declared its abstract state using CORBA persistence, this callback will be exec
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the compon
developer must implement theload operation.

8. POA then dispatchesfoo1 operation toB.

9. Whenfoo1 operation completes, POA invokespost_invoke operation on
ServantLocator (ServantLocator.post_invoke ).

10. POA then returnsfoo1 response back to client.

11. Client invokesfoo2 operation onB.

12. POA invokespre_invoke operation onServantLocator
(ServantLocator.pre_invoke ). SinceB is already active, the
ServantLocator returns to the POA.

13. POA then dispatchesfoo2 operation toB.

14. Whenfoo2 operation completes, POA invokespost_invoke operation on
ServantLocator (ServantLocator.post_invoke ).

15. POA then returnsfoo2 response back to client.

16. Client attempts to terminate the transaction by calling commit
(Current.commit )

17. CORBA transaction service notifiesServantLocator prior to the start of phase
one of commit (Synchronization.before_completion ).

18. ServantLocator then invokesstore callback operation. If the component has
declared its abstract state using CORBA persistence, this callback will be exec
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the develop
must implement thestore operation.

19. ServantLocator then invokespassivate callback operation. For most
component implementations, no action is required.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

s

ce.

t it
20. ServantLocator invokes callback operation to unset context and releases the
executor.

21. CORBA transaction service continues the two-phase commit process.

Component Lifetime

A process component with acomponent lifetime policy has itsexecutor activated on
the first pre_invoke prior to an operation being dispatched on the component’s
interface. Passivation occurs either in thepost_invoke following an application
requested passivation or when the process terminates, whichever occurs first. Thi
behavior is shown in Figure 66-3 below.

Container Lifetime

A process component with acontainer lifetime policy has itsexecutoractivated on the
first pre_invoke prior to an operation being dispatched on the component’s interfa
Passivation occurs either in thepost_invoke following an application-requested
passivation or in thepost_invoke following an operation when the system needs to
reclaim the memory, whichever occurs first. This behavior is identical tocomponent
behavior, except that failures can be simulated when the container determines tha
66-230 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

y

uted

ent
needs to reclaim the memory associated with this component making it more likel
that the final response will be returned to the client. This behavior is captured in
Figure 66-3 below.

Figure 66-3 Process Component with Component or Container Lifetime Policies

1. Client invokesfoo1 operation onB (B.foo1 ).

2. POA invokespre_invoke operation onServantLocator
(ServantLocator.pre_invoke ).

3. ServantLocator finds an availableexecutor and returns associated servant to the
POA, and invokes callback operation to set context.

4. ServantLocator invokesactivate callback operation. For most component
implementations, no action is required.

5. ServantLocator then invokesload callback operation.If the component has
declared its abstract state using CORBA persistence, this callback will be exec
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the compon
developer must implement theload operation.

(1)

(2)

(3)

(6)

(7)

(8)

B.foo1

B.foo1

pre_invoke

post_invoke

activate

Client POA
Servant

BLocator

passivate

post_invoke

req_passivate
Failure OR

(9)

(10)

(11)

(13)

(5) load

store

(12)

set_context

(4)

(14)

unset_context

B.foo2
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

uted

er

t

le

n

6. POA then dispatchesfoo1 operation toB.

7. Whenfoo1 operation completes, POA invokespost_invoke operation on
ServantLocator (ServantLocator.post_invoke ). Since activation policy
is componentor container, the ServantLocator just returns to the POA.

8. POA then returnsfoo1 response back to client.

9. Client invokesfoo2 operation on B (B.foo2 ). Either a failure occurs orB
requests to be passivated (Entity2Context.req_passivate ).

10. Whenfoo2 operation completes, POA invokespost_invoke operation on
ServantLocator (ServantLocator.post_invoke ).

11. ServantLocator then invokesstore callback operation.If the component has
declared its abstract state using CORBA persistence, this callback will be exec
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the develop
must implement thestore operation.

12. ServantLocator then invokespassivate callback operation. For most componen
implementations, no action is required.

13. ServantLocator invokes callback operation to unset context and releases the
executor.

14. POA then returnsfoo response back to client (if possible).

66.2.5 The Entity Container

The entity container provides the runtime environment for the entity component. A
entity container can be implemented using a POA with the policies outlined in Tab
66-4. These values are equivalent to those specified for the process container in
Section 66.2.4. Required values must be specified for all container designs. Desig
values correspond to theServantLocator design used by the exemplary design.

Table 66-4POA Policies for the Entity Container

Policy Name Required Value Design Value

Thread ORB_CTRL_MODEL

Lifespan PERSISTENT

Object Id Uniqueness N/A

Id Assignment USER_ID

Implicit Activation NO_IMPLICIT_ACTIVATION

Servant Retention NO_RETAIN

Transaction Policy ALLOWS_SHARED
66-232 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

he
Thread

A thread policy value ofORB_CTRL__MODEL is required to allow the container to
serialize access to components that are not thread safe (serialize). Thread safe
components (multithread ) will not be protected from multiple threads entering the
component simultaneously.

Lifespan

A lifespan policy value ofPERSISTENT is required since entity components have
both persistent state and identity.

Object Id uniqueness

The object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

Id assignment

An Id assignment policy value ofUSER_ID is required to allow the entity container to
assign uniqueObjectIds with input from the component implementation and the
persistence mechanism. This not only supports a structuring ofObjectId values which
the container can exploit within its implementation, but also makes it possible for t
component implementor or the persistence mechanism to locate state from the
ObjectId .

implicit activation

The implicit activation policy must be set toNO_IMPLICIT_ACTIVATION when the
servant retention policy isNON_RETAIN.

servant retention

A servant retention policy value ofNO_RETAIN is required to use a
ServantLocator .

transaction policy

A transaction policy value ofALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

request processing

A request processing policy value ofUSE_SERVANT_MANAGER allows the
container to be implemented in the servant manager.

Request Processing USE_SERVANT_MANAGER

Table 66-4POA Policies for the Entity Container

Policy Name Required Value Design Value
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

That

g
in a

t of

s)
nt’s
66.2.5.1 Creating Object References

The entity container is responsible for creating and managing uniqueObjectIds
which can be used to locate an external copy of the component’s persistent state.
state can be explicitly declared and managed by the container (container-managed
persistence) or not declared and managed by the application (self-managed
persistence). The entity container supports operations for associating primary keys
with a ComponentId (cid). Every entity component instance is associated with one
and only one primary key. The entity container provides operations on its
ServantLocator to create anObjectId from a cid.

66.2.5.2 Factories and New Instances

A entity component’s home is responsible for both creating references and creatin
new instances of entity components. Since entity components are also incarnations
persistent store, creating a new instance of the entity component has the effect of
creating a new record in a persistent store.

Factory operations are typically invoked by clients but may also be invoked as par
the implementation of a specific interface provided by the component. The entity
component implementation locates its home (which supports the factory operation
using the context provided by its container. Object references for both the compone
interfaces and any provided interface are created by the POA which supports the
container for the entity component.
66-234 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

tity
66.2.5.3 Invoking an Operation on a New Instance

Figure 66-1 shows the necessary steps to make an operation request on a new en
component:

Figure 66-1 Using the Entity Container to Create new Entity Components

1. Component implementation registers theentity component home with the
HomeFinder (HomeRegistration.register_factory ).

Operation foo on a new Component C Flow

Client Client ORB C_impl

resolve_initial_references

ComponentHomeFinder

register_home(CHome)

HomeFinder.find_home_by_type(CHome)

CHome

CHome.create(primary_key)

foo.C

(1)

(2)

(3)

(4)

(6)

POA

pre_invoke

Servant
Locator

invoke (C)

(7)

(8)

PSS

C

(9)

(10)

create(key)
C

(5)

create_key

CCMHome

HomeRegistration
HomeFinder

post_invoke

(11)

(12)
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

e
ry

d

f

ore.

g

2. Client usesORB.resolve_initial_references to get a reference to the
ComponentHomeFinder . Since theHomeFinder is a righteous CORBA object,
it’s implementation may be located anywhere.

3. Client uses theHomeFinder.find_home_by_type operation to find a
component home (CHome) that creates component instances of typeC.

4. Client invokes acreateoperation on the component home (CHome.create ) using
a primary key. SinceC is anentity component, the home must talk to a persistenc
mechanism to create a new record in the persistent store using the same prima
key.

5. A reference toC is returned to the client.

6. Client invokes thefoo operation onC (C.foo ). SinceC is not active, the POA
invokes thepre_invoke operation on theServantLocator
(ServantLocator.pre_invoke ).

7. TheServantLocator talks to the persistence mechanism to find the incarnation
associated with this request. The persistence mechanism finds the appropriate
incarnation and returns it to theServantLocator .

8. TheServantLocator creates a newexecutor to handle the request. The associate
servant is returned to the POA to process the request.

9. The POA then dispatches the request to the servant (invoke(C) )

10. After the request completes, the POA invokes theServantLocator
(ServantLocator.post_invoke) .

11. The POA returnsfoo response to client.

12. Steps [6] through [11] are repeated until the operation following the expiration o
the servant lifetime policy. At that point, theServantLocator releases the
associatedexecutor.

66.2.5.4 Finders and Existing Instances

Theentity component may also correspond to an existing element in a persistent st
If so, a finder is responsible for locating thePersistentId and associating an
incarnation with an instance of the entity component. The home interface for entity
components supports finder operations.

The client will use either theHomeFinder or the Naming service to locate the home
interface. A CORBA component implementation can locate its home interface usin
the context provided by its container.
66-236 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

ng
66.2.5.5 Invoking an Operation on an Existing Instance

Figure 66-1 shows the necessary steps to make an operation request on an existi
entity component:

Figure 66-1 Using the Entity Container to Locate Existing Entity Components

1. Container tools binds theentity component home to a string (“namestring” ) with
CosNaming .

Operation foo on an Existing Component C Flow

Client Client ORB
Name

Service Context C_impl

resolve_initial_references

NamingService

bind(CHome,”namestring”)

NamingContext.lookup(CHome,”namestring”)

CHome

CHome.find(primary_key)

foo.C

(1)

(2)

(3)

(4)

(6)

POA

pre_invoke

Servant
Manager

invoke (C)

(7)

(8)

PSS

C

(9)

(10)

find(key)
C

(5)

find

post_invoke

(11)

(12)
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

to

d

f

tion

es
2. Client usesORB.resolve_initial_references to get a reference to the
NamingService . Since theNamingContext is a righteous CORBA object, its
implementation may be located anywhere.

3. Client uses theNamingContext.lookup operation to find the home (CHome)
that finds component instances of typeC.

4. Client invokes a find operation on the home (CHome.find ) using a primary key.
SinceC is anentity component, the home must talk to the persistence mechanism
locate an element in the persistent store with the same primary key.

5. A reference toC is returned to the client.

6. Client invokes thefoo operation onC (C.foo ). SinceC is not active, the POA
invokes thepre_invoke operation on theServantLocator
(ServantLocator.pre_invoke ).

7. TheServantLocator talks to the persistence mechanism to find the incarnation
associated with this request. The persistence mechanism find the appropriate
incarnation and returns it to theServantLocator .

8. TheServantLocator creates a newexecutor to handle the request. The associate
servant is returned to the POA.

9. The POA then dispatches the request to the servant (invoke(C) )

10. After the request completes, the POA invokes theServantLocator
(ServantLocator.post_invoke) .

11. POA returnsfoo response to client.

12. Steps [6] through [11] are repeated until the operation following the expiration o
the servant lifetime policy. At that point, theServantLocator releases the
associatedexecutor to the pool.

66.2.5.6 Servant Lifetime Management

The entity container supports multiple servant lifetime policies.Support for multiple
servant lifetime policies is equivalent to the process container as described in Sec
66.2.4.4.

66.2.6 The EJBSession Container

The EJBSessioncontainer implements the runtime environment for a EJB Session
Beans in a CORBA component container. TheEJBSessioncontainer can be
implemented using a POA with the policies enumerated in Table 66-5. These valu
66-238 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

ired
e

can be the same as a session container enabling the same POA to be used. Requ
values must be specified for all container designs. Design values correspond to th
ServantLocator design used by the exemplary design.

Thread

A thread policy value ofORB_CTRL__MODEL allows the container to serialize
access to Session Beans which must be single-thread. A thread policy value of
SINGLE_THREAD_MODEL can also be used to rely on serialization in the POA,
rather than the container.

Lifespan

A lifespan policy value ofTRANSIENT is required since EJB Session Beans may
have transient state and identity.

Object Id uniqueness

The object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

Id assignment

An Id assignment value ofSYSTEM_ID is sufficient for EJB Session Beans since the
EJB Component Architecture does not expose object references. A value ofUSER_ID
allows the container to assign uniqueObjectIds itself. This supports a structuring of
ObjectId values which the container can exploit within its implementation.

Table 66-5POA Policies for a EJBSession Container

Policy Name Required Value Design Value

Thread

SINGLE_THREAD_MODEL
ORB_CTRL_MODEL

Lifespan TRANSIENT

Object Id Uniqueness N/A

Id Assignment

SYSTEM_ID
USER_ID

Implicit Activation NO_IMPLICIT_ACTIVATION

Servant Retention NO_RETAIN

Transaction Policy ALLOWS_SHARED

Request Processing USE_SERVANT_MANAGER
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

s.

ort a
e

h

der

he
implicit activation

The implicit activation policy must be set toNO_IMPLICIT_ACTIVATION when the
servant retention policy isNON_RETAIN.

servant retention

A servant retention policy value ofNO_RETAIN is required to use a
ServantLocator .

transaction policy

A transaction policy value ofALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

request processing

A request processing policy value ofUSE_SERVANT_MANAGER allows the
container to be implemented in the servant manager.

66.2.6.1 Creating Object References

Object references are not exposed to the bean programmer for EJB Session Bean
Only EJBHome andEJBObject have externally visible references and they are
created by the EJB container’s tools, not the enterprise Bean programmer. To supp
Session Bean in a CORBA EJB container, the container provider will need to do th
following:

• create interface definitions forEJBHome andEJBObject and store those
definitions in the interface repository.

• create entries in CORBA naming using the symbolic name defined by EJB whic
point to the instances ofEJBHome andEJBObject to be used by this Session
Bean.

• create an implementation ofEJBHome which delegate factory operations to the
enterprise Bean’s create methods.

• create an implementation ofEJBObject which delegate application operations to
the enterprise Bean’s application operations.

66.2.6.2 Factories and Instances

EJB client programmers locate factories usingJNDI . From the EJB client’s
perspective, factories for Session Beans are operations implemented onEJBHome .
The enterprise Bean developer implements the operations and the container provi
stores its symbolic name in CORBA naming so it can be accessed by a clientJNDI
call and implements theEJBHome object which delegates to the enterprise Bean’s
create operation. A factory operation onEJBHome creates instance of the enterprise
Bean which is derived fromEJBObject . Because home operations are delegated to t
enterprise Bean,EJBHome andEJBObject must be collocated.
66-240 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66
66.2.6.3 Invoking an Operation

EJB clients make all operation requests onEJBObject . Installing a Session Bean in
an EJBSessioncontainer requires the container to create anEJBObject
implementation of the enterprise Bean’s operations which ultimately delegates the
processing of the request to the implementation. In many EJB container
implementations, theEJBObject implementation implements the EJB container
functions, including setting declarative transaction and security policies before
invoking the enterprise Bean’s operations.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

by

n

cess

s

In the CORBA environment of the exemplary design, these functions are performed
the specializedServantLocator for the EJBSessionContainer before the operation
request onEJBObject is actually dispatched by the POA.This allows the generated
EJBObject implementation to simply delegate the operation request to the Sessio
Bean.This is illustrated in Figure 66-1 below:

Figure 66-1 Dispatching an operation request in a CORBA EJB container

1. Container tools binds a session bean’s home with CORBA naming to enable ac
via JNDI (NamingContext.bind ).

2. Client uses JNDI to locate theEJBHome(Jhome) that creates component instance
of type J .

Operation foo on EJB Component J

Client Client ORB EJBObject J_impl

NamingContext.bind (EJBHome, “name”)

EJBHome

EJBHome.create

EJBObject

foo.EJBObject

(2)

(3)

(4)

(1)

Home

POA
EJBSessionServant

Locator

(5)

(6)

(8)

pre_invoke

post_invoke

invoke(foo)

lookup_servant

Directory
JNDI

release_servant

(9)

(10)

(7)

JNDI.lookup(“name“)
66-242 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

essing

e

the

ge to

.
in
s and
cified
3. Client invokes acreateoperation on the Session Bean home (EJBHome.create ).
SinceJ is a session bean, the home creates a reference and delegates the proc
of the create operation to anejbcreate operation of the enterprise Bean.

4. Client invokes thefoo operation onEJBObject (EJBObject.foo ).

5. The POA invokes theServantLocator and requests anexecutor to process the
request (ServantLocator.pre_invoke ).The ServantLocator locates an
appropriateexecutor or creates a new one. It returns the associated servant to th
POA.

6. The POA dispatches the request to theEJBObject implementation (Invoke
EJBObject.foo ).

7. TheEJBObject implementation delegates the operation to the Session Bean
implementation.

8. After the request completes, the POA invokes theServantLocator
(ServantLocator.post_invoke) .

9. POA then returnsfoo response back to client.

10. Steps [4] through [7] are repeated until the operation following the expiration of
servant lifetime policy. At that point, theServantLocator releases the associated
executor to the pool.

66.2.6.4 Servant Lifetime Management

Enterprise JavaBeans relies on the garbage collection features of the Java langua
manage bean lifetimes. This is equivalent to a servant lifetime policy ofcontainer.

66.2.7 The EJBEntity Container

The EJBEntity container provides the runtime environment for an EJB Entity Bean
An EJBEntity container can be implemented using a POA with the policies outlined
Table 66-6. These values can be made equivalent to those specified for the proces
entity containers enabling the same POA to be used. Required values must be spe
for all container designs. Design values correspond to theServantLocator design
used by the exemplary design.

Table 66-6POA Policies for the EJBEntity Container

Policy Name Required Value Design Value

Thread

ORB_CTRL_MODEL
SINGLE_THREAD_MODEL

Lifespan PERSISTENT

Object Id Uniqueness N/A
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

eans
Thread

A thread policy value ofORB_CTRL__MODEL allows the container to serialize
access to Entity Beans which must be single-thread. A thread policy value of
SINGLE_THREAD_MODEL can also be used to rely on serialization in the POA,
rather than the container.

Lifespan

A lifespan policy value ofPERSISTENT is required since Entity Beans have both
persistent state and identity.

Object Id uniqueness

The object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

Id assignment

An Id assignment policy value ofSYSTEM_ID is sufficient for EJB Entity Beans
since the EJB Component Architecture does not expose object references. Entity B
do support the concept ofHandle which could be implemented as a CORBA
persistent object reference. If so, a value ofUSER_ID allows the container to assign
an uniqueObjectId which can be an EJBHandle or some index to it.

implicit activation

The implicit activation policy must be set toNO_IMPLICIT_ACTIVATION when the
servant retention policy isNON_RETAIN.

servant retention

A servant retention policy value ofNO_RETAIN is required to use a
ServantLocator .

Id Assignment

USER_ID
SYSTEM_ID

Implicit Activation NO_IMPLICIT_ACTIVATION

Servant Retention NO_RETAIN

Transaction Policy ALLOWS_SHARED

Request Processing USE_SERVANT_MANAGER

Table 66-6POA Policies for the EJBEntity Container

Policy Name Required Value Design Value
66-244 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

in a

h

ng
transaction policy

A transaction policy value ofALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

request processing

A request processing policy value ofUSE_SERVANT_MANAGER allows the
container to be implemented in theServantManager .

66.2.7.1 Creating Object References

Object references are not exposed directly to the enterprise Bean programmer for
Entity Beans although they are exposed indirectly via theHandle . Only EJBHome
andEJBObject have externally visible references and they are created by the EJB
container’s tools, not the enterprise Bean programmer. To support an Entity Bean
CORBA EJB container, the container provider will need to do the following:

• create interface definitions forEJBHome andEJBObject and store those
definitions in the interface repository.

• create entries in CORBA naming using the symbolic name defined by EJB whic
point to the instances ofEJBHome andEJBObject to be used by this Entity
Bean.

• create an implementation ofEJBHome which delegate factory and finder
operations to the enterprise Bean’sejbcreate andejbfind<METHOD> operations.

• create an implementation ofEJBObject which delegate application operations to
the enterprise Bean’s application operations.

66.2.7.2 Factories and New Instances

EJB client programmers locateEJBHome usingJNDI . From the EJB client’s
perspective, factories for Entity Beans are operations implemented onEJBHome . The
enterprise Bean developer implements the operations and the container provider
implements theEJBHome object which delegates to the enterprise Bean’sejbcreate
operations. The container also stores a symbolic name forEJBHome in CORBA
naming so it can be accessed by a clientJNDI call. A create operation onEJBHome
creates an instance of the enterprise Bean which derives fromEJBObject . Because
home operations are delegated to the enterprise Bean,EJBHome andEJBObject
must be collocated.

66.2.7.3 Invoking an Operation on a New Instance

EJB clients make all operation requests onEJBObject . Installing an Entity Bean in an
EJBEntity container requires the container to create anEJBObject implementation
of the enterprise Bean’s methods which ultimately delegates the processing of the
request to the bean implementation. In many EJB container implementations, the
EJBObject implementation implements the EJB container functions, including setti
declarative transaction and security policies before invoking the enterprise Bean’s
operations.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

by

Bean
In the CORBA environment of the exemplary design, these functions are performed
the ServantManager for the EJBEntity Container before the operation request on
EJBObject is actually dispatched by the POA.This allows the generatedEJBObject
implementation to simply delegate the operation request to the enterprise Bean.
Figure 66-1 shows the necessary steps to make an operation request on an Entity
in the EJBEntity container:

Figure 66-1 Using the EJBEntity Container to Create new Entity Beans

Operation foo on a new Entity Bean K Flow

Client Client ORB K_impl

bind (EJBHome, “name”)

JNDI.lookup(“name”)

EJBHome

EJBHome.create(primary_key)

foo.EJBObject

(1)

(2)

(3)

(5)

POA

pre_invoke

EJBEntityServant
Locator

invoke(EJBObject.foo)

(6)

(7)

PSS

K

(8)

(10)

create(key)
EJBObject

(4)

create_key

EJBHome

Directory
JNDI

post_invoke

(11)

(12)

(9)
66-246 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

ss

s

e
ry

d

f

der
1. Container tools binds a entity bean’s home with CORBA naming to enable acce
via JNDI (NamingContext.bind ).

2. Client uses JNDI to locate theEJBHome(Khome) that creates component instance
of type K.

3. Client invokes acreate operation on the entity bean home (EJBHome.create )
using a primary key. SinceK is an entity bean, the home must talk to a persistenc
mechanism to create a new record in the persistent store using the same prima
key.

