CORBA 3.0 New Components
Chapters

CCMFTF Draftptc/99-10-04

Document Editor: Jeff Mischkinsky
jeff_mischkinsky@omg.org

OMG TC Document ptc/99-10-04
October 29, 1999

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999

10/29/99

60

61

Table of Contents —

OMG CIDL Syntax and Semantics. 9
B0.1 OVEIVIBW . .\ttt e e e e e 10
60.2 Lexical Conventionsottt 11
60.2.1 KeYWOIdSo 11
60.3 OMG CIDL Grammar e e 11
60.4 OMG CIDL Specificationuiiii e, 13
60.5 Composition Definition 13
60.5.1 Life cycle categoryand constraints 14
60.6 CatalogUsage Declaration. 15
60.7 Home Executor Definition. i 15
60.8 Home Implementation Declaration 16
60.9 Storage Home Binding. 17
60.10 Home Persistence Declaration 17
60.11 Executor Definition 17
60.12 Segment Definition. 18
60.13 Segment Persistence Declaration............................... 19
60.14 FacetDeclaration i 19
60.15 Feature Delegation Specification. 19
60.16 Abstract Storage Home Delegation Specification 21
60.17 Executor Delegation Specification. 23
60.18 Abstract Spec Declaration i 23
60.19 Proxy Home Declaration 23
60.20 Scoping RuUleS. 24
ComponentModel. e 25
61.1 ComponentModel. 26

Object Services: The Book -3

61.1.1 Componentlevels. 26
61.1.2 POMS . .. e 27
61.1.3 Componentsandfacets.............., 27
61.1.4 Componentidentity. i 28
61.1.5 Componenthomes. 29
61.2 Component Definition. 29
61,3 Cpament Declaration29
61.3.1 BasiCCOMPONENISottt 29
61.3.2 Equivalent IDL30
61.3.3 ComponentBody. 31
61.4 Facetsand Navigationt 31
61.4.1 Equivalent IDL. 31
61.4.2 Semantics of facetreferences. 32
61.4.3 NaVIgation 32
61.4.4 Provided References and Component Identity. 36
61.4.5 Supported interfaces. 36
61.5 Receptacles. 38
61.5.1 Equivalent IDL. 39
61.5.2 Behavior. 40
61.5.3 Receptaclesinterface 42
BL.0 .. Events44
61.6.1 Eventtypes. 45
61.6.2 Integrity of value types containedinanys 45
61.6.3 EventConsumerinterface. i, 45
61.6.4 Event service provided by container 46
61.6.5 Event Sources—publishers and emitters. 46
61.6.6 Publisher. 47
61.6.7 EMItters. 49
61.6.8 Module scope of generated event consumer interfaces. 50
61.6.9 EventSinks. e 50
61.6.10 Eventsinterface 51
B61.7 HOMES. . . . 53
61.7.1 Equivalentinterfaces i 53
61.7.2 Primary key declarations, 56
61.7.3 Explicit operations in home definitions 57
61.7.4 Homeinheritance i, 58
61.7.5 Semantics of home operations 59
61.7.6 CCMHome interface 61
61.7.7 KeylessCCMHome interface i, 62
61.8 HOmMe FINders. e 62
61.9 ComponentConfiguration. i, 64
61.9.1 Exclusive configuration and operational life cycle phases 66
61.10 Configurationwith attributes 67

CORBA 3.0 CCMFTF Draft ptc/99-10-04 29 October 1999 10/29/99

10/29/99

61.10.1 Attribute Configurators i 67
61.10.2 Factory-based configuration. 68
BL. 1L Cpament Inheritance70
61.11.1 CCMODbjectInterface.c ... 72
61.12 Conformance Requirements. o, 73
61.12.1 ANOteonTOOIS. 75
61.12.2 Changesto ObjectServices 75
615 CCM Implementation Framework 77
615.1 INtroducCtion. 78
615.2 Component Implementation Framework (CIF) architectute 78
615.2.1 Component Implementation Definition Language (CIDL). .. 78
615.2.2 Component persistence and behavior. 78
615.2.3 Implementing a CORBA Component. 78
615.2.4 Behavioral elements: Executors. 79
615.2.5 Unit of implementation : Composition 79
615.2.6 Compositionstructure i 81
615.2.7 Compositions with managed storage. 87
615.2.8 Relationship between home executor and abstract storage home . 90
615.2.9 Executordefinition 103
615.2.10 Proxyhomes. 112
615.2.11 Componentobjectreferences. 113
615.3 Language MappingsS. . . . oo vttt e 115
62 The Container Programming Model. 117
62.1 INtrodUCtioN. 118
62.1.1 External API TYPES 120
62.1.2 Container API Typeo e 120
62.1.3 CORBAUsageModel 120
62.1.4 ComponentCategories 121
62.2 The Server Programming Environment............... 121
62.2.1 ComponentContainNersuiuiiiinnnnnenn... 121
62.2.2 CORBAUsageModel 123
62.2.3 ComponentFactories. 124
62.2.4 ComponentActivation 124
62.2.5 Servant Lifetime Management 124
62.2.6 TransactionSt 126
62.2.7 SECUMLY . ..t 128
62.2.8 EVENtS. 128
62.2.9 PersSiStENCEo 129
62.2.10 Application Operation Invocation 131

CORBA 3.0 CCMFTF Draft ptc/99-10-04 29 October 1999

64

66

62.2.11 Component Implementatians 131
62.2.12 ComponentLevels. i 131
62.2.13 ComponentCategories 132
62.3 Server Programming Interfaces - Basic Components 137
62.3.1 Componentinterfaces 137
62.3.2 Interfaces Common to both Container APl Types 138

62.3.3 Interfaces Supported by the Session Container APl Type . . 143
62.3.4 Interfaces Supported by the Entity Container API Type 146
62.4 Server Programming Interfaces - Extended Components. 149
62.4.1 Interfaces Common to both Container APl Types 150
62.4.2 Interfaces Supported by the Session Container APl Type . . 155
62.4.3 Interfaces Supported by the Entity Container APl Type 156

62.5 The Client ProgrammingModel. 163
62.5.1 Component-awareClients. 164
62.5.2 Component-unaware Clients. 168

Integrating with Enterprise JavaBeans 171

64.1 INtrodUCtioN. e 172

64.2 Enterprise JavaBeans Compatibility Objectives and Requirements. ... 174

64.3 CORBA ComponentviewsforEJBs. 175
64.3.1 Mapping of EJB to Component IDL definitions. 176
64.3.2 Translation of CORBA Component requests into EJB requests .. 179
64.3.3 CORBA Componentview Example 182

64.4 EJB views for CORBA Components.c.ouiuinn.... 183
64.4.1 Mapping of Component IDL to Enterprise JavaBeans specifications183
64.4.2 Translation of EJB requests into CORBA Component requests . . 186
64.4.3 EXample 189

64.5 ComparingCCMandEJB i 190
64.5.1 The Home Interfaces 191
64.5.2 The Componentinterfaces 192
64.5.3 The Callback Interfaces 194
64.5.4 The Context Interfaces., 195
64.5.5 The Transaction Interfaces. 196
64.5.6 The MetadataInterfaces.............. 197

Component Container Architecture 199

66.1 COMPONENt SEIVEL e 200
66.1.1 ComponentLevels..... i, 201
66.1.2 POA Creation.ot 201
66.1.3 Binding the Containerto CORBAservices 203
66.1.4 Container APl Frameworks 203

CORBA 3.0 CCMFTF Draft ptc/99-10-04 29 October 1999 10/29/99

66.2 Containers Categories.ttt 206
66.2.1 The Empty Container.o, 206
66.2.2 The Service Container 207
66.2.3 The SessionContainer, 212
66.2.4 The Process Container, 221
66.2.5 The Entity Container.t 232
66.2.6 The EJBSession Container., 238
66.2.7 The EJBEntity Container 243

66.3 Persistence Integration 249
66.3.1 Container-managed Persistence........................... 250
66.3.2 Self-managed Persistence. 251
66.3.3 Interactions between the Container and the Persistence Provider . 251

66.4 Event Management Integration 252
66.4.1 Channel setup. 253
66.4.2 Transmittinganevent., 254
66.4.3 Receivingan event.t 254

69 Packagingand Deployment............... 257

69.1 INtroduCtioN. 258

69.2 ComponentPackaging.t 258

69.3 Software Package Descriptor. 259
69.3.1 A softpkg Descriptor Example. 260
69.3.2 The Software Package Descriptor XML Elements 261

69.4 CORBA ComponentDescriptar.t .. 273
69.4.1 Component Feature Description. 273
69.4.2 Deployment Information, 274
69.4.3 CIDL Compiler Responsibilities. 274
69.4.4 CORBA Component Descriptor Example 275
69.4.5 The CORBA Component Descriptor XML Elements. 277

69.5 Component Assembly Packaging., 298

69.6 Component Assembly File........... 298

69.7 Component Assembly Descriptor. 298
69.7.1 Component Assembly Descriptor Example. 300
69.7.2 Component Assembly Descriptor XML Elements. 302

69.8 Property File Descriptor.t 321
69.8.1 Property FileExample i 321
69.8.2 Property File XMLElements. 322

69.9 Component Deployment. 327
69.9.1 Participantsin Deployment 327
69.9.2 Componentinstallation Interface. 330
69.9.3 AssemblyFactory Interface 331
69.9.4 Assembly Interface. 332

| 10/29/99 CORBA 3.0 CCM FTF Draft ptc/99-10-04 29 October 1999 -7

69.9.5 Component Entry Points (Component Home Factories). . . . 332

695.1 softpkg.dtd 335
695.2 corbacomponent.dtd. 339
695.3 properties.dtd. 345
695.4 componentassembly.dtd 346

CORBA 3.0 CCMFTF Draft ptc/99-10-04 29 October 1999 10/29/99

OMG CIDL Syntaxand Semantics 60

Note —In this draft all text in black is from the CCM specificationext in Brown is
from the PSS specification€ditorial modifications to improve readability are in Dark
Green

Note —Last modified - Jeff Mischkinsky

Note —All cross-references need to be fixed.

This chapter describes OMG Component Implementation Definition Language (CIDL)
semantics and gives the syntax for OMG CIDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 60-10
“Lexical Conventions” 60-11
“OMG CIDL Grammar” 60-11
“OMG CIDL Specification” 60-13
“Composition Definition” 60-13
“Catalog Usage Declaration” 60-15
“Home Executor Definition” 60-15

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999 60-9

60

60.1 Overview

60-10

Section Title Page
“Home Implementation Declaration” 60-16
“Storage Home Binding” 60-17
“Home Persistence Declaration” 60-17
“Executor Definition” 60-17
“Segment Definition” 60-18
“Segment Persistence Declaration” 60-19
“Facet Declaration” 60-19
“Feature Delegation Specification” 60-19
“Abstract Storage Home Delegation Specification” 60-21
“Executor Delegation Specification” 60-23
“Abstract Spec Declaration” 60-23
“Proxy Home Declaration” 60-23

The OMG Compponent Implementation Definition Language (CIDL) is the language
used to describe the

OMG CIDL obeys the same lexical rules as OMG IDL, although new keywords are
introduced to support concepts specific to component implementation descriptions.

The description of OMG CIDL’s lexical conventions is presented in Section 60.2,
“Lexical Conventions,” on page 60-11. A description of OMG IDL preprocessing is
presented in Section 3.3, “Preprocessing,” on page 3-12. The scope rules for identifiers
in an OMG IDL specification are described in Section 3.18, “CORBA Module,” on
page 3-60.

The OMG CIDL grammar is an extension of the OMG IDL grammar. OMG CIDL is a
declarative language. The grammar is presented in Section 60.3, “OMG CIDL
Grammar,” on page 60-11.

A source file containing interface specifications written in OMG CIDL must have an
“.cdl” extension.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Overview 29 October 1999

60

The description of OMG CIDL grammar uses the same syntax notation that is used to
describe OMG IDL in xxxxx. For reference, Table 60-1 lists the symbols used in this
format and their meaning.

Table 60-1 IDL EBNF

Symbol Meaning

n= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{3 The enclosed syntactic units are grouped as a single syntactic unit
1 The enclosed syntactic unit is optional—may occur zero or one time

60.2 Lexical Conventions

This section presents the lexical conventions of OMG CIDL. In general OMG CIDL
uses the same lexical conventions as OMG IDL. It does use additional keywords as
described below.

60.2.1 Keywords

The identifiers listed in Table 60-2 are reserved for use as keywords in CIDL, and may
not be used otherwise in CIDL, unless escaped with a leading under3dwese are in
addition to the ones defined by IDL, which may also not be used otherwise in CIDL,
unless escaped with a leading underscore

Table 60-2 Keywords

bindsTo delegatesTo implements segment storageHome
catalog entity process service storedOn
composition | executor proxy session

60.3 OMG CIDL Grammar

The grammar for CIDL is defined by the following BNF productions:

() <composition> ::= “composition” <category> <identifier>
“{” <composition_body> “}"
(2) <category> :=‘“entity”
| “process”
| “service”
| “session”
3) <composition_body> ::=[<catalog_use_dcl>] <home_executor def>
[<proxy_home_def>]
(4) <catalog_use_dcl> ::="uses” “catalog” “{" <catalog_dcl>+ “}"“;"

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

Lexical Conventions

29 October 198811

60

60-12

(5) <catalog_dcl> ::= <catalog_type spec> <catalog_label>
(6) <catalog_type_spec> := <scoped_name>

@) <catalog_label> ::= <identifier>

(8) <home_executor_def> ::= “home” “executor” <identifier> “{"

<home_executor_body> “}" %
<home_impl_dcl>

[<abstract_storage _home_binding>]

[<stored_on_dcl>]

<executor_def>

[<abstract_storage_home_delegation_spec>]

[<executor_delegation_spec>]

[<abstract_spec>]
(20) <home_impl_dcl> “implements” <home_type_name> *}"
(11) <home_type_name> <scoped_name>
(12)<abstract_storage_home_binding>::= “bindsTo”

<abstract_storage_home_name> “;”

(13)<abstract_storage_home_name>::= <catalog_label> *“.
<abstract_storage_home_label>

(14)<abstract_storage_home_label>::= <identifier>

(9) <home_executor_body>

(15) <home_persistence_dcl> ::= “storedOn” <abstract_storage_home_name>
(16) <executor_def> := “manages” <identifier>

[<executor_body>1";"
a7 <executor_body> := “{" <executor_member>+“}"
(18) <executor_member> := <segment_def>

| <feature_delegation_spec>

(29) <segment_def> := “segment” <identifier>

‘" <segment_member>+ “}"
(20) <segment_member> := <segment_persistence_dcl> “;"

| <facet_dcl>*;
= “storedOn” <abstract_storage_home_name>

(22) <facet_dcl> ::= “provides” “facet” <identifier>
{"“,” <identifier> }*

(23)<feature_delegation_spec> ::="delagatesTo” “storage”
<feature_delegation_list>

(21)<segment_persistence_dcl>:

(24) <feature_delegation_list> ::= “(" <feature_delegation>{*“,”
<feature_delegation> }* “)”
(25) <feature_delegation> ::= <feature_name>*:"
<storage_member_name>
(26) <feature_name> := <identifier>
(27)<storage_member_name> := <identifier>

(28)<abstract_storage_home_delegation_spec>::= “delegatesTo” “abstract”

“storagehome” <delegation_list> “;
(29)<executor_delegation_spec> ::= “delegatesTo” “executor”

<delegation_list>

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 OMGCIDL Grammar 29 October 1999

60

(30) <delegation_list> ::= “(" <delegation> {“,” <delegation> }* “)”
(32) <delegation> ::= <operation_name> [“:" <operation_name>]
(32) <operation_name> := <identifier>
(33) <abstract_spec> := “abstract” <operation_list> ;"
(34) <operation_list> ::= “(" <operation_name>
{",” <operation_name> }* “)”
(35) <proxy_home_def> ::="“proxy” “home” <identifier>

” o

‘" <proxy_home_member>+ “}" “;

= <home_delegation_spec> *;
| <abstract_spec>
= “delegatesTo” “home” <delegation_list>

(36) <proxy_home_member> ::

(37) <home_delegation_spec> ::

60.4 OMG CIDL Specification

Note —We need to say here how a CIDL specification relates to an IDL specification.
The easiest way to handle this may be to simply say that in CIDL one option is added
to IDL grammar rule 1 and the rule is:

Note — | <composition>

60.5 Composition Definition

The syntax for composition definitions is as follows:
Q) <composition> ::= “composition” <category> <identifier> “{"
<composition_body> “}"
(2) <category> :=‘“entity”
| “process”
| “service”
| “session”
3) <composition_body> ::= [<catalog_use_dcl>]<home_executor_def>
[<proxy_home_def>]

A composition definition is a named scope that contains elements that constitute the
composition. The elements of a composition definitions are as follows:

» the keywordcomposition

« the specification of the life cycle category, one of the keywaewice , session ,
process , or entity . Subsequent definitions and declarations in the composition
must be consistent with the declared category, as defined in Section 60.5.1.

e an identifier that names the composition in the enclosing module scope
e the composition body
The composition body consists of the following elements:

e an optional catalog usage declaration

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 OMG CIDL Specification 29 October 1999

60

60-14

« a mandatory home executor definition

e an optional proxy home definition.

60.5.1 Life cycle category and constraints

Certain composition configurations are only valid for certain life cycle categories.
Chapter 62, “The Container Programming Model” describes the life cycle-related
constraints from the perspective of the container. These constraints map onto
corresponding constraints in component and composition definitions. The following
lists define the CIDL constructs that are either mandatory or invalid for the designated
life cycle category.

Note that these constraints supersede the conditionality of constructs based on CIDL
syntax. If a construct is described below as mandatory for the category in question, it
is mandatory regardless of it's syntactic properties. All of the constructs described as
invalid for a particular category are, of necessity, syntactically optional.

Table 60-1 Constraints for service and session components

Service and | Mandatory None
Session

Invalid abstract storage home bound to home executor:
<abstract_storage_home_binding> in home
executor body

component home implemented by home executor
specifies a primary key

component home implemented by home executor
specifies explicit finder operations

segmented executoxsegment_def> in executor
body

Table 60-2 Constraints for process components

Process Mandatory None

Invalid component home implemented by home executor
specifies a primary key

Table 60-3 Constraints for entity components

Entity Mandatory | component home implemented by home executor
specifies a primary key

Invalid none

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Composition Definition 29 October 1999

60

60.6 Catalog Usage Declaration

(4)
®)
(6)
™)

The syntax for a catalog usage declaration is as follows:
<catalog_use_dcl> := “uses” “catalog” “{" <catalog_dcl>+ “}" *;"
<catalog_dcl> <catalog_type_spec> <catalog_label>
<catalog_type_spec> <scoped_name>
<catalog_label> := <identifier>

A catalog usage declaration consists of the following elements:
» the keywordsuses andcatalog

» a block containing one or more catalog label declarations

A catalog label declaration consists of the following elements:
« a scoped name denoting a previously-defined catalog

< an identifier that denotes a putative catalog of the specified type within the scope of
the composition

A catalog usage declaration identifies catalog types that are used by the composition
and assigns them labels that are used within the scope of the composition to refer to a
putative catalog of the specified type. A catalog usage declaration also causes the CIF
to generate implementation of the following behaviors:

During the activation of a home executor, the CIF-generated activate implementation
on the home executor shall obtain tBesPersistentState::CatalogBase interface
from the component context, and invoget_catalog on it, requesting a catalog of
each type specified in the catalog usage declaration. The catalogs are requested by
their repository ID values. The home shall maintain references to the specified
catalogs, and make them available to the executors.

60.7 Home Executor Definition

(8)
9)

The syntax for a home executor definition is as follows:
<home_executor_def> ::= “home” “executor” <identifier>
“{" <home_executor_body> “}" "
<home_executor_body> ::= <home_impl_dcl>
| [<abstract_storage home_binding>]
| [<stored_on_dcl>]
| <executor_def>
| [<abstract_storage _home_delegation_spec>]
| [<executor_delegation_spec>]
| [<abstract_spec>]

A home executor definition consists of the following elements:
» the keywordshome andexecutor

¢ an identifier that names the home executor definition within the scope of the
composition.

CORBA 3.0 CCMFTF DRAFT ptc/99-10-04 Catalog Usage Declaration 29 October 1999

60

* a home executor body.

The home executor body consists of the following elements:
* a home implementation declaration

* an optional abstract storage home binding, specifying the storage home upon which
the components managed by the home are stored

« an optional home persistence declaration, identifying an abstract storage home upon
which the state of the home executor itself is to be stored

« an executor definition, describing the component executor managed by the home
executor

« an optional delegation specification describing the mapping of home operations to
storage home operations

» an optional delegation specification describing the mapping of home factory
operations to the operations on the component executor

« an optional abstract specification, declaring operations on the home executor that
are to be left unimplemented, overriding default generated implementations

The <identifier> in the header of the home executor definition is used as the basis for
the name of the skeleton artifact generated by the CIF. The specific forms of the
executors are defined in language mappings. The general requirements for language
mappings of homes executors are defined in Section 60.7, “Home Executor
Definition,” on page 60-15.

60.8 Home Implementation Declaration

60-16

(10)
(11)

The syntax of a home implementation declaration is as follows:
<home_impl_dcl> := “implements” <home_type_name>*“"
<home_type _name> := <scoped_name>

The home implementation declaration consists of the following elements:
* the keywordimplements

e a scoped name denoting a component home imported from IDL

The home implementation declaration specifies the component home which is to be
implemented by the home executor being defined. The generated skeleton must
support the home equivalent interface, as defined in Section 61.7.1, “Equivalent
interfaces,” on page 61-53. Implementations of orthodox home operations are
generated if the life cycle category of the composition is eitrgity or process and

the home executor specifies an abstract storage home binding, or if the life cycle
category of the executor is eitheession or service .

The detailed semantics of generated implementations are described in Section 60.8,
“Home Implementation Declaration,” on page 60-16.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Home Implementation Declaration 29

60

60.9 Storage Home Binding

The syntax for a storage home binding is as follows:

(12)<abstract_storage_home_binding>::= “bindsTo”
<abstract_storage_home_name> *;”

(13)<abstract_storage_home_name>::= <catalog_label> “.
<abstract_storage_home_label>

(14)<abstract_storage_home_label>::= <identifier>
An abstract storage home binding declaration consists of the following elements:
» the keywordbindsTo

e an abstract storage home name

An abstract storage home name consists of a catalog label, a period separator, and a
storage home label. The catalog label must denote a catalog previously declared in the
catalog usage declaration in the current composition definition. The storage home label
must denote a storage home declared as a member of the catalog type associated with
the catalog label.

60.10 Home Persistence Declaration

The syntax for a home persistence declaration is as follows:
(15) <home_persistence_dcl> := “storedOn” <abstract_storage_home_name>

A home persistence declaration consists of the following elements:
« the keywordstoredOn

e an abstract storage home name

A home persistence declaration establishes that the home executor is itself persistent,
and that it's persistent state is managed by the container. The abstract storage type of
the specified abstract storage home constitutes the state of the component home. The
specific responsibilities of generated home executors related to home persistence are
described in Section 60.9, “Storage Home Binding,” on page 60-17.

60.11 Executor Definition

The syntax for an executor definition is as follows:
(16) <executor_def> ::= “manages” <identifier>
[<executor_body>1";"
“” <executor_member>+ “}”

<segment_def>
| <feature_delegation_spec>

a7) <executor_body>
(18) <executor_member>

An executor definition has the following elements:

» the keywordmanages

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Storage Home Binding 29 October 16837

60

< and identifier that names the component executor being defined

* an executor body, containing one or more members enclosed in braces

An executor member is eithersegment definitioor afeature delegation specification
as defined below.

The identifier in the executor definition forms the basis of the name of the
programming artifact generated as the executor skeleton. The details of executor
structure and responsibilities are defined in Section 60.7, “Home Executor Definition,”
on page 60-15, and in CIDL language mappings.

60.12 Segment Definition

60-18

(19)

(20)

The syntax for a segment definition is as follows:

<segment_def> ::= “segment” <identifier>
‘" <segment_member>+ “}"
<segment_member> := <segment_persistence_dcl>*“;"
| <facet_dcl>*}"

A segment definition consists of the following elements:
» the keywordsegment
« an identifier that names the segment in the scope of the executor definition

e one or more segment members enclosed in braces

A segment member is eithersegment persistence declaratjar afacet declaration
as described below.

If a segment definition occurs in an executor definition, the corresponding executor is
said to be a segmented executor. If no segment definition occurs in a executor
definition, the executor is said to be monolithic.

A separate skeleton is generated by the CIF for each segment of a segmented executor.
Segments are independently activated. Each segment is assigned a segment identifier,
which as a numeric value of type short, by the CIF implementation. The segment
identifier is interpreted internally by the generated implementation during activation.
Segment identifiers are also used in component identities, as described in

Section 62.4.3.1, “Component Identifiers,” on page 62-156. There is no canonical
mechanism for assigning segment identifier values (other than the component
segment), as the values of segment identifiers does not affect portability or
interoperability.

All executors have a distinguished segment, the component segment, that supports the
component facet (i.e., the facet supporting the component equivalent interface). The
segment identifier value of the component segment is always zero. If a component does
not explicitly declare segments, the monolithic executor is still considered in some
contexts to be the component segment executor.

The details of segment structure and implementation responsibilities are described in
Section 60.12, “Segment Definition,” on page 60-18.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Segment Definition 29 October 1999

60

60.13 Segment Persistence Declaration

The syntax for a segment persistence declaration is as follows:
(21)<segment_persistence_dcl>::= “storedOn” <abstract_storage_home_name>

A segment persistence declaration has the following elements:
« the keywordstoredOn

e an abstract storage home name

A segment persistence declaration specifies the abstract storage home upon which the
state of the segment will be stored. The abstract storage type of the storage home
constitutes the state of the segment.

The detailed structure of segments, and implementations responsibilities with respect
to segment persistence are described in Section 60.13, “Segment Persistence
Declaration,” on page 60-19.

60.14 Facet Declaration

The syntax for a facet declaration is as follows:
(22) <facet_dcl> := “provides” “facet” <identifier>
{"“,” <identifier> }*
A facet declaration has the following elements:
» the keywordsgrovides andfacet

* one or more identifiers separated by commas, where each identifier denotes a facet
defined by the component type implemented by the composition (i.e., the
component type managed by the home which is implemented by the home executor
defined in the composition).

A facet declaration associates one or more component facets with the segment. The
generated segment executor will provide the specified facets. A facet name may only
appear in a single segment definition. Facets that are not explicitly declared in a
segment definition are provided by the component segment.

The detailed structure of segments, and implementations responsibilities with respect
to providing facets are described in Section 60.14, “Facet Declaration,” on page 60-19.

60.15 Feature Delegation Specification

The syntax for a feature delegation specification is as follows:

(23)<feature_delegation_spec> ::="delagatesTo” “storage”
<feature_delegation_list>

(24) <feature_delegation_list> ::= “(" <feature_delegation>{“,”
<feature_delegation> }* “)”
(25) <feature_delegation> ::= <feature_name> “:"

<storage_member_name>

CORBA3.0CCMFTFDRAFT ptc/99-10-04 SegmentPersistence Declaration 29 October 1999

60

(26) <feature_name> := <identifier>
(27)<storage_member_name> := <identifier>

A feature delegation specification has the following elements:
« the keywordglelegatesTo , abstract andstoragetype

< alist of feature delegation specifications, enclosed in parentheses and separated by
commas.

A feature delegation specification consists of the following elements:

« an identifier that denotes a stateful feature of the component implemented by the
composition

¢ acolon

« an identifier that denotes a member of the abstract storage type of the abstract
storage home specified in the abstract storage home binding in the home executor
definition

A feature delegation specification defines an association between a stateful feature of
the component being implemented and a member of the abstract storage type that
incarnates the component (or the component segment). The component executor
skeleton generated by the CIF will provide implementations of feature management
operations that store the feature’s state in the specified storage member. Stateful
features include attributes, receptacles, and event sources.

The following constraints regarding feature delegation must be observed:

« Feature delegation specifications may only occur in an executor definition when the
home executor specified an abstract storage home binding.

« The type of the storage member specified in a feature delegation must be
compatible with the type of the feature. Compatibility, for the purposes of feature
delegation is defined in Table 60-4 on page 20.

Table 60-4 Type compatibility for feature delegation purposes

Feature Storage member type

attribute must be identical to feature for all types
except object reference and valuetype
for object reference and valuetype
storage member must be of identical
type or base type (direct or indirect)

receptacle (simplex) must be identical to feature type or base
interface (direct or indirect) of feature

type

60-20 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Feature Delegation Specification 29 October

60

Table 60-4 Type compatibility for feature delegation purposes

Feature Storage member type

receptacle (multiplex) sequence of type compatible with
receptacle type as defined above

emitter event source must be identical to feature type or base
interface (direct or indirect) of feature
type

publisher event source long*

* The persistent state maintained internally by the component i€ttemnelld of the
notification channel created by the container.

60.16 Abstract Storage Home Delegation Specification

The syntax for a storage home delegation specification is as follows:

(28)<abstract_storage_home_delegation_spec>::= “delegatesTo” “abstract”
“storagehome” <delegation_list> “;"

(30) <delegation_list> := “(" <delegation> { “,” <delegation> }* “)"
(32) <delegation> := <operation_name> [“:" <operation_name>]
(32) <operation_name> := <identifier>

An abstract storage home delegation specification has the following elements:
« the keywordglelegatesTo , abstract , andstoragehome

< a list of delegation specifications enclosed in parentheses and separated by commas
A delegation specification has the following elements:

« an identifier that denotes an operation on the home equivalent interface supported
by the home executor

e an optional delegation target, consisting of a colon, followed by identifier that
denotes an operation on the abstract storage home to which the home is bound (i.e.,
the abstract storage home specified in the abstract storage home binding)

An abstract storage home delegation specification associates an operation on the home
interface with an operation on the abstract storage home interface. The CIF shall
generated an implementation of the specified home operation that delegates to the
specified abstract storage home operation.

If the optional delegation target is omitted, the home operation is assumed to be
delegated to an operation on the abstract storage home with the same name. If no such
operation exists on the abstract storage home, the specification is not legal.

The signature of the abstract storage home operation must be compatible with the
abstract storage home. Signature compatibility, from the perspective of abstract storage
home delegation, has the following definition:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Abstract Storage Home Delegation Specification

60

60-22

If the home operation is an explidiactory operation, the abstract storage home
operation must be an explidiactory operation.

If the home operation is not a factory, the return type of the home operation must be
identical to the return type of the abstract storage home operation, except when the
return type is an object reference type or a value type. If the return type of the home
operation is an object reference type or a value type, the return type of the storage
home operation must be identical to, or more derived than, the return type of the
home operation.

For each exception explicitly raised by the storage home operation, an identical
exception must appear in thraises clause of the home operation. The inverse is
not true—the home operation may raise exceptions not raised by the abstract
storage home operation.

The number of parameters in the parameter lists of the home operation and the
abstract storage home operation must be equal. Each parameter in the abstract
storage home operation must be compatible with the parameter in the same position
in the signature of the home operation, where compatibility is defined as follows:

« If the parameter in the home operation is neither an object reference type nor a
value type, the type of the corresponding parameter in the abstract storage home
operation must be identical.

« If the parameter type in the home operation is an object reference and the
parameter is am parameter, the corresponding parameter in the abstract storage
home operation must be identical to, or a base type (direct or indirect) of, the
parameter in the home operation.

« If the parameter type in the home operation is an object reference and the
parameter is aout parameter, the corresponding parameter in the abstract
storage home operation must be identical to, or more derived than, the parameter
in the home operation.

« If the parameter type in the home operation is an object reference and the
parameter is aimmout parameter, the corresponding parameter in the abstract
storage home operation must be identical to the parameter in the home operation.

The following additional constraints and rules apply to abstract storage home
delegation:

An operation on the home interface may delegate to at most one operation on the
abstract storage home interface.

An operation on the abstract storage home interface may be the target of at most
one delegation from the home interface.

Implicitly defined operations on the home (i.e., orthodox operations) delegate by
default to cognate operations on the abstract storage home, as described by
Section 61.7.5.1, “Orthodox operations,” on page 61-60. These default delegations
may be over-ridden by explicit delegations. If an operation on the abstract storage
home that is normally the default target of a delegation appears as the target of an
explicit delegation, then the home operation that normally would have delegated to
that target by default shall have no generated implementation (unless one is
explicitly defined).

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Abstract Storage Home Delegation Specification

60

The detailed semantics and implementation responsibilities of delegated abstract
storage home operations are described in Section 60.16, “Abstract Storage Home
Delegation Specification,” on page 60-21.

60.17 Executor Delegation Specification

The syntax for an executor delegation specification has the following form:

(29)<executor_delegation_spec> ::= “delegatesTo” “executor”
<delegation_list> ;"

An executor delegation specification consists of the following elements;
» the keywordgelegatesTo andexecutor

« adelegation list, identical structurally to the delegation list of the abstract storage
home delegation specification

An executor delegation specification defines an operation on the component executor,
to which the specified home operation will be delegated. The following constraints
apply to executor delegation specifications:

< Only factory operations may be delegated to the executor, including explicitly
declared factories and implicit create operations.

< If no delegation target is explicitly specified, the operation defined on the executor
shall have the same name as the delegating home operation.

e The signature of the defined operation on the executor shall be identical to the
signature of the home operation, with the exception that the return type of the
executor operation shall be void if the home does not specify a primary key, or the
return type shall be the type of the primary key if the home specifies a primary key.

The CIF shall generate an implementation of the home operation that delegates to the
defined operation on the executor. The detailed semantics and implementation
responsibilities are described in Section 60.17, “Executor Delegation Specification,” on
page 60-23.

60.18 Abstract Spec Declaration

The syntax for an abstract spec has the following form:
(33) <abstract_spec> ::= “abstract” <operation_list> ;"
(34) <operation_list> ::= “(” <operation_name>
{*,” <operation_name> }* *)”

Note —Description mmissing in submitted text

60.19 Proxy Home Declaration

The syntax for a proxy home declaration has the following form:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Executor Delegation Specification 29 October

60

= “proxy” “home” <identifier>
“{” <proxy_home_member>+ “}" *;”

<home_delegation_spec> *;
<abstract_spec>
“delegatesTo” “home” <delegation_list>

(35) <proxy_home_def>

(836) <proxy_home_member>

(87) <home_delegation_spec>

Note —Description missing in submitted text

60.20 Scoping Rules

Note —Here we need to state the scoping rules that apply to the CIDL extensions, i.e.

which constructs introduce a new scope, etc.

60-24 CORBA 3.0CCM FTF DRAFT ptc/99-10-04 Scoping Rules 29 October 1999

Component Model 61

This chapter describes the semantics of the CORBA Component Model (CCM) and the
conformance requirements for vendors.

Issue — It contains all new text taken from the CCM final submission
orbos/99-07-01 with only minor editorial changes - Jeff Mischkinsky

61.0.0.1 Contents

This chapter contains the following sections.

Section Title Page
“Component Model” 61-26
“Component Definition” 61-29
“Component Declaration” 61-29
“Facets and Navigation” 61-31
“Receptacles” 61-38
“Events” 61-44
“Homes” 61-53
“Home Finders” 61-62
“Component Configuration” 61-64
“Configuration with attributes” 61-67
“Component Inheritance” 61-70
“Conformance Requirements” 61-73

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999 61-25

61

Section Title Page

Issue — what to do about “paranthetical indented comments”

61.1 Component Model

61-26

Components a basic meta-type in CORBA. The component meta-type is an extension
and specialization of the object meta-type. Component types are specified in IDL and
represented in the Interface Repository. A component is denoted by a component
reference, which is represented by an object reference. Correspondingly, a component
definition is a specialization and extension of an interface definition.

A component type is a specific, named collection of features that can be described by
an IDL component definition or a corresponding structure in an Interface Repository.
Although the current specification does not attempt to provide mechanisms to support
formal semantic descriptions associated with component definitions, they are designed
to be associated with a single well-defined set of behaviors. Although there may be
several realizations of the component type for different run-time environments (e.g.,
OS/hardware platforms, languages, etc.), they should all behave consistently. As an
abstraction in a type system, a component type is instantiated to create concrete entities
(instances) with state and identity.

A component type encapsulates its internal representation and implementation.
Although the component specification includes standard frameworks for component
implementation, these frameworks, and any assumptions that they might entail, are
completely hidden from clients of the component.

61.1.1 Component levels

There are two levels of componentmasicand extendedBoth are managed by
component homes, but they differ in the capabilities they can offer. Basic components
essentially provide a simple mechanism to “componentize” a regular CORBA object, .
Extended components, on the other hand, provide a richer set of functionality.

A basic component is very similar in functionality to an EJB as defined in
the Enterprise JavaBeans 1.1 specification. This allows mapping and inte-
gration at this level much easier.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComponentModel 29 October 1999

61

61.1.2 Ports

Components support a variety of surface features through which clients and other
elements of an application environment may interact with a component. These surface
features are calledorts. The component model supports four basic kinds of ports:

® Facets which are distinct named interfaces provided by the component for client
interaction

®* Receptacleswhich are named connection points that describe the component’s
ability to use a reference supplied by some external agent

® Event sources which are named connection points that emit events of a specified
type to one or more interested event consumers, or to an event channel

® Event sinks which are named connection points into which events of a specified
type may be pushed.

® Attributes, which are named values exposed through accessor and mutator
operations. Attributes are primarily intended to be used for component
configuration, although they may be used in a variety of other ways.

Basic components or not allowed to offer facets, receptacles, event sources and sinks.
They may only offer attributes.

Extended components may offer any type of port.

61.1.3 Components and facets

A component can provide multiple object references, caftetts which are capable

of supporting distinct (i.e., unrelated by inheritance) IDL interfaces. The component
has a single distinguished reference whose interface conforms to the component
definition. This reference supports an interface, called the componemt'valent
interface that manifests the component’s surface features to clients. The equivalent
interface allows clients to navigate among the component’s facets, and to connect to
the component’s ports.

Basic components cannot support facets, therefore attempts to navigate to other facets
will always fail. The equivalent interface of a basic component is the only object
available with which a client may interact.

The other interfaces provided by the component are referred tacass Figure 61-1
illustrates the relationship between the component and its facets.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComponentModel 29 October 19981-27

61

Component reference supports
component’'s equivalent interface

/

Component

/

Implementations
of facet
interfaces are
encapsulated

\/

O

/(

facet references
support independent
facet interfaces \

N
Q \
JE—

Y

Figure 61-1 Component Interfaces and Facets

The relationship between the component and its facets is characterized by the
following observations:

®* The implementations of the facet interfaces are encapsulated by the component, and
considered to be “parts” of the component. The internal structure of a component is
opaque to clients.

® Clients can navigate from any facet to the component equivalent interface, and can
obtain any facet from the component equivalent interface.

® Clients can reliably determine whether any two references belong to the same
component instance.

®* The life cycle of a facet is bounded by the life cycle of its owning component.

61.1.4 Component identity

A component instance is identified primarily by its component reference, and
secondarily by its set of facet references (if any). The component model provides
operations to determine whether two references belong to the same component
instance, and (as mentioned above) operations to navigate among a component’s
references. The definition of “same” component instance is ultimately up to the

61-28 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComponentModel 29 October 1999

61

component implementor, in that they may provide a customized implementation of this
operation. However, a component framework shal provide standard implementations
that constitutede factodefinitions of “sameness” when they are employed.

Components may also be associated vpthmary key valuedy a component home.
Primary keys are data values exposed to the component’s clients that may be used in
the context of a component home to identify component instances and obtain
references for them. Primary keys are not features of components themselves; the
association between a component instance and a particular primary key value is
maintained by the home that manages the component.

61.1.5 Component homes

A component homis meta-type that acts as a manager for instances of a specified
component type. Component home interfaces provide operations to manage component
life cycles, and optionally, to manage associations between component instances and
primary key values. A component home may be thought of as a manager for the extent
of a type (within the scope of a container).

Component types are defined in isolation, independent of home types. A home
definition, however, must specify exactly one component type that it manages.
Multiple different home types can manage the same component type, though they
cannot manage the same set of component instances.

At execution time, a component instance is managed by a single home object of a
particular type. The operations on the home are roughly equivalent to static or class
methods in object-oriented programming languages.

61.2 Component Definition

A component definition in IDL implicitly defines an interface that supports the features
defined in the component definition body. It extends the concept of an interface
definition to support features that are not supported in interfaces. Component
definitions also differ from interface definitions in that they support only single
inheritance from other component types.

The IDL grammar for components may be found in <<Chap 3 rrr>>.
61.3 Component Declaration

61.3.1 Basic Components

Basic components cannot avail themselves of certain features in the model. In
particular, they cannot inherit from other components, nor can they provide or use
interfaces, or make any event declarations. A basic component is declared using as a
restricted version of &component_dcl> . See Section 3.16.1, “Component for the
syntax.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Definition 29 October 18329

61

To avoid ambiguity between basic and extended definitions, any component declaration
that matches the following pattern is a basic component:

“component” <identifier> [<supported_interface_spec>]
" {<attr_dcl> “;"}* }"

Ideally the syntax should explicitly represent these rules. However this can
only be achieved by introducing a new keyword to distinguish between
basic and extended components.It was felt that an extra keyword would
cause problems in the future, as the distinction between basic and extended
components gets blurred. This blurring may occur due to future develop-
ment of both the CORBA Component Model and the Enterprise JavaBeans
specifications.

61.3.2 Equivalent IDL

The client mappings (i.e., mappings of the externally-visible component features) for
component declarations are described in termedfivalent IDL

As described above, the component meta-type is a specialization of the interface meta-
type. Each component definition has a correspondiggivalent interfaceln

programming language mappings, components are denoted by object references that
support the equivalent interface implied by the component definition.

Since basic components are essentially a profile, no specific rules are defined for them.

61.3.2.1 Simple declaration

For a component declaration with the following form:
component component_name {...};
the equivalent interface shall have the following form:

interface component_name
: Components::CCMObject{ ... };

61.3.2.2 Supported interfaces

For a component declaration with the following form:

component <component_name>
supports <interface_name_1>, <interface_name 2> {...};

the equivalent interface shall have the following form:
interface < component_name>

: Components::CCMObiject,
<interface_name_1>, <interface_name 2> {...};

Supported interfaces are described in detail in Section 61.4.5

61-30 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Declaration 29 October 1999

61

61.3.2.3 Inheritance

For a component declaration with the following form:
component < component_name> : <base_name> { ... };
the equivalent interface shall have the following form:

interface < component_name> : <base_name> { ...}

61.3.2.4 Inheritance and supported interfaces

For a component declaration with the following form:

component <component_name> : <base_name>
supports <interface_name_1>, <interface_name 2> {...};

the equivalent interface shall have the following form:

interface <component_name>
: <base _name>, <interface_name_1>, <interface_name 2> {...};

61.3.3 Component Body

A component forms a naming scope, nested within the scope in which the component
is declared.

Declarations for facets, receptacles, events sources, event sinks and attributes all map
onto operations on the component’s equivalent interface. These declarations and their
meanings are described in detail below.

61.4 Facets and Navigation

A component type may provide several independent interfaces to its clients in the form
of facets. Facets are intended to be the primary vehicle through which a component
exposes its functional application behavior to clients during normal execution. A
component may exhibit zero or more facets.

61.4.1 Equivalent IDL

Facet declarations imply operations on the component interface that provide access to
the provided interfaces by their names. A facet declaration of the following form:

provides <interface type> <name> ;

results in the following operation defined on the equivalent interface:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 16931

61

<interface_type> provide_ <name> ();

The mechanisms for navigating among a component’s facets are described in Section
61.4.3. The relationships between the component identity and the facet references, and
assumptions regarding facet references, are described in Section 61.4.4. The
implementation of navigation operations are provided by the component
implementation framework in generated code; the user-provided implementation of a
component type is not responsible for navigation operations. The responsibilities of the
component servant framework for supporting navigation operations are described in
detail in <<< rrr Chapter ? CIDL>>>.

61.4.2 Semantics of facet references

Clients of a component instance can obtain a reference to a facet by invoking the
provide_ <name> operation on the equivalent interface corresponding to the
provides declaration in the component definition. The component implementation is
responsible for guaranteeing the following behaviors:

® |n general, a component instance shall be prepared to return object references for
facets throughout the instance’s life cycle. A component implementation may, as
part of its advertised behavior, return a nil object reference as the result of a
provide_ <name> operation.

® An object reference returned bypsovide <name> operation shall support the
interface associated with the correspondgmgvides declaration in the component
definition. Specifically, when theis_a operation is invoked on the object reference
with the Repositoryld of the provided interface type, the result shall BRUE,
and legal operations of the facet interface shall be able to be invoked on the object
reference. If the type specified in thpgovides declaration iObject, then there
are no constraints on the interface types supported by the reference.

A facet reference provided by a component may support additional inter-
faces, such as interfaces derived from the declared type, as long as the
stated contract is satisfied.

® Facet references must behave properly with respect to component identity and
navigation, as defined in Section 61.4.4 and Section 61.4.3.

61.4.3 Navigation

Navigation among a component’s facets may be accomplished in the following ways:

® A client may navigate from any facet reference to the component that provides the
reference viatCORBA::Object::get_component

® A client may navigate from the component interface to any facet using the
generategrovide_ <name> operations on the equivalent interface.

® A client may navigate from the component interface to any facet using the generic
provide_facet operation on thélavigation interface (inherited by all component
interfaces througlComponents::CCMObject). Other operations on the
Navigation interface (i.e.provide_all _facets andprovide named_facets)

61-32 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 1999

61

return multiple references, and can also be used for navigation. When using generic
navigation operations oNavigation , facets are identified by string values that
contain their declared names.

® A client may navigate from a facet interface that derives fromMlawigation
interface directly to any other facet on the same component, ygsmgde_facet ,
provide_all_facets , andprovide_named_facets .

® For components, such as basic components, that do not provide interfaces, only the
generic navigation operations are available on the equivalent interface. The
behavior of these operations, where there are no facets to navigate to, is defined
below.

The detailed descriptions of these mechanisms follow.

61.4.3.1 get_component()

module CORBA {
interface Object { // PIDL

Object get_component ();
8
8

If the target object reference is itself a component reference (i.e., it denotes the
component itself), thget_component operation returns the same reference (or
another equivalent reference). If the target object reference is a facet reference the
get_component operation returns an object reference for the component. If the target
reference is neither a component reference nor a provided refergetceomponent
returns a nil reference.

Implementation of get_component

As with other operations 08 ORBA::Object , get_component is implemented as a
request to the target object. Following the pattern of o @®RBA::Object operations
(i.e., _interface , _is_a, and_non_existent ; see section 15.4.1.2 << rrr>>), the
operation name in GIOP request correspondingdb component shall be
“_component ".

61.4.3.2 Component-specific provide operations

The provide_< name> operation implicitly defined by @rovides declaration can be
invoked to obtain a reference to the facet.

61.4.3.3 Navigation interface on the component

As described in Section 61.3 all component interfaces implicitly inherit directly or
indirectly from CCMObject, which inherits fromComponents::Navigation . The
definition of theComponents::Navigation interface is as follows:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 16933

61

61-34

module Components {

valuetype FacetDescription {
public CORBA::Repositoryld InterfacelD;
public FeatureName Name;

h

valuetype Facet : FacetDescription {
public Object ref;
h

typedef sequence<Facet> Facets;
typedef sequence<FacetDescription> FacetDescriptions;

exception InvalidName { };
interface Navigation {

Object provide_facet (in FeatureName name)
raises (InvalidName);

FacetDescriptions describe_facets();
Facets provide_all_facets();

Facets provide_named_facets (in NameList names)
raises (InvalidName);

boolean same_component (in Object ref);

h
h

This interface provides generic navigation capabilities. It is inherited by all component
interfaces, and may be optionally inherited by any interface that is explicitly designed
to be a facet interface for a component. The descriptionsadigation operations

follow.

provide_facet

The provide_facet operation returns a reference to the facet denoted bydinge
parameter. The value of theame parameter must be identical to the name specified in
the provides declaration. The valid names are defined by inherited closure of the actual
type of the component, i.e., the names of facets of the component type and all of its
inherited component types. If the value of theme parameter does not correspond to
one of the component’s facets, thevalidName exception shall be raised. A

component that does not provide any facets (e.g., a basic component) will have no
valid name parameter to this operation and thus shall always raiséneidName
exception.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 1999

61

describe_facets

The describe_facets operation returns a sequence containing descriptions of all of

the facets provided by the target component. Each description is a value type
containing theRepositoryld of the facet’s interface and the name of the facet,
expressed as an unscoped local name relative to the owning component’s nhame scope.
The order in which these descriptions occur in the sequence is not specified. A
component that does not provide any facets (e.g., a basic component) shall return a
sequence of length zero.

provide_all_facets

The provide_all_facets operation returns a sequence of value objects, each of which
contains theRepositoryld of the facet interface andame of the facet, along with a
reference to the facet. The sequence shall contain descriptions and references for all of
the facets in the component’s inheritance hierarchy. The order in which these values
occur in the sequence is not specified. A component that does not provide any facets
(e.g., a basic component) shall return a sequence of length zero.

provide_named_facets

The provide_named_facets operation returns a sequence of described references
(identical to the sequence returned fpvide_all_facets), containing descriptions

and references for the facets denoted bynaees parameter. If any name in the

names parameter is not a valid name for a provided interface on the component, the
operation raises thivalidName exception. The order of values in the returned
sequence is not specified. A component that does not provide any facets (e.g., a basic
component) will have no validame parameter to this operation and thus shall always
raise thelnvalidName exception.

The same_component operation orNavigation is described in Section 61.4.4.

61.4.3.4 Navigation interface on facet interfaces

Any interface that is designed to be used as a facet interface on a component may
optionally inherit from theNavigation interface. When the navigation operations (i.e.,
provide_facet , provide_all_facets , provide_named_facets , and

describe_facets) are invoked on the facet reference, the operations shall return the
same results as if they had been invoked on the component interface that provided the
target facet. The skeletons generated by the Component Implementation Framework
shall provide implementations of these operations that will delegate to the component
interface.

This option allows navigation from one facet to another to be per-
formed in a single request, rather than a pair of requests (to get the
component reference and navigate from there to the desired facet).
To illustrate, consider the following component definition:

module example {
interface foo : Components::Navigation {... };
interface bar { ... };
component baz session {

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 16935

61

provides foo a;
provides bar b;

2
A client could navigate from a to b as follows:

foo myFoo;

/I assume myFoo holds a reference to a foo provided by a baz
baz myBaz = bazHelper.narrow(myFoo.get_component());
bar myBar = myBaz.provide_b();

Or, it could navigate directly:

foo myFoo;
/I assume myFoo holds a reference to a foo provided by a baz
bar myBar = barHelper.narrow(myFoo.provide_interface(“b”");

61.4.4 Provided References and Component Identity

The same_component operation on thélavigation interface allows clients to

determine reliably whether two references belong to the same component instance, that
is, whether the references are facets of or directly denote the same component instance.
The component implementation is ultimately responsible for determining what the
“same component instance” means. The skeletons generated by the Component
Implementation Framework shall provide an implementatiosarhe_component ,

where “same instance” is defined in terms of opaque identity values supplied by the
component implementation or the container in the container context. User-supplied
implementations can provide different semantics.

If a facet interface inherits th§avigation interface, then theame_component

operation on the provided interface shall give the same results as the
same_component operation on the component interface that owns the provided
interface. The skeletons generated by the Component Implementation Framework shall
provide an implementation acfame_component for facets that inherit the

Navigation interface.

61.4.5 Supported interfaces

Issue — dupe of 3.16.2.2 - DELETE description from there

A component definition may optionally support one or more interfaces, or in the case
of extended components, inherit from a component that supports one or more
interfaces. When a component definition header includes a supports clause as follows:

61-36 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 1999

61

component < component_name> supports <interface_name> { ... };

the equivalent interface inherits boBCMObject and any supported interfaces, as fol-
lows:

interface <component_name>
: Components::CCMObject, <interface_name> { ... };

The component implementation shall supply implementations of operations defined on
supported interfaces. Clients shall be able to widen a reference of the component’s
equivalent interface type to the type of any of the supported interfaces. Clients shall
also be able to narrow a reference of typEMObject to the type of any of the
component’s supported interfaces.

For example, given the following IDL:

module M {

interface | {
void op();

2

component A supports | {
provides | foo;

2

home AManager manages A { };

h

The AManager interface shall be derived from KeylessCCMHome, sup-
porting the create_component operation, which returns a reference of type
CCMObject. This reference shall be able to be narrowed directly from
CCMObject to I:

// java

M.AManager aHome = ...; // get A’s home
org.omg.Components.CCMObject myComp =
aHome.create_component();

M.l myl = M.IHelper.narrow(myComp);

// must succeed

For example, given the following IDL:

module M {

interface | {
void op();

h

component A supports | {
provides | foo;

b

componentB : A{... };

home BHome manages B {};

h
The equivalent IDL is:

module M {
interface | {

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Facets and Navigation 29 October 16937

61

void op();
2
interface A :
org.omg.Components.CCMObject, | { ... };
interface B: A{... };

b
which allows the following usage:

M.BHome bHome = ... // get B's home

M.B myB = bHome.create();

myB.op(); // I's operations are supported
// directly on B’s interface

The supports mechanism provides programming convenience for light-
weight components that only need to implement a single operational inter-
face. A client can invoke operations from the supported interface directly
on the component reference, without narrowing or navigation:

M.A myA = aHome.create();
myA.op();

as opposed to

M.A myA = aHome.create();
M.l myl = myA.provide_foo();
myl.op();

or, assuming that the client has A's home, but doesn' statically know about
A's interface or home interface:

org.omg.Components.KeylessCCMHome genericHome =
... // get A’s home;

org.omg.Components.CCMObject myComp =
genericHome.create_component();

M.l myl = M.IHelper.narrow(myComp);
myl.op();

as opposed to

org.omg.CORBA.Object obj =
myComp.provide_interface(“foo”);
M.I myl = M.IHelper.narrow(obyj);
myl.op();

This mechanism allows component-unaware clients to receive a reference
to a component (passed as type CORBA::Object) and use the supported
interface.

61.5 Receptacles

A component definition can describe the ability to accept object references upon which
the component may invoke operations. When a component accepts an object reference
in this manner, the relationship between the component and the referent object is called
a connection they are said to beonnectedThe conceptual point of connection is

61-38 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Receptacles 29 October 1999

61

called areceptacle A receptacle is an abstraction that is concretely manifested on a
component as a set of operations for establishing and managing connections. A
component may exhibit zero or more receptacles.

Receptacles are intended as a mechanical device for expressing a wide
variety of relationships that may exist at higher levels of abstraction. As
such, receptacles have no inherent higher-order semantics, such as imply-
ing ownership, or that certain operations will be transient across connec-
tions.

61.5.1 Equivalent IDL

A uses declaration of the following form:

uses <interface type> <receptacle_name> ;

results in the following equivalent operations defined in the component interface:
void connect_< receptacle_name> (in <interface_type> conxn) raises (
Components::AlreadyConnected,
Components::InvalidConnection);

<interface_type> disconnect_ <receptacle _name> ()
raises (Components::NoConnection);

<interface_type> get_connection_ <receptacle_name> ();

A uses declaration of the following form:

uses multiple <interface_type> <receptacle _name>

results in the following equivalent operations defined in the component interface:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Receptacles 29 October 1999 61-39

61

struct <receptacle_name> Connection {

<interface_type> objref;

Components::Cookie ck;

h
sequence < <receptacle_name >Connection> <receptacle_name >Connec-
tions;

Components::Cookie
connect_ <receptacle_name> (in <interface_type> connection) raises (
Components::ExceededConnectionLimit,
Components::InvalidConnection

);

<interface_type> disconnect_ <receptacle_name> (
in Components::Cookie ck)
raises (Components::InvalidConnection);

<receptacle_name >Connections get_connections_ <receptacle_name> ();

61.5.2 Behavior

61.5.2.1 Connectoperations

Operations of the forntonnect_ <receptacle_name> are implemented in part by

the component implementor, and in part by generated code in the component servant
framework. The responsibilities of the component implementation and servant
framework for implementing connect operations are described in detail in << rrr
Chapter 6 CIDL>>. The receptacle holds a copy of the object reference passed as a
parameter. The component may invoke operations on this reference according to its
design. How and when the component invokes operations on the reference is entirely
the prerogative of the component implementation. The receptacle shall hold a copy of
the reference until it is explicitly disconnected.