4. A reference toEJBObject is returned to the client.

5. Client invokes thefoo operation onEJBObject (EJBObject.foo ). Since
EJBObject is not active, the POA invokes thepre_invoke operation on the
ServantLocator (ServantLocator.pre_invoke ).

6. TheServantLocator talks to the persistence mechanism to find the incarnation
associated with this request. The persistence mechanism finds the appropriate
incarnation and returns it to theServantLocator .

7. TheServantLocator creates a newexecutor to handle the request. The associate
servant is returned to the POA to process the request.

8. The POA then dispatches the request to the servant (invoke(EJBObject.foo) )

9. TheEJBObject implementation delegates the operation to the Entity Bean
implementation.

10. After the request completes, the POA invokes theServantLocator
(ServantLocator.post_invoke) .

11. The POA returnsfoo response to client.

12. Steps [5] through [11] are repeated until the operation following the expiration o
the servant lifetime policy. At that point, theServantLocator releases the
associatedexecutor.

66.2.7.4 Finders and Existing Instances

EJB client programmers locateEJBHome usingJNDI . From the EJB client’s
perspective, finders for entity beans are also operations implemented onEJBHome .
The enterprise Bean developer implements the operations and the container provi
implements theEJBHome object which delegates to the enterprise Bean’s
ejbfind<METHOD> operation. The container also stores a symbolic name for
EJBHome in CORBA naming so it can be accessed by a clientJNDI call. A
findByPrimaryKey operation onEJBHome locates an instance ofEJBObject using
a primary key. Because home operations are delegated to the enterprise Bean,
EJBHome andEJBObject must be collocated.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

ng
66.2.7.5 Invoking an Operation on an Existing Instance

Figure 66-1 shows the necessary steps to make an operation request on an existi
Entity Bean in anEJBEntity container:

Figure 66-1 Using the EJBEntity Container to Locate Existing Entity Beans

1. Container tools binds the entity bean’s home to a string (“name” ) with
CosNaming .

Operation foo on an Existing Component K Flow

Client Client ORB
Name

Service K_impl

bind(EJBHome,”name”)

EJBHome

EJBHome.find(primary_key)

foo.EJBObject

(1)

(2)

(3)

(5)

POA

pre_invoke

EJBEntityServant
Manager

invoke(EJBOBject.foo)

(6)

(7)

PSS

K

(8)

(10)

find(key)
EJBObject

(4)

find

post_invoke

(11)

(12)

NamingContext.lookup(EJBHome,”namestring”)

(9)
66-248 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999



66

to

d

f

ge to

e

2. Client usesJNDI.lookup operation to find the home (EJBHome) that finds
component instances of typeK.

3. Client invokes a find operation on the home (EJBHome.find ) using a primary
key. SinceK is an entity bean, the home must talk to the persistence mechanism
locate an element in the persistent store with the same primary key.

4. A reference toEJBObject is returned to the client.

5. Client invokes thefoo operation onEJBObject (EJBObject.foo ). Since
EJBObject is not active, the POA invokes thepre_invoke operation on the
ServantLocator (ServantLocator.pre_invoke ).

6. TheServantLocator talks to the persistence mechanism to find the incarnation
associated with this request. The persistence mechanism find the appropriate
incarnation and returns it to theServantLocator .

7. TheServantLocator creates a newexecutor to handle the request. The associate
servant is returned to the POA.

8. The POA then dispatches the request to the servant
(invoke(EJBObject.foo) ).

9. TheEJBObject implementation delegates the operation to the Entity Bean

10. After the request completes, the POA invokes theServantLocator
(ServantLocator.post_invoke) .

11. POA returnsfoo response to client.

12. Steps [5] through [11] are repeated until the operation following the expiration o
the servant lifetime policy. At that point, theServantLocator releases the
associatedexecutor to the pool.

66.2.7.6 Servant Lifetime Management

Enterprise JavaBeans relies on the garbage collection features of the Java langua
manage bean lifetimes. This is equivalent to a servant lifetime policy ofcontainer.
However, since entity beans are required to use transactions, theEJBEntity container
may choose to implement a servant lifetime policy oftransaction.

66.3 Persistence Integration

Component persistence is supported by the process, entity, andEJBEntity containers.
The container architecture permits the persistence provider to be separate from th
container provider since we expect that these functions will often be provided by
different vendors. This section describes the various forms of persistence support
available for CORBA components and the responsibilities of the container, the
persistence provider, and the component developer.

Two forms of component persistence are supported by each of the containers
supporting persistence:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Persistence Integration 29 October 1999



66

he

used

ted

is to
some
nce

to the
is not
• Container-managed persistence where the container provider interacts with the
persistence provider and

• Self-managed persistence where the component developer must interact with t
persistence provider.

These are described more fully in the following sections.

The process and entity containers also support a run time accessor to a set of
persistence API functions, provided by the CORBA persistent state service, which
enable the component to save and restore its private state. If other mechanisms are
for component persistence (e.g. SQL, ODBC, etc.), it is the responsibility of the
component developer to implement the mapping directly. This is illustrated in
Figure 66-1 below:

Figure 66-1 Container Persistence Architecture

The entity andEJBEntity containers also support access to the primary key. A
primaryKey value is associated with the component’s home for thesecontainer
categories.

66.3.1 Container-managed Persistence

Container-managed persistence supports the declaration of abstract state associa
with the component or its facets. This abstract state is declared using a state
declaration language defined by the CORBA persistence state service. State which
be container-managed can use the CORBA persistence state service or it may use
other persistence mechanism as long as that mechanism can support the persiste
framework defined by the CORBA persistent state service.

When CORBA persistence is used, code can be generated to support theccm_load
andccm_store operations on theEntityComponent interface or theejbLoad and
ejbStore operations of the EJB Entity container. For process and entity containers
supporting extended components, this code may make use of the runtime access
persistence provider. For basic components, access to a persistence mechanism
specified and left to the container implementation.

CORBA
Component

ContainerCallbacks

External

P
O

A

PSSC

l
i

e
n
t

66-250 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Persistence Integration 29 October 1999



66

ge

nent

nt’s

e
e,

ay
nisms.

ed.

s

nt.

er is
h

This is identical to the design for EJB 1.1 which specifies the fields which
participate in container-managed persistence, but leaves how those fields
are made persistent to the container providers. Although common expecta-
tion is that JDBC will be used, that is not mandated.

For EJB Entity containers, it is likely that this code will utilizeJDBC or some other
Java persistence mechanism since there is not an abstract state definition langua
currently defined for EJB.

If CORBA persistence is not used in the process and entity containers, the compo
developer must implement theccm_load andccm_store operations as well as
provide implementations for all factory and finder methods defined on the compone
home.

66.3.2 Self-managed Persistence

Self-managed persistence is also supported by the samecontainer categories. Self-
managed persistence is assumed by process and entity containers if abstract stat
declarations do not exist for a particular component. With self-managed persistenc
automatic code generation for saving and restoring state is not possible, so the
responsibility lies completely with the component developer. Again, the developer m
chose between the CORBA persistence state service and other persistence mecha

For process and entity containers supporting extended components, the container
provides run time access to the CORBA persistent state service which may be us
For basic components, the persistence API is the responsibility of the component
implementor and is not specified. It is expected that normal database APIs such a
ODBC, JDBC, or SQL will be used. Extended component developers must use the
operations onEntity2Context to create aComponentId that encapsulates the
information model which describes the persistent state associated with a compone
These operations are defined in Section 62.4.3.6, “ComponentId Interface,” on
page 62-160.

66.3.3 Interactions between the Container and the Persistence Provider

The design for CORBA components assumes the likelihood that containers and
persistence solutions will be provided by different vendors.This assumption effects
both the component developer and the container provider. The component develop
isolated from the persistence provider by the CORBA persistent state service whic
defines persistence APIs for the component developer. The container provider has
several responsibilities for persistence integration. These include:

• establishing connection to the persistence mechanism,

• managing DB connections with the persistence store

• synchronizing component state with durable state.

These subjects are covered in the next sections.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Persistence Integration 29 October 1999



66

gh
ity

ce

lient
ive
nce.
are

nent

r

the

ibility

nd

tate.

nt

tion
in
tion
66.3.3.1 Connecting to the Persistence Mechanism

As part of creating a container supporting persistence (process, entity, andEJBEntity
containers), connectivity to the persistence mechanism must be established. This
includes obtaining initial references the persistence provider makes available throu
the ORB, connecting to the persistence provider (including the exchange of secur
information required), and obtaining references from the persistence provider to
implement an accessor to the persistence APIs provided by the CORBA persisten
state service.

66.3.3.2 Managing DB Connections

Most persistence providers today require that a DB connection be allocated by a c
before any data access operations can be invoked. Typically, this is a very expens
operation, which must be done infrequently to achieve reasonable system performa
We expect container implementations to manage a pool of such connections, which
constructed as part of the container creation process, and allocate these to compo
implementations as needed, typically for the duration of a transaction, although a
connection may be retained longer if the container does not need it for some othe
component. As a result, component implementations will not have to deal with this
function directly and the DB connection can be assigned to a component when its
initial request to the persistence provider is made.

66.3.3.3 Synchronization of Component State with Persistence State

The interfaces provided by the CORBA persistent state service supportsflush
operations which can be used by the component developer to transfer state from
container domain to the persistence domain.

• For self-managed persistence, the component developer assumes this respons
by implementing theccm_store callback operation.

• For container-managed persistence, the container assumes this responsibility a
invokes theflush operation on each persistent store involved in the current
transaction.

Both approaches guarantee that the persistence provider, and not the component
developer or the container, assumes the responsibility for durability of persistent s

66.4 Event Management Integration

CORBA components define a simple event model which supports two forms of eve
communication:

• events which are published anonymously to a dedicated channel

• events which are published anonymously to a shared channel

The container is responsible for mapping those semantics onto the CORBA notifica
service. Although it is possible to connect event consumers and suppliers directly
some cases, the container will always deliver component events through a notifica
66-252 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Event Management Integration 29 October



66

tent
to

e

o
1-44

ken

A

the

ch

hich

t be
the

ique
The
channel to ensure a more robust event distribution mechanism and to allow consis
transaction semantics (defined with the event deployment descriptor) to be applied
both the delivery of the event to the channel and the removal of the events from th
channel (i.e. a two-transaction model).

A component event is represented as a CORBAvaluetype. This permits event emitters
and publishers to be matched with their consumers by the event types they wish t
exchange. The event architecture as described in Section 61.6, “Events,” on page 6
requires that thevaluetype be able to be transmitted as a CORBAany through an
event channel. This makes it possible for the container to use untyped notification
channels for transmitting the actual event. The containers responsibility can be bro
into three major areas and is described in the next few sections:

• setting up the channels to be used, including all the required proxies

• accepting a CORBA component event and pushing it to an event channel as a
structured event

• receiving a structured event from an event channel and converting it to a CORB
component event

66.4.1 Channel setup

When a component is installed in a container, the deployment descriptor contains
information about the types of events published or emitted and the types of events
component consumes. The container is responsible for initializing the CORBA
notification service and establishing the event channels to be used.

• For published events, it accomplishes this with theEvent::create_channel
operation which creates a unique channel for this event type.

• For emitted events, it connects the component to a pre-configured channel whi
supports theCosNotifyChannelAdmin::SupplierAdmin .

• For consumed events, it connects the component to a pre-configured channel w
supports theCosNotifyChannelAdmin::ConsumerAdmin .

The actual channel names are not defined in the deployment descriptors and mus
made available to the container in container-specific configuration data. This allows
installation to configure shared channels to be used by other users of CORBA
notification as well as component implementations. The container must create a un
channel for events which are designated as emanating from this component only.
technique by which uniqueness is ensured is not specified.

There are several possible schemes that could be made to work. Channels
could be given unique names using something like a UUID to ensure
uniqueness. Hierarchical names is another possibility, where all channels
created by a specific container would be prefixed by the name of the con-
tainer (perhaps a URL). CORBA Security could also be used to prevent
events from being pushed to a channel which is dedicated to component
events. Other schemes are also possible.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Event Management Integration 29 October 1999



66

, or
e
de

nnel.

e at

nnel
The CORBA notification service supports filters on both the supply side and the
consume side of a channel and allows them to be configured on the channel itself
on the proxy being used to supply or consume events. This specification allows th
container provider to setup filters in any way it chooses since they too must be ma
available to the container at container creation time through a container-specific
configuration file.

66.4.2 Transmitting an event

When a CORBA component emits or publishes an event (using thepush operation on
<event_ type>Consumer ), the operation is delegated to the container by the
generated code so that the container can actually push this event to the proper cha
The following steps are required:

• channel lookup - for emitted events, this is the channel configured for general us
container start-up, for published events, this is the channel established by the
container for the purpose of pushing this event type.

• Constructing the notificationEventHeader - The EventHeader consists of some
static information, including the two-part (domain_name and atype_name )
event_type (not to be confused with the<event_type> of the CORBAvaluetype
which holds the event) andevent_name . These fields may optionally be provided
on theEvent::obtain_channel operation. If not, they are defaulted as outlined in
Table 66-7 below.

• If configuration-defined filterable data is to be associated with this event, it is
placed in the portion of the structured event header defined by the CORBA
notification service (CosNotification::FilterableEventBody ). Container
implementations are not required to insert filterable data.

• The valuetype representing the actual event data is placed into theany portion of
the structured event.

• A CosNotifyComm::push_structured_event is issued to CORBA notification.

66.4.3 Receiving an event

In order to receive an event, the container must connect its proxy to the event cha
the event is to be received on and implement the
CosNotifyComm::structured_push_consumer interface. The container connects
to the channel as a result of anEvent::listen operation. The container performs a

Table 66-7Structured Event Header

Event Header field Default Value

domain_name CCM or blank

type_name Repository Id of <event_type>

event_name blank

filterable_data blank
66-254 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Event Management Integration 29 October



66

t

CosNotifyChannelAdmin::connect_structured_push_consumer operation on
behalf of the component. Thelisten operation receives all events from the channel,
subject to filter constraints.

When the container’sstructured_push_consumer interface is invoked, it performs
the following processing:

• It extract the event data from theany portion of the structured event and converts i
to a CORBAvaluetype which represents the event.

• It removes thedomain_name , type_name , andevent_name from the
EventHeader .

• It extracts the<event_type > from the component event in theany portion of the
event data structure.

• It invokes<event_type>Consumer::push passing in thevaluetype
<event_type >.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Event Management Integration 29 October 1999



66
66-256 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Event Management Integration 29 October



Packaging and Deployment 69
This chapter describes the CORBA componentpackaging and deployment model.

Issue – It contains all new text taken from the CCM final submission
orbos/99-07-01 with only minor editorial changes - Jeff Mischkinsky

69.0.0.1 Contents

This chapter contains the following sections.

Section Title Page

“Introduction” 69-258

“Component Packaging” 69-258

“Software Package Descriptor” 69-259

“CORBA Component Descriptor” 69-273

“Component Assembly Packaging” 69-298

“Component Assembly File” 69-298

“Component Assembly Descriptor” 69-298

“Property File Descriptor” 69-321

“Component Deployment” 69-327
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999 69-257



69

d

iles.
er in
s

es
, to

e

f a set
cifies
ons.

o an
ol

ithin

d

r and
ould
69.1 Introduction

Component implementations may be packaged and deployed.

A CORBA Component package maintains one or more implementations of a
component. It may be installed on a computer or grouped together with other
components to form anassembly. A component assembly is a group of interconnecte
components represented by an assembly package.

A package, in general, consists of one or more descriptors and a set of files. The
descriptors describes the characteristics of the package and points to its various f
The files that make up a package, including the descriptor, may be grouped togeth
an archive file or stored separately. When stored separately, the descriptor contain
pointers to the location of each file.

The component package is a specialization of a general software package. The
software packaging scheme, described here, could be used to package arbitrary
software entities. In fact it was initially inspired by the Open Software Description
(OSD) note to the W3C. OSD is an XML vocabulary for describing software packag
and their dependencies. We have extended OSD slightly, without loss of generality
support component packaging.

A component package may be deployed alone, as is, or it may be included in a
component assembly package and deployed as part of the assembly along with th
other components of the assembly.

A component assembly is a set of interrelated components and component homes
represented by an assembly package. A component assembly package consists o
of component packages and an assembly descriptor. The assembly descriptor spe
the components that make up the assembly, partitioning constraints, and connecti
Connections are between interface ports, represented byprovidesandusesfeatures and
between event ports, represented byemits, produces,andconsumesfeatures.

Component and assembly packages are provided as input to a deployment tool.

A deployment tool deploys individual components and assemblies of components t
installation site, usually a set of hosts on a network. The user of the deployment to
guides in determining where each component should be installed. Components w
an assembly may be installed on a single machine or scattered across a network.

Based on an assembly descriptor and user input, the deployment tool installs and
activates component homes and instances; it configures component properties an
connects components together via interface and event ports, as indicated in the
assembly descriptor.

69.2 Component Packaging

A software package is represented by a descriptor and a set of files. The descripto
associated files are grouped together in a ZIP archive file. The software package c
be used to describe arbitrary software packages.
69-258 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October 1999



69

RBA

. The
ore
to
CSD
the

n

In relation to CORBA Components, software packages are used to package a CO
Component implementation.

69.3 Software Package Descriptor

The contents of a software package is described by a software package descriptor
descriptor consists of general information about the software followed by one or m
sections describing implementations of that software. An XML vocabulary is used
describe component software packages. The descriptor file has a “.csd” extension.
stands for CORBA Software Descriptor. When used in an archive, the CSD file for
archive is placed in a top level directory called “meta-inf”.

The structure and intent of the descriptor can be better understood by looking at a
example.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October 1999



69
69.3.1 A softpkg Descriptor Example

<softpkg name="Bank" version="1,0,1,0">
<pkgtype>CORBA Component</pkgtype>
<title>Bank</title>
<author>

<company>Acme Component Corp.</company>
<webpage href="http://www.acmecomponent.com/>
</author>

<description>Yet another bank example</description>
<license href="http://www.acmecomponent.com/license.html" />
<idl id="IDL:M1/Bank:1.0" ><link href=”ftp://x/y/Bank.idl”/></idl>

<propertyfile><fileinarchive name="bankprops.cpf"/></propertyfile>

<implementation id=”DCE:700dc518-0110-11ce-ac8f-0800090b5d3e”>
<os name="WinNT" version="4,0,0,0" />
<os name="Win95" />
<processor name="x86" />
<compiler name="MyFavoriteCompiler" />
<programminglanguage name="C++" />

<dependency type=”ORB”><name>ExORB</name></dependency>

<descriptor type=”CORBA Component”>
<fileinarchive>processcontainer.ccd</fileinarchive>

</descriptor>

<code type=”DLL”>
<fileinarchive name="bank.dll"/>
<entrypoint>createBankHome</entrypoint>

</code>

<dependency type=”DLL”>
<localfile name="rwthr.dll"/>

</dependency>

</implementation>

<implementation id=”DCE:297f3e18-0110-11ce-ac8f-08074982ad3e”
variation=”RemoteHome”>

<os name="Solaris" version="5,5,0,0" />
<processor name="sparc" />
<!-- . . . -->

</implementation>

<implementation> <!-- another implementation --> </implementation>
</softpkg>
69-260 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October



69

ptor.

nt
re

s

age

cal
69.3.2 The Software Package Descriptor XML Elements

This section describes the XML elements that make up a software package descri
The section is organized starting with the root element of the package descriptor
document,softpkg, followed by all subordinate elements, in alphabetical order. The
completesoftpkg DTD may be found in Section 695.1, “softpkg.dtd,” on
page 695-335.

Note –An effective strategy for studying an XML DTD is to recursively navigate from
the root element, which in this case issoftpkg, to each child element.

69.3.2.1 The softpkg Root Element

Thesoftpkg element is the root element of the document. As well, it is a child eleme
of dependency. It contains a set of general child elements that describe the softwa
package. This is followed by one or more implementation specifications.

A softpkg archive may contain multiple implementations of a component. This allow
the component implementor to provide specialized implementations for different
operating systems, compilers, or ORBs, or to provide different programming langu
implementations of the component. Each implementation is represented in thesoftpkg
descriptor as a distinct implementation element.

<!ELEMENT softpkg
( title
| pkgtype
| author
| description
| license
| idl
| propertyfile
| dependency
| descriptor
| implementation
| extension
)* >

<!ATTLIST softpkg
name ID #REQUIRED
version CDATA #OPTIONAL >

The attributes are as follows:

name

Uniquely identifies the package within the package.

version

Specifies the version of the component. The format of the version string is numeri
major and minor version numbers separated by commas (e.g., “1,0,0,0”).
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October 1999



69

his

in
69.3.2.2 The author Element

Theauthor element is used to identify the author of thesoftpkg. It may containname,
company, andwebpagechild elements.

<!ELEMENT author
( name
| company
| webpage
)* >

69.3.2.3 The code Element

Thecodeelement points to a file in the archive which implements the component. T
could be, for example, a DLL, a .so, or a .class file. Thefileinarchive child element is
used to indicate the code file within the archive.codebaseand link are used to point to
code files outside of any archive. The optionalentrypoint child element is used to
specify an entry point to the code. The optionalusageelement is used to describe how
to use, i.e., invoke, the code.

<!ELEMENT code
( ( codebase

| fileinarchive
| link
)

, entrypoint?
, usage?
) >

<!ATTLIST code
type CDATA #IMPLIED >

The type attribute specifies the type of code. The types “DLL ”, “ Executable”, and
“ Java Class” shall be recognized as valid types.

69.3.2.4 The codebase Element

The codebaseelement is used to specify a resource. If the resource isn’t available
the local environment, then a link specifies where it may be obtained.codebasehas an
EMPTY content model.

<!ELEMENT codebase EMPTY >
<!ATTLIST codebase

filename CDATA #IMPLIED
%simple-link-attributes; >

codebasehas two attributes:name - the name of the resource, andhref--as defined in
simple-link-attributes --the link.
69-262 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October



69

he

or

y

69.3.2.5 The company Element

The company element, an optional child element ofauthor, specifies the company
that created thesoftpkg. It contains string data.

<!ELEMENT company ( #PCDATA ) >

69.3.2.6 The compiler Element

The optionalcompiler element specifies the compiler used to create an
implementation.compiler has an empty content model.

<!ELEMENT compiler EMPTY >
<!ATTLIST compiler

name CDATA #REQUIRED
version CDATA #IMPLIED >

The required attributename, specifies the name of the compiler and the optional
version, the version of the compiler. The version is specified in a “w,x,y,z” format.

69.3.2.7 The dependency Element

The dependencyelement is used to specify environmental or other dependencies. T
type of dependency is specified by thetype attribute. Thedependencyelement is a
child element of both thesoftpkg element andimplementation elements. When used
as a child ofsoftpkg, it specifies general dependencies applicable to all
implementations. When used as a child ofimplementation, it specifies implementation
specific dependencies.