Simplex receptacles

If a receptacle’auses declaration does not include the optiomaliltiple keyword,

then only a single connection to the receptacle may exist at a given time. If a client
invokes a connect operation when a connection already exists, the connection operation
shall raise theAlreadyConnected exception.

The component implementation may refuse to accept the connection for arbitrary
reasons. If it does so, the connection operation shall raisénttaéidConnection
exception.

61-40 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Receptacles 29 October 1999

61

Multiplex receptacles

If a receptacle’auses declaration includes the optionalultiple keyword, then

multiple connections to the receptacle may exist simultaneously. The component
implementation may choose to establish a limit on the number of simultaneous
connections allowed. If an invocation of a connect operation attempts to exceed this
limit, the operation shall raise thexceededConnectionLimit exception.

The component implementation may refuse to accept the connection for arbitrary
reasons. If it does so, the connection operation shall raisénttadidConnection
exception.

Connect operations for multiplex receptacles return values of type
Components::Cookie . Cookie values are used to identify the connection for
subsequent disconnect operations. Cookie values are generated by the receptacle
implementation (the responsibility of the supplier of the component-enabled ORB, not
the component implementor). Likewise, cookie equivalence is determined by the
implementation of the receptacle implementation.

The client invoking connection operations is responsible for retaining cookie values
and properly associating them with connected object references, if the client needs to
subsequently disconnect specific references. Cookie values must be unique within the
scope of the receptacle that created them. If a cookie value is passed to a disconnect
operation on a different receptacle than that which created it, results are undefined.

Cookie values are described in detail in Section 61.5.2.4, “Cookie type”.

Cookie values are required because object references cannot be reliably
tested for equivalence.

61.5.2.2 Disconnect operations

Operations of the forndisconnect_ receptacle_name terminate the relationship
between the component and the connected object reference.

Simplex receptacles

If a connection exists, the disconnect operation will return the connected object
reference. If no connection exists, the operation shall raiSe@onnection
exception.

Multiplex receptacles

The disconnect_ receptacle_name operation of a multiplex receptacle takes a
parameter of typ&€omponents::Cookie . Theck parameter must be a value
previously returned by theonnect receptacle_name operation on the same
receptacle. It is the responsibility of the client to associate cookies with object
references they connect and disconnect. If the cookie value is not recognized by the
receptacle implementation as being associated with an existing connection, the
disconnect_ receptacle_name operation shall raise aimvalidConnection

exception.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Receptacles 29 October 1999 61-41

61

61.5.2.3 get_connection and get_connections operations

Simplex receptacles

Simplex receptacles have operations narget connection_ receptacle_name . If
the receptacle is currently connected, this operation returns the connected object
reference. If there is no current connection, the operation returns a nil object reference.

Multiplex receptacles

Multiplex receptacles have operations nanged _connections_ receptacle_name .

This operation returns a sequence of structures, where each structure contains a
connected object reference and its associated cookie value. The sequence contains a
description of all of the connections that exist at the time of the invocation. If there are
no connections, the sequence length will be zero.

61.5.2.4 Cookietype

The Cookie valuetype is defined by the following IDL:

module Components {
valuetype Cookie {
private sequence<octet> CookieValue;
h

h

Cookie values are created by multiplex receptacles, and are used to correlate a connect
operation with a disconnect operation on multiplex receptacles.

Implementations of component-enabled ORBs may employ value type derived from
Cookie , but any derived cookie types shall be truncatabl€tmkie , and the
information preserved in th€ookieValue octet sequence shall be sufficient for the
receptacle implementation to identify the cookie and its associated connected
reference.

61.5.3 Receptacles interface

The Receptacles interface provides generic operations for connecting to a
component’s receptacles. TIECMObject interface is derived fronReceptacles .

For components, such as basic components, that do not use interfaces, only the generic
receptacles operations are available on the equivalent interface. The default behavior in
such cases is defined below.

The Receptacles interfaces is defined by the following IDL:

61-42 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Receptacles 29 October 1999

61

module Components {

valuetype ConnectionDescription {
public Cookie ck;
public Object objref;
h

typedef sequence<ConnectionDescription> ConnectedDescriptions;
interface Receptacles {

Cookie connect (in FeatureName name, in Object connection)
raises (
InvalidName,
InvalidConnection,
AlreadyConnected,
ExceededConnectionLimit);

void disconnect (
in FeatureName name,
in Cookie ck) raises (
InvalidName,
InvalidConnection,
CookieRequired,
NoConnection);

ConnectionList get_connections (in FeatureName name)
raises (InvalidName);

h

connect

The connect operation connects the object reference specified byctimmection

parameter to the receptacle specified by nhene parameter on the target component.

If the specified receptacle is a multiplex receptacle, the operation returns a cookie
value that can be used subsequently to disconnect the object reference. If the receptacle
is a simplex receptacle, the return value is a nil. The following exceptions may be
raised:

* |f the name parameter does not specify a valid receptacle name, then the
InvalidName exception is raised.

* If the receptacle is a simplex receptacle and it is already connected, then the
AlreadyConnected exception is raised.

® |f the object reference in theonnection parameter does not support the interface
declared in the receptaclelses statement, thénvalidConnection exception is
raised.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Receptacles 29 October 1999 61-43

61

61.6 Events

61-44

* If the receptacle is a multiplex receptacle and the implementation-defined limit to
the number of connections is exceeded, BxeeededConnectionLimit
exception is raised.

* A component that does not have any receptacles (e.g., a basic component) will have
no valid name parameter to this operation and thus shall always raise the
InvalidName exception.

disconnect

If the receptacle identified by theame parameter is a simplex receptacle, the
operation will disassociate any object reference currently connected to the receptacle.
The cookie value in thek parameter is ignored. If the receptacle identified by the
name parameter is a multiplex receptacle, tisconnect operation disassociates the
object reference associated with the cookie value (i.e., the object reference that was
connected by the operation that created the cookie value) from the receptacle. The
following exceptions may be raised:

* |f the name parameter does not specify a valid receptacle name, then the
InvalidName exception is raised.

® If the receptacle is a simplex receptacle there is no current connection, then the
NoConnection exception is raised.

® |f the receptacle is a multiplex receptacle and the cookie value ickhgarameter
does not denote an existing connection on the receptaclénthédConnection
exception is raised.

* If the receptacle is a multiplex receptacle and a null value is specified ickhe
parameter, th€ookieRequired exception is raised.

* A component that does not have any receptacles (e.g., a basic component) will have
no valid name parameter to this operation and thus shall always raise the
InvalidName exception.

get_connections

The get_connections operation returns a sequence@dnnectionDescription

structs. Each struct contains an object reference connected to the receptacle named in
the name parameter, and a cookie value that denotes the connection. iatine

parameter does not specify a valid receptacle name, themthédName exception

is raised. A component that does not have any receptacles (e.g., a basic component)
will have no validname parameter to this operation and thus shall always raise the
InvalidName exception.

The CORBA component model supports a publish/subscribe event model. The event
model for CORBA components is designed to be compatible with CORBA notification,
as defined in OMG document telcom/98-11-01. The interfaces exposed by the
component event model provide a simple programming interface whose semantics can
be mapped onto a subset of CORBA notification semantics.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999

61

61.6.1 Event types

Event types in the CORBA Component event model are value types derived from the
abstract value typ€omponents::EventBase , which is defined as follows:

module Components {
abstract valuetype EventBase { };

h

Applications derive specific concrete event types from this base type.

Since the underlying implementation of the component event mechanism provided by
the container is CORBA notification, event values shall be inserted into instances of
the any type. The resultingany values shall be inserted into a CORBA notification
structured event. The mapping between a component event and a notification event is
implemented by the container and is described in Section 66.4, “Event Management
Integration,” on page 66-252.

61.6.2 Integrity of value types contained in anys

To ensure proper transmission of value type events, this specification makes the
following clarifications to the semantics of value types when inserted antos:

When anany containing a value type is received as a parameter in an ORB-mediated
operation, the value contained in thay shall be preserved, regardless of whether the
receiving execution context is capable of constructing the value (in its original form or
a truncated form), or not. If the receiving context attempts to extract the value, the
extraction may fail, or the extracted value may be truncated. The value contained in the
any shall remain unchanged, and shall retain its integrity if éng is passed as a
parameter to another execution context.

Issue - Above should be in valuetype chapter

61.6.3 EventConsumer interface

The component event model is a push model. The basic mechanics of this push model
are defined by consumer interfaces. Event sources hold references to consumer
interfaces and invoke various forms of push operations to send events.

Component event sources hold references to consumer interfaces and push to them.
Component event sinks provide consumer references, into which other entities (e.g.,
channels, clients, other component event sources) push events.

Event consumer interfaces are derived from the
Components::EventConsumerBase interface, which is defined as follows:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999 61-45

61

61-46

module Components {
exception BadEventType {CORBA::Repositoryld expected_event_type};
interface EventConsumerBase {
void push_event(in EventBase evt) raises (BadEventType);
h
h

Type-specific event consumer interfaces are derived fronEtrentConsumerBase
interface. Event source and sink declarations in component definitions cause type-
specific consumer interfaces to be generated for the event types used in the
declarations.

The push_event operation pushes the event denoted bydleparameter to the
consumer. The consumer may choose to constrain the type of event it accepts. If the
actual type of theevt parameter is not acceptable to the consumer, the
BadEventType exception shall be raised. Thxpected_event _type member of

the exception contains thRepositoryld of the type expected by the consumer.

Note that this exception can only be raised by the consumer upon whose reference the
push_event operation was invoked. The consumer may be a proxy for an event or
notification channel with an arbitrary number of subscribers. If any of those
subscribers raise any exceptions, they will not be propagated back to the original event
source (i.e., the component).

61.6.4 Event service provided by container

Container implementations provide event services to components and their clients.
Component implementations obtain event services from the container during
initialization, and mediate client access to those event services. The container
implementation is free to provide any mechanism that supports the required semantics.
The container is responsible for configuring the mechanism and determining the
specific quality of service and routing policies to be employed when delivering events.
More detail is defined in Chapter 66, “Component Container Architecture”,

specifically Section 66.4, “Event Management Integration,” on page 66-252.

61.6.5 Event Sources—publishers and emitters

An event source embodies the potential for the component to generate events of a
specified type, and provides mechanisms for associating consumers with sources.

There are two categories of event sourasjttersand publishers Both are

implemented using event channels supplied by the container. An emitter can be
connected to at most one proxy provider by the container. A publisher can be
connected through the channel to an arbitrary number of consumers, who are said to
subscribeto the publisher event source. A component may exhibit zero or more
emitters and publishers.

A publisherevent source has the following characteristics:

®* The equivalent operations for publishers allow multiple subscribers (i.e.,
consumers) to connect to the same source simultaneously.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999

61

® Subscriptions to a publisher are delegated to an event channel supplied by the
container at run time. The component is guaranteed to be the only source publishing
to that event channel.

An emitterevent source has the following characteristics:

® The equivalent operations for emitters allow only one consumer to be connected to
the emitter at a time.

®* The events pushed from an emitter are delegated to an event channel supplied by
the container at run time. Other event sources, however, may use the same channel.
Events pushed from an emitter are then pushed by the container into the consumer
interface supplied as a parameter to the connesdurce> operation.

In general, emitters are not intended to be exposed to clients. Rather, they
are intended to be used for configuration purposes. It is expected that emit-
ters will be connected at the time of component initialization and configu-
ration to consumer interfaces that are proxies for event channels that may
be shared between arbitrary clients, components and other system ele-
ments.

In contrast, publishers are intended to provide clients with direct access to
a particular event stream being generated by the component (embodied by
the publisher event source). It is our intent that clients subscribe directly to
the publisher source.

61.6.6 Publisher

61.6.6.1 EquivalentIDL

For an event source declaration of the following form:

module <module_name> {
component <component_name> {
publishes <event type> <source_name> ;};

h

The following equivalent IDL is implied:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999 61-47

61

module <module_name> {
module <component_name> EventConsumers {
interface <event type> Consumer;

h
interface <component_name> : Components::CCMObiject {

Components::Cookie subscribe_ <source_name> (
in <component_name> EventConsumers:: <event type> Consumer
consumer)
raises (Components::ExceededConnectionLimit);

<component_name> EventConsumers:: <event_type> Consumer
unsubscribe_ <source_name> (in Components::Cookie ck)
raises (Components::InvalidConnection);

h

module <component_name> EventConsumers {
interface <event_type> Consumer : Components::EventConsumerBase {
void push (in <event type> evt);
h
h
h

61.6.6.2 Eventpublisher operations

subscribe_ <source _name>

The subscribe_ <source_name> operation connects the consumer parameter to an
event channel provided to the component implementation by the container. The
component shall be the only publisher to that channel. If the implementation of the
component or the channel place an arbitrary limit on the number of subscriptions that
can be supported simultaneously, and the invocation of the subscribe operation would
cause that limit to be exceeded, the operation raisegxeeededConnectionLimit
exception.TheCookie value returned by the operation identifies the subscription
formed by the association of the subscriber with the publisher event source. This value
can be used subsequently in an invocatioruo$ubscribe <source_name> to
disassociate the subscriber from the publisher.

unsubscribe_<source_name>

The unsubscribe_ <source _name> operation destroys the subscription identified
by theck parameter value, returning the reference to the subscriber. kthe
parameter value does not identify an existing subscription to the publisher event
source, the operation shall raisérwalidConnection exception.

61-48 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999

61

61.6.7 Emitters

61.6.7.1 EquivalentIDL

For an event source declaration of the following form:

module <module_name> {
component <component_name> {emits <event_type> <source_name> :};

h

The following equivalent IDL is implied:

module <module_name> {
module <component_name> EventConsumers {
interface <event type> Consumer;

h
interface <component_name> : Components::CCMObiject {

void connect_ <source_name> (
in <component_name> EventConsumers:: <event type> Consumer
consumer) raises (Components::AlreadyConnected);

<component_name> EventConsumers:: <event_type> Consumer
disconnect_ <source _name> ()
raises (Components::NoConnection);

h

module <component_name> EventConsumers {
interface <event type> Consumer
: Components::EventConsumerBase {
void push (in <event type> evt);
h
h
h

61.6.7.2 Eventemitter operations

connect_ <source_name>

The connect_ <source_name> operation connects the event consumer denoted by
the consumer parameter to the event emitter. If the emitter is already connected to a
consumer, the operation shall raise tleeadyConnected exception.

disconnect_ <source name>

The disconnect_ <source _name> operation destroys any existing connection by
disassociating the consumer from the emitter. The reference to the previously
connected consumer is returned. If there was no existing connection, the operation
raises theNoConnection exception.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999 61-49

61

61-50

61.6.8 Module scope of generated event consumer interfaces

The following observations and constraints apply to the equivalent IDL for event
source declarations:

®* The need for a typed event consumer interface requires the definition of a module
scope to guarantee that the interface name for the event subscriber is unique. The
module (whose name is formed by appending the string “EventConsumers” to the
component type name) is defined in the same scope as the component’s equivalent
interface. The module is opened before the equivalent interface definition to
provide forward declarations for consumer interfaces. It is re-opened after the
equivalent interface definition to define the consumer interfaces.

®* The name of a consumer interface is formed by appending the string “Consumer” to
the name of the event type. One consumer interface type is implied for each unique
event type used in event source and event sink declarations in the component
definition.

61.6.9 Event Sinks

An event sink embodies the potential for the component to receive events of a specified
type. An event sink is, in essence, a special-purpose facet whose type is an event
consumer. External entities, such as clients or configuration services, can obtain the
reference for the consumer interface associated with the sink.

Unlike event sources, event sinks do not distinguish betvoeeamectionand

subscription The consumer interface may be associated with an arbitrary number of
event sources, unbeknownst to the component that supplies the event sink. The
component event model provides no inherent mechanism for the component to control
which events sources may be pushing to its sinks. By exporting an event sink, the
component is, in effect, declaring its willingness to accept events pushed from arbitrary
sources. A component may exhibit zero or more consumers.

If a component implementation needs control over which sources can push
to a particular sink it owns, the sink should not be exposed as a port on the
component. Rather, the component implementation can create a consumer
internally and explicitly connect or subscribe it to sources.

61.6.9.1 EquivalentIDL

For an event sink declaration of the following form:

module <module_name> {
component <component_name> {
consumes <event type> <sink_name>

The following equivalent IDL is implied:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999

61

module <module_name> {
module <component_name> EventConsumers {
interface <event type> Consumer;

h

interface <component_name> : Components::CCMObiject {
<component_name> EventConsumers:: <event_type> Consumer
get_consumer _<sink_name> ();

h

module <component_name> EventConsumers {
interface <event type> Consumer :
Components::EventConsumerBase {
void push (in <event type> evt);
h
h
h

61.6.9.2 Eventsink operations

The get_consumer_ <sink_name> operation returns a reference that supports the
consumer interface specific to the declared event type.

61.6.10 Events interface

The Events interface provides generic access to event sources and sinks on a
componentCCMObject is derived fromEvents . For components, such as basic
components, that do not declare participation in events, only the geBeeiats

operations are available on the equivalent interface. The default behavior in such cases
is described below.

The Events interface is described as follows:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999 61-51

61

module Components {

exception InvalidName { };
exception InvalidConnection { };
exception AlreadyConnected { };
exception NoConnection { };

interface Events {
EventConsumerBase get_consumer (in FeatureName sink_name)
raises (InvalidName);
Cookie subscribe (in FeatureName publisher_name,
in EventConsumerBase subscriber)
raises (InvalidName);
void unsubscribe (in FeatureName publisher_name,
in Cookie ck)
raises (InvalidName, InvalidConnection);
void connect_consumer (in FeatureName emitter_name,
in EventConsumerBase consumer)
raises (InvalidName, AlreadyConnected);
EventConsumerBase
disconnect_consumer (in FeatureName source_name)
raises (InvalidName, NoConnection);

h

get_consumer

The get_consumer operation returns theventConsumerBase interface for the

sink specified by theink_name parameter. If thesink_name parameter does not
specify a valid event sink on the component, the operation raisekwhédName
exception. A component that does not have any sinks (e.g., a basic component) will
have no validsink_name parameter to this operation and thus shall always raise the
InvalidName exception.

subscribe

The subscribe operation associates the subscriber denoted bgihscriber

parameter with the event source specified by phblisher_name parameter. If the
publisher_name parameter does not specify a valid event publisher on the
component, the operation raises tngalidName exception. The cookie return value

can be used to unsubscribe from the source. A component that does not have any event
sources (e.g., a basic component) will have no vpliblisher_name parameter to

this operation and thus shall always raise thnalidName exception.

unsubscribe

Theunsubscribe operation disassociates the subscriber associateccwigfarameter
with the event source specified by thablisher_name parameter. If the
publisher_name parameter does not specify a valid event source on the component,

61-52 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Events 29 October 1999

61

61.7 Homes

the operation raises tHavalidName exception. If theck parameter does not identify

a current subscription on the source, the operation raisegtaddConnection

exception. A component that does not have any event sources (e.g., a basic component)
will have no validpublisher_name parameter to this operation and thus shall always
raise thelnvalidName exception.

connect_consumer

The connect_consumer operation associates the consumer denoted by the

consumer parameter with the event source specified by éh@tter_name

parameter. If themitter_name parameter does not specify a valid event emitter on

the component, the operation raises thealidName exception. If a consumer is

already connected to the emitter, the operation raiseg\bteadyConnected

exception. The cookie return value can be used to disconnect from the source. A
component that does not have any event sources (e.g., a basic component) will have no
valid emitter_name parameter to this operation and thus shall always raise the
InvalidName exception.

disconnect_consumer

Thedisconnect_consumer operation disassociates the currently connected
consumer from the event source specified by ¢hd@tter_name parameter, returning

a reference to the disconnected consumer. Ifamnitter name parameter does not
specify a valid event source on the component, the operation raisésvidelName
exception. If there is no consumer connected to the emitter, the operation raises the
NoConnection exception. A component that does not have any event sources (e.g., a
basic component) will have no valieimitter_name parameter to this operation and

thus shall always raise tHavalidName exception.

An IDL specification may include home definitions. A home definition describes an
interface for managing instances of a specified component type. The salient
characteristics of a home definition are as follows:

* A home definition implicitly defines an equivalent interface, which can be
described in terms of IDL.

® The presence of a primary key specification in a home definition causes home’s
equivalent interface to contain a set of implicitly defined operations whose
signatures are determined by the types of the primary key and the managed
component. These operations are specified in Section 61.7.1.2, “Home definitions
with primary keys”.

61.7.1 Equivalent interfaces

Every home definition implicitly defines a set of operations whose names are the same
for all homes, but whose signatures are specific to the component type managed by the
home and, if present, the primary key type specified by the home.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999 61-53

61

61-54

Because the same operation names are used for these operations on different homes,
the implicit operations cannot be inherited. The specification for home equivalent
interfaces accommodates this constraint. A home definition results in the definition of
three interfaces, called thexplicit interface, thamplicit interface, and thequivalent
interface. The name of the explicit interface has the fethome_name> Explicit ,
where<home_name> is the declared name of the home definition. Similarly, the
name of the implicit interface has the forshome_name> Implicit , and the name of

the equivalent interface is simply the name of the home definition, with the form
<home_name> . All of the operations defined explicitly on the home (including
explicitly-defined factory and finder operations) are represented on the explicit
interface. The operations that are implicitly defined by the home definition are
exported by the implicit interface. The equivalent interface inherits both the explicit
and implicit interfaces, forming the interface presented to programmer using the home.

The same names are used for implicit operations in order to provide clients
with a simple, uniform view of the basic life cycle operations—creation,
finding, and destruction. The signatures differ to make the operations spe-
cific to the storage type (and, if present, primary key) associated with the
home. These two goals—uniformity and type safety—are admittedly con-
flicting, and the resulting complexity of equivalent home interfaces reflects
this conflict. Note that this complexity manifests itself in generated inter-
faces and their inheritance relationships; the model seen by the client pro-
grammer is relatively simple.

61.7.1.1 Home definitions with no primary key

Given a home definition of the following form:

home <home_name> manages <component type> {
<explicit_operations>

h

The resulting explicit, implicit, and equivalent local interfaces have the following
forms:

interface <home_name> Explicit : Components::CCMHome {
<equivalent_explicit_operations>

h

interface <home_name> Implicit : Components::KeylessCCMHome {
<component_type> create();

h
interface <home_name> : <home_name> Explicit, <home_name> Implicit {};

where<equivalent_explicit_operationsare the operations defined in the home
declaration (<explicit_operations>), with factory and finder operations transformed
to their equivalent operations, as described in Section 61.7.3, “Explicit operations in
home definitions”.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999

61

create

This operation creates a new component instance of the type managed by the home.

61.7.1.2 Home definitions with primary keys

Given a home of the following form:

home <home_name> manages <component type> primaryKey <key type> {
<explicit_operations>

h

The resulting explicit, implicit, and equivalent interfaces have the following forms:

interface <home_name> Explicit : Components::CCMHome {
<equivalent_explicit_operations>

h

interface <home_name> Implicit {
<component _type> create (in <key type> key)
raises (Components::DuplicateKeyValue, Components::InvalidKey);

<component_type> find_by_primary_key (in <key type> key)
raises (Components::UnknownKeyValue, Components::InvalidKey);

void remove (in <key type> key)
raises (Components::UnknownKeyValue, Components::InvalidKey);

<key type> get_primary_key (in <component type> comp);
h
interface <home_name> : <home_name>Explicit, <home_name> Implicit{ };

where<equivalent_explicit_operationsare the operations defined in the home
declaration €explicit_operations3, with factory and finder operations transformed to
their equivalent operations, as described in Section 61.7.3, “Explicit operations in
home definitions.

create

This operation creates a new component associated with the specified primary key
value, returning a reference to the component. If the specified key value is already
associated with an existing component managed by the storage home, the operation
raises arDuplicateKeyValue exception. If the key value was not a well-formed, legal
value, the operation shall raise thealidKey exception.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999 61-55

61

find_by_primary_key

This operation returns a reference to the component identified by the primary key
value. If the key value does not identify an existing component managed by the home,
an UnknownKeyValue exception is raised. If the key value was not a well-formed,
legal value, the operation shall raise tinealidkey exception.

remove

This operation removes the component identified by the specified key value.
Subsequent requests to any of the component’s facets shall raise a
OBJECT_NOT_EXIST system exception. If the specified key value does not identify
an existing component managed by the home, the operation shall raise an
UnknownKeyValue exception. If the key value was not a well-formed, legal value,
the operation shall raise tHavalidKey exception.

61.7.2 Primary key declarations

Primary key values shall uniquely identify component instances within the scope of the
home that manages them. Two component instances cannot exist on the same home
with the same primary key value.

Different home types that manage the same component type may specify different
primary key types. Consequently, a primary key type is not inherently related to the
component type, and vice versa. A home definition determines the association between
a component type and a primary key type The home implementation is responsible for
maintaining the association between specific primary key values and specific
component identities.

Note that this discussion pertains to component definitions as abstractions.
A particular implementation of a component type may be cognizant of, and
dependent upon, the primary keys associated with its instances. Such
dependencies, however, are not exposed on the surface of the component
type. A particular implementation of a component type may be designed to
be manageable by different home interfaces with different primary keys, or
it may be inextricably bound to a particular home definition. Generally, an
implementation of a component type and the implementation of its associ-
ated home are inter-dependent, although this is not absolutely necessary.

61.7.2.1 Primary key type constraints

Primary key and types are subject to the following constraints:

® A primary key type must be a value type derived from
Components::PrimaryKeyBase

® A primary key type must be a concrete type with at least one public state member.
® A primary key type may not contain private state members.

® A primary key type may not contain any members whose type is a CORBA
interface reference type, including references for interfaces, abstract interfaces, and
local interfaces.

61-56 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999

61

® These constraints apply recursively to the types of all of the members, i.e., members
which are structs, unions, value types, sequences or arrays may not contain interface
reference types. If the type of a member is a value type or contains a value type, it
must meet all of the above constraints.

61.7.2.2 PrimaryKeyBase

The base type for all primary keys is the abstract value type
Components::PrimaryKeyBase . The definition ofPrimaryKeyBase is as
follows:

module Components {
abstract valuetype PrimaryKeyBase { };

h

61.7.3 Explicit operations in home definitions

A home body may include zero or more operation declarations, where the operation
may be afactory operation, dinder operation, or a normal operation or attribute.

61.7.3.1 Factory operations

A factory operation is denoted by tHactory keyword. A factory operation has a
corresponding equivalent operation on the home’s explicit interface. Given a factory
declaration of the following form:

home <home_name> manages <component type> {
factory <factory operation_name> (<parameters>)
raises (<exceptions>);

h

The equivalent operation on the explicit interface is as follows:

<component_type> <factory operation_name> (<parameters>)
raises (<exceptions>);

A factory operation is required to support creation semantics, i.e., the reference
returned by the operation shall identify a component that did not exist prior to the
operation’s invocation.

61.7.3.2 Finder operations

A finder operation is denoted by tHmder keyword. A finder operation has a
corresponding equivalent operation on the home’s explicit interface. Given a finder
declaration of the following form:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999 61-57

61

home <home_name> manages <component type> {
finder <finder_operation_name> (<parameters>) raises (<exceptions>);

h

The equivalent operation on the explicit interface is as follows:

<component _type> <finder_operation_name> (<parameters>)
raises (<exceptions>);

A finder operation shall to support the following semantics. The reference returned by
the operation shall identify a previously-existing component managed by the home.
The operation implementation determines which component’s reference to return based
on the values of the operation’s parameters.

61.7.3.3 Miscellaneous exports

All of the exports, other than factory and finder operations, that appear in a home
definition are duplicated exactly on the home’s explicit interface.

61.7.4 Home inheritance

Given a derived home definition of the following form:

home <home _name>: <base _home_name> manages <component type> {
<explicit_operations>

h

The resulting explicit interface has the following form:

interface <home_name> Explicit : <base _home_name> Explicit {
<equivalent_explicit_operations>

h

where<equivalent_explicit_operationsare the operations defined in the home
declaration €explicit_operations3, with factory and finder operations transformed to
their equivalent operations, as described in Section 61.7.3, “Explicit operations in
home definitions. The forms of the implicit and equivalent interfaces are identical to
the corresponding forms for non-derived storage homes, determined by the presence or
absence of a primary key specification.

A home definition with no primary key specification constitutes a |feir T) whereH

is the home type and@ is the managed component type. If the home definition includes
a primary key specification, it constitutes a triffld, T, K), whereH andT are as
previous anK is the type of the primary key. Given a home definitigi#’, T') or (H’,

T, K), whereK is a primary key type specified dd’, such that’ is derived fromH,
thenT’ must be identical td or derived (directly or indirectly) fronT.

61-58 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999

61

Given a base home definition with a primary kéy, T, K), and a derived home
definition with no primary keyH’, T') , such thatH’ is derived fromH, then the
definition of H' implicitly includes a primary key specification of tyg€, becoming
(H', T, K) . The implicit interface foH’ shall have the form specified for an implicit
interface of a home with primary k&g and component type&’.

Given a base home definitiofiH, T, K), noting thatKk may have been explicitly
declared in the definition off, or inherited from a base home type, and a home
definition (H', T', K’) such thatH’ is derived fromH, thenT' must be identical to or
derived fromT andK’ must be identical to or derived froiK.

Note the following observations regarding these constraints and the structure of
inherited equivalent interfaces:

* |f a home definition does not specify a primary key directly in its header, but it is
derived from a home definition that does specify a primary key, the derived home
inherits the association with that primary key type, precisely as if it had explicitly
specified that type in its header. This inheritance is transitive. For the purposes of
the following discussion, home definitions that inherit a primary key type are
considered to have specified that primary key type, even though it did not explicitly
appear in the definition header.

® QOperations orCCMHome are inherited by all home equivalent interfaces. These
operations apply equally to homes with and without primary keys.

® QOperations orKeylessCCMHome are inherited by all homes that do not specify
primary keys

* Implicitly-defined operations (i.e., that appear on the implicit interface) are only
visible to the equivalent interface for the specific home type that implies their
definitions. Implicitly-defined operations on a base home type are not inherited by a
derived home type. Note that the implicit operations for a derived home may be
identical in form to the corresponding operations on the base type, but they are
defined in a different name scope.

* Explicitly-defined operations (i.e., that appear on the explicit interface) are
inherited by derived home types.

61.7.5 Semantics of home operations

Operations in home interfaces fall into two categories:

® QOperations that are defined by the component model. Default implementations of
these operations must, in some cases, be supplied by the component-enabled ORB
product, without requiring user programming or intervention. Implementations of
these operations must have predictable, uniform behaviors. Hence, the required
semantics for these operations are specified in detail. For convenience, we will refer
to these operations asthodoxoperations.

® QOperations that are defined by the user The semantics of these operations are
defined by the user-supplied implementation. Few assumptions can be made
regarding the behavior of such operations. For convenience, we will refer to these
operations asieterodoxoperations.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999 61-59

61

Orthodox operations include the following:
® Operations defined o8CMHome andKeylessCCMHome .

® QOperations that appear on the implicit interface for any home.

Heterodox operations include the following:

® Qperations that appear in the body of the home definition, including factory
operations, finder operations, and normal IDL operations and attributes.

61.7.5.1 Orthodox operations

Because of the inheritance structure described in Section 61.7.4, “Home inheritance”,
problems relating to polymorphism in orthodox operations are limited. For the
purposes of determining key uniqueness and mapping key values to components in
orthodox operations, equality of value types (given the constraints on primary key
types specified in Section 61.7.2.1, “Primary key type constraints) are defined as
follows:

® Only the state of the primary key type specified in the home definition (which is
also the actual parameter type in operations using primary keys) shall be used for
the purposes of determining equality. If the type of the actual parameter to the
operation is more derived that the formal type, the behavior of the underlying
implementation of the operation shall be as if the value were truncated to the formal
type before comparison. This applies to all value types that may be contained in the
closure of the membership graph of the actual parameter value, i.e., if the type of a
member of the actual parameter value is a value type, only the state that constitutes
the member’s declared type is compared for equality.

®* Two values are equal if their types are precisely equivalent and the values of all of
their public state members are equal. This applies recursively to members which are
value types.

* |f the values being compared constitute a graph of values, the two values are equal
only if the graphs are isomorphic.

® Union members are equal if both the discriminator values and the values of the
union member denoted by the discriminator are precisely equal.

®* Members which are sequences or arrays are considered equal if all of their members
are precisely equal, where order is significant.

61.7.5.2 Heterodox operations

Polymorphism in heterodox operations is somewhat more problematic, as they are
inherited by homes that may specify more-derived component and primary key types.
Assume a home definitio(H, T, K), with an explicit factory operatiofi that takes a
parameter of typ&, and a home definitiofH’, T’, K’) , such thatH’ is derived from

H, T’ is derived fromT, andK’ is derived fromK. The operatiorf (whose parameter
type isK) is inherited by equivalent interface féf' . It may be the intended behavior

of the designer that the actual type of the parameter to invocatiohserofl’ should be

K’, exploiting the polymorphism implied by inheritance ifby K’. Alternatively, it

61-60 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999

61

may be the intended behavior of the designer that actual parameter values oKeither
or K’ are legitimate, and the implementation of the operation determines what the
appropriate semantics of operation are with respect to key equality.

This specification does not attempt to define semantics for polymorphic equality.
Instead, we define the behavior of operations on home that depend on primary key
values in terms of abstract tests for equality that are provided by the implementation of
the heterodox operations.

Implementations of heterodox operations, including implementations of key value
comparison for equality, are user-supplied. This specification imposes the following
constraints on the tests for equality of value types used as keys in heterodox
operations:

® For any two actual key values A and B, the comparison results must be the same for
all invocations of all operations on the home.

®* The comparison behavior must meet the general definition of equivalence, i.e., it
must be symmetric, reflexive, and transitive.

61.7.6 CCMHome interface

The definition of theCCMHome interface is as follows:

module Components {
interface CCMHome {
CORBA::IRObject get_component_def();
CORBA::IRObject get_home_def ();
void remove_component (in CCMObject comp);
h
h

get_component_def

The get_component_def operation returns an object reference that supports the
IR::ComponentDef interface, describing the component type associated with the
home object. In strongly typed languages, tR®bject returned must be narrowed to
IR::ComponentDef before use.

get_home_def

The get_home_def operation returns an object reference that supports the
IR::HomeDef interface describing the home type. In strongly typed languages, the
IRObject returned must be narrowed tB::HomeDef before use.

remove_component

Theremove_component operation causes the component denoted by the reference
to cease to exist. Subsequent invocations on the reference will cause an
OBJECT_NOT_EXIST system exception to be raised. If the component denoted by
the parameter does not exist in the container associated with target home object,
remove_component raises aBAD_PARAM system exception.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Homes 29 October 1999 61-61

61

61.7.7 KeylessCCMHome interface

The definition of theKeylessCCMHome interface is as follows:

module Components {
interface KeylessCCMHome {
CCMObiject create_component();
h
h

create_component

The create_component operation creates a new instance of the component type
associated with the home object. A home implementation may choose to disable the
parameter-lessreate_component operation, in which case it shall raise a
NO_IMPLEMENT system exception.

61.8 Home Finders

The HomeFinder interface is, conceptually, a greatly simplified analog of the
CoslLifeCycle::FactoryFinder interface. Clients can use tiitomeFinder interface

to obtain homes for particular component types, of particularly home types, or homes
that are bound to specific names in a haming service.

A reference that supports thédomeFinder interface may be obtained from the ORB
pseudo-object by invokin@ ORBA::ORB::resolve_initial_references , with the
parameter valueComponentHomeFinder ”. This requires the following
enhancement to th@RB interface definition:

module CORBA {

interface ORB {
Object resolve_initial_references (in ObjectID identifier)
raises (InvalidName);
h
h

Issue — The string,‘ComponentHomeFinder” is added to the list of valid
ObjectlD values. Make sure and DELETE

The HomeFinder interface is defined by the following IDL:

61-62 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Home Finders 29 October 1999

61

module Components {
exception HomeNotFound { };

interface HomeFinder {
CCMHome find_home_by component_type (
in CORBA::Repositoryld comp_repid)raises (HomeNotFound);
CCMHome find_home_by home_type (
in CORBA::Repositoryld home_repid) raises (HomeNotFound);
CCMHome find_home_by name (
in string home_name) raises (HomeNotFound);
h
h

find_home_by _component_type

Thefind_home_by component_typeoperation returns a reference which supports the
interface of a home object that manages the component type specified by the
comp_repid parameter. This parameter contains the repository identifier of the
component type required. If there are no homes that manage the specified component
type currently registered, the operation shall raiseHloeneNotFound exception.

Little is guaranteed about the home interface returned by this operation. If
the definition of the returned home specified a primary key, there is no
generic factory operation available on any standard interface (i.e, pre-
defined, as opposed to generated type-specific interface) supported by the
home. The only generic factory operation that is potentially available is
Components::KeylessCCMHome::create_component he client must

first attempt to narrow th€ CMHome reference returned by the
find_home_by_component_typeo KeylessCCMHome Otherwise, the
client must have specific out-of-band knowledge regarding the home inter-
face that may be returned, or the client must be sophisticated enough to
obtain theHomeDeffor the home and use the DIl to discover and invoke a
create operation on a type-specific interface supported by the home.

find_home_by_home_type

The find_home_by home_typeoperation returns a reference that supports the
interface of the type specified by the repository identifier in tioene_repid

parameter. If there are no homes of this type currently registered, the operation shall
raise theHomeNotFound exception.

The current LifeCycle find_factories operation returns a sequence of facto-
ries to the client requiring the client to choose the one which will create the
instance. Based on the experience of the submitters, CORBA components
defines operations which allows the server to choose the “best” home for
the client request based on its knowledge of workload, etc.

Since the operation returns a referenc&€®@®MHome, it must be narrowed to the
specific home type before it can be used.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Home Finders 29 October 1999 61-63

61

find_home_by name

Issue — replace with proper INS ref - “param shall contain...”

Thefind_home_by nameoperation returns a home reference bound to the name
specified in thehome_nameparameter. This parameter is expected to contain a name
in the format described in the Interoperable Naming Service specification (orbos/98-
10-11), section 4.5, “Stringified Names”. The implementation of this operation may be
delegated directly to an implementation of CORBA naming, but it is not required. The
semantics of the implementation are considerably less constrained, being defined as
follows:

®* The implementation is free to maintain multiple bindings for a given name, and to
return any reference bound to the name.

It is generally expected that implementations that do not choose to use
CORBA naming will do so for reasons of scalability and flexibility, in
order, for example, to provide a home which is logically more “local” to
the home finder (and thus, the client).

®* The client’s expectations regarding the returned reference, other than that it
supports theCcCMHome interface, are not guaranteed or otherwise mediated by the
home. The fact that certain names may be expected to provide certain home types or
qualities of implementation are outside of the scope of this specification.

This is no different than any application of naming services in general.
Applications that require clients to be more discriminating are free to use
the Trader service, or any other similar mechanism that allows query or
negotiation to select an appropriate home. This mechanism is intentionally
kept simple.

If the specified name does not map onto a home object registered with the finder, the
operation shall raise thomeNotFound exception.

61.9 Component Configuration

The CORBA component model provides mechanisms to support the concept of
componentonfigurability.

Issue — How much and where of this do we keep

Experience has proven that building re-usable components involves mak-
ing difficult trade-offs between providing well-defined, reasonably-scoped
functionality, and providing enough flexibility and generality to be useful
(or re-useful) across a variety of possible applications. Packaging assump-
tions of the component architecture preclude customizing a component’s
behavior by directly altering its implementation or (in most cases) by
deriving specialized sub-types. Instead, the model focuses on extension and
customization through delegation (e.g., via dependencies expressed with
uses declarations) and configuration. Our assumption is that generalized
components will typically provide a set of optional behaviors or modalities
that can be selected and adjusted for a specific application.

61-64 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Configuration 29 October 1999

61

The configuration framework is designed to provide the following capabili-
ties:

e The ability to define attributes on the component type that are used to
establish a component instance’s configuration. Component attributes
are intended to be used during a component instance’s initialization to
establish its fundamental behavioral properties. Although the compo-
nent model does not constrain the visibility or use of attributes defined
on the component, it is generally assumed that they will not be of
interest to the same clients that will use the component after it is con-
figured. Rather, it is intended for use by component factories or by
deployment tools in the process of instantiating an assembly of com-
ponents.

* The ability to define a configuration in an environment other than the
deployment environment (e.g., an assembly tool), and store that con-
figuration in a component package or assembly package to be used
subsequently in deployment.

* The ability to define such a configuration without having to instantiate
the component type itself.

* The ability to associate a pre-defined configuration with a component
factory, such that component instances created by that factory will be
initialized with the associated configuration.

* Support for visual, interactive configuration tools to define configura-
tions. Specifically, the framework allows component implementors to
provide a configuration manager associated with the component
implementation. The configuration manager interface provides
descriptive information to interactive users, constrains configuration
options, and performs validity checks on proposed configurations.

The CORBA component model allows a distinction to be made between interface
features that are used primarily for configuration, and interface features that are used
primarily by application clients during normal application operation. This distinction,
however, is not precise, and enforcement of the distinction is largely the responsibility
of the component implementor.

It is the intent of this specification (and a strong recommendation to component
implementors and users) that operational interfaces should be either provided
interfaces or supported interfaces. Features on the component interface itself, other
than provided interfaces, (i.e., receptacles, event sources and sinks) are generally
intended to be used for configuration, although there is no structural mechanism for
limiting the visibility of the features on a component interface. A mechanism is
provided for defining configuration and operational phases in a component’s life cycle,
and for disabling certain interfaces during each phase.

The distinction between configuration and operational interfaces is often
hard to make in practice. For example, we expect that operational clients

of a component will want to receive events generated by a component. On
the other hand, some applications will want to establish a fixed set of event
source and sink connections as part of the overall application structure,

and will want to prevent clients from changing those connections. Likewise,
the responsibility for configuration may be hard to assign—in some appli-
cations the client that creates and configures a component may be the same

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Configuration 29 October 1999

61

61-66

client that will use it operationally. For this reason, the CORBA component
model provides general guidelines and optional mechanisms that may be
employed to characterize configuration operations, but does not attempt to
define a strict separation of configuration and operational behaviors.

61.9.1 Exclusive configuration and operational life cycle phases

A component implementation may be designed to implement an explicit configuration
phase of its life cycle, enforcing serialization of configuration and functional operation.
If this is the case, the component life cycle is divided into two mutually exclusive
phases, theonfiguration phasend theoperational phase

The configuration_complete operation (inherited from

Components::CCMObject) is invoked by the agent effecting the configuration to
signal the completion of the configuration phase. TinalidConfiguration

exception is raised if the state of the component configuration state at the time
configuration_complete is invoked does not constitute an acceptable configuration
state. It is possible that configuration may be a multi-step process, and that the validity
of the configuration may not be determined until the configuration process is complete.
Theconfiguration_complete operation should not return to the caller until either 1)
the configuration is deemed invalid, in which case thealidConfiguration

exception is raised, or 2) the component instance has performed whatever work is
necessary to consolidate the final configuration and is prepared to accept requests from
arbitrary application clients.

In general, component implementations should defer as much consolida-
tion and integration of configuration state as possible until
configuration_complete is invoked. In practice, configuring a highly-con-
nected distributed object assembly has proven very difficult, primarily
because of subtle ordering dependencies that are difficult to discover and
enforce. If possible, a component implementation should not be sensitive to
the ordering of operations (interface connections, configuration state
changes, etc.) during configuration. This is one of the primary reasons for
the definition of configuration_complete.

61.9.1.1 Enforcing exclusion of configuration and operation

The implementation of a component may choose to disable changes to the
configuration afteiconfiguration_complete is invoked, or to disable invocations of
operations on provided interfaces urtdnfiguration_complete is invoked. If an
implementation chooses to do either (or both), an attempt to invoke a disabled
operations should raiseBAD_INV_ORDER system exception.

Alternatively, a component implementation may choose not to distinguish between
configuration phase and deployment phase. In this case, invocation of
configuration_complete will have no effect.

The component implementation framework provides standard mechanisms to support
disabling operations during configuration or operation. Certain operations are
implemented by the component implementation framework (see Chapter 615, “CCM
Implementation Framework”), and may not be disabled.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Configuration 29 October 1999

61

61.10 Configuration with attributes

A component’s configuration is established primarily through its attributes. An
attribute configurationis defined to be a description of a set of invocations on a
component’s attribute set methods, with specified values as parameters.

There are a variety of possible approaches to attribute configuration at run time,
depending on the design of the component implementation and the needs of the
application and deployment environments. The CORBA component model defines a set
of basic mechanisms to support attribute configuration. These mechanisms can be
deployed in a number of ways in a component implementation or application.

61.10.1 Attribute Configurators

A configurator is an object that encapsulates a specific attribute configuration that can
be reproduced on many instances of a component type. A configurator may invoke any
operations on a component that are enabled during its configuration phase. In general,
a configurator is intended to invoke attribute set operations on the target component.

61.10.1.1 The Configurator interface
The following interface is supported by all configurators:
module Components {
interface Configurator {
void configure (in CCMObject comp)

raises (WrongComponentType);};

h

configure

The configure operation establishes its encapsulated configuration on the target
component. If the target component is not of the type expected by the configurator, the
configure operation shall raise thgrongComponentType exception.

61.10.1.2 The StandardConfigurator interface

The StandardConfigurator has the following definition:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Configuration with attributes 29 October 1999

61

module Components {

valuetype ConfigValue {
FeatureName name;
any value;

h
typedef sequence<ConfigValue> ConfigValues;

interface StandardConfigurator : Configurator {
void set_configuration (in ConfigValues descr);
h
h

The StandardConfigurator interface supports the ability to provide the configurator
with a set of values defining an attribute configuration.

set_configuration

The set_configuration operation accepts a parameter containing a sequence of
ConfigValue instances, where eac®onfigValue contains the name of an attribute

and a value for that attribute, in the form of any. The name member of the
ConfigValue type contains the unqualified name of the attribute as declared in the
component definition IDL. After a configuration has been provided with
set_configuration , subsequent invocations obnfigure will establish the

configuration on the target component by invoking the set operations on the attributes
named in the value set, using the corresponding values provided entje

Invocations on attribute set methods will be made in the order in which the values
occur in the sequence.

61.10.2 Factory-based configuration

Factory operations on home objects may participate in the configuration process in a
variety of ways.

® A factory operation may be explicitly implemented to establish a particular
configuration.

® A factory operation may apply a configurator to newly-created component
instances. The configurator may be supplied by an agent responsible for deploying
a component implementation or a component assembly.

® A factory operation may apply an attribute configuration (in the form of a
Components::ConfigValues sequence) to newly-created instances. The attribute
configuration may be supplied to the home object by an agent responsible for
deploying a component implementation or a component assembly.

® A factory operation may be explicitly implemented to invoke
configuration_complete on newly-created component instances, or to leave
component instances open for further configuration by clients.

61-68 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Configuration with attributes 29 October

61

® A factory operation may be directed by an agent responsible for deploying a
component implementation or assembly to invaomfiguration_complete on
newly-created instances, or to leave them open for further configuration by clients.

If no attribute configuration is applied by a factory or by a client, the state established
by the component implementation’s instance initialization mechanism (e.g., the
component servant constructor) constitutes the default configuration.

61.10.2.1 HomeConfiguration interface

The implementation of a component type’'s home object may optionally support the
HomeConfiguration interface. TheHomeConfiguration interface is derived from
Components::CCMHome . In general, theHomeConfiguration interface is

intended for use by an agent deploying a component implementation into a container,
or an agent deploying an assembly.

The HomeConfiguration interface allows the caller to provideG@onfigurator

object and/or a set of configuration values that will be applied to instances created by
factory operations on the home object. It also allows the caller to cause the home
object’s factory operations to invokeonfiguration_complete on newly-created
instances, or to leave them open for further configuration.

The HomeConfiguration allows the caller to disable further use of the
HomeConfiguration interface on the home object.

TheConfigurator interface and thédomeConfiguration interface are
designed to promote greater re-use, by allowing a component implementor
to offer a wide range of behavioral variations in a component implementa-
tion. As stated previously, the CORBA component specification is intended
to enable assembling applications from pre-built, off-the-shelf component
implementations. An expected part of the assembly process is the customi-
zation (read: configuration) of a component implementation, to select from
among available behaviors the behaviors suited to the application being
assembled. We anticipate that assemblies will need to define configurations
for specific component instances in the assembly, but also that they will
need to define configurations for a deployed component type, i.e., all of the
instances of a component type managed by a particular home object.

The HomeConfiguration interface is defined by the following IDL:
module Components {

interface HomeConfiguration : CCMHome {
void set_configurator (in Configurator cfg);
void set_configuration_values (
in ConfigValues config);
void complete_component_configuration (in boolean b);
void disable_home_configuration();

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Configuration with attributes 29 October 1999

61

set_configurator

This operation establishes a configurator object for the target home object. Factory
operations on the home object will apply this configurator to newly-created instances.

set_configuration_values

This operation establishes an attribute configuration for the target home object, as an
instance ofComponents::ConfigValues . Factory operations on the home object
will apply this configurator to newly-created instances.

complete_component_configuration

This operation determines whether factory operations on the target home object will
invoke configuration_complete on newly-created instances. If the value of the
boolean parameter iIERUE, factory operations will invoke

configuration_complete on component instances after applying any required
configurator or configuration values to the instance. If the parameteALSE,
configuration_complete will not be invoked.

disable_home_configuration

This operation serves the same function with respect to the home object that the
configuration_complete operation serves for components. This operation disables
further use of operations on théomeConfiguration interface of the target home

object. If a client attempts to invokdomeConfiguration operations, the request will

raise aBAD_INV_ORDER system exception. This operation may also be interpreted

by the implementation of the home as demarcation between its own configuration and
operational phases, in which case the home implementation may disable operations and
attributes on the home interface.

If a home object is supplied with both a configurator and a set of configuration values,
the order in whichset_configurator andset_configuration_values are invoked
determines the order in which the configurator and configuration values will be applied
to component instances. $et_configurator is invoked before
set_configuration_values , the configurator will be applied before the configuration
values, and vice-versa.

The component implementation framework defines default implementations of factory
operations that are automatically generated. These generated implementations will
behave as specified here. Component implementors are free to replace the default
factory implementations with customized implementations. If a customized home
implementation chooses to support tHemeConfiguration interface, then the

factory operation implementations must behave as specified, with respect to component
configuration.

61.11 ComponentInheritance

61-70

The mechanics of component inheritance are defined by the inheritance relationships
of the equivalent IDL component interfaces. The following rules apply to component
inheritance:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComponentInheritance 29 October 1999

61

® All interfaces for non-derived component types are derived fl@@MObject .

* If a component type directly supports one or more IDL interfaces, the component
interface is derived from bot@CMObject and the supported interfaces.

* A derived component type may not directly support an interface.

®* The interface for a derived component type is derived from the interface of its base
component type.

® A component type may have at most one base component type.

®* The features of a component that are expressed directly on the component interface
are inherited as defined by IDL interface inheritance. These include:

e operations implied byrovides statements

e operations implied byises statements

« operations implied bemits statements

« operations implied byublishes statements
« operations implied bgonsumes statements
* attributes

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComponentInheritance 29 October 1999

61

interface Receptacles

interface Events

interface Navigation

I interface | I

interface CCMObject

interface CCMHome
A A
I component A supports | I— 7 interface A
T
I component B l — — — 7 interface B
interface AHome [— l home AHome manages A I
interface BHome [— — — l home BHome manages A I

Figure 61-1 Component inheritance and related interface inheritance

61.11.1 CCMODbiject Interface
The CCMObject interface is defined by the following IDL:

module Components

interface CCMObiject : Navigation, Receptacles, Events {
CORBA::IRObject get_component_def ();
CCMHome get_ccm_home();
PrimaryKeyBase get_primary_key() raises (NoKeyAvailable);
void configuration_complete() raises (InvalidConfiguration);
void remove();

h

61-72 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComponentInheritance 29 October 1999

61

get_component_def

This operation returns aliRObject reference to the component definition in the
Interface Repository. The interface repository representation of a component is defined
in Volume Il1 of this specification. In strongly typed languages, IR®bject returned

must be narrowed ttR::ComponentDef before use.

get_ccm_home

This operation returns @CMHome reference to the home which manages this
component.

get_primary_key

This operation is equivalent to the same operation on the component’s home interface.
It returns a primary key value if the component is being managed by a home which
defines a primary key. Otherwise, tiNoKeyAvailable exception shall be raised.

configuration_complete

This operation is called by a configurator to indicate that the initial component
configuration has completed. If the component determines that it is not sufficiently
configured to allow normal client access, it raises linealidConfiguration
exception.The component configuration process is described in Section 61.9.

remove

This operation is called when a component is about to be destroyed. The component
can perform any cleanup processing required (e.g. releasing resources) prior to its
destruction.

61.12 Conformance Requirements

This section identifies the conformance points required for compliant implementations
of the CORBA Component model.

The following conformance points are defined:

1. A CORBA COS vendor shall provide the relevant changes to the Lifecycle,
Transaction, and Security Services identified in the following Section 61.12.2,
“Changes to Object Services,” on page 61-75.

2. A CORBA ORB vendor need not provide implementations of Components aside
from the changes made to the Core to support components. Conversely a CORBA
Component vendor need not be a CORBA ORB vendor.

3. A CORBA Component vendor shall provide a conforming implementation of the
Basic Level of CORBA Components.

4. A CORBA Component vendor may provide a conforming implementation of the
Extended Level of CORBA Components.

CORBA 3.0 CCM FTFDRAFT ptc/99-10-04 Conformance Requirements 29 October 1999

61

61-74

5.

In order to be conformant at the Basic level a non-Java product shall implement (at
a minimum) the following:

« the IDL extensions and generation rules to support the client and server side
component model for basic level components.

» CIDL. The multiple segment feature of CIDL (Section 60.12, “Segment
Definition,” on page 60-18) need not be supported for basic components.

« a container for hosting basic level CORBA components.

« the XML deployment descriptors and associated zip files for basic components in
the format defined in Section 69.1, “Introduction,” on page 69-258.

Such implementations shall work on a CORBA ORB as defined in 1. above.

. In order to be conformant at the Basic level a Java product shall implement (at a

minimum):

* EJBL1.1, including support for the EJB 1.1 XML DTD,

* the java to IDL mapping, also known as RMI/IIOP

« EJB to IDL mapping as defined in Section 64.3.2, “Translation of CORBA
Component requests into EJB requests,” on page 64-179.

Such implementations shall work in a CORBA interoperable environment,
including interoperable support for IOP, CORBA transactions and CORBA
security.

. In order to be conformant at the extended level, a product shall implement (at a

minimum) the requirements needed to achieve Basic PLUS

 IDL extensions to support the client and server side component model for
extended level components

A container for hosting extended level CORBA components.

» the XML deployment descriptors and associated zip files for basic and enhanced
level components in the format defined in Section 69.1, “Introduction,” on
page 69-258.

Such implementations shall work on a CORBA ORB as defined in 1. above.

. A CORBA Component vendor may optionally support EJB clients interacting with

CORBA Components, by implementing the IDL to EJB mapping as defined in
Section 64.4.2, “Translation of EJB requests into CORBA Component requests,” on
page 64-186.

. This specification includes extensions to IDL, in the form of new keywords and

grammar. Although a CORBA ORB vendor need not be a CORBA Component
vendor, and vice-versa, it is important to maintain IDL as a single language. To this
end, all compliant products of any conformance points above shall be able to parse
any valid IDL definitions. However, it is permitted to raise errors, or to ignore,
those parts of the grammar that relate to another conformance point.

Conforming implementations as defined above may also implement any additional
features of this specification not required by the above conformance points.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Conformance Requirements 29 October 1999

61

61.12.1 A Note on Tools

Component implementations are expected to be supported by tools. It is not possible to
define conformance points for tools, since a particular tool may only support part of
the component development and deployment life-cycle. Hence a suite of tools may be
needed. The Component architecture contains a number of definitions that are relevant
to tools, including zip files and XML formats, as well as IDL interfaces for
customization and installation. Although it cannot be enforced, tools are expected to
conform to the relevant areas with which they are dealing. For example, a tool that
generates implementations for a particular platform is expected to generate XML
according to the<implementation> clauses in the DTD defined in 10.

61.12.2 Changes to Object Services

61.12.2.1 Life Cycle Service

To support the factory design pattern for creating a component instance and to allow
the server, rather than a client, to select from a group of functionally equivalent
factories based on load or other server-side visible criteria, the following operation is
added to thd~actoryFinder interface of theCosLifeCycle module:

module CosLifeCycle {
interface FactoryFinder {
Factory find_factory (in Key factory key) raises (noFactory);
h

h

The parameters of the above operation are as define@dsyifeCycle with the
following clarifications:

® Thefactory_key parameter is a name conforming to the Interoperable Naming
Specification (orbos/98-10-11) for stringified names

®* Thefactory key parameter is used as an input to fivel_home_by name
operation onComponents::HomeFinder

®* The default factory operation on the home is used to obtain a reference which can
be narrowed to th€osLifeCycle::GenericFactory type.

61.12.2.2 Transaction Service

The following CORBA transaction service interface is changed to a local interface:

® CosTransactions::Current

61.12.2.3 Security Service

The following CORBA Security interfaces are changed to local interfaces:
® SecurityLevell::Current

® SecurityLevel2::PrincipalAuthenticator

CORBA 3.0 CCM FTFDRAFT ptc/99-10-04 Conformance Requirements 29 October 1999

61

61-76

SecurityLevel2::
SecurityLevel2::
SecurityLevel2::AuditChannel
SecurityLevel2:
SecurityLevel2:
SecurityLevel2::
SecurityLevel2::
SecurityLevel2::
SecurityLevel2::
SecurityLevel2:

SecurityLevel2::

Credentials

ReceivedCredentials

:AuditDecision

:AccessDecision

QOPPolicy
MechanismPolicy
InvocationCredentialsPolicy

EstablishTrustPolicy

:DelegationDirectivePolicy

Current

SecurityReplacable::Vault

SecurityReplacable::SecurityContext

SecurityReplacable::ClientSecurityContext

SecurityReplacable::ServerSecurityContext

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Conformance Requirements

29 October 1999

CCM Implementation Framework 615

This chapter describes the semantics of the CORBA Component Model Implemenation

Framework.

Issue — It contains all new text taken from the CCM final submission
orbos/99-07-01 with only minor editorial changes - Jeff Mischkinsky

615.0.0.1 Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 615-78
“Language Mappings” 615-78
“Language Mappings” 615-115

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

29 October 1999

615-77

615

| 615.1 Introduction

The Component Implementation Framework (CIF) defines the programming model for
constructing component implementations. Implementations of components and
component homes are described in CIDL. See Chapter 60, “OMG CIDL Syntax and
Semantics” for the definition and syntax. The CIF uses CIDL descriptions to generate
programming skeletons that automate many of the basic behaviors of components,
including navigation, identity inquiries, activation, state management, lifecycle
management, and so on.

| 615.2 ComponentImplementation Framework (CIF) architecture

As a programming abstraction, the CIF is designed to be compatible with the existing
POA framework, but also to insulate programmers from its complexity. In particular,
the CIF can be implemented using the existing POA framework, but it does not directly
expose any elements of that framework.

615.2.1 Component Implementation Definition Language (CIDL)

| The focal point of the CIF is Component Implementation Definition Language (CIDL),
a declarative language for describing the structure and state of component
implementations. Component-enabled ORB products generate implementation
skeletons from CIDL definitions. Component builders extend these skeletons to create
complete implementations.

615.2.2 Component persistence and behavior

CIDL is a superset of the Persistent State Definition Language, defined in the
Persistent State Service specification (document orbos/99-07-07).

Issue — Above statement needs to be clarified.

A CIDL implementation definition may optionally associate an abstract storage type
with the component implementation, such that the abstract storage type defines the
form of the internal state encapsulated by the component. When a component

| implementation declares an associated abstract storage type in this manner, the CIF and
the run-time container environment cooperate to manage the persistence of the
component state automatically.

| This chapter addresses the elements of the CIF that pertain to the implementation of a
component’s behavior.
615.2.3 Implementing a CORBA Component

The remainder of section 615.2 provides an overview of the concepts involved in
building component implementations. It is intended to provide a high-level description
that will serve as a framework for understanding the more formal descriptions that

615-78 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October 1999

615

follow in subsequent sections. While the information in this section is normative (with
the exception of italicized, indented rationale), it is not intended to be a complete or
precise specification of the CIF, or all of the possible design options from which a
component implementor may choose.

615.2.4 Behavioral elements: Executors

We coin the termexecutorto indicate the programming artifact that supplies the
behavior of a component or a component home. In general, the &xewutoror
component executaefer to the artifact that implements the component type, and the
term home executorefers to the artifact that implements the component home.

We chose to use the woeatecutorrather thanservanto avoid confusion

with POA servants. POA servants, while conceptually similar to executors,
are significantly different in detail, and map to different types in program-
ming languages. Executor is pronounced with the accent on the second syl-
lable (e.g.-ZEK-yoo-tor).

We have tried to avoid terminology that is specific to object-oriented pro-
gramming languages, such as class, base class, derive, and so on, in an
attempt to be precise and acknowledge that the CIF framework may be
mapped to procedural programming languages. Hence, we typically use
the wordartifactor programming artifacto denote what may conveniently
be thought of as a class, and likewise, the tskmaletonto denote a gener-
ated abstract base class that is extended to form a complete implementa-
tion class. We hope this is not overly distracting to the reader.

615.2.5 Unit of implementation : Composition

An implementation of a component comprises a potentially complex set of artifacts
that must exhibit specific relationships and behaviors in order to provide a proper
implementation. The CIDL description of a component implementation is actually a
description of this aggregate entity, of which the component itself may be a relatively
small part. In order to enable more concise discussion, we coin thecemmositiorto
denote both the set of artifacts that constitute the unit of component implementation,
and the definition itselfcomposition is the CIDL meta-type that corresponds to an
implementation definition.

A composition definition specifies the following elements:

Component home

A composition definition specifies a component home type, imported from IDL. The
specification of a component home implicitly identifies the component type for which
the composition provides an implementation (i.e., the component type managed by the
home, as specified in the IDL home definition).

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

615-80

Abstract Storage home binding

A composition optionally specifies an abstract storage home to which the component
home is bound. The specification of an abstract storage home binding implicitly
identifies the abstract storage type that incarnates the component. The relationship
between a home and the component it manages to isomorphic to the relationship
between an abstract storage home and the abstract storage type it manages. When a
home binds to an abstract storage home, the component managed by the home is
implicitly bound to the abstract storage type of this abstract storage home.

Home executor

A composition definition specifies a home executor definition. The name of the home
executor definition is used as the name of the programming artifact (e.g., the class)
generated by the CIF as the skeleton for the home executor. The contents of the home
executor definition describe the relationships between the home executor and other
elements of the composition, determining the characteristics of the generated home
executor skeleton.

Component executor

A composition specifies an executor definition. The name of the executor definition is
used as the name of the programming artifact generated by the CIF as the skeleton of
the component executor. The body of the executor definition optionally specifies
executorsegmentswhich are physical partitions of the executor, encapsulating
independent state and capable of being independently activated. Segments are
described in Section 615.2.9.1, “Segmented executors”. The executor body may also
specify a mapping, odelegation of certain component features (e.g., attributes) to
storage members.

Delegation specification

A composition may optionally provide a specification of home operation delegation.
This specification maps operations defined on the component home to isomorphic
operations on either the abstract storage home or the component executor. The CIF
uses this description to generate implementations of operations on the home executor,
and to generate operation declarations on the component executor.

Proxy home

A composition may optionally specify a proxy home. The CIF supports the ability to
define proxy home implementations, which are not required to be collocated with the
container that executes the component implementation managed by the home. In some
configurations, proxy homes can provide implementations of home operations without
contacting the container that executes the actual home and component implementation.
Support for proxy homes is intended to increase the scalability of the CORBA
Component Model. The use of proxy homes is completely transparent to component
clients and, to a great extent, transparent to component implementations. Proxy home
behavior is described in Section 615.2.10.1, “Proxy home delegation”.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

615.2.6 Composition structure

A composition binds all of the previously-described elements together, and requires
that the relationships between the bound entities define a consistent whole.

Note that a component home type necessarily implies a component type (i.e., the
managed component type specified in the home definition). Likewise, an abstract
storage home implies an abstract storage type. It is unnecessary, therefore, for a
composition to explicitly specify a component type or an abstract storage type. They
are implicitly determined by the specification of a home and abstract storage home.

It may seem odd that the center of focus for compositions is the home
rather than the component, but this works out to be reasonably intuitive in
practice. The home is the primary point of contact for a client, and the
home’ interface and behavior have a major influence on the interaction
between the client and the component.

A composition definition specifies a hame that identifies the composition within the
enclosing module scope, and which constitutes the name of a scope within which the
contents of the composition are contained. The essential parts of a composition
definition are the following:

® the name of the composition

* the life cycle category of the component implementation, eig@vice , session ,
process , or entity , as defined in Section 62.1.4, “Component Categories.

* the home type being implemented (which implicitly identifies the component type
being implemented)

® the name of the home executor to be generated

® the name of the component executor skeleton to be generated

A composition definition has the following essential form:

composition <category> <composition_name> {
home executor <home_executor_name> {
implements <home_type> ;
manages <executor_name> ;
h
h

where<composition_names the name of the compositiodcategory>identifies the
life cycle category supported by the compositighpme_executor_nameis the name
assigned to the generated home executor skeletoome_type>is the name of a
component home type imported from IDL, ardxecutor_namess the name assigned
to the generated component executor skeleton.

This is a schematic representation of the minimal form of a composition, which
specifies no state management. The structure of the composition specified by this
schematic is illustrated in Figure 615-1. Note that the component type itself is not
explicitly specified. It is unambiguously implied by the specification of the home type,

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

as is the relationship between the executor and the component (i.e., that the executor
implementghe component).

composition <category> <composition_name> {
home executor <home_executor_name>
implements <home_type> ;
manages | <executor_name> ;

implements
component home < home executor

'

. manages manages
v implements
component executor
CIDL 4— explicitly defined in composition
implicitly defined by composition
IDL <. - . explicitly defined elsewhere in IDL/CIDL

Figure 615-1Minimal composition structure and relationships

General disclaimer and abdication of responsibility with regards to pro-
gramming examples:

Before presenting programming examples, it should be noted that all exam-
ples are non-normative illustrations. In particular, the implementations
provided in the examples of code that is to be generated by the CIF are
merely schematic representations of the intended behaviors; they are by no
means indicative of the actual content of a real implementation (e.g., they
generally dont include exception handling, testing for validity, etc.).

Although the grammar for CIDL has not been presented yet, a simple
example will help illustrate the concepts described in the previous sections.
Assume the following IDL component and home definitions:

/I Example 1
I
/I USER-SPECIFIED IDL
I
module LooneyToons {
interface Bird {
void fly (in long how_long);
2

615-82 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

interface Cat {
void eat (in Bird lunch);

2

component Toon {
provides Bird tweety;
provides Cat sylvester;

The following example shows a minimal CIDL definition that describes an
implementation binding for those IDL definitions:

/I Example 1

I

/I USER-SPECIFIED CIDL
I

import ::LooneyToons;

module MerryMelodies {
/I this is the composition:
composition session ToonImpl {
home executor ToonTownImpl {

implements LooneyToons::ToonTown;
manages ToonSessionimpl;

In this exampleJoonimpl is the name of the composition. It defines the
name of the generated home executor tdbenTownI/mpl, which imple-
mented thefoonTown home interface imported from IDL. The home exec-
utor definition also specified the name of the component executor,
ToonSessionlmpl, which is managed by the home executor. Note that the
component typeTpon) is not explicitly named—it is implied by the specifi-
cation of the hom&oonTown, which is known to manage the component
type Toon. Thus, the declaratiomfanages ToonSessionimp!l’ implic-

itly defines the component execuffonSessionimpl to be the implemen-
tation of the component typgoon.

This CIDL specification would cause the generation of the following arti-
facts:

e The skeleton for the component execufoonSessionimpl
e The complete implementation of the home exectiwon Town/mpl

We provide the following brief sketches of generated implementation skele-
tons in Java to help illustrate the programming model for component
implementations.

Javac<interface>Operations interfaces for all of the IDL interfaces are
generated, precisely as currently specified by the current Java IDL lan-

Component Implementation Framework (CIF)

615

guage mapping:

// Example 1

/

// GENERATED FROM IDL SPECIFICATION:
/

package LooneyToons;

import org.omg.Components.*;

public interface BirdOperations {
public void fly (long how_long);
}

public interface CatOperations {
void eat(LooneyToons.Bird lunch);

}

public interface ToonOperations

extends CCMObjectOperations {
LooneyToons.Bird provide_tweety();
LooneyToons.Cat provide_sylvester();

}

public interface ToonTownExplicitOperations
extends CCMHomeOperations { }

public interface ToonTownlmplicitOperations
extends KeylessCCMHomeOperations {
Toon create();

}

public interface ToonTownOperations extends
ToonTownEXxplicitOperations,
ToonTownExplicitOperations {}

The Toonlmpl executor skeleton class has the following form:

// Example 1

/

// GENERATED FROM CIDL SPECIFICATION:
/

package MerryMelodies;

import LooneyToons;

import org.omg.Components.*;

abstract public class ToonSessionimpl
implements ToonOperations, SessionComponent,
ExecutorSegmentBase
{
// Generated implementations of operations
// inherited from SessionComponent and
// ExecutorSegmentBase are omitted here.

615-84 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

/

protected ToonSessionimpl() {
// generated implementation ...

}

// The following operations must be implemented
// by the component developer:

abstract public BirdOperations
_get facet_tweety();

abstract public CatOperations
_get facet_sylvester();

The generated executor abstract base clagsnSessionimpl imple-

ments all of the operations inherited by ToonOperations, including opera-
tions onCCMObject and its base interfaces. It also implements all of the
operations inherited througessionComponent , which are internal
operations invoked by the container and the internals of the home imple-
mentation to manage executor instance lifecycle.

A complete implementation of the home execiimmnTownI/mplis gener-
ated from the CIDL specification:

// Example 1

/

// GENERATED FROM CIDL SPECIFICATION:
/

package MerryMelodies;

import LooneyToons;

import org.omg.Components.*;

public class ToonTownimpl
implements LooneyToons.ToonTownOperations,
ExecutorSegmentBase, CCMHome
{
// Implementations of operations inherited
// from ExecutorBase and CCMHome
// are omitted here.
/
// ToonHomelmpl also provides implementations
// of operations inherited from the component
// home interface ToonTown

CCMObject create_component()

{
return create();
}
void remove_component(CCMObject comp)
{
}

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

Toon create()

{
}

// and so on...

The user-provided executor implementation must supply the following:

* Implementations of the operationget_tweety and
_get sylvester , which must return implementations of the
BirdOperations and CatOperations interfaces

* said implementations of the behaviors of the fa¢etsety and
sylvester, respectively

The following example shows one possible implementation strategy:

// Example 1

/

// PROVIDED BY COMPONENT PROGRAMMER:
/

import LooneyToons.*;

import MerryMelodies.*;

public class myToonlmpl extends Toonlmpl
implements BirdOperations, CatOperations {

protected long timeFlown;
protected Bird lastBirdEaten;

public myToonlmpl() {
super();
timeFlown = 0;
lastBirdEaten = nil;

}

public void fly (long how_long) {
timeFlown += how_long);

}

public void eat (Bird lunch) {
lastBirdEaten = lunch;

}

public BirdOperations _get facet_tweety() {
return (BirdOperations) this;

}

public CatOperations _get facet_sylvester() {
return (CatOperations) this;

}

This simple example implements all of the facets directly on the executor.
This is not the only option; the programming objects that implement
BirdOperations and CatOperations could be constructed separately and
managed by the executor class.

615-86 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

The final bit of implementation that the component programmer must pro-
vide is an extension of the home executor that acts as a component executor
factory, by implementing thereate_executor_segment method. This

class must also provide an implementation of a static method called
create_home_executorthat returns a new instance of the home executor
(as anExecutorSegmentBase). This static method acts as an entry point

for the entire composition.

// Example 1

/

// PROVIDED BY COMPONENT PROGRAMMER:
/

import LooneyToons.*;

import MerryMelodies.*;

public class myToonTownlmpl extends ToonTownlmpl

{
protected myToonTownlmpl() { super(); }

ExecutorSegmentBase
create_executor_segment (int segid) {
return new myToonlmpl();

}

public static ExecutorSegmentBase
create_home_executor() {
return new myToonTownimpl();

}

Note that these last two classes constitute the entirety of the code that must
be supplied by the programmer. The implementations of operations for nav-
igation, executor activation, object reference creation and management,
and other mechanical functions are either generated or supplied by the
container.

615.2.7 Compositions with managed storage

A composition definition may also contain a variety of optional specifications, most of
which are related to state management. These include the following elements:

® one or more catalogs that provide the storage homes to the composition
implementation. Each specified catalog is assigned a alias, or label, that identifies
the catalog within the context of the composition.

® an abstract storage home type to which the component home is bound (this
implicitly identifies the abstract storage type to which the component itself is
bound)

® the life cycle category of the composition must be eithetity or process to
support managed storage

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

When state management is added to a composition definition, the definition takes the
following general form, expressed as a schematic:

615-88 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

composition <category> <composition_name> {
uses catalog {
<catalog_type> <catalog label> ;
h
home executor <home_executor_name> {
implements < home_type> ;
bindsTo
<catalog label .abstract_storage _home> ;
manages <executor_name> ;
h
h

where the additional elements are as followsatalog_type>identifies the type of a
catalog previously defined in PSDkgcatalog label>is an alias by which the catalog
can be identified in the composition definition, and
<catalog_label.abstract_storage _hometenotes a particular abstract storage home
provided by the catalog.

The structure of the resulting composition and the relationships between the elements
is illustrated in Figure 615-2.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

composition <category> <composition_name> {
uses catalog {

<catalog_type> <catalog label> ;

home executor <home_executor_name>
implements <home_type> ;
bindsTo <catalog label.storage_home>
manages <executor_name> ;

implements
component home < home executor
' binds to
.manages manages
implements
component executor
. storage home
provides | W7 : &
- :
catalog ' manages stored as
'
storage object
4— explicitly defined in composition cioL
implicitly defined by composition
< - - explicitly defined elsewhere in IDL/CIDL IDL

Figure 615-2Structure of composition with managed storage

In many cases, it is expected that an abstract storage home will be intentionally
designed to support a particular component home.

615.2.8 Relationship between home executor and abstract storage home

When a composition specifies managed storage, the relationship between the home
executor and the abstract storage home to which the home executor binds determines
many of the characteristics of the implementation, including what implementation
elements may be generated and how they will behave. This section provides an
overview of the basic concepts involved in home implementations and their
relationships to abstract storage homes.

615-90 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

In general, operations on a home interface provide life cycle management. As
described in Section 61.7, when a home definition does not specify a primary key, the
resulting equivalent home interface has the following operations:

® a genericcreate_component operation inherited fronKeylessCCMHome
® aremove_component operation inherited fron€CMHome
® an implicitly-defined type-specific parameter-lesgate operation

When a home definition specifies a primary key, the resulting equivalent home
interface has the following operations:

® aremove_component operation inherited fron€CMHome
* an implicitly-defined type-specificreate operation with a primary key parameter
® an implicitly-defined type-specificemove operation with a primary key parameter

® an implicitly-defined type-specififind_by primary key operation

615.2.8.1 Primary Key Binding

A component home can define its primary key as a valuetype with a number of public
data members, whereas abstract storage home define keys as lists of attributes. A
composition can only bind a component home with a primary key to an abstract
storage home that defines a key on a state member whose type is this valuetype. In
there are more than one key satisfying this condition, the first key is used.

For example:
valuetype SSN {
public string social_security _number;

h

abstract storagetype Person {
readonly state SSN social_security_number;
state string name;
state string address;

h

abstract storagehome PersonStore of Person {
key social_security_number;

h

A home with primary key SSN can be boundRersonStore . The key
social_security_number is called the matching key.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

615.2.8.2 Implicit delegation of home operations

When a composition specifies managed storage, finder operations can be implemented
in terms of finder operations on the abstract storage home to which the home executor
is bound.

Table 615-Delegation of finder operations to finder operations on the bound abstract
storagehome

home operation abstract storagehome operation

componenfind_by_primary_key Key) ref<X>find_ref by matching_key name
(matching_key

®* Thefind_by primary _key operation uses the
find_ref by matching key name operation on the abstract storagehome. The
returned storage reference is used to create an object reference for the component
and returned to the invoking client.

® Destruction operations delegatedestroy object operations on the reference.

The validity of these implementation semantics are predicated on the following
assumptions:

® The initial state of the storage object created by the storage home constitutes a valid
initial state for the component.

® All of the persistent state of the component is defined on (or reachable from) the
storage object whose PID is associated with the component instance.

®* The executor is monolithic, not segmented. Home operations can also be delegated
to abstract storage homes when the executor is segmented, but the process is
slightly more complex, and is discussed in full in Section 615.2.9.1, “Segmented
executors,” on page 615-104.

If these assumptions do not hold (in particular, either of the first two), the component
implementor can provide custom implementations of one or more home operations to
accomodate the implementation requirements.

The following example extends the previous example to illustrate managed
storage and storage home delegation. The example highlights differences
from the previous, and does not repeat elements that are identical:

/I Example 2

"

/I USER-SPECIFIED IDL

"

module LooneyToons {// IDL

identical to previous example, except for the addition of the
primary key:

valuetype EpisodeName : Components::PrimaryKeyBase {
public string name;

615-92 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

b
home ToonTown manages Toon primaryKey EpisodeName {

h

The CIDL now defines abstract storage types, abstract storage homes, and
a catalog. The composition binds :

/I Example 2

I

/I USER-SPECIFIED CIDL
I

import ::LooneyToons;

module MerryMelodies {

abstract storagetype ToonState {
state LooneyToons::EpisodeName episode_name;
state string name;
state unsigned long time_flown;
state LooneyToons::Bird last_bird_eaten;

h
abstract storagehome ToonStateHome of ToonState
{
key episode_name;
factory create(episode_name);
h

catalog ToonCatalog {
provides ToonStateHome TSHome;

2
/I this is the composition:

composition entity Toonlmpl {
uses catalog { ToonCatalog store; };
home executor ToonTownImpl {
implements LooneyToons::ToonTown {
bindsTo store.TSHome;
manages ToonEntitylmpl;

In this example, the composition binds the component hisoeTown to

the abstract storage hon®onStateHome, and thus, implicitly binds the
component typdoon to the abstract storage typBoonState. Note that

the primary key (if any) in the home must match a key in the abstract stor-
age home. As will be seen later in the CIDL grammar specification, the
keywordentity in the implementation binding declaration specifies a par-
ticular lifecycle model for the resulting implementation.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

This CIDL specification would cause the generation of the following pro-
gramming objects:

e The skeleton for the component execufoonEntitylmpl!

* The implementation of the home execufoonTownimpl

e The incarnation interface for the abstract storage tyfsonState
e The interface for the abstract storage horf@onStateHome

e The interface for the catalog ToonCatalog.

Note that the complete implementation of the home executor may not be
able to be generated in some cases, e.g., when no abstract storage type is
declared or when user-defined operations with arbitrary signatures appear
on the component home definition.

Note also that the implementations of the storage-related interfaces-

State and ToonStateHome are not necessarily provided by the same
product that generates the component implementation skeletons. The CIF
is specifically designed to decouple the executor implementation from the
storage implementation, so that these capabilities may be provided by dif-
ferent products. A component-enabled ORB product is only required to
generate the programming interfaces for the abstract storage type and
homes through which the executor implementation will interact with one or
more storage mechanisms. The implementations of these interfaces may be
supplied separately, perhaps deferred until run-time.

The interfaces generated from the IDL are identical, with the exception of
the addition of the primary key:

// Example 2

/

// GENERATED FROM IDL SPECIFICATION:
/

package LooneyToons;

import org.omg.Components.*;
. same as previous except for the following:

public interface ToonTownlmplicitOperations {
Toon create(LooneyToons.EpisodeName key)
throws DuplicateKey, InvalidKey;
Toon find_by_primary_key
(LooneyToons.EpisodeName key)
throws UnknownKey, InvalidKey;
void remove(LooneyToons.EpisodeName key)
throws UnknownKey, InvalidKey;
LooneyToons.EpisodeName
get_primary_key(Toon comp);
}

public interface ToonTownOperations extends
ToonTownExplicitOperations,
ToonTownExplicitOperations {}

615-94 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

The abstract storage type ToonState results in the generation of the follow-
ing incarnation interfaces:

// Example 2

/

// GENERATED FROM CIDL SPECIFICATION:
/

package MerryMelodies;

import org.omg.CosPersistentState.*;

import LooneyToons.*;

public interface ToonState extends StorageObject {
public string name();
public void name (String val);
public long time_flown();
public void time_flown (long val);
public Bird last_bird_eaten();
public void last_bird_eaten (Bird val);

The storage hom&oonStateHome results in the generation of the follow-
ing interface:

// Example 2

/

// GENERATED FROM CIDL SPECIFICATION:
/

// no explicit operations
public interface ToonStateHome
extends StorageHomeBase {

public ToonState
find_by _episode_name (EpisodeName k);

public ToonStateRef
find_ref_by episode_name (EpisodeName k);

The Toonlmpl executor skeleton class has the following form:

// Example 2

/4

// GENERATED FROM CIDL SPECIFICATION:
/4

package MerryMelodies;

import LooneyToons;

abstract public class Toonlmpl

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

implements LooneyToons.ToonOperations,
ExecutorSegmentBase, PersistentComponent
{
// Generated implementations of operations
// inherited from CCMObject and
// ExecutorSegmentBase and PersistentComponent
// are omitted here.
/4
// Toonlmpl also provides implementations of
// operations inherited from ToonState, that
// delegate to a separate incarnation object:

protected ToonStatelncarnation _state;
protected Toonlmpl() { _state = null; }

public void set_incarnation (ToonState state) {
_state = state;

}

// The following operations must be implemented
// by the component developer:

abstract public BirdOperations
_get facet_tweety();

abstract public CatOperations
_get facet_sylvester();

An implementation of the home executor ToonHomelmpl is generated from
the CIDL specification:

// Example 2

/4

// GENERATED FROM CIDL SPECIFICATION:
/4

package MerryMelodies;

import LooneyToons;

public class ToonTownimpl
implements LooneyToons.ToonTownOperations,
PersistentComponent, ExecutorSegmentBase
{
// Implementations of operations inherited
// from PersistentComponent and
// ExecutorSegmentBase
// are omitted here.
/
// ToonHomelmpl also provides implementations
// of operations inherited from the component
// home interface ToonTown, that delegate
// designated operations on the storage home
/

615-96 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

// values set during initialization

// and activation:

protected Entity2Context _origin;
protected ToonStateHome _storageHome;

Toon create(EpisodeName key)

{
// create a storage object with the key
ToonStatenew_state=_storageHome.create(key),
// REVISIT - Bernard Normier 7/27/1999
// don't know how to complete this method
}
Toon find(EpisodeName key)
{
ToonStateRef ref =
_storageHome.find_ref_by_episode_name(key);
// create reference from ref
// and return , same as above...
}

// and so on...

The user-provided executor uses the storage accessors and mutators on the
incarnation:

// Example 2

/

// PROVIDED BY COMPONENT PROGRAMMER:
/

import LooneyToons.*;

import MerryMelodies.*;

public class myToonlmpl extends Toonlmpl
implements BirdOperations, CatOperations {

public myToonimpl() { super(); }

void fly (long how_long) {
_ State.timeFlown
(_state.timeFlown() + how_long);

void eat (Bird lunch) {
_state.last_bird_eaten(lunch);

}
BirdOperations get facet tweety() {

return (BirdOperations) this;

}

CatOperations get_facet_sylvester() {

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

return (CatOperations) this;

615.2.8.3 Explicit delegation of home operations

The previous section described the default home executor implementation generated by
the CIF. Default delegation can only be implemented for home operations or the home
base interfaces, and implicitly-defined home operations @ehodoxhome

operations). The syntax for home definitions permits explicitly-defined factory
operations, finder operations, and operations with arbitrary signatures to be declared on
the home. The CIF makes no assumptions about the semantics of these operations (i.e.,
the heterodoxoperations), other than the assumptions that factory operations return
references for newly-created components, and finder operations return references for
existing components that were indirectly identified by the parameters of the finder
operation. Implementations of these operations are not generated by default. CIDL
does, however, allow the component implementor to specify explicitly how heterodox
home operations are implemented. A CIDL home executor definition may optionally
include the declarations illustrated in the following schematic CIDL example:

composition <category> <composition_name> {

home executor <home_executor_name> {
... [l assume storage management specified

delegatesTo abstract storagehome (
<home_op o> : <storage_home_op >,
<home_op ;>: <storage_home_op >, ...

)i

delegatesTo executor(
<home_op ,>: <executor_op 5>, ...

)i

abstract(<home_op 3>, <home_op 4>, ...);
h

Delegation to abstract storage home

The delegatesTo abstract storagehome declaration specifies a sequence of

operation mappings, where each operation mapping specifies the name of an operation
on the home, and the name of an operation on the storage home. The signatures of the
operations must be compatible, as defined in Section 61.7.4, “Home inheritance,” on
page 61-58. Based on this declaration, the CIF generates implementations of the home
operations on the home executor that delegate to the specified operations on the
abstract storage home.

615-98 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

Delegation to executor

The delegatesTo executor declaration specifies a sequence of operation mappings,
similar to thedelegatesTo abstract storagehome declaration. The name on the

left hand side of the mapping (i.e., to the left of the colon, *:’) must denote an
explicitly-declared factory operation on the home, or the identifieeate” , denoting

the implicitly-declared factory operation. The right hand side of each mapping
specifies the name of an abstract operation that will be generated on the component
executor. The component implementor provides the implementation of the executor
operation, and the CIF provides an implementation of the operation on the home
executor that delegates to the executor.

The delegation of home operations to executors is problematic, since home operations
(other than factories) have no target component. For this reason, only factory
operations may be delegated to the component executor. The CIF implements this
delegation by defining an additional facet on the component executor, cafsatay

facet A factory facet is only exposed to the home executor; clients cannot navigate to
the factory facet, and the factory facet is not exposed in component meta-data, or
described in thé&acetDescription values returned from

Navigation::describe_facets or Navigation::provide_all_facets

The implementation of the factory operation on the home executor that delegates to the
component executor must first create an object reference that denotes the factory facet.
The home operation then invokes the mapped factory operation on the object reference,
causing the activation of the component and ensuring that the execution of the
operation on the component occurs in a proper invocation context.

If the factory operation being delegated is any operation other than the orthodox
create operation, and the home definition includes a primary key specification, the
operation generated on the factory facet of the component executor returns a value of
the specified primary key type. The delegating operation on the home executor
associates the primary key value returned from the component executor with the
storage object (i.e., the storage object’s PID) created to incarnate the component
instance.

The use of PID values to create object references obviates the need to have
two versions of a create method on the executor, as is the case in EJB with
create and postCreate methods. An appropriate calling context can be cre-
ated before the factory operation is invoked on the executor.

These precise semantics of and requirements for factory operations delegated to the
executor are described in detail in Section 61.7.3.1, “Factory operations,” on
page 61-57.

Suppressing generated implementation

The abstract specification overrides the generation of implementations for orthodox
home operations. The name of any explicitly-defined operation on the home may be
specified in the operation list of the abstract declaration. The CIF will not implement
the specified operations, instead leaving unimplemented abstract operation declarations
(on whatever appropriate equivalent exists for the particular language mapping).

The following example extends the previous example to illustrate delega-

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

tion of home operations to the abstract storage home and the executor. The
example highlights differences from the previous, and does not repeat ele-
ments that are identical:

/I Example 3

"

/I USER-SPECIFIED IDL

"

module LooneyToons {// IDL

identical to previous example, except for the home:

home ToonTown manages Toon primaryKey EpisodeName {
factory createToon(
in string name, in long num, in Bird bref);
void arbitrary_operation();

The CIDL now defines abstract storage types, abstract storage homes, and
a catalog. The composition binds:

/l Example 3

I

/I USER-SPECIFIED CIDL
I

import ::LooneyToons;

module MerryMelodies {
... identical to the previous example, except for:

abstract storagehome ToonStateHome of ToonState

{
key episode_name;
factory create();
void do_something();
b

composition entity ToonImpl {

uses catalog { ToonCatalog store; };

home executor ToonTownImpl {
implements LooneyToons::ToonTown;
bindsTo store.TSHome;
manages ToonEntitylmpl;
delegatesTo abstract storagehome

(arbitrary_operation : do_something);

delegatesTo executor (createToon : createToon);

615-100 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

In this example, tharbitrary_operation on the home interfacé&oonTown

is delegated to the storage home operatifin something. Note that the
operations have identical signatures. TéveateToon factory operation is
delegated to an operation of the same name on the executor. This delega-
tion causes the implicit definition of a factory facet on the component with
the following interface:

interface ToonlmplFactoryFacet {
EpisodeName createToon(
in string name, in long num, in Bird bref);

This interface is not part of the public interface of the component; its use is
restricted to the home executor. In fact, the IDL need not be generated. All
of the code that uses the factory facet is either generated by the CIF, or
derived from CIF-generated skeletons, so the CIF can simply generate lan-
guage mappings for the interface without actually providing any IDL for it.
Note also that only a subset of the normal language mapping artifacts are
required, including (in the case of Java) the abstract Operations interface,
the POA tie class to be used internally by the executor, and a local stub to
allow the home executor to make a delegating invocation. There is no need
to generate a remote stub, as the facet is never exposed outside of the con-
tainer.

The abstract storage honmonStateHome interface has the added
do_something operation on the explicit interface:

// Example 3
/
// GENERATED FROM CIDL SPECIFICATION:
/
public interface ToonStateHome
extends StorageHomeBase {
public void do_something();
/-

The Toonimpl executor skeleton class supports an additional facet (the
factory facet), which is returned by theyet_factory_facet operation:

// Example 3

/4

// GENERATED FROM CIDL SPECIFICATION:
/4

package MerryMelodies;

import LooneyToons;

abstract public class Toonlmpl

implements LooneyToons.ToonOperations,

ExecutorSegmentBase, PersistentComponent {
. same as previous

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

// The following operations must be implemented
// by the component developer:

abstract public ToonlmplFactoryFacetOperations
_get factory facet();

abstract public BirdOperations
_get facet_tweety();

abstract public CatOperations
_get facet_sylvester();

The CIF generates implementations of the delegated operations on the
home executor:

// Example 3

/4

// GENERATED FROM CIDL SPECIFICATION:
/4

package MerryMelodies;

import LooneyToons;

public class ToonTownimpl
implements LooneyToons.ToonTownOperations,
CCMHome, ExecutorSegmentBase

// values set during initialization

// and activation:

protected ToonStateHome _storageHome;
protected Entity2Context _origin;

Toon createToon(
String name, long num, Bird bref)
{
ToonState new_state=
_StorageHome.create();
// etc.
}

void arbitrary_operation() {
_storageHome.do_something();

}

The user-provide executor must implement the factory facet and operation:

// Example 3
/

615-102 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

// PROVIDED BY COMPONENT PROGRAMMER:
/

import LooneyToons.*;

import MerryMelodies.*;

public class myToonlmpl extends Toonlmpl
implements BirdOperations, CatOperations,
ToonlmplFactoryFacetOperations{

EpisodeName

createToon(String name, long num, Bird bref) {
// presumably, the main reason for doing
// this kind of delegation is to initialize
// state in the context of the component:
how_long(num);
last_bird_eaten(bref);
EpisodeNameDefaultFactory _keyFactory

= new EpisodeNameDefaultFactory();

return _keyFactory.create(name);

}

ToonlmplFactoryFacetOperations
_get factory facet() {
return
(ToonlmplFactoryFacetOperations) this;

615.2.9 Executor definition

The home executor definition must include an executor definition. An executor
definition specifies the following characteristics of the component executor:

®* The name of the executor, which is used as the name of the generated executor
skeleton

® Optionally, one or more distinct segments, or physical partitions of the executor.
Each segment encapsulates independent state and is capable of being independently
activated. Each segment also provides at least one facet.

® Optionally, the generation of operation implementations that manage the state of
stateful component features (i.e., receptacles, attributes, and event sources) as
members of the component incarnation.

® a delegation declaration that describes a correspondence between stateful
component features and members of the abstract storage type that incarnates the
component. The CIF uses this declaration to generate implementations of the
feature-specific operations (e.ggnnect_ anddisconnect_ operations for
receptacles, accessors and mutators for attributes) that store the state associated
with each specified feature in the storage member indicated on the right hand side
of the delegation.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

615-104

615.2.9.1 Segmented executors

A component executor may lraonolithicor segmentedA monolithic executor is,

from the container’s perspective, a single artifact. A segmented executor is a set of
physically distinct artifacts. Each segment may have a separate abstract state
declaration. Each segment must provide at least one facet defined on the component
definition. The life cycle category of the composition mustdmgity or process if the
executor specifies segmentation.

The primary purpose for defining segmented executors is to allow requests on a subset
of the component’s facets to be serviced without requiring the entire component to be
activated. Segments are independently activated. When the container receives a request
whose target is a facet of a segmented executor, the container activates only the
segment that provides the required facet.

The following schematic CIDL illustrates the declaration of a segmented executor:
composition <category> <composition_name> {

home executor <home_executor_name> {
... [l assume storage management specified

manages <executor_name> {
segment <segment_name o> {
storedOn
<catalog label .abstract_storage _home> ;
provides (<facet_name o>,
<facet_name >, ...);
h

segment <segment_name ;>{... };

h

The abstract storage home specified in the segmstdi®dOn declaration implicitly
specifies the abstract storage type that incarnates the segment. The home executor will
use this abstract storage home to create and manage instances of the segment state (i.e
incarnations). If the component home specifies a primary key, then all of the abstract
storage homes associated with executor segments must specify a matching key. The
facets specified in the segmenpsovides declaration are implemented on the

segment.

A segmented executor has a distinguished segment associated with the component. The
component segment is implicitly declared, and supplies all of the facets not provided
by separate segments, as well as all other component features and supported interfaces

Figure 615-1, and Figure 615-2, illustrate the structure of monolithic and segmented
executors, and the relationships between facets, storage objects, and segments. These
figures also illustrate the identity information that is embedded in component and facet
object references. Component identity information is described in more detail in
Section 61.1.4, “Component identity,” on page 61-28.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

component segment (segment ID = 0)

component facet ¢
\ incarnation
Oi/facetlD =0 (PID =p)
facet A O———— facetiD=F
facetB (O)——— facetiD=FK
facetC O——— facetID =FK
target facet state ID (PID)
component reference info 0 P
facet A reference info F, P

Figure 615-1Monolithic executor and reference information structure

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

615-106

component segment (segment ID = 0)

component facet ¢
\ / incarnation
O——{ facetiD=0 (PID = Fy)
facet A O———— facetiD=R

o
T i

facetB O——+— facetID=FK
facet CO——+— facetlID=HK

segment (segment ID =B

segment descriptors
target segment ID
segment ID state ID
target facet ID

component reference info 0 0 0| P
S| P

facet B reference info Fs S, 0 Po

S| P

Figure 615-2Segmented executor and reference information structure

The details of the structure and behavior of segments and requirements for their
implementation are specified in Section 615.2.9.1, “Segmented executors,” on
page 615-104.

The following example extends the previous example 2 to illustrate seg-
mented executors. The example highlights differences from the previous,
and does not repeat elements that are identical:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

I
/I USER-SPECIFIED IDL
I
module LooneyToons {// IDL
identical to previous example 2

}’.

The CIDL now defines abstract storage types, abstract storage homes, and
a catalog. The composition binds :

I

/I USER-SPECIFIED CIDL
I

import ::LooneyToons;

module MerryMelodies {

... identical to example 2 except for new storage, storage home
and executor definitions

abstract storagetype ToonState {
state LooneyToons::EpisodeName episode_name;
state string name;
state LooneyToons::Bird last_bird_eaten;

h

abstract storagehome ToonStateHome of ToonState {
key episode_name;

J

abstract storagetype BirdSegState {
state unsigned long time_flown;

h

abstract storagehome BirdSegStateHome of BirdSegState {
key episode_name;

h

catalog ToonCatalog {
provides ToonStateHome TSHome;
provides BirdSegStateHome BSSHome;

h

composition entity Toonlmpl {
uses Catalog { ToonCatalog store; };
home executor ToonTownImpl {
implements LooneyToons::ToonTown {
bindsTo store.TSHome;
manages ToonEntitylmpl {
segment BirdSegment {
storedOn ToonPS.BSSHome;
provides (tweety);

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

The storage home BSSHome on the ToonCatalog catalog is bound to the
segment BirdSegment, which implicitly binds the segment executor for
BirdSegment to the abstract storage type BirdSegState. This segment pro-
vides the facet tweety, leaving the remaining facet (sylvester) on the compo-
nent segment.

The mappings of the CIDL abstract storage types, abstract storage homes,
and the catalog e are not presented, as they are not affected by the segmen-
tation.

The generated component executor base class ToonImpl is also not pre-
sented, as the changes are trivial. The facet accessor _get_facet_tweety is
no longer present on the component executor. There are other internal
changes that are not visible to the component implementor. The executor
for the new BirdSegment has the following form:

// Example 4

/4

// GENERATED FROM CIDL SPECIFICATION:
/4

package MerryMelodies;

import LooneyToons;

abstract public class BirdSegment
implements ExecutorSegmentBase,
PersistentComponent
{
// Generated implementations of operations
// inherited from CCMObject and
// ExecutorSegmentBase and PersistentComponent
// are omitted here.
/

protected BirdSegState _state;
protected BirdSegment() { _state = null; }
public void set_incarnation (

BirdSegState state) {

_state = state;

}

// The following operations must be implemented
// by the component developer:

abstract public BirdOperations
_get facet_tweety();

615-108 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

Note that the BirdSegment executor does not implement any IDL interface
directly, as does the component segment. It is remotely accessible only
through a provided facet.

A generated implementation of the home executor ToonHomelmpl is con-
siderably different from the previous example 2. The create method must
create references for all of the segments and construct a Componentld with
the proper information::

/4

// GENERATED FROM CIDL SPECIFICATION:
/4

package MerryMelodies;

import LooneyToons;

public class ToonTownimpl
implements LooneyToons.ToonTownOperations,
CCMHome, ExecutorSegmentBase
{
// Implementations of operations inherited
// from CCMHome and ExecutorSegmentBase
// are omitted here.
/
// ToonHomelmpl also provides implementations
// of operations inherited from the component
// home interface ToonTown, that delegate
// designated operations on the storage home
/

// values set during initialization
// and activation:
protected Entity2Context _origin;
protected ToonStateHome _toonStorageHome;
protected BirdSegStateHome _birdStorageHome;

Toon create(EpisodeName key)
{
ToonState new_toon =
_toonStorageHome.create(key);
// etc.

There are now two segment executors to implement:

/

// PROVIDED BY COMPONENT PROGRAMMER:
/

import LooneyToons.*;

import MerryMelodies.*;

public class myToonlmpl extends Toonlmpl
implements CatOperations {

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

615-110

public myToonimpl() { super(); }

void fly (long how_long) {
_ State.timeFlown
(_state.timeFlown() + how_long);

}

void eat (Bird lunch) {
_State.last_bird_eaten(lunch);

}

BirdOperations get facet tweety() {
return (BirdOperations) this;

}

CatOperations get_facet_sylvester() {
return (CatOperations) this;

}

}

public class myBirdSegimpl extends BirdSegment
implements BirdOperations {

public myBirdSeglmpl() { super(); }

void fly (long how_long) {
_ State.timeFlown
(_state.timeFlown() + how_long);

}

BirdOperations get facet tweety() {
return (BirdOperations) this;

}

The programmer must also supply a differentimplementation of the
create_executor_segment operation on the home executor, that uses the
segment ID value to determine which executor to create.

// Example 4

/

// PROVIDED BY COMPONENT PROGRAMMER:
/

import LooneyToons.*;

import MerryMelodies.*;

public class myToonTownlmpl extends ToonTownlmpl
{
protected myToonTownlmpl() { super(); }

ExecutorSegmentBase
create_executor_segment (int segid) {

// case discriminator values are constants
// generated on the executor segment classes

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

switch (segid) {

case Toonlmpl._segment_id_value :
return new myToonlmpl();

case BirdSegment._segment _id_value :
return new myBirdSegimpl();

default
. raise an exception

}

615.2.9.2 Delegation of feature state

An executor may also optionally declare a correspondence between stateful component
features (which include receptacles, attributes and event sources) and members of the
abstract storage type that incarnates the component (or the distinguished component
segment, in the case of a segmented executor). The CIF uses this declaration to
generate implementations of the feature-specific operations (e.g., connect_ and
disconnect_ operations for receptacles, accessors and mutators for attributes) that store
the state associated with each specified feature in the storage member indicated on the
right hand side of the delegation. The following schematic CIDL illustrates a feature
delegation:

composition <category> <composition_name> {

home executor <home_executor_name> {
... [l assume storage management specified

manages <executor_name> {
delegatesTo abstract storagetype (
<feature_name y>:
<storage_member_name >,
<feature_name ;>:
<storage_member_name >, ...
h
h
h
h

The type of the storage member must be compatible with the type associated with the
feature, as defined in Chapter 61, “Component Model”. In the case of attributes, the
ClIF-generated implementations of accessors and mutators retrieve and store the
attribute value in the specified storage member. The executor programming model
allows implementors to intercept invocations of the generated accessor and mutator
invocations and replace or extend their behaviors. In the case of receptacles and event
sources, the implementations of thennect_<receptacle_name>,
disconnect_<receptacle_name>, connect_<source_name>,

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

615-112

disconnect_<source_name>, subscribe_<source _name> and
unsubscribe_<source_name> operations store the connected object references in
the specified members of the storage object that incarnates the component.

This mechanism is only particularly useful if the connected object refer-
ences are persistent references, capable of causing server and object acti-
vation if necessary.

615.2.10 Proxy homes

A composition definition may include proxy homedeclaration. A proxy home
implements the component home interface specified by the composition definition, but
the implementation is not required to be collocated with the container where the
components managed by the home are activated.

Proxy homes are, in essence, remote projections of the actual home implementation,
which is always collocated with the executing component implementation. A proxy
home may be able to implement some subset (or potentially, all) of the operations
defined on the component home without contacting the actual home implementation.
Operations that cannot be locally implemented by the proxy home are delegated to the
actual home. The run-time implementation of the CIF (including the supporting
infrastructure of the container and the home finder) is responsible for maintaining the
associations between proxy homes and the actual home they represent. The container
provides an interface for registering proxy homes, described in Section 62.4.1.3, “The
ProxyHomeRegistration Interface,” on page 62-152.

Proxy homes offer the capacity for considerably increased scalability over collocated
homes, particularly when the home operations can be implemented locally by the
proxy home implementation. The following schematic CIDL illustrates a proxy home
definition:

composition <category> <composition_name> {

home executor <home_executor_name> {
implements < home_type> ;
bindsTo
<catalog label .abstract_ storage home> ;

h
proxy home <proxy_executor_name> {
delegatesTo home (<home_op ¢>, <home_op 1>,

abstract (<home_op ,>, <home_op 3>, ...);
h
h

The <proxy_executor_nameis used as the name of the generated skeleton artifact for
the proxy home executor. The proxy home declaration implicitly acquires the
characteristics of the actual home, as declared in the home executor definition (which
must precede the proxy home definition in the composition scope). In particular, the
proxy home implements the same home, and binds to the same abstract storage home.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

The operation delegations specified in the actual home executor definition are also
acquired by the proxy home, but certain delegations are transformed according to rules
specified in Section 615.2.10.1.

615.2.10.1 Proxy home delegation

For proxy homes in compositions that specify managed state, the CIF assumes that the
proxy home has connectivity to the same persistent store as the actual home. Based on
this assumption, the default implementations of orthodox operations on the proxy
home executor are delegated directly to the storage home, precisely as they are in the
actual home executor. In general, other operations are delegated to the actual home, by
default, although the specific rules for determining the implementation of proxy home
operations are somewhat more involved, and are described completely in

Section 615.2.3, “Implementing a CORBA Component,” on page 615-78.

615.2.11 Component object references

The CIF defines an information model for component object references. This
information model is encapsulated within the object_key field of an IIOP profile, or an
equivalent field in other profiles. The information model is an abstraction; no standard
encoding within an object_key is specified. It is the responsibility of the container and
the underlying ORB to encode this information for insertion into object references and
to extract this information from the object_key in incoming requests, decode it, and use
it to activate the appropriate component or segment and dispatch the request to the
proper facet.

The Entity2Context interface, described in Section 62.4.3.7, “The Entity2Context
Interface,” on page 62-162 is used by the component implementation to provide this
information to the container, with which the container creates the object references for
the component and its facets. TB®mponentld interface encapsulates the

component reference information. Examples 2, 3, and 4 in the previous sections
illustrate the use of thEntity2Context andComponentld interfaces to create object
references. Figure 615-1, and Figure 615-2, illustrate the structure of the information
encapsulated i€omponentld , and its relationship to executor structure.

615.2.11.1 Facetidentifiers

The CIF implementation allocates numeric identifiers to facets. The facet ID values are
interpreted by generated code in the component implementation, so the assignment of
values does not need to be uniformly specified; the a given CIF implementation’s
choice of facet ID values does not affect portability or interoperability.

615.2.11.2 Segmentidentifiers

The CIF implementation must also allocate numeric identifiers to segments. Similar to
facet IDs, segment IDs are also interpreted by the component implementation, so no
uniform allocation mechanism is specified. The implementation of
create_executor_segment (on the home executor implementation) provided by the
component implementor must interpret segment ID values in order to create and return

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

the appropriate segment executor. The generated implementations of segment executor
skeletons define symbolic constants to assist the component implementor in this

mapping.

615.2.11.3 State identifiers

State identifier is an abstraction that generalizes different representations of state
identifiers, the primary of which is theid of the CORBA persistent state service. The
generic representation of a state identifieStateldValue , an abstract valuetype from
which specific, concrete state identity types are derived. Implementations of the
concrete sub-types are responsible for converting their representations to byte
sequences and back again.

615.2.11.4 Monolithic reference information

Monolithic references contain a facet identifier and a single state identifier. The facet
identifier denotes the target facet of the reference (or, of requests made on the
reference). The state identifier is interpreted by the component implementation and
used to retrieve the component’s state. In the case of automatically managed state, the
CIF-generated implementation interprets the state identifier@d ausing it to

incarnate the component’s storage object.

Note that navigation from one facet's reference to another consists of
merely replacing the target facet identifier with the facet identifier of the
desired facet. This can be accomplished without activating the component.

615.2.11.5 Segmented reference information

The reference information for segmented executors consists of the following:
® a target facet identifier
® a target segment identifier

® a sequence of segment descriptors, each of which contains:
« the segment identifier of the segment being described
* the state identifier for the segment

The target facet identifier denotes the target of requests made on the reference, and the
target segment identifier denote the segment on which that facet is implemented. The
sequence of segment descriptors contains one element for each segment, including the
component segment. This sequence is invariant for all references to a given component,
over the lifetime of the component.

In the case of segmented executors, navigation is accomplished by replac-
ing the facet and segment identifiers.

615-114 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Implementation Framework (CIF)

615

615.2.11.6 Componentidentity

The state identifier of the component segment (or the single state identifier in the case
of monolithic executors) is interpreted as the unique identity of the component, within
the scope of the home to which it belongs. Equivalence of component identity is
defined as equivalence of state identifier values of the component segment.

615.3 Language Mappings

Issue — To be provided

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Language Mappings 29 October 1698115

615

615-116 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Language Mappings 29 October 1999

The Container Programming Model

62

This chapter describes the CORBA componemttainer programming model.

Issue — It contains all new text taken from the CCM final submission
orbos/99-07-01 with only minor editorial changes - Jeff Mischkinsky

62.0.0.1 Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 62-118
“The Server Programming Environment” 62-121
“Server Programming Interfaces - Basic Components” 62-137

“Server Programming Interfaces - Extended Components” 62-149

“The Client Programming Model”

62-163

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999

62-117

62

Section Title Page

The container is the server’s runtime environment for a CORBA component
implementation. This environment is implemented by a deployment platform such as
an application server or a development platform like an IDE. A deployment platform
typically provides a robust execution environment designed to support very large
numbers of simultaneous users. A development platform would provide enough of a
runtime to permit customization of CORBA components prior to deployment but
perhaps support a limited number of concurrent users. From the point of view of the
CORBA component implementation, such differences are “qualities of service”
characteristics and have no effect on the set of interfaces the component implementor
can rely on. This chapter is organized as follows:

® Section 62.1 introduces the programming model and defines the elements that
comprise it.

The container programming model is an API framework designed to simplify the
task of building a CORBA application. Although the framework does not exclude
the component developer from using any function currently defined in CORBA, it
is intended to be complete enough in itself to support a broad spectrum of
applications.

® Section 62.2 describes the programming model the component implementor is to
follow.

The programming model identifies the architectural choices which must be made to
develop a CORBA component which can be deployed in a container.

® Section 62.3 describes the interfaces seen by the component developer.

These interfaces constitute the contract between the container provider and the
component implementor. Together with the client programming interfaces defined
in Chapter 61, “Component Model” which can be used by servers as well as clients,
they define the server programmer’s API.

® Section 62.5 describes the client view of a CORBA component.

The client programming model has been described previously (Chapter 61,
“Component Model”). This section describes the specific use of CORBA required
by a client, which iNOT itself a CORBA component, to use a CORBA component
written to the server programming model described in Section 62.3.

62.1 Introduction

The container programming model is made up of several elements:

62-118 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October 1999

62

®* Theexternal API types which define the interfaces available to a component client

® Thecontainer API type which defines the API framework used by the component
developer

®* The CORBA usage model which defines the interactions between the container and
the rest of CORBA (including the POA, the ORB and the CORBA services)

®* The component category which is the combination of the container API type (i.e.
the server view) and the external API types (i.e. the client view)

The overall architecture is depicted in Figure 62-1 below::

@®— Home
C
I
e B
n CORBA Callbacks
t External Component —@
—
_/ ¢ ° T
@)
Internal >
Container
ORB
Transactions Security Persistence Notification

Figure 62-1 The Architecture of the Container Programming Model

The external API types are defined by the component IDL including the home
specification. These interfaces are righteous CORBA objects and are stored in the
Interface Repository for client use.

The container API type is a framework made up of internal interfaces and callback
interfaces used by the component developer. These are defined using thecaéw
interface declaration in IDL for specifying locality-constrained interfaces. The
container API type is selected using CIDL which describes component
implementations.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October1999 62-119

62

62-120

The EJB session bean and entity bean can be viewed as two examples of
container API type since they offer different sets of framework APIs to the
EJB programmer. However, each of them also implies a client view i.e. the
external API types. EJB does not define a term for the two framework API
sets it supports.

The CORBA usage model is controlled by policies which specify distinct interaction
patterns with the POA and a set of CORBA services. These are defined by CIDL,
augmented using XML, and used by the container factory to create a POA when the
container is created.

The component category is a specific combination of external API types and container
API type used to implement an application with the CORBA component technology.

62.1.1 External API Types

The external API types of a component are the contract between the component
developer and the component client. We distinguish between two forms of external API
types: thehome interface and thapplication interfaces.

These are analogous to tie]JBHome andEJBObject interfaces of
Enterprise JavaBeans.

Home interfaces support operations which allow the client to obtain references to one
of the application interfaces the component implements. From the client’'s perspective,
two design patterns are supported - factories for creating new objects and finders for
existing objects. These patterns are distinguished by the presencggriofiayKey
parameter in the home IDL declaration.

* A home interface with @rimaryKey declaration supports finders and its client is a
keyfull client.

* A home interface without arimaryKey declaration does not support finders and
its client is akeylessclient. All home types support factory operations.

62.1.2 Container API Type

Thecontainer API type defines an API framework, i.e. the contract between a specific
component and its container. This specification defines two base types which define
the common APIs and a set of derived types which provide additional function. The
sessioncontainer API type defines a framework for components using transient object
references. Thentity container API type defines a framework for components using
persistent object references.

62.1.3 CORBA Usage Model

A CORBA usage model specifies the required interaction pattern between the
container, the POA and the CORBA services. We define tit®&&RBA usage models

as part of this specification. Since all support the same set of CORBA services, they
are distinguished only by their interaction with the POA.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October 1999

62

® stateless which uses transient object references in conjunction with a POA servant

which can support an@bjectid

® conversational- which uses transient references in conjunction with a POA servant

that is dedicated to a specif@bjectid

® durable - which uses persistent references in conjunction with a POA servant that

is dedicated to a specifi©bjectld

It should be obvious that the fourth possibility (persistent references with a
POA servant that can support any Objectld) makes no sense and is there-
fore not included.