<!ELEMENT dependency
( softpkgref
| codebase
| fileinarchive
| localfile
| name
) >

<!ATTLIST dependency
type CDATA #IMPLIED
action (assert | install)"assert">

The type attribute specifies the type of the resource required. This may be set to, f
example, “DLL”, “.so”, or “.class”.

Whenaction is set toassert, the installation process must verify that the dependenc
exists in the environment. Ifaction is set toinstall, the installation process must install
the dependency if it does not already exist.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October 1999



69

ent

tion

n

69.3.2.8 The description Element

The description element contains a string description. It is used to describe its par
element. It contains string content.

<!ELEMENT description ( #PCDATA ) >

69.3.2.9 The descriptor Element

Thedescriptor element is used to refer to descriptor files associated with asoftpkg or
implementation. In a CORBA Componentsoftpkg, it is used to point to the CORBA
Component descriptor.

<!ELEMENT descriptor
( link
| fileinarchive
) >

<!ATTLIST descriptor
type CDATA #IMPLIED>

The type attribute is the type of the descriptor.

Note – With respect to the CORBA Component model, Atype of “CORBA
Component” is used to indicate a CORBA component descriptor (described in sec
69.4.4 on page 275).

69.3.2.10 The entrypoint Element

The entrypoint element specifies the entry point to a software package. See sectio
69.9.5 on page 332 for information on CORBA component entry points.
69-264 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October



69

the

ies

r

e

tor.
e

<!ELEMENT entrypoint ( #PCDATA ) >

69.3.2.11 The extension Element

The extensionelement is used to add experimental or vendor specific elements to
softpkg DTD. The content model of the extension element isPCDATA , meaning that it
can have character data or markup.

An effort has been made to make theextensionelement an optional child element of
all non-trivial elements. Processors may ignoreextensionelements that they do not
recognize.

<!ELEMENT extension (#PCDATA) >
<!ATTLIST extension

class CDATA #REQUIRED
origin CDATA #REQUIRED
id ID #IMPLIED
extra CDATA #IMPLIED
html-form CDATA #IMPLIED >

The attributes of theextensionelement are as follows:

class

Used to distinguish this extension element usage. A processing application identif
extension elements that it understands by examining an extension element’sclassand
origin attributes.

origin

An origin attribute is required to identify the party responsible for the extension; fo
example, an ORB vendor.

id

An optional ID attribute which must be unique in the file.

extra

An extra attribute that may be used however the originator wishes.

html-form

The html-form element is used for formatting. The content will be formatted per th
html element type indicated, e.g., “<em>”.

69.3.2.12 The fileinarchive Element

The fileinarchive element is used to specify a file in the same archive as the descrip
The optionallink element may be used to point to an external archive, in which cas
the file will be looked for in that file.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October 1999



69

code
<!ELEMENT fileinarchive
( link? ) >

<!ATTLIST fileinarchive
name CDATA #REQUIRED >

The name attribute specifies the name or path of the element in the archive.

69.3.2.13 The humanlanguage Element

The humanlanguageelement specifies a spoken language.humanlanguagehas an
EMPTY content model.

<!ELEMENT humanlanguage EMPTY >
<!ATTLIST humanlanguage

name CDATA #REQUIRED >

The human language name is specified in thename attribute.

69.3.2.14 The idl Element

The idl element points to file or repository containing an idl definition.

<!ELEMENT idl
( link
| fileinarchive
| repository
) >

69.3.2.15 The implementation Element

The implementation element contains descriptive information about a particular
implementation of the software represented by thesoftpkg descriptor. An
implementation is described by platform dependencies, descriptors, dependencies,
filename, entry points and other characteristics.
69-266 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October



69

.

e

<!ELEMENT implementation
( description
| code
| compiler
| dependency
| descriptor
| extension
| programminglanguage
| humanlanguage
| os
| propertyfile
| processor
| runtime
)* >

<!ATTLIST implementation
id ID #IMPLIED >

The id attribute is a DCE UUID which uniquely identifies the implementation.

The variation attribute is used to indicate a variation from a normal implementation
The interpretation of the variation attribute depends on user of the softpkg.

Note – The only valid variation string defined by the CORBA Component model is
“ ProxyHome”. The ProxyHome variation indicates that the component
implementation contains a proxy home only, not a full component implementation.

69.3.2.16 The implref Element

The implref element is used to refer to an implementation within a softpkg.

<!ELEMENT implref EMPTY >
<!ATTLIST implref

idref CDATA #REQUIRED >

The idref attribute refers to a uniqueimplementation elementid in the softpkg
descriptor.

69.3.2.17 The license Element

The licensechild element ofsoftpkg is used to point to the text of a usage license. Th
license is pointed to by anhref attribute. Thelicenseelement may have arbitrary string
content.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October 1999



69

al

tion
<!ELEMENT license ( #PCDATA ) >
<!ATTLIST license

%simple-link-attributes; >

69.3.2.18 The link Element

The link element is used to specify a generic link. Thehref attribute indicates the link.
The element can have string content.

<!ELEMENT link ( #PCDATA ) >
<!ATTLIST link

%simple-link-attributes; >

69.3.2.19 The localfile Element

The localfile element is used to specify a file that is expected to be found in the loc
environment.

<!ELEMENT localfile EMPTY >
<!ATTLIST localfile

name CDATA #REQUIRED >

The name of the file is specified in thename attribute.

69.3.2.20 The name Element

The name element, as an optional child element ofauthor, specifies the name of the
author. It has string content.

<!ELEMENT name ( #PCDATA ) >

69.3.2.21 The os Element

Theoselement is used to specify a particular operating system that the implementa
will work with. This can be specified multiple times if the implementation will work
on more than oneos.

<!ELEMENT os EMPTY >
<!ATTLIST os

name CDATA #REQUIRED
version CDATA #IMPLIED>

The name attribute specifies the name of the operating system.

The version attribute specifies the version of theos in “w,x,y,z” format.

Legal values include:

• AIX
69-268 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October



69

ust
• BSDi

• VMS

• DigitalUnix

• DOS

• HPBLS

• HPUX

• IRIX

• Linix

• MacOS

• OS/2

• AS/400

• MVS

• SCO CMW

• SCO ODT

• Solaris

• SunOS

• UnixWare

• VxWorks

• Win95

• WinNT

69.3.2.22 The pkgtype Element

The pkgtype element is used to identify the type of software that thesoftpkg
represents. This specification reserves package types “CORBA Component” and
“ CORBA Interface Impl ” for the packaging of CORBA component and interface
implementations.

<!ELEMENT pkgtype ( #PCDATA ) >
<!ATTLIST pkgtype

version CDATA #IMPLIED >

The optionalversion attribute specifies a version of the package type.

69.3.2.23 The processor Element

The processor element indicates the type of processor that the implementation m
run on, if there is any such constraint.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October 1999



69

e

<!ELEMENT processor EMPTY >
<!ATTLIST processor

name CDATA #REQUIRED >

The name of the processor is indicated in thename attribute.

Legal values include:

• x86

• mips

• alpha

• ppc

• sparc

• 680x0

• vax

• AS/400

• S/390

69.3.2.24 The programminglanguageElement

The programminglanguageelement specifies the type of the component
implementation.programminglanguagehas an empty content model.
programminglanguage is a child element ofimplementation.

<!ELEMENT programminglanguage EMPTY>
<!ATTLIST programminglanguage

name CDATA #REQUIRED
version CDATA #IMPLIED >

The required programminglanguagename and optionalversion attributes specify the
programming language used to implement the component.

69.3.2.25 The propertyfile Element

Thepropertyfile element is used to refer to a property file associated with thesoftpkg
or implementation.

A property file of a particular type, defined at the top level of the descriptor, may b
overridden by implementation specific property files of that type, defined in an
implementation element.
69-270 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October



69

a

An
<!ELEMENT propertyfile
( fileinarchive
| link) >

<!ATTLIST propertyfile
type CDATA #IMPLIED >

The type attribute, distinguishes a property file from other types of property files. If
there is only one type of property file, or if the type of property file is implicit given
context, then thetype is not required.

69.3.2.26 The runtime Element

The runtime element specifies a runtime required by a component implementation.
example of a runtime is a Java VM.

<!ELEMENT runtime EMPTY >
<!ATTLIST runtime

name CDATA #REQUIRED
version CDATA #IMPLIED>

The name and version of the runtime are specified in thename and version
attributes. The version is specified in “w,x,y,z” format.

69.3.2.27 The simple-link-attributes Entity

The simple-link-attributes entity is used to specify link attributes. The default link
form is a simple link.

<!ENTITY % simple-link-attributes "
xml:link CDATA #FIXED 'SIMPLE'
href CDATA #REQUIRED
">

The user of an element that uses these link attributes will likely only need to be
concerned with thehref attribute. However the user may specify other attributes if
desired.

Note – In the context of CORBA Components, thehref attribute may be used to
specify INS format names.

To demonstrate the usage of an element that employs thesimple-link-attributes entity,
consider the following element definition:

<!ELEMENT exampleelement EMPTY >
<!ATTLIST exampleelement

%simple-link-attributes; >

This could be used as follows:
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October 1999



69
<exampleelement href=“http://www.abc.com/xyz” />

Issue – The W3C XLL work is still in progress at the time of this writing.
This entity definition will be modified if necessary when the W3C work
completes.

69.3.2.28 The softpkg Element

This is the root element of the descriptor. See section 69.3.2.1 on page 261.

69.3.2.29 The softpkgref Element

The softpkgref element refers to an external softpkg. The file is referenced by a
fileinarchive element or alink . An optional implref element refers to a particular
implementation within the softpkg descriptor.

<!ELEMENT softpkgref
( ( fileinarchive

| link
)
, implref?
) >

69.3.2.30 The title Element

The title element is used to specify the friendly, or tool name of thesoftpkg. The title
element contains string data.

<!ELEMENT title ( #PCDATA ) >

69.3.2.31 The usage Element

The usageelement contains a string usage description.

<!ELEMENT usage ( #PCDATA ) >

69.3.2.32 The webpage Element

The webpageelement, an optional child element ofauthor, specifies a web page
associated with the author.

<!ELEMENT webpage ( #PCDATA ) >
<!ATTLIST webpage

%simple-link-attributes; >
69-272 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October



69

ent

the
iler

ML
s

lay
the

rm
the
will

ished

n
he

ct
69.4 CORBA Component Descriptor

The CORBA Component descriptor describes a component. It is referred to by a
<descriptor type=”CORBAComponent> element in a softpkg descriptor
describing a CORBA component.The CORBA Component descriptor specifies
component characteristics, used at design and deployment time. A component
descriptor file has a recommended “.ccd” extension, standing for CORBA Compon
Descriptor.

The component descriptor is generated by a CIDL compiler. This is convenient as
CIDL compiler has much of the necessary information at hand. However, the comp
doesn’t have all of the information required. The user, likely with the help of a
packaging tool, will have to modify the generated descriptor. This could be done
manually, but it is more likely to be done with the help of a packaging tool.

The component descriptor is described using an XML vocabulary. The complete X
DTD for the descriptor is in Appendix 695.2 on page 339. This chapter will discus
each element of the descriptor in detail.

69.4.1 Component Feature Description

The component descriptor provides information that a design tool may use to disp
information about a component. This includes information about the interfaces that
component supports and its ports.

Note – For the purpose of component packaging and deployment we will use the te
ports to collectively describe the interfaces that a component uses and provides and
events that it emits, publishes, and consumes. In addition, provides and uses ports
be calledinterface ports, and emits, publishes, and consumes ports will be termed
event ports.

The component descriptor describes the structure of a component with respect to
supported interfaces, inherited components, and uses and provides ports. The
component is described by acomponentfeatureselement, which describes inherited
components, supported interfaces, used and provided interfaces, and emitted, publ
and consumed events. If the component inherits from other components then the
features of that component are described in a separatecomponentfeatureselement and
referenced by theinheritscomponent. The primarycomponentfeatureselement of the
descriptor is indicated by therepositoryid element of the component descriptor.

Each interface supported or provided by a component is described by aninterface
element. Interface elements are referenced by the repository id of the interface. A
interface has a name and a repository id, and may inherit from other interfaces. T
inheritance relationship is represented by theinheritsinterface element.

This information allows a tool to display the features of a component and to conne
components together based on those features. For example, a component whichuses
interfaceX could beconnectedto another component thatprovidesinterfaceX, based
on information in each component’s descriptor.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October 1999



69

r

t.

the

ent

ny

ents
facet

than 1
69.4.2 Deployment Information

At deployment time, the component descriptor is used to determine the type of
container in which the component needs to be installed and to provide information
about the component to the container.

The componentkind element tells the creator of the container what kind of containe
to create. Acomponentkind can be eithersession, service, process, or entity .

The transaction element indicates the transactional characteristic of the componen

The eventpolicy is used to indicate the quality of service of event ports

The threading element indicates how the container should dispatch operations on
component instance. Ifthreading is set tomultithreadthen the component is ready to
accept multiple threads of control within a single instance. The component takes
responsibility for protecting its internal state. Ifthreading is set toserializethen the
container will serialize all calls to a single instance. Note that although the compon
will not need to protect instance state, the container may employ other threads to
invoke other instances of the component type, thus the component must protect a
static or class data.

The configurationcomplete element tells the deployment agent whether the
component expects forconfiguration_complete to be called after its properties
have been set and its ports configured to their initial state (e.g., as described by a
component assembly descriptor).

The segmentselement provides the container with information necessary to map
segment tags to segment names, segment tags to facet tags, and segment tags to
abstract storage home types. Thefacettag element references aprovides interface
element described elsewhere in the descriptor. Theprovides element maps facet tags to
provided interface names. A container uses the information provided by these elem
to construct data structures mapping segment tags to segment names, facet tags to
names, and segment tags to facet tags. Note that a segment tag can map to more
facet tag.

69.4.3 CIDL Compiler Responsibilities

A CIDL compiler is responsible for generating an initial component descriptor. This
initial descriptor is vendor specific and may be manipulated directly by the user or
using vendor supplied tools.
69-274 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October



69
69.4.4 CORBA Component Descriptor Example

<?xml version="1.0"?>
<!DOCTYPE corbacomponent SYSTEM "corbacomponent.dtd">

<corbacomponent>
<corbaversion> 3.0 </corbaversion>
<componentrepid repid="IDL:BookStore:1.0" />
<homerepid repid="IDL:BookStoreHome:1.0" />
<componentkind>

<entity>
<servant lifetime="process" />

</entity>
</componentkind>
<security rightsfamily="corba" />
<threading policy="multithread" />
<configurationcomplete set="true" />

<segment name="bookseg" segmenttag="1">
<segmentmember facettag="1" />
<segmentmember facettag="2" />
<containermanagedpersistence>

<storagehome id="PSDL:BookHome:1.0" />
<pssimplementation id="ACME-PSS" />
<catalog type="PSDL:BookCatalog:1.0" />
<accessmode mode="READ_ONLY" />
<psstransaction policy="TRANSACTIONAL" >

<psstransactionisolationlevel level="SERIALIZABLE" />
</psstransaction>
<params>

<param name="x" value="1" />
</params>

</containermanagedpersistence>
</segment>

<homefeatures name="BookStoreHome"
repid="IDL:BookStoreHome:1.0">

<operationpolicies>
<operation name="*">

<transaction use="never" />
</operation>

</operationpolicies>
</homefeatures>

<componentfeatures name="BookStore" repid="IDL:BookStore:1.0">
<inheritscomponent repid="IDL:Acme/Store:1.0" />
<ports>

<provides
providesname="book_search"
repid="IDL:BookSearch:1.0"
facettag="1">
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October 1999



69
<operationpolicies>
<operation name="getByAuthor">

<requiredrights>
<right name="get"/>

</requiredrights>
</operation>
<operation name="getByTitle">

<requiredrights>
<right name="get"/>

</requiredrights>
</operation>
<operation name="getByISBN">

<requiredrights>
<right name="get"/>

</requiredrights>
</operation>

</operationpolicies>
</provides>
<provides

providesname="shopping_cart"
repid="IDL:CartFactory:1.0"
facettag="2" />

<uses
usesname="ups_rates"
repid="IDL:ShippingRates:1.0" />

<uses
usesname="fedex_rates"
repid="IDL:ShippingRates:1.0" />

<emits
emitsname="low_stock"
eventtype="StockRecord">
<eventpolicy policy="normal" />

</emits>
<publishes

publishesname="offer_alert"
eventtype="SpecialOffer">
<eventpolicy policy="normal" />

</publishes>
</ports>

</componentfeatures>

<componentfeatures name="Store" repid="IDL:Acme/Store">
<supportsinterface repid="IDL:Acme/GeneralStore">

<operationpolicies>
<operation name="*">

<transaction use="required" />
</operation>

</operationpolicies>
</supportsinterface>
<ports>

<provides
69-276 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October



69

he
providesname="admin"
repid="IDL:Acme/StoreAdmin:1.0"
facettag="3" />

</ports>
</componentfeatures>

<interface name="BookSearch" repid="IDL:BookSearch:1.0">
<inheritsinterface repid="IDL:SearchEngine:1.0" />

</interface>
<interface name="SearchEngine" repid="IDL:SearchEngine:1.0"/>
<interface name="CartFactory" repid="IDL:CartFactory:1.0"/>
<interface name="ShippingRates" repid="IDL:ShippingRates:1.0"/>
<interface name="StoreAdmin" repid="IDL:Acme/StoreAdmin:1.0">

<operationpolicies>
<operation name="*">

<transaction use="required" />
<requiredrights>

<right name="manage"/>
<right name="set"/>

</requiredrights>
</operation>

</operationpolicies>
</interface>
<interface name="GeneralStore" repid="IDL:Acme/GeneralStore:1.0"/>

</corbacomponent>

69.4.5 The CORBA Component Descriptor XML Elements

This section describes the XML elements that make up a component descriptor. T
section is organized starting with the root element of the component descriptor
document,corbacomponent, followed by all subordinate elements, in alphabetical
order. The complete CORBA component descriptor DTD may be found in
Section 695.2, “corbacomponent.dtd,” on page 695-339.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October 1999



69

a

at

is

s

se
69.4.5.1 The corbacomponent Root Element

The corbacomponentelement is the root element of the CORBA component
descriptor.

<!ELEMENT corbacomponent
( corbaversion
, componentrepid
, homerepid
, componentkind
, interop?
, transaction?
, security?
, threading
, configurationcomplete
, extendedpoapolicy*
, repository?
, segment*
, componentproperties?
, homeproperties?
, homefeatures+
, componentfeatures+
, interface*
, extension*
) >

These elements must be provided in the order presented.

• corbaversion tells which version of CORBA the component is assuming.

• componentrepid is the interface repository id of the component. It also refers to
componentfeatureselement later in the descriptor.

• homerepid is the interface repository id of the home. It also refers to a
homefeatureselement later in the descriptor.

• componentkind describes properties of the component which will determine wh
kind of container the component must reside in.

• interop specifies interoperation information, e.g., with EJB.

• transaction determines transaction policies for the entire component. This policy
optional and may be overridden on individual facets or supported interfaces.

• security specifies CORBA security rights family for the component.

• threadingpolicy determines whether calls to the component will be serialized or
not.

• configurationcomplete is set if the component expects for
configuration_complete to be called on the component after all of its propertie
have been set and its ports have been connected.

• extendedpoapolicyis used to set a POA policy for the component beyond the ba
POA policies. For example, firewall policies.
69-278 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October



69

.

ge

and
e

to

d

he

will
• repository provides a reference to a repository, such as the interface repository

• segmentdescribes a segment including its name, tag, member facets, and stora
home type.

• homefeaturesdescribes the structure of the component’s homes.

• componentpropertiesspecifies the default component properties file.

• homepropertiesspecifies the default home properties file.

• componentfeaturesdescribes inherited components, supported interfaces, uses
provides ports, and emits, publish, and consumes ports of the component. If th
primary component inherits from other components, those components are
described in separatecomponentfeatureelements.

• interface describes the simple name and repository id of an interface and points
inherited interfaces. Between thecomponentfeaturesand interface elements, one
can navigate all of the interfaces that a component uses, provides, supports, an
inherits.

• extensionmay be used by a user or vendor to provide proprietary information in t
component descriptor.

These are the top-level elements of the document. These descriptor elements are
described in terms of attributes and other elements. The remainder of this section
describe the top-level and child elements in detail.

Elements are presented in alphabetical order so that they will be easy to locate.

See Section 695.2, “corbacomponent.dtd,” on page 695-339 for the full text of the
component descriptor DTD.

69.4.5.2 The accessmode Element

Child element ofcontainermanagedpersistence.

The accessmodeelement identifies whether the persistent state may be read and
written or only read.

<!ELEMENT accessmode EMPTY>
<!ATTLIST accessmode

mode (READ_ONLY|READ_WRITE) #REQUIRED
>

The mode attribute identifies the access mode.

69.4.5.3 The catalog Element

Child element ofcontainermanagedpersistence.

The catalog element identifies the catalog to used in loading and storing persistent
state.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October 1999



69

e
its
tures

it
e
The

yed
ide
ts.

the

n

<!ELEMENT catalog EMPTY>
<!ATTLIST catalog

type CDATA #REQUIRED >

The type attribute identifies the type of catalog.

69.4.5.4 The componentfeatures Element

Child element ofcorbacomponent.

The componentfeatureselement is used to describe a component with respect to th
components that it inherits from, the interfaces that the component supports, and
provides, uses, emits, publish, and consumes ports. A component also has the fea
that it inherits from other components. In addition, supported interfaces may inher
from other interfaces. By following the inheritance chain, a graph is formed from th
primary component to a set of ports, supported interfaces, and other components.
root component in this graph is identified by therepositoryid child element of
corbacomponent.

The information obtained by traversing the componentfeatures graph may be displa
by graphical tools. But more importantly, it allows component assembly tools to dec
what ports on a component are capable of connecting to ports on other componen

<!ELEMENT componentfeatures
( inheritscomponent?
, supportsinterface*
, ports
, operationpolicies?
, extension*
) >

<!ATTLIST componentfeatures
name CDATA #REQUIRED
repid CDATA #REQUIRED >

The name attribute is the non-qualified name of the component.

The repid attribute is the fully qualified repository id of the component.repid is also
used to refer to this component from elsewhere in the descriptor, for example from
inheritscomponent element).

69.4.5.5 The componentkind Element

Child element ofcorbacomponent.

The componentkind element defines the component category. For more informatio
on these categories, see Section 62.1.4, “Component Categories.
69-280 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October



69

ted
<!ELEMENT componentkind
( service
| session
| process
| entity
| unclassified
) >

69.4.5.6 The componentproperties Element

The componentpropertieselement specifies a default component property file. The
format of the property file is described in section 69.8 on page 321.

<!ELEMENT componentproperties
( fileinarchive
) >

69.4.5.7 The componentrepid Element

Child element ofcorbacomponent.

componentrepid identifies the repository id of the component described by this
descriptor. The repository id also serves to point to the primarycomponentfeatures
element for this component within the descriptor, so as to distinguish it from inheri
components.