62.1.4 Component Categories

The component categories are defined as the valid combinations of external API types,
container API type, and CORBA usage model. The following table summarizes the
categories and identifies their EJB equivalent:

Table 62-1Definition of the Component Categories

Container Primary Component EJB Bean
CORBA Usage Model API Type Key Categories Type
stateless session No Service -
conversational session No Session Session
durable entity No Process -
durable entity Yes Entity Entity

62.2 The Server Programming Environment

The component container provides interfaces to the component. These interfaces
support access to CORBA services (transactions, security, notification, and persistence)
and to other elements of the component model. This section describes the features of
the container which are selected by the deployment descriptor packaged with the
component implementation. These features comprise the design decisions to be made
in developing a CORBA component. Details of the interfaces provided by the container
are provided in Section 62.3, “Server Programming Interfaces - Basic Components.

62.2.1 Component Containers

Containers provide the run-time execution environment for CORBA components. A
container is gramework for integrating transactions, security, events, and persistence
into a component’s behavior at runtime. A container provides the following functions
for its component:

® all component instances are created and managed at runtime by its container

® containers provide a standard set of services to a component, enabling the same
component to be hosted by different container implementations

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

62-122

Components and homes are deployed into containers with the aid of container specific
tools. These tools generate additional programming language and metadata artifacts
needed by the container. The tools provide the following services:

¢ editing the configuration metadata
® editing the deployment metadata

® generating the implementations needed by the containers to support the component

The container framework defines two forms of interfaces:

® |Internal interfaces - These are locality-constrained interfaces definetbaal
interface types which provide container functions to the CORBA component.

These are similar to thEJBContext interface in Enterprise JavaBeans.

® Callback interfaces- These are alstocal interface types invoked by the container
and implemented by a CORBA component.

These interfaces provide functions analogous to3fssionBearand
EntityBean interfaces defined by Enterprise JavaBeans.

This architecture is depicted in Figure 62-1 on page 119.

We define a small set afontainer API typesto support a broad spectrum of
component behavior with their associateternal andcallback interfaces as part of
this specification. Theseontainer API types are defined using local interfaces.

Additional component behavior is controlled by policies specified in the deployment
descriptor. This specification defines policies which support POA interactions
(CORBA usage model), servant lifetime management, transactions, security, events,
and persistence. See the deployment chapter (Chapter 69, “Packaging and
Deployment”), specifically Section 69.3, “Software Package Descriptor,” on

page 69-259, for details of how container policies are specified.

CORBA containers are designed to be used as Enterprise JavaBeans containers. This
allows a CORBA infrastructure to be the foundation of EJB, enabling a more robust
implementations of the EJB specification. To support enterprise Beans natively within
a CORBA container, the container must support the API frameworks defined by the
EJB specification. This architecture is defined in Chapter 64, “Integrating with
Enterprise JavaBeans” of this specification.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

62.2.2 CORBA Usage Model

The CORBA Component Specification defines a seCaIRBA usage modelswvhich
create eitheMRANSIENT or PERSISTENT object references and use either a 1:1 or
1:N mapping ofServant to Objectld . These CORBA usage modere summarized

in Table 62-2 below. A given component implementation shall support one and only
one CORBA usage model.

Table 62-2CORBA Usage Model Definitions

CORBA Usage Model Object Reference Servant:OID Mapping
stateless TRANSIENT 1N
conversational TRANSIENT 1:1
durable PERSISTENT 1:1
(Invalid) PERSISTENT 1N

A CORBA usage model is specified using CIDL and is used to either create or select a
component container at deployment time.

62.2.2.1 Component References

TRANSIENT objects support only the factory design pattern. They are created by
operations on the home interface defined in toenponent declaration.

PERSISTENT objects support either the factory design pattern or the finder design
pattern, depending on the component categBERSISTENT objects supporself-
managedor container-managedpersistencePERSISTENT objects can be used with

the CORBA persistent state service or any user-defined persistence mechanism. When
the CORBA persistent state service is used, servant management is aligned with the
Persistentld defined by the CORBA persistent state service and the container
supports the transformation of @bjectld to and from aPersistentld . A

Persistentld provides a persistent handle for a class of objects whose permanent state
resides in a persistent store (e.g. a database).

Home references are exported for client use by registering them witbnaeFinder
which the client subsequently interrogates or by binding them to the CORBA naming
service in the form of externally visible names.

EJB clients find references to EJBHome using JNDI, the Java API for Cos-
Naming. Placing home references is CosNaming supports both the CORBA
component client and the EJB client programming models.

62.2.2.2 Servantto Objectld Mapping

Component implementations may use either the 1:1 or 1:N mappi&gofant to
Objectld with TRANSIENT referencesdtatelessandconversational CORBA usage
model, respectively) but may use only the 1:1 mapping WHRSISTENT references.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

62-124

® A 1:N mapping allows &ervant to be shared among all requests for the same
interface and therefore requires the object to be stateless (i.e. it has no identity).

* A 1:1 mapping binds &ervant to a specificObjectld for an explicit servant
lifetime policy (see Section 62.2.5) and therefore is stateful.

62.2.2.3 Threading Considerations

CORBA components support two threading modsksialize and multithread . A
threading policy ofserialize means that the component implementation is not thread
safe and the container will prevent multiple threads from entering the component
simultaneously. A threading policy ehultithread means that the component is
capable of mediating access to its state without container assistance and multiple
threads will be allowed to enter the component simultaneously. Threading policy is
specified in CIDL.

A threading policy okerializeis required to support an enterprise Bean
since they are defined to be single-threaded.

62.2.3 Component Factories

A home is a component factory, responsible for creating instances of all interfaces
exported by a component. Factory operations are defined on the home interface using
the factory declaration. A default factory is automatically defined whose
implementation may be generated by tools using the information provided in the
componentIDL. Specialized factories (e.g. factories that accept user-defined input
arguments) must be implemented by the component developer. Factory operations are
typically invoked by clients but may also be invoked as part of the implementation of
the component. A CORBA component implementation can locate its home interface
using an interface provided by the container.

62.2.4 Component Activation

CORBA components rely on the automatic activation features of the POA to tailor the
behavior of the components using information present in the component’s deployment
descriptor. Once references have been exported, clients make operation requests on the
exported references. These requests are then routed by the ORB to the POA that
created the reference and then the component container. This enables the container to
control activation and passivation for components, apply policies defined in the
component’s descriptor, and invoke callback interfaces on the component as necessary.

62.2.5 Servant Lifetime Management

Servants are programming language objects which the POA uses to dispatch operation
requests based on ti@bjectld contained in the object key. The server programming
model for CORBA components includes facilities to efficiently manage the memory
associated with these programming objects. To implement this sophisticated memory
management scheme, the server programmer makes several design choices:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

® The container API type must be chosen.
® The CORBA usage model must be chosen.

® A servant lifetime policy is selected. CORBA components support four servant
lifetime policies method, transaction, component andcontainer).

® The designer is required to implement the callback interface associated with his
choice.

The servant lifetime policies are defined as follows:

method

The method servant lifetime policy causes the container to activate the component on
every operation request and to passivate the component when that operation has
completed. This limits memory consumption to the duration of an operation request but
incurs the cost of activation and passivation most frequently.

transaction

Thetransaction servant lifetime policy causes the container to activate the component
on the first operation request within a transaction and leave it active until the
transaction completes and which point the component will be passivated. Memory
remains allocated for the duration of the transaction.

component

The componentservant lifetime policy causes the container to activate the component
on the first operation request and leave it active until the component implementation
requests it to be passivated. After the operation which requests the passivation
completes, the component will be passivated by the container. Memory remains
allocated until explicit application request.

container

The container servant lifetime policy causes the container to activate the component
on the first operation request and leave it active until the container determines it needs
to be passivated. After the current operation completes, the component will be
passivated by the container. Memory remains allocated until the container decides to
reclaim it.

The following table (Table 62-3) shows the relationship between the CORBA usage
model, the container API type, and the servant lifetime policies.

Table 62-3Servant Lifetime Policies by Container API Type

Container API
CORBA Usage Model Type Valid Servant Lifetime Policies
stateless session method
conversational session method, transaction, component con-
tainer

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

Table 62-3Servant Lifetime Policies by Container API Type

Container API

CORBA Usage Model Type Valid Servant Lifetime Policies
durable entity method, transaction, component con-
tainer

Servant lifetimes policies may be defined for each segment within a component.

62.2.6 Transactions

CORBA components may support eittsglf-managed transactiondSMT) or
container-managed transactiondSMT). A component using self-managed

transactions will not have transaction policies defined with its deployment descriptor
and is responsible for transaction demarcation using either the container’s
UserTransaction interface or the CORBA transaction service. A component using
container-managed transactions defines transaction policies in its associated descriptor.
The selection of container-managed transactions vs. self-managed transactions is a
component-level specification.

When container-managed transactions are selected, additional transaction policies are
defined in the component’s deployment descriptor. The container uses these
descriptions to make the proper calls to the CORBA transaction service. The
transaction policy defined in the component’s deployment descriptor is applied by the
container prior to invoking the operation. Differing transaction policy declarations can
be made for operations on any of the component’s ports as well as for the component’s
home interface.

The following table (Table 62-4) summarizes the effect of the various transaction
policy declarations and the presence or absence of a client transaction on the
transaction which is used to invoke the requested operation on the component.

Table 62-4Effects of Transaction Policy Declaration

Transaction Attribute Client Transaction Component’s Transaction

NOT_SUPPORTED - -
T1 -

REQUIRED - T2

T1 T1
SUPPORTS - -

T1 T1

REQUIRES_NEW - T2
T1 T2

MANDATORY - EXC (TRANSACTION_REQUIRED)
62-126 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

Table 62-4Effects of Transaction Policy Declaration

Transaction Attribute Client Transaction Component’s Transaction
T1 T1
NEVER - -
T1 EXC (INVALID_TRANSACTION)

not_supported

This component does not support transactions. If the client does not provide a current
transaction the operation is invoked immediately. If the client provides a current
transaction, it is suspende@dgsTransactions::Current::suspend) before the

operation is invoked and resume@dqgsTransactions::Current::resume) when the
operation completes.

required

This component requires a current transaction to execute successfully. If one is
supplied by the client, it is used to invoke the operation. If one is not provided by the
client, the container starts a transacti@o§Transactions::Current::begin) before
invoking the operation and attempts to commit the transaction
(CosTransactions::Current::commit) when the operation completes.

supports

This component will support transactions if one is available. If one is provided by the
client, it is used to invoke the operation. If one is not provided by the client. the
operation is invoked outside the scope of a transaction.

requires_new

This component requires its own transaction to execute successfully. If no transaction
is provided by the client, the container starts one

(CosTransactions::Current::begin) before invoking the operation and tries to
commit it (CosTransactions::Current::commit) when the operation completes. If a
transaction is provided by the client, it is first suspended
(CosTransactions::Current::suspend), a new transaction is started
(CosTransactions::Current::begin), the operation invoked, the component’s
transaction attempts to commi€¢sTransactions::Current::commit), and the

client’s transaction is resume€@sTransactions::Current::resume).

mandatory

The component requires that the client be in a current transaction before this operation
is invoked. If the client is in a current transaction, it is used to invoke the operation. If
not, theTRANSACTION_REQUIRED exception shall be raised.

never

This component requires that the client not be in a current transaction to execute
successfully. If no current transaction exist, the operation is invoked. If a current
transaction exists, thiNVALID_TRANSACTION exception shall be raised.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

62-128

62.2.7 Security

Security policy is applied consistently to all categories of components. The container
relies on CORBA security to consume the security policy declarations from the
deployment descriptor and to check the active credentials for invoking operations. The
security policy remains in effect until changed by a subsequent invocation on a
different component having a different policy.

Access permissions are defined by the deployment descriptor associated with the
component. The granularity of permissions must be aligned by the deployer with a set
of rights recognized by the installed CORBA security mechanism since it will be used
to check permissions at operation invocation time. Access permissions can be defined
for any of the component’s ports as well as the component’s home interface.

Issue — The security model used by EJB and being adopted by CORBA
components requires the secure transportation of security credentials
between systems. Today that is only possible if SECIOP is used as the
CORBA transport.

62.2.8 Events

CORBA components use a simple subset of the CORBA notification service to emit
and consume events. The subset can be characterized by the following attributes:

® Events are represented @aaluetypesto the component implementor and the
component client

® The event data structure is mapped toaany in the body of a structured event
presented to and received from CORBA notification.

® The fixed portion of the structured event is added to the event data structure by the
container on sending and removed from the event data structure when receiving

® Components support two forms of event generation using the push model:
« a component may be an exclusive supplier of a given type of event.
« a component may supply events to a shared channel that other CORBA
notification users are also utilizing
®* A CORBA component consumes both forms of events using the push model.

® Events have transaction and security policies associated with the component’s event
ports as defined in the deployment descriptor.

® All channel management is implemented by the container, not the component.

® Filters are set administratively by the container, not the component

Because events can be emitted and consumed by clients as well as component
implementations, operations for emitting and consuming events are generated from the
specifications in component IDL. The container is responsible for mapping these
operations to the CORBA notification service to provide a robust event distribution
network.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

62.2.8.1 Transaction Policies for Events

Transaction policies are defined for component event ports which include both events
being generated and events being consumed. The possible values are as follows:

normal

A normal event policy indicates the event should be generated or consumed outside
the scope of a transaction. If a current transaction is active, it is suspended before
sending the event or invoking the operation on the proxy object provided by the
component.

default

A default event policy indicates the event should be generated or consumed regardless
of whether a current transaction exists. If a current transaction is active, the operation
is transactional. If not, it is non-transactional.

transaction

A transaction event policy indicates the event should be generated or consumed within
the scope of a transaction. If a current transaction is not active, a new one is initiated
before sending the event or invoking the operation on the proxy object provided by the
component. The new transaction is committed as soon as the operation is complete.

Transaction policy declarations can be defined in the deployment descriptor for each
event port defined by the component.

62.2.8.2 Security Policies for Events

CORBA components permits access control policies based on roles to be associated
with the generation and consumption of events. This is accomplished by associating
ACLs with the component ports used to emit/publish and consume events and using
CORBA security to restrict access. These policies provide access control based on role
for both event generation and consumption.

62.2.9 Persistence

The entity container API type supports the use of a persistence mechanism for making
component state durable, e.g. storing it in a persistent store like a databasntitize
container API type defines two forms of persistence support:

® container-managed persistence (CMP) the component developer simply defines
the state which is to be made persistent and the container (in conjunction with
generated code) automatically saves and restores state as required.

Container-managed persistence is selected by defining the abstract state associated
with a component segment using the state declaration language of the CORBA
persistent state service and connecting that state declaration to a component
segment using CIDL.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

* self-managed persistence (SMP)the component developer assumes the
responsibility for saving and restoring state when requested to do so by the
container.

Self-managed persistence is selected via CIDL declaration and triggered by the
container invoking the callback interfaces (which the component must implement)
defined later in this chapter (Section 62.3).

The following table (Table 62-5) summarizes the choices and their required
responsibilities:

Table 62-5Persistence Support for Entity Container API Type

Persistence Persistence Persistence Callback
Support Mechanism Responsibility Classes Interfaces
Container CORBA Container Generated Generated
Managed Code Code
Container User Container Component Generated
Managed implements Code

Self-managed CORBA Component Generated Component
Code implements

Self-managed User Component Component Component
implements implements

62-130

Container-managed vs. self-managed persistence is selected via the deployment
descriptor for each segment of the component.

62.2.9.1 Container-managed Persistence

Container-managed persistence may be accomplished using the CORBA persistent
state service or any user-defined persistence mechanism. When the CORBA persistent
state service is used, the container manages all interactions with the persistence
provider and the component developer need not use the persistence interfaces offered
by the container. With container-managed persistence using the CORBA persistent
state service, it is possible to provide automatic code generation for the storage
factories, finders, and some callback operations.

If container-managed persistence is to be accomplished with a user-defined persistence
mechanism, the component developer must implement the various persistence classes
defined in the persistence framework.

Container-managed persistence is selected using CIDL and tailored using XML at
deployment time to specify connections to specific persistence providers and persistent
stores.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

62.2.9.2 Self-managed Persistence

Self-managed persistence is also supported byetiiggy container API type. Like
container-managed persistence, the component developer has two choices: to use the
CORBA persistent state service or some user-defined persistence mechanism. But
since no declarations are available to support code generation, the component
developer is responsible for implementing both the callback interfaces and the
persistence classes. The container supports access to a component persistence
abstraction provided by the CORBA persistent state service, which hides many of the
details of the underlying persistence mechanism from the component developer.

Self-managed persistence is selected using CIDL and tailored using XML at
deployment time to specify connections to specific persistence providers and persistent
stores.

62.2.10 Application Operation Invocation

The application operations of a component can be specified on both the component’s
supported interfaces and the provided interfaces. These operations are normal CORBA
object invocations.

Application operations may raise exceptions, both application exceptions (i.e. those
defined as part of the IDL interface definition) and system exceptions (those that are
not). Exceptions defined as part of the IDL interfaces defined for a component (that
includes both provided interfaces and supported interfaces) are raised back to the client
directly and do not affect the current transaction. All other exceptions raised by the
application are intercepted by the container which then raises the
TRANSACTION_ROLLEDBACK exception to the client, if a transaction is active.
Otherwise they are reported back to the client directly.

62.2.11 Component Implementations

A component implementation consists of one or mexecutorsas described in . Each
executor describes the implementation characteristics of a particular component
segment. The session container API type consists of a sexgeutor with a single

segment which is activated in response to an operation request on any component facet.
The entity container API type can be made up of multiple segments, each of which is
associated with a different abstract state declaration. Each segment is independently
activated when an operation request on a facet associated with that segment is received

62.2.12 Component Levels

The CORBA component specification defines two levels of component function which
can be used by component developers and supported by CORBA container providers:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

62-132

® basic- The basic CORBA component supports a single interface (or multiple
interfaces related by inheritance) and does not define any ports (provided interfaces
or event source/sinks). The implementation of a basic component may use
transaction, security, and simple persistence (i.e. a single segment) and relies on its
container to manage the construction of CORBA object references.

The basic component is functionally equivalent to the EJB 1.1 Component
Architecture.

® extended- The extended component is a basic component with multiple ports
(supported interfaces, provided interfaces and/or event source/sinks). The
implementation of the extended component may use all basic function, advanced
persistence (multiple segments) plus the event model and participates in the
construction of component object references.

The component interfaces defined in this specification have been structured into
functional modules corresponding to the two levels of components defined above.

® Basic container APIs are defined in Section 62.3.

®* Extended container APIs are defined in Section 62.4.

Partitioning the component function into two discrete packages permits the
EJB 1.1 APIs to be used to implement basic CORBA components in Java. It
also supports the construction of CORBA components in any supported
CORBA language which can be accessed by EJB clients. This is described
further in Chapter 64, “Integrating with Enterprise JavaBeans”.

62.2.13 Component Categories

As indicated in Section 62.1.4, this specification defines four component categories
whose behavior is specified by the twontainer API types. Additionally we reserve

a component category to describe the empty container (i.e. a container API type which
does not use one of the API frameworks defined in this specification). The four
component categories are described briefly in the following sections. The component
categories are independent of the component levels defined in Section 62.2.12.

62.2.13.1 The Service Component

The servicecomponent is a CORBA component with the following properties:
® no state

® no identity

® behavior

The lifespan of &servicecomponent is equivalent to the lifetime of a single operation
request (i.emethod) so it is useful for functions such as command objects which have
no duration beyond the lifetime of a single client interaction with them. A service
component can also be compared to a traditional TP monitor program like a Tuxedo
service or a CICS transaction. A service component provides a simple way of
wrapping existing procedural applications.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

A service component is equivalent to a stateless EJB session bean.

The following table (Table 62-6) summarizes the characteristics of a service
component as seen by the server programmer:

Table 62-6 Service Component Design Characteristics

Design Characteristic

Property

External Interfaces

As defined in the component IDL

Internal Interfaces

Base Set plus
SessionContext (basic)
Session2Context (extended)

Callback Interfaces

SessionComponent

CORBA Usage Model stateless
External API Types keyless
Client Design Pattern Factory
Persistence No

Servant Lifetime Policy method

Transactions May use, but not included in current transaction
Events Transactional or Non-transactional
Executor Single segment with a single servant and no managed storage

Because of its absence of state, any programming language servant can service any
Objectld , enabling such servants to be managed as a pool or dynamically created as
required, depending on usage patterns. Because a service component has no identity,
Objectlds can be managed by the POA, not the component implementor, and the
client sees only the factory design pattern.

The service component can use either container-managed or self-managed transactions

62.2.13.2 The Session Component

The sessioncomponent is a CORBA component with the following properties:
® transient state
® identity which is not persistent

® behavior

The lifespan of asessioncomponent is specified using the servant lifetime policies
defined in Section 62.2.5. A session component (witteasaction lifetime policy) is
similar to an MTS component and is useful for modeling things like iterators, which
require transient state for the lifetime of a client interaction but no persistent store. A
session component is equivlent to the stateful session bean found in EJB.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

The following table (Table 62-7) summarizes the characteristics of a session
component as seen by the server programmer:

Table 62-7Session Component Design Characteristics

Design Characteristic

Property

External Interfaces

As defined in the component IDL

Internal Interfaces

Base Set plus
SessionContext (basic)
Session2Context (extended)

Callback Interfaces

SessionComponent plus (optionally)
SessionSynchronization

CORBA usage model conversational
Client Design Pattern Factory
External APl Types keyless
Persistence No
Servant Lifetime Policy Any

servant lifetime policy specified. At that point, the servant can be returned to a pool
created as required, depending on usage patterns. Because a session component has n

components may choose to participate in creating references if desired, and the client

Transactions May use, but not included in current transaction
Events Transactional or Non-transactional
Executor Single segment with a single servant and no managed storage
A programming language servant is allocated toChjectld for the duration of the
and re-used for a differe@bjectld . Alternatively, servants may be dynamically
persistent identityDbjectlds can be managed by the container, however extended
sees only the factory design pattern.
The session component shall use either container-managed or self-managed
transactions.
62.2.13.3 The Process Component
The process component is a CORBA component with the following properties:
® persistent state which is not visible to the client and is managed bgrieess
component implementation or the container
® persistent identity which is managed by thecesscomponent and can be made
visible to the client only through user-defined operations
® behavior which may be transactional.
62-134

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

The process component is intended to model objects that represent business processes
(e.g. applying for a loan, creating an order, etc.) rather than entities (e.g. customers,
accounts, etc.). The major difference betw@eacesscomponents andntity

components is that thgrocesscomponent does not expose its persistent identity to the
client (except through user-defined operations).

The following table (Table 62-8) summarizes the characteristics of process component
as seen by the server programmer:

Table 62-8Process Component Design Characteristics

Design Characteristic Property
External Interfaces As defined in component IDL
Internal Interfaces Base set plus

EntityContext (basic)
Entity2Context (extended)

Callback Interfaces EntityComponent
CORBA usage model durable

Client Design Pattern Factory

External APl Types keyless

Persistence Self-managed with or without PSS

or Container-managed with or without PSS

Servant Lifetime Policy Any

Transactions May use, and can be included in current transaction
Events Non-transactional or transactional events
Executor Multiple segments with associated managed storage

A process component may have transactional behavior. The container will interact with
the CORBA transaction service to participate in the commit process.The process
component shall use container-managed transactions. This is identical to the EJB
restrition for Entity Beans.

The process component can usntainer-managedor self-managedpersistence

using either the CORBA persistent state service or a user-defined persistence
mechanism. The implications of the various choices are described in Section 62.2.9.
The entity container uses callback interfaces which enable the process component’s
implementation to retrieve and save state data at activation and passivation
respectively.

62.2.13.4 The Entity Component

The entity component is a CORBA component with the following properties:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

® persistent state which is visible to the client and is managed bprtliey
component implementation or the container

¢ identity which is architecturally visible to its clients througlpamaryKey
declaration

® behavior which may be transactional.

As a fundamental part of the architectuemtity components expose their persistent
state to the client as a result of declaringramaryKey value on their home
declaration. The entity component may be used to implement the entity bean in EJB.

The following table (Table 62-9) summarizes the characteristiantify component
as seen by the server programmer:

Table 62-9Entity Component Design Characteristics

Design Characteristic

Property

External Interfaces

As defined in the component IDL

Internal Interfaces

Base set plus
EntityContext (basic)
Entity2Context (extended)

Callback Interfaces

EntityComponent

CORBA usage model

durable

Client Design Pattern

Factory or Finder

External API Types

keyfull

Persistence

or Container-managed with or without PSS

Self-managed with or without PSS

Servant Lifetime Policy

Any

Transactions

May use, and can be included in current transaction

The entity component shall use container-managed transactions. The container shall
interact with the CORBA transaction service to participate in the commit process. This

The entity component can usentainer-managedor self-managedpersistence using
either the CORBA persistent state service or a user-defined persistence mechanism.
The implications of the various choices are described in Section 62.2.9. The entity
container uses callback interfaces which enable the entity component’s implementation
to retrieve and save state data at activation and passivation, respectively.

Events Non-transactional or transactional events
Executor Multiple segments with associated managed storage
is identical to the EJB restriction for Entity Beans.
62-136

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Server Programming Environment 29

62

62.3 Server Programming Interfaces - Basic Components

This section defines the local interfaces used and provided by the component developer
for basic components. These interfaces are then grouped as follows:

® interfaces common to both container API types
® interfaces supported by the session container API type only

® interfaces supported by the entity container API type only

Unless otherwise indicated, all of these interfaces are defined withiBake module
embedded within th€omponents module.

62.3.1 Component Interfaces

All components deal with three sets of interfaces:

® internal interfaces which are used by the component developer and provided by the
container to assist in the implementation of the component’s behavior,

¢ external interfaces which are used by the client and implemented by the component
developer, and

¢ callback interfaces which are used by the container and implemented by the
component, either in generated code or directly, in order for the component to be
deployed in the container.

A container API type defines a base set of internal interfaces which the component
developers use in their implementation. These interfaces are then augmented by others
that are unigue to the component category being developed.

® CCMContext - which serves as a bootstrap and provides accessors to the other
internal interfaces including access to the runtime services implemented by the
container.

Each container API type has it's own specializationG8MContext which we
refer to as a context.

® UserTransaction - which wraps the demarcation subset of the CORBA
transaction service required by the application developer.

® EnterpriseComponent - which is the base class that alllback interfaces
derive from.

All components implement a callback interface which is determined by the
component category. It serves the same role as EnterpriseBean in EJB.

When a component instance is instantiated in a container, it is passed a reference to its
context, a local interface used to invoke services. For basic components, these services
include transactions and security The component uses this reference to invoke
operations required by the implementation at runtime beyond what is specified in its
deployment descriptor.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic

62

62-138

62.3.2 Interfaces Common to both Container API Types

This section describes the interfaces and operations provided bycbothiner API
typesto support all categories of CORBA components.

62.3.2.1 The CCMContext Interface

The CCMContext is aninternal interface which provides a component instance with
access to the common container-provided runtime services applicable to both
container API types. It serves as a “bootstrap” to the various services the container
provides for the component.

The CCMContext provides the component access to the various services provided by
the container. It enables the component to simply obtain all the references it may
require to implement its behavior.

typedef SecurityLevel2::Credentials Principal; exception lllegalState { };

local interface CCMContext {

Principal get_caller_principal();

CCMHome get_ CCM_home();

boolean get_rollback_only() raises (lllegalState);

Transaction::UserTransaction get_user_transaction()
raises (lllegalState);

boolean is_caller_in_role (in string role);

void set_rollback_only() raises (lllegalState);

h

get_caller_principal

Theget_caller_principal operation obtains the CORBA security credentials in effect
for the caller. Security on the server is primarily controlled by the security policy in the
deployment descriptor for this component. The component may use this operation to
determine the credentials associated with the current client invocation.

get CCM_home

The get CCM_home operation is used to obtain a reference to the home interface.
The home is the interface which supports factory and finder operations for the
component and is defined by thme declaration in component IDL.

get_rollback_only

The get_rollback_only operation is used by a component to test if the current
transaction has been marked for rollback. Tet_rollback_only operation returns
TRUE if the transaction has been marked for rollback, otherwise it retBMSSE . If
no transaction is active, thegalState exception shall be raised. When
get_rollback_only is issued by a component, it results in a
CosTransaction::Current::get_status being issued to the CORBA transaction
service and thatatus value returned being tested for tMARKED_ROLLBACK
state.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic

62

get_user_transaction

The get_user_transaction operation is used to access the
Transaction::UserTransaction interface. TheserTransaction interface is used
to implement self-managed transactions. ThegalState exception shall be raised if
this component is using container-managed transactions.

is_caller_in_role

Theis_caller_in_role operation is used by the CORBA component to compare the
current credentials to the credentials defined by the role parameter. If they match,
TRUE is returned. If notFALSE is returned.

set_rollback_only

The set_rollback_only operation is used by a component to mark an existing
transaction for abnormal termination. If no transaction is active |ltbgalState

exception shall be raised. Wheet_rollback_only is issued by a component, it

results in aCosTransaction::Current::rollback_only being issued to the CORBA
transaction service. The rules for the use of this operation are equivalent to the rules of
its corresponding CORBA transaction service operation.

62.3.2.2 The Home Interface

A home is anexternal interface which supports factory and finder operations for the
component. These operations are generated fronmdinee IDL declaration (see
Section 61.7, “Homes,” on page 61-53). The context supports an operation
(get_CCM_homg to obtain a reference to the component’s home interface.

62.3.2.3 The UserTransaction Interface

A CORBA component may use either container-managed or self-managed transactions,
depending on the component category. With container-managed transactions, the

component implementation relies on the transaction policy declarations packaged with
the deployment descriptor and contains no transaction APIs in its implementation code.

This is identical to container-managed transactions in EJB or the default
processing of an MTS component.

A component specifying self-managed transactions may use the CORBA transaction
service directly to manipulate the current transaction or it may choose to use a simpler
API, defined by this specification, which exposes only those transaction demarcation
functions needed by the component implementation.

Manipulation of the current transaction shall be consistent between the client, the
transaction policy specified in the deployment descriptor, and the component
implementation.

For example, if the client or the container starts a transaction, the compo-
nent may not end itommit or rollback). The rules to be used are defined
by the CORBA transaction service.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic

62

62-140

If the component uses theosTransactions::Current interface, all operations
defined forCurrent may be used as defined by the CORBA transaction service with
the following exceptions:

® The Control object returned byguspendmay only be used withesume

® Operations orControl are not supported with CORBA components and may raise
the NO_IMPLEMENT system exception.

TheControl interface in the CORBA transaction service supports acces-
sors to theCoordinator and Terminator interfaces. Th&€oordinator is

used to build object versions of XA resource managers TEhminator is

used to allow a transaction to be ended by someone other than the origina-
tor. Since neither function is within the scope of the demarcation subset of
CORBA transactions used with CORBA components, we allow CORBA
transaction services implementations used with CORBA components to
raise theNO_IMPLEMENT exception. This provides the same level of
function as théean-managedransaction policy in Enterprise Java-

Beans.

The UserTransaction is aninternal interface implemented by the container and is
defined within its own moduleTransaction , within the Components module
(Components::Transaction). Because th&JserTransaction is a wrapper over
CosTransactions::Current , it is thread specific. Th&JserTransaction exposes a
simple demarcation subset of the CORBA transaction service to the component. The
context supports an operatiogdt_user_transaction to obtain a reference to the
UserTransaction interface. TheUserTransaction interface is defined by the

following IDL:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic

62

typedef sequence<octet> TranToken;
exception NoTransaction { };
exception NotSupported { };
exception SystemeError { };

exception Rollback { };

exception HeuristicMixed { };
exception HeuristicRollback { };
exception Security { };

exception InvalidToken { };

enum Status {
ACTIVE,
MARKED_ROLLBACK,
PREPARED,
COMMITTED,
ROLLED_BACK,
NO_TRANSACTION,
PREPARING,
COMMITTING,
ROLLING_BACK

h

local interface Transaction {

void begin () raises (NotSupported, SystemError);

void commit () raises (Rollback, NoTransaction,
HeuristicMixed, HeuristicRollback,
Security, SystemError);

void rollback () raises (NoTransaction, Security, SystemError);

void set_rollback_only () raises (NoTransaction, SystemError);

Status get_status() raises (SystemError);

void set_timeout (in long to) raises (SystemError);

TranToken suspend () raises (NoTransaction, SystemError);

void resume (in TranToken txtoken)
raises (InvalidToken, SystemError);

h

begin

Thebegin operation is used by a component to start a new transaction and associate it
with the current thread. Whelmegin is issued by a component, it results in a
CosTransaction::Current::begin with report_heuristics set toTRUE being

issued to the CORBA transaction service. The rules for the use of this operation are
equivalent to the rules of its corresponding CORBA transaction service operation. The
NotSupported exception is return if it is received from the CORBA transaction

service. Since nested transactions are not supported by CORBA component containers,
this indicates an attempt to start a new transaction when an existing transaction is
active. All other exceptions are converted to estemError exception.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic

62

62-142

commit

The commit operation is used by a component to terminate an existing transaction
normally. Whencommit is issued by a component, it results in a
CosTransaction::Current::commit being issued to the CORBA transaction service.
The rules for the use of this operation are equivalent to the rules of its corresponding
CORBA transaction service operation. If no transaction is activeNthiEransaction
exception shall be raised. If tiHERANSACTION_ROLLEDBACK system exception

is returned, it is converted to tHeollback exception. The
CosTransaction::HeuristicMixed and CosTransaction::HeuristicRollback
exceptions are reported as tHeuristicMixed andHeuristicRollback exceptions
respectively. TheNO_PERMISSION system exception is converted to tBecurity
exception. All other exceptions are converted to 8ystemError exception.

rollback

Therollback operation is used by a component to terminate an existing transaction
abnormally. Wherrollback is issued by a component, it results in a
CosTransaction::Current::rollback being issued to the CORBA transaction
service. The rules for the use of this operation are equivalent to the rules of its
corresponding CORBA transaction service operation. If no transaction is active, the
NoTransaction exception shall be raised. TiMO_PERMISSION system exception

is converted to th&ecurity exception. All other exceptions are converted to the
SystemError exception.

set_rollback_only

The set_rollback_only operation is used by a component to mark an existing
transaction for abnormal termination. Wheet_rollback_only is issued by a
component, it results in @osTransaction::Current::rollback_only being issued to

the CORBA transaction service. The rules for the use of this operation are equivalent
to the rules of its corresponding CORBA transaction service operation. If no
transaction is active, thHoTransaction exception shall be raised. All other

exceptions shall be converted to tBgstemError exception.

get_status

The get_status operation is used by a component to determine the status of the
current transaction. If no transaction is active, it returnsNio@ransaction status

value. Otherwise it returns the state of the current transaction. Vgberstatus is

issued by a component, it results irCasTransaction::Current::get_status being
issued to the CORBA transaction service. The status values returned by this operation
are equivalent to the status values of its corresponding CORBA transaction service
operation. All exceptions shall be converted to SystemError exception.

set_timeout

Theset_timeout operation is used by a component to associate a time-out value with
the current transaction. The timeout value)(is specified in seconds. When
set_timeout is issued by a component, it results in a
CosTransaction::Current::set_timeout being issued to the CORBA transaction

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic

62

service. The rules for the use of this operation are equivalent to the rules of its
corresponding CORBA transaction service operation. All exceptions are converted to
the SystemError exception.

suspend

The suspend operation is used by a component to disconnect an existing transaction
from the current thread. Theuspend operation returns aranToken which can only

be used in a subsequenresume operation. Whersuspend is issued by a component,

it results in aCosTransaction::Current::suspend being issued to the CORBA
transaction service. The rules for the use of this operation are more restrictive than the
rules of its corresponding CORBA transaction service operation:

® Only one transaction may be suspended

® The suspended transaction is the only transaction that may be resumed.

If no transaction is active, thHoTransaction exception shall be raised. All other
exceptions are converted to tiSgstemError exception.

resume

Theresume operation is used by a component to reconnect a transaction previously
suspended to the current thread. ThranToken identifies the suspended transaction
which is to be resumed. If the transaction identifiedTsgnToken has not been
suspended, thewvalidToken exception shall be raised. Wheesume is issued by a
component, it results in @osTransaction::Current::resume being issued to the
CORBA transaction service. The rules for the use of this operation are more restrictive
than the rules of its corresponding CORBA transaction service operation since the
single suspended transaction is the only transaction that may be resumed. All other
exceptions are converted to tiSgstemError exception.

TheUserTransactioninterface is equivalent to thdserTransaction

interface {avax.transaction.UserTransactior) in EJB with the addition
of thesuspendandresumeoperations.

62.3.2.4 The EnterpriseComponent Interface

All CORBA components must implement an interface derived from the
EnterpriseComponent interface to be housed in a component container.
EnterpriseComponent is acallback interface which defines no operations.

local interface EnterpriseComponent { };

62.3.3 Interfaces Supported by the Session Container API Type

This section describes the interfaces supported by the session container API type. This
includes bothinternal interfaces provided by the container acallback interfaces
which must be implemented by components deployed in this container API type.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic

62

62-144

62.3.3.1 The SessionContext Interface

The SessionContext is aninternal interface which provides a component instance
with access to the container-provided runtime services. It serves as a “bootstrap” to the
various services the container provides for the component.

The SessionContext enables the component to simply obtain all the references it
may require to implement its behavior.

exception lllegalState { };

local interface SessionContext : CCMContext {
Object get CCM_object() raises (lllegalState);
h

get_ CCM_object

The get CCM_object operation is used to get the reference used to invoke the
component. For basic components, this will always be the component reference. For
extended components, this will be a specific facet reference. If this operation is issued
outside of the scope of eallback operation, thdllegalState exception is returned.

62.3.3.2 The SessionComponent Interface

The SessionComponent is acallback interface implemented by a session CORBA
component. It provides operations for disassociating a context with the component and
to manage servant lifetimes for a session component.

enum CCMExceptionReason {
SYSTEM_ERROR,
CREATE_ERROR,
REMOVE_ERROR,
DUPLICATE_KEY,
FIND_ERROR,
OBJECT_NOT_FOUND,
NO_SUCH_ENTITY};

exception CCMException {CCMExceptionReason reason};

local interface SessionComponent : EnterpriseComponent {
void set_session_context (in SessionContext ctx)
raises (CCMException);
void ccm_activate() raises (CCMException);
void ccm_passivate() raises (CCMEXxception);
void ccm_remove () raises (CCMException);

h

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic

62

set_session_context

The set_session_context operation is used to set tf&essionContext of the
component. The container calls this operation after a component instance has been
created. This operation is called outside the scope of an active transaction.The
component may raise tHeCMException with the SYSTEM_ERROR minor code to
indicate a failure caused by a system level error.

ccm_activate

Theccm_activate operation is called by the container to notify a session component
that it has been made active. The component instance should perform any initialization
required prior to operation invocation.The component may rais€CBIException

with the SYSTEM_ERROR minor code to indicate a failure caused by a system level
error.

ccm_passivate

The ccm_passivate operation is called by the container to notify a session

component that it has been made inactive. The component instance should release any
resources it acquired at activation time.The component may raisSe @h¢Exception

with the SYSTEM_ERROR minor code to indicate a failure caused by a system level
error.

ccm_remove

Theccm_remove operation is called by the container when the servant is about to be
destroyed. It informs the component that it is about to be destroyed.The component
may raise theCCMException with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

62.3.3.3 The SessionSynchronization Interface

The SessionSynchronization interface is acallback interface which may optionally
be implemented by the session component. It permits the component to be notified of
transaction boundaries by its container.

exception CCMException {CCMExceptionReason reason};

local interface SessionSynchronization {
void after_begin () raises (CCMException);
void before_completion () raises (CCMException);
void after_completion (
in boolean committed) raises (CCMException);

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic

62

after_begin

The after_begin operation is called by the container to notify a session component
that a new transaction has started, and that the subsequent operations will be invoked in
the context of the transaction.The component may rais€€tbBException with the
SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

before_completion

The before_completion operation is called by the container just prior to the start of
the two-phase commit protocol. The container implements the
CosTransactions::Synchronization interface of the CORBA transaction service
and invokes théefore_completion operation on the component before starting its
own processing. The component may raise @@&MException with the
SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

after_completion

Theafter_completion operation is called by the container after the completion of the
two-phase commit protocol. If the transaction has committedctimmitted value is

set toTRUE. If the transaction has been rolled back, ttammitted value is set to
FALSE. The container implements th@osTransactions::Synchronization

interface of the CORBA transaction service and invokesattier completion

operation on the component after completing its own processing. The component may
raise theCCMException with the SYSTEM_ERROR minor code to indicate a

failure caused by a system level error.

62.3.4 Interfaces Supported by the Entity Container APl Type

This section describes the interfaces supported by the entity container API type. This
includes bothinternal interfaces provided by the container acallback interfaces
which must be implemented by components deployed in this container API type.

62.3.4.1 The EntityContext Interface

TheEntityContext is aninternal interface which provides a component instance with
access to the container-provided runtime services. It serves as a “bootstrap” to the
various services the container provides for the component.

The EntityContext enables the component to simply obtain all the references it may
require to implement its behavior.

62-146 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic

62

exception lllegalState { };

local interface EntityContext : CCMContext {
Object get_ CCM_object () raises (lllegalState);
PrimaryKeyBase get _primary_key () raises (lllegalState);

h

get_ CCM_object

The get_ CCM_object operation is used to obtain the reference used to invoke the
component. For basic components, this will always be the component reference. For
extended components, this will be a specific facet reference. If this operation is issued
outside of the scope of eallback operation, thdllegalState exception is returned.

get_primary_key

The get_primary_key operation is used by aentity component to access the

primary key value declared for this component’s home. This operation is equivalent to
issuing the same operation on the component’s home interface. If this operation is
issued outside of the scope ofcallback operation, thdllegalState exception is
returned.

62.3.4.2 The EntityComponent Interface

The EntityComponent is acallback interface implemented by both process and
entity components. It contains operations to manage the persistent state of the
component.

Issue — As currently defined, any operation request will cause the container
to activate the component segment, if required. Since the component
reference is well-structured, we could consider the possibility of trapping
navigation operations prior to activation and executing them without actually
activating the component (or we could leave that to clever implementations).

exception CCMException {CCMExceptionReason reason};

local interface EntityComponent : EnterpriseComponent {
void set_entity context (in EntityContext ctx)
raises (CCMException);
void unset_entity context (Jraises (CCMException);
void ccm_activate () raises (CCMException);
void ccm_load ()raises (CCMException);
void ccm_store (Jraises (CCMException);
void ccm_passivate (Jraises (CCMEXxception);
void ccm_remove ()raises (CCMException);

h

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic

62

62-148

set_entity_context

The set_entity _context operation is used to set thentityContext of the

component. The container calls this operation after a component instance has been
created. This operation is called outside the scope of an active transaction.The
component may raise tHeCMException with the SYSTEM_ERROR minor code to
indicate a failure caused by a system level error.

unset_entity _context

The unset_entity _context operation is used to remove tlintityContext of the
component. The container calls this operation just before a component instance is
destroyed. This operation is called outside the scope of an active transaction. The
component may raise tHeCMException with the SYSTEM_ERROR minor code to
indicate a failure caused by a system level error.

ccm_activate

Theccm_activate operation is called by the container to notify the component that it
has been made active. For most CORBA component implementations, no action is
required. The component instance should perform any initialization (other than
establishing its state) required prior to operation invocation. This operation is called
within an unspecified transaction context. The component may raise the
CCMException with the SYSTEM_ERROR minor code to indicate a failure caused
by a system level error.

ccm_load

The ccm_load operation is called by the container to instruct the component to
synchronize its state by loading it from its underlying persistent store. When container-
managed persistence is implemented using the CORBA persistent state service, this
operation can be implemented in generated code. If self-managed persistence is being
used, the component is responsible for locating its state in a persistent store. This
operation executes within the scope of the current transaction. The component may
raise theCCMException with the SYSTEM_ERROR minor code to indicate a

failure caused by a system level error.

ccm_store

The ccm_store operation is called by the container to instruct the component to
synchronize it state by saving it in its underlying persistent store. When container-
managed persistence is implemented using the CORBA persistent state service, this
operation can be implemented in generated code. If self-managed persistence is being
used, the component is responsible for saving its state in the persistent store. This
operation executes within the scope of the current transaction. The component may
raise theCCMException with the SYSTEM_ERROR minor code to indicate a

failure caused by a system level error.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Basic

62

ccm_passivate

Theccm_passivate operation is called by the container to notify the component that

it has been made inactive. For most CORBA component implementations, no action is
required. The component instance should perform any termination processing (other
than saving its state) required prior to being passivated. This operation is called within
an unspecified transaction context. The component may raisEE@MException

with the SYSTEM_ERROR minor code to indicate a failure caused by a system level
error.

ccm_remove

Theccm_remove operation is called by the container when the servant is about to be
destroyed. It informs the component that it is about to be destroyed. This operation is
always called outside the scope of a transaction. The component raises the
CCMException with the REMOVE_ERROR minor code if it is does not allow the
destruction of the component. The component may rais€tlException with the
SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

TheEntityComponent interface is equivalent to thentityBean interface

in Enterprise JavaBeans. Container-managed persistence with the CORBA
persistent state service supports automatic code generaticstfor load
andccm_store For self-managed persistence, the component implementor
provides theccm_loadandccm_storemethods. Since both process and
entity components have persistent state and container-managed persis-
tence, the same callback interfaces can be used.

62.4 Server Programming Interfaces - Extended Components

This section defines the local interfaces used and provided by the component developer
for extended components. These interfaces are grouped as in Section 62.3. Unless
otherwise indicated, all of these interfaces are defined withinetktended module
embedded within th€omponents module. Extended components add interfaces in

the following areas:

® CCM2Context - adds functions unique to extended components.

Each container API type has it's own specializationGM2Context which we

refer to as a context. The context for extended components adds accessors to
persistence and event services and supports operations for managing servant
lifetime policy, and creating and managing object references in conjunction with the
POA.

® Componentld - encapsulates a component identifier, which is an abstract
information model used to locate the component’s state.

Only theentity container API type supports theComponentld interface.

* Event - offers the subset of the CORBA notification service supported by CORBA
components.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

62.4.1 Interfaces Common to both Container API Types

This section describes the interfaces and operations provided for extended components
by bothcontainer API types to support all categories of CORBA components.

62.4.1.1 The CCM2Context Interface

The CCM2Context is aninternal interface which extends tHeCMContext interface

to provide the extended component instance with access to additional container-
provided runtime services applicable to bathntainer API types. These services

include advanced persistence using the CORBA persistent state service, events using
CORBA natification, and runtime management of component references and servants
using the POA.The€CM2Context is defined by the following IDL:

typedef CosPersistentState::CatalogBase CatalogBase;
typedef CosPersistentState:: Typeld Typeld;

exception PolicyMismatch { };
exception PersistenceNotAvailable { };

local interface CCM2Context : CCMContext {
HomeRegistration get_home_registration ();
Events::Event get_event();
void req_passivate () raises (PolicyMismatch);
CatalogBase get_persistence (in Typeld catalog_type_id)
raises (PersistenceNotAvailable);

h

get_home_registration

The get_home_registration operation is used to obtain a reference to the
HomeRegistration interface. TheHomeRegistration is used to register component
homes so they may be located by tHemeFinder .

get_event

The get_event operation is used to obtain a reference to Bwent interface. The
Event interface is used by the component to emit or publish events for external
consumption or to subscribe to events it needs to process.

req_passivate

Thereq_passivate operation is used by the component to inform the container that it
wishes to be passivated when its current operation completes. To be valid, the
component must have a servant lifetime policycomponentor container. If not the
PolicyMismatch exception shall be raised.

62-150 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

get_persistence

The get_persistence operation provides the component access to a persistence
framework provided by an implementation of the CORBA persistence state service. It
returns aCosPersistentState::CatalogBase which serves as an index to the
available storage homes. TigatalogBase is identified by its
CosPersistentState::Typeld catalog_type_id If the CatalogBase identified by
catalog_type_idis not available on this container, tiRersistenceNotAvailable

exception shall be raised.

62.4.1.2 The HomeRegistration Interface

The HomeRegistration is aninternal interface which may be used by the CORBA
component to register its home so it can be located bijomeFinder .

TheHomeRegistrationinterface allows a component implementation to
advertise a home instance that can be used to satisfy a client’s find_home
request. It may also be used by an administrator to do the same thing. It is
likely that the combination dilomeRegistrationandHomeFinder inter-

faces will work within the domain of a single container provider unless
multiple implementations use other shareable directory mechanisms, e.g.
an LDAP global directory. FederatingomeFindersis a similar problem

to federating CORBA security domains and we defer to the security people
for an architecture for such federation rather than attempting to specify
such an architecture in this specification.

The HomeRegistration interface is defined by the following IDL:

local interface HomeRegistration {
void register_home (
in CCMHome home,
in string home_name);
void unregister_home (in CCMHome home);

h

register_home

Theregister_home operation is used to register a component home with the
HomeFinder so it can be located by a component client. leene parameter
identifies the home being registered and can be used to obtain both the
IR::ComponentDef (CCMHome::get_component_def) and thelR::InterfaceDef
(CORBA::Object::get_interface_def) to support both
HomeFinder::find_home_by component_type and

HomeFinder::find_home_by home_type .Thehome_name parameter identifies
an Interoperable Naming Service (INS) name that can be used as input to the
HomeFinder::find_home_by name operation. If thehome_name parameter is
NULL, no name is associated with this home so this home cannot be retrieved by
name.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

62-152

unregister_home

The unregister_home operation is used to remove a component home from the
HomeFinder . Onceunregister_home completes, a client will never be returned a
reference to the home specified as being unregistered hohee parameter identifies
the home being unregistered.

62.4.1.3 The ProxyHomeRegistration Interface

Because CORBA components exploit the dynamic activation features of the POA, it is
possible for some component types to provide a home which is not collocated with the
component instances it creates. This permits load balancing criteria to be applied in
selecting the actual server and POA where this instance will be created. The
ProxyHomeRegistration is aninternal interface, derived from

HomeRegistration , which can be used by the CORBA component to register a
remote home (i.e. one that BOT collocated with the component) so it can be

returned by eHomeFinder . The ProxyHomeRegistration interface is defined by

the following IDL:

exception UnknownActualHome { };
exception ProxyHomeNotSupported { };

local interface ProxyHomeRegistration : HomeRegistration {
void register_proxy _home (
in CCMHome rhome,
in CCMHome ahome)
raises (UnknownActualHome, ProxyHomeNotSupported);

h

register_proxy_home

Theregister_proxy _home operation is used to register a component home, not
collocated with the instances that it can create, withiHeeneFinder so the proxy
home can be used by component clients. Theme parameter identifies the proxy
home being registered. Trehome parameter identifies the actual home which the
rhome is associated with. If the actual home specifieddiyomeis not known, the
UnknownActualHome exception shall be raised. If this component does not support
proxy homes, théroxyHomeNotSupported exception shall be raised. Support for
proxy homes is a component implementation option.

62.4.1.4 The Event Interface

The Event is aninternal interface which supports operations for emitting and
publishing events and for subscribing to events emitted or published by others. The
Event andLocalCookie interfaces are defined in their own module
(Components::Events) and provide a simple mechanism for connecting the
component to a CORBA notification channel established and managed by the
container. The implementations of the operations generated fromntiits, publishes
andconsumesdeclaration in the component’s IDL (see Section 61.6, “Events,” on

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

page 61-44) delegate to these interfaces. The context supports an operation
(get_evenj to obtain a reference to thevent interface. TheEvent interface is
defined by the following IDL:

typedef CosNotification::EventHeader EventHeader;
typedef CosNotifyChannnelAdmin::Channelld Channel;

exception ChannelUnavailable { };
exception InvalidSubscription { };
exception InvalidName { };
exception InvalidChannel { };

local interface LocalCookie {
boolean same_as (in LocalCookie cookie);};
local interface Event {
EventConsumerBase create_channel
(out Channel chid)
raises (ChannelUnavailable);
LocalCookie subscribe (
in EventConsumerBase ecb,
in Channel chid)raises (ChannelUnavailable);
void unsubscribe (in LocalCookie cookie)
raises (InvalidSubscription);
EventConsumerBase obtain_channel (
in string supp_name,
in EventHeader hdr) raises (InvalidName);
void listen (in EventConsumerBase ecb,
in string csmr_name) raises (InvalidName);
void push (in EventBase evt);
void destroy_channel (in Channel chid)raises (InvalidChannel);

same_as

The same_as operation compares twioocalCookie instances for equivalence and
returnsTRUE if equivalent, otherwise it returnBALSE.

create_channel

Thecreate_channel operation is used by a component to bind a notification channel
to be used to push component events. This operation correspondsutalishes
declaration in component IDL. It returns &ventConsumerBase which can be

used to push events into the channel. Whemeate_channel operation is issued by

a component, the container interacts with CORBA notification to create an event
channel for the components exclusive use. If the container cannot connect to the
channel, theChannelUnavailable exception shall be raised. Thohid is returned to

the component as an identifier of the channel.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

62-154

subscribe

The subscribe operation allows the component to express interest in receiving one or
more events. Thecbidentifies anEventConsumerBase which the container will

use to push the event to the component. If the container is not connected to the
channel, theChannelUnavailable exception shall be raised. The
EventConsumerBase must implement thgpush operation defined by the
<event_type>Consumer interface. Thesubscribe operation returns aookie

which is used to delete the subscription.

unsubscribe

The unsubscribe operation deletes the subscription specified bydbekie
previously returned bgubscribe . If no subscription is associated with theokie the
InvalidSubscription exception shall be raised.

obtain_channel

The obtain_channel operation is used by the component to obtain an
EventConsumerBase which it can use to push events. This operation corresponds to
an emits declaration in component IDL. Theupp_namestring identifies an
Interoperable Naming Service (INS) name which is used to identify the
SupplierAdmin to be used by CORBA notification. The name is associated with the
SupplierAdmin thorough container specific configuration data. The

obtain_channel operation may optionally specify thHeventHeader required by
CORBA notification which will be used for all events pushed to this channdidifis
present, it is prefixed to all events pushed to this channel. If not, it is defaulted as
described in Section 66.4, “Event Management Integration,” on page 66-252. If the
supp_hameis not recognized, thinvalidName exception shall be raised.

listen

Thelisten operation is used by the component to inform the container that it would
like to receive events of a particular type. This corresponds tatmsumes
declaration in component IDL. Themsr_namestring identifies an INS name which is
used to identify theConsumerAdmin to be used by CORBA notification. The name
is associated with th€onsumerAdmin thorough container specific configuration
data. The component provides BErentConsumerBase interface that implements
the push operation on thecevent_type>Consumer interface. If thecmsr_nameis
not recognized, thénvalidName exception shall be raised.

push

Thepush operation is used by a component to transmit an event. The evéig a
valuetype derived fronfEventBase .

destroy_channel

The destroy_channel operation is used by a component to delete the channel
identified bychid. The InvalidChannel exception can be raised if thehid parameter
is not the value previously returned loyeate_channel .

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

EJB does not have an event APl yet, but one is under development. The
Java 2 Platform, Enterprise Edition (J2EE) does however have a messag-
ing API (JMS) which supports publish/subscribe. This is an area that will
need to be harmonized with EJB in the future.

62.4.2 Interfaces Supported by the Session Container API Type

This section describes the interfaces supported for extended components by the session
container API type. This includes bothternal interfaces provided by the container
andcallback interfaces which must be implemented by components deployed in this
container API type.

62.4.2.1 The Session2Context Interface

The Session2Context is aninternal interface which extends th®essionContext

to provides a component instance with access to additional container-provided runtime
services for the session container API type. It adds the ability to create references for
components deployed insession container API type. Th&ession2Context is

defined by the following IDL:

enum BadComponentReferenceReason {
NON_LOCAL_REFERENCE,
NON_COMPONENT_REFERENCE,
WRONG_CONTAINER,

h

exception BadComponentReference {
BadComponentReferenceReason reason
h

exception lllegalState { };

local interface Session2Context : SessionContext, CCM2Context {
Object create_ref (in CORBA::Repositoryld repid);
Object create_ref from_oid (
in PortableServer::Objectld oid,
in CORBA::Repositoryld repid);
PortableServer::Objectld get_oid_from_ref (in Object ref)
raises (lllegalState, BadComponentReference);

h

create_ref

The create_ref operation is used to create a reference to be exported to clients to
invoke operations. Theepid parameter identifies thRepositoryld associated with
the interface for which a reference is being created.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

62-156

create_ref from_oid

The create_ref from_oid operation is used to create a reference to be exported to
clients which includes information provided by the component which it can use on
subsequent operation requests. Did parameter identifies th@®bjectld to be
encapsulated in the reference and thpid parameter identifies thRepositoryld
associated with the interface for which a reference is being created.

get_oid_from_ref

The get_oid_from_ref operation is used by the component to extractdlte
encapsulated in the reference. Tieé parameter specifies the reference which contains
the oid. This operation must be called within an operation invocation. If not the
lllegalState exception shall be raised. If the reference was not created by this
container, theBadComponentReference with the WRONG_CONTAINER minor
code is raised.