<!ELEMENT componentrepid EMPTY >
<!ATTLIST componentrepid

repid CDATA #IMPLIED >

repid is the fully qualified repository id of the component.

69.4.5.8 The configurationcomplete Element

Child element ofcorbacomponent.

The configurationcomplete attribute is used to set whether configuration_complete
should be called on the component after it has been fully configured.

<!ELEMENT configurationcomplete EMPTY >
<!ATTLIST configurationcomplete

set ( true | false ) #REQUIRED >

69.4.5.9 The consumes Element

Child element ofports.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October 1999



69

her

A consumes port specifies an event that the component expects to receive. At
deployment or creation time, the component will be connected via a channel to ot
components or entities that emit the event. Theeventpolicy allows the transaction
policy of the event port to be specified.

<!ELEMENT consumes
( eventpolicy

, extension* ) >
<!ATTLIST consumes

consumesname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

consumesname

The consumesnameattribute identifies the name associated with the consumes
statement in idl.

eventtype

The eventtypeattribute identifies the repository id of the event that the component
expects to consume.

69.4.5.10 The containermanagedpersistence Element

Child element ofsegment.

An containermanagedpersistenceelement specifies attributes required by the
container to manage the component’s persistent state using a PSS.storagehome
indicates the type of abstract storage home,pssimplementationidentifies a particular
PSS implementation to be used, if not specified then the default PSS is used, as
determined by the container implementation.catalog specifies the catalog type.
accessmodespecifies the access mode--read only or read-write.psstransactionpolicy
specifies whether transactions are to be used or not and, if so, the isolation level.
params is used to specify vendor specific parameters.

<!ELEMENT containermanagedpersistence
( storagehome
, pssimplementation?
, catalog?
, accessmode
, psstransactionpolicy
, params?
) >

69.4.5.11 The corbacomponent Element

The root element of this CORBA Component descriptor. See section 69.4.5.1.
69-282 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October



69

ber

idl.

,”

-128.
69.4.5.12 The corbaversion Element

Child element ofcorbacomponent.

The corbaversion is used to identify the version of CORBA that the component
implementation is assuming. The version is represented by a major and minor num
separated by a “.”. For example, “<corbaversion>3.0</corbaversion>”.

<!ELEMENT corbaversion (#PCDATA) >

69.4.5.13 The emits Element

Child element ofports.

An emits port specifies an event that the component generates. At deployment or
creation time, the component will be connected to a channel in which it can be
connected to consuming components. Theeventpolicy allows the transaction policy of
the event port to be specified.

<!ELEMENT emits
( eventpolicy
, extension* ) >

<!ATTLIST emits
emitsname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

The emitsnameattribute identifies the name associated with the emits statement in

The eventtypeattribute identifies the repository id of the emitted events.

69.4.5.14 The entity Element

Child element ofcomponentkind.

The entity component kind is described in Section 62.1.4, “Component Categories
on page 62-121.

<!ELEMENT entity
( servant ) >

69.4.5.15 The eventpolicy Element

Child element ofcorbacomponent.

Event policies define the quality of service associated with the event ports of the
component. The possible values are defined Section 62.2.8, “Events,” on page 62
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October 1999



69

A

ent
e is

re

the
<!ELEMENT eventpolicy EMPTY>
<!ATTLIST eventpolicy

policy ( normal | default | transaction ) #IMPLIED>

69.4.5.16 The extendedpoapolicy Element

Child element ofcorbacomponent.

The extendedpoapolicyelement is a name-value pair used to specify POA policies
beyond the base set of policies. It is for new policies, such as firewall, or future PO
policies yet to be defined. Theextendedpoapolicyelement must not be used to specify
any of the base POA policies. A set of POA policies is predefined for each compon
category, except for the unclassified category. Only the unclassified component typ
flexible with respect to base POA policies; these are set using thepoapolicieschild
element of theunclassifiedelement.

<!ELEMENT extendedpoapolicy EMPTY>
<!ATTLIST extendedpoapolicy

name CDATA #REQUIRED
value CDATA #REQUIRED >

The name attribute is the name of the poa policy as defined in the specification whe
it originated.

The value attribute is a valid attribute for the policy as defined in the specification
where it originated.

69.4.5.17 The extension Element

Child element ofcorbacomponent, componentfeatures, homefeatures.

See section 69.3.2.11 on page 265.

69.4.5.18 The fileinarchive Element

See section 69.3.2.12 on page 265.

69.4.5.19 The homefeatures Element

Child element ofcorbacomponent.

The homefeatureselement is used to describe a component home with respect to
homes that it inherits from and theoperationpoliciesof its interface.
69-284 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October



69

e

his
<!ELEMENT homefeatures
( inheritshome?
, operationpolicies?
, extension* ) >

<!ATTLIST homefeatures
name CDATA #REQUIRED

repid CDATA #REQUIRED >

The name attribute is the non-qualified name of the home.

The repid attribute is the fully qualified repository id of the home.repid is also used
to refer to this component from elsewhere in the descriptor, for example from the
inheritshome element.

69.4.5.20 The homeproperties Element

The homepropertieselement specifies a default home property file. The format of th
property file is described in section 69.8 on page 321.

<!ELEMENT homeproperties
( fileinarchive
) >

69.4.5.21 The homerepid Element

Child element ofcorbacomponent.

homerepid identifies the repository id of the home of the component described by t
descriptor. The home repository id also serves to point to the primaryhomefeatures
element for the home within the descriptor, so as to distinguish it from inherited
homes.

<!ELEMENT homerepid EMPTY >
<!ATTLIST homerepid

repid CDATA #IMPLIED >

repid is the fully qualified repository id of the component.

69.4.5.22 The inheritscomponent Element

Child element ofcomponentfeatures.

The inheritscomponent element specifies an inherited component.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October 1999



69

o
e

to

or
ce

fer
<!ELEMENT inheritscomponent EMPTY>
<!ATTLIST inheritscomponent

repid CDATA #REQUIRED>

The repid identifies is the repository id of the inherited component, it also serves t
refer to thecomponentfeatureselement of the inherited component, elsewhere in th
descriptor.

69.4.5.23 The inheritshome Element

Child element ofhomefeatures.

The inheritshome element specifies an inherited home.

<!ELEMENT inheritshome EMPTY>
<!ATTLIST inheritshome

repid CDATA #REQUIRED>

The repid identifies is the repository id of the inherited home, it also serves to refer
the homefeatureselement of the inherited home, elsewhere in the descriptor.

69.4.5.24 The inheritsinterface Element

Child element ofinterface.

The inheritsinterface element is used to specify interface inheritance. This allows, f
example, for a derivation chain to be followed from a supported or provided interfa
up to but excluding theObject interface.

<!ELEMENT inheritsinterface EMPTY>
<!ATTLIST inheritsinterface

repid CDATA #REQUIRED>

The repid identifies is the repository id of the inherited interface, and it is used to re
to the interface element of the inherited interface, elsewhere in the descriptor.

69.4.5.25 The ins Element

Child element ofrepository.

The ins element is used to specify an interoperable naming service name.

<!ELEMENT ins EMPTY>
<!ATTLIST ins

name CDATA #REQUIRED >

name is the INS name.
69-286 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October



69

e

ype.

in
69.4.5.26 The interface Element

Child element ofcorbacomponent.

Specifies an interface that the component, either directly or through inheritance,
provides, uses, or supports. Theoperationpolicieschild element specifies default
transaction policies and required security rights for uses of the interface.

<!ELEMENT interface
( inheritsinterface*
, operationpolicies? ) >

<!ATTLIST interface
name CDATA #REQUIRED
repid CDATA #REQUIRED >

The name attribute is the non-qualified name of the interface.

The repid attribute is the fully qualified repository id of the interface.repid is also
used to refer to this interface from elsewhere in the descriptor, for example from th
inheritsinterface element.

69.4.5.27 The interop Element

Child element ofcorbacomponent.

The interop element is used to specify whether this component interoperates with
another component type by acting as a view for that type or having a view of that t

<!ELEMENT interop EMPTY>
<!ATTLIST interop

type CDATA #REQUIRED
direction ( hasview | isview ) #REQUIRED
descriptor CDATA #REQUIRED >

The type attribute is the other component type, e.g., “EJB 1.1”.

The direction attribute says whether the CORBA component is a view for the other
component type or the other way around.

The descriptor attribute references the descriptor file of the foreign component with
the component archive.

69.4.5.28 The link Element

See section 69.3.2.18 on page 268.

69.4.5.29 The objref Element

Child element ofrepository.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October 1999



69

r a

“

ts

as a
a

t in
The objref element is used to specify a stringified object reference.

<!ELEMENT objref EMPTY>
<!ATTLIST objref

string CDATA #REQUIRED >

The string attribute holds the stringified object reference.

69.4.5.30 The operation Element

Child element ofoperationpolicies.

The operation element is used to specify transaction and required security rights fo
particular operation (or group of operations if name=”*”).

<!ELEMENT operation
( transaction?
, requiredrights? ) >

<!ATTLIST operation
name CDATA #REQUIRED >

The name attribute specifies the name of the operation. If the name is specified as* ”
then the policies specified by this element apply to all operations in the particular
scope in which theoperationpoliciesparent element is defined.

69.4.5.31 The operationpolicies Element

Child element ofcomponentfeatures, homefeatures, interface, provides,and
supportsinterface,.

Theoperationpolicieselement is used to specify a set of operation policies. It consis
of a list of operation child elements which each may specify security or transaction
policies of an operation or set of operations.

The scope of theoperationpolicieselement depends upon where it is specified. As a
child of componentfeaturesit specifies the policies for the component operations,
such as the operations effecting facets, receptacles, and event ports. When used
child of homefeaturesit specifies the policies of the home interface operations. As
child of interface it specifies the operation policies for all uses of the particular
interface. Operation policies set in asupportsinterface or provides element specify
operation policies for a particular use of an interface. Note that operation policies se
supportsinterface or provides element supersede policies set in aninterface element.

<!ELEMENT operationpolicies
( operation+ ) >

69.4.5.32 The param Element

Child element ofparams.
69-288 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October



69

g
,

The param element is used to specify a name-value pair.

<!ELEMENT param EMPTY >
<!ATTLIST param

name CDATA #REQUIRED
value CDATA #REQUIRED >

The name attribute specifies the name.

The value attribute specifies the value.

69.4.5.33 The params Element

Child element ofcontainermanagedpersistence.

The params element is used to specify a set of one or more name-value pairs.

<!ELEMENT params (param+) >

69.4.5.34 The poapolicies Element

Child element ofunclassified.

The poapolicieselement is used to identify POA creation parameters for an empty
container in which anunclassifiedcategory component will reside.

<!ELEMENT poapolicies EMPTY>
<!ATTLIST poapolicies

thread (ORB_CTRL_MODEL | SINGLE_THREAD_SAFE ) #REQUIRED
lifespan (TRANSIENT | PERSISTENT ) #REQUIRED
iduniqueness (UNIQUE_ID | MULTIPLE_ID) #REQUIRED
idassignment (USER_ID | SYSTEM_ID) #REQUIRED
servantretention (RETAIN | NON_RETAIN) #REQUIRED
requestprocessing (USE_ACTIVE_OBJECT_MAP_ONLY

|USE_DEFAULT_SERVANT
|USE_SERVANT_MANAGER) #REQUIRED

implicitactivation (IMPLICIT_ACTIVATION
|NON_IMPLICIT_ACTIVATION) #REQUIRED >

The poapoliciesattributes are as defined in the base POA specification.

Note – Not all combinations of POA policies are valid. A good component packagin
tool will not permit the user to specify invalid POA policy combinations. If however
an invalid combination of policies is used to configure the empty container, the
container/POA should throw an exception.

69.4.5.35 The ports Element

Child element ofcomponentfeatures.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October 1999



69

what

s.

d
e

The ports element describes what interfaces a component provides and uses, and
events it emits, publishes, and consumes. Any number of uses, provides, emits,
publishes, and consumes elements can be specified in any order.

<!ELEMENT ports
( uses
| provides
| emits
| publishes
| consumes
)* >

69.4.5.36 The process Element

Child element ofcomponentkind.

The processcomponent kind is described in Section 62.1.4, “Component Categorie
<!ELEMENT process

( servant ) >

69.4.5.37 The provides Element

Child element ofports.

The provides element specifies an interface that is provided by the component.

The optionaloperationpolicieschild element allows transaction policies and require
rights to be specified for the provided interface. The policies specified here overrid
any policies specified in theinterface element, as identified by therepid.

<!ELEMENT provides
( operationpolicies?
, extension* ) >

<!ATTLIST provides
providesname CDATA #REQUIRED
repid CDATA #REQUIRED
facettag CDATA #REQUIRED >

The providesnameis the name given to the provides port in IDL.

The repid is the fully qualified repository id of the component. It is also used to
reference an interface element elsewhere in the descriptor.

The facettag is the tag for the facet. This attribute is used in combination with the
segmentmemberelement, defined in section 69.4.5.47 on page 294, to associate a
facet with a segment.

69.4.5.38 The pssimplementation Element

Child element ofcontainermanagedpersistence.
69-290 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October



69

.

or
The pssimplementationelement identifies a particular vendor’s PSS implementation

<!ELEMENT pssimplementation EMPTY>
<!ATTLIST pssimplementation

id CDATA #REQUIRED >

The id attribute identifies the particular PSS implementation.

69.4.5.39 psstransaction Element

Child element ofcontainermanagedpersistence

The psstransactionelement is used to specify the PSS transactional policies
associated with the entity or process component.

<!ELEMENT psstransaction (psstransactionisolationlevel?) >
<!ATTLIST psstransaction

policy (TRANSACTIONAL|NON_TRANSACTIONAL) #REQUIRED >

69.4.5.40 psstransactionisolationlevel Element

Child element ofpsstransaction.

The psstransactionisolationlevelelement is used to specify the transaction isolation
level when persistent store access is transactional.

<!ELEMENT psstransactionisolationlevel EMPTY>
<!ATTLIST psstransactionisolationlevel

level (
READ_UNCOMMITTED|READ_COMMITTED|

REPEATABLE_READ|SERIALIZABLE)
#REQUIRED >

The level attribute identifies one of four isolation levels.

69.4.5.41 The publishes Element

Child element ofports.

A publishes port specifies an event that the component publishes. At deployment
creation time, the component will be connected to a channel by which it can be
connected to consuming components. Theeventpolicy allows the transaction policy of
the event port to be specified.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October 1999



69

t in

itory.

ue

of

r of
<!ELEMENT publishes
( eventpolicy
, extension* ) >

<!ATTLIST publishes
publishesname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

Thepublishesnameattribute identifies the name associated with the emits statemen
idl.

The event_typeattribute identifies the repository id of the published events.

69.4.5.42 The repository Element

Child element ofcorbacomponent.

The repository element is used to point to a repository, such as the interface repos

<!ELEMENT repository
( ins
| objref
| link
) >

<!ATTLIST repository
type CDATA #IMPLIED >

The type attribute specifies the type of repository. Currently, the only predefined val
for type is “CORBA Interface Repository”.

69.4.5.43 requiredrights Element

Child element ofoperation andsecurity.

The requiredrights element specifies a list of required rights. When used as a child
operation, the rights specified must belong to a rights family specified in thesecurity
element. When used as a child ofsecurity the list of rights specify the available rights
in the rights family.

<!ELEMENT requiredrights
( right* ) >

69.4.5.44 right Element

Child element ofrequiredrights.

The right element specifies a particular required right. The right must be a membe
the rights family specified by the security element.
69-292 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October



69

ifies
l

r
rts,
e

at the
<!ELEMENT right
( description? ) >

<!ATTLIST right
name CDATA #REQUIRED >

The name attribute is the name of the required right.

69.4.5.45 The security Element

Child element ofcorbacomponent.

The security element is an optional child element ofcorbacomponent; it is required
whenever rights are assigned to component operations within the descriptor. It spec
the rights family assumed when defining component operation rights. The optiona
requiredrights element may be used to document the rights available in the rights
family.

<!ELEMENT security
( requiredrights? ) >

<!ATTLIST security
rightsfamily CDATA #REQUIRED >

The rightsfamily attribute defines the rights family; for example, the “CORBA” rights
family.

69.4.5.46 The segment Element

Child element ofcorbacomponent.

The segmentelement describes a component segment. It consists of a list of one o
moresegmentmemberchild elements, indicating the facets that the segment suppo
and acontainermanagedpersistenceelement indicating that the persistent state of th
segment is managed by the container. If thecontainermanagedpersistenceelement is
not present then the persistent state, if any, is managed by the component. Note th
containermanagedpersistenceelement is only employed forentity andprocess
components.

<!ELEMENT segment
( segmentmember+
, containermanagedpersistence?
, extension*
) >

<!ATTLIST segment
name CDATA #REQUIRED
segmenttag CDATA #REQUIRED >

name is the name of the segment.

segmenttagis the segment’s tag.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October 1999



69

d

the

.

69.4.5.47 The segmentmember Element

Child element ofsegment.

The segmentmemberelement specifies a facet that is a member of a segment.

<!ELEMENT segmentmember EMPTY>
<!ATTLIST segmentmember

facettag CDATA #REQUIRED >

The facettag attribute indicates the member facet’s tag. It corresponds to a provide
interface with the same facet tag elsewhere in the descriptor. (See theprovides tag
element in section 69.4.5.37 on page 290.)

69.4.5.48 The servant Element

Child element ofentity, process,session.

Servant lifetime policies control the lifetime of the servant which implements a
component’s operations and provide an aid to efficiently manage storage of
components within a server process. Servant lifetime policies are fixed forservice
components. Servant lifetime policies must be specified forsession , process and
entity components and are implemented by the component using APIs provided by
container.

<!ELEMENT servant EMPTY >
<!ATTLIST servant

lifetime (component|method|transaction|container) #REQUIRED >

The possible values are defined in Section 62.2.5, “Servant Lifetime Management

69.4.5.49 The service Element

Child element ofcomponentkind.

Specifies that the component is of theservice category. The service component kind
is described in Section 62.2.13.1, “The Service Component.

<!ELEMENT service EMPTY >

69.4.5.50 The session Element

Child element ofcomponentkind.

Specifies that the component is of thesession category. Thesession component
category is described in Section 62.2.13.2, “The Session Component.
69-294 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October



69

as

d
ide

is
<!ELEMENT session
( servant ) >

69.4.5.51 The storagehome Element

Child element ofsegment.

The storagehomeelement specifies an abstract storage home type.

<!ELEMENT storagehome EMPTY>
<!ATTLIST storagehome

id CDATA #REQUIRED >

The id attribute specifies the repository id of the abstract storage home.

69.4.5.52 The simple-link-attributes Entity

See section 69.3.2.27 on page 271.

69.4.5.53 The supportsinterface Element

Child element ofcomponentfeatures.

The supportsinterface element identifies an interface that the component supports,
defined in IDL.

The optionaloperationpolicieschild element allows transaction policies and require
rights to be specified for the supported interface. The policies specified here overr
any policies specified in theinterface element, as identified by therepid.

<!ELEMENT supportsinterface
( operationpolicies?
, extension* ) >

<!ATTLIST supportsinterface
repid CDATA #REQUIRED >

The repid is the fully qualified repository id of the component. It is also used to
reference an interface element elsewhere in the descriptor.

69.4.5.54 The threading Element

Child element ofcorbacomponent.

The threading element determines the threading policy of the container in which it
placed.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October 1999



69

er.

er
loper

ee
the

in a
<!ELEMENT threading EMPTY>
<!ATTLIST threading

policy ( serialize | multithread ) #REQUIRED >

Settingpolicy to serialize means that the container will serialize calls to the contain

Settingpolicy to multithread means that multiple threads of control can be active in
the component at one time.

69.4.5.55 The transaction Element

Child element ofcorbacomponent.

The transaction element controls the way transactions are managed by the contain
for this component. Seven possible values can be selected by the component deve
to provide maximum flexibility.

<!ELEMENT transaction EMPTY >
<!ATTLIST transaction

use (self-managed|not-supported|required|supports|requires-new|man-
datory|never) #REQUIRED >

If the transactionuseattribute is set toself-managedthen it is assumed that the
component will manage transactions on its own. Otherusevalues indicate that
transactions are to be managed by the container; the meaning of these values are
defined in the container chapter, Section 62.2.6, “Transactions,” on page 62-126.

69.4.5.56 The unclassified Element

Child element ofcomponentkind.

The unclassifiedelement identifies that the component is of the unclassified sort. S
Section 62.2.1, “Component Containers,” on page 62-121 for more information on
unclassified component category.

<!ELEMENT unclassified
( poapolicies ) >

69.4.5.57 The uses Element

Child element ofports.

Theuseselement specifies an interface that is used by the component, as specified
component IDLusesdeclaration.

<!ELEMENT uses ( extension* ) >
<!ATTLIST uses

usesname CDATA #REQUIRED
repid CDATA #REQUIRED >

The usesnameis the name given to the uses port in IDL.
69-296 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October



69
The repid is the fully qualified repository id of the component. It is also used to
reference an interface element elsewhere in the descriptor.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October 1999



69

ion,

and
d.

each

to

ly

ptor.

a

f
an
t

here
69.5 Component Assembly Packaging

A component package is the vehicle for deploying a single component implementat
A component assembly package is the vehicle for deploying a set of interrelated
component implementations. It is a template or pattern for instantiating a set of
components and introducing them to each other.

An assembly package consists of a descriptor and a set of component packages
property files. These files may by packaged together in an archive file or distribute
When distributed, the descriptor represents the package and holds links to its
associated files.

The component assembly descriptor describes which components make up the
assembly, how those components are partitioned, and how they are connected to
other. A component assembly descriptor is the recipe for deploying a set of
interconnected components.

An assembly is normally created visually within a design tool, however it is possible
create assemblies using more primitive tools.

Note – An assembly specifies aninitial configuration. The actual connected graph of
components may evolve beyond that initial configuration. The assembly does not
address the evolution of this graph.

69.6 Component Assembly File

The component assembly archive file is a ZIP file containing a component assemb
descriptor, a set of component archive files, and, if necessary, a set of component
property files. The component assembly archive file has a “.aar” extension.

69.7 Component Assembly Descriptor

A component assembly descriptor is specified using an XML vocabulary. Each
component assembly package must contain a single descriptor file. Component
descriptors have a “.cad” extension. CAD stands for Component Assembly Descri

The assembly descriptor describes a component assembly. It consists of elements
describing the components used in the assembly, connection information, and
partitioning information.

A component instantiation is always relative to a home. A deployed home is called
home “placement”.

Component instantiations are connected by theirprovidesand usesinterfaces, or by
their emits, publishes,andconsumesevents. If one component provides an interface o
a particular type and another component uses an interface of that type, then we c
pass the reference of the provided interface to the component that uses it, in effec
connecting the two components. In the same way, we connect two components w
one emits or publishes an event that the other consumes.
69-298 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Packaging 29 October



69

ying

ny

ry
Sets of component instances may be partitioned. Components may be free or
partitioned to a generic set of hosts and processes. This is really a process of conve
that specific components are to be collocated within a single process or host. Free
components, components that are not used in a collocation may be deployed in a
manner at deployment time.

When used in an archive, the CAD file for the archive is placed in a top level directo
called “meta-inf”.
CORBA 3.0CCMFTFDRAFT ptc/99-10-04 Component Assembly Descriptor 29 October 1999



69

or
he
69.7.1 Component Assembly Descriptor Example

The following example illustrates how to write a component assembly descriptor. F
further information, see the element descriptions that follow and the XML DTDs in t
appendix.

<!DOCTYPE componentassembly SYSTEM "componentassembly.dtd">

<componentassembly id="ZZZ123">
<description>Example assembly"</description>
<componentfiles>

<componentfile id="A">
<fileinarchive name="ca.ccd"/>

</componentfile>
<componentfile id="B">

<fileinarchive name="cb.ccd"/>
</componentfile>
<componentfile id="C">

<fileinarchive name="cc.ccd">
<link href="ftp://www.xyz.com/car/cc.car"/>

</fileinarchive>
</componentfile>
<componentfile id="D">

<fileinarchive name="cd.ccd"/>
</componentfile>
<componentfile id="E">

<fileinarchive name="ce.ccd"/>
</componentfile>
<componentfile id="F">

<fileinarchive name="cf.ccd"/>
</componentfile>

</componentfiles>

<partitioning>

<homeplacement id="AaHome">
<componentfileref idref="A"/>
<componentinstantiation id="Aa"/>

</homeplacement>

<processcollocation cardinality="*">
<usagename>Example process collocation</usagename>
<impltype language="C++" /> <!-- optional -->
<homeplacement id="BbHome">

<componentfileref idref="B"/>
<componentinstantiation id="Bb"/>

</homeplacement>
<homeplacement id="CcHome">

<componentfileref idref="C"/>
<componentinstantiation id="Cc"/>
69-300 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October



69
</homeplacement>
</processcollocation>

<hostcollocation cardinality="1">
<usagename>Example host collocation</usagename>
<processcollocation cardinality="*">

<homeplacement id="DdHome">
<componentfileref idref="D"/>
<componentinstantiation id="Dd"/>

</homeplacement>
<homeplacement id="EdHome">

<componentfileref idref="E"/>
<componentinstantiation id="Ee"/>

</homeplacement>
</processcollocation>
<homeplacement id="FfHome">

<componentfileref idref="F"/>
<componentinstantiation id="Ff"/>

</homeplacement>
</hostcollocation>

<homeplacement id="AaaHome">
<usagename>Example home for A components</usagename>
<componentfileref idref="A"/>
<componentimplref idref="an A impl"/>
<homeproperties>

<fileinarchive name="AHomeProperties.cpf"/>
</homeproperties>
<componentproperties>

<fileinarchive name="defaultAProperties.cpf"/>
</componentproperties>
<registerwithhomefinder name="AaHome"/>

<componentinstantiation id="Aaa">
<usagename>Example component instantiation </usagename>
<componentproperties>

<fileinarchive name="AaaProperties.cpf"/>
</componentproperties>
<registercomponent>

<registerwithnaming name="sink"/>
<registerwithtrader>

<traderproperties>
<traderproperty>

<traderpropertyname>ppm</traderpropertyname>
<traderpropertyvalue>10</traderpropertyvalue>

</traderproperty>
<traderproperty>

<traderpropertyname>weight</traderpropertyname>
<traderpropertyvalue>333</traderpropertyvalue>

</traderproperty>
</traderproperties>
CORBA 3.0CCMFTFDRAFT ptc/99-10-04 Component Assembly Descriptor 29 October 1999



69

r
l

e
he
</registerwithtrader>
</registercomponent>

</componentinstantiation>
</homeplacement>

</partitioning>

<connections>
<connectinterface>

<usesport>
<usesidentifier>abc</usesidentifier>
<componentinstantiationref idref="Aa"/>

</usesport>
<providesport>

<providesidentifier>abc</providesidentifier>
<componentinstantiationref idref="Bb"/>

</providesport>
</connectinterface>
<connectevent>

<consumesport>
<consumesidentifier>pqr</consumesidentifier>
<componentinstantiationref idref="Aaa"/>

</consumesport>
<emitsport>

<emitsidentifier>mno</emitsidentifier>
<componentinstantiationref idref="Ee"/>

</emitsport>
</connectevent>

</connections>

</componentassembly>

69.7.2 Component Assembly Descriptor XML Elements

This section describes the XML elements that make up a component assembly
descriptor. The section is organized starting with the root element of the descripto
document,componentassembly, followed by all subordinate elements, in alphabetica
order. The complete component assembly DTD may be found in Section 695.4,
“componentassembly.dtd,” on page 695-346.

69.7.2.1 The componentassembly Root Element

The componentassemblyelement is the root element of the component assembly
descriptor. Thedescription element is text describing the assembly. The
componentfileselement lists the component files that are used in the assembly, th
partitioning element describes how homes and components are to be deployed. T
69-302 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October



69

y

y
ins
r

; and
to

w

ent

nt
connectionselement describes how deployed components and homes are to be
connected. The extensionelement can be used to add proprietary or experimental
elements to the component assembly document.

<!ELEMENT componentassembly
( description?
, componentfiles
, partitioning
, connections?
, extension*
) >

<!ATTLIST componentassembly
id ID #REQUIRED
derivedfrom CDATA #IMPLIED >

The id attribute is a DCE UUID which uniquely identifies the assembly.

The derivedfrom attribute is used to point to an assembly from which this assembl
was derived. Thederivedfrom attribute contains the id of the source assembly.

Note – The derivedfrom attribute is for a deployment tool that wants to create a cop
of an assembly descriptor and archive to describe an actual deployment; it mainta
the relationship between the “clone” and the original. The new assembly descripto
would have the destination addresses for each placement and collocation defined
collocations with non-ordinal cardinality in the original assembly would be copied
one or more collocations, with singular cardinality, in the derived assembly. The ne
archive file might prune constituent component archive files to contain single
implementations to facilitate copying component implementations to target deploym
hosts.

69.7.2.2 The codebase Element

See section 69.3.2.4 on page 262.

69.7.2.3 The componentfile Element

Thecomponentfileelement refers to a component archive file containing a compone
and home implementation.componentfileelements are referenced byhomeplacement
elements.

componentfile contains either afileinarchive, link or codebaseelement.
CORBA 3.0CCMFTFDRAFT ptc/99-10-04 Component Assembly Descriptor 29 October 1999



69

e
uld

in

r.
<!ELEMENT componentfile
( fileinarchive
| codebase
| link
) >

<!ATTLIST componentfile
id ID #REQUIRED
type CDATA #IMPLIED >

The id attribute must uniquely identify thecomponentfile element within the
descriptor.

The optionaltype attribute specifies the type of component file. If unspecified then th
file is assumed to be CORBA component. An example use of the type attribute wo
be to specify an EJB component file, wheretype=”EJB 1.1”.

69.7.2.4 The componentfileref Element

The componentfileref element refers to a particularcomponentfile element in the
componentfilesblock.

<!ELEMENT componentfileref EMPTY >
<!ATTLIST componentfileref

idref CDATA #REQUIRED >

The idref attribute corresponds to a uniquecomponentfile id attribute.

69.7.2.5 The componentfiles Element

The componentfileselement is used to list all of the component files that are used
the assembly. At least one component file must be specified.

Each component file is uniquely identified for reference elsewhere in the descripto
Multiple component instances may refer to a single component file.

<!ELEMENT componentfiles
( componentfile+
) >

69.7.2.6 The componentimplref Element

The componentimplref element is used to refer to a particular implementation in a
component file.
69-304 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October



69

for

es
<!ELEMENT componentimplref EMPTY >
<!ATTLIST componentimplref

idref CDATA #REQUIRED >

The idref attribute refers to a uniqueimplementation elementid in the component
descriptor. Thecomponentimplref is optional if there is only one implementation in
the component file. Or it may be set at deployment time depending on the type of
platform that the component is deployed to.

69.7.2.7 The componentinstantiation Element

The componentinstantiation element describes a particular instantiation of a
component relative to a home placement. Thecomponentinstantiation element is a
direct child of thehomeplacementelement.

Theusagenamechild element is used to specify a name for the placement, possibly
display in a tool. Thecomponentpropertieselement refers to a property file
associated with this instantiation. It is used to configure the component once it is
created and after the home sets initial property values (as specified in the
homeplacement componentpropertieselement). Theregistercomponentelement
instructs the installation process to register the component or its provided interfac
with a naming service or trader.

<!ELEMENT componentinstantiation
( usagename?
, componentproperties?
, registercomponent*
, extension*
) >

<!ATTLIST componentinstantiation
id ID #REQUIRED >

The id attribute is a unique identifier within the assembly descriptor for the
component. Theid is used to refer to the component instance in the connect block.

69.7.2.8 The componentinstantiationref Element

The componentinstantiationref element refers to a particular
componentinstantiation element in the assembly descriptor.

<!ELEMENT componentinstantiationref EMPTY >
<!ATTLIST componentinstantiationref

idref CDATA #REQUIRED >

The idref attribute corresponds to a uniquecomponentinstantiation id attribute.
CORBA 3.0CCMFTFDRAFT ptc/99-10-04 Component Assembly Descriptor 29 October 1999



69

nt

d

h that

t

e or

The
69.7.2.9 The componentproperties Element

The componentpropertieselement specifies a property file for a home. If the
component file has a default property file in the component package, the compone
property file overrides the default. The property file may be specified by either a
fileinarchive or a codebasechild element. The format of the property file is describe
in section 69.8 on page 321.

When thecomponentpropertieselement is specified as part of ahomeplacement
element, then the properties are used to configure each component created throug
home. Whencomponentpropertiesis specified as part of acomponentinstantiation
element, the properties are used to configure that single instantiation. If componen
properties are set on both ahomeplacementand an associated
componentinstantiation, then the component will be configured first by the
homeplacementcomponent properties and then by thecomponentinstantiation
component properties.

<!ELEMENT componentproperties
( fileinarchive
| codebase
) >

69.7.2.10 The componentsupportedinterface Element

Specifies a component with asupportsinterface that can satisfy an interface
connection to ausesport within aconnectinterfaceelement. The component is
identified by acomponentinstantiationref or a findby element. The
componentinstantiationref identifies a component within the assembly. Thefindby
element points to an existing component that can be found within a naming servic
trader, or using a stringified object reference.

<!ELEMENT componentsupportedinterface
( componentinstantiationref
| findby
)>

69.7.2.11 The connectevent Element

The connecteventelement is used in theconnectionselement to specify a connection
from a consumesport, of one component, to anemitsor publishesport of another
component.

The consumesportelement identifies a component and associated consumes port.
emitsport element identifies a component associated emits port. Thepublishesport
element identifies a component and associatedpublishesport.
69-306 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October



69

ed
want

me

ed
want

nts

be
<!ELEMENT connectevent
( consumesport
, ( emitsport

| publishesport
)

) >
<!ATTLIST connectevent

id ID #IMPLIED >

The id attribute is a unique identifier within the assembly descriptor. It is not requir
or used elsewhere in the assembly descriptor, however someone (or a tool) might
to use it to refer to a particularconnecteventelement.

69.7.2.12 The connecthomes Element

Theconnecthomeselement is used to specify a connection between aproxyhome and
another home.

The proxyhome element refers to the proxy home. Thedestinationhomeelement
refers to the home to which the proxy home will be connected. The destination ho
can be either another proxy home or an actual home.

<!ELEMENT connecthomes
( proxyhome
, destinationhome
) >

<!ATTLIST connecthomes
id ID #IMPLIED >

The id attribute is a unique identifier within the assembly descriptor. It is not requir
or used elsewhere in the assembly descriptor, however someone (or a tool) might
to use it to refer to a particularconnecthomeelement.

69.7.2.13 The connectinterface Element

The connectinterfaceelement is used to connect a component’susesport to an
interface. The interface may be a provided or supported interface of another
component, it may be an existing interface (other than those provided by compone
in the assembly), or it may be a home interface.

The usesportelement identifies the component and port where the connection is to
made. Theprovidesport element identifies a component and provides port. The
componentsupportedinterfaceelement identifies a component that has a supported
interface which will satisfy the uses port. Theexistinginterface element identifies a
way to find an existing interface that will satisfy theuses.The homeinterfaceelement
identifies ahomeinterface that the uses port requires.
CORBA 3.0CCMFTFDRAFT ptc/99-10-04 Component Assembly Descriptor 29 October 1999



69

ed
want

r
1,
nt.

e

<!ELEMENT connectinterface
( usesport

, ( providesport
| componentsupportedinterface
| existinginterface
| homeinterface
)

) >
<!ATTLIST connectinterface

id ID #IMPLIED >

The id attribute is a unique identifier within the assembly descriptor. It is not requir
or used elsewhere in the assembly descriptor, however someone (or a tool) might
to use it to refer to a particularconnectinterfaceelement.

69.7.2.14 The connections Element

The connections element is used to satisfy component uses and consumes
dependencies and to connect homes. Theconnectinterfaceelement is used to connect
componentusesports to interfaces. theconnecteventelement is used to connect a
componentsconsumesport to event producers. Theconnecthomeelement is used to
connect a proxy home to another home.

<!ELEMENT connections
( connectinterface
| connectevent
| connecthome
| extension
)* >

Note – If a componentinstantiation involved in a connection has a cardinality greate
than 1, or if it is part of a process or host collocation with a cardinality greater than
then multiple connections will be realized from or to each instance of the compone
That is, the connection will be made for each instantiation of the component.

69.7.2.15 The consumesidentifier Element

A child element ofconsumingcomponent, consumesidentifieridentifies which
consumes“port” on the component is to participate in the relationship. The type of th
consumes event must match the type of the connected emits or publishes event.
69-308 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October



69

ent

ent

d
nce.
<!ELEMENT consumesidentifier ( #PCDATA ) >

69.7.2.16 The consumesport Element

Specifies the event-consuming side of an event connection relationship. The
consumesidentifierchild element identifies the particularconsumesport. The
component with this consumes port is identified by acomponentinstantiationref or a
findby element. Thecomponentinstantiationref identifies a component within the
assembly. Thefindby element points to an existing component that can be found
within a naming service or trader, or using a stringified object reference.

<!ELEMENT consumesport
( consumesidentifier
, ( componentinstantiationref

| findby
)

)>

69.7.2.17 The description Element

The description element contains a string description. It is used to describe its par
element. It contains string content.

<!ELEMENT description ( #PCDATA ) >

69.7.2.18 The destination Element

The destination element is used to record where ahomeplacement,
executableplacement, hostcollocation, or processcollocationis to be (or has been)
deployed. The format of the destination string is determined by a particular deploym
tool.

<!ELEMENT destination ( #PCDATA ) >

69.7.2.19 The destinationhome Element

Identifies a home to be connected to by a proxy home. The home is identified by a
homeplacementrefor a findby element. Thehomeplacementrefidentifies a home
within the assembly. Thefindby element points to an existing home that can be foun
within a home finder, naming service, or trader, or using a stringified object refere
CORBA 3.0CCMFTFDRAFT ptc/99-10-04 Component Assembly Descriptor 29 October 1999



69

e or

for
<!ELEMENT destinationhome
( homeplacementref
| findby
) >

69.7.2.20 The emitsidentifier Element

The emitsidentifier identifies an emits “port” on a component. The identifier
corresponds to a emits identifier specified in IDL.

<!ELEMENT emitsidentifier ( #PCDATA ) >

69.7.2.21 The emitsport Element

Specifies the event-emiting side of an event connection relationship. The
emitsidentifier child element identifies the particularemitsport. The component with
this emits port is identified by acomponentinstantiationref or a findby element. The
componentinstantiationref identifies a component within the assembly. Thefindby
element points to an existing component that can be found within a naming servic
trader, or using a stringified object reference.

<!ELEMENT emitsport
( emitsidentifier
, ( componentinstantiationref

| findby
)

)>

69.7.2.22 The executableplacement Element

This executableplacementelement describes a deployment of an executable. The
executableplacementelement may be a direct child of thepartitioning element which
states that it has no collocation constraints; or it may be a child element of the
hostcollocationelement.

Theusagenamechild element is used to specify a name for the placement, possibly
use in a tool. Thecomponentfileref element specifies the component file. The
componentimplref element refers to a specific implementation in thesoftpkg
descriptor. Note that the implementation referred to bycomponentimplref must have a
code type of “Executable”. The invocation element specifies any arguments with
which the executable should be invoked. Thedestination element is used to record
where theexecutableplacementis to be deployed.
69-310 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October



69

be
or

n

lls
e,

em

It
<!ELEMENT executableplacement
( usagename?
, componentfileref
, componentimplref
, invocation?
, destination?
, extension*
) >

<!ATTLIST executableplacement
id ID #REQUIRED
cardinality CDATA "1" >

The id attribute is a unique identifier within the assembly descriptor for the
executableplacement.

The cardinality attribute specifies how many instantiations of this executable may
deployed. Possible values for cardinality are a specific number, a “+” to specify 1
more, or a “*” to specify 0 or more. The default cardinality is “1”.

69.7.2.23 The existinginterface Element

Specifies an interface that can satisfy an interface connection to ausesport within a
connectinterfaceelement. Thefindby element points to an existing interface that ca
be found within a naming service or trader, or using a stringified object reference.

<!ELEMENT existinginterface
( findby ) >

69.7.2.24 The extension Element

See section 69.3.2.11 on page 265.

69.7.2.25 The fileinarchive Element

See section 69.3.2.11 on page 265.

69.7.2.26 The findby Element

The findby element is used to resolve a connection between two components. It te
the installation agent how to locate a party, usually a component, interface, or hom
involved in the relationship. In the simplest case, the installer will know where the it
is because it was the one responsible for installing it. But if the item to be located
already exists in the installation environment, the installer must know how to find it.
could locate a component in a naming service, in a trader, a home finder, or by a
stringified object reference. The purpose of the findby element is to provide such
information.
CORBA 3.0CCMFTFDRAFT ptc/99-10-04 Component Assembly Descriptor 29 October 1999



69

der.

d
nce.

e.

for

e.
nt;

e.
Thenamingserviceelement specifies a naming service name. Thestringifiedobjectref
element is a stringified IOR for the item. Thetraderquery is a query for locating the
item in a trader. Thehomefinder is a name to look up a home in a home finder.

<!ELEMENT findby
( namingservice
| stringifiedobjectref
| traderquery
| homefinder
| extension
) >

69.7.2.27 The homefinder Element

The homefinder element is used to indicate a home finder name for a home.

<!ELEMENT homefinder EMPTY >
<!ATTLIST homefinder

name CDATA #REQUIRED >

The name attribute specifies the name of the home as registered with the home fin
Home finders are defined in Section 61.8, “Home Finders.

69.7.2.28 The homeinterface Element

Specifies a home with an interface that can satisfy an interface connection to auses
port within aconnectinterfaceelement. The home is identified by a
homeplacementrefor a findby element. Thehomeplacementrefidentifies a home
within the assembly. Thefindby element points to an existing home that can be foun
within a home finder, a naming service or trader, or using a stringified object refere

<!ELEMENT homeinterface
( homeplacementref
| findby
) >

69.7.2.29 The homeplacement Element

This homeplacementelement describes a particular deployment of a component hom
The homeplacementelement may be a direct child of thepartitioning element which
states that it has no collocation constraints; or it may be a child element of the
hostcollocationor processcollocationelements which states specific host or process
collocation constraints.

Theusagenamechild element is used to specify a name for the placement, possibly
use in a tool. Thecomponentfileref element specifies the component file. The
componentimplref element refers to a specific implementation in the component fil
Thehomepropertieselement refers to a state file associated with the home placeme
it is used to configure the home after it is created. Thecomponentpropertieselement
refers to a property file used to configure all components created through the hom
69-312 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October



69

e

nt

be
or
The registerwithhomefinder element instructs the installation process to register th
home with the home finder. Theregisterwithnaming element instructs the installation
process to register the home with a naming service. Theregisterwithtrader element
instructs the installation process to register the home with a trader service. The
componentinstantiation element instructs the installation agent to create a compone
using this home. Thedestination element is used to record where thehomeplacement
is to be deployed, if designated.

<!ELEMENT homeplacement
( usagename?
, componentfileref
, componentimplref?
, homeproperties?
, componentproperties?
, registerwithhomefinder*
, registerwithnaming*
, registerwithtrader*
, componentinstantiation*
, destination?
, extension*
) >

<!ATTLIST homeplacement
id ID #REQUIRED
cardinality CDATA "1" >

The id attribute is a unique identifier within the assembly descriptor for the
homeplacement. The id is used to refer to the home in the connect block.

The cardinality attribute specifies how many instantiations of this component may
deployed. Possible values for cardinality are a specific number, a “+” to specify 1
more, or a “*” to specify 0 or more. The default cardinality is “1”.

Note that if thecardinality is greater than 1 and there are any connections to this
homeplacement, then connections will be made to each instance of the deployed
home.

69.7.2.30 The homeplacementref Element

The homeplacementrefelement refers to a particularhomeplacementelement in the
assembly descriptor.

<!ELEMENT homeplacementref EMPTY >
<!ATTLIST homeplacementref

idref CDATA #REQUIRED >

The idref attribute corresponds to a uniquehomeplacementid attribute.
CORBA 3.0CCMFTFDRAFT ptc/99-10-04 Component Assembly Descriptor 29 October 1999



69

e
by

d

have

nts
69.7.2.31 The homeproperties Element

The homepropertieselement specifies a property file for a home. The properties ar
used to configure the home when it is created. The property file may be specified
either afileinarchive or a codebasechild element. The format of the property file is
described in section 69.8 on page 321.

<!ELEMENT homeproperties
( fileinarchive
| codebase
) >

69.7.2.32 The hostcollocation Element

A hostcollocationspecifies a group of component instances that are to be deploye
together to a single host. The child elements are an optionalusagename, an optional
impltype, and a list ofprocesscollocation, homeplacement, and
executableplacementelements. Ifimpltype is specified then each of the component
instances must have implementations supporting the implementation type. Ifimpltype
is not specified, then at deployment time each of the collocated components must
implementations supporting the target deployment platform.

<!ELEMENT hostcollocation
( usagename?
, impltype?
, ( homeplacement

| executableplacement
| processcollocation
| extension
)+

, destination?
) >

<!ATTLIST hostcollocation
id ID #IMPLIED
cardinality CDATA "1" >

The id attribute uniquely identifies this host collocation in the component assembly
file. The cardinality attribute specifies how many instances of this host collocation
may be deployed. Possible values forcardinality are a specific number, a “+” to
specify 1 or more, or a “*” to specify 0 or more. The default cardinality is “1”.