62.4.3 Interfaces Supported by the Entity Container APl Type

This section describes the interfaces provided for extended components by the entity
container API type. This includes bothternal interfaces provided by the container
andcallback interfaces which must be implemented by components deployed in this
container API type.

62.4.3.1 Component ldentifiers

The Componentld interface is arinternal interface provided by the entity container
API type through which the component implementation and the container exchange
identity information, referred to asomponent identifiecsThe Componentid

interface encapsulates a component identifier, which is an abstract information model.
The Componentld interface is used in the following ways:

®* Component implementations (usually home executor implementations) create
component identifiers to describe new components, and to create object references
that encapsulate the provided description. Hmity2Context interface acts as a
factory for component identifiers and as the factory for object references.

® The container encodes the information encapsulated by the component identifier in
the object identifier value it uses internally to create the object reference on the
encapsulated POA. The encoding is not specified, since a container’s choice of
encoding does not affect interoperability or portability.

® While dispatching an incoming request, the container extracts and decodes the
component identifier from th©bjectld . The extracted component identifier is
made available to the component executor through the context before the request is
dispatched to the component.

®* When the container invokexm_load in the component executor, the
implementation otcm_load uses the contents of the component identifier to
locate and incarnate the required component state.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

In the following discussions, component identifiers and component object references
are sometimes used as though the terms were synonymous. Since there is a one-to-one
relationship between a component identifier and an object reference created from the
component identifier, this discussion occasionally uses the term “component reference”
to mean “the component reference created from the component identifier in question”,
for the sake of brevity.

The Componentld interface does not explicitly specify the state representation it
encapsulates. The abstract state is implied by the interface and reflects the structure of
the executor it describes (see Chapter 615, “CCM Implementation Framework” for a
complete discussion of executor structure).

A component identifier encapsulates the following information:
* A facet identifiervalue denoting the target facet of the component reference

* A segment identifievalue denoting the target segment of the component reference
(i.e., the segment that supports the target facet)

® A sequence ofegment descriptors

A segment descriptor includes the following:
* A segment identifier denotes the segment being described

® A state identifiervalue that denotes the persistent state of the segment in some
storage mechanism.

A monolithic executor is represented as a degenerate case of the generalized
component identifier, where the target segment identifier is set to zero and the
sequence of segment descriptors contains a single element, whose segment identifier is
zero and whose state identifier denotes the persistent state of the component’s single
segment.

The facet identifier value zero is reserved to denote the component facet, i.e., the facet
that supports the component equivalent interface. The segment identifier value zero is
reserved to denote the segment that supports the component facet. For monolithic
executors, the segment identifier values is always zero.

State identifier is an abstraction that generalizes a variety of possible state identity
schemes. This specification provides a mechanism for describing state identifiers that
can be extended by component implementors, allowing customization for storage
mechanisms that do not support the standard persistence interfaces.

The Componentld local interface and supporting constructs are defined by the
following IDL:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

typedef short Segmentld;
const Segmentld COMPONENT_SEGMENT = 0;

typedef short Facetld;
const Facetld COMPONENT_FACET = 0;

typedef sequence<octet> IdData;
typedef CosPersistentState::pid Persistentld;

exception InvalidStateldData {};

typedef short StateldType;
const StateldType PERSISTENT_ID = 0;

abstract valuetype StateldValue {
StateldType get_sid_type();
IdData get_sid_data();

h

local interface StateldFactory {
StateldValue create (in IdData data) raises (InvalidStateldData);

J3

valuetype PersistentldValue : StateldValue {
private Persistentld pid;
Persistentld get_pid();
init (in Persistentld pid);

h

valuetype SegmentDescr {

private StateldValue sid;

private Segmentld seg;

StateldValue get_sid();

Segmentld get_seg_id();

init (in StateldValue sid, in Segmentld seg);
h

typedef sequence<SegmentDescr> SegmentDescrSeq;

local interface Componentid {
Facetld get_target_facet();
Segmentld get_target_segment();
StateldValue get_target_state id (in StateldFactory sid_factory)
raises (InvalidStateldData);
StateldValue get_segment_state_id (
in Segmentld seg,
in StateldFactory sid_factory)
raises (InvalidStateldData);
Componentld create_with_new_target (
in Facetld new_target_facet,
in Segmentld new_target_segment);

62-158 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

SegmentDescrSeq get_segment_descrs (
in StateldFactory sid_factory)
raises (InvalidStateldData);

h

62.4.3.2 StateldValue abstract valuetype

The StateldValue type is the base valuetype for concrete, storage-specific state
identity values. The container interacts with state identities completely in terms of this
interface. A single pre-defined concrete value type derived fBiateldValue is

provided forPersistentld state identities. Component implementors, or suppliers of
storage mechanisms that do not support the CORBA component persistence model can
provide their own state identity types by deriving frdtateldvValue and

implementing the required behaviors properly.

get_sid_type

The get_sid_type operation returns a discriminator (physically, a short) that
identifies the type of the state identity encapsulated byStaeldValue . This
specification defines the value zero (0) to denote a
Components::Extended::Persistentld state identifier.

Issue — do we need to define this as an OMG-allocated space?

get_sid_data

The get_sid_data operation returns the encapsulated state identity expressed in a
canonical form, as a sequence of octets. The implementation of the derived concrete
value type is responsible for converting its encapsulated data into this form, and for
supplying a factory which can construct an instance of the concrete type from an
IdData value (a sequence of octets).

62.4.3.3 StateldFactory Interface

StateldFactory is the abstract base interface for factories of state identity values
derived fromStateldValue . An implementation ofStateldFactory must be supplied
with the implementation of a concrete state identity type. Ifldii2ata octet sequence
provided in thedata parameter cannot be decoded to create a proper instance of the
expected state identity concrete type, the operation raisdésvalidStateldData
exception.

create

The create operation constructs an instance of a concrete state identifier from the
octet sequence parameter. This operation performs the inverse of the transformation
performed by theyet_sid_data .

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

62-160

62.4.3.4 PersistentldValue valuetype

The PersistentldValue type is a specialization dbtateldValue that encapsulates a
Persistentld value for inclusion in a component identifier.

get_pid
Theget_pid operation returns thPersistentld value encapsulated by the value type.

init
The initializer forPersistentldValue creates an instance of the valuetype that
encapsulates theersistentld value passed as a parameter.

get_sid_value

The implementation ofjet_sid_value for PersistentldValue performs no
transformation on the encapsulatBdrsistentld value. The sequence of octets
returned byget_sid_value is identical to the encapsulaté&drsistentld value.

62.4.3.5 SegmentDescr valuetype

The SegmentDescr type describes an executor segment, encapsulating a segment
identifier and a state identifier. A component identifier for a segmented executor
encapsulates a sequenceSgfgmentDescr instances.

get_sid
The get_sid operation returns the state identity value of the segment being described.

get_seg_id

The get_seg_id operation returns the segment identifier of the segment being
described.

init
This initializer sets the value of the encapsulated segment identifier and state identifier
to the values of the respective parameters.

62.4.3.6 Componentld Interface

TheComponentld interface encapsulates a complete component identity. Instances of
Componentld can only be created by thentity2Context interface, which is

supplied by the container, or by duplicating an existing component identifier with a
new target value, wittComponentid::create_with_new_target . Instances of
Componentld are also provided by thEntityContext interface in the context of a
CORBA invocation. The value of the component identifier provided by the
Entity2Context shall be identical to the component identifier value used to create the
object reference on which the invocation was made. Thenponentld interface is a

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

read-only interface. Once a component identifier is constructed by the
create_component_id operation or constructed internally and provided through the
Entity2Context interface, the value of the component identifier cannot be altered.

get_target_facet

The get_target_facet operation returns the facet identifier of the facet which is the
target of the component reference, i.e., the target of requests made on the component
reference.

get_target_segment

The get_target_segment operation returns the segment identifier of the target
segment, i.e., the segments that provides the target facet.

get_target_state_id

The get_target_state_id operation returns the state identifier of the target segment.
The StateldFactory specified in thesid_factory parameter is used by the
implementation ofget_target_state_id to construct the proper state identifier from

the octet sequence encapsulated by the component identifier. If the state identifier of
the target segment isRersistentldValue , the sid_factory parameter may be nil.
Container implementations shall provide a default implementatidBtateldFactory

to be used when the encapsulated state identifier valuePersistentidValue . If

provided (or default) factory cannot construct a correct state identifier of the expected
type from the undecoded octet sequence encapsulated by the component identifier, the
operation raises amvalidStateldData exception.

get_segment_state_id

The get_segment_state id operation returns the state identifier of the segment
specified by thesegparameter. The semantics are otherwise identical to
get_target state id , with respect the meaning and use of #ié_factory parameter.

get_segment_descrs

The get_segment_descrs operation returns a sequence containing all of the

segment descriptors encapsulated by the component identifier. The sequence is a copy
of the encapsulated sequence. The state identifier factory isithéactory parameter

(or the default) is used by the implementationgeft_segment_descrs to construct

state identifiers of the appropriate concrete subtyp8tateldValue . If provided (or

default) factory cannot construct a correct state identifier of the expected type from the
undecoded octet sequence encapsulated by the component identifier, the operation
raises arinvalidStateldData exception.

create_with_new_target

The create_with_new_target operation creates a new component identifier that is
identical to the target component identifier, except that the target facet and target
segment values are replaced with the values ofrté_target_facetand

new_target _segmenparameters, respectively.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

62-162

This operation is intended primarily to be used in implementing navigation
operations.

62.4.3.7 The Entity2Context Interface

The Entity2Context is aninternal interface which extends thEntityContext

interface to provide the extended component with access to additional container-
provided runtime services for managing object references and advanced persistence.
Object references for components deployed in a entity container API type can choose
to use the CORBA persistent state service or some user defined persistence
mechanism. Th€omponentld interface (defined in Section 62.4.3.6) encapsulates
this distinction when a reference is to be used. Emgity2Context is defined by the
following IDL.

exception BadComponentReference {
BadComponentReferenceReason reason };
exception lllegalState { };

local interface Entity2Context : EntityContext, CCM2Context {
Componentld get_component_id ()
raises (lllegalState);
Componentld create_component_id (
in Facetld target_facet,
in Segmentld target_segment,
in SegmentDescrSeq seq_descrs);
Componentld create_monolithic_component_id (
in Facetld target_facet,
in StateldValue sid);
Object create_ref from_cid (
in CORBA::Repositoryld repid,
in Componentld cid);
Componentld get_cid_from_ref (
in Object ref) raises (BadComponentReference);

h

get_component_id

The get_component_id operation is used to obtain a reference to the
Componentld interface. TheComponentld interface encapsulates a persistence
identifier which can be used to access the component’s persistence state. If this
operation is issued outside of the scope afatiback operation, thdllegalState
exception is returned.

create_component_id

The create_component_id operation creates a component identifier value,
initializing it with the values specified in the parameters. Thmet_facet parameter
contains the facet identifier of the target facet, tagget_segmentparameter contains

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Server Programming Interfaces - Extended

62

the segment identifier of the target segment, andséhg descrgparameter contains a
sequence of segment descriptors describing all of the segments that constitute the
component executor.

create_monolithic_component_id

The create_monolithic_component_id operation provides a simplified signature

for creating a component identifier value for monolithic executors, which have a single
segment. Thearget_facet parameter contains the facet identifier of the target facet,

and the sid parameter contains the state identifier for the single executor segment. The
target segment identifier encapsulated by the component identifier is set to zero, and
the sequence of segment descriptors encapsulated by the component identifier has a
single element, initialized with segment identifier value zero, and state identifier value
specified by the sid parameter.

create_ref from_cid

The create_ref from_cid operation is used by a component factory to create an
object reference which can be exported to clients. Gideparameter specifies the
Componentld value to be placed in the object reference and made available (using
theget_component_id operation on the context) when tlstityComponent

callback operations are invoked. Theepid parameter identifies thRepositoryld
associated with the interface for which a reference is being created.

get_cid_from_ref

The get_cid_from_ref operation is used by a persistent component to retrieve the
Componentld encapsulated in the referenaef). The Componentld interface
supports operations to locate the state in some persistent store. The
BadComponentReference exception can be raised if the input reference is not local
(NON_LOCAL_REFERENCE), not a component reference
(NON_COMPONENT_REFERENCE), or created by some other container
(WRONG_CONTAINER).

TheComponentld structure is dependent on the home implementation and
the container, in particular, its implementation of tBatity2Context
interface. Itis likely that 8omponentld created by one container will not
be understandable by another, hence the possibility of the
WRONG_CONTAINER exception.

62.5 The Client Programming Model

This section describes the architecture of the component programming model as seen
by the client programmer. The client programming model as defined by IDL extensions
has been described previously (Chapter 61, “Component Model”). This section focuses
on the use of standard CORBA by the client who wishes to communicates with a
CORBA component implemented inGomponent Server It enables a CORBA client,
which is not itself a CORBA component to communicate with a CORBA componenet.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 The ClientProgrammingModel 29 October 1999

62

62-164

The client interacts with a CORBA component through two forms of external
interfaces - @aaomeinterface and one or mormgpplication interfaces. Home interfaces
support operations which allow the client to obtain references to an application
interface which the component implements.

From the client’s perspective, the home supports two design patterns - factories for
creating new objects and finders for existing objects. These are distinguish by the
presence of @rimaryKey parameter in the home IDL.

* if a primaryKey is defined, the home supports both factories and finders and the
client may use both.

® if a primaryKey is not defined, the home supports only the factory design pattern
and the client must create new instances.

Two forms of clients are supported by the CORBA component model:

®* Component-aware clients - These clients know they are making requests against a
component (as opposed to an ordinary CORBA object) and can therefore avail
themselves of unique component function, e.g. navigation among multiple
interfaces and component type factories.

®* Component-unaware clients - These clients do not know that the interface they are
making requests against is implemented by a CORBA component so they can only
invoke functions supported by an ordinary CORBA object, e.g. looking up a hame
in a Naming or Trader service, searching for a particular type of factory using a
factory finder, etc.

62.5.1 Component-aware Clients

Clients that are defined using the IDL extensions in Chapter 61, “Component Model”
are referred to asomponent-awareclients. Such clients can avail themselves of the
unique features of CORBA components which are not supported by ordinary CORBA
objects. The interaction between these clients and a CORBA component are outlined in
the following sections. Acomponent-awareclient interact with a component through

one or more CORBA interfaces:

® the equivalent interface implied by tltemponentIDL declaration,
® zero or more supported interface declared ondbmponentspecification.

® zero or more interfaces defined by theovides clauses in theeomponent
definition,

® the home interface which supports factory and finder operations

Furthermore a component-aware client locates those interfaces using the
Components::HomeFinder or a naming service. The starting point for client
interactions with the component is thesolve_initial_references operation on
CORBA::ORB which provides the initial set of object references.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Client Programming Model 29 October

62

62.5.1.1 Initial References

Initial references for all services used by a component client are obtained using the
CORBA::ORB::resolve_initial_references operation. This operation currently
supports the following references required by a component client:

®* Name Service“NameService”)

® Transaction Current‘{ransactionCurrent”)

® Security Current‘SecurityCurrent”)

® Notification Service {(NotificationService”)

* Interface Repository‘(nterfaceRepository”) for DIl clients.

®* Home Finder {ComponentHomeFinder ")

The client uses ComponentHomeFinder (defined in Section 61.8, “Home Finders,” on
page 61-62) to obtain a reference to tHemeFinder interface.

62.5.1.2 Factory Design Pattern

For factory operations, the client invokesceeate operation on the home. Default

create operations are defined for each category of CORBA components for which code
can be automatically generated. These operations return an object of type
CORBA::Component which must be narrowed to the specific type. Alternatively, the
component designer may specify custom factories as part afdimponentdefinition

to define a type-specific signature for the create operation. Because these operations
are defined in IDL, operation names can be chosen by the component designer. All that
is required is that the operations return an object of the appropriate type.

A client using the factory design pattern uses HhameFinder to locate the

component factory@CMHome) by interface type. ThélomeFinder returns a type-
specific factory reference which can then be used to create new instances of the
component interface. Once created, the client makes operation requests on the
reference representing the interface. This is illustrated by the following code fragment
below:

CORBA3.0CCMFTFDRAFT ptc/99-10-04 The ClientProgrammingModel 29 October 1999

62

62-166

Il Resolve HomeFinder
org.omg.CORBA.Object objref =
orb.resolve_initial_references(“ComponentHomeFinder”);

ComponentHomeFinder ff =
ComponentHomeFinderHelper.narrow(objref);

org.omg.CORBA.Object of =
ff.find_home_by_ type(AHomeHelper.id());

AHone F = AHomeHelper.narrow (of);
org.omg.Components.ComponentBase Alnst = F.create();
A Areal = AHelper.narrow (Alnst);

/I Invoke Application Operation
answer = A.foo(input);

62.5.1.3 Finder Design Pattern

A component-aware client wishing to use an existing component instance (rather than
create a new instance) usedirder operation. Finders are supported for entity
components only. Client's may use thlmeFinder as described in Section 61.8,
“Home Finders to locate the component’s home or they may use CORBA naming to
look up a specific instance of the home by symbolic name.

A client using the finder design pattern uses @@sNaming::NamingContext

interface to lookup a symbolic name. The naming service returns an object reference of
the type previously bound. The client then makes operation requests on the reference
representing the interface. This is illustrated by the following code fragment below:

org.omg.CORBA.Object objref =
orb.resolve_initial_references(“NamingService”);

NamingContext ncRef = NamingContextHelper.narrow(objref);

/I Resolve the Object Reference in Naming
NameComponent nc = new NameComponent(“*A“,");
NameComponent path[] = {nc};

A aRef = AHelper.narrow(ncref.resolve(path));

/I Invoke Application Operation
answer = A.foo(input);

62.5.1.4 Transactions

A component-aware client may optionally define the boundaries of the transaction to
be used with CORBA components. If so, it uses the CORBA transaction service to
ensure that the active transaction is associated with subsequent operations on the
CORBA component.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Client Programming Model 29 October

62

The client obtains a reference @osTransactions::Current by using the
CORBA::ORB::resolve_initial_references operation specifying a®bjectIlD of
“TransactionCurrent” . This permits the client to define the boundaries of the
transaction, i.e. how many operations will be invoked within the scope of the client’s
transaction. All operations defined f@urrent may be used as defined by the CORBA
transaction service with the following exceptions:

®* TheControl object returned byget_control andsuspend may only be used with
resume .

® Qperations orControl may raise theNO _IMPLEMENT exception with CORBA
components.

TheControl interface in the CORBA transaction service supports acces-
sors to theCoordinator and Terminator interfaces. Th&€oordinator is

used to build object versions of XA resource managers TEhminator is

used to allow a transaction to be ended by someone other than the origina-
tor. Since neither function is within the scope of the demarcation subset of
CORBA transactions used with CORBA components, we allow CORBA
transaction services implementations used with CORBA components to
raise theNO_IMPLEMENT exception.

The following code fragment shows a typical usage:

org.omg.CORBA.Object objref =
orb.resolve_initial_references(“TransactionCurrent”);

Current txRef = CurrentHelper.narrow(objRef);
txRef.begin();

/I Invoke Application Operation

answer = A.foo(input);

txRef.commit();

62.5.1.5 Security

A component-aware client uses the existing CORBA security mechanism to manage
security for a CORBA component. There are two scenarios possible:

® Use of SSL for establishing client credentials

CORBA security today does not define a standard API for clients to use with SSL
to set the credentials which will be used to authorize subsequent requests. The
credentials must be set in a way which is proprietary to the client ORB.

® Use of SECIOP by the client ORB.

In this case, CORBA security does define an API and it must be used by the client
to establish the credentials to be used to authorize subsequent requests.

Security processing for CORBA components uses a subset of CORBA security. For
SECIOP, the client sets the credentials to be used with subsequent operations on the
component by using operations on t8ecurityL evel2::PrincipalAuthenticator

The client obtains a reference &ecurityLevel2::Current by using the
CORBA::ORB::resolve_initial_references operation specifying a®bjectID of

CORBA3.0CCMFTFDRAFT ptc/99-10-04 The ClientProgrammingModel 29 October 1999

62

“SecurityCurrent” . This permits the client to access tReincipalAuthenticator
interface to associate security credentials with subsequent operations. The following
code fragment shows a typical usage:

org.omg.CORBA.Object objref =
orb.resolve_initial_references(“SecurityCurrent”);

org.omg.SecurityLevel2.PrincipalAuthenticator secRef =
org.omg.SecurityLevel2.PrincipalAuthenticatorHelper.narrow
(objRef);

secRef.authenticate(...);

/I Invoke Application Operation
answer = A.foo(input);

62.5.1.6 Events

Component-aware clients wishing éonit or consumeevents use the component APIs
defined in Chapter 61, “Component Model”. Alternatively, they may use CORBA
notification directly and conform to the subset supported by CORBA components (see
Section 62.5.2.6 for details).

62.5.2 Component-unaware Clients

CORBA components can also be used by clients who are unaware that they are making
requests against a component. Such clients can see only a single interface (the
supported interface of a component) and do not support navigation.

62.5.2.1 Initial References

Component-unaware clients obtain initial references using existing CORBA
mechanisms, vizCORBA::ORB::resolve_initial_references . It is unlikely,
however, that this mechanism would be used to obtain a reference HotheFinder .

62.5.2.2 Factory Design Pattern

The factory design pattern can be used by component-unaware clients only if the
supported interface has application operations defined. This permits existing CORBA
objects to be easily converted to CORBA components, transparently to their existing
clients. The following techniques can be used:

®* The reference to a factory finder (typically ti@osLifeCycle::FactoryFinder)
can be stored in the Naming or Trader service and looked up by the client before
creating the instance.

* A reference to the home interface can be obtained from the Naming service.

®* The reference to the home interface can be obtained from a Trader service.

62-168 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Client Programming Model 29 October

62

® After locating a factory finder, the factory can be located using the existing
find_factories operation or by using the nefind_factory operation on the
CoslLifeCycle::FactoryFinder interface. Theind_factory is defined in Section
11.3.1 on page 397.

The currentCosLifeCycle find_factoriesoperation returns a sequence

of factories to the client requiring the client to choose the one which will
create the instance. To allow the server (i.e. the FactoryFinder) to make the
selection, we also add a nefimd_factory operation toCosLifeCycle

which allows the server to choose the “best” factory for the client request
based on its knowledge of workload, etc.

A FactoryFinder will return anObject. A component-unaware client may expect
to narrow this toCosLifeCycle::GenericFactory and use the generic create
operation. For this reason, we allow the default creation operation on home to
return aGenericFactory interface. This is fully described in Section 61.7,
“Homes.

® A stringified object reference can be retrieved from a file known by the component-
unaware client.

Once a reference to the home has been obtained, the client can create component
instances and make operation requests on the component. Each component exports at
least one IDL interface. A supported interface must be used by the client to invoke the
component’s application operations. Provided interfaces cannot be located using the
factory design pattern.

62.5.2.3 Finder Design Pattern

A component-unaware client can use CORBA naming to locate an existitity
component. Unlike the factory design pattern, the name to be looked up by the client
can be either a supported interface or any of the provided interfaces. The following
techniques can be used:

® A symbolic name associated with the component’s home can be looked up in a
Naming service to make an invocation of the finder operations.

* Alternatively, the reference to the home interface can be obtained from a Trader
service.

® the finder operation can be invoked on ttity component to return a reference to
the client.

62.5.2.4 Transactions

This is the same as component-aware clients (See Section 62.5.1.4). However, the
possibility of theNO_IMPLEMENT exception being raised for operations Gantrol

may have a more serious impact, since the component-unaware client may not be
expecting that to happen.

62.5.2.5 Security

This is the same as component-aware clients (See Section 62.5.1.5).

CORBA3.0CCMFTFDRAFT ptc/99-10-04 The ClientProgrammingModel 29 October 1999

62

62-170

62.5.2.6 Events

Component-unaware clients wishingemit or consumeevents must use the
equivalent CORBA notification interfaces and stay within the subset supported by
CORBA components (see Section 62.2.8 for details). This is illustrated by the
following code fragment:

org.omg.CORBA.Object objref =
orb.resolve_initial_references(“NotificationService”);

org.omg.CosNotififyChannelAdmin.EventChannelFactory evfRef =
org.omg.EventChannelFactoryHelper.narrow(objRef);

/I Create an Event Channel
org.omg.CosNotifyChannelAdmin.EventChannel evcRef =
evfRef.create_channel(...);

/I Obtain a SupplierAdmin
org.omg.CosNotifyChannelAdmin.SupplierAdmin publisher =
evcRef.new_for_suppliers (...);

/I And a ConsumerProxy
org.omg.CosNotifyComm.ProxyConsumer proxy =
publisher.obtain_notification_push_comsumer (...);

/I Publish a structured event
proxy.push_structured_event(...);

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 The Client Programming Model 29 October

Integrating with Enterprise JavaBeans

64

This chapter describes the integration of CORBA components with Enterprise

JavaBeans.

Issue — It contains all new text taken from the CCM final submission
orbos/99-07-01 with only minor editorial changes - Jeff Mischkinsky

64.0.0.1 Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 64-172
“Enterprise JavaBeans Compatibility Objectives and 64-174
Requirements”

“CORBA Component views for EJBS” 64-175
“EJB views for CORBA Components” 64-183
“Comparing CCM and EJB” 64-190

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999

64-171

64

64.1

64-172

Introduction

This chapter describes how an Enterprise JavaBeans (EJB) component can be used by
CORBA clients, including CORBA components. The EJB will have a CORBA
component style remote interface that is described by CORBA IDL (including the
component extensions).

This chapter also describes how a CORBA component can be used by a Java client,
including an Enterprise JavaBeans component. The CORBA component will have an
EJB style remote interface that is defined following the Enterprise JavaBeans
specification.

The concepts in this chapter follow in the same prescription for interworking as laid
out in Chapter 17 of the CORBA CORE specification where it is discussed as follows:

How interworking can be practically achieved is illustrated in an Interworking Model,
shown in Figure 64-1 on page 173. It shows how an object in Object System B can be
mapped and represented to a client in Object System A. From now on, this will be
called a B/A mapping. For example, mapping a CORBA Component Model object to
be visible to an EJB client is a CCM/EJB mapping.

On the left is a client in object system A, that wants to send a request to a target object
in system B, on the right. We refer to the entire conceptual entity that provides the
mapping as a bridge. The goal is to map and deliver any request from the client
transparently to the target.

To do so, we first provide an object in system A called a View. The View is an object
in system A that presents the identity and interface of the target in system B mapped to
the vernacular of system A, and is described as an A View of a B target. The View
exposes an interface, called the View Interface, which is isomorphic to the target’s

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October 1999

64

interface in system B. The methods of the View Interface convert requests from system
A clients into requests on the target’s interface in system B. The View is a component
of the bridge. A bridge may be composed of many Views.

Object System A Object System B

) Bridge
Object reference in A

/
View in A of targetin B
(object in system A)

. . |
Object reference in B Target object
implementation in B

Figure 64-1 B/A Interworking Model

The bridge maps interface and identify forms between different object systems.
Conceptually, the bridge holds a reference in B for the target (although this is not
physically required). The bridge must provide a point of rendezvous between A and B,
and may be implemented using any mechanism that permits communication between
the two systems (IPC, RPC, network, shared memory, and so forth) sufficient to
preserve all relevant object semantics.

The client treats the View as though it is the real object in system A, and makes the
request in the vernacular request form of system A. The request is translated into the
vernacular of object system B, and delivered to the target object. The net effect is that
a request made on an interface in A is transparently delivered to the intended instance
in B.

The Interworking Model works in either direction. For example, if system A is EJB,
and system B is CCM, then the View is called the EJB View of the CCM target. The
EJB View presents the target’s interface to the EJB client. Similarly if system A is
CCM and system B is EJB, then the View is called the CCM View of the EJB target.
The CCM View presents the target’s interface to the CCM client.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October1999 64-173

64

64.2 Enterprise JavaBeans Compatibility Objectives and Requirements

The objective is to allow the creation of distributed applications which mix CORBA
components running in CORBA component servers with EJB components running in
an EJB technology-based server. This objective allows a developer to create an
application by reusing existing components of either kind.

This requires development time and runtime translations between the CORBA
component and EJB domains provided by mediated bridges. It also requires that:

®* A CORBA component view for an EJB comply with the EJB to CORBA mapping
specification. In particular, this requires that:

* An EJB definition be mapped to a CORBA component definition following the
Java Language to IDL mapping plus the extensions to that mapping that are
specified in this chapter.

« Value objects of one kind (e.g. Keys for EJB) have counterpart value objects of
the other kind.

+ CORBA components accessible vit@sNaming have their EJB views accessible
via JNDI, and vice versa.

®* An EJB view for a CORBA component comply with the EJB specification.

An application is to be built using both EJB and CORBA components deployed in their
respective containers. At component development time, EJB components are originally
defined in Java and CORBA components are originally defined in IDL. When
applications are assembled using both, the application assembly environment will most
commonly dictate which model these components must present to developers. During
application assembly, developers construct cligntsich themselves may be
components) that make use of components in the way most natural to the particular
environment. Thus in a CORBA environment clients will expect to make use of both

64-174 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Enterprise JavaBeans Compatibility Objectives

64

EJB Client

the CCM model and the EJB model as CORBA components, and in an EJB
environment, clients will expect to make use of both kinds as enterprise beans. All four
combinations of clients and components are illustrated in Figure 64-2 on page 175.

CCM Client EJB Client
W CCM View EJB Vieww CCM Client
(Bridge) (Bridge)
| v | | v |
| P \ / o |
- = o - Component/Container L — — ,J
EJB Container Contract CCM Container

Figure 64-2 Interoperation in a mixed environment

In this scenario, components of one kind are made accessible to clients of another by
way of two mechanisms: generation of bindings at development time and method
translation at runtime. Thus, the containers provide an EJB view of a CORBA
component and a CCM view of an EJB.

For application developers in a CORBA environment, EJBs specified in Java are
mapped to CORBA IDL for use by CCM clients, and at runtime client calls on CCM
methods are translated by a bridge into EJB methods. In effect, the &@8EBX0ORBA
components.

For application developers in an EJB environment, CORBA components specified in
IDL are mapped to Java interfaces for use by EJB clients, and at runtime client calls on
EJB methods are translated by a bridge into CCM methods. In effect, the CORBA
componentsare EJBs.

64.3 CORBA Component views for EJBs

This kind of view allows a CORBA client -- either a CORBA component or any piece
of code that uses CORBA, and either component-aware or not -- to access an EJB as a
CORBA component. To do this, two things are needed:

® A mapping of the definition of the existing EJB into the definition of a CORBA
component. This mapping takes an EJB’s RMI remote interface and home interface
and produces an equivalent CORBA component definition.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29

64

® A translation, at run-time, of CORBA component requests performed by a CORBA
client into EJB requests. This translation can be performed in terms of either
straight delegation, or as an interpretation of a CORBA client request in terms of
EJB requests.

64.3.1 Mapping of EJB to Component IDL definitions

An EJB definition includes the following EJB interfaces:

®* An EJB home interface. This interface extends the pre-defifd@Home
interface.

® An EJB remote interface. This interface extends the pre-defin®Object
interface.

Thus, for the purposes of this chapter, at least these EJB interfaces must be mapped
into IDL in order to obtain a CORBA component definition of a view that a CORBA
client can use to make requests on an existing EJB. An EJB home interface definition
maps into a CORBA component’s home definition, whose implied IDL inherits from
CCMHome. This means thaEJBHome is mapped intdCCMHome. Likewise, an

EJB remote interface definition maps into a basic CORBA component definition,
whose implied IDL inherits froCCMObject. This means thaEJBObject is

mapped intoaCCMObject .

In addition,EJBHome andEJBObject make use of the following pre-defined EJB
interfaces:

®* The HomeHandle interface.
® TheHandle interface.

®* The EJBMetaData interface.

Handles are an EJB concept that has no direct counterpart in CORBA components.
Thus,HomeHandle andHandle are not directly mapped into equivalent IDL.

Notice that although Interoperable Object References (IORs) and the ORB
provided operations that manipulate thestr{ng_to_objectand
object_to_string) are conceptually similar to Handles, there are enough
differences between IORs and Handles to preclude a mapping from Han-
dles to IORs.

Meta data is available to a CORBA client but not in the same form as that provided by
EJBMetaData . Given that an EJB maps into a CORBA component, whose definition
produces the meta data that a CORBA client expects, mapgpiBjetaData into
equivalent IDL is not required.

64.3.1.1 Javalanguage to IDL Mapping

The reader is assumed to be familiar with the specification for the Java to IDL
mapping, whose major aspects are repeated here for convenience.

64-176 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29

64

®* A Java interface is an RMI/IDL remote interface if it at least extends
java.rmi.Remote and all of its methods throw
java.rmi.RemoteException

® get- and set- name pattern names are translated to IDL attributes.

* |IDL generated methods have orily parameters (but these can include object
references to remote objects, allowing reference semantics normally obtained by
using parameters of tygava.rmi.Remote).

® Java objects that inherit fronjava.io.Serializable or

java.io.Externalizable are mapped to a CORBA valuetype. All object

types appearing in RMI remotable interfaces must inherit from these interfaces or

from java.rmi.Remote . EJBKey andHandle types must inherit from

java.io.Serializable

* However, the mapping does NOT require that methods on such objects or
constructors be mapped to corresponding IDL operationgadmetypes and
init specifications. The developer is expected to select those methods which
should be mapped to IDL operations, and the method signatures must meet the
requirements of the mapping.

« Objects which inherit fromjava.io.Externalizable or which implement
writeObject are understood to perform custom marshalling and the
corresponding custom marshallers must be created for the CORBA valuetype.

® Arrays are mapped to “boxed” CORByaluetypescontaining sequences because
Java arrays are dynamic.

® Java exceptions are subclassable; IDL exceptions are not. Consequently a name
pattern is used to map to IDL exceptions. The Java exception object is mapped to a
CORBA valuetype. The CORBA valuetype has an inheritance hierarchy like that of
the corresponding Java exception object.

® Some additional programming is required to define Java classes (including EJB
implementations) that are accessible via RMI/IIOP. This is to account for the fact
that 1IOP does not support distributed garbage collection.

64.3.1.2 EJBto IDL mapping

In general, the CORBA component that results from mapping an EJB will support an
interface that is the Java to IDL map of the Remote interface of the EJB. The mapping
rules are as follows.

Mapping the Remote Interface

®* An EJB’s remote interface maps to a definition of a basic CORBA component that
supports the default interface. The form of the CORBA component definition is
component XXX supports XXXDefault .

®* An EJB’s remote interface declaration is used to creademports declaration and
the corresponding IDL for the primary interface of the CORBA component that the
EJB maps to. The identifier of this supported interface on the component is

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29

64

XXXDefault, where XXX is the name of the EJB remote interface. This generated
interface is referred to as tHgefaultinterface of the component that the given EJB
maps to.

Each operation on the Remote interface is mapped under Java to IDL to an
equivalent operation on thEXXDefault interface. Note that pairs @fet XXXand

set XXXmethods in the EJB remote interface will be mapped to IDL attributes.
Any exceptions thrown by get XXXmethod is mapped to an exception in the
getRaises clause of the mapped IDL attribute. Likewise, any exception thrown by
a set XXXmethod is mapped to an exception in #etRaises clause of the

mapped IDL attribute. The actual definitions of the exceptions thrown are mapped
following the Java to IDL rules.

Mapping the Home Interface

An EJB’s home interface maps to a definition of a CORBA component home. The
form of the CORBA component home definitionfi®me YYY manages XXX,
where YYY is the name of the EJB home interface. Mapping an EJB home into a
CORBA component home requires the existence of meta data that links the EJB
home to the EJB that it hosts. These meta data are obtained from the EJB'’s
deployment descriptor. ThusXX is the name of the EJB that the EJB home hosts,
as it is given in the EJB deployment descriptor.

The EJB home methods calledeate are mapped into homfactory declarations

in IDL. The actual names of each of tifectory operations are produced following

the rules for mapping Java names to IDL names in the Java to IDL specification.
The Java parameters of the operation are mapped to their corresponding IDL types
and names as defined by Java to IDL.

An EJB Primary Key class is mapped to a CORB&uetype using the mapping
rules in Java to IDL. Thivaluetype will be declared in the IDL for the CORBA
component home as the primary kegluetype for the component. The key
valuetype will inherit from Components::PrimaryKeyBase . If an EJB home
uses a primary key, then the form of the CORBA component home definition is
home YYY manages XXX primaryKey KKK, whereKKK is the name of the
valuetype that the EJB primary key class maps to.

The EJB home operation naméddByPrimaryKey is mapped into the
find_by_primary_key(in <key-type> primaryKey) operation on the
component’s implicit home interface.

Finder and Creator EJB operations that return an RMI style object reference are
mapped into Component IDL operations which return a CORBA Component Object
ReferencgComponents::CCMObject) .

EJB home operations prefixdihd whose return type is the type of the EJB

hosted by the EJB home are mapped into component Horder operations in

IDL. The actual names of each of tfiader operations are produced following the
rules for mapping Java names to IDL names in the Java to IDL specification. The
Java parameters of the operation are mapped to their corresponding IDL types and
names as defined by Java to IDL.

64-178 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29

64

®* Finder EJB operations that return a Java Enumeration are mapped into CORBA
component operations which return an IDL Object Reference to an interface of type
Enumeration . This interface is declared as:

module Components {

interface Enumeration {
boolean has_more_elements();
CCMObject next_element();

The Enumeration interface is just the RMI/IIOP image of the Java Enumer-
ation class as defined in the JDK 1.1.6+. Sun has said that they intend to
replace this with the JDK 1.2 (Java 2.0) Collections in a future version of
the EJB specification. Subsequent to such a specification being issued, the
CORBA components specification will be updated to correspond.

® |n order for an EJB home definition that definfisdByPrimaryKey to be
successfully mapped onto a CORBA component home definition, it must define a
create method that takes the primary key of the hosted EJB as its sole argument
and returns an instance of the hosted EJB. This create method is mapgedtey(
in <key-type> key) on the CORBA component implicit home interface.

64.3.2 Translation of CORBA Component requests into EJB requests

A CORBA client that uses a CORBA component view on an EJB expects to be able to
perform CORBA component requests on such a view. These requests need to be
translated into EJB requests at run-time. This translation can be performed at the
client-side, server-side, or a combination of the two. Table 64-1 lists the CORBA
component operations that a CORBA client can perform requests on by interface, and
it lists the corresponding EJB methods that these requests translate into, also by
interface.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29

64

Notice that a CORBA client may use operations on object references such as
string_to_object andobject_to_string that may be considered as analogous to EJB
Handle methods. However, these operations are not seen by the bridge since they are

Table 64-1Translation of CCM operation requests into EJB method requests

Operation called by | EJB Method invoked by
CCM Interface client interface bridge
CCMHome ComponentDef EJBHome EJBMetaData

get_component_def ();

void remove_component (
in CCMObject comp)
raises (CCMException);

getEJBMetaData ()
throws RemoteException;

void remove (Handle handle
) throws RemoveException,
RemoteException;

<home-name>Explicit

<home-name>Implicit

<name> createXXX (
<arg-list>)

raises (DuplicateKeyValue,
InvalidKey);

<name> findXXX (
<arg-list>)
raises (<exceptions>);

<name> create (

in <key-type> key)

raises (DuplicateKeyValue,
InvalidKey);

<name>
find_by_primary_key (

in <key-type> key)

raises (UnknownKeyValue,
InvalidKey);

<home-name>

<name> create (
<arg-list>)

throws CreateException,
DuplicateKeyException;

<name> findXXX (
<arg-list>)
throws <exceptions>;

<name> create (

Object primaryKey)
throws CreateException,
DuplicateKeyException;

<name> findByPrimaryKey (
<key-type> key)

throws FinderException,
ObjectNotFoundException;

void remove (EJBHome void remove (

in <key-type> key) Object primaryKey)
raises (UnknownKeyValue, throws RemoveException,
InvalidKey); RemoteException;
<key_type>get_primary_key | EJBObject Object getPrimaryKey ()

(in <name> comp);

throws RemoteException;

64-180

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

CORBA Component views for EJBs

29

64

Table 64-1Translation of CCM operation requests into EJB method requests

Operation called by | EJB Method invoked by
CCM Interface client interface bridge
CCMObject ComponentDef EJBHome EJBMetaData
get_component_def (); getEJBMetaData ()
throws RemoteException;
CCMHome get_home (); EJBObject EJBHome getEJBHome ()
throws RemoteException;
PrimaryKeyBase Object getPrimaryKey ()
get_primary_key (); throws RemoteException;
void remove(); void remove ()
throws RemoveException,
RemoteException;
void Translation performed by
configuration_complete () bridge is to raise the
raises (InvalidConfiguration); NO_IMPLEMENT exception
<name> <res-type> <operation> (<name> <res-type> <operation> (
<arg-list>) <arg-list>)
raises (<exceptions>); throws <exceptions>;
<res-type> getXXX () <res-type> getXXX ()
throws <exceptions>; throws <exceptions>;
void setXXX (<arg-list>) void setXXX (<arg-list>)
throws <exceptions>; throws <exceptions>;

performed on the ORB and thus no translation for these operations on the part of the

bridge is required.

The following restrictions apply:

® create (in <key_type> key) on the component implicit home interface can only

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

be validly invoked by a CORBA client if the underlying EJB home declares the
findByPrimaryKey operation.

remove (in < key type> key) on the component implicit home interface can only
be validly invoked by a CORBA client if the underlying EJB home declares the
findByPrimaryKey operation.

get_primary_key on the component implicit home and &@CMObject can only
be validly invoked by a CORBA client if the underlying EJB home declares the
findByPrimaryKey operation.

configuration_complete on CCMObject is not translated by the bridge, a
request on this operation by a CORBA client raisesi@@ IMPLEMENT
exception.

CORBA Component views for EJBs

29

64

64-182

64.3.3 CORBA Component view Example

In this section we show a simple EJB together with the corresponding Component IDL.
Note that the EJB deployment metadata is needed to generate the IDL; this is because
the metadata binds together the Remote interface and the Home interface.

Below are the remote interfaces of the EJB.
package example;

class Custinfo implements java.io.Serializable

{
public int custNo;
public String custName;
public String custAddr;
h
class CustBal implements java.io.Serializable
{
public int custNo;
public float acctBal;
h
interface Customerlnquiry extends javax.ejb.EJBObject
{
Custinfo getCustinfo(int iCustNo)
throws java.rmi.RemoteException;
CustBal getCustBal(int iCustNo)
throws java.rmi.RemoteException;
h
interface CustomerinquiryHome extends javax.ejb.EJBHome
{

Customerlnquiry create()
throws java.rmi.RemoteException;

h

Below are the contents of the descriptor classes as they might be expressed in an
equivalent XML document.

<ejb-jar>
<session>
<description>
</description>
<ejb-name> Customerlnquiry </ejb-name>
<home> example.CustomerlnquiryHome </home>
<remote> example.Customerinquiry </remote>
<ejb-class> example.CustomerinquiryBean </ejb-class>
<session-type> Stateful </session-type>
</session>
</ejb-jar>

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component views for EJBs 29

64

The EJB is a session bean, and in this case;rigate operation requires no
parameters. The two operations take a key value and return values to the caller. The
EJB implementation will us@DBC to retrieve the information to be returned by the
operations on th€ustomerinquiry EJB.

The serializable value classes are translated by RMI/IIOP into CORBA concrete
valuetypesas follows:

valuetype Custinfo {
public long custNo;
public ::CORBA::WStringValue custName;
public ::CORBA::WStringValue custAddr;

h

valuetype CustBal {
public long custNo;
public float custBal;

h

The information in the deployment descriptor and the home and remote interface
declarations is introspected and used to generate the following IDL.

interface CustomerlnquiryDefault {
Custlnfo getCustinfo(in long iCustNo);
CustBal getCustBal(in long iCustNo);

h
component Customerinquiry supports CustomerinquiryDefault {};

home CustomerlnquiryHome manages Customerinquiry {
factory create();

h

64.4 EJB views for CORBA Components

This kind of view allows a Java client -- either an EJB or any other piece of Java code
-- to access a CORBA component as an EJB. To do this, two things are needed:

* A mapping of the Component IDL definition of a CORBA component into an EJB
definition. This mapping only considers that portion of the Component IDL
language that has a counterpart in the EJB specification language and it ignores the
rest.

® A translation, at run-time, of EJB requests performed by a Java client into CORBA
component requests.

64.4.1 Mapping of Component IDL to Enterprise JavaBeans specifications

The portion of the Component extensions to the IDL language that can be mapped to
the EJB specification language is denoted by the following subset of the Component
extensions to IDL grammar.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 EJB views for CORBA Components 29

64

64-184

<component_dcl> ::= <component_header> “{” <component_body> “}"

<component_header> ::= “component” <identifier> [
<supported_interface_spec>]

<supported_interface_spec> ::= “supports” <scoped_name> { “,
<scoped_name> }*

<component_body> ::= <component_export>*
<component_export> ::= <attr_dcl> *}”
<attr_dcl> ::= <readonly_attr_spec> | <attr_spec>

<readonly_attr_spec> ::= “readonly” “attribute” <param_type spec>
<readonly_attr_declarator>

<readonly_attr_declarator> ::= <simple_declarator> [<raises_expr> 1] |

<simple_declarator>{ “,” <simple_declarator> }*
<attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>

<attr_declarator> ::= <simple_declarator> <attr_raises_expr> |

<simple_declarator>{ “,” <simple_declarator> }*

<attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]|
<set_excep_expr>

<get_excep_expr> ::= “getRaises” <exception_list>
<set_excep_expr> ::= “setRaises” <exception_list>
<exception_list> ::= “(" <scoped_name> { “,” <scoped_name> })"

<home_dcl> ::= <home_header> <home_body>

<home_header> ::= “home” <identifier> “manages” <scoped_name> |
<primary_key spec>]

<primary_key_spec> ::= “primaryKey” <scoped_name>
<home_body> ::= “{" <home_export>* “}"
<home_export> ::= <factory_dcl>*“;" | <finder_dcl>*“}"

<factory_dcl> ::= “factory” <identifier> “(“ [<init_param_decls>]")" [
<raises_expr>]

<finder_dcl> ::= “finder” <identifier> “(“ [<init_param_decls>]")" [
<raises_expr>]

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 EJB views for CORBA Components

29

64

The rules for mapping a CORBA component definition into an EJB definition are
defined in the following sections. Where appropriate, these rules rely on the standard
IDL to Java mapping.

Mapping the component definition

® A basic CORBA component definition is mapped to an EJB remote interface
definition.

®* The name of the EJB remote interface is the name of the basic CORBA component
in the Component IDL definition.

® For each operation defined in each interface that the CORBA component
supports , a method definition will be included in the EJB remote interface that the
CORBA component maps to. That is, the EJB to which the basic CORBA
component maps defines all the supported operations defined by the basic CORBA
component.

®* The signatures of the CORBA component operations are mapped to signatures of
EJB remote interface methods following the IDL to Java mapping rules.

® For each attribut&XXX that the CORBA component defines, the corresponding EJB
remote interface defines a pair gét XXXandset XXX methods, wher&XXX is
the name of the given attribute. If the attribute definition includegetRaises
exception clause, then the correspondigeg XXXmethod definition in the EJB
remote interface will include a throws exception clause. Likewise, if the attribute
definition includes asetRaises exception clause, then the correspondaeg XXX
method definition in the EJB remote interface will include a throws exception
clause.

® Exceptions raised by CORBA component definition operations and attributes are
mapped to exceptions thrown by EJB method definitions using the standard IDL to
Java mapping rules.

Mapping the Component Home definition

®* A CORBA component’s home definition is mapped to an EJB home’s remote
interface definition. That is a definition of the formome XXX manages YYY [
primaryKey KKK] is mapped to an EJB home interface with na»X

®* The methods defined by the EJB home remote interface include the implicit as well
as the explicit methods of the CORBA component’s home definition.

®* Implicit CORBA component home operations are mapped to EJB home remote
interface methods as follows:
« <component_type> create (in <key_type> key) raises
(Components::DuplicateKeyValue,
Components::InvalidKey); maps to<component_type>
create (<key_type> key) throws
DuplicateKeyException, CreateException

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 EJB views for CORBA Components 29

64

64-186

» <component_type> find_by_primary_key (in <key_type> key)

raises (Components::UnknownKeyValue,

Components::InvalidKey); maps to<component_type>
findByPrimaryKey(<key_type> key) throws
ObjectNotFoundException, FinderException

void remove (in <key type> key) raises
(Components::UnknownKeyValue, Components::InvalidKey);

maps to the remove by key method definedsidBHome .

<key type> get_primary_key (in <component_type> comp);

has no counterpart in an EJB home definition. Given t#BObject already
definesgetPrimaryKey , it is not necessary to maget_primary_key on
the implicit home to an EJB home operation.

® Explicit CORBA component basic home operations are mapped to EJB home
remote interface methods as follows:

» A factory operation maps to an overloaderkate method with the

corresponding arguments and exceptions.

< A finder operations maps to find<identifier> method with the corresponding

arguments and exceptions, whetidentifier> is the name of thdinder
operation.

« The signatures ofactory andfinder operations are mapped to signatures of EJB

home interface methods following the IDL to Java mapping rules.

® A valuetype thatis used to define the primary key of a CORBA component home
is mapped to a Java class under the rules of the standard IDL to Java mapping. In
addition, such a Java class is defined to extgwé.io.Serializable

64.4.2 Translation of EJB requests into CORBA Component requests

A Java client that uses an EJB view on a CORBA component expects to be able to
perform EJB requests on such a view. These requests need to be translated into
CORBA component requests at run-time. This translation can be performed at the
client-side, the server-side, or a combination of the two. Table 64-2 lists the EJB

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 EJB views for CORBA Components 29

64

methods that a Java client can perform requests on by interface, and it lists the

corresponding CORBA component operations that these requests translate into, also by

interface.

Table 64-2Translation of EJB method requests into CCM operation requests

CCM Operation called by
EJB Interface | Method called by client interface bridge
EJBHome EJBMetaData getEJBMetadata () CCMHome Translation performed by
throws RemoteException; bridge does not call a
CCM standard operation
void remove (Handle handle) void remove_component (
throws RemoveException, RemoteException; in CCMObject comp)
raises (CCMException);
void remove (<home- void remove (

Object primaryKey)

throws RemoveException, RemoteException;

HomeHandle getHomeHandle ()
throws RemoteException;

name>Implicit

in <key-type> key)
raises
(UnknownKeyValue,
InvalidKey);

Translation performed by
bridge does not call a
CCM standard operation

<home-name>

<name> create (
<arg-list>)

throws CreateException,
DuplicateKeyException;

<name> findByXXX (
<arg-list>)
throws <exceptions>;

<name>
findByPrimaryKey (
<key-type> key)

<home-
name>Explicit

<home-
name>Implicit

<name> createXXX (
<arg-list>)

raises
(DuplicateKeyValue,
InvalidKey);

<name> findXXX (
<arg-list>)
raises (<exceptions>);

<name>
find_by_primary_key (
in <key-type> key)

throws FinderException, raises
ObjectNotFoundException; (UnknownKeyValue,
InvalidKey);
EJBObject EJBHome getEJBHome () CCMObject CCMHome

throws RemoteException;

Object getPrimaryKey ()
throws RemoteException;

void remove ()

throws RemoveException, RemoteException;

boolean isldentical (EJBObject object)
throws RemoteException;

Handle getHandle ()
throws RemoteException;

CORBA::Object

get_CCM_home ();

PrimaryKeyBase
get_primary_key ();

void remove ();

boolean is_equivalent ();

Translation performed by
bridge does not call a
CCM standard operation

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

EJB views for CORBA Components

64

Table 64-2Translation of EJB method requests into CCM operation requests

CCM Operation called by
EJB Interface | Method called by client interface bridge
<name> <res-type> <operation> (<name> <res-type> <operation> (
<arg-list>) <arg-list>)
throws <exceptions>; raises (<exceptions>);
<res-type> getXXX () <res-type> get_XXX ()
throws <exceptions>; raises (<exceptions>);
void setXXX (<arg-list>) <res-type> set_XXX ()
throws <exceptions>; raises (<exceptions>);
EJBMetadata EJBHome getEJBHome () Translation performed by

throws RemoteException;

Class getHomelnterfaceClass ()
throws RemoteException;

Class getRemotelnterfaceClass ()
throws RemoteException;

Class getPrimaryKeyClass ()
throws RemoteException;

boolean isSession ()
throws RemoteException;

boolean isStatelessSession()
throws RemoteException

bridge on all these
invocations does not call
a CCM standard operation

In addition, the EJB programming model allows a Java client to:

® Locate EJB homes and distinguished EJB objectsIXN®I

®* Demarcate transactions vidkserTransaction object, after locating this object via
JNDI

These requests are translated into similar requests provided by the CORBA component
programming model, as follows:

® Location of home and EJB objects requires the definition of a mapping of JNDI to
the COSNaming service. It also requires the mapping of a COSNaming name space
into a JNDI name space.

® Transaction demarcation requires the definition of a mappingTéf to the
CORBA transaction service. It also requires thalNDI name space location be
populated with an object that implementiserTransaction and that maps to the
corresponding CORBA transaction service object.

64-188 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 EJB views for CORBA Components 29

64

64.4.3 Example

We show a simple CORBA component definition and its corresponding EJB mapping.
The basic CORBA componewitccount is defined in terms of a regular IDL interface
AccountOps . The homeAccountHome is defined to managAccount and to use a
primary key.

interface AccountOps {
void debit(in double amt) raises (NotEnoughFunds);
void credit(in double amt);

h

component Account supports AccountOps {
readonly attribute double balance;

h

valuetype AccountKey {
public long acctNo;

h

home AccountHome manages Account primaryKey AccountKey {
finder largeAccount(double threshold);

h

The following EJB definition is derived from the definition éfccount and its home.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 EJB views for CORBA Components 29

64

public interface Account extends javax.ejb.EJBObject {
public void debit(double amount)
throws NotEnoughFunds, java.rmi.RemoteException;
public void credit(double amount) throws java.rmi.RemoteException;
public double getBalance() throws java.rmi.RemoteException;

h

public class AccountKey implements java.io.Serializable {
public long acctNo;
public AccountKey(long k) { acctNo =k; }

h

public interface AccountHome extends javax.ejb.EJBHome {
public Account create(AccountKey key)
throws DuplicateKeyException, CreateException,
java.rmi.RemoteException;
public Account findByPrimaryKey(Account key)
throws ObjectNotFoundException, FinderException,
java.rmi.RemoteException;
public Account findByLargeAccount(double threshold)
throws java.rmi.RemoteException;

64.5 Comparing CCM and EJB

64-190

The following series of tables summarized the component APIs for Enterprise Java
Beans (EJB 1.1) and Basic CORBA Components.The tables are organized as follows:

1. The home interfaces that define the remote access protocols for creating or finding
EJBs or CORBA components (Section 64.5.1).

2. The component interfaces that define the remote access protocols for invoking
business operations on EJBs or CORBA components (Section 64.5.2).

3. The callback interfaces that the CORBA component or EJB programmer must
implement (Section 64.5.3).

4. The Context interfaces that provide the component developer access to container-
provided services (Section 64.5.4).

5. The Transaction interface that supports bean-managed or component-managed
transactions (Section 64.5.5).

6. The metadata interfaces that support access to component metadata (Section
64.5.6).

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComparingCCMandEJB 29 October 1999

64

64.5.1 The Home Interfaces

Table 64-3 compares the home interfaces and operations which make up the EJB and
CORBA component models. In EJB, til&IBHome object is created by the EJB
container provider’s tools and provides implementations for methods of the base class
and delegates factory or finder methods on a derived ckasanie>Home) to

similarly named methods on the bean itselth@me>Bean).

In the CORBA component model, homes are defined as righteous CORBA objects and
the associated factory or finder methods are generated as operations on the home and
the component developer implements these directly so the container need not provided
delegation support. The component developer may not even need to provide
implementations for the default factory and finder operations if sufficient information

is provided with the component’s definition.