Note that if thecardinality is greater than 1, and there are connections to compone
within the hostcollocation, then connections will be made to the corresponding
components or component homes within each instance of the collocation.
69-314 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October



69

e

ld be

to
.

of

with
home

part
69.7.2.33 The impltype Element

Issue – May not be necessary.

69.7.2.34 The invocation Element

The invocation element is used to specify invocation arguments for an executable
placement.

<!ELEMENT invocation EMPTY >
<!ATTLIST invocation

args CDATA #REQUIRED >

The args attribute is a string containing the arguments to be used in invoking the
executable. Note, thatargs is just the arguments to the executable, it does not includ
the executable name.

69.7.2.35 The link Element

See section 69.3.2.18 on page 268.

69.7.2.36 The namingservice Element

The naming service element is used to indicate that a component or interface shou
found using a naming service.

<!ELEMENT namingservice EMPTY >
<!ATTLIST namingservice

name CDATA #REQUIRED >

The name attribute specifies the naming service name to look up.

69.7.2.37 The partitioning Element

Component partitioning specifies a deployment pattern of homes and components
generic processes and hosts. The pattern is expressed via collocation constraints

A particular usage of a component is always relative to a component home. Uses
component homes are recognized in the assembly as home placements. A home
placement, and component instantiations relative to that home, may be collocated
other home placements and component instantiations in a process. Processes and
placements may be collocated within a logical host. A home placement that is not
of a process or host collocation may be deployed without constraint.

An executable placement is the placement of a particular executable. It may be
partitioned without constraint or as part of a host collocation.
CORBA 3.0CCMFTFDRAFT ptc/99-10-04 Component Assembly Descriptor 29 October 1999



69

elf.
ents,

ent
ents

bly
on
Within a partitioning element,homeplacement, executableplacementand
collocation constraints are specified. Thehomeplacementchild element specifies a
freely deployable home. Theexecutableplacementelement specifies a freely
deployable executable. Theprocesscollocationandhostcollocationchild elements are
used to grouphomeplacementtogether into deployable units.

A homeplacementmay be declared as part of a host or process collocation or by its
The actual host and process will be determined at deployment time. Home placem
executable placements, process collocations, and host collocations all have an
associated cardinality. The default cardinality is “1”. An ordinal cardinality of 1 or
greater mandates that the deployable unit must be instantiated that many times,
cardinality of “+” indicates 1 or more, and “*” indicates zero or more.

<!ELEMENT partitioning
( homeplacement
| executableplacement
| processcollocation
| hostcollocation
| extension
)* >

69.7.2.38 The processcollocation Element

The processcollocationelement specifies a group of home and associated compon
instantiations that are to be deployed together to a single process. The child elem
are an optionalusagename, an optionalimpltype, and a list ofhomeplacement
elements. Ifimpltype is specified then each of the component instances must have
implementations supporting the implementation type. Ifimpltype is not specified, then
at deployment time each of the collocated components have implementations
supporting the target deployment platform.

<!ELEMENT processcollocation
( usagename?
, impltype?
, ( homeplacement

| extension
)+

) >
<!ATTLIST processcollocation

id ID #IMPLIED
cardinality CDATA "1" >

The id attribute uniquely identifies this process collocation in the component assem
file. The cardinality attribute specifies how many instances of this process collocati
may be deployed. Possible values forcardinality are a specific number, a “+” to
specify 1 or more, or a “*” to specify 0 or more. The default cardinality is “1”.
69-316 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October



69

nts

.
ing
Note that if thecardinality is greater than 1, and there are connections to compone
and homes within theprocesscollocation, then connections will be made to
corresponding components or component homes within each instance of the
collocation.

69.7.2.39 The providesidentifier Element

The providesidentifier identifies a provides “port” on a component. The identifier
corresponds to a provides identifier specified in component IDL.

<!ELEMENT providesidentifier ( #PCDATA ) >

69.7.2.40 The providesport Element

Specifies the interface providing side of an interface connection relationship. The
providesidentifier child element identifies the particularprovidesport. The component
with this provides port is identified by acomponentinstantiationref or a findby
element. Thecomponentinstantiationref identifies a component within the assembly
The findby element points to an existing component that can be found within a nam
service or trader, or using a stringified object reference.

<!ELEMENT providesport
( providesidentifier
, ( componentinstantiationref

| findby
)

)>

69.7.2.41 The publishesidentifier Element

The publishesidentifier identifies a publishes “port” on a component. The identifier
corresponds to the identifier specified in IDL for the publishes port.

<!ELEMENT publishesidentifier ( #PCDATA ) >

69.7.2.42 The publishesport Element

Specifies the event-publishes side of an event connection relationship. The
publishesidentifier child element identifies the particularpublishesport. The
component with this publishes port is identified by acomponentinstantiationref or a
findby element. Thecomponentinstantiationref identifies a component within the
assembly. Thefindby element points to an existing component that can be found
within a naming service or trader, or using a stringified object reference.
CORBA 3.0CCMFTFDRAFT ptc/99-10-04 Component Assembly Descriptor 29 October 1999



69

r.

red
ust

e

or
<!ELEMENT publishesport
( publishesidentifier
, ( componentinstantiationref

| findby
)

)>

69.7.2.43 The registercomponent Element

The registercomponentelement is used to specify that a component, a provided
interface, or a published event should be registered with a naming service or trade

Issue – In the case of events, what gets registered?

If an emitsidentifier, providesidentifier, or publishesidentifier is specified then that
element is registered. If none of the above are specified then it is implied that the
component itself is to be registered.

Registration may be through a naming service or trader. Theregisterwithnaming
element specifies a naming service registration andregisterwithtrader specifies a
trader registration. The interface, event, or component registration may be registe
with both a naming service and a trader, multiple times. At least one registration m
take place.

<!ELEMENT registercomponent
( ( emitsidentifier

| providesidentifier
| publishesidentifier
)?

, ( registerwithnaming
| registerwithtrader
)+

) >

69.7.2.44 The registerwithhomefinder Element

The registerwithhomefinder element tells the installer to register a component hom
with the home finder.

<!ELEMENT registerwithhomefinder EMPTY >
<!ATTLIST registerwithhomefinder

name CDATA #REQUIRED >

The name attribute is the name to register the home with in the home finder.

69.7.2.45 The registerwithnaming Element

The registerwithnaming element tells the installer to register a component instance
home with a naming service after it is created.
69-318 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October



69

be

or

fied

nce.

ader
nts

rve
<!ELEMENT registerwithnaming EMPTY >
<!ATTLIST registerwithnaming

name CDATA #IMPLIED >

The name attribute is the naming service name. If the name is not specified, it will
determined at deployment time, possibly with interaction with the user.

69.7.2.46 The registerwithtrader Element

The registerwithtrader element tells the installer to register a component instance
home with a trader after it is created.

<!ELEMENT registerwithtrader
( traderproperties ) >

<!ATTLIST registerwithtrader
tradername CDATA #IMPLIED >

69.7.2.47 The proxyhome Element

Identifies a proxy home that is to be connected to another home. The home is
identified by ahomeplacementrefor a findby element. Thehomeplacementref
identifies a home within the assembly. Thefindby element points to an existing home
that can be found within a home finder, naming service, or trader, or using a stringi
object reference.

<!ELEMENT remotehome
( homeplacementref
| findby
) >

69.7.2.48 The stringifiedobjectref Element

The stringifiedobjectref element is used to locate a component by its object refere

<!ELEMENT stringifiedobjectref ( #PCDATA ) >

69.7.2.49 Trader elements

The trader elements are used to register a home, component or interface with a tr
and to find a home, component or interface using a trader query. The trader eleme
closely parallel trader functionality in name and purpose.

Issue – The trader elements have to be reviewed to make sure that they se
the purpose intended. Also, consider using a property file.
CORBA 3.0CCMFTFDRAFT ptc/99-10-04 Component Assembly Descriptor 29 October 1999



69

r

<!ELEMENT traderconstraint ( #PCDATA ) >

<!ELEMENT traderexport
( traderservicetypename
, traderproperties
) >

<!ELEMENT traderpolicy
( traderpolicyname
, traderpolicyvalue
) >

<!ELEMENT traderpolicyname ( #PCDATA ) >

<!ELEMENT traderpolicyvalue ( #PCDATA) >

<!ELEMENT traderpreference ( #PCDATA ) >

<!ELEMENT traderproperties
( traderproperty+ ) >

<!ELEMENT traderproperty
( traderpropertyname
, traderpropertyvalue
) >

<!ELEMENT traderpropertyname ( #PCDATA ) >

<!ELEMENT traderpropertyvalue ( #PCDATA ) >

<!ELEMENT traderquery
( traderservicetypename
, traderconstraint
, traderpreference?
, traderpolicy*
, traderspecifiedprop*
) >

<!ELEMENT traderservicetypename ( #PCDATA ) >

<!ELEMENT traderspecifiedprop ( #PCDATA ) >

Note – These still need to be explained in text. In the mean time, look at the trade
spec. The correspondence should be obvious.

69.7.2.50 The usagename Element

A user defined “friendly” name.
69-320 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October



69

t

e or

ibed
t
file

le.
<!ELEMENT usagename ( #PCDATA ) >

69.7.2.51 The usesidentifier Element

A child element ofusingcomponent, usesidentifier identifies which uses “port” on the
component is to participate in the relationship. The type of the using interface mus
match the type of the connected provides interface.

<!ELEMENT usesidentifier ( #PCDATA ) >

69.7.2.52 The usingcomponent Element

Specifies the interface using side of an interface connection relationship. The
usesidentifier child element identifies the particularusesport. The component with
this uses port is identified by acomponentinstantiationref or a findby element. The
componentinstantiationref identifies a component within the assembly. Thefindby
element points to an existing component that can be found within a naming servic
trader, or using a stringified object reference.

<!ELEMENT usesport
( usesidentifier
, ( componentinstantiationref

| findby
)

)>

69.8 Property File Descriptor

The property file details component or home attribute settings. Properties are descr
using an XML vocabulary described below. The property file is used at deploymen
time to configure a home or component instance. A configurator uses the property
to determine how to set component and component home property attributes.

The property file may be edited using a text editor or with the help of a GUI tool. A
packaged component may be shipped with a set of default properties that may be
altered by the end user.

The suggested file extension for property files is “.cpf”, for Component Property Fi

69.8.1 Property File Example

The following property descriptor example has 3 properties:bufferSize, niceGuys,
andsanityTestTime. The bufferSize parameter is a long type; theniceGuysproperty
is a sequence of strings; and thesanityTestTime property is a structure of type
timestruct , containing 3 shorts.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Property File Descriptor 29 October 1999



69

.

es

n is

s

<properties>
<simple name=bufSize type="long">

<description>Size of Whizitron input buffer</description>
<value>4096</value>
<defaultvalue>256</defaultvalue>

</simple>
<sequence name="niceGuys" type="sequence<string>">

<simple type="string"><value>Dave</value></simple>
<simple type="string"><value>Ed</value></simple>
<simple type="string"><value>Garrett</value></simple>
<simple type="string"><value>Jeff</value></simple>
<simple type="string"><value>Jim</value></simple>
<simple type="string"><value>Martin</value></simple>
<simple type="string"><value>Patrick</value></simple>

</sequence>

<struct name="sanityTestTime" type="timestruct">
<description>Time to start daily sanity check</description>
<simple name="hour" type="short"><value> 24 </value></simple>
<simple name="minute" type="short"><value> 0 </value></simple>
<simple name="second" type="short"><value> 0 </value></simple>

</struct>
</properties>

The properties document has 3 major elements:simple, sequenceandstruct.

The simple element describes a single primitive idl type. Thesequenceelement
corresponds to an IDL sequence, and thestruct element corresponds to an IDL struct

Note – If the user of the property file does not have static information about the typ
specified in the property file then it will likely need to construct the type into a
DynAny .

69.8.2 Property File XML Elements

This section describes the XML elements that make up a properties file. The sectio
organized starting with the root element of the properties document,properties,
followed by all subordinate elements, in alphabetical order. The complete propertie
file DTD may be found in Section 695.3, “properties.dtd,” on page 695-345.
69-322 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Property File Descriptor 29 October 1999



69

an
69.8.2.1 The properties Root Element

The properties element is the root element of the properties document. It contains
optional description and any combination ofsimple, sequence, andstruct elements.

<!ELEMENT properties
( description?
, ( simple

| sequence
| struct
)*

) >

69.8.2.2 The choice Element

<!ELEMENT choice ( #PCDATA ) >

The choiceelement is used to specify a valid simple property value.

69.8.2.3 The choices Element

<!ELEMENT choices ( choice+ ) >

The choiceselement is a list of one or more choice elements.

69.8.2.4 The defaultvalue Element

<!ELEMENT defaultvalue ( #PCDATA ) >

The defaultvalue element is used to specify a default simple property value.

69.8.2.5 The description Element

<!ELEMENT description ( #PCDATA ) >

The description element is used to provide a description of its enclosing element.

69.8.2.6 The properties Element

The root element of the properties file. See section 69.8.2.1 on page 323.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Property File Descriptor 29 October 1999



69

a

me

are

to its
69.8.2.7 The simple Element

The simple element is used to specify an attribute value of a primitive type.simple
contains a mandatoryvalue element, and optionaldescription, choices, and
defaultvalue elements.

Thevalue element is used to specify the value of the simple type. If thevalue element
is empty, the value is deemed unspecified. If the value is unspecified, and there is
defaultvalue defined, then the default value will be used.

The description, choicesand defaultvalue child elements may be used to provide
guidance to the end user in deciding how to set the attributes.

<!ELEMENT simple
( description?
, value
, choices?
, defaultvalue?
) >

<!ATTLIST simple
name CDATA #IMPLIED
type ( boolean

| char
| double
| float
| short
| long
| objref
| octet
| short
| string
| ulong
| ushort

) #REQUIRED >

name

The name attribute specifies the name of the attribute as it appears in IDL. The na
attribute is required, except when the property is used in a sequence.

type

The type attribute specifies the type of the corresponding attribute. Property types
either an IDL primitive data type, or an objref.

Note – The objref is in its stringified form in the property element. The stringified
object reference is converted into a proper object reference before being assigned
corresponding attribute.
69-324 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Property File Descriptor 29 October 1999



69

a
order

ence.

me
nce.

of

he
ce.
69.8.2.8 The sequence Element

The sequenceelement is used to represent a sequence of similar types. It may be
sequence of simple types, a sequence of structs, or a sequence of sequences. The
of the sequence elements in the property file is preserved in the constructed sequ
An optional description may be used to describe the sequence property.

<!ELEMENT sequence
( description?
, ( simple*

| struct*
| sequence*
)

) >
<!ATTLIST sequence

name CDATA #IMPLIED
type CDATA #REQUIRED >

name

The name attribute specifies the name of the sequence as it appears in IDL. The na
attribute is required, except when the sequence property is used in another seque

type

The type attribute specifies the type of the corresponding IDL sequence. The type
each element in the sequence must match the sequence type.

69.8.2.9 The struct Element

The struct element corresponds to an IDL structure. It may be composed of simple
properties, sequences, or other structs.

<!ELEMENT struct
( description?
, ( simple

| sequence
| struct
)*

) >
<!ATTLIST struct

name CDATA #IMPLIED
type CDATA #REQUIRED >

name

The name attribute specifies the name of the struct attribute as it appears in IDL. T
name attribute is required, except when the structure property is used in a sequen
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Property File Descriptor 29 October 1999



69
type

The type attribute specifies the type of the corresponding IDL struct.

69.8.2.10 The value Element

The value element is used to specify a simple value.

<!ELEMENT value ( #PCDATA ) >
69-326 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Property File Descriptor 29 October 1999



69

get

a
, or

ll

r

uely

g for

ase,
uent

cts

ario.
69.9 Component Deployment

Components, component homes, and component assemblies are deployed on tar
hosts in a network using a deployment tool provided by an ORB or tool vendor.

The aim of deployment is to install and “hook-up” a logical component topology to
physical computing environment. The deployment is specified by an assembly file
in the degenerate case, an individual component file.

The basic steps in the deployment process are:

1. Identify on which hosts the components are to be installed. This information wi
most likely come from an interaction between tool and user. Components are
deployed either singly or together with other components as part of a process o
host collocation.

2. Install component implementations on each platform where corresponding
component instances are to be deployed. If a component implementation, uniq
identified by a UUID, is already installed on a host then it does not have to be
installed again.

3. Instantiate components and component homes on particular hosts. The mappin
doing so was determined in step 1.

4. Connect components as specified in the assembly descriptor’s connect block.

A stand-alone component file may be deployed as well as assembly files. In that c
step 4 does not apply. Unless otherwise noted, all interfaces defined in the subseq
sections are in theDeployment module which is imbedded within theComponents
module (see Section 695.1, “softpkg.dtd,” on page 695-335 for a description of the
naming structure proposed by this specification).

69.9.1 Participants in Deployment

The deployment of a component or component assembly is carried out by a
deployment application in conjunction with a set of helper objects. The helper obje
include component repositories, assembly and component factories, an object
representing an assembly itself, and a container.

The following class diagram and scenario represents a deployment architecture.

Note – Of the interfaces described below, onlyComponentInstallation,
AssemblyFactory, andAssemblyare required by this specification; the other
interfaces are included for illustrative purposes and to support an end-to-end scen
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999



69

ws.

re

y

are
69.9.1.1 Deployment Architecture

Figure 69-1 Deployment Architecture

69.9.1.2 Deployment Scenario

The steps in deploying and activating a component assembly could unfold as follo

1. The deployment application has a conversation with the user to determine whe
each component or collocation is to be placed. Information about where
components are to be located is recorded in a copy of the component assembl
descriptor. This marked-up assembly descriptor will be used later by theAssembly
object to direct the creation of the assembly.

2. Next the component implementations are installed on the platforms where they
to be used. The deployment application callsinstall on theInstallation object,
passing the component implementationid and a string denoting the address of the
component file. If the component has not already been installed on the target
platform, then theInstallation object retrieves the component file and makes it
available in the local environment.

ComponentServer

Container

ComponentHome

Component

ComponentInstallation

DeploymentApplication

AssemblyFactory

ServerActivator

Assembly

<<instantiates >>

<<instantiates >>

<<instantiates >>

<<instantiates >>

<<instantiates >>
69-328 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999



69

e

the
o
h
n this

and
lp of

f the
3. The deployment application then creates anAssembly object.Assembly objects
coordinate the creation and destruction of component assemblies. EachAssembly
object represents an assembly instantiation.Assembly objects are created by
calling anAssemblyFactory object on the host where the assembly object is to b
created. TheAssemblyFactory is passed a string pointing to the assembly
descriptor file.If necessary, theAssemblyFactory brings the assembly descriptor
into the local environment and makes its location known to theAssembly object.

4. The assembly descriptor uses the assembly descriptor as a recipe for creating
assembly. The descriptor specifies which components and component homes t
create, where they are to be located, what components are to be collocated wit
each other, and what components are to be connected with each other. Based o
information theAssembly object creates each component and component home
and “hooks-up” the assembly.

5. In creating a component, theAssembly object must create a component server,
create a container within the server, install a home object within the container,
then use the home to create the component. This work is completed with the he
a set of objects on each host. These areServerActivator , ComponentServer ,
Container , and theComponentHome .

6. TheAssembly object first calls theServerActivator on the target host to create
the component server. There is one instance of theServerActivator object on each
host. TheAssembly object creates the component server by calling the
create_component_server operation on theServerActivator object. This
operation creates an empty server process and returns a reference to the
ComponentServer object of the newly created process.

7. Each server contains a singleComponentServer object. It is used by the
Assembly object to create containers within the server. A container is created
when theAssembly object callscreate_container on theComponentServer
object, passing in a container identifier or list of container attributes. The
create_container operation returns a reference to theContainer interface of the
newly created container.

8. TheAssembly object uses theContainer interface to install the component home
into the container. This is accomplished by callinginstall_home on the
Container object. Theinstall_home operation takes a componentid parameter
and returns a reference to the home interface.

9. In order to create the home, theContainer must load the DLL, shared object file,
or .class file into the container process. To determine the path or the or fully
qualified name of the component implementation, the container calls the
get_implementation operation of theInstallation object. It passes in theid of
the component implementation and is returned the absolute location or name o
component implementation. The container then loads the implementation and
instantiates the home object. The home object reference is then returned to the
Assembly object.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999



69

ent

he
the

e

nt

he
10. TheAssembly object uses the component’s home object to create the compon
instance. The instance is created by callingcreate_component on the home
reference.create_component returns aCCMObject object reference.

11. If applicable, a configurator is applied to the component.

12. Once all of the components are installed, theAssembly object connects
components in the assembly based on the information in the connect block of t
assembly descriptor. It does this by calling the receptacle connect operation on
CCMObject reference.

13. Following the successful consummation of each connection in the assembly, th
Assembly object callsconfiguration_complete on each object in the assembly
to signal that all of its initial connections have been fixed.

69.9.2 ComponentInstallation Interface

The ComponentInstallation object is used to install, query, and remove compone
implementations on a single platform. There is at most oneComponentInstallation
object per host.

It is intended that this interface be general enough to encompass a wide range of
underlying implementations, as theComponentInstallation interface will likely be
implemented on top of a vendor specific implementation repository.

exception UnknownImplId { };
exception InvalidLocation { };

interface ComponentInstallation {
boolean install(in string implUUID, in string component_loc)

raises InvalidLocation;
boolean replace(in string implUUID, in string component_loc)

raises InvalidLocation;
boolean remove(in string implUUID)

raises UnknownImplId;
};

install

The install operation installs a component on the particular host on which the
ComponentInstallation object resides. Thecomponent_locparameter points to the
location of the component package. TheimplUUID refers to a particular
implementation within that component package.

replace

The replace operation replaces a component implementation previously installed. T
component_locparameter points to the component package and theimplUUID points
to a particular implementation within the package.
69-330 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999



69

he

bly
remove

The remove operation removes a previously installed component implementation. T
implUUID refers to the particular implementation.

69.9.3 AssemblyFactory Interface

The AssemblyFactory interface is used to createAssembly objects. A single
AssemblyFactory object must be present on each host whereAssembly objects are
to be created.

exception InvalidLocation { };
exception InvalidAssembly { };

interface AssemblyFactory {
Cookie create(in string assembly_loc)

raises InvalidLocation;
Assembly lookup(in Cookie c)

raises InvalidAssembly;
boolean destroy(in Cookie c)

raises InvalidAssembly;
};

create

The create operation creates anAssembly object on the host on which the
AssemblyFactory is located. It takes a string location for the assembly descriptor
and returns aCookie that may be used to reference the assembly later. TheCookie is
the same as specified in Section 61.5.2.4, “Cookie type,” on page 61-42, of this
document. The operation raises anInvalidLocation exception if the assembly
descriptor could not be found.

lookup

The lookup operation takes aCookie and returns an object reference to an
Assembly object. It throwsInvalidAssembly exception if theCookie did not
reference an existing assembly, known by thisAssemblyFactory .

destroy

Thedestroy operation destroys the assembly referenced by aCookie . If the assembly
is active it will first tear down the assembly. The operation returns true if the assem
was successfully destroyed, false otherwise.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999



69

p
g to
them
g all

ilt

n
nd

or a

home
.

on
a
of
69.9.4 Assembly Interface

The Assembly interface represents an assembly instantiation. It is used to build u
and tear down component assemblies. Building the assembly means that it is goin
instantiate all of the components in the assembly and create connections between
as specified in the assembly descriptor. Tearing the assembly down means removin
connections and destroying the components in the assembly.

enum AssemblyState {INACTIVE, INSERVICE};

interface Assembly {
boolean build();
boolean tear_down();
AssemblyState get_state();

};

build

The build operation builds the assembly and returns TRUE if the assembly was bu
successfully and FALSE otherwise. If the build failed then thebuild operation is
responsible for cleaning up any pieces of the assembly that were created.

tear_down

The tear_down operation removes all of the objects in the assembly. It cannot be
responsible for any objects which the assembly objects created during operation.

get_state

The get_state operation returns whether the assembly is active or inactive. An
assembly will be inactive before it is built, while it is being built, when it is being tor
down, and after it has been torn down. It will be active after it is successfully built a
before it is torn down.

69.9.5 Component Entry Points (Component Home Factories)

Each component package contains a component implementation. A component
implementation is a dynamically loadable module such as a DLL, a shared library,
Java .class file. The component implementation file contains the code for the
component implementation and its associated home implementation.

To load a component into a container, the home for the component must first be
created. The home is then used to create component instances. The component’s
is created by calling a well known entry point in the component implementation file

The entry point is an operation or function whose existence and signature is comm
across all component implementation files. The generic entry point function allows
container to create a component home without having to have specific knowledge
that home or its associated component implementation.
69-332 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999



69

re

ked
e the
Entry points are programming language specific. Depending on the language, it is
either a function or static method. The signature and semantics of the operation a
specified for Java and C++.

In general, the entry point function takes no arguments and returns a pointer or
reference to aHomeExecutorBase.

Entry Points in Java

In Java, the entry point is the name of a class and static method which may be invo
to create a servant which implements the component home. The method must hav
following signature:

public static HomeExecutorBase
foo();

For instance, if one wrote the following code for the entry point:
package bigbank.corbacomponents.Account;
public class AccountHomeFactory {

public static HomeExecutorBase create() {
return new AccountHomeImpl();

}
}

Then the string representing the entry point string would be
“ bigbank.corbacomponents.Account.AccountHomeFactory.create”.

Entry Points in C++

In C++, the entry point is the symbol in a shared library or DLL which should be
invoked to return theHomeExecutorBase for the component’s home
implementation.

The entry point should have “C” linkage (i.e. no name-mangling) and have the
following signature:

HomeExecutorBase* (*)();

So for example:

extern "C" {
HomeExecutorBase* createAccountHome() {

return new AccountHomeImpl();
};

};

In this case, the entry point would simply be “createAccountHome”.
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999



69
69-334 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999



XML DTDs 695
This chapter contains the definitions of the XML DTDs used by the CORBA
Components.

Issue – It contains all new text taken from the CCM final submission
orbos/99-07-01 with only minor editorial changes - Jeff Mischkinsky

This chapter contains the following sections.

695.1 softpkg.dtd

<!-- DTD for softpkg. Used to describe CORBA Component
implementations. The root element is <softpkg>.
Elements are listed alphabetically.

-->
<!-- Simple xml link attributes based on W3C WD-xlink-19980303.

May change when XLL is finalized. -->
<!ENTITY % simple-link-attributes "

Section Title Page

“softpkg.dtd” 695-335

“corbacomponent.dtd” 695-339

“properties.dtd” 695-345

“componentassembly.dtd” 695-346
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 softpkg.dtd 29 October 1999 695-335



695
xml:link CDATA #FIXED 'SIMPLE'
href CDATA #REQUIRED

">

<!ELEMENT author
( name
| company
| webpage
)* >

<!ELEMENT code
( ( codebase

| fileinarchive
| link
)
, entrypoint?
, usage?

) >
<!ATTLIST code

type CDATA #IMPLIED >

<!-- If file not available locally, then download via codebase link -->
<!ELEMENT codebase EMPTY >
<!ATTLIST codebase

filename CDATA #IMPLIED
%simple-link-attributes; >

<!ELEMENT compiler EMPTY >
<!ATTLIST compiler

name CDATA #REQUIRED
version CDATA #IMPLIED >

<!ELEMENT company ( #PCDATA ) >

<!ELEMENT dependency
( softpkgref
| codebase
| fileinarchive
| localfile
| name
) >

<!ATTLIST dependency
type CDATA #IMPLIED
action (assert | install) "assert">

<!ELEMENT description ( #PCDATA ) >

<!ELEMENT descriptor
( link
| fileinarchive
) >

<!ATTLIST descriptor
type CDATA #IMPLIED>

<!ELEMENT entrypoint ( #PCDATA) >
695-336 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 softpkg.dtd 29 October 1999



695
<!-- The "extension" element is used for vendor-specific extensions -->
<!ELEMENT extension (#PCDATA) >
<!ATTLIST extension

class CDATA #REQUIRED
origin CDATA #REQUIRED
id ID #IMPLIED
extra CDATA #IMPLIED
html-form CDATA #IMPLIED >

<!-- The "fileinarchive" element is used to specify a file in the
archive.

If the file is in another archive then link
is used to point to the archive in which the file may be found.

-->
<!ELEMENT fileinarchive

( link? ) >
<!ATTLIST fileinarchive

name CDATA #REQUIRED >

<!ELEMENT idl
( link
| fileinarchive
| repository
) >

<!ELEMENT implementation
( description
| code
| compiler
| dependency
| descriptor
| extension
| programminglanguage
| humanlanguage
| os
| propertyfile
| processor
| runtime
)* >

<!ATTLIST implementation
id ID #IMPLIED >

<!ELEMENT implref EMPTY >
<!ATTLIST implref

idref CDATA #REQUIRED >

<!ELEMENT humanlanguage EMPTY >
<!ATTLIST humanlanguage

name CDATA #REQUIRED >

<!ELEMENT license ( #PCDATA ) >
<!ATTLIST license

%simple-link-attributes; >
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 softpkg.dtd 29 October 1999 695-337



695
<!ELEMENT link ( #PCDATA ) >
<!ATTLIST link

%simple-link-attributes; >

<!-- A file that should be available in the local environment -->
<!ELEMENT localfile EMPTY >
<!ATTLIST localfile

name CDATA #REQUIRED >

<!ELEMENT name ( #PCDATA ) >

<!ELEMENT os EMPTY >
<!ATTLIST os

name CDATA #REQUIRED
version CDATA #IMPLIED>

<!ELEMENT pkgtype ( #PCDATA ) >
<!ATTLIST pkgtype

version CDATA #IMPLIED >

<!ELEMENT processor EMPTY >
<!ATTLIST processor

name CDATA #REQUIRED >

<!ELEMENT programminglanguage EMPTY>
<!ATTLIST programminglanguage

name CDATA #REQUIRED
version CDATA #IMPLIED >

<!ELEMENT propertyfile
( fileinarchive
| link) >

<!ATTLIST propertyfile
type CDATA #IMPLIED >

<!ELEMENT resource
( localfile
| codebase
) >

<!ATTLIST resource
type CDATA #IMPLIED >

<!ELEMENT runtime EMPTY >
<!ATTLIST runtime

name CDATA #REQUIRED
version CDATA #IMPLIED>

<!ELEMENT softpkg
( title
| pkgtype
| author
| description?
| license
| idl
695-338 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 softpkg.dtd 29 October 1999



695
| propertyfile
| dependency
| descriptor
| implementation
| extension
)* >

<!ATTLIST softpkg
name ID #REQUIRED
version CDATA #IMPLIED >

<!ELEMENT softpkgref
( ( fileinarchive

| link
)
, implref?

) >

<!ELEMENT title ( #PCDATA ) >

<!ELEMENT usage ( #PCDATA ) >

<!ELEMENT webpage ( #PCDATA ) >
<!ATTLIST webpage

%simple-link-attributes; >

695.2 corbacomponent.dtd
<!-- DTD for CORBA Component Descriptor. The root element is

<corbacomponent>. Elements are listed alphabetically.
-->

<!-- Simple xml link attributes based on W3C WD-xlink-19980303.
May change when XLL is finalized. -->

<!ENTITY % simple-link-attributes "
xml:link CDATA #FIXED 'SIMPLE'
href CDATA #REQUIRED

">

<!ELEMENT accessmode EMPTY>
<!ATTLIST accessmode

mode (READ_ONLY|READ_WRITE) #REQUIRED >

<!ELEMENT catalog EMPTY>
<!ATTLIST catalog

type CDATA #REQUIRED >

<!ELEMENT componentfeatures
( inheritscomponent?
, supportsinterface*
, ports
, operationpolicies?
, extension*
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 corbacomponent.dtd 29 October 1999



695
) >
<!ATTLIST componentfeatures

name CDATA #REQUIRED
repid CDATA #REQUIRED >

<!ELEMENT componentkind
( service
| session
| process
| entity
| unclassified
) >

<!ELEMENT componentproperties
( fileinarchive
) >

<!ELEMENT componentrepid EMPTY >
<!ATTLIST componentrepid

repid CDATA #IMPLIED >

<!ELEMENT containermanagedpersistence
( storagehome
, pssimplementation?
, catalog?
, accessmode
, psstransaction
, params?
) >

<!ELEMENT configurationcomplete EMPTY >
<!ATTLIST configurationcomplete

set ( true | false ) #REQUIRED >

<!ELEMENT consumes
( eventpolicy
, extension* ) >

<!ATTLIST consumes
consumesname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

<!ELEMENT corbacomponent
( corbaversion
, componentrepid
, homerepid
, componentkind
, interop?
, transaction?
, security?
, threading
, configurationcomplete
, extendedpoapolicy*
, repository?
, segment*
, componentproperties?
695-340 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 corbacomponent.dtd 29 October 1999



695
, homeproperties?
, homefeatures+
, componentfeatures+
, interface*
, extension*
) >

<!ELEMENT corbaversion (#PCDATA) >

<!ELEMENT emits
( eventpolicy
, extension* ) >

<!ATTLIST emits
emitsname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

<!ELEMENT entity
( servant ) >

<!ELEMENT eventpolicy EMPTY>
<!ATTLIST eventpolicy

policy ( normal | default | transaction ) #IMPLIED>

<!ELEMENT extendedpoapolicy EMPTY>
<!ATTLIST extendedpoapolicy

name CDATA #REQUIRED
value CDATA #REQUIRED >

<!-- The "extension" element is used for vendor-specific extensions -->
<!ELEMENT extension (#PCDATA) >
<!ATTLIST extension

class CDATA #REQUIRED
origin CDATA #REQUIRED
id ID #IMPLIED
extra CDATA #IMPLIED
html-form CDATA #IMPLIED >

<!-- The "fileinarchive" element is used to specify a file in the
archive.

If the file is in another archive then link
is used to point to the archive in which the file may be found.

-->
<!ELEMENT fileinarchive

( link? ) >
<!ATTLIST fileinarchive

name CDATA #REQUIRED >

<!ELEMENT homefeatures
( inheritshome?
, operationpolicies?
, extension* ) >

<!ATTLIST homefeatures
name CDATA #REQUIRED
repid CDATA #REQUIRED >
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 corbacomponent.dtd 29 October 1999



695
<!ELEMENT homeproperties
( fileinarchive
) >

<!ELEMENT homerepid EMPTY >
<!ATTLIST homerepid

repid CDATA #IMPLIED >

<!ELEMENT inheritscomponent EMPTY>
<!ATTLIST inheritscomponent

repid CDATA #REQUIRED>

<!ELEMENT inheritshome EMPTY>
<!ATTLIST inheritshome

repid CDATA #REQUIRED>

<!ELEMENT inheritsinterface EMPTY>
<!ATTLIST inheritsinterface

repid CDATA #REQUIRED>

<!ELEMENT ins EMPTY>
<!ATTLIST ins

name CDATA #REQUIRED >

<!ELEMENT interface
( inheritsinterface*
, operationpolicies? ) >

<!ATTLIST interface
name CDATA #REQUIRED
repid CDATA #REQUIRED >

<!ELEMENT interop EMPTY>
<!ATTLIST interop

type CDATA #REQUIRED
direction ( hasview | isview ) #REQUIRED
descriptor CDATA #REQUIRED >

<!ELEMENT link ( #PCDATA ) >
<!ATTLIST link

%simple-link-attributes; >

<!ELEMENT objref EMPTY>
<!ATTLIST objref

string CDATA #REQUIRED >

<!ELEMENT operation
( transaction?
, requiredrights? ) >

<!ATTLIST operation
name CDATA #REQUIRED >

<!-- an operation name of "*" specifies all operations in the current
scope -->

<!ELEMENT operationpolicies
( operation+ ) >
695-342 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 corbacomponent.dtd 29 October 1999



695
<!ELEMENT param EMPTY >
<!ATTLIST param

name CDATA #REQUIRED
value CDATA #REQUIRED >

<!ELEMENT params (param+) >

<!ELEMENT poapolicies EMPTY>
<!ATTLIST poapolicies

thread (ORB_CTRL_MODEL | SINGLE_THREAD_SAFE ) #REQUIRED
lifespan (TRANSIENT | PERSISTENT ) #REQUIRED
iduniqueness (UNIQUE_ID | MULTIPLE_ID) #REQUIRED
idassignment (USER_ID | SYSTEM_ID) #REQUIRED
servantretention (RETAIN | NON_RETAIN) #REQUIRED
requestprocessing (USE_ACTIVE_OBJECT_MAP_ONLY

|USE_DEFAULT_SERVANT
|USE_SERVANT_MANAGER) #REQUIRED

implicitactivation (IMPLICIT_ACTIVATION
|NON_IMPLICIT_ACTIVATION) #REQUIRED >

<!ELEMENT ports
( uses
| provides
| emits
| publishes
| consumes
)* >

<!ELEMENT process
( servant ) >

<!ELEMENT provides
( operationpolicies?
, extension* ) >

<!ATTLIST provides
providesname CDATA #REQUIRED
repid CDATA #REQUIRED
facettag CDATA #REQUIRED >

<!ELEMENT pssimplementation EMPTY>
<!ATTLIST pssimplementation

id CDATA #REQUIRED >

<!ELEMENT psstransaction (psstransactionisolationlevel?) >
<!ATTLIST psstransaction

policy (TRANSACTIONAL|NON_TRANSACTIONAL) #REQUIRED >

<!ELEMENT psstransactionisolationlevel EMPTY>
<!ATTLIST psstransactionisolationlevel

level (READ_UNCOMMITTED|READ_COMMITTED|REPEATABLE_READ|SERIALIZABLE)
#REQUIRED >

<!ELEMENT publishes
( eventpolicy
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 corbacomponent.dtd 29 October 1999



695
, extension* ) >
<!ATTLIST publishes

publishesname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

<!ELEMENT repository
( ins
| objref
| link
) >

<!ATTLIST repository
type CDATA #IMPLIED >

<!ELEMENT requiredrights
( right* ) >

<!ELEMENT right
( description? ) >

<!ATTLIST right
name CDATA #REQUIRED >

<!ELEMENT security
( requiredrights? ) >

<!ATTLIST security
rightsfamily CDATA #REQUIRED >

<!ELEMENT segment
( segmentmember+
, containermanagedpersistence?
, extension*
) >

<!ATTLIST segment
name CDATA #REQUIRED
segmenttag CDATA #REQUIRED >

<!ELEMENT segmentmember EMPTY>
<!ATTLIST segmentmember

facettag CDATA #REQUIRED >

<!ELEMENT servant EMPTY >
<!ATTLIST servant

lifetime (component|method|transaction|container) #REQUIRED >

<!ELEMENT service EMPTY >

<!ELEMENT session
( servant ) >

<!ELEMENT storagehome EMPTY>
<!ATTLIST storagehome

id CDATA #REQUIRED >

<!ELEMENT supportsinterface
( operationpolicies?
, extension* ) >
695-344 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 corbacomponent.dtd 29 October 1999



695
<!ATTLIST supportsinterface
repid CDATA #REQUIRED >

<!ELEMENT threading EMPTY>
<!ATTLIST threading

policy ( serialize | multithread ) #REQUIRED >

<!ELEMENT transaction EMPTY >
<!ATTLIST transaction

use (self-managed|not-supported|required|supports|requires-
new|mandatory|never) #REQUIRED >

<!ELEMENT unclassified
( poapolicies ) >

<!ELEMENT uses ( extension* ) >
<!ATTLIST uses

usesname CDATA #REQUIRED
repid CDATA #REQUIRED >

695.3 properties.dtd
<!-- DTD for CORBA Component property file. The root element

is <properties>. Elements are listed alphabetically.
-->

<!ELEMENT choice ( #PCDATA ) >

<!ELEMENT choices ( choice+ ) >

<!ELEMENT defaultvalue ( #PCDATA ) >

<!ELEMENT description ( #PCDATA ) >

<!ELEMENT value ( #PCDATA ) >

<!ELEMENT properties
( description?
, ( simple

| sequence
| struct
)*

) >

<!ELEMENT simple
( description?
, value
, choices?
, defaultvalue?
) >
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 properties.dtd 29 October 1999 695-345



695
<!ATTLIST simple
name CDATA #IMPLIED
type ( boolean

| char
| double
| float
| short
| long
| objref
| octet
| short
| string
| ulong
| ushort
) #REQUIRED >

<!ELEMENT sequence
( description?
, ( simple*

| struct*
| sequence*
)

) >
<!ATTLIST sequence

name CDATA #IMPLIED
type CDATA #REQUIRED >

<!ELEMENT struct
( description?
, ( simple

| sequence
| struct
)*

) >
<!ATTLIST struct

name CDATA #IMPLIED
type CDATA #REQUIRED >

695.4 componentassembly.dtd

<!-- DTD for Component Assembly Descriptor. The root element
is <componentassembly>. Elements are listed
alphabetically.

-->

<!-- Simple xml link attributes based on W3C WD-xlink-19980303.
May change slightly when XLL is finalized.

-->
<!ENTITY % simple-link-attributes "

xml:link CDATA #FIXED 'SIMPLE'
695-346 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd 29 October 1999



695
href CDATA #REQUIRED " >

<!-- If file not available locally, then download via codebase link -->
<!ELEMENT codebase EMPTY >
<!ATTLIST codebase

filename CDATA #IMPLIED
%simple-link-attributes; >

<!ELEMENT componentassembly
( description?
, componentfiles
, partitioning
, connections?
, extension*
) >

<!ATTLIST componentassembly
id ID #REQUIRED
derivedfrom CDATA #IMPLIED >

<!ELEMENT componentfile
( fileinarchive
| codebase
| link
) >

<!ATTLIST componentfile
id ID #REQUIRED
type CDATA #IMPLIED >

<!ELEMENT componentfileref EMPTY >
<!ATTLIST componentfileref

idref CDATA #REQUIRED >

<!ELEMENT componentfiles
( componentfile+
) >

<!ELEMENT componentimplref EMPTY >
<!ATTLIST componentimplref

idref CDATA #REQUIRED >

<!ELEMENT componentinstantiation
( usagename?
, componentproperties?
, registercomponent*
, extension*
) >

<!ATTLIST componentinstantiation
id ID #REQUIRED >

<!ELEMENT componentinstantiationref EMPTY >
<!ATTLIST componentinstantiationref

idref CDATA #REQUIRED >

<!ELEMENT componentproperties
( fileinarchive
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd 29 October 1999



695
| codebase
) >

<!ELEMENT componentsupportedinterface
( componentinstantiationref
| findby
)>

<!ELEMENT connectevent
( consumesport
, ( emitsport

| publishesport
)

) >
<!ATTLIST connectevent

id ID #IMPLIED >

<!ELEMENT connecthomes
( proxyhome
, destinationhome
) >

<!ATTLIST connecthomes
id ID #IMPLIED >

<!ELEMENT connectinterface
( usesport
, ( providesport

| componentsupportedinterface
| existinginterface
| homeinterface
)

) >
<!ATTLIST connectinterface

id ID #IMPLIED >

<!ELEMENT connections
( connectinterface
| connectevent
| connecthome
| extension
)* >

<!ELEMENT consumesidentifier ( #PCDATA ) >

<!ELEMENT consumesport
( consumesidentifier
, ( componentinstantiationref

| findby
)

)>

<!ELEMENT description ( #PCDATA ) >

<!ELEMENT destination ( #PCDATA ) >
695-348 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd 29 October 1999



695
<!ELEMENT destinationhome
( homeplacementref
| findby
) >

<!ELEMENT emitsidentifier ( #PCDATA ) >

<!ELEMENT emitsport
( emitsidentifier
, ( componentinstantiationref

| findby
)

)>

<!ELEMENT executableplacement
( usagename?
, componentfileref
, componentimplref
, invocation?
, destination?
, extension*
) >

<!ATTLIST executableplacement
id ID #REQUIRED
cardinality CDATA "1" >

<!ELEMENT existinginterface
( findby )>

<!-- The "extension" element is used for vendor-specific extensions -->
<!ELEMENT extension (#PCDATA) >
<!ATTLIST extension

class CDATA #REQUIRED
origin CDATA #REQUIRED
id ID #IMPLIED
extra CDATA #IMPLIED
html-form CDATA #IMPLIED >

<!-- The "fileinarchive" element is used to specify a file in the
archive.

If the file is independent of an archive then link is used to point
to

the archive in which the file may be found.
-->

<!ELEMENT fileinarchive
( link? ) >

<!ATTLIST fileinarchive
name CDATA #REQUIRED >

<!ELEMENT findby
( namingservice
| stringifiedobjectref
| traderquery
| homefinder
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd 29 October 1999



695
| extension
) >

<!ELEMENT homefinder EMPTY >
<!ATTLIST homefinder

name CDATA #REQUIRED >

<!ELEMENT homeinterface
( homeplacementref
| findby
)>

<!ELEMENT homeplacement
( usagename?
, componentfileref
, componentimplref?
, homeproperties?
, componentproperties?
, registerwithhomefinder*
, registerwithnaming*
, registerwithtrader*
, componentinstantiation*
, destination?
, extension*
) >

<!ATTLIST homeplacement
id ID #REQUIRED
cardinality CDATA "1" >

<!ELEMENT homeplacementref EMPTY >
<!ATTLIST homeplacementref

idref CDATA #REQUIRED >

<!ELEMENT homeproperties
( fileinarchive
| codebase
) >

<!ELEMENT hostcollocation
( usagename?
, impltype?
, ( homeplacement

| executableplacement
| processcollocation
| extension
)+

, destination?
) >

<!ATTLIST hostcollocation
id ID #IMPLIED
cardinality CDATA "1" >

<!ELEMENT impltype EMPTY >
<!ATTLIST impltype

language CDATA #REQUIRED
695-350 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd 29 October 1999



695
version CDATA #IMPLIED >

<!ELEMENT invocation EMPTY >
<!ATTLIST invocation

args CDATA #REQUIRED >

<!ELEMENT link ( #PCDATA ) >
<!ATTLIST link

%simple-link-attributes; >

<!ELEMENT namingservice EMPTY >
<!ATTLIST namingservice

name CDATA #REQUIRED >

<!ELEMENT partitioning
( homeplacement
| executableplacement
| processcollocation
| hostcollocation
| extension
)* >

<!ELEMENT processcollocation
( usagename?
, impltype?
, ( homeplacement

| extension
)+

, destination?
) >

<!ATTLIST processcollocation
id ID #IMPLIED
cardinality CDATA "1" >

<!ELEMENT providesidentifier ( #PCDATA ) >

<!ELEMENT providesport
( providesidentifier
, ( componentinstantiationref

| findby
)

)>

<!ELEMENT publishesidentifier ( #PCDATA ) >

<!ELEMENT publishesport
( publishesidentifier
, ( componentinstantiationref

| findby
)

)>

<!ELEMENT registercomponent
( ( emitsidentifier

| providesidentifier
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd 29 October 1999



695
| publishesidentifier
)?