For CORBA clients to use EJB implementations, the container provider must
externalizeEJBHome to the CORBA client as a CORBA component home. This is
accomplished by extensions to the Java to IDL mapping defined in Chapter 8. For EJB
clients to access CORBA component homes, the container provider must create an
EJBHome object that serves as a bridge between equivalent operatioBSBiHome

and the CORBA component home. This bridge is also described in Chapter 8.

Table 64-3Comparing the home interfaces of EJB and CORBA components

Construct EJB Form CCM Form Notes

Module javax.ejb Components

Interface EJBHome extends java.rmi.Remote CCMHome

Operation public EJBMetaData get EJBMetaData () | ComponentDef get_component_def (); | CORBA IR supports
throws java.rmi.RemoteException more metadata
public HomeHandle getHomeHandle() CORBA::0object_to_string
throws java.rmi.RemoteException provides same function
public void remove (void remove_component (CORBA references
HomeHandle handle) in CCMObject component) instead of handles
throws java.rmi.RemoteException, raises (CCMException); REMOVE_ERROR
RemoveException is minor code
public void remove (similar operation is
java.lang.Object primaryKey) defined on
throws java.rmi.RemoteException, <home>Implicit for
RemoveException Homes with primaryKey

Interface HomeHandle extends java.io.Serializable CORBA reference used

for handle

public EJBHome getEJBHome() CORBA::string_to_object
throws java.rmi.RemoteException

Module <session-name> <session-home>

Interface <session>home extends EJBHome <session-home>::CCMHome,

<session-home>Implicit,
<session-home>Explicit

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

Comparing CCM and EJB

29 October 1999

64

Table 64-3Comparing the home interfaces of EJB and CORBA components

Construct EJB Form CCM Form Notes
Operation public <session-name>Remote create (| <session-component> create (); Generated operation
<arg-type> <arg-list>) Inherited from
throws CreateException <home>Implicit
Module <entity-name> <entity-home>
Interface <entity>home extends EJBHome <entity-home>::CCMHome,
<entity-home>Implicit,
<entity-home>Explicit
Operation public <entity-name>Remote create (<entity-component> create () Generated operation
<arg-type> <arg-list>) raises (InvalidKey, Inherited from
throws CreateException, DuplicateKey); <home>Implicit
DuplicateKeyException
public <entity-name>Remote <entity-component> find (Generated operation
findByPrimaryKey (in <key-type> primaryKey) Inherited from
<arg-type> <arg-list>) raises (InvalidKey, <home>Implicit
throws FinderException, UnknownKeyType);
ObjectNotFoundException
public <entity-name>Remote <entity-component> <find-method> (Specified operation
find<method> (in <arg-type> <arg-list>) Inherited from
<arg-type> <arg-list>) raises (<exceptions>); <home>Explicit
throws FinderException,
ObjectNotFoundException
64.5.2 The Component Interfaces
Table 64-4 compares the component interfaces and operations which make up the EJB
and CORBA component models. In EJB, tB&@BObject object is created by the EJB
container provider’s tools and provides implementations for methods of the base class
and delegates business methods to a derived ctagsr(e>Remote).
In the basic CORBA component model, components are defined as righteous CORBA
objects and the associated business methods are defined as operations on a supported
interface and the component developer implements these directly so the container need
not provided delegation support.
For CORBA clients to use EJB implementations, the container provider must
externalizeEJBObject to the CORBA client as a CORBA component. This is
accomplished by extensions to the Java to IDL mapping defined in Chapter 8. Foe EJB
clients to access CORBA components, the container provider must create an
64-192 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComparingCCMandEJB 29 October 1999

64

EJBObject implementation that serves as a bridge between business methods on
EJBObject and the basic CORBA component’s supported interface. This bridge is
also described in Chapter 8.

Table 64-4Comparing the remote interfaces of EJB and CORBA components

Construct EJB Form CCM Form Notes

Module javax.ejb Components

Interface EJBObject extends java.rmi.Remote | CCMObject

Operation public EJBHome getEJBHome() CCMHome get_home();
throws java.rmi.RemoteException
public java.lang.Object primaryKey operation defined on <entity>home
getPrimaryKey()
throws java.rmi.RemoteException
public void remove (void remove() CORBA references instead of
Handle handle) raises (CCMException); | handles; REMOVE_ERROR
throws java.rmi.RemoteException, is minor code
RemoveException
public Handle getHandle() CORBA::0object_to_string
throws java.rmi.RemoteException
public boolean isldentical (boolean is_equivalent(
EJBObject obj) in Object obj);
throws java.rmi.RemoteException

Interface Handle extends java.io.Serializable CORBA reference used for handle
public EJBObject getEJBObject() CORBA::string_to_object
throws java.rmi.RemoteException

Module <session-bean> <session-component>

Interface <session>Remote extends EJBObject | <session>::CCMObject
<res-type> <operation> (<res-type> <operation> (| business methods
<arg-type> <arg-list>) in <arg-type> <arg-list)
throws <exceptions> raises (<exceptions>);

Module <entity-bean> <entity-component>

Interface <entity>Remote extends EJBObject <entity>::CCMObject

<res-type> <operation> (
<arg-type> <arg-list>)
throws <exceptions>

<res-type> <operation> (
in <arg-type> <arg-list)
raises (<exceptions>);

business methods

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

Comparing CCM and EJB

29 October 1999

64

64.5.3 The Callback Interfaces

Table 64-5summarizes the callback interfaces the EJB programmer or basic CORBA
component programmer must implement. The EJB interfaces are specified as Java
interfaces in accordance with the EJB 1.1 specification dated June 28, 1999. The CCM
interfaces are specified in IDL as defined in this specification.

Table 64-5Comparing EJB and CCM Callback Interfaces

Construct EJB Form CCM Form Notes
Module javax.ejb Components::Basic
Interface EnterpriseBean EnterpriseComponent
Interface SessionBean extends EnterpriseBean | TransientComponent::EnterpriseCompone
nt
Operation public void setSessionContext (void set_transient_context (
SessionContext ctx) in TransientContext ctx)
throws EJBException raises (CCMException);
public void ejbActivate () void ccm_activate ()
throws EJBException raises (CCMException);
public void ejbPassivate () void ccm_passivate ()
throws EJBException raises (CCMException);
public void ejbRemove () void ccm_remove ()
throws EJBException raises (CCMException);
Interface <name>Bean extends SessionBean Home operations are
not delegated in CCM.
Operation public void ejbCreate (Implemented on home,
<Arg-type> <arg-list>) CREATE_ERROR
throws CreateException, is minor code
EJBEXxception)
Interface SessionSynchronization TransientSynchronization
Operation public void afterBegin () void after_begin ()
throws EJBException raises (CCMException);
public void beforeCompletion() void before_completion ()
throws EJBException raises (CCMException);
public void afterCompletion (void after_completion (
boolean committed) in boolean committed)
throws EJBException raises (CCMException);
Interface EntityBean extends EnterpriseBean PersistentComponent::EnterpriseCompone
nt
Operation public void setEntityContext (void set_persistent_context (
EntityContext ctx) in PersistentContext ctx)
throws EJBException raises CCMException;
public void unsetEntityContext () void unset_persistent_context ()
throws EJBException raises (CCMException);
public void ejbActivate () void ccm_activate ()
throws EJBException raises (CCMException);
64-194 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComparingCCMandEJB 29 October 1999

64

Table 64-5Comparing EJB and CCM Callback Interfaces

Construct EJB Form CCM Form Notes
public void ejbLoad () void ccm_load ()
throws EJBException raises (CCMException);
public void ejbStore () void ccm_store()
throws EJBException raises (CCMException);
public void ejbPassivate () void ccm_passivate ()
throws EJBException raises (CCMException);
public void ejbRemove () void ccm_remove () REMOVE_ERROR
throws RemoveException, raises (CCMException); is a minor code
EJBException
Interface <name>Bean extends EntityBean Home operations are
not delegated in CCM.
Operation public <key-type> ejbcreate (Implemented on home,
<Arg-type> <arg-list>) CREATE_ERROR
throws CreateException, and DUPLICATE_KEY
DuplicateKeyException, are minor codes
EJBException
public void ejbPostCreate () post_create not
throws CreateException, required in CCM due
DuplicateKeyException, to CORBA identity
EJBException model
public <key-type> findByPrimaryKey (Implemented on home,
<Arg-type> <arg-list>) FIND_ERROR,
throws FinderException, NO_SUCH_ENTITY and
NoSuchEntityException, OBJECT_NOT_FOUND
ObjectNotFoundException, are minor codes
EJBException
public <key-type> find<method> (Implemented on home,
<Arg-type> <arg-list>) FIND_ERROR,
throws FinderException, NO_SUCH_ENTITY and
NoSuchEntityException, OBJECT_NOT_FOUND
ObjectNotFoundException, are minor codes
EJBException

64.5.4 The Context Interfaces

The context interfaces summarized in Table 64-6 provide accessors to services
provided by the component container. The are used by the component developer when
these service are required.

Table 64-6 Comparing the EJB and CCM Context Interfaces

Construct EJB Form CCM Form Notes
Module javax.ejb Components::Basic

Interface EJBContext CCMContext

Operation public java.security.Principal getCallerPrincipal() | Principal get_caller_principal();

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComparingCCMandEJB 29 October 1999

64

Table 64-6 Comparing the EJB and CCM Context Interfaces

Construct EJB Form CCM Form Notes
public EJBHome getEJBHome() CCMHome get_CCM_home();
public boolean getRollbackOnly() boolean get_rollback_only()
throws java.lang.lllegalState raises (lllegalState);
public javax.transaction.UserTransaction Transaction::UserTransaction
getUserTransaction () get_user_transaction ()
throws java.lang.lllegalState raises (lllegalState);
public boolean isCallerinRole (boolean is_caller_in_role(
java.lang.String (roleName) in string role);
public void setRollbackOnly() void set_rollback_only()
throws java.lang.lllegalState raises lllegalState;
Interface SessionContext extends EJBContext TransientContext::CCMContext
Operation public EJBObject getEJBODbject() CORBA::Object get_ CCM_Object() | this will be the
throws java.lang.lllegalState raises (lllegalState); component reference
Interface EntityContext extends EJBContext PersistentContext::CCMContext
Operation public EJBObject getEJBODbject() CORBA::Object get_ CCM_Object() | this will be the
throws java.lang.lllegalState raises (lllegalState); component reference
public java.lang.Object getPrimaryKey () PrimaryKeyBase get_primary_key()
throws java.lang.lllegalState raises (lllegalState);
64.5.5 The Transaction Interfaces
Table 64-7 summarizes the transaction interfaces provided for bean-managed or
component-managed transactions. Both EJB and CCM provide an accessor function in
the context to obtain a reference to a transaction service. The transaction service
supported for EJB is JTA, a subset of JTS which is equivalent to the CORBA
transaction service (OTS). The transaction service supported for CORBA components
is implemented by the component container as a wrapper over the CORBA transaction
service.Components::Transaction is functionally equivalent to JTA (which is not a
distinct compliance level for OTS) with the addition sdispend andresume .
Table 64-7Comparing the EJB Transaction service (JTA) with CORBA component transactions
Construct EJB Form CCM Form Notes
Module javax.transaction Components::Transaction
Interface UserTransaction UserTransaction
Operation public void begin() void begin () SystemError to avoid confusion
throws NotSupported, raises (NotSupported, with System Exception
SystemException SystemError);
64-196 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComparingCCMandEJB 29 October 1999

64

Table 64-7Comparing the EJB Transaction service (JTA) with CORBA component transactions

Construct EJB Form CCM Form Notes
public void commit() void commit() map CORBA system exceptions
throws RollbackException, raises (Rollback, TRANSACTION_ROLLED_BACK
HeuristicMixedException, HeuristicMixed, to ROLLBACK and
HeuristicRollbackException, HeuristicRollback, NO_IMPLEMENT to SECURITY
java.security.SecurityException, Security,
java.lang.lllegalStateException, IllegalState,
SystemException SystemError
public void rollback() void rollback()
throws java.security.SecurityException, | raises (Security,
java.lang.lllegalStateException, IllegalState,
SystemException SystemError);
public void setRollbackOnly() void set_rollback_only()
throws SystemException raises (SystemError);
public int getStatus() Status get_status()
throws SystemException; raises (SystemError);
public void setTransactionTimeout (void set_transaction_timeout(
int seconds) in long to)
throws SystemException raises (SystemError);
TranToken suspend() CCM supports suspend/resume
raises (NoTransaction, which JTA does not
SystemError);
void resume(CCM supports suspend/resume
in TranToken) which JTA does not
raises (invalidToken,
SystemError);

64.5.6 The Metadata Interfaces

The EJB component model supports a limited set of metadata through the
EJBMetaData interface. The CORBA component model extends the CORBA
interface repository to add component-unique metadata for components. This meta-
data is in addition to the metadata currently provided by the IR. When EJB clients
access CORBA components, the container provider must provide an implementation of
EJBMetaData which supports the necessary metadata from the Interface Repository
or the component descriptors. This is described further in Chapter 8. When CORBA
clients access EJB implementations, the Interface Repository is already populated for
the EJBHome andEJBObject interfaces, enabling client requests to be satisfied.
Table 64-8 compares the metadata supported by EJB and CORBA Components.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComparingCCMandEJB 29 October 1999

64

Issue — This table will be completed after the Interface Repository chapter is
ready.

Table 64-8Comparing component metadata between EJB and CORBA components

Note
Construct EJB Form CCM Form S
Module javax.ejb IR
Interface EJBMetaData ComponentDef

public EJBHome getEJBHome()

public java.lang.Class getHomelnterfaceClass()

public java.lang.Class getRemotelnterfaceClass()

public java.lang.Class getPrimaryKeyClass()

public boolean isSession()

public boolean isStatelessSession()

64-198 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComparingCCMandEJB 29 October 1999

Component Container Architecture 66

This chapter describes the architecture of tbexponent containeras seen by the
container provider.

Issue — It contains all new text taken from the CCM final submission

66.0.0.1 Contents

This chapter contains the following sections.

Section Title Page

“Component Server” 66-200
“Containers Categories” 66-206
“Persistence Integration” 66-249
“Event Management Integration” 66-252

This chapter describes the architecture of tbexponent containeras seen by the
container provider. The component container is a server-side framework built on the
ORB, the Portable Object Adaptor (POA), and a set of CORBA services, which
provides the runtime environment for a CORBA component. Component containers
may be implemented by an existing ORB vendor or by companies not in that business
today using the facilities of a CORBA 3.x ORB).

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999 66-199

66

The container architecture in sections 66.1, and 66.2 of this chapter is described in
terms of an exemplary design for building component containers on the POA using a
ServantLocator . This isnot the only possible design choice. Other designs are also
possible although there are specific combinations of POA policies that cannot be made
to work. These are indicated as rationale in the body of the text. A component
container that exhibits the same behavior as the exemplary design presented in this
chapter is conformant, even if it implements the container using a different design.

66.1 Component Server

A component serveris a process which includes an arbitrary numbecafponent
containers

® Each container has an associatethtainer API type, which describes it's
interaction with the component, and an associ@@@RBA usage model which
describes its interaction with the POA, the ORB, and a set of CORBA services.

® Each container supports a single container API type and manages a specific
component category Multiple component instances of the same component
category can be deployed in the same container.

* Each container includes (or is associated with) a specialized'Rr@4ch is
responsible for creating references and managing servants for the components in
that container.

® A container is created by eontainer manager, which is a factory for component
containers, based on descriptive information packaged with the component.

® Container managers themselves are created as part of the installation and
deployment process for CORBA components. The details of deployment are
described in Section 69.8, “Property File Descriptor,” on page 69-321.

® A component container can be an EJB container by supporting one of the EJB
container API types (Session Bean or Entity Bean). More information on integrating
EJB containers with CORBA is provided in Chapter 64, “Integrating with
Enterprise JavaBeans”.

1.The term “POA” is used to refer to not only the interfd®®@A, but all the related interfaces
(ServantManager, ServantLocator, etc.) necessary to create references and activate object
instances in response to client requests.

66-200 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Server 29 October 1999

66

The overall architecture is depicted in Figure 66-1 below:

Container Manager

| [|
EJB Session Entity Other
Container | |Container Container Container

Coll|Co|| [Coll |Co

POA1 POA2 POA3 POA4

ORB

Transactions| Security Persistence Notification

Figure 66-1 A Component Server

A component container is created as a result of component deployment as outlined in
Section 69.8, “Property File Descriptor,” on page 69-321. The container specification
is translated by the container manager into a set of POA policies, a container API type,
and a set of CORBA service bindings that will be used by the container. This enables
the container to implemernmternal interfaces, based on these bindings, which offer
services to the component and invoé&lback interfaces which the component
developer must implement.

66.1.1 Component Levels

CORBA components define two levels of component functionality - basic and
extended. These differ in the number of APIs and related functions made available to
the component implementor. This distinction has no effect on the CORBA usage model
or thecontainer API type but does effect reference creation and which CORBA
services are supported by the container. These distinctions are noted at the appropriate
points in the text.

66.1.2 POA Creation

A POA is used to create references that will be exported to clients and to handle
activation of component instances when operation requests are received. Creating a
container usually involves the creation of a P&iar container use. The CORBA usage
model associated with a particular container API type determines some of the policies
which must be associated with the POA. These have been previously described in
Section 62.2, “The Server Programming Environment. Others, which are orthogonal to

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Server 29 October 1883201

66

66-202

the container functionality (e.g. the use of firewall proxies), can be passed as input to
the container manager. It is the responsibility of the container manager to then create a
POA which satisfies these requirements.

CORBA::ORB::resolve_initial_references with an ObjectID of “RootPOA” is

used to locate the root POA. The component category determines the CORBA usage
model and some of the POA policies which must be used. The container manager uses
this information to create a POA and its associated interfaces and to bind the API
framework associated with the container API type.

The container manager design for creating a POA described below uses a
ServantLocator architecture which enables specializ8drvantManager
interfaces to implement the container function by being on the invocation
path for all requests directed to the component. The API frameworks and
their associated deployment descriptors defined forcthtainer API

typesin this specification require the container to intervene before and
after each operation request to implement the required function. This pre-
cludes certain POA policy choices, e.g. the use StavantActivator

which is only called when the requested object is not in the POA's active
object map. While other designs using different POA policies may be possi-
ble, this one was chosen because it best describes how the container behav-
ior needs to be implemented.

The steps required are as follows:

®* The CORBA::Policy objects required by the POA are created with the proper
values. The CORBA usage model requires or (in some cases) suggests specific POA
policies. An example of a set that will work for each CORBA usage model can be
found in Section 62.2, “The Server Programming Environment.

®* A POA is created using thBOA:create_poa operation specifying a sequence of
thePolicy objects created in the previous step as input. The complete fetlicf/
objects includes the mandatory set (dictated by the CORBA usage model), the
orthogonal set (specified as input to container creation), and the implementation-
specific set (chosen by the container provider to deliver the proper semantics).

® The container API type value is used to determine wigenvantManager should
be assigned to the POARQA::set_servant_manager).

In the exemplary design, we use a unidiervantManager for each container API
type (session and entity) defined by CORBA components. For EJB CORBA
containers, there would also be two container API types corresponding to the EJB
Session Bearand Entity Bean.

®* The newly created POA is then activatdRiJA::activate)

In this exemplary design, a different container is defined for each component category
and the container implementation is actually provided bySkevantManager . A
ServantLocator design allows the container to be on the invocation path for every
operation request. These component POAs specifyutBE_ SERVANT_MANAGER

2.1t may be possible in some cases to actually use the root POA. This is not excluded, but has
not been validated.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Server 29 October 1999

66

policy, enabling eéServantManager to be used to associate a servant with the request
to instantiate the object. In standard CORBA, BervantManager interface is
implemented by user applications, but in the exemplary design for use with
components, the specializ&ervantLocator is implemented by the container
provider.

There is a high degree of overlap between many of the component catego-
ries and their requirements for CORBA usage model making it feasible to
build a single container that supports more than one component category.
The exemplary design uses a container per component category for sim-
plicity. Mapping a component implementation to a container by component
category is a function of deployment and supports either a container per
component category, as in the exemplary design, or multiple component
categories in a single container as valid implementation choices.

66.1.3 Binding the Container to CORBA services

Basic CORBA components for all container API types defined in this specification use
the following CORBA services:

® security
® transactions
® naming

Extended CORBA components for all container API types defined in this specification
also support the following additional CORBA setrvices:

® persistence

® notification

As part of container creation, accessibility to these CORBA services must be
established and bindings created. At a minimum, this includes the use of the
resolve_initial_references operation onlCORBA::ORB to obtain initial references

to these services. It also includes processing any container specific configuration data
required for a particular service, e.g.

® setting up the channels to be used for emitting and consuming events,
® creating and initializing database connections to be used for persistence, and

® determining the naming context to be used to resolve component local hames.

66.1.4 Container APl Frameworks

The container API types defined by this specification provideneworks into which

a CORBA component is deployed. We define two container API types and their
associated APIs in this specification. The ESBssionBean andEntityBean
interfaces represent two additional container API types. Each framework manages
interactions with the ORB, the POA, and the CORBA services on behalf of the

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Server 29 October 188203

66

66-204

CORBA component it supports, allowing the component developer to concentrate on
application logic. The major functions handled by the API frameworks (in association
with the ORB, POA, and the CORBA services) include:

® creating object references
® factories and finders

® transactions

® security

® events

® persistence

A brief description of each of these is provided in the following sections.

66.1.4.1 Creating Object References

In CORBA, object references are created and managed by the POA. A component
container creates these reference with specialized information which comes from either
the container provider, the component implementor, or the persistence provider,
depending on both the component category and the deployment options specified.

For basic CORBA component containers and the EJB container API types, the
container provider must manage object reference creation itself since these are not
exposed to the programmer. The basic container is also responsible for binding
references to the component home in the CORBA naming service so they can be
accessed by the client as specified in the client programming model (Section 62.5,
“The Client Programming Model). For EJB containers, oBBObject and

EJBHome have externally visible object references and these are implemented by the
container, not the EJB programmer (see Section 64.3, “CORBA Component views for
EJBs,” on page 64-175 for more details).

66.1.4.2 Factories and Finders

Factory and finder operations are declared usinghthme IDL declaration and are
associated with the component’s home interface. All basic containers provides access
to this interface at runtime. Extended containers also support a set of operations for
externalizing component homes for use by external clients.

For EJB container API types, factories and finders are defineBdBHome using a
naming scheme defined by the Enterprise JavaBeans 1.1 specification.

66.1.4.3 Transactions

The container interacts with the CORBA transaction service on behalf of the
component. Transaction policies, defined in the deployment descriptor, are translated
into CORBA transaction service operations. For CORBA components with self-
managed transactions, the container also provides the

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Server 29 October 1999

66

Transaction::UserTransaction interface, a simplified form of the demarcation part
of the CORBA transaction service which the component implementor uses to support
transaction functions at runtime.

For EJB container API types, thavax.jts.UserTransactioninterface (which is a
subset offransaction::UserTransaction), is mapped to the CORBA transaction
service.

66.1.4.4 Security

The container relies on the CORBA security service to implement access control based
on security policies defined in the deployment descriptor. The container also provides
security operations which the component implementor uses to support security
functions at runtime.

66.1.4.5 Events

Extended CORBA components shall have access to an event service supported by the
container. The container provider is responsible for setting up and managing the event
channels used by CORBA natification to support the component event model. The
component event model relies on configuration information, local to the container
implementor, to handle quality of service properties, filters, and the number and types
of event channels.The container also provides access tBubst interface, which

provides the mapping between the component event model and CORBA natification, to
allow the component to both generate and process events. Integrating the component
event model with CORBA natification is addressed in Section 66.4.

At the time this specification was produced, the EJB container API types
did not support an event API although the Java Messaging Service (JMS)
API has been defined separately (from EJB) and supports similar function.
An event APl is targeted for EJB 2.0.

66.1.4.6 Persistence

For extended components, persistence is supported by containers for the entity
container API type. Component containers supporting the session container API type
do not support persistence. Component containers for basic components do not offer a
persistence API. For extended components, the container provides access to a set of
APIs provided by the CORBA persistent state service which offers the functions
necessary to implement self-managed persistence. Persistence considerations are
covered in more detail in Section 66.3.

For basic components, all entity container API types (including EJB Entity Beans)
support agetPrimaryKey operation on the context equivalent to the

get_primary_key operation on component homes which declare a primary key.
Component persistence (both container-managed and self-managed) is assumed to be
implemented using JDBC or some other unspecified persistence API (e.g. JSQL or
ODBC) and is therefore not defined as part of these container API types.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 ComponentServer 29 October 188205

66

66.1.4.7 Threading

CORBA components support two forms of thread safegrialize, andmultithread .
These choices are described in Section 69.4.5.54, “The threading Element,” on
page 69-295. The container implements these choices by either ensuring that only a
single thread enters a component at a tireeri@glize) or by allowing multiple threads

to enter a component simultaneoushgu(tithread).

Basic container API types (including EJB) support only #eeialize threading policy.

66.2 Containers Categories

66-206

The exemplary design delineatesntainer categoriescorresponding to the four
component categories with their associated container API typescawtainer
categoriesfor the EJB container API types, and an empontainer categoryto
support creation of user-defined frameworks:

® The Servicecontainer which manages the service component designed for high-
performance access to stateless CORBA components (Section 66.2.2).

® The Sessioncontainer which manages the session component for stateful CORBA
components with transient state (Section 66.2.3).

® The Processcontainer which manages stateful process components which
encapsulates all data access in the server using any persistence mechanism (Sectior
66.2.4).

® TheEntity container which manages stateful entity components which shares data
access responsibility between the client and the server using any persistence
mechanism (Section 66.2.5).

®* The EJBSessioncontainer which manages EX&ssion Beang Section 66.2.6).
®* The EJBEntity container which manages EBhtity Beans (Section 66.2.7).

® The Empty container which makes the entire suite of CORBA interfaces available
to a component’s implementation without restriction (Section 66.2.1).

These container categories are one to one with their component categories. The
relationship between component categories, container APktgpd CORBA usage
models was described previously in Section 62.2, “The Server Programming
Environment. The following sections describe each of the container categories in more
detail.

66.2.1 The Empty Container

The Empty container exposes all CORBA functions directly to the component
developer. No framework is provided to simplify programming, however all the
functions necessary to build such a framework are available. The component developer
can choose any function currently defined in CORBA. The empty container is the
means by which the advanced functions of CORBA components (e.g. multiple

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

interfaces, packaging, and deployment) are made available to any CORBA
applications, including those that do not fit the profiles of the other component
categories. This is illustrated in Figure 66-1 below:

CORBA Component Implementation
in the Empty Container

POA

Service 1 Service 2

Service n

Service n+1

Figure 66-1 The Empty Container

Note that a CORBA component deployed in the empty container can use
any arbitrary set (including the null set) of CORBA services. This specifi-
cation places no constraints on what can be used within the existing

CORBA architecture.

66.2.2 The Service Container

Theservicecontainer implements the runtime environment for a service component. A
service container can be implemented using a POA with the policies enumerated in
Table 66-1. Required values must be specified for all container designs. Design values

correspond to th&ervantLocator design used by the exemplary design.

Table 66-1POA Policies for a Service Container

Policy Name Required Value Design Value

Thread ORB_CTRL_MODEL

Lifespan TRANSIENT

Object Id Uniqueness N/A

Id Assignment SYSTEM_ID

Implicit Activation NO_IMPLICIT_ACTIVATION
Servant Retention NO_RETAIN

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

Containers Categories

29 October 1999

66

Table 66-1POA Policies for a Service Container

Policy Name

Required Value Design Value

Transaction Policy

ALLOWS_SHARED

Request Processing

USE_SERVANT_MANAGER

Thread

A thread policy value oORB_CTRL__MODEL is required to allow the container to
serialize access to components that are not thread safljze). Thread safe
componentsrfultithread) will not be protected from multiple threads entering the
component simultaneously.

Lifespan

A lifespan policy value offRANSIENT is required since service components have
neither state nor identify

Object Id uniqueness

The Object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN as it is in the exemplary design.

Id assignment

An Id assignment policy value 3YSTEM_ID allows the POA to assig@bjectld
values. Since service components have no identity, the service container has no need to
manageObjectld assignment.

implicit activation

The implicit activation policy must be set t6dO_IMPLICIT_ACTIVATION when the
servant retention policy iSlON_RETAIN.

servantretention

A servant retention policy value ®§O_RETAIN is required to use &ervantLocator
in the exemplary design.

transaction policy

A transaction policy value oALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

3.In practice, the distinction between PERSISTENT and TRANSIENT references is difficult, if not impossible, to ob-
serve. The semantics associated with the definition of TRANSIENT are closer to the semantics of this category of com-

ponent.

66-208

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

request processing

A request processing policy value BISE_SERVANT _MANAGER allows the
container to be implemented in the servant manager.

66.2.2.1 Creating Object References

For servicecomponentsObjectlds have no meaning sinceservicecomponent has
neither state or identity. The exemplary design allows the POA to create them
transparently to both the container and the component.

66.2.2.2 Factories and Instances

A component home implementation forsarvice component creates object references

and component instances in response to the cliendate requests. Extendeskrvice
components may register their home with tHemeFinder to make it available to

clients through find operations or the component home can be bound in the name
service. Forservicecomponents, the component instance and its home need not be
collocated. Since instances have no state, they can be created anywhere when a reques
is received. Object references for both the component’s supported interfaces and any
provided interface are created by the POA within the service container.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66.2.2.3 Invoking an Operation

Figure 66-1 below outlines the steps necessary to make an operation invocation on a
service component:

Operation foo on Component Z

HomeRegistration

Client Client ORB HomerFinder Z Z_impl
register_home(ZHome)
(1) - |
(2)| resolve_initial_refdrences
—— P - -
IComponentHomeFinder
Home
HomeFinder.find_ ome_by_type(ZHome)
@) ZH ~
|t ome
ZHome.create
@) -
< Z
f00.7 Servant
(5) 00. POA | ocator
|
pre_invoke
lookup_servant
(6) o
invoke(foo)
-
)
post_invoke
Hrelease_servant
(8) L —
|
©)

Figure 66-1 Using a Service Component

1. Component implementation registersexrvicecomponent factory (i.e. its home)
with the HomeFinder (HomeRegistration.register_home).

2. Client use9DORB.resolve_initial_references to get a reference to the
ComponentHomeFinder . Since theHomeFinder is a righteous CORBA object,
it's implementation may be located anywhere.

66-210 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

3. Client uses thélomeFinder.find_home_by type operation to find a
component homeZhome) that creates component instances of type

4. Client invokes acreate operation on the component hon#&Home.create).
SinceZ is aservicecomponent, the home creates a reference and defers activation.

5. Client invokes thdoo operation orZ (Z.foo).

6. The POA invokes th&ervantLocator and requests aexecutorto process the

request $ervantLocator.pre_invoke). The ServantLocator locates an
appropriateexecutor or creates a new one. It returns the associated servant to the
POA.

7. The POA dispatches the request to the component implementatiarké
Z.foo).

8. After the request completes, the POA invokes $sevantLocator
(ServantLocator.post_invoke) . The ServantLocator releases the
associateaxecutorto the pool.

9. The POA return$oo response to the client.

66.2.2.4 Servant Lifetime Management

The service component requires a servant lifetime policynethod. A servant with a
method lifetime policy is activated on the firgire_invoke prior to an operation being
dispatched on the component’s interface and passivated ipdsie invoke following
the operation invocation. This behavior is shown in Figure 66-1 below:

. Transient
Client POA gservantLocator £
@) Z.foo
pre—inVOke lookup_servant
) I
(3) set_context
(4) >
7 f activate
5) 00 >
<.
post_invoke
(6) > release_servant
(7) passivate
>
- — — —
©) |

Figure 66-1 Service Container with a Method Lifetime Policy

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

1. Client invokesfoo operation onZz (Z.foo).

2. POA invokespre_invoke operation onServantLocator
(ServantLocator.pre_invoke).

3. ServantLocator finds an availableexecutorand returns associated servant to the
POA, and invokes callback operation to set context.

4. ServantLocator then invokesactivate callback operation. The component
developer must implement trectivate operation.

5. POA then dispatchef®o operation toZ.

6. Whenfoo operation completes, POA invokesst_invoke operation on
ServantLocator (ServantLocator.post_invoke).

7. ServantLocator then invokegassivate callback operation. The component
developer must implement tigassivate operation.

8. POA then returngoo response back to client. Since the servant lifetime policy is
method, the executoris released.

66.2.3 The Session Container

Thesessioncontainer implements the runtime environment for a session component. A
session container can be implemented using a POA with the policies enumerated in
Table 66-2. Required values must be specified for all container designs. Design values
correspond to th&ervantLocator design used by the exemplary design.

Table 66-2POA Policies for a Session Container

Policy Name Required Value Design Value
Thread ORB_CTRL_MODEL

Lifespan TRANSIENT

Object Id Uniqueness N/A

Id Assignment USER_ID

Implicit Activation

NO_IMPLICIT_ACTIVATION

Servant Retention

NO_RETAIN

Transaction Policy

ALLOWS_SHARED

Request Processing

USE_SERVANT_MANAGER

66-212

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

Thread

A thread policy value oORB_CTRL__MODEL is required to allow the container to
serialize access to components that are not thread safl{ze). Thread safe
componentsrfultithread) will not be protected from multiple threads entering the
component simultaneously.

Lifespan

A lifespan policy value offRANSIENT is required since session components have
transient state and identﬁy

Object Id uniqueness

The Object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

Id assignment

An Id assignment policy value dBSER_ID is required to allow thesessioncontainer
to assign uniqu®bjectlds with input from the component. This supports a
structuring ofObjectld values which the container can exploit within its
implementation.

implicit activation

The implicit activation policy must be set t6dO_IMPLICIT_ACTIVATION when the
servant retention policy iSSON_RETAIN.

servantretention

A servant retention policy value dO_RETAIN is required to use a
ServantLocator .

transaction policy

A transaction policy value oALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’'s deployment descriptor.

request processing

A request processing policy value BISE_SERVANT _MANAGER allows the
container to be implemented in the servant manager.

4.1n practice, the distinction between PERSISTENT and TRANSIENT references is difficult, if not impossible, to ob-
serve. The semantics associated with the definition of TRANSIENT are closer to the semantics of this category of com-
ponent.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66-214

66.2.3.1 Creating Object References

For basic session componenBbjectlds are always managed by the session container
without involvement from the component implementor. Extended session components
create their own references using container APIs. The container implementor is
responsible for maintaining uniqueness. This permitgectlds to be encapsulated by

the container provider in implementation specific ways.

66.2.3.2 Factories and Instances

The home implementation for sessioncomponent creates object references and
component instances in response to the cliecrgsate requests. Extendeskssion
components may register their home with tHemeFinder to make it available to
clients through find operations or the component home can be bound in the name
service. Forsessioncomponents, the component instance and the factory must be
collocated. Object references for both the component’s supported interfaces and any
provided interface are created by the POA within the session container.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66.2.3.3 Invoking an Operation

Figure 66-1 below outlines the steps necessary to make an operation invocation on a
session component:

Operation foo on Component A

HomeRegistration

Client Client ORB HomerFinder A A_impl
(]_) register_honje(AHome)
————
2 -
resolve_initial_refgrences
IComponentHomeFinder
Home
HomeFinder.find_ ome_by_type(AHome)
3) >
< AHome
(4) AHome.create
-
- A
f00.A Servant
(5) 00. POA Locator
|
pre_invoke
(6) > lookup_servant
invoke_focf
) >
post_invoke
(8) > release_servant
- — _>
9) |-
(10)

Figure 66-1 Using a Session Component

1. Component implementation registersessioncomponent’s home with the
HomeFinder (HomeRegistration.register_home).

2. Client use9DORB.resolve_initial_references to get a reference to the
ComponentHomeFinder . Since theHomeFinder is a righteous CORBA object,
it's implementation may be located anywhere.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

3. Client uses thélomeFinder.find_home_by type operation to find a
component homeAhome) that creates component instances of type

4. Client invokes areate operation on the component homgHome.create).
SinceA is asessioncomponent, the home creates a reference and may defer
activation until the first operation invocation.

5. Client invokes thdoo operation oA (A.foo).

6. The POA invokes th&ervantLocator and requests aexecutorto process the
request $ervantLocator.pre_invoke).The ServantLocator locates an
appropriateexecutor or creates a new one. The POA dispatches the request to the
component implementatiorinvoke A.foo).

7. After the request completes, the POA invokes SsevantLocator
(ServantLocator.post_invoke)

8. POA then returngoo response back to client.

9. Steps [5] through [8] are repeated until the operation following the expiration of the
servant lifetime policy. At that point, th8ervantLocator releases the associated
executorto the pool.

66.2.3.4 Servant Lifetime Management

The session container supports multiple servant lifetime policy values. An executor is
activated on the firspre_invoke prior to an operation being dispatched on the
component’s interface and is passivated in plost_invoke following the expiration

of the servant lifetime policy. This is illustrated in the following sections:

66-216 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

Method Lifetime

A session component withraethod lifetime policy has iteexecutoractivated on every
pre_invoke and passivated on eveppost_invoke . This behavior is shown in
Figure 66-1:

Client POA ServantLocator a
(1) A.foo
pre—inVOke lookup_servant
(2) L
3 set_context
EE—
activate
(4)
(5) A.foo >
(6) post_invoke
7) L p| passivate
EE—
(8) | release_servant
- — — —

Figure 66-1 Session component with a Method Lifetime Policy

1. Client invokesfoo operation onA (A.foo).

2. POA invokespre_invoke operation onServantLocator
(ServantLocator.pre_invoke).

3. ServantLocator finds an availableexecutorand returns associated servant to the
POA, and invokes callback operation to set context.

4. ServantLocator then invokesactivate callback operation. The component
developer must implement trectivate operation.

5. POA then dispatchef®o operation toA.

6. Whenfoo operation completes, POA invokesst_invoke operation on
ServantLocator (ServantLocator.post_invoke).

7. ServantLocator then invokegassivate callback operation. The component
developer must implement thgassivate operation.

8. POA then returngoo response back to client and releasagcutor.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66-218

Transaction Lifetime

A session component with taansaction lifetime policy is activated on the first
pre_invoke within a new transaction. Subsequgmé_invoke operations do not
cause activation. Passivation occurs when the current transaction completes
(successfully or unsuccessfully). TiservantLocator implements this policy using

the CORBA transaction servidg@osTransactions::Synchronization

behavior is shown in Figure 66-2:

interface. This

Servant
Client oTs POA Locator A
Current.begin
(1) >
(2) A.fool >
3) pre_invoke
—>
4) Coordinaggr.register| synchronization | lookup_servan
(5) o
set_context
activate
(6) >
(7) A.fool
-
(8) post_invoke
—>
9) =
(10) A.foo2 -
(11) pre_invoke
 EEEE—
(12) A.foo2 -
(13) post_invoke
(14) r=
Current.commit
(15) -
Synchronization.before_completion
(16) passivate
17)
(18)

Figure 66-2 Session Component with a Transaction Lifetime Policy

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

Containers Categories

29 October 1999

66

10.
11.

12.

13.

14.
15.

16.

17.

18.

. Client begins a transaction with the CORBA transaction service

(Current.begin)

. Client invokesfool operation orA (A.fool).

. POA invokegpre_invoke operation onServantLocator

(ServantLocator.pre_invoke).

. ServantLocator registers é&Synchronization object with the CORBA

transaction serviceGoordinator.register_synchronization) to be
called by the CORBA transaction service at the start of the commit process.

. ServantLocator finds an availableexecutor and returns associated servant to the

POA, and invokes callback operation to set context.

. ServantLocator then invokesactivate callback operation. The component

developer must implement treectivate operation.

. POA then dispatchef®ol operation toA.

. Whenfool operation completes, POA invokesst_invoke operation on

ServantLocator (ServantLocator.post_invoke).

. POA then return$éool response back to client.

Client invokes002 operation onA.

POA invokegre_invoke operation onServantLocator
(ServantLocator.pre_invoke). SinceA is already active, the
ServantLocator returns to the POA.

POA then dispatchdso2 operation toA.

Whenfoo2 operation completes, POA invokesst_invoke operation on
ServantLocator (ServantLocator.post_invoke).

POA then returnfoo2 response back to client.

Client attempts to terminate the transaction by calling commit

(Current.commit)

CORBA transaction service notifi&ervantLocator prior to the start of phase
one of commit Synchronization.before_completion).

ServantLocator then invokegassivate callback operation. The component
developer must implement tigassivate operation.

CORBA transaction service continues the two-phase commit process.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

Component Lifetime

A session component with @mponentlifetime policy is activated on the first
pre_invoke prior to an operation being dispatched on the component’s interface.
Passivation occurs either in tip@st_invoke following an application requested
passivation or when the process terminates, whichever occurs first. This behavior is
shown in Figure 66-3 on page 220.

Container Lifetime

A session component with @ntainer lifetime policy is activated on the first
pre_invoke prior to an operation being dispatched on the component’s interface.
Passivation occurs either in tip@st_invoke following an application-requested
passivation or in thg@ost_invoke following an operation when the system needs to
reclaim the memory, whichever occurs first. This behavior is identicabtaponent
behavior, except that failures can be simulated when the container determines that it
needs to reclaim the memory associated with this component making it more likely
that the final response will be returned to the client. This behavior is captured in
Figure 66-3 below.

Servant
Client POA Locator A
1) A.fool
pre_invoke
(2) P
set_context
(3) -
(4) activate
5) A.fool -
>
© post_invoke
B
(7) -
8 A.foo2
(8) > Failure OR | req_passivate
(9) | post_invokg <4
(10) passivate
g
(11)

Figure 66-3 A Session Component with Component or Container Lifetime Policy

66-220 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

10.

11.

Client invokesfool operation oA (A.fool).

. POA invokegpre_invoke operation onServantLocator

(ServantLocator.pre_invoke).

ServantLocator finds an availableexecutor and returns associated servant to the
POA, and invokes callback operation to set context.

ServantLocator then invokesactivate callback operation. The component
developer must implement trectivate operation.

POA then dispatchef®ol operation toA.

Whenfool operation completes, POA invokeest_invoke operation on
ServantLocator (ServantLocator.post_invoke). Since activation policy
is componentor container, the ServantLocator just returns to the POA.

. POA then return$éool response back to client.

. Client continues invokin@oo2 operation A.foo2). Either a failure occurs oA

requests to be passivateggssion2Context.req_passivate).

. Whenfoo2 operation completes, POA invok@sst_invoke operation on

ServantLocator (ServantLocator.post_invoke).

ServantLocator then invokegassivate callback operation. The component
developer must implement thgassivate operation.

POA then returnfoo2 response back to client (if possible).

66.2.4 The Process Container

The processcontainer implements the runtime environment for a process component.
A process container can be implemented using a POA with the policies outline in Table
66-3. Required values must be specified for all container designs. Design values

correspond to th&ervantLocator design used by the exemplary design.

Table 66-3POA Policies for a Process Container

Policy Name Required Value Design Value
Thread ORB_CTRL_MODEL

Lifespan PERSISTENT

Object Id Uniqueness N/A

Id Assignment USER_ID

Implicit Activation

NO_IMPLICIT_ACTIVATION

Servant Retention

NO_RETAIN

Transaction Policy

ALLOWS_SHARED

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

Containers Categories

29 October 1999

66

Table 66-3POA Policies for a Process Container

Policy Name

Required Value Design Value

Request Processing

USE_SERVANT_MANAGER

66-222

Thread

A thread policy value oORB_CTRL__MODEL is required to allow the container to
serialize access to components that are not thread safl{ze). Thread safe
componentsrfultithread) will not be protected from multiple threads entering the
component simultaneously.

Lifespan

A lifespan policy value oPERSISTENT is required since process components have
both persistent state and identity.

Object Id uniqueness

The object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

Id assignment

An Id assignment policy value d#SER_ID is required to allow the process container
to assign uniqu®bjectlds with input from the component implementation and the
persistence mechanism. This not only supports a structurit@pgdctld values which

the container can exploit within its implementation, but also makes it possible for the
component implementor or the persistence mechanism to locate state from the
Objectld .

implicit activation

The implicit activation policy must be set t6dO_IMPLICIT_ACTIVATION when the
servant retention policy iSSON_RETAIN.

servantretention

A servant retention policy value NO_RETAIN is required to use a
ServantLocator .

transaction policy

A transaction policy value oALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’'s deployment descriptor.

request processing

A request processing policy value BISE_SERVANT _MANAGER allows the
container to be implemented in the servant manager.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66.2.4.1 Creating Object References

The processcontainer is responsible for creating and managing un@bgectlds

which can be used to locate an external copy of the component’s persistent state. That
state can be explicitly declared and managed by the containetdiner-managed
persistence or not declared and managed by the applicatiseifimanaged

persistencg. TheseObjectlds are opaque both to the client and to the container, and
may or may not use the CORBA persistence mechanism. This makes it possible to
have factories foprocesscomponents which create only object references and defer
instance creation until an operation request is actually received. This enables workload
to be distributed among several functionally equivalent servers.

66.2.4.2 Factories and Instances

The processcomponent’s home is responsible for creating references and exporting
them to clients. Component instances are created on demand when a reference is used
to invoke an operation.

Factory operations are typically invoked by clients but may also be invoked as part of
the implementation of a specific interface provided by the component. A CORBA
component implementation locates its home (which supports the factory operations)
using the context provided by its container. Object references for both the component’s
interfaces and any provided interface are created by the POA which supports the
container for that component.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66-224

66.2.4.3 Invoking an Op

eration

Figure 66-1 outlines the steps necessary to make an operation request on a process

component:

Operation foo on Component B Flow

HomeRegistration

Client Client ORB POA HomeFinder B_impl
1) register_home(Bhome)
———
(2)| resolve_initial_refdrences
4>
IComponentHomeFinder ~ 8 -
HomeFinder.find_ ome_by_type(BHome)
3) -
< BHome
CCMHome
BHome.create
@) -
< B
Servant
f00.B Locator
®) L .
pre_invoke
4>
lookup| servant_factory
(6) I P
invoke (B)
|
7 .
) post_invoke
4>
(8)
9)<e
(10)

Figure 66-1 Using the Process Container

1. Component implementation registerp@cesscomponent home with the
HomeFinder (HomeRegistration.register_factory

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

).

Containers Categories

29 October 1999

66

N

. Client use9ORB.resolve_initial_references to get a reference to the
ComponentHomeFinder . Since theHomeFinder is a righteous CORBA object,
it's implementation may be located anywhere.

3. Client uses thélomeFinder.find_home_by type operation to find a
component homeBHomg that creates component instances of t§e

4. Client invokes acreate operation on the component hon@Home.create).
SinceB is processcomponent, the home need only create a reference; instance
creation can be deferred until an operation is requested.

5. Client invokes thdoo operation orB (B.foo). SinceB is not active, the POA
invokes thepre_invoke operation on th&ervantLocator
(ServantLocator.pre_invoke).

6. TheServantLocator creates a newexecutorto handle the request. It then returns
the associated servant to the POA to process the request.

7. The POA then dispatches the request to the sennandke(B))

8. After the request completes, the POA invokes SmevantLocator
(ServantLocator.post_invoke)

9. The POA return$oo response to client.

10. Steps [5] through [9] are repeated until the operation following the expiration of the
servant lifetime policy. At that point, th8ervantLocator releases the associated
executorto the pool.

66.2.4.4 Servant Lifetime Management

The process component can have multiple servant lifetime policies specified in its
deployment descriptor. Th&ervantLocator implements these different policies by
making activation decisions duringre_invoke and passivation decisions during
post_invoke . This is illustrated in the following sections:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66-226

Method Lifetime

A process component withraethod lifetime policy has itsexecutoractivated on every
pre_invoke and passivated on eveppost_invoke . This behavior is shown in
Figure 66-1:

Client POA ServantLocator g
(1) B.foo
pre_invoke |
ookup_servant_factpry
2) e
(3) set_context
EE—
(4) activate y
(5) load)
(6) B.foo >
(7) post_invoke
(8) .y Store
EE—
(9) passivate
EE—
(10) unset_context
(11) | E—

Figure 66-1 A Process Component with a Method Lifetime Policy

1. Client invokesfoo operation onB (B.foo).

2. POA invokespre_invoke operation on the&ervantLocator
(ServantLocator.pre_invoke).

3. ServantLocator finds an availableexecutor and returns associated servant to the
POA, and invokes callback operation to set context.

4. ServantLocator creates a nevB and invokes theactivate callback operation.
For most component implementations, no action is required.

5. ServantLocator then invokes thdéoad callback operation. If the component has
declared its abstract state using CORBA persistence, this callback will be executed
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the component
developer must implement tHead operation.

6. POA then dispatche®o operation toB.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

10.

11.

. Whenfoo operation completes, POA invokesst_invoke operation on

ServantLocator (ServantLocator.post_invoke).

ServantLocator then invokes thestore callback operation. If the component has
declared its abstract state using CORBA persistence, this callback will be executed
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the developer
must implement thatore operation.

ServantLocator then invokegpassivate callback operation. For most
component implementations, no action is required.

ServantLocator invokes callback operation to unset the context and releases the
executor.

POA then returnfoo response back to client.

Transaction Lifetime

A process component with taansaction lifetime policy has itsexecutor activated on
the firstpre_invoke within a new transaction. Subsequemé_invoke operations do
not cause activation. Passivation occurs when the current transaction completes

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66-228

(successfully or unsuccessfully). TiservantLocator implements this policy using

the CORBA transaction servigg@osTransactions::Synchronization

behavior is shown in Figure 66-2:

interface. This

Servant
Client OoTs POA Locator B
Current.begin
(1) >
(2) B.fool >
3) pre_invoke
—>
4) Coordinaggr.register| synchronization | lookup_servan
() i getjcoﬁte#
6 —
57; activate y
load
(8) B.fool = >
-
(9) post_invoke
—>
(10) (<=
(11) B.foo2 -
(12) pre_invoke
_—>
(13) B.foo2 -
(14) post_invoke
_—>
(15) =
Current.commit
(16) -
Synchronization.before_completion
7) p| store
(18) >
passivate
oo —
(21) unset_confext

Figure 66-2 A Process Component with a Transaction Lifetime Policy

1. Client begins a transaction with the CORBA transaction service

(Current.begin

)

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

Containers Categories

29 October 1999

66

10.
11.
12.

13.

14.

15.
16.

17.

18.

19.

. Client invokesfool operation orB (B.fool).

. POA invokespre_invoke operation onServantLocator

(ServantLocator.pre_invoke).

. ServantLocator registers é&Synchronization object with the CORBA

transaction serviceGoordinator.register_synchronization) to be
called by the CORBA transaction service at the start of the commit process.

. ServantLocator finds an availableexecutor and returns associated servant to the

POA, and invokes callback operation to set context.

. ServantLocator creates a nevB and invokesactivate callback operation. For

most component implementations, no action is required.

. ServantLocator then invokedoad callback operation.If the component has

declared its abstract state using CORBA persistence, this callback will be executed
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the component
developer must implement tHead operation.

. POA then dispatchef®ol operation toB.

. Whenfool operation completes, POA invok@sst_invoke operation on

ServantLocator (ServantLocator.post_invoke).
POA then returnfool response back to client.
Client invokeso02 operation orB.

POA invokegre_invoke operation onServantLocator
(ServantLocator.pre_invoke). SinceB is already active, the
ServantLocator returns to the POA.

POA then dispatchdso2 operation toB.

Whenfoo2 operation completes, POA invokesst_invoke operation on
ServantLocator (ServantLocator.post_invoke).

POA then returnfoo2 response back to client.

Client attempts to terminate the transaction by calling commit
(Current.commit)

CORBA transaction service notifi&ervantLocator prior to the start of phase
one of commit Synchronization.before_completion).

ServantLocator then invokesstore callback operation. If the component has
declared its abstract state using CORBA persistence, this callback will be executed
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the developer
must implement thatore operation.

ServantLocator then invokesgassivate callback operation. For most
component implementations, no action is required.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66-230

20. ServantLocator invokes callback operation to unset context and releases the
executor.

21. CORBA transaction service continues the two-phase commit process.

Component Lifetime

A process component with @mponentlifetime policy has itsexecutor activated on
the firstpre_invoke prior to an operation being dispatched on the component’s
interface. Passivation occurs either in thest_invoke following an application
requested passivation or when the process terminates, whichever occurs first. This
behavior is shown in Figure 66-3 below.

Container Lifetime

A process component with@ntainer lifetime policy has itsexecutoractivated on the
first pre_invoke prior to an operation being dispatched on the component’s interface.
Passivation occurs either in tip@st_invoke following an application-requested
passivation or in thg@ost_invoke following an operation when the system needs to
reclaim the memory, whichever occurs first. This behavior is identicabtaponent
behavior, except that failures can be simulated when the container determines that it

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

needs to reclaim the memory associated with this component making it more likely
that the final response will be returned to the client. This behavior is captured in
Figure 66-3 below.

Servant
Client POA Locator B
(1) B.fool
5 pre_invoke
P
(2) set_context
(3 R
(4) activate y
(5) Bfool | load
(6) >
@ post_invoke
P
(8) |« req_passivate
Failure OR B
(9) B.foo2 > I
post_invoke

(20) p-| Store

—
(11) passivate
(12) —>
(13) unset_context
(14) [

Figure 66-3 Process Component with Component or Container Lifetime Policies

1. Client invokesfool operation omB (B.fool).

2. POA invokespre_invoke operation onServantLocator
(ServantLocator.pre_invoke).

3. ServantLocator finds an availableexecutor and returns associated servant to the
POA, and invokes callback operation to set context.

4. ServantLocator invokesactivate callback operation. For most component
implementations, no action is required.

5. ServantLocator then invokedoad callback operation.If the component has
declared its abstract state using CORBA persistence, this callback will be executed
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the component
developer must implement tHead operation.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

10.

11.

12.

13.

14.

POA then dispatchef®ol operation toB.

. Whenfool operation completes, POA invokesst_invoke operation on

ServantLocator (ServantLocator.post_invoke). Since activation policy
is componentor container, the ServantLocator just returns to the POA.

POA then returngool response back to client.

Client invokesfoo2 operation on B B.foo2). Either a failure occurs oB
requests to be passivateintity2Context.req_passivate).

Whenfoo2 operation completes, POA invokesst_invoke operation on
ServantLocator (ServantLocator.post_invoke).

ServantLocator then invokesstore callback operation.If the component has
declared its abstract state using CORBA persistence, this callback will be executed
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the developer
must implement thatore operation.

ServantLocator then invokegpassivate callback operation. For most component
implementations, no action is required.

ServantLocator invokes callback operation to unset context and releases the
executor.

POA then returnfoo response back to client (if possible).

66.2.5 The Entity Container

The entity container provides the runtime environment for the entity component. A
entity container can be implemented using a POA with the policies outlined in Table
66-4. These values are equivalent to those specified for the process container in
Section 66.2.4. Required values must be specified for all container designs. Design
values correspond to thgervantLocator design used by the exemplary design.

Table 66-4POA Policies for the Entity Container

Policy Name Required Value Design Value
Thread ORB_CTRL_MODEL

Lifespan PERSISTENT

Object Id Uniqueness N/A

Id Assignment USER_ID

Implicit Activation

NO_IMPLICIT_ACTIVATION

Servant Retention

NO_RETAIN

Transaction Policy

ALLOWS_SHARED

66-232

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

Table 66-4POA Policies for the Entity Container

Policy Name

Required Value Design Value

Request Processing

USE_SERVANT_MANAGER

Thread

A thread policy value oORB_CTRL__MODEL is required to allow the container to
serialize access to components that are not thread safl{ze). Thread safe
componentsrfultithread) will not be protected from multiple threads entering the
component simultaneously.

Lifespan

A lifespan policy value oPERSISTENT is required since entity components have
both persistent state and identity.

Object Id uniqueness

The object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

Id assignment

An Id assignment policy value dJSER_ID is required to allow the entity container to
assign uniquébjectlds with input from the component implementation and the
persistence mechanism. This not only supports a structurit@pgdctld values which

the container can exploit within its implementation, but also makes it possible for the
component implementor or the persistence mechanism to locate state from the
Objectld .

implicit activation

The implicit activation policy must be set t6dO_IMPLICIT_ACTIVATION when the
servant retention policy iSSON_RETAIN.

servantretention

A servant retention policy value NO_RETAIN is required to use a
ServantLocator .

transaction policy

A transaction policy value oALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’'s deployment descriptor.

request processing

A request processing policy value BISE_SERVANT _MANAGER allows the
container to be implemented in the servant manager.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66-234

66.2.5.1 Creating Object References

The entity container is responsible for creating and managing unigbjectids

which can be used to locate an external copy of the component’s persistent state. That
state can be explicitly declared and managed by the containetdiner-managed
persistence or not declared and managed by the applicatiseifimanaged

persistencg. The entity container supports operations for associating primary keys

with a Componentld (cid). Every entity component instance is associated with one
and only one primary key. The entity container provides operations on its
ServantLocator to create arDbjectld from acid.

66.2.5.2 Factories and New Instances

A entity component’s home is responsible for both creating references and creating
new instances of entity components. Since entity components are also incarnations in a
persistent store, creating a new instance of the entity component has the effect of
creating a new record in a persistent store.

Factory operations are typically invoked by clients but may also be invoked as part of
the implementation of a specific interface provided by the component. The entity
component implementation locates its home (which supports the factory operations)
using the context provided by its container. Object references for both the component’s
interfaces and any provided interface are created by the POA which supports the
container for the entity component.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66.2.5.3 Invoking an Operation on a New Instance

Figure 66-1 shows the necessary steps to make an operation request on a new entity
component:

Operation foo on a new Component C Flow

HomeRegistration

Client Client ORB POA HomeFinder C C_impl
1) register_home(CHome|
-
(2)| resolve_initial_refdrences
P -t -
IComponentHomeFinder
HomeFinder.find_ ome_by_type(CHome)
3) -
CHome
~ CCMHome PSS
@) CHome.create(primary_key)
>create(key)
C 4>
(5
foo.C Servant
(6) »| Locator
pre_invoke
4>
creatg key
) >
(8) -
invoke (C)
9) >
post_invoke
(10 >
(11)
(12)

Figure 66-1 Using the Entity Container to Create new Entity Components

1. Component implementation registers @ity component home with the
HomeFinder (HomeRegistration.register_factory).

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66-236

N

10.

11.
12.

Client useORB.resolve_initial_references to get a reference to the
ComponentHomeFinder . Since theHomeFinder is a righteous CORBA object,
it's implementation may be located anywhere.

. Client uses thélomeFinder.find_home_by_type operation to find a

component homeGHome@ that creates component instances of tgpe

. Client invokes areate operation on the component honféHome.create) using

a primary key. Sinc&€ is anentity component, the home must talk to a persistence
mechanism to create a new record in the persistent store using the same primary
key.

. A reference tcCis returned to the client.

. Client invokes thdoo operation onC (C.foo). SinceCis not active, the POA

invokes thepre_invoke operation on th&ervantLocator
(ServantLocator.pre_invoke).

. TheServantLocator talks to the persistence mechanism to find the incarnation

associated with this request. The persistence mechanism finds the appropriate
incarnation and returns it to thgervantLocator .

. TheServantLocator creates a newxecutorto handle the request. The associated

servant is returned to the POA to process the request.

. The POA then dispatches the request to the senmantKe(C))

After the request completes, the POA invokes SieevantLocator
(ServantLocator.post_invoke)

The POA return$oo response to client.

Steps [6] through [11] are repeated until the operation following the expiration of
the servant lifetime policy. At that point, tigervantLocator releases the
associateexecutor.

66.2.5.4 Finders and Existing Instances

Theentity component may also correspond to an existing element in a persistent store.
If so, a finder is responsible for locating tiRersistentld and associating an

incarnation with an instance of the entity component. The home interface for entity
components supports finder operations.

The client will use either thélomeFinder or the Naming service to locate the home
interface. A CORBA component implementation can locate its home interface using
the context provided by its container.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66.2.5.5 Invoking an Operation on an Existing Instance
Figure 66-1 shows the necessary steps to make an operation request on an existing
entity component:

Operation foo on an Existing Component C Flow

Name
Client ClientORB POA Service Context C C_impl

) ‘)ind(CHome,"namestring”)
-—————
-
(2) resolve_initial_refdrences
> - -
NamingService
HamingContext.Io bkup(CHome,”namestring”)
©) >
CHome
PSS
4 CHome. find(primary_key)
- P> ind(key)
4>
5)
Servant
f00.C Manager
(6) .
pre_invoke
4>
find
() >
8) -
invoke (C)
) >
post_invoke
(10 >
(11)4
(12

Figure 66-1 Using the Entity Container to Locate Existing Entity Components

1. Container tools binds thentity component home to a stringn@mestring”) with
CosNaming .

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

N

. Client use9ORB.resolve_initial_references to get a reference to the
NamingService . Since theNamingContext is a righteous CORBA object, its
implementation may be located anywhere.

3. Client uses th&lamingContext.lookup operation to find the homeOHomé
that finds component instances of ty@e

4. Client invokes a find operation on the hom@Home.find) using a primary key.
SinceCis anentity component, the home must talk to the persistence mechanism to
locate an element in the persistent store with the same primary key.

5. A reference tcCis returned to the client.

6. Client invokes thdoo operation onC (C.foo). SinceC is not active, the POA
invokes thepre_invoke operation on th&ervantLocator
(ServantLocator.pre_invoke).

7. TheServantLocator talks to the persistence mechanism to find the incarnation
associated with this request. The persistence mechanism find the appropriate
incarnation and returns it to thgervantLocator .

8. TheServantLocator creates a newxecutorto handle the request. The associated
servant is returned to the POA.

9. The POA then dispatches the request to the sennamdke(C))

10. After the request completes, the POA invokes$leevantLocator
(ServantLocator.post_invoke)

11. POA returngoo response to client.

12. Steps [6] through [11] are repeated until the operation following the expiration of
the servant lifetime policy. At that point, thgervantLocator releases the
associateaxecutorto the pool.

66.2.5.6 Servant Lifetime Management

The entity container supports multiple servant lifetime policies.Support for multiple
servant lifetime policies is equivalent to the process container as described in Section
66.2.4.4.

66.2.6 The EJBSession Container

The EJBSessioncontainer implements the runtime environment for a EJB Session
Beans in a CORBA component container. Th#B Sessioncontainer can be
implemented using a POA with the policies enumerated in Table 66-5. These values

66-238 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

can be the same as a session container enabling the same POA to be used. Required

values must be specified for all container designs. Design values correspond to the
ServantLocator design used by the exemplary design.

Table 66-5POA Policies for a EJBSession Container

Policy Name Required Value Design Value
SINGLE_THREAD_MODEL
Thread ORB_CTRL_MODEL
Lifespan TRANSIENT
Object Id Uniqueness N/A
SYSTEM_ID
Id Assignment USER_ID
Implicit Activation NO_IMPLICIT_ACTIVATION
Servant Retention NO_RETAIN

Transaction Policy

ALLOWS_SHARED

Request Processing

USE_SERVANT_MANAGER

Thread

A thread policy value oORB_CTRL__MODEL allows the container to serialize
access to Session Beans which must be single-thread. A thread policy value of
SINGLE_THREAD_MODEL can also be used to rely on serialization in the POA,
rather than the container.

Lifespan

A lifespan policy value offRANSIENT is required since EJB Session Beans may
have transient state and identity.

Object Id uniqueness

The object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

Id assignment

An Id assignment value d8YSTEM_ID is sufficient for EJB Session Beans since the
EJB Component Architecture does not expose object references. A vaUBER 1D
allows the container to assign unig@bjectlds itself. This supports a structuring of
Objectld values which the container can exploit within its implementation.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66-240

implicit activation
The implicit activation policy must be set t6dO_IMPLICIT_ACTIVATION when the
servant retention policy islON_RETAIN.

servantretention

A servant retention policy value ™O_RETAIN is required to use a
ServantLocator .

transaction policy

A transaction policy value oALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

request processing

A request processing policy value BISE_SERVANT _MANAGER allows the
container to be implemented in the servant manager.

66.2.6.1 Creating Object References

Object references are not exposed to the bean programmer for EJB Session Beans.
Only EJBHome andEJBObject have externally visible references and they are
created by the EJB container’s tools, not the enterprise Bean programmer. To support a
Session Bean in a CORBA EJB container, the container provider will need to do the
following:

® create interface definitions f&EJBHome andEJBObject and store those
definitions in the interface repository.

® create entries in CORBA naming using the symbolic name defined by EJB which
point to the instances dEZJBHome andEJBObject to be used by this Session
Bean.

® create an implementation &IJBHome which delegate factory operations to the
enterprise Bean'’s create methods.

® create an implementation &JBObject which delegate application operations to
the enterprise Bean’s application operations.

66.2.6.2 Factories and Instances

EJB client programmers locate factories usiigDl. From the EJB client’s

perspective, factories for Session Beans are operations implementdBsiome .

The enterprise Bean developer implements the operations and the container provider
stores its symbolic name in CORBA naming so it can be accessed by a &N&rt

call and implements theJBHome object which delegates to the enterprise Bean'’s
create operation. A factory operation @IBHome creates instance of the enterprise
Bean which is derived frorEJBObject . Because home operations are delegated to the
enterprise BearEJBHome andEJBObject must be collocated.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66.2.6.3 Invoking an Operation

EJB clients make all operation requestsBIBObject . Installing a Session Bean in
an EJBSessioncontainer requires the container to createEaBObject
implementation of the enterprise Bean'’s operations which ultimately delegates the
processing of the request to the implementation. In many EJB container
implementations, th&JBObject implementation implements the EJB container
functions, including setting declarative transaction and security policies before
invoking the enterprise Bean’s operations.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66-242

In the CORBA environment of the exemplary design, these functions are performed by
the specializedervantLocator for the EJBSessionContainer before the operation
request orEJBObject is actually dispatched by the POA.This allows the generated
EJBObject implementation to simply delegate the operation request to the Session
Bean.This is illustrated in Figure 66-1 below:

Operation foo on EJB Component J

Directory

Client Client ORB JINDI EJBObject 3 jmpl
(1) NamingContext.bind (EJBHome, [‘name”)
]
Home
JNDI.logkup(“name*)
2 -
< EJBHome
(3) EJBHome.create
|
< EJBObiject
. EJBSessionServant
(4) foo.EJBObject poa Locator
|
pre_invoke
(5) > lookup_servant
invoke_focf
(6) -
7 I
(7) post_invoke
(8) > release_servant
- — _>
(9) -
(10)

Figure 66-1 Dispatching an operation request in a CORBA EJB container

1. Container tools binds a session bean’s home with CORBA naming to enable access
via JNDI (NamingContext.bind).

2. Client uses JNDI to locate tHeJBHome(Jhome) that creates component instances
of typeJ.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

3. Client invokes areate operation on the Session Bean horisdBHome.create).
Sinced is a session bean, the home creates a reference and delegates the processing
of the create operation to ajbcreate operation of the enterprise Bean.

4. Client invokes thdoo operation onEJBObject (EJBObject.foo).

5. The POA invokes th&ervantLocator and requests aexecutorto process the

request $ervantLocator.pre_invoke).The ServantLocator locates an
appropriateexecutor or creates a new one. It returns the associated servant to the
POA.

6. The POA dispatches the request to EAlBObject implementation Ihvoke
EJBObject.foo).

7. TheEJBObject implementation delegates the operation to the Session Bean
implementation.

8. After the request completes, the POA invokes SmevantLocator
(ServantLocator.post_invoke)

9. POA then returnfoo response back to client.

10. Steps [4] through [7] are repeated until the operation following the expiration of the
servant lifetime policy. At that point, th8ervantLocator releases the associated
executorto the pool.

66.2.6.4 Servant Lifetime Management

Enterprise JavaBeans relies on the garbage collection features of the Java language to
manage bean lifetimes. This is equivalent to a servant lifetime poligyoofainer.

66.2.7 The EJBEntity Container

The EJBENntity container provides the runtime environment for an EJB Entity Bean.

An EJBEntity container can be implemented using a POA with the policies outlined in
Table 66-6. These values can be made equivalent to those specified for the process and
entity containers enabling the same POA to be used. Required values must be specified
for all container designs. Design values correspond taSevantLocator design

used by the exemplary design.

Table 66-6 POA Policies for the EJBEntity Container

Policy Name Required Value Design Value
ORB_CTRL_MODEL

Thread SINGLE_THREAD_MODEL

Lifespan PERSISTENT

Object Id Uniqueness

N/A

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

Table 66-6 POA Policies for the EJBEntity Container

Policy Name Required Value Design Value
USER_ID

Id Assignment SYSTEM_ID

Implicit Activation NO_IMPLICIT_ACTIVATION

Servant Retention NO_RETAIN

Transaction Policy

ALLOWS_SHARED

Request Processing

USE_SERVANT_MANAGER

66-244

Thread

A thread policy value oORB_CTRL__MODEL allows the container to serialize
access to Entity Beans which must be single-thread. A thread policy value of
SINGLE_THREAD_MODEL can also be used to rely on serialization in the POA,
rather than the container.

Lifespan

A lifespan policy value oPERSISTENT is required since Entity Beans have both
persistent state and identity.

Object Id uniqueness

The object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

Id assignment

An Id assignment policy value 3YSTEM_ID is sufficient for EJB Entity Beans

since the EJB Component Architecture does not expose object references. Entity Beans
do support the concept ¢fandle which could be implemented as a CORBA

persistent object reference. If so, a valueUSER_ID allows the container to assign

an uniqueObjectld which can be an EJBlandle or some index to it.

implicit activation

The implicit activation policy must be set t6dO_IMPLICIT_ACTIVATION when the
servant retention policy islON_RETAIN.

servantretention

A servant retention policy value dO_RETAIN is required to use a
ServantLocator .

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

transaction policy

A transaction policy value oALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

request processing

A request processing policy value BISE_SERVANT _MANAGER allows the
container to be implemented in tlg&ervantManager .

66.2.7.1 Creating Object References

Object references are not exposed directly to the enterprise Bean programmer for
Entity Beans although they are exposed indirectly vialfamdle . Only EJBHome
andEJBObject have externally visible references and they are created by the EJB
container’s tools, not the enterprise Bean programmer. To support an Entity Bean in a
CORBA EJB container, the container provider will need to do the following:

® create interface definitions f&EJBHome andEJBObject and store those
definitions in the interface repository.

® create entries in CORBA naming using the symbolic name defined by EJB which
point to the instances dEJBHome andEJBObject to be used by this Entity
Bean.

® create an implementation &IBHome which delegate factory and finder
operations to the enterprise Bearjbcreate andejbfind<METHOD> operations.

® create an implementation &JBObject which delegate application operations to
the enterprise Bean’s application operations.

66.2.7.2 Factories and New Instances

EJB client programmers locatJBHome usingJNDI. From the EJB client’s
perspective, factories for Entity Beans are operations implementé&dBhome . The
enterprise Bean developer implements the operations and the container provider
implements th&eJBHome object which delegates to the enterprise Beajixreate
operations. The container also stores a symbolic nam&J&Home in CORBA
naming so it can be accessed by a cli@NDI call. A create operation oeRJBHome
creates an instance of the enterprise Bean which derives EdBObject . Because
home operations are delegated to the enterprise BedBlHome and EJBObject
must be collocated.

66.2.7.3 Invoking an Operation on a New Instance

EJB clients make all operation requestsEiBObject . Installing an Entity Bean in an
EJBEntity container requires the container to createEdiBObject implementation

of the enterprise Bean’s methods which ultimately delegates the processing of the
request to the bean implementation. In many EJB container implementations, the
EJBObject implementation implements the EJB container functions, including setting
declarative transaction and security policies before invoking the enterprise Bean'’s
operations.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66-246

In the CORBA environment of the exemplary design, these functions are performed by
the ServantManager for the EJBEntity Container before the operation request on
EJBObject is actually dispatched by the POA.This allows the gener&#BObject
implementation to simply delegate the operation request to the enterprise Bean.

Figure 66-1 shows the necessary steps to make an operation request on an Entity Bean
in the EJBEntity container:

Operation foo on a new Entity Bean K Flow

. . Directory .
Client Client ORB POA JNDI K K_impl
(1) bind (EJBHome, “name”)

O
JNDI.lookup(“name”)
) -
EJBHome
~ EJBHome PSS
EJBHome.create(primary_key)
®) >create(ke
Y)
EJBObject I
(4)<a
fop.EJBObject EJBEntityServant
() > Locator
pre_invoke
4>
©) creatg key
-
() -
@) invokg(EJBObjett.foo)
-
) >
post_invoke
(10)
(11)
(12)

Figure 66-1 Using the EJBEntity Container to Create new Entity Beans

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

1. Container tools binds a entity bean’s home with CORBA naming to enable access
via JNDI (NamingContext.bind).

2. Client uses JNDI to locate tHeJBHome(Khome) that creates component instances
of type K.

3. Client invokes acreate operation on the entity bean homgeJBHome.create)
using a primary key. SincK is an entity bean, the home must talk to a persistence
mechanism to create a new record in the persistent store using the same primary
key.

4. A reference tdEJBObject is returned to the client.

5. Client invokes thdoo operation orEJBObject (EJBObject.foo). Since
EJBObject is not active, the POA invokes th@e_invoke operation on the
ServantLocator (ServantLocator.pre_invoke).

6. TheServantLocator talks to the persistence mechanism to find the incarnation
associated with this request. The persistence mechanism finds the appropriate
incarnation and returns it to thgervantLocator .

7. TheServantLocator creates a newxecutorto handle the request. The associated
servant is returned to the POA to process the request.

8. The POA then dispatches the request to the servavidke(EJBObject.foo))

9. TheEJBObject implementation delegates the operation to the Entity Bean
implementation.

10. After the request completes, the POA invokes $leevantLocator
(ServantLocator.post_invoke)

11. The POA return$oo response to client.

12. Steps [5] through [11] are repeated until the operation following the expiration of
the servant lifetime policy. At that point, thgervantLocator releases the
associateexecutor.

66.2.7.4 Finders and Existing Instances

EJB client programmers locateJBHome usingJNDI. From the EJB client’s
perspective, finders for entity beans are also operations implementedRidome .

The enterprise Bean developer implements the operations and the container provider
implements th&eJBHome object which delegates to the enterprise Bean’s
ejbfind<METHOD> operation. The container also stores a symbolic name for
EJBHome in CORBA naming so it can be accessed by a cligNDI call. A
findByPrimaryKey operation orEJBHome locates an instance &JBObject using

a primary key. Because home operations are delegated to the enterprise Bean,
EJBHome andEJBObject must be collocated.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

66.2.7.5 Invoking an Operation on an Existing Instance

Figure 66-1 shows the necessary steps to make an operation request on an existing
Entity Bean in anEJBEntity container:

Operation foo on an Existing Component K Flow

Name
Client ClientORB POA Service K K_impl
ind(EJBHome,”"name”)
M) Ao
NamingContext.lgdokup(EJBHome,”namestring”)
) -
EJBHome
PSS
3) EJBHome.find(primary_key)
P> ind(key)
EJBObject I
(G :
EJBEntityServant
foo.EJBObjgct ~ Manager
) .
pre_invoke
4>
find
(6) -
@) -
invokg(EJBOBject.foo)
8) >
9) -
post_invoke
(10)
(1)
(12

Figure 66-1 Using the EJBEntity Container to Locate Existing Entity Beans

1. Container tools binds the entity bean’s home to a stringrfie”) with
CosNaming .

66-248 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Containers Categories 29 October 1999

66

2. Client usesINDI.lookup operation to find the homeEJBHomg that finds
component instances of type

3. Client invokes a find operation on the hont&JBHome.find) using a primary
key. SinceK is an entity bean, the home must talk to the persistence mechanism to
locate an element in the persistent store with the same primary key.

4. A reference t&EJBObject is returned to the client.

5. Client invokes thdoo operation orEJBObject (EJBObject.foo). Since
EJBObject is not active, the POA invokes th@e_invoke operation on the
ServantLocator (ServantLocator.pre_invoke).

6. TheServantLocator talks to the persistence mechanism to find the incarnation
associated with this request. The persistence mechanism find the appropriate
incarnation and returns it to thgervantLocator .

7. TheServantLocator creates a newxecutorto handle the request. The associated
servant is returned to the POA.

8. The POA then dispatches the request to the servant
(invoke(EJBObject.foo)).

9. TheEJBObject implementation delegates the operation to the Entity Bean

10. After the request completes, the POA invokes $leevantLocator
(ServantLocator.post_invoke)

11. POA returngoo response to client.

12. Steps [5] through [11] are repeated until the operation following the expiration of
the servant lifetime policy. At that point, thgervantLocator releases the
associateaxecutorto the pool.

66.2.7.6 Servant Lifetime Management

Enterprise JavaBeans relies on the garbage collection features of the Java language to
manage bean lifetimes. This is equivalent to a servant lifetime poligyoofainer.

However, since entity beans are required to use transaction§JREntity container

may choose to implement a servant lifetime policyt@nsaction.

66.3 Persistence Integration

Component persistence is supported by the process, entitygdBHEntity containers.
The container architecture permits the persistence provider to be separate from the
container provider since we expect that these functions will often be provided by
different vendors. This section describes the various forms of persistence support
available for CORBA components and the responsibilities of the container, the
persistence provider, and the component developer.

Two forms of component persistence are supported by each of the containers
supporting persistence:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Persistence Integration 29 October 1999

66

66-250

® Container-managed persistence where the container provider interacts with the
persistence provider and

® Self-managed persistence where the component developer must interact with the
persistence provider.

These are described more fully in the following sections.

The process and entity containers also support a run time accessor to a set of
persistence API functions, provided by the CORBA persistent state service, which
enable the component to save and restore its private state. If other mechanisms are used
for component persistence (e.g. SQL, ODBC, etc.), it is the responsibility of the
component developer to implement the mapping directly. This is illustrated in

Figure 66-1 below:

)

@+ — — 10
T ® corea PSS
: External | Componentg— — — 1 @
e @
n T
t e o >
Callbacks CoOntainer | @

N

Figure 66-1 Container Persistence Architecture

The entity andEJBENtity containers also support access to the primary key. A
primaryKey value is associated with the component’s home for theesgainer
categories

66.3.1 Container-managed Persistence

Container-managed persistence supports the declaration of abstract state associated
with the component or its facets. This abstract state is declared using a state
declaration language defined by the CORBA persistence state service. State which is to
be container-managed can use the CORBA persistence state service or it may use some
other persistence mechanism as long as that mechanism can support the persistence
framework defined by the CORBA persistent state service.

When CORBA persistence is used, code can be generated to suppocnthéoad
andccm_store operations on th&ntityComponent interface or theejpLoad and
ejbStore operations of the EJB Entity container. For process and entity containers
supporting extended components, this code may make use of the runtime access to the
persistence provider. For basic components, access to a persistence mechanism is not
specified and left to the container implementation.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Persistence Integration 29 October 1999

66

This is identical to the design for EJB 1.1 which specifies the fields which
participate in container-managed persistence, but leaves how those fields
are made persistent to the container providers. Although common expecta-
tion is that JIDBC will be used, that is not mandated.

For EJB Entity containers, it is likely that this code will utiliZ®BC or some other
Java persistence mechanism since there is not an abstract state definition language
currently defined for EJB.

If CORBA persistence is not used in the process and entity containers, the component
developer must implement theem_load andccm_store operations as well as

provide implementations for all factory and finder methods defined on the component’s
home.

66.3.2 Self-managed Persistence

Self-managed persistence is also supported by the samtainer categories Self-

managed persistence is assumed by process and entity containers if abstract state
declarations do not exist for a particular component. With self-managed persistence,
automatic code generation for saving and restoring state is not possible, so the
responsibility lies completely with the component developer. Again, the developer may
chose between the CORBA persistence state service and other persistence mechanisms

For process and entity containers supporting extended components, the container
provides run time access to the CORBA persistent state service which may be used.
For basic components, the persistence API is the responsibility of the component
implementor and is not specified. It is expected that normal database APIs such as
ODBC, JDBC, or SQL will be used. Extended component developers must use the
operations orkEntity2Context to create &Componentld that encapsulates the
information model which describes the persistent state associated with a component.
These operations are defined in Section 62.4.3.6, “Componentld Interface,” on

page 62-160.

66.3.3 Interactions between the Container and the Persistence Provider

The design for CORBA components assumes the likelihood that containers and
persistence solutions will be provided by different vendors.This assumption effects
both the component developer and the container provider. The component developer is
isolated from the persistence provider by the CORBA persistent state service which
defines persistence APIs for the component developer. The container provider has
several responsibilities for persistence integration. These include:

® establishing connection to the persistence mechanism,
®* managing DB connections with the persistence store

® synchronizing component state with durable state.

These subjects are covered in the next sections.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Persistence Integration 29 October 1999

66

66.3.3.1 Connecting to the Persistence Mechanism

As part of creating a container supporting persistence (process, entity Jigntity
containers), connectivity to the persistence mechanism must be established. This
includes obtaining initial references the persistence provider makes available through
the ORB, connecting to the persistence provider (including the exchange of security
information required), and obtaining references from the persistence provider to
implement an accessor to the persistence APIs provided by the CORBA persistence
state service.

66.3.3.2 Managing DB Connections

Most persistence providers today require that a DB connection be allocated by a client
before any data access operations can be invoked. Typically, this is a very expensive
operation, which must be done infrequently to achieve reasonable system performance.
We expect container implementations to manage a pool of such connections, which are
constructed as part of the container creation process, and allocate these to component
implementations as needed, typically for the duration of a transaction, although a
connection may be retained longer if the container does not need it for some other
component. As a result, component implementations will not have to deal with this
function directly and the DB connection can be assigned to a component when its
initial request to the persistence provider is made.

66.3.3.3 Synchronization of Component State with Persistence State

The interfaces provided by the CORBA persistent state service suphis
operations which can be used by the component developer to transfer state from the
container domain to the persistence domain.

®* For self-managed persistence, the component developer assumes this responsibility
by implementing theecm_store callback operation.

® For container-managed persistence, the container assumes this responsibility and
invokes theflush operation on each persistent store involved in the current
transaction.

Both approaches guarantee that the persistence provider, and not the component
developer or the container, assumes the responsibility for durability of persistent state.

66.4 EventManagement Integration

CORBA components define a simple event model which supports two forms of event
communication:

® events which are published anonymously to a dedicated channel

® events which are published anonymously to a shared channel

The container is responsible for mapping those semantics onto the CORBA notification
service. Although it is possible to connect event consumers and suppliers directly in
some cases, the container will always deliver component events through a notification

66-252 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Event Management Integration 29 October

66

channel to ensure a more robust event distribution mechanism and to allow consistent
transaction semantics (defined with the event deployment descriptor) to be applied to
both the delivery of the event to the channel and the removal of the events from the
channel (i.e. a two-transaction model).

A component event is represented as a CORBRAletype This permits event emitters

and publishers to be matched with their consumers by the event types they wish to
exchange. The event architecture as described in Section 61.6, “Events,” on page 61-44
requires that thealuetype be able to be transmitted as a CORBAy through an

event channel. This makes it possible for the container to use untyped notification
channels for transmitting the actual event. The containers responsibility can be broken
into three major areas and is described in the next few sections:

® setting up the channels to be used, including all the required proxies

® accepting a CORBA component event and pushing it to an event channel as a
structured event

® receiving a structured event from an event channel and converting it to a CORBA
component event

66.4.1 Channel setup

When a component is installed in a container, the deployment descriptor contains
information about the types of events published or emitted and the types of events the
component consumes. The container is responsible for initializing the CORBA
notification service and establishing the event channels to be used.

® For published events, it accomplishes this with Ehent::create_channel
operation which creates a unique channel for this event type.

* For emitted events, it connects the component to a pre-configured channel which
supports theCosNotifyChannelAdmin::SupplierAdmin

® For consumed events, it connects the component to a pre-configured channel which
supports theCosNotifyChannelAdmin::ConsumerAdmin

The actual channel nhames are not defined in the deployment descriptors and must be
made available to the container in container-specific configuration data. This allows the
installation to configure shared channels to be used by other users of CORBA
notification as well as component implementations. The container must create a unique
channel for events which are designated as emanating from this component only. The
technique by which uniqueness is ensured is not specified.

There are several possible schemes that could be made to work. Channels
could be given unique names using something like a UUID to ensure
uniqueness. Hierarchical names is another possibility, where all channels
created by a specific container would be prefixed by the name of the con-
tainer (perhaps a URL). CORBA Security could also be used to prevent
events from being pushed to a channel which is dedicated to component
events. Other schemes are also possible.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 EventManagementIntegration 29 October 1999

66

The CORBA natification service supports filters on both the supply side and the
consume side of a channel and allows them to be configured on the channel itself, or
on the proxy being used to supply or consume events. This specification allows the
container provider to setup filters in any way it chooses since they too must be made
available to the container at container creation time through a container-specific
configuration file.

66.4.2 Transmitting an event

When a CORBA component emits or publishes an event (usingulsl operation on
<event_ type>Consumer), the operation is delegated to the container by the
generated code so that the container can actually push this event to the proper channel.
The following steps are required:

® channel lookup - for emitted events, this is the channel configured for general use at
container start-up, for published events, this is the channel established by the
container for the purpose of pushing this event type.

® Constructing the notificatiokEventHeader - The EventHeader consists of some
static information, including the two-part¢main_name and atype_name)
event_type (not to be confused with theevent_type> of the CORBAvaluetype
which holds the event) angvent_name . These fields may optionally be provided
on theEvent::obtain_channel operation. If not, they are defaulted as outlined in
Table 66-7 below.

® If configuration-defined filterable data is to be associated with this event, it is
placed in the portion of the structured event header defined by the CORBA
notification service CosNotification::FilterableEventBody). Container
implementations are not required to insert filterable data.

®* Thevaluetype representing the actual event data is placed intoatheportion of
the structured event.

® A CosNotifyComm::push_structured_event is issued to CORBA notification.

Table 66-7 Structured Event Header

Event Header field

Default Value

domain_name

CCM or blank

type_name Repository Id of <event_type>
event_name blank
filterable_data blank

66-254

66.4.3 Receiving an event

In order to receive an event, the container must connect its proxy to the event channel
the event is to be received on and implement the
CosNotifyComm::structured_push_consumer interface. The container connects

to the channel as a result of &vent::listen operation. The container performs a

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Event Management Integration 29 October

66

CosNotifyChannelAdmin::connect_structured_push_consumer operation on
behalf of the component. THisten operation receives all events from the channel,
subject to filter constraints.

When the container’structured_push_consumer interface is invoked, it performs
the following processing:

® |t extract the event data from tteay portion of the structured event and converts it
to a CORBAVvaluetype which represents the event.

® |t removes thedomain_name , type_name , andevent_name from the
EventHeader .

® |t extracts the<event_type > from the component event in theny portion of the
event data structure.

® |t invokes<event type>Consumer::push passing in thevaluetype
<event_type >.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 EventManagementIntegration 29 October 1999

66

66-256 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Event Management Integration 29 October

Packaging and Deployment 69

This chapter describes the CORBA componpatkaging and deployment model

Issue — It contains all new text taken from the CCM final submission
orbos/99-07-01 with only minor editorial changes - Jeff Mischkinsky

69.0.0.1 Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 69-258
“Component Packaging” 69-258
“Software Package Descriptor” 69-259
“CORBA Component Descriptor” 69-273
“Component Assembly Packaging” 69-298
“Component Assembly File” 69-298
“Component Assembly Descriptor” 69-298
“Property File Descriptor” 69-321
“Component Deployment” 69-327

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 29 October 1999 69-257

69

69.1

Introduction

Component implementations may be packaged and deployed.

A CORBA Component package maintains one or more implementations of a
component. It may be installed on a computer or grouped together with other
components to form aassemblyA component assembly is a group of interconnected
components represented by an assembly package.

A package, in general, consists of one or more descriptors and a set of files. The
descriptors describes the characteristics of the package and points to its various files.
The files that make up a package, including the descriptor, may be grouped together in
an archive file or stored separately. When stored separately, the descriptor contains
pointers to the location of each file.

The component package is a specialization of a general software package. The
software packaging scheme, described here, could be used to package arbitrary
software entities. In fact it was initially inspired by the Open Software Description
(OSD) note to the W3C. OSD is an XML vocabulary for describing software packages
and their dependencies. We have extended OSD slightly, without loss of generality, to
support component packaging.

A component package may be deployed alone, as is, or it may be included in a
component assembly package and deployed as part of the assembly along with the
other components of the assembly.

A component assembly is a set of interrelated components and component homes
represented by an assembly package. A component assembly package consists of a se
of component packages and an assembly descriptor. The assembly descriptor specifies
the components that make up the assembly, partitioning constraints, and connections.
Connections are between interface ports, representgddwdesandusesfeatures and
between event ports, representedduyits, producesand consumedeatures.

Component and assembly packages are provided as input to a deployment tool.

A deployment tool deploys individual components and assemblies of components to an
installation site, usually a set of hosts on a network. The user of the deployment tool
guides in determining where each component should be installed. Components within
an assembly may be installed on a single machine or scattered across a network.

Based on an assembly descriptor and user input, the deployment tool installs and
activates component homes and instances; it configures component properties and
connects components together via interface and event ports, as indicated in the
assembly descriptor.

69.2 Component Packaging

69-258

A software package is represented by a descriptor and a set of files. The descriptor and
associated files are grouped together in a ZIP archive file. The software package could
be used to describe arbitrary software packages.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Introduction 29 October 1999

69

In relation to CORBA Components, software packages are used to package a CORBA
Component implementation.

69.3 Software Package Descriptor

The contents of a software package is described by a software package descriptor. The
descriptor consists of general information about the software followed by one or more
sections describing implementations of that software. An XML vocabulary is used to
describe component software packages. The descriptor file has a “.csd” extension. CSD
stands for CORBA Software Descriptor. When used in an archive, the CSD file for the
archive is placed in a top level directory called “meta-inf".

The structure and intent of the descriptor can be better understood by looking at an
example.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October 1999

69

69.3.1 A softpkg Descriptor Example

<softpkg name="Bank" version="1,0,1,0">
<pkgtype>CORBA Component</pkgtype>
<title>Bank</title>
<author>
<company>Acme Component Corp.</company>
<webpage href="http://www.acmecomponent.com/>
</author>
<description>Yet another bank example</description>
<license href="http://www.acmecomponent.com/license.html" />
<idl id="IDL:M1/Bank:1.0" ><link href="ftp://x/y/Bank.idl"/></idI>

<propertyfile><fileinarchive name="bankprops.cpf'/></propertyfile>

<implementation id="DCE:700dc518-0110-11ce-ac8f-0800090b5d3e">
<os name="WinNT" version="4,0,0,0" />
<o0s name="Win95" />
<processor name="x86" />
<compiler name="MyFavoriteCompiler" />
<programminglanguage name="C++" />

<dependency type="ORB"><name>ExORB</name></dependency>

<descriptor type="CORBA Component™>
<fileinarchive>processcontainer.ccd</fileinarchive>
</descriptor>

<code type="DLL">
<fileinarchive name="bank.dIl"/>
<entrypoint>createBankHome</entrypoint>
</code>

<dependency type="DLL">
<localfile name="rwthr.dll"/>
</dependency>

</implementation>

<implementation id="DCE:297f3e18-0110-11ce-ac8f-08074982ad3e”
variation="RemoteHome">
<0s hame="Solaris" version="5,5,0,0" />
<processor hame="sparc" />
<l-- >
</implementation>

<implementation> <!-- another implementation --> </implementation>
</softpkg>

69-260 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29

October

69

69.3.2 The Software Package Descriptor XML Elements

This section describes the XML elements that make up a software package descriptor.
The section is organized starting with the root element of the package descriptor
documentsoftpkg, followed by all subordinate elements, in alphabetical order. The
completesoftpkg DTD may be found in Section 695.1, “softpkg.dtd,” on

page 695-335.

Note —An effective strategy for studying an XML DTD is to recursively navigate from
the root element, which in this casedsftpkg, to each child element.

69.3.2.1 The softpkg Root Element

The softpkg element is the root element of the document. As well, it is a child element
of dependency It contains a set of general child elements that describe the software
package. This is followed by one or more implementation specifications.

A softpkg archive may contain multiple implementations of a component. This allows
the component implementor to provide specialized implementations for different
operating systems, compilers, or ORBs, or to provide different programming language
implementations of the component. Each implementation is represented softpé&g
descriptor as a distinct implementation element.

<IELEMENT softpkg
(title
| pkgtype
| author
| description
| license
| idl
| propertyfile
| dependency
| descriptor
| implementation
| extension
)< >
<IATTLIST softpkg
name ID #REQUIRED
version CDATA #OPTIONAL >

The attributes are as follows:

name

Uniquely identifies the package within the package.
version

Specifies the version of the component. The format of the version string is numerical
major and minor version numbers separated by commas (e.g., “1,0,0,0").

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October 1999

69

69-262

69.3.2.2 The author Element

Theauthor element is used to identify the author of theftpkg. It may contaimame,
company, andwebpagechild elements.

<!IELEMENT author
(name
| company
| webpage
)< >

69.3.2.3 The code Element

Thecodeelement points to a file in the archive which implements the component. This
could be, for example, a DLL, a .so, or a .class file. Titwinarchive child element is
used to indicate the code file within the archieedebaseandlink are used to point to
code files outside of any archive. The optioratrypoint child element is used to
specify an entry point to the code. The optionahgeelement is used to describe how
to use, i.e., invoke, the code.

<IELEMENT code
((codebase
| fileinarchive
| link
)
, entrypoint?
, usage?
) >
<IATTLIST code
type CDATA #IMPLIED >

The type attribute specifies the type of code. The typ&d.t ", “ Executabl€’, and
“Java Class shall be recognized as valid types.

69.3.2.4 The codebase Element

The codebaseclement is used to specify a resource. If the resource isn't available in
the local environment, then a link specifies where it may be obtaioedebasehas an
EMPTY content model.

<IELEMENT codebase EMPTY >
<IATTLIST codebase
filename CDATA #IMPLIED
%simple-link-attributes; >

codebasehas two attributesname - the name of the resource, ahdcef--as defined in
simple-link-attributes--the link.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October

69

69.3.2.5 The company Element

The company element, an optional child element afithor, specifies the company
that created thsoftpkg. It contains string data.

<I[ELEMENT company (#PCDATA) >

69.3.2.6 The compiler Element

The optionalcompiler element specifies the compiler used to create an
implementationcompiler has an empty content model.

<I[ELEMENT compiler EMPTY >
<IATTLIST compiler
name CDATA #REQUIRED
version CDATA #IMPLIED >

The required attributeame, specifies the name of the compiler and the optional
version, the version of the compiler. The version is specified in a “w,X,y,z” format.

69.3.2.7 The dependency Element

The dependencyelement is used to specify environmental or other dependencies. The
type of dependency is specified by thge attribute. Thedependencyelement is a

child element of both theoftpkg element andmplementation elements. When used

as a child ofsoftpkg, it specifies general dependencies applicable to all
implementations. When used as a childraplementation, it specifies implementation
specific dependencies.

<IELEMENT dependency
(softpkgref
| codebase
| fileinarchive
| localfile
| name
) >
<IATTLIST dependency
type CDATA #IMPLIED
action (assert | install)"assert">

The type attribute specifies the type of the resource required. This may be set to, for
example, “DLL", “.s0”, or “.class”.

Whenaction is set toassert the installation process must verify that the dependency
exists in the environment. Hction is set toinstall, the installation process must install
the dependency if it does not already exist.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October 1999

69

69.3.2.8 The description Element
The description element contains a string description. It is used to describe its parent

element. It contains string content.

<IELEMENT description (#PCDATA) >

69.3.2.9 The descriptor Element

Thedescriptor element is used to refer to descriptor files associated wgbfokg or
implementation. In a CORBA Componengoftpkg, it is used to point to the CORBA
Component descriptor.

<IELEMENT descriptor
(link
| fileinarchive

) >

type CDATA #IMPLIED>

<IATTLIST descriptor

The type attribute is the type of the descriptor.

Note —With respect to the CORBA Component modeltype of “CORBA
Component” is used to indicate a CORBA component descriptor (described in section
69.4.4 on page 275).

69.3.2.10 The entrypoint Element

The entrypoint element specifies the entry point to a software package. See section
69.9.5 on page 332 for information on CORBA component entry points.

69-264 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October

69

<IELEMENT entrypoint (#PCDATA) >

69.3.2.11 The extension Element

The extensionelement is used to add experimental or vendor specific elements to the
softpkg DTD. The content model of the extension elemeMGDATA, meaning that it
can have character data or markup.

An effort has been made to make thgtensionelement an optional child element of
all non-trivial elements. Processors may ignesgensionelements that they do not
recognize.

<IELEMENT extension (#PCDATA) >
<IATTLIST extension

class CDATA #REQUIRED
origin CDATA #REQUIRED
id ID #IMPLIED
extra CDATA #IMPLIED

html-form CDATA #IMPLIED >

The attributes of thextensionelement are as follows:
class

Used to distinguish this extension element usage. A processing application identifies
extension elements that it understands by examining an extension elerciassand
origin attributes.

origin

An origin attribute is required to identify the party responsible for the extension; for
example, an ORB vendor.

id

An optional ID attribute which must be unique in the file.

extra

An extra attribute that may be used however the originator wishes.

html-form

The html-form element is used for formatting. The content will be formatted per the

html element type indicated, e.g., “".

69.3.2.12 The fileinarchive Element

Thefileinarchive element is used to specify a file in the same archive as the descriptor.
The optionallink element may be used to point to an external archive, in which case
the file will be looked for in that file.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October 1999

69

<IELEMENT fileinarchive
(link?) >
<IATTLIST fileinarchive
name CDATA #REQUIRED >

The name attribute specifies the name or path of the element in the archive.

69.3.2.13 The humanlanguage Element

The humanlanguageelement specifies a spoken langualjemanlanguagehas an
EMPTY content model.

<I[ELEMENT humanlanguage EMPTY >
<IATTLIST humanlanguage
name CDATA #REQUIRED >

The human language name is specified in hiaene attribute.

69.3.2.14 Theidl Element

Theidl element points to file or repository containing an idl definition.

<IELEMENT idI
(link
| fileinarchive
| repository

) >

69.3.2.15 The implementation Element

The implementation element contains descriptive information about a particular
implementation of the software represented by sbfpkg descriptor. An

implementation is described by platform dependencies, descriptors, dependencies, code
filename, entry points and other characteristics.

69-266 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October

69

<I[ELEMENT implementation

<IATTLIST implementation

(description

| code

| compiler

| dependency

| descriptor

| extension

| programminglanguage
| humanlanguage
| os

| propertyfile

| processor

| runtime

)< >

id ID #IMPLIED >

Theid attribute is a DCE UUID which uniquely identifies the implementation.

Thevariation attribute is used to indicate a variation from a normal implementation.
The interpretation of the variation attribute depends on user of the softpkg.

Note —The only valid variation string defined by the CORBA Component model is
“ProxyHome". The ProxyHome variation indicates that the component
implementation contains a proxy home only, not a full component implementation.

69.3.2.16 The implref Element

Theimplref element is used to refer to an implementation within a softpkg.

<I[ELEMENT implref EMPTY >

<IATTLIST implref

idref CDATA #REQUIRED >

Theidref attribute refers to a uniguienplementation elementid in the softpkg

descriptor.

69.3.2.17 Thelicense Element

Thelicensechild element ofoftpkg is used to point to the text of a usage license. The
license is pointed to by anref attribute. Thdicenseelement may have arbitrary string

content.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor

29 October 1999

69

<I[ELEMENT license (#PCDATA) >
<IATTLIST license
%simple-link-attributes; >

69.3.2.18 Thelink Element

Thelink element is used to specify a generic link. Thref attribute indicates the link.
The element can have string content.

<IELEMENT link (#PCDATA) >
<IATTLIST link
%simple-link-attributes; >

69.3.2.19 The localfile Element

Thelocalfile element is used to specify a file that is expected to be found in the local
environment.

<IELEMENT localfile EMPTY >
<IATTLIST localfile
name CDATA #REQUIRED >

The name of the file is specified in theme attribute.

69.3.2.20 The name Element

The name element, as an optional child elementafthor, specifies the name of the
author. It has string content.

<I[ELEMENT name (#PCDATA) >

69.3.2.21 The os Element

Theoselement is used to specify a particular operating system that the implementation
will work with. This can be specified multiple times if the implementation will work
on more than ones.

<IELEMENT os EMPTY >
<IATTLIST os
name CDATA #REQUIRED
version CDATA #IMPLIED>

Thename attribute specifies the name of the operating system.
Theversion attribute specifies the version of tlesin “w,X,y,z” format.

Legal values include:
* AIX

69-268 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October

69

® BSDi

* VMS

* DigitalUnix
* DOS

® HPBLS

* HPUX

®* IRIX

® Linix

®* MacOS

®* 0S/2

® AS/400

* MVS

® SCO CMW
® SCO ODT
® Solaris

® SunOS

® UnixWare
® VxWorks
®* Win95

® WIinNT

69.3.2.22 The pkgtype Element

The pkgtype element is used to identify the type of software that sbépkg
represents. This specification reserves package typ&RBA Component’ and
“CORBA Interface Impl” for the packaging of CORBA component and interface
implementations.

<IELEMENT pkgtype (#PCDATA) >
<IATTLIST pkgtype
version CDATA #IMPLIED >

The optionalversion attribute specifies a version of the package type.

69.3.2.23 The processor Element

The processor element indicates the type of processor that the implementation must
run on, if there is any such constraint.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October 1999

69

69-270

<I[ELEMENT processor EMPTY >
<IATTLIST processor
name CDATA #REQUIRED >

The name of the processor is indicated in tteame attribute.

Legal values include:
* x86

® mips

® alpha

® ppc

® sparc

® 680x0

® vax

* AS/400

® S/390

69.3.2.24 The programminglanguageElement

The programminglanguage element specifies the type of the component
implementationprogramminglanguage has an empty content model.
programminglanguageis a child element ofmplementation.

<I[ELEMENT programminglanguage EMPTY>
<IATTLIST programminglanguage

name CDATA #REQUIRED

version CDATA #IMPLIED >

The required programminglanguagame and optionalersion attributes specify the
programming language used to implement the component.

69.3.2.25 The propertyfile Element

The propertyfile element is used to refer to a property file associated wittstifgpkg
or implementation.

A property file of a particular type, defined at the top level of the descriptor, may be
overridden by implementation specific property files of that type, defined in an
implementation element.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October

69

<IELEMENT propertyfile
(fileinarchive
| link) >

<IATTLIST propertyfile
type CDATA #IMPLIED >

The type attribute, distinguishes a property file from other types of property files. If
there is only one type of property file, or if the type of property file is implicit given a
context, then theype is not required.

69.3.2.26 The runtime Element

Theruntime element specifies a runtime required by a component implementation. An
example of a runtime is a Java VM.

<IELEMENT runtime EMPTY >
<IATTLIST runtime
name CDATA #REQUIRED
version CDATA #IMPLIED>

The name and version of the runtime are specified inrtame andversion
attributes. The version is specified in “w,x,y,z” format.

69.3.2.27 The simple-link-attributes Entity

The simple-link-attributes entity is used to specify link attributes. The default link
form is a simple link.

<IENTITY % simple-link-attributes "

xml:link CDATA #FIXED 'SIMPLE'
href CDATA #REQUIRED
">

The user of an element that uses these link attributes will likely only need to be
concerned with théref attribute. However the user may specify other attributes if
desired.

Note —In the context of CORBA Components, theef attribute may be used to
specify INS format names.

To demonstrate the usage of an element that employsithigle-link-attributes entity,
consider the following element definition:

<IELEMENT exampleelement EMPTY >
<IATTLIST exampleelement
%simple-link-attributes; >

This could be used as follows:

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October 1999

69

<exampleelement href="http://www.abc.com/xyz” />

Issue — The W3C XLL work is still in progress at the time of this writing.
This entity definition will be modified if necessary when the W3C work
completes.

69.3.2.28 The softpkg Element

This is the root element of the descriptor. See section 69.3.2.1 on page 261.

69.3.2.29 The softpkgref Element

The softpkgref element refers to an external softpkg. The file is referenced by a
fileinarchive element or dink. An optionalimplref element refers to a particular
implementation within the softpkg descriptor.

<IELEMENT softpkgref
((fileinarchive
| link
)
, implref?
) >
69.3.2.30 The title Element

Thetitle element is used to specify the friendly, or tool name of $b&pkg. The title
element contains string data.

<I[ELEMENT title (#PCDATA) >

69.3.2.31 The usage Element

The usageelement contains a string usage description.

<IELEMENT usage (#PCDATA) >

69.3.2.32 The webpage Element

The webpageelement, an optional child element afithor, specifies a web page
associated with the author.

<I[ELEMENT webpage (#PCDATA) >

<IATTLIST webpage
%simple-link-attributes; >

69-272 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Software Package Descriptor 29 October

69

69.4 CORBA Component Descriptor

The CORBA Component descriptor describes a component. It is referred to by a
<descriptor type="CORBAComponent> element in a softpkg descriptor

describing a CORBA component.The CORBA Component descriptor specifies
component characteristics, used at design and deployment time. A component
descriptor file has a recommended “.ccd” extension, standing for CORBA Component
Descriptor.

The component descriptor is generated by a CIDL compiler. This is convenient as the
CIDL compiler has much of the necessary information at hand. However, the compiler
doesn’t have all of the information required. The user, likely with the help of a
packaging tool, will have to modify the generated descriptor. This could be done
manually, but it is more likely to be done with the help of a packaging tool.

The component descriptor is described using an XML vocabulary. The complete XML
DTD for the descriptor is in Appendix 695.2 on page 339. This chapter will discuss
each element of the descriptor in detail.

69.4.1 Component Feature Description

The component descriptor provides information that a design tool may use to display
information about a component. This includes information about the interfaces that the
component supports and its ports.

Note —For the purpose of component packaging and deployment we will use the term
portsto collectively describe the interfaces that a component uses and provides and the
events that it emits, publishes, and consumes. In addition, provides and uses ports will
be calledinterface ports and emits, publishes, and consumes ports will be termed
event ports

The component descriptor describes the structure of a component with respect to
supported interfaces, inherited components, and uses and provides ports. The
component is described bycmponentfeatureselement, which describes inherited
components, supported interfaces, used and provided interfaces, and emitted, published
and consumed events. If the component inherits from other components then the
features of that component are described in a sepamtwonentfeatureselement and
referenced by thanheritscomponent The primarycomponentfeatureselement of the
descriptor is indicated by thepositoryid element of the component descriptor.

Each interface supported or provided by a component is described infeaface
element. Interface elements are referenced by the repository id of the interface. An
interface has a name and a repository id, and may inherit from other interfaces. The
inheritance relationship is represented by ithieeritsinterface element.

This information allows a tool to display the features of a component and to connect
components together based on those features. For example, a componentsésch
interfaceX could beconnectedo another component thatovidesinterfaceX, based

on information in each component’s descriptor.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 CORBAComponentDescriptor 29 October1999

69

69-274

69.4.2 Deployment Information

At deployment time, the component descriptor is used to determine the type of
container in which the component needs to be installed and to provide information
about the component to the container.

The componentkind element tells the creator of the container what kind of container
to create. Acomponentkind can be eithesession service process or entity.

Thetransaction element indicates the transactional characteristic of the component.
The eventpolicy is used to indicate the quality of service of event ports

The threading element indicates how the container should dispatch operations on the
component instance. threading is set tomultithreadthen the component is ready to
accept multiple threads of control within a single instance. The component takes
responsibility for protecting its internal state.tfreading is set toserializethen the
container will serialize all calls to a single instance. Note that although the component
will not need to protect instance state, the container may employ other threads to
invoke other instances of the component type, thus the component must protect any
static or class data.

The configurationcomplete element tells the deployment agent whether the
component expects faronfiguration_complete to be called after its properties
have been set and its ports configured to their initial state (e.g., as described by a
component assembly descriptor).

The segmentselement provides the container with information necessary to map
segment tags to segment names, segment tags to facet tags, and segment tags to
abstract storage home types. Theettag element references@ovides interface

element described elsewhere in the descriptor. drlogides element maps facet tags to
provided interface names. A container uses the information provided by these elements
to construct data structures mapping segment tags to segment names, facet tags to face
names, and segment tags to facet tags. Note that a segment tag can map to more than 1
facet tag.

69.4.3 CIDL Compiler Responsibilities

A CIDL compiler is responsible for generating an initial component descriptor. This
initial descriptor is vendor specific and may be manipulated directly by the user or
using vendor supplied tools.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October

69

69.4.4 CORBA Component Descriptor Example

<?xml version="1.0"?>
<IDOCTYPE corbacomponent SYSTEM "corbacomponent.dtd">

<corbacomponent>

<corbaversion> 3.0 </corbaversion>
<componentrepid repid="IDL:BookStore:1.0" />
<homerepid repid="IDL:BookStoreHome:1.0" />
<componentkind>

<entity>

<servant lifetime="process" />

</entity>
</componentkind>
<security rightsfamily="corba" />
<threading policy="multithread" />
<configurationcomplete set="true" />

<segment name="bookseg" segmenttag="1">
<segmentmember facettag="1" />
<segmentmember facettag="2" />
<containermanagedpersistence>
<storagehome id="PSDL:BookHome:1.0" />
<pssimplementation id="ACME-PSS" />
<catalog type="PSDL:BookCatalog:1.0" />
<accessmode mode="READ_ONLY" />
<psstransaction policy="TRANSACTIONAL" >
<psstransactionisolationlevel level="SERIALIZABLE" />
</psstransaction>
<params>
<param name="x" value="1" />
</params>
</containermanagedpersistence>
</segment>

<homefeatures name="BookStoreHome"
repid="IDL:BookStoreHome:1.0">
<operationpolicies>
<operation name="*">
<transaction use="never" />
</operation>
</operationpolicies>
</homefeatures>

<componentfeatures name="BookStore" repid="IDL:BookStore:1.0">
<inheritscomponent repid="IDL:Acme/Store:1.0" />
<ports>
<provides
providesname="book_search"
repid="IDL:BookSearch:1.0"
facettag="1">

CORBA3.0CCMFTFDRAFT ptc/99-10-04 CORBAComponentDescriptor 29 October1999

69

69-276

<operationpolicies>
<operation name="getByAuthor">
<requiredrights>
<right name="get"/>
</requiredrights>
</operation>
<operation name="getByTitle">
<requiredrights>
<right name="get"/>
</requiredrights>
</operation>
<operation name="getByISBN">
<requiredrights>
<right name="get"/>
</requiredrights>
</operation>
</operationpolicies>
</provides>
<provides
providesname="shopping_cart"
repid="IDL:CartFactory:1.0"
facettag="2" />
<uses
usesname="ups_rates"
repid="IDL:ShippingRates:1.0" />
<uses
usesname="fedex_rates"
repid="IDL:ShippingRates:1.0" />
<emits
emitsname="low_stock"
eventtype="StockRecord">
<eventpolicy policy="normal" />
</emits>
<publishes
publishesname="offer_alert"
eventtype="SpecialOffer">
<eventpolicy policy="normal" />
</publishes>
</ports>
</componentfeatures>

<componentfeatures name="Store" repid="IDL:Acme/Store">
<supportsinterface repid="IDL:Acme/GeneralStore">
<operationpolicies>
<operation name="*">
<transaction use="required" />
</operation>
</operationpolicies>
</supportsinterface>
<ports>
<provides

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor

29

October

69

providesname="admin"
repid="IDL:Acme/StoreAdmin:1.0"
facettag="3" />
</ports>
</componentfeatures>

<interface name="BookSearch" repid="IDL:BookSearch:1.0">
<inheritsinterface repid="IDL:SearchEngine:1.0" />
</interface>
<interface name="SearchEngine" repid="IDL:SearchEngine:1.0"/>
<interface name="CartFactory" repid="IDL:CartFactory:1.0"/>
<interface name="ShippingRates" repid="IDL:ShippingRates:1.0"/>
<interface name="StoreAdmin" repid="IDL:Acme/StoreAdmin:1.0">
<operationpolicies>
<operation name="*">
<transaction use="required" />
<requiredrights>
<right name="manage"/>
<right name="set"/>
</requiredrights>
</operation>
</operationpolicies>
</interface>
<interface name="GeneralStore" repid="IDL:Acme/GeneralStore:1.0"/>

</corbacomponent>

69.4.5 The CORBA Component Descriptor XML Elements

This section describes the XML elements that make up a component descriptor. The
section is organized starting with the root element of the component descriptor
documentcorbacomponent followed by all subordinate elements, in alphabetical
order. The complete CORBA component descriptor DTD may be found in

Section 695.2, “corbacomponent.dtd,” on page 695-339.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 CORBAComponentDescriptor 29 October1999

69

69.4.5.1 The corbacomponent Root Element

The corbacomponentelement is the root element of the CORBA component
descriptor.