, ( registerwithnaming
| registerwithtrader
)+

) >

<!ELEMENT registerwithhomefinder EMPTY >
<!ATTLIST registerwithhomefinder

name CDATA #REQUIRED >

<!ELEMENT registerwithnaming EMPTY >
<!ATTLIST registerwithnaming

name CDATA #IMPLIED >

<!ELEMENT registerwithtrader
( traderproperties ) >

<!ATTLIST registerwithtrader
tradername CDATA #IMPLIED >

<!-- DEVNOTE: is tradername necessary? -->
<!-- DEVNOTE: Should trader properties be specified in component file?
And in assembly file? -->

<!ELEMENT proxyhome
( homeplacementref
| findby
) >

<!ELEMENT stringifiedobjectref ( #PCDATA ) >

<!ELEMENT traderconstraint ( #PCDATA ) >

<!ELEMENT traderexport
( traderservicetypename
, traderproperties
) >

<!ELEMENT traderpolicy
( traderpolicyname
, traderpolicyvalue
) >

<!ELEMENT traderpolicyname ( #PCDATA ) >

<!ELEMENT traderpolicyvalue ( #PCDATA ) >

<!ELEMENT traderpreference ( #PCDATA ) >

<!ELEMENT traderproperties
( traderproperty+ ) >

<!ELEMENT traderproperty
( traderpropertyname
, traderpropertyvalue
695-352 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd 29 October 1999



695
) >

<!ELEMENT traderpropertyname ( #PCDATA ) >

<!ELEMENT traderpropertyvalue ( #PCDATA ) >

<!ELEMENT traderquery
( traderservicetypename
, traderconstraint
, traderpreference?
, traderpolicy*
, traderspecifiedprop*
) >

<!ELEMENT traderservicetypename ( #PCDATA ) >

<!ELEMENT traderspecifiedprop ( #PCDATA ) >

<!ELEMENT usagename ( #PCDATA ) >

<!ELEMENT usesidentifier ( #PCDATA ) >

<!ELEMENT usesport
( usesidentifier
, ( componentinstantiationref

| findby
)

)>
CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd 29 October 1999



695
695-354 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd 29 October 1999


	OMG CIDL Syntax and Semantics
	60.1 Overview
	60.2 Lexical Conventions
	60.2.1 Keywords

	60.3 OMG CIDL Grammar
	60.4 OMG CIDL Specification
	60.5 Composition Definition
	60.5.1 Life cycle category and constraints

	60.6 Catalog Usage Declaration
	60.7 Home Executor Definition
	60.8 Home Implementation Declaration
	60.9 Storage Home Binding
	60.10 Home Persistence Declaration
	60.11 Executor Definition
	60.12 Segment Definition
	60.13 Segment Persistence Declaration
	60.14 Facet Declaration
	60.15 Feature Delegation Specification
	60.16 Abstract Storage Home Delegation Specification
	60.17 Executor Delegation Specification
	60.18 Abstract Spec Declaration
	60.19 Proxy Home Declaration
	60.20 Scoping Rules

	Component Model
	61.0.0.1 Contents
	61.1 Component Model
	61.1.1 Component levels
	61.1.2 Ports
	61.1.3 Components and facets
	61.1.4 Component identity
	61.1.5 Component homes

	61.2 Component Definition
	61.3 Component Declaration
	61.3.1 Basic Components
	61.3.2 Equivalent IDL
	61.3.2.1 Simple declaration
	61.3.2.2 Supported interfaces
	61.3.2.3 Inheritance
	61.3.2.4 Inheritance and supported interfaces

	61.3.3 Component Body

	61.4 Facets and Navigation
	61.4.1 Equivalent IDL
	61.4.2 Semantics of facet references
	61.4.3 Navigation
	61.4.3.1 get_component()
	61.4.3.2 Component-specific provide operations
	61.4.3.3 Navigation interface on the component
	61.4.3.4 Navigation interface on facet interfaces

	61.4.4 Provided References and Component Identity
	61.4.5 Supported interfaces

	61.5 Receptacles
	61.5.1 Equivalent IDL
	61.5.2 Behavior
	61.5.2.1 Connect operations
	61.5.2.2 Disconnect operations
	61.5.2.3 get_connection and get_connections operations
	61.5.2.4 Cookie type

	61.5.3 Receptacles interface

	61.6 Events
	61.6.1 Event types
	61.6.2 Integrity of value types contained in anys
	61.6.3 EventConsumer interface
	61.6.4 Event service provided by container
	61.6.5 Event Sources—publishers and emitters
	61.6.6 Publisher
	61.6.6.1 Equivalent IDL
	61.6.6.2 Event publisher operations

	61.6.7 Emitters
	61.6.7.1 Equivalent IDL
	61.6.7.2 Event emitter operations

	61.6.8 Module scope of generated event consumer interfaces
	61.6.9 Event Sinks
	61.6.9.1 Equivalent IDL
	61.6.9.2 Event sink operations

	61.6.10 Events interface

	61.7 Homes
	61.7.1 Equivalent interfaces
	61.7.1.1 Home definitions with no primary key
	61.7.1.2 Home definitions with primary keys

	61.7.2 Primary key declarations
	61.7.2.1 Primary key type constraints
	61.7.2.2 PrimaryKeyBase

	61.7.3 Explicit operations in home definitions
	61.7.3.1 Factory operations
	61.7.3.2 Finder operations
	61.7.3.3 Miscellaneous exports

	61.7.4 Home inheritance
	61.7.5 Semantics of home operations
	61.7.5.1 Orthodox operations
	61.7.5.2 Heterodox operations

	61.7.6 CCMHome interface
	61.7.7 KeylessCCMHome interface

	61.8 Home Finders
	61.9 Component Configuration
	61.9.1 Exclusive configuration and operational life cycle phases
	61.9.1.1 Enforcing exclusion of configuration and operation


	61.10 Configuration with attributes
	61.10.1 Attribute Configurators
	61.10.1.1 The Configurator interface
	61.10.1.2 The StandardConfigurator interface

	61.10.2 Factory-based configuration
	61.10.2.1 HomeConfiguration interface


	61.11 Component Inheritance
	61.11.1 CCMObject Interface

	61.12 Conformance Requirements
	61.12.1 A Note on Tools
	61.12.2 Changes to Object Services
	61.12.2.1 Life Cycle Service
	61.12.2.2 Transaction Service
	61.12.2.3 Security Service



	CCM Implementation Framework
	615.0.0.1 Contents
	615.1 Introduction
	615.2 Component Implementation Framework (CIF) architecture
	615.2.1 Component Implementation Definition Language (CIDL)
	615.2.2 Component persistence and behavior
	615.2.3 Implementing a CORBA Component
	615.2.4 Behavioral elements: Executors
	615.2.5 Unit of implementation : Composition
	615.2.6 Composition structure
	615.2.7 Compositions with managed storage
	615.2.8 Relationship between home executor and abstract storage home
	615.2.8.1 Primary Key Binding
	615.2.8.2 Implicit delegation of home operations
	615.2.8.3 Explicit delegation of home operations

	615.2.9 Executor definition
	615.2.9.1 Segmented executors
	615.2.9.2 Delegation of feature state

	615.2.10 Proxy homes
	615.2.10.1 Proxy home delegation

	615.2.11 Component object references
	615.2.11.1 Facet identifiers
	615.2.11.2 Segment identifiers
	615.2.11.3 State identifiers
	615.2.11.4 Monolithic reference information
	615.2.11.5 Segmented reference information
	615.2.11.6 Component identity


	615.3 Language Mappings

	The Container Programming Model
	62.0.0.1 Contents
	62.1 Introduction
	62.1.1 External API Types
	62.1.2 Container API Type
	62.1.3 CORBA Usage Model
	62.1.4 Component Categories

	62.2 The Server Programming Environment
	62.2.1 Component Containers
	62.2.2 CORBA Usage Model
	62.2.2.1 Component References
	62.2.2.2 Servant to ObjectId Mapping
	62.2.2.3 Threading Considerations

	62.2.3 Component Factories
	62.2.4 Component Activation
	62.2.5 Servant Lifetime Management
	62.2.6 Transactions
	62.2.7 Security
	62.2.8 Events
	62.2.8.1 Transaction Policies for Events
	62.2.8.2 Security Policies for Events

	62.2.9 Persistence
	62.2.9.1 Container-managed Persistence
	62.2.9.2 Self-managed Persistence

	62.2.10 Application Operation Invocation
	62.2.11 Component Implementations
	62.2.12 Component Levels
	62.2.13 Component Categories
	62.2.13.1 The Service Component
	62.2.13.2 The Session Component
	62.2.13.3 The Process Component
	62.2.13.4 The Entity Component


	62.3 Server Programming Interfaces - Basic Components
	62.3.1 Component Interfaces
	62.3.2 Interfaces Common to both Container API Types
	62.3.2.1 The CCMContext Interface
	62.3.2.2 The Home Interface
	62.3.2.3 The UserTransaction Interface
	62.3.2.4 The EnterpriseComponent Interface

	62.3.3 Interfaces Supported by the Session Container API Type
	62.3.3.1 The SessionContext Interface
	62.3.3.2 The SessionComponent Interface
	62.3.3.3 The SessionSynchronization Interface

	62.3.4 Interfaces Supported by the Entity Container API Type
	62.3.4.1 The EntityContext Interface
	62.3.4.2 The EntityComponent Interface


	62.4 Server Programming Interfaces - Extended Components
	62.4.1 Interfaces Common to both Container API Types
	62.4.1.1 The CCM2Context Interface
	62.4.1.2 The HomeRegistration Interface
	62.4.1.3 The ProxyHomeRegistration Interface
	62.4.1.4 The Event Interface

	62.4.2 Interfaces Supported by the Session Container API Type
	62.4.2.1 The Session2Context Interface

	62.4.3 Interfaces Supported by the Entity Container API Type
	62.4.3.1 Component Identifiers
	62.4.3.2 StateIdValue abstract valuetype
	62.4.3.3 StateIdFactory Interface
	62.4.3.4 PersistentIdValue valuetype
	62.4.3.5 SegmentDescr valuetype
	62.4.3.6 ComponentId Interface
	62.4.3.7 The Entity2Context Interface


	62.5 The Client Programming Model
	62.5.1 Component-aware Clients
	62.5.1.1 Initial References
	62.5.1.2 Factory Design Pattern
	62.5.1.3 Finder Design Pattern
	62.5.1.4 Transactions
	62.5.1.5 Security
	62.5.1.6 Events

	62.5.2 Component-unaware Clients
	62.5.2.1 Initial References
	62.5.2.2 Factory Design Pattern
	62.5.2.3 Finder Design Pattern
	62.5.2.4 Transactions
	62.5.2.5 Security
	62.5.2.6 Events



	Integrating with Enterprise JavaBeans
	64.0.0.1 Contents
	64.1 Introduction
	64.2 Enterprise JavaBeans Compatibility Objectives and Requirements
	64.3 CORBA Component views for EJBs
	64.3.1 Mapping of EJB to Component IDL definitions
	64.3.1.1 Java Language to IDL Mapping
	64.3.1.2 EJB to IDL mapping

	64.3.2 Translation of CORBA Component requests into EJB requests
	64.3.3 CORBA Component view Example

	64.4 EJB views for CORBA Components
	64.4.1 Mapping of Component IDL to Enterprise JavaBeans specifications
	64.4.2 Translation of EJB requests into CORBA Component requests
	64.4.3 Example

	64.5 Comparing CCM and EJB
	64.5.1 The Home Interfaces
	64.5.2 The Component Interfaces
	64.5.3 The Callback Interfaces
	64.5.4 The Context Interfaces
	64.5.5 The Transaction Interfaces
	64.5.6 The Metadata Interfaces


	Component Container Architecture
	66.0.0.1 Contents
	66.1 Component Server
	66.1.1 Component Levels
	66.1.2 POA Creation
	66.1.3 Binding the Container to CORBA services
	66.1.4 Container API Frameworks
	66.1.4.1 Creating Object References
	66.1.4.2 Factories and Finders
	66.1.4.3 Transactions
	66.1.4.4 Security
	66.1.4.5 Events
	66.1.4.6 Persistence
	66.1.4.7 Threading


	66.2 Containers Categories
	66.2.1 The Empty Container
	66.2.2 The Service Container
	66.2.2.1 Creating Object References
	66.2.2.2 Factories and Instances
	66.2.2.3 Invoking an Operation
	66.2.2.4 Servant Lifetime Management

	66.2.3 The Session Container
	66.2.3.1 Creating Object References
	66.2.3.2 Factories and Instances
	66.2.3.3 Invoking an Operation
	66.2.3.4 Servant Lifetime Management

	66.2.4 The Process Container
	66.2.4.1 Creating Object References
	66.2.4.2 Factories and Instances
	66.2.4.3 Invoking an Operation
	66.2.4.4 Servant Lifetime Management

	66.2.5 The Entity Container
	66.2.5.1 Creating Object References
	66.2.5.2 Factories and New Instances
	66.2.5.3 Invoking an Operation on a New Instance
	66.2.5.4 Finders and Existing Instances
	66.2.5.5 Invoking an Operation on an Existing Instance
	66.2.5.6 Servant Lifetime Management

	66.2.6 The EJBSession Container
	66.2.6.1 Creating Object References
	66.2.6.2 Factories and Instances
	66.2.6.3 Invoking an Operation
	66.2.6.4 Servant Lifetime Management

	66.2.7 The EJBEntity Container
	66.2.7.1 Creating Object References
	66.2.7.2 Factories and New Instances
	66.2.7.3 Invoking an Operation on a New Instance
	66.2.7.4 Finders and Existing Instances
	66.2.7.5 Invoking an Operation on an Existing Instance
	66.2.7.6 Servant Lifetime Management


	66.3 Persistence Integration
	66.3.1 Container-managed Persistence
	66.3.2 Self-managed Persistence
	66.3.3 Interactions between the Container and the Persistence Provider
	66.3.3.1 Connecting to the Persistence Mechanism
	66.3.3.2 Managing DB Connections
	66.3.3.3 Synchronization of Component State with Persistence State


	66.4 Event Management Integration
	66.4.1 Channel setup
	66.4.2 Transmitting an event
	66.4.3 Receiving an event


	Packaging and Deployment
	69.0.0.1 Contents
	69.1 Introduction
	69.2 Component Packaging
	69.3 Software Package Descriptor
	69.3.1 A softpkg Descriptor Example
	69.3.2 The Software Package Descriptor XML Elements
	69.3.2.1 The softpkg Root Element
	69.3.2.2 The author Element
	69.3.2.3 The code Element
	69.3.2.4 The codebase Element
	69.3.2.5 The company Element
	69.3.2.6 The compiler Element
	69.3.2.7 The dependency Element
	69.3.2.8 The description Element
	69.3.2.9 The descriptor Element
	69.3.2.10 The entrypoint Element
	69.3.2.11 The extension Element
	69.3.2.12 The fileinarchive Element
	69.3.2.13 The humanlanguage Element
	69.3.2.14 The idl Element
	69.3.2.15 The implementation Element
	69.3.2.16 The implref Element
	69.3.2.17 The license Element
	69.3.2.18 The link Element
	69.3.2.19 The localfile Element
	69.3.2.20 The name Element
	69.3.2.21 The os Element
	69.3.2.22 The pkgtype Element
	69.3.2.23 The processor Element
	69.3.2.24 The programminglanguageElement
	69.3.2.25 The propertyfile Element
	69.3.2.26 The runtime Element
	69.3.2.27 The simple-link-attributes Entity
	69.3.2.28 The softpkg Element
	69.3.2.29 The softpkgref Element
	69.3.2.30 The title Element
	69.3.2.31 The usage Element
	69.3.2.32 The webpage Element


	69.4 CORBA Component Descriptor
	69.4.1 Component Feature Description
	69.4.2 Deployment Information
	69.4.3 CIDL Compiler Responsibilities
	69.4.4 CORBA Component Descriptor Example
	69.4.5 The CORBA Component Descriptor XML Elements
	69.4.5.1 The corbacomponent Root Element
	69.4.5.2 The accessmode Element
	69.4.5.3 The catalog Element
	69.4.5.4 The componentfeatures Element
	69.4.5.5 The componentkind Element
	69.4.5.6 The componentproperties Element
	69.4.5.7 The componentrepid Element
	69.4.5.8 The configurationcomplete Element
	69.4.5.9 The consumes Element
	69.4.5.10 The containermanagedpersistence Element
	69.4.5.11 The corbacomponent Element
	69.4.5.12 The corbaversion Element
	69.4.5.13 The emits Element
	69.4.5.14 The entity Element
	69.4.5.15 The eventpolicy Element
	69.4.5.16 The extendedpoapolicy Element
	69.4.5.17 The extension Element
	69.4.5.18 The fileinarchive Element
	69.4.5.19 The homefeatures Element
	69.4.5.20 The homeproperties Element
	69.4.5.21 The homerepid Element
	69.4.5.22 The inheritscomponent Element
	69.4.5.23 The inheritshome Element
	69.4.5.24 The inheritsinterface Element
	69.4.5.25 The ins Element
	69.4.5.26 The interface Element
	69.4.5.27 The interop Element
	69.4.5.28 The link Element
	69.4.5.29 The objref Element
	69.4.5.30 The operation Element
	69.4.5.31 The operationpolicies Element
	69.4.5.32 The param Element
	69.4.5.33 The params Element
	69.4.5.34 The poapolicies Element
	69.4.5.35 The ports Element
	69.4.5.36 The process Element
	69.4.5.37 The provides Element
	69.4.5.38 The pssimplementation Element
	69.4.5.39 psstransaction Element
	69.4.5.40 psstransactionisolationlevel Element
	69.4.5.41 The publishes Element
	69.4.5.42 The repository Element
	69.4.5.43 requiredrights Element
	69.4.5.44 right Element
	69.4.5.45 The security Element
	69.4.5.46 The segment Element
	69.4.5.47 The segmentmember Element
	69.4.5.48 The servant Element
	69.4.5.49 The service Element
	69.4.5.50 The session Element
	69.4.5.51 The storagehome Element
	69.4.5.52 The simple-link-attributes Entity
	69.4.5.53 The supportsinterface Element
	69.4.5.54 The threading Element
	69.4.5.55 The transaction Element
	69.4.5.56 The unclassified Element
	69.4.5.57 The uses Element


	69.5 Component Assembly Packaging
	69.6 Component Assembly File
	69.7 Component Assembly Descriptor
	69.7.1 Component Assembly Descriptor Example
	69.7.2 Component Assembly Descriptor XML Elements
	69.7.2.1 The componentassembly Root Element
	69.7.2.2 The codebase Element
	69.7.2.3 The componentfile Element
	69.7.2.4 The componentfileref Element
	69.7.2.5 The componentfiles Element
	69.7.2.6 The componentimplref Element
	69.7.2.7 The componentinstantiation Element
	69.7.2.8 The componentinstantiationref Element
	69.7.2.9 The componentproperties Element
	69.7.2.10 The componentsupportedinterface Element
	69.7.2.11 The connectevent Element
	69.7.2.12 The connecthomes Element
	69.7.2.13 The connectinterface Element
	69.7.2.14 The connections Element
	69.7.2.15 The consumesidentifier Element
	69.7.2.16 The consumesport Element
	69.7.2.17 The description Element
	69.7.2.18 The destination Element
	69.7.2.19 The destinationhome Element
	69.7.2.20 The emitsidentifier Element
	69.7.2.21 The emitsport Element
	69.7.2.22 The executableplacement Element
	69.7.2.23 The existinginterface Element
	69.7.2.24 The extension Element
	69.7.2.25 The fileinarchive Element
	69.7.2.26 The findby Element
	69.7.2.27 The homefinder Element
	69.7.2.28 The homeinterface Element
	69.7.2.29 The homeplacement Element
	69.7.2.30 The homeplacementref Element
	69.7.2.31 The homeproperties Element
	69.7.2.32 The hostcollocation Element
	69.7.2.33 The impltype Element
	69.7.2.34 The invocation Element
	69.7.2.35 The link Element
	69.7.2.36 The namingservice Element
	69.7.2.37 The partitioning Element
	69.7.2.38 The processcollocation Element
	69.7.2.39 The providesidentifier Element
	69.7.2.40 The providesport Element
	69.7.2.41 The publishesidentifier Element
	69.7.2.42 The publishesport Element
	69.7.2.43 The registercomponent Element
	69.7.2.44 The registerwithhomefinder Element
	69.7.2.45 The registerwithnaming Element
	69.7.2.46 The registerwithtrader Element
	69.7.2.47 The proxyhome Element
	69.7.2.48 The stringifiedobjectref Element
	69.7.2.49 Trader elements
	69.7.2.50 The usagename Element
	69.7.2.51 The usesidentifier Element
	69.7.2.52 The usingcomponent Element


	69.8 Property File Descriptor
	69.8.1 Property File Example
	69.8.2 Property File XML Elements
	69.8.2.1 The properties Root Element
	69.8.2.2 The choice Element
	69.8.2.3 The choices Element
	69.8.2.4 The defaultvalue Element
	69.8.2.5 The description Element
	69.8.2.6 The properties Element
	69.8.2.7 The simple Element
	69.8.2.8 The sequence Element
	69.8.2.9 The struct Element
	69.8.2.10 The value Element


	69.9 Component Deployment
	69.9.1 Participants in Deployment
	69.9.1.1 Deployment Architecture
	69.9.1.2 Deployment Scenario

	69.9.2 ComponentInstallation Interface
	69.9.3 AssemblyFactory Interface
	69.9.4 Assembly Interface
	69.9.5 Component Entry Points (Component Home Factories)


	XML DTDs
	695.1 softpkg.dtd
	695.2 corbacomponent.dtd
	695.3 properties.dtd
	695.4 componentassembly.dtd