<IELEMENT corbacomponent

(corbaversion
componentrepid
homerepid
componentkind
interop?
transaction?
security?
, threading
configurationcomplete
extendedpoapolicy*
repository?
segment*
componentproperties?
homeproperties?
homefeatures+
componentfeatures+
interface*
, extension*
) >

These elements must be provided in the order presented.
® corbaversiontells which version of CORBA the component is assuming.

® componentrepidis the interface repository id of the component. It also refers to a
componentfeatureselement later in the descriptor.

®* homerepidis the interface repository id of the home. It also refers to a
homefeatureselement later in the descriptor.

* componentkind describes properties of the component which will determine what
kind of container the component must reside in.

® interop specifies interoperation information, e.g., with EJB.

® transaction determines transaction policies for the entire component. This policy is
optional and may be overridden on individual facets or supported interfaces.

® security specifies CORBA security rights family for the component.

® threadingpolicy determines whether calls to the component will be serialized or
not.

® configurationcompleteis set if the component expects for
configuration_complete to be called on the component after all of its properties
have been set and its ports have been connected.

* extendedpoapolicyis used to set a POA policy for the component beyond the base
POA policies. For example, firewall policies.

69-278 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October

69

® repository provides a reference to a repository, such as the interface repository.

* segmentdescribes a segment including its name, tag, member facets, and storage
home type.

* homefeaturesdescribes the structure of the component’s homes.
®* componentpropertiesspecifies the default component properties file.
®* homepropertiesspecifies the default home properties file.

® componentfeaturesdescribes inherited components, supported interfaces, uses and
provides ports, and emits, publish, and consumes ports of the component. If the
primary component inherits from other components, those components are
described in separatmmponentfeatureelements.

* interface describes the simple name and repository id of an interface and points to
inherited interfaces. Between tltemponentfeaturesandinterface elements, one
can navigate all of the interfaces that a component uses, provides, supports, and
inherits.

® extensionmay be used by a user or vendor to provide proprietary information in the
component descriptor.

These are the top-level elements of the document. These descriptor elements are
described in terms of attributes and other elements. The remainder of this section will
describe the top-level and child elements in detalil.

Elements are presented in alphabetical order so that they will be easy to locate.
See Section 695.2, “corbacomponent.dtd,” on page 695-339 for the full text of the

component descriptor DTD.

69.4.5.2 The accessmode Element

Child element ofcontainermanagedpersistence

The accessmodelement identifies whether the persistent state may be read and
written or only read.

<IELEMENT accessmode EMPTY>
<IATTLIST accessmode

mode (READ_ONLY|READ_WRITE) #REQUIRED
>

The mode attribute identifies the access mode.

69.4.5.3 The catalog Element

Child element ofcontainermanagedpersistence

The catalog element identifies the catalog to used in loading and storing persistent
state.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 CORBAComponentDescriptor 29 October1999

69

<I[ELEMENT catalog EMPTY>
<IATTLIST catalog
type CDATA #REQUIRED >

The type attribute identifies the type of catalog.

69.4.5.4 The componentfeatures Element

Child element ofcorbacomponent

The componentfeatureselement is used to describe a component with respect to the
components that it inherits from, the interfaces that the component supports, and its
provides, uses, emits, publish, and consumes ports. A component also has the features
that it inherits from other components. In addition, supported interfaces may inherit
from other interfaces. By following the inheritance chain, a graph is formed from the
primary component to a set of ports, supported interfaces, and other components. The
root component in this graph is identified by thepositoryid child element of
corbacomponent

The information obtained by traversing the componentfeatures graph may be displayed
by graphical tools. But more importantly, it allows component assembly tools to decide
what ports on a component are capable of connecting to ports on other components.

<IELEMENT componentfeatures
(inheritscomponent?
, supportsinterface*
, ports
, operationpolicies?
, extension*
) >
<IATTLIST componentfeatures
name CDATA #REQUIRED
repid CDATA #REQUIRED >

The name attribute is the non-qualified name of the component.

Therepid attribute is the fully qualified repository id of the componergpid is also
used to refer to this component from elsewhere in the descriptor, for example from the
inheritscomponent element).

69.4.5.5 The componentkind Element

Child element ofcorbacomponent

The componentkind element defines the component category. For more information
on these categories, see Section 62.1.4, “Component Categories.

69-280 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October

69

<I[ELEMENT componentkind
(service
| session
| process
| entity
| unclassified

) >

69.4.5.6 The componentproperties Element

The componentpropertieselement specifies a default component property file. The
format of the property file is described in section 69.8 on page 321.

<IELEMENT componentproperties
(fileinarchive

) >
69.4.5.7 The componentrepid Element

Child element ofcorbacomponent

componentrepididentifies the repository id of the component described by this
descriptor. The repository id also serves to point to the printamponentfeatures
element for this component within the descriptor, so as to distinguish it from inherited
components.

<I[ELEMENT componentrepid EMPTY >
<IATTLIST componentrepid
repid CDATA #IMPLIED >

repid is the fully qualified repository id of the component.

69.4.5.8 The configurationcomplete Element

Child element ofcorbacomponent

The configurationcomplete attribute is used to set whether configuration_complete
should be called on the component after it has been fully configured.

<IELEMENT configurationcomplete EMPTY >
<IATTLIST configurationcomplete
set (true | false) #REQUIRED >

69.4.5.9 The consumes Element

Child element ofports.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 CORBAComponentDescriptor 29 October1999

69

A consumes port specifies an event that the component expects to receive. At
deployment or creation time, the component will be connected via a channel to other
components or entities that emit the event. Bventpolicy allows the transaction

policy of the event port to be specified.

<IELEMENT consumes
(eventpolicy
, extension*) >
<IATTLIST consumes
consumesname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

consumesname

The consumesnamattribute identifies the name associated with the consumes
statement in idl.

eventtype

The eventtypeattribute identifies the repository id of the event that the component
expects to consume.

69.4.5.10 The containermanagedpersistence Element
Child element ofsegment

An containermanagedpersistencelement specifies attributes required by the
container to manage the component’s persistent state using asf8&yehome
indicates the type of abstract storage hopgsimplementationidentifies a particular
PSS implementation to be used, if not specified then the default PSS is used, as
determined by the container implementaticatalog specifies the catalog type.
accessmodespecifies the access mode--read only or read-wpisstransactionpolicy
specifies whether transactions are to be used or not and, if so, the isolation level.
paramsis used to specify vendor specific parameters.

<IELEMENT containermanagedpersistence
(storagehome
, pssimplementation?
, catalog?
, accessmode
, psstransactionpolicy
, params?

) >

69.4.5.11 The corbacomponent Element

The root element of this CORBA Component descriptor. See section 69.4.5.1.

69-282 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October

69

69.4.5.12 The corbaversion Element

Child element ofcorbacomponent

The corbaversionis used to identify the version of CORBA that the component
implementation is assuming. The version is represented by a major and minor number
separated by a “.”. For example, “<corbaversion>3.0</corbaversion>".

<I[ELEMENT corbaversion (#PCDATA) >

69.4.5.13 The emits Element

Child element ofports.

An emits port specifies an event that the component generates. At deployment or
creation time, the component will be connected to a channel in which it can be
connected to consuming components. Blventpolicy allows the transaction policy of
the event port to be specified.

<IELEMENT emits
(eventpolicy
, extension*) >
<IATTLIST emits
emitsname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

The emitsnameattribute identifies the name associated with the emits statement in idl.

The eventtype attribute identifies the repository id of the emitted events.

69.4.5.14 The entity Element

Child element oftomponentkind.

The entity component kind is described in Section 62.1.4, “Component Categories,”
on page 62-121.

<IELEMENT entity
(servant) >

69.4.5.15 The eventpolicy Element

Child element ofcorbacomponent

Event policies define the quality of service associated with the event ports of the
component. The possible values are defined Section 62.2.8, “Events,” on page 62-128.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 CORBAComponentDescriptor 29 October1999

69

<I[ELEMENT eventpolicy EMPTY>
<IATTLIST eventpolicy
policy (normal | default | transaction) #IMPLIED>

69.4.5.16 The extendedpoapolicy Element

Child element ofcorbacomponent

The extendedpoapolicyelement is a name-value pair used to specify POA policies
beyond the base set of policies. It is for new policies, such as firewall, or future POA
policies yet to be defined. Thextendedpoapolicyelement must not be used to specify
any of the base POA policies. A set of POA policies is predefined for each component
category, except for the unclassified category. Only the unclassified component type is
flexible with respect to base POA policies; these are set usingdlagolicieschild
element of thaunclassifiedelement.

<I[ELEMENT extendedpoapolicy EMPTY>
<IATTLIST extendedpoapolicy

name CDATA #REQUIRED

value CDATA #REQUIRED >

The name attribute is the name of the poa policy as defined in the specification where
it originated.

The value attribute is a valid attribute for the policy as defined in the specification
where it originated.

69.4.5.17 The extension Element

Child element ofcorbacomponent, componentfeatures, homefeatures

See section 69.3.2.11 on page 265.

69.4.5.18 The fileinarchive Element

See section 69.3.2.12 on page 265.

69.4.5.19 The homefeatures Element

Child element ofcorbacomponent

The homefeatureselement is used to describe a component home with respect to the
homes that it inherits from and theperationpoliciesof its interface.

69-284 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October

69

<IELEMENT homefeatures
(inheritshome?
, operationpolicies?
, extension*) >

<IATTLIST homefeatures
name CDATA #REQUIRED
repid CDATA #REQUIRED >

The name attribute is the non-qualified name of the home.

Therepid attribute is the fully qualified repository id of the homepid is also used
to refer to this component from elsewhere in the descriptor, for example from the
inheritshome element.

69.4.5.20 The homeproperties Element

The homepropertieselement specifies a default home property file. The format of the
property file is described in section 69.8 on page 321.

<IELEMENT homeproperties
(fileinarchive

) >

69.4.5.21 The homerepid Element

Child element ofcorbacomponent

homerepid identifies the repository id of the home of the component described by this
descriptor. The home repository id also serves to point to the prifanyefeatures
element for the home within the descriptor, so as to distinguish it from inherited
homes.

<I[ELEMENT homerepid EMPTY >
<IATTLIST homerepid
repid CDATA #IMPLIED >

repid is the fully qualified repository id of the component.

69.4.5.22 The inheritscomponent Element

Child element ofcomponentfeatures

The inheritscomponent element specifies an inherited component.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 CORBAComponentDescriptor 29 October1999

69

69-286

<I[ELEMENT inheritscomponent EMPTY>
<IATTLIST inheritscomponent
repid CDATA #REQUIRED>

Therepid identifies is the repository id of the inherited component, it also serves to
refer to thecomponentfeatureselement of the inherited component, elsewhere in the
descriptor.

69.4.5.23 The inheritshome Element

Child element ofhomefeatures

The inheritshome element specifies an inherited home.

<IELEMENT inheritshome EMPTY>
<IATTLIST inheritshome
repid CDATA #REQUIRED>

Therepid identifies is the repository id of the inherited home, it also serves to refer to
the homefeatureselement of the inherited home, elsewhere in the descriptor.

69.4.5.24 The inheritsinterface Element

Child element ofinterface.

Theinheritsinterface element is used to specify interface inheritance. This allows, for
example, for a derivation chain to be followed from a supported or provided interface
up to but excluding th®©bject interface.

<IELEMENT inheritsinterface EMPTY>
<IATTLIST inheritsinterface
repid CDATA #REQUIRED>

Therepid identifies is the repository id of the inherited interface, and it is used to refer
to the interface element of the inherited interface, elsewhere in the descriptor.

69.4.5.25 Theins Element

Child element ofrepository.

Theins element is used to specify an interoperable naming service name.

<I[ELEMENT ins EMPTY>
<IATTLIST ins
name CDATA #REQUIRED >

nameis the INS name.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October

69

69.4.5.26 The interface Element

Child element ofcorbacomponent

Specifies an interface that the component, either directly or through inheritance,
provides, uses, or supports. Thperationpolicieschild element specifies default
transaction policies and required security rights for uses of the interface.

<IELEMENT interface
(inheritsinterface*
, operationpolicies?) >
<IATTLIST interface
name CDATA #REQUIRED
repid CDATA #REQUIRED >

The name attribute is the non-qualified name of the interface.

Therepid attribute is the fully qualified repository id of the interfagepid is also
used to refer to this interface from elsewhere in the descriptor, for example from the
inheritsinterface element.

69.4.5.27 The interop Element

Child element ofcorbacomponent

Theinterop element is used to specify whether this component interoperates with
another component type by acting as a view for that type or having a view of that type.

<I[ELEMENT interop EMPTY>

<IATTLIST interop
type CDATA #REQUIRED
direction (hasview | isview) #REQUIRED
descriptor CDATA #REQUIRED >

The type attribute is the other component type, e.g., “EJB 1.1".

The direction attribute says whether the CORBA component is a view for the other
component type or the other way around.

Thedescriptor attribute references the descriptor file of the foreign component within
the component archive.

69.4.5.28 Thelink Element

See section 69.3.2.18 on page 268.

69.4.5.29 The objref Element

Child element ofrepository.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 CORBAComponentDescriptor 29 October1999

69

69-288

The objref element is used to specify a stringified object reference.

<IELEMENT objref EMPTY>
<IATTLIST objref
string CDATA #REQUIRED >

The string attribute holds the stringified object reference.

69.4.5.30 The operation Element

Child element ofoperationpolicies

The operation element is used to specify transaction and required security rights for a
particular operation (or group of operations if name="*").

<I[ELEMENT operation

(transaction?

, requiredrights?) >
<IATTLIST operation

name CDATA #REQUIRED >

The name attribute specifies the name of the operation. If the name is specifietl’as “
then the policies specified by this element apply to all operations in the particular
scope in which theperationpoliciesparent element is defined.

69.4.5.31 The operationpolicies Element

Child element ofcomponentfeatures, homefeatures, interface, providegsnd
supportsinterface,

Theoperationpolicieselement is used to specify a set of operation policies. It consists
of a list of operation child elements which each may specify security or transaction
policies of an operation or set of operations.

The scope of th@perationpolicieselement depends upon where it is specified. As a
child of componentfeaturesit specifies the policies for the component operations,

such as the operations effecting facets, receptacles, and event ports. When used as a
child of homefeaturesit specifies the policies of the home interface operations. As a
child of interface it specifies the operation policies for all uses of the particular
interface. Operation policies set insapportsinterface or provides element specify
operation policies for a particular use of an interface. Note that operation policies set in
supportsinterface or provides element supersede policies set iniaterface element.

<I[ELEMENT operationpolicies
(operation+) >

69.4.5.32 The param Element

Child element ofparams.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October

69

The param element is used to specify a name-value pair.

<IELEMENT param EMPTY >
<IATTLIST param
name CDATA #REQUIRED
value CDATA #REQUIRED >

The name attribute specifies the name.

The value attribute specifies the value.

69.4.5.33 The params Element

Child element ofcontainermanagedpersistence

The params element is used to specify a set of one or more name-value pairs.

<I[ELEMENT params (param+) >

69.4.5.34 The poapolicies Element

Child element ofunclassified

The poapolicieselement is used to identify POA creation parameters for an empty
container in which anunclassifiedcategory component will reside.

<I[ELEMENT poapolicies EMPTY>
<IATTLIST poapolicies
thread (ORB_CTRL_MODEL | SINGLE_ THREAD_SAFE) #REQUIRED
lifespan (TRANSIENT | PERSISTENT) #REQUIRED
iduniqueness (UNIQUE_ID | MULTIPLE_ID) #REQUIRED
idassignment (USER_ID | SYSTEM_ID) #REQUIRED
servantretention (RETAIN | NON_RETAIN) #REQUIRED
requestprocessing (USE_ACTIVE_OBJECT_MAP_ONLY
|USE_DEFAULT_SERVANT
|[USE_SERVANT_MANAGER) #REQUIRED
implicitactivation (IMPLICIT_ACTIVATION
INON_IMPLICIT_ACTIVATION) #REQUIRED >

The poapoliciesattributes are as defined in the base POA specification.

Note —Not all combinations of POA policies are valid. A good component packaging
tool will not permit the user to specify invalid POA policy combinations. If however,
an invalid combination of policies is used to configure the empty container, the
container/POA should throw an exception.

69.4.5.35 The ports Element

Child element ofcomponentfeatures

CORBA3.0CCMFTFDRAFT ptc/99-10-04 CORBAComponentDescriptor 29 October1999

69

69-290

The ports element describes what interfaces a component provides and uses, and what
events it emits, publishes, and consumes. Any number of uses, provides, emits,
publishes, and consumes elements can be specified in any order.

<IELEMENT ports
(uses
| provides
| emits
| publishes
| consumes
)< >

69.4.5.36 The process Element

Child element oftomponentkind.

The processcomponent kind is described in Section 62.1.4, “Component Categories.
<IELEMENT process
('servant) >

69.4.5.37 The provides Element

Child element ofports.
The provides element specifies an interface that is provided by the component.

The optionaloperationpolicieschild element allows transaction policies and required
rights to be specified for the provided interface. The policies specified here override
any policies specified in thinterface element, as identified by thepid.

<I[ELEMENT provides
(operationpolicies?
, extension*) >

<IATTLIST provides
providesname CDATA #REQUIRED
repid CDATA #REQUIRED
facettag CDATA #REQUIRED >

The providesnameis the name given to the provides port in IDL.

Therepid is the fully qualified repository id of the component. It is also used to
reference an interface element elsewhere in the descriptor.

The facettagis the tag for the facet. This attribute is used in combination with the
segmentmemberelement, defined in section 69.4.5.47 on page 294, to associate a
facet with a segment.

69.4.5.38 The pssimplementation Element

Child element ofcontainermanagedpersistence

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October

69

The pssimplementationelement identifies a particular vendor’s PSS implementation.

<I[ELEMENT pssimplementation EMPTY>
<IATTLIST pssimplementation
id CDATA #REQUIRED >

Theid attribute identifies the particular PSS implementation.

69.4.5.39 psstransaction Element
Child element ofcontainermanagedpersistence

The psstransactionelement is used to specify the PSS transactional policies
associated with the entity or process component.

<IELEMENT psstransaction (psstransactionisolationlevel?) >
<IATTLIST psstransaction
policy (TRANSACTIONAL|NON_TRANSACTIONAL) #REQUIRED >

69.4.5.40 psstransactionisolationlevel Element

Child element ofpsstransaction.

The psstransactionisolationlevelelement is used to specify the transaction isolation
level when persistent store access is transactional.

<IELEMENT psstransactionisolationlevel EMPTY>
<IATTLIST psstransactionisolationlevel
level (
READ_UNCOMMITTED|READ_COMMITTED|
REPEATABLE_READ|SERIALIZABLE)
#REQUIRED >

The level attribute identifies one of four isolation levels.

69.4.5.41 The publishes Element

Child element ofports.

A publishes port specifies an event that the component publishes. At deployment or
creation time, the component will be connected to a channel by which it can be
connected to consuming components. Blventpolicy allows the transaction policy of
the event port to be specified.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 CORBAComponentDescriptor 29 October1999

69

69-292

<I[ELEMENT publishes
(eventpolicy
, extension*) >
<IATTLIST publishes
publishesname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

The publishesnameattribute identifies the name associated with the emits statement in
idl.

The event_typeattribute identifies the repository id of the published events.

69.4.5.42 The repository Element

Child element ofcorbacomponent

The repository element is used to point to a repository, such as the interface repository.

<I[ELEMENT repository
(ins
| objref
| link
) >
<IATTLIST repository
type CDATA #IMPLIED >

Thetype attribute specifies the type of repository. Currently, the only predefined value
for type is “CORBA Interface Repository”.

69.4.5.43 requiredrights Element

Child element ofoperation andsecurity.

Therequiredrights element specifies a list of required rights. When used as a child of
operation, the rights specified must belong to a rights family specified ingeurity
element. When used as a childs#curity the list of rights specify the available rights

in the rights family.

<IELEMENT requiredrights
(right*) >

69.4.5.44 right Element

Child element ofrequiredrights.

Theright element specifies a particular required right. The right must be a member of
the rights family specified by the security element.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October

69

<IELEMENT right
(description?) >
<IATTLIST right
name CDATA #REQUIRED >

The name attribute is the name of the required right.

69.4.5.45 The security Element

Child element ofcorbacomponent

The security element is an optional child element adrbacomponent it is required
whenever rights are assigned to component operations within the descriptor. It specifies
the rights family assumed when defining component operation rights. The optional
requiredrights element may be used to document the rights available in the rights
family.

<IELEMENT security
(requiredrights?) >
<IATTLIST security
rightsfamily CDATA #REQUIRED >

Therightsfamily attribute defines the rights family; for example, the “CORBA” rights
family.

69.4.5.46 The segment Element

Child element ofcorbacomponent

The segmentelement describes a component segment. It consists of a list of one or
moresegmentmemberchild elements, indicating the facets that the segment supports,
and acontainermanagedpersistencelement indicating that the persistent state of the
segment is managed by the container. If tdomtainermanagedpersistencelement is

not present then the persistent state, if any, is managed by the component. Note that the
containermanagedpersistencelement is only employed fagntity andprocess
components.

<IELEMENT segment
(segmentmember+
, containermanagedpersistence?
, extension*

) >

name CDATA #REQUIRED
segmenttag CDATA #REQUIRED >

<IATTLIST segment

nameis the name of the segment.

segmenttagis the segment’s tag.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 CORBAComponentDescriptor 29 October1999

69

69.4.5.47 The segmentmember Element

Child element ofsegment

The segmentmemberelement specifies a facet that is a member of a segment.

<I[ELEMENT segmentmember EMPTY>
<IATTLIST segmentmember
facettag CDATA #REQUIRED >

The facettag attribute indicates the member facet’s tag. It corresponds to a provided
interface with the same facet tag elsewhere in the descriptor. (Sqedhiles tag
element in section 69.4.5.37 on page 290.)

69.4.5.48 The servant Element

Child element ofentity, process,session.

Servant lifetime policies control the lifetime of the servant which implements a
component’s operations and provide an aid to efficiently manage storage of
components within a server process. Servant lifetime policies are fixesefwice
components. Servant lifetime policies must be specifiedsssion , process and

entity components and are implemented by the component using APIs provided by the
container.

<I[ELEMENT servant EMPTY >
<IATTLIST servant
lifetime (component|method|transaction|container) #REQUIRED >

The possible values are defined in Section 62.2.5, “Servant Lifetime Management.

69.4.5.49 The service Element

Child element oftomponentkind.

Specifies that the component is of thervice category. The service component kind
is described in Section 62.2.13.1, “The Service Component.

<IELEMENT service EMPTY >

69.4.5.50 The session Element

Child element oftomponentkind.

Specifies that the component is of thession category. Thesession component
category is described in Section 62.2.13.2, “The Session Component.

69-294 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October

69

<I[ELEMENT session
(servant) >

69.4.5.51 The storagehome Element

Child element ofsegment

The storagehomeelement specifies an abstract storage home type.
<I[ELEMENT storagehome EMPTY>

<IATTLIST storagehome
id CDATA #REQUIRED >

Theid attribute specifies the repository id of the abstract storage home.

69.4.5.52 The simple-link-attributes Entity

See section 69.3.2.27 on page 271.

69.4.5.53 The supportsinterface Element

Child element ofcomponentfeatures

The supportsinterface element identifies an interface that the component supports, as
defined in IDL.

The optionaloperationpolicieschild element allows transaction policies and required
rights to be specified for the supported interface. The policies specified here override
any policies specified in thinterface element, as identified by thepid.

<I[ELEMENT supportsinterface
(operationpolicies?
, extension*) >
<IATTLIST supportsinterface
repid CDATA #REQUIRED >

Therepid is the fully qualified repository id of the component. It is also used to
reference an interface element elsewhere in the descriptor.

69.4.5.54 The threading Element

Child element ofcorbacomponent

Thethreading element determines the threading policy of the container in which it is
placed.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 CORBAComponentDescriptor 29 October1999

69

69-296

<I[ELEMENT threading EMPTY>
<IATTLIST threading
policy (serialize | multithread) #REQUIRED >

Settingpolicy to serialize means that the container will serialize calls to the container.

Settingpolicy to multithread means that multiple threads of control can be active in
the component at one time.

69.4.5.55 The transaction Element

Child element ofcorbacomponent

The transaction element controls the way transactions are managed by the container
for this component. Seven possible values can be selected by the component developer
to provide maximum flexibility.

<IELEMENT transaction EMPTY >
<IATTLIST transaction

use (self-managed|not-supported|required|supports|requires-new|man-
datory|never) #REQUIRED >

If the transactioruseattribute is set tself-managedthen it is assumed that the
component will manage transactions on its own. Otis values indicate that
transactions are to be managed by the container; the meaning of these values are
defined in the container chapter, Section 62.2.6, “Transactions,” on page 62-126.

69.4.5.56 The unclassified Element

Child element oftomponentkind.

The unclassified element identifies that the component is of the unclassified sort. See
Section 62.2.1, “Component Containers,” on page 62-121 for more information on the
unclassified component category.

<IELEMENT unclassified
(poapolicies) >

69.4.5.57 The uses Element

Child element ofports.

Theuseselement specifies an interface that is used by the component, as specified in a
component IDLusesdeclaration.

<I[ELEMENT uses (extension*) >

<IATTLIST uses
usesname CDATA #REQUIRED
repid CDATA #REQUIRED >

The usesnameis the name given to the uses port in IDL.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 CORBA Component Descriptor 29 October

69

Therepid is the fully qualified repository id of the component. It is also used to
reference an interface element elsewhere in the descriptor.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 CORBAComponentDescriptor 29 October1999

69

69.5 Component Assembly Packaging

A component package is the vehicle for deploying a single component implementation,
A component assembly package is the vehicle for deploying a set of interrelated
component implementations. It is a template or pattern for instantiating a set of
components and introducing them to each other.

An assembly package consists of a descriptor and a set of component packages and
property files. These files may by packaged together in an archive file or distributed.
When distributed, the descriptor represents the package and holds links to its
associated files.

The component assembly descriptor describes which components make up the
assembly, how those components are partitioned, and how they are connected to each
other. A component assembly descriptor is the recipe for deploying a set of
interconnected components.

An assembly is normally created visually within a design tool, however it is possible to
create assemblies using more primitive tools.

Note —An assembly specifies anitial configuration. The actual connected graph of
components may evolve beyond that initial configuration. The assembly does not
address the evolution of this graph.

69.6 Component Assembly File

The component assembly archive file is a ZIP file containing a component assembly
descriptor, a set of component archive files, and, if necessary, a set of component
property files. The component assembly archive file has a “.aar” extension.

69.7 Component Assembly Descriptor

69-298

A component assembly descriptor is specified using an XML vocabulary. Each
component assembly package must contain a single descriptor file. Component
descriptors have a “.cad” extension. CAD stands for Component Assembly Descriptor.

The assembly descriptor describes a component assembly. It consists of elements
describing the components used in the assembly, connection information, and
partitioning information.

A component instantiation is always relative to a home. A deployed home is called a
home “placement”.

Component instantiations are connected by tpexwvidesand usesinterfaces, or by

their emits, publishesandconsumegvents. If one component provides an interface of

a particular type and another component uses an interface of that type, then we can
pass the reference of the provided interface to the component that uses it, in effect
connecting the two components. In the same way, we connect two components where
one emits or publishes an event that the other consumes.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Packaging 29 October

69

Sets of component instances may be partitioned. Components may be free or
partitioned to a generic set of hosts and processes. This is really a process of conveying
that specific components are to be collocated within a single process or host. Free
components, components that are not used in a collocation may be deployed in any
manner at deployment time.

When used in an archive, the CAD file for the archive is placed in a top level directory
called “meta-inf".

CORBA3.0CCMFTFDRAFT ptc/99-10-04 ComponentAssembly Descriptor 29 October 1999

69

69-300

69.7.1 Component Assembly Descriptor Example

The following example illustrates how to write a component assembly descriptor. For
further information, see the element descriptions that follow and the XML DTDs in the
appendix.

<IDOCTYPE componentassembly SYSTEM "componentassembly.dtd">

<componentassembly id="227123">
<description>Example assembly"</description>
<componentfiles>
<componentfile id="A">
<fileinarchive name="ca.ccd"/>
</componentfile>
<componentfile id="B">
<fileinarchive name="cb.ccd"/>
</componentfile>
<componentfile id="C">
<fileinarchive name="cc.ccd">
<link href="ftp://www.xyz.com/car/cc.car"/>
<ffileinarchive>
</componentfile>
<componentfile id="D">
<fileinarchive name="cd.ccd"/>
</componentfile>
<componentfile id="E">
<fileinarchive name="ce.ccd"/>
</componentfile>
<componentfile id="F">
<fileinarchive name="cf.ccd"/>
</componentfile>
</componentfiles>

<partitioning>

<homeplacement id="AaHome">
<componentfileref idref="A"/>
<componentinstantiation id="Aa"/>

</homeplacement>

<processcollocation cardinality="*">
<usagename>Example process collocation</usagename>
<impltype language="C++" /> <I-- optional -->
<homeplacement id="BbHome">
<componentfileref idref="B"/>
<componentinstantiation id="Bb"/>
</homeplacement>
<homeplacement id="CcHome">
<componentfileref idref="C"/>
<componentinstantiation id="Cc"/>

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October

69

CORBA3.0CCMFTFDRAFT ptc/99-10-04 ComponentAssembly Descriptor

</homeplacement>
</processcollocation>

<hostcollocation cardinality="1">
<usagename>Example host collocation</usagename>
<processcollocation cardinality="*">
<homeplacement id="DdHome">
<componentfileref idref="D"/>
<componentinstantiation id="Dd"/>
</homeplacement>
<homeplacement id="EdHome">
<componentfileref idref="E"/>
<componentinstantiation id="Ee"/>
</homeplacement>
</processcollocation>
<homeplacement id="FfHome">
<componentfileref idref="F"/>
<componentinstantiation id="Ff"/>
</homeplacement>
</hostcollocation>

<homeplacement id="AaaHome">

<usagename>Example home for A components</usagename>
<componentfileref idref="A"/>
<componentimplref idref="an A impl"/>
<homeproperties>

<fileinarchive name="AHomeProperties.cpf'/>
</homeproperties>
<componentproperties>

<fileinarchive name="defaultAProperties.cpf'/>
</componentproperties>
<registerwithhomefinder name="AaHome"/>

<componentinstantiation id="Aaa">
<usagename>Example component instantiation </usagename>
<componentproperties>
<fileinarchive name="AaaProperties.cpf"'/>
</componentproperties>
<registercomponent>
<registerwithnaming name="sink"/>
<registerwithtrader>
<traderproperties>
<traderproperty>
<traderpropertyname>ppm</traderpropertyname>
<traderpropertyvalue>10</traderpropertyvalue>
</traderproperty>
<traderproperty>
<traderpropertyname>weight</traderpropertyname>
<traderpropertyvalue>333</traderpropertyvalue>
</traderproperty>
</traderproperties>

29 October1999

69

69-302

</registerwithtrader>
</registercomponent>
</componentinstantiation>
</homeplacement>

</partitioning>

<connections>
<connectinterface>
<usesport>
<usesidentifier>abc</usesidentifier>
<componentinstantiationref idref="Aa"/>
</usesport>
<providesport>
<providesidentifier>abc</providesidentifier>
<componentinstantiationref idref="Bb"/>
</providesport>
</connectinterface>
<connectevent>
<consumesport>
<consumesidentifier>pgr</consumesidentifier>
<componentinstantiationref idref="Aaa"/>
</consumesport>
<emitsport>
<emitsidentifier>mno</emitsidentifier>
<componentinstantiationref idref="Ee"/>
</emitsport>
</connectevent>
</connections>

</componentassembly>

69.7.2 Component Assembly Descriptor XML Elements

This section describes the XML elements that make up a component assembly
descriptor. The section is organized starting with the root element of the descriptor
documentcomponentassemblyfollowed by all subordinate elements, in alphabetical
order. The complete component assembly DTD may be found in Section 695.4,
“componentassembly.dtd,” on page 695-346.

69.7.2.1 The componentassembly Root Element

The componentassemblyelement is the root element of the component assembly
descriptor. Thedescription element is text describing the assembly. The
componentfileselement lists the component files that are used in the assembly, the
partitioning element describes how homes and components are to be deployed. The

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October

69

connectionselement describes how deployed components and homes are to be
connectedThe extensionelement can be used to add proprietary or experimental
elements to the component assembly document.

<IELEMENT componentassembly
(description?
, componentfiles
, partitioning
, connections?
, extension*
) >
<IATTLIST componentassembly
id ID #REQUIRED
derivedfrom CDATA #IMPLIED >

Theid attribute is a DCE UUID which uniquely identifies the assembly.

The derivedfrom attribute is used to point to an assembly from which this assembly
was derived. Thelerivedfrom attribute contains the id of the source assembly.

Note —The derivedfrom attribute is for a deployment tool that wants to create a copy

of an assembly descriptor and archive to describe an actual deployment; it maintains
the relationship between the “clone” and the original. The new assembly descriptor
would have the destination addresses for each placement and collocation defined; and
collocations with non-ordinal cardinality in the original assembly would be copied to
one or more collocations, with singular cardinality, in the derived assembly. The new
archive file might prune constituent component archive files to contain single
implementations to facilitate copying component implementations to target deployment
hosts.

69.7.2.2 The codebase Element

See section 69.3.2.4 on page 262.

69.7.2.3 The componentfile Element

The componentfile element refers to a component archive file containing a component
and home implementatioeomponentfile elements are referenced hpmeplacement
elements.

componentfile contains either dileinarchive, link or codebaseelement.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 ComponentAssembly Descriptor 29 October 1999

69

<I[ELEMENT componentfile
(fileinarchive
| codebase
| link
) >

id ID #REQUIRED
type CDATA #IMPLIED >

<IATTLIST componentfile

Theid attribute must uniquely identify theomponentfile element within the
descriptor.

The optionaltype attribute specifies the type of component file. If unspecified then the
file is assumed to be CORBA component. An example use of the type attribute would
be to specify an EJB component file, wheygpe="EJB 1.1".

69.7.2.4 The componentfileref Element

The componentfileref element refers to a particulaomponentfile element in the
componentfilesblock.

<I[ELEMENT componentfileref EMPTY >
<IATTLIST componentfileref
idref CDATA #REQUIRED >

Theidref attribute corresponds to a uniqaemponentfile id attribute.

69.7.2.5 The componentfiles Element

The componentfileselement is used to list all of the component files that are used in
the assembly. At least one component file must be specified.

Each component file is uniquely identified for reference elsewhere in the descriptor.
Multiple component instances may refer to a single component file.

<I[ELEMENT componentfiles
(componentfile+

) >

69.7.2.6 The componentimplref Element

The componentimplref element is used to refer to a particular implementation in a
component file.

69-304 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October

69

<I[ELEMENT componentimplref EMPTY >
<IATTLIST componentimplref
idref CDATA #REQUIRED >

Theidref attribute refers to a uniquienplementation elementid in the component
descriptor. Thecomponentimplref is optional if there is only one implementation in
the component file. Or it may be set at deployment time depending on the type of
platform that the component is deployed to.

69.7.2.7 The componentinstantiation Element

The componentinstantiation element describes a particular instantiation of a
component relative to a home placement. Thenponentinstantiationelement is a
direct child of thehomeplacementelement.

Theusagenamechild element is used to specify a name for the placement, possibly for
display in a tool. The&eomponentpropertieselement refers to a property file

associated with this instantiation. It is used to configure the component once it is
created and after the home sets initial property values (as specified in the
homeplacement componentpropertieglement). Theegistercomponentelement
instructs the installation process to register the component or its provided interfaces
with a naming service or trader.

<I[ELEMENT componentinstantiation
(usagename?
, componentproperties?
, registercomponent*
, extension*
) >
<IATTLIST componentinstantiation
id ID #REQUIRED >

Theid attribute is a unique identifier within the assembly descriptor for the
component. Théd is used to refer to the component instance in the connect block.

69.7.2.8 The componentinstantiationref Element

The componentinstantiationref element refers to a particular
componentinstantiation element in the assembly descriptor.

<IELEMENT componentinstantiationref EMPTY >

<IATTLIST componentinstantiationref
idref CDATA #REQUIRED >

Theidref attribute corresponds to a uniqeemponentinstantiationid attribute.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 ComponentAssembly Descriptor 29 October 1999

69

69.7.2.9 The componentproperties Element

The componentpropertieselement specifies a property file for a home. If the
component file has a default property file in the component package, the component
property file overrides the default. The property file may be specified by either a
fileinarchive or acodebasechild element. The format of the property file is described
in section 69.8 on page 321.

When thecomponentpropertieselement is specified as part oft@meplacement

element, then the properties are used to configure each component created through that
home. Whercomponentpropertiesis specified as part of aomponentinstantiation
element, the properties are used to configure that single instantiation. If component
properties are set on bothhmeplacementand an associated

componentinstantiation, then the component will be configured first by the
homeplacementcomponent properties and then by th@mponentinstantiation

component properties.

<IELEMENT componentproperties
(fileinarchive
| codebase

) >

69.7.2.10 The componentsupportedinterface Element

Specifies a component withsupportsinterface that can satisfy an interface

connection to aisesport within aconnectinterfaceelement. The component is

identified by acomponentinstantiationref or afindby element. The
componentinstantiationref identifies a component within the assembly. Thelby
element points to an existing component that can be found within a naming service or
trader, or using a stringified object reference.

<IELEMENT componentsupportedinterface
(componentinstantiationref
| findby
)>

69.7.2.11 The connectevent Element

The connecteventelement is used in theonnectionselement to specify a connection
from aconsumegport, of one component, to amitsor publishesport of another
component.

The consumesportelement identifies a component and associated consumes port. The
emitsport element identifies a component associated emits port.pLitdishesport
element identifies a component and associgtedlishesport.

69-306 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October

69

<IELEMENT connectevent
(consumesport
. (‘emitsport
| publishesport
)
) >
<IATTLIST connectevent
id ID #IMPLIED >

Theid attribute is a unique identifier within the assembly descriptor. It is not required
or used elsewhere in the assembly descriptor, however someone (or a tool) might want
to use it to refer to a particulamonnecteventelement.

69.7.2.12 The connecthomes Element

Theconnecthomeslement is used to specify a connection betwepnoxyhome and
another home.

The proxyhome element refers to the proxy home. THestinationhomeelement
refers to the home to which the proxy home will be connected. The destination home
can be either another proxy home or an actual home.

<IELEMENT connecthomes
(proxyhome
, destinationhome
)>

<IATTLIST connecthomes
id ID #IMPLIED >

Theid attribute is a unique identifier within the assembly descriptor. It is not required
or used elsewhere in the assembly descriptor, however someone (or a tool) might want
to use it to refer to a particulatonnecthomeelement.

69.7.2.13 The connectinterface Element

The connectinterfaceelement is used to connect a componengsgsport to an

interface. The interface may be a provided or supported interface of another
component, it may be an existing interface (other than those provided by components
in the assembly), or it may be a home interface.

The usesportelement identifies the component and port where the connection is to be
made. Theprovidesport element identifies a component and provides port. The
componentsupportedinterfaceelement identifies a component that has a supported
interface which will satisfy the uses port. Tleaistinginterface element identifies a

way to find an existing interface that will satisfy thuses.The homeinterfaceelement
identifies ahomeinterfacethat the uses port requires.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 ComponentAssembly Descriptor 29 October 1999

69

<IELEMENT connectinterface
(usesport
. (providesport
| componentsupportedinterface
| existinginterface
| homeinterface

)
)>
<IATTLIST connectinterface
id ID #IMPLIED >

Theid attribute is a unique identifier within the assembly descriptor. It is not required
or used elsewhere in the assembly descriptor, however someone (or a tool) might want
to use it to refer to a particulazonnectinterfaceelement.

69.7.2.14 The connections Element

The connections element is used to satisfy component uses and consumes
dependencies and to connect homes. Gtvenectinterfaceelement is used to connect
componenusesports to interfaces. theonnecteventelement is used to connect a
componentEonsumegport to event producers. Thmonnecthomeelement is used to
connect a proxy home to another home.

<IELEMENT connections
(connectinterface
| connectevent
| connecthome
| extension
)< >

Note —If a componentinstantiationinvolved in a connection has a cardinality greater
than 1, or if it is part of a process or host collocation with a cardinality greater than 1,
then multiple connections will be realized from or to each instance of the component.
That is, the connection will be made for each instantiation of the component.

69.7.2.15 The consumesidentifier Element

A child element ofconsumingcomponentconsumesidentifieridentifies which
consumesport” on the component is to participate in the relationship. The type of the
consumes event must match the type of the connected emits or publishes event.

69-308 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October

69

<I[ELEMENT consumesidentifier (#PCDATA) >

69.7.2.16 The consumesport Element

Specifies the event-consuming side of an event connection relationship. The
consumesidentifierchild element identifies the particulaonsumegport. The
component with this consumes port is identified bgaanponentinstantiationref or a
findby element. Thecomponentinstantiationref identifies a component within the
assembly. Théindby element points to an existing component that can be found
within a naming service or trader, or using a stringified object reference.

<IELEMENT consumesport
(consumesidentifier
(componentinstantiationref
| findby
)

)>

69.7.2.17 The description Element

The description element contains a string description. It is used to describe its parent
element. It contains string content.

<IELEMENT description (#PCDATA) >

69.7.2.18 The destination Element

The destination element is used to record wherdhameplacement
executableplacementhostcollocation or processcollocationis to be (or has been)
deployed. The format of the destination string is determined by a particular deployment
tool.

<I[ELEMENT destination (#PCDATA) >

69.7.2.19 The destinationhome Element

Identifies a home to be connected to by a proxy home. The home is identified by a
homeplacementrefor afindby element. Thehomeplacementrefidentifies a home

within the assembly. Théndby element points to an existing home that can be found
within a home finder, naming service, or trader, or using a stringified object reference.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 ComponentAssembly Descriptor 29 October 1999

69

<IELEMENT destinationhome
(homeplacementref
| findby
) >

69.7.2.20 The emitsidentifier Element

The emitsidentifier identifies an emits “port” on a component. The identifier
corresponds to a emits identifier specified in IDL.

<I[ELEMENT emitsidentifier (#PCDATA) >

69.7.2.21 The emitsport Element

Specifies the event-emiting side of an event connection relationship. The
emitsidentifier child element identifies the particulamitsport. The component with

this emits port is identified by aomponentinstantiationrefor afindby element. The
componentinstantiationref identifies a component within the assembly. Thelby
element points to an existing component that can be found within a naming service or
trader, or using a stringified object reference.

<IELEMENT emitsport
(emitsidentifier
. (componentinstantiationref
| findby
)
)>

69.7.2.22 The executableplacement Element

This executableplacementlement describes a deployment of an executable. The
executableplacemenelement may be a direct child of thpartitioning element which
states that it has no collocation constraints; or it may be a child element of the
hostcollocationelement.

Theusagenamechild element is used to specify a name for the placement, possibly for
use in a tool. Theeomponentfileref element specifies the component file. The
componentimplref element refers to a specific implementation in gudtpkg

descriptor. Note that the implementation referred tabgnponentimplref must have a
code type of Executablé’. The invocation element specifies any arguments with
which the executable should be invoked. Tdestination element is used to record
where theexecutableplacements to be deployed.

69-310 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October

69

<IELEMENT executableplacement
(usagename?
, componentfileref
, componentimplref
, invocation?
, destination?
, extension*
) >
<IATTLIST executableplacement
id ID #REQUIRED
cardinality CDATA "1" >

Theid attribute is a unique identifier within the assembly descriptor for the
executableplacement

The cardinality attribute specifies how many instantiations of this executable may be
deployed. Possible values for cardinality are a specific number, a “+” to specify 1 or
more, or a “*” to specify 0 or more. The default cardinality is “1”.

69.7.2.23 The existinginterface Element

Specifies an interface that can satisfy an interface connectiorutesport within a
connectinterfaceelement. Thdindby element points to an existing interface that can
be found within a naming service or trader, or using a stringified object reference.

<I[ELEMENT existinginterface
(findby) >

69.7.2.24 The extension Element

See section 69.3.2.11 on page 265.

69.7.2.25 The fileinarchive Element

See section 69.3.2.11 on page 265.

69.7.2.26 The findby Element

Thefindby element is used to resolve a connection between two components. It tells
the installation agent how to locate a party, usually a component, interface, or home,
involved in the relationship. In the simplest case, the installer will know where the item
is because it was the one responsible for installing it. But if the item to be located
already exists in the installation environment, the installer must know how to find it. It
could locate a component in a naming service, in a trader, a home finder, or by a
stringified object reference. The purpose of the findby element is to provide such
information.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 ComponentAssembly Descriptor 29 October 1999

69

69-312

Thenamingserviceelement specifies a naming service name. $timgifiedobjectref
element is a stringified IOR for the item. Theaderquery is a query for locating the
item in a trader. Thdhomefinder is a name to look up a home in a home finder.

<IELEMENT findby
(‘namingservice
| stringifiedobjectref
| traderquery
| homefinder
| extension

) >

69.7.2.27 The homefinder Element

The homefinder element is used to indicate a home finder name for a home.

<IELEMENT homefinder EMPTY >
<IATTLIST homefinder
name CDATA #REQUIRED >

The name attribute specifies the name of the home as registered with the home finder.
Home finders are defined in Section 61.8, “Home Finders.

69.7.2.28 The homeinterface Element

Specifies a home with an interface that can satisfy an interface connectionsesa

port within aconnectinterfaceelement. The home is identified by a
homeplacementrefor afindby element. Thehomeplacementrefidentifies a home

within the assembly. Théndby element points to an existing home that can be found
within a home finder, a naming service or trader, or using a stringified object reference.

<I[ELEMENT homeinterface
(homeplacementref
| findby
) >

69.7.2.29 The homeplacement Element

This homeplacementelement describes a particular deployment of a component home.
The homeplacementelement may be a direct child of thpartitioning element which
states that it has no collocation constraints; or it may be a child element of the
hostcollocationor processcollocationelements which states specific host or process
collocation constraints.

Theusagenamechild element is used to specify a name for the placement, possibly for
use in a tool. Theeomponentfileref element specifies the component file. The
componentimplref element refers to a specific implementation in the component file.
Thehomepropertieselement refers to a state file associated with the home placement;
it is used to configure the home after it is created. Thenponentpropertieselement
refers to a property file used to configure all components created through the home.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October

69

The registerwithhomefinder element instructs the installation process to register the
home with the home finder. Thegisterwithnaming element instructs the installation
process to register the home with a naming service. rElgesterwithtrader element
instructs the installation process to register the home with a trader service. The
componentinstantiationelement instructs the installation agent to create a component
using this home. Thdestination element is used to record where themeplacement

is to be deployed, if designated.

<IELEMENT homeplacement

(usagename?
componentfileref
componentimplref?
homeproperties?
componentproperties?
registerwithhomefinder*
registerwithnaming*
registerwithtrader*
componentinstantiation*
destination?

, extension*
) >
<IATTLIST homeplacement
id ID #REQUIRED

cardinality CDATA "1" >

Theid attribute is a unique identifier within the assembly descriptor for the
homeplacement Theid is used to refer to the home in the connect block.

The cardinality attribute specifies how many instantiations of this component may be
deployed. Possible values for cardinality are a specific number, a “+” to specify 1 or
more, or a “*” to specify 0 or more. The default cardinality is “1”.

Note that if thecardinality is greater than 1 and there are any connections to this
homeplacement then connections will be made to each instance of the deployed
home.

69.7.2.30 The homeplacementref Element

The homeplacementrefelement refers to a particuliiomeplacementelement in the
assembly descriptor.

<I[ELEMENT homeplacementref EMPTY >
<IATTLIST homeplacementref
idref CDATA #REQUIRED >

Theidref attribute corresponds to a unighemeplacementd attribute.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 ComponentAssembly Descriptor 29 October 1999

69

69-314

69.7.2.31 The homeproperties Element

The homepropertieselement specifies a property file for a home. The properties are
used to configure the home when it is created. The property file may be specified by
either afileinarchive or acodebasechild element. The format of the property file is
described in section 69.8 on page 321.

<IELEMENT homeproperties
(fileinarchive
| codebase

) >

69.7.2.32 The hostcollocation Element

A hostcollocation specifies a group of component instances that are to be deployed
together to a single host. The child elements are an opties@ename an optional
impltype, and a list ofprocesscollocation homeplacement and
executableplacementlements. Ifimpltype is specified then each of the component
instances must have implementations supporting the implementation tyipgltfpe

is not specified, then at deployment time each of the collocated components must have
implementations supporting the target deployment platform.

<I[ELEMENT hostcollocation

(usagename?

, impltype?

., (homeplacement
| executableplacement
| processcollocation
| extension
)+

, destination?

) >

id ID #IMPLIED
cardinality CDATA "1" >

<IATTLIST hostcollocation

Theid attribute uniquely identifies this host collocation in the component assembly
file. The cardinality attribute specifies how many instances of this host collocation
may be deployed. Possible values tardinality are a specific number, a “+” to
specify 1 or more, or a “*” to specify 0 or more. The default cardinality is “1".

Note that if thecardinality is greater than 1, and there are connections to components
within the hostcollocation then connections will be made to the corresponding
components or component homes within each instance of the collocation.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October

69

69.7.2.33 The impltype Element

Issue — May not be necessary.

69.7.2.34 Theinvocation Element

The invocation element is used to specify invocation arguments for an executable
placement.

<IELEMENT invocation EMPTY >
<IATTLIST invocation
args CDATA #REQUIRED >

The args attribute is a string containing the arguments to be used in invoking the
executable. Note, thatrgs is just the arguments to the executable, it does not include
the executable name.

69.7.2.35 Thelink Element

See section 69.3.2.18 on page 268.

69.7.2.36 The namingservice Element

The naming service element is used to indicate that a component or interface should be
found using a naming service.

<I[ELEMENT namingservice EMPTY >
<IATTLIST namingservice
name CDATA #REQUIRED >

The name attribute specifies the naming service name to look up.

69.7.2.37 The partitioning Element

Component partitioning specifies a deployment pattern of homes and components to
generic processes and hosts. The pattern is expressed via collocation constraints.

A particular usage of a component is always relative to a component home. Uses of
component homes are recognized in the assembly as home placements. A home
placement, and component instantiations relative to that home, may be collocated with
other home placements and component instantiations in a process. Processes and home
placements may be collocated within a logical host. A home placement that is not part
of a process or host collocation may be deployed without constraint.

An executable placement is the placement of a particular executable. It may be
partitioned without constraint or as part of a host collocation.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 ComponentAssembly Descriptor 29 October 1999

69

69-316

Within a partitioning elementhomeplacement executableplacementand
collocation constraints are specified. Themeplacementchild element specifies a
freely deployable home. Thexecutableplacementlement specifies a freely
deployable executable. Tiprocesscollocatiorandhostcollocationchild elements are
used to groughomeplacementtogether into deployable units.

A homeplacementmay be declared as part of a host or process collocation or by itself.
The actual host and process will be determined at deployment time. Home placements,
executable placements, process collocations, and host collocations all have an
associated cardinality. The default cardinality is “1”. An ordinal cardinality of 1 or
greater mandates that the deployable unit must be instantiated that many times,
cardinality of “+” indicates 1 or more, and “*” indicates zero or more.

<IELEMENT partitioning
(homeplacement
| executableplacement
| processcollocation
| hostcollocation
| extension
e >

69.7.2.38 The processcollocation Element

The processcollocatiorelement specifies a group of home and associated component
instantiations that are to be deployed together to a single process. The child elements
are an optionalisagename an optionalimpltype, and a list othomeplacement

elements. lfimpltype is specified then each of the component instances must have
implementations supporting the implementation typemipltype is not specified, then

at deployment time each of the collocated components have implementations
supporting the target deployment platform.

<IELEMENT processcollocation
(usagename?

, impltype?
., (homeplacement
| extension
)+
) >
<IATTLIST processcollocation
id ID #IMPLIED

cardinality CDATA "1" >

Theid attribute uniquely identifies this process collocation in the component assembly
file. The cardinality attribute specifies how many instances of this process collocation
may be deployed. Possible values tardinality are a specific number, a “+” to
specify 1 or more, or a “*” to specify 0 or more. The default cardinality is “1".

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October

69

Note that if thecardinality is greater than 1, and there are connections to components
and homes within th@rocesscollocationthen connections will be made to
corresponding components or component homes within each instance of the
collocation.

69.7.2.39 The providesidentifier Element

The providesidentifier identifies a provides “port” on a component. The identifier
corresponds to a provides identifier specified in component IDL.

<IELEMENT providesidentifier (#PCDATA) >

69.7.2.40 The providesport Element

Specifies the interface providing side of an interface connection relationship. The
providesidentifier child element identifies the particularovidesport. The component
with this provides port is identified by @éomponentinstantiationref or afindby

element. Theomponentinstantiationref identifies a component within the assembly.
Thefindby element points to an existing component that can be found within a naming
service or trader, or using a stringified object reference.

<IELEMENT providesport
(providesidentifier
(componentinstantiationref
| findby
)
)>

69.7.2.41 The publishesidentifier Element

The publishesidentifier identifies a publishes “port” on a component. The identifier
corresponds to the identifier specified in IDL for the publishes port.

<IELEMENT publishesidentifier (#PCDATA) >

69.7.2.42 The publishesport Element

Specifies the event-publishes side of an event connection relationship. The
publishesidentifier child element identifies the particulaublishesport. The
component with this publishes port is identified bg@mponentinstantiationref or a
findby element. Thecomponentinstantiationref identifies a component within the
assembly. Théindby element points to an existing component that can be found
within a naming service or trader, or using a stringified object reference.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 ComponentAssembly Descriptor 29 October 1999

69

<I[ELEMENT publishesport
(publishesidentifier
. (componentinstantiationref
| findby
)
)>

69.7.2.43 The registercomponent Element

The registercomponentelement is used to specify that a component, a provided
interface, or a published event should be registered with a naming service or trader.

Issue — In the case of events, what gets registered?

If an emitsidentifier, providesidentifier, or publishesidentifier is specified then that
element is registered. If none of the above are specified then it is implied that the
component itself is to be registered.

Registration may be through a naming service or trader.régesterwithnaming

element specifies a naming service registration agisterwithtrader specifies a

trader registration. The interface, event, or component registration may be registered
with both a naming service and a trader, multiple times. At least one registration must
take place.

<I[ELEMENT registercomponent

((emitsidentifier
| providesidentifier
| publishesidentifier
)?

. (registerwithnaming
| registerwithtrader
)+

) >

69.7.2.44 The registerwithhomefinder Element

The registerwithhomefinder element tells the installer to register a component home
with the home finder.

<I[ELEMENT registerwithhomefinder EMPTY >
<IATTLIST registerwithhomefinder
name CDATA #REQUIRED >

The name attribute is the name to register the home with in the home finder.

69.7.2.45 The registerwithnaming Element

Theregisterwithnaming element tells the installer to register a component instance or
home with a naming service after it is created.

69-318 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October

69

<I[ELEMENT registerwithnaming EMPTY >
<IATTLIST registerwithnaming
name CDATA #IMPLIED >

Thenameattribute is the naming service name. If the name is not specified, it will be
determined at deployment time, possibly with interaction with the user.

69.7.2.46 The registerwithtrader Element

The registerwithtrader element tells the installer to register a component instance or
home with a trader after it is created.

<I[ELEMENT registerwithtrader

(traderproperties) >
<IATTLIST registerwithtrader

tradername CDATA #IMPLIED >

69.7.2.47 The proxyhome Element

Identifies a proxy home that is to be connected to another home. The home is
identified by ahomeplacementrefor afindby element. Théhomeplacementref

identifies a home within the assembly. Tfiedby element points to an existing home
that can be found within a home finder, naming service, or trader, or using a stringified
object reference.

<IELEMENT remotehome
(homeplacementref
| findby
) >
69.7.2.48 The stringifiedobjectref Element

The stringifiedobjectref element is used to locate a component by its object reference.

<IELEMENT stringifiedobjectref (#27CDATA) >

69.7.2.49 Trader elements

The trader elements are used to register a home, component or interface with a trader
and to find a home, component or interface using a trader query. The trader elements
closely parallel trader functionality in name and purpose.

Issue — The trader elements have to be reviewed to make sure that they serve
the purpose intended. Also, consider using a property file.

CORBA3.0CCMFTFDRAFT ptc/99-10-04 ComponentAssembly Descriptor 29 October 1999

69

<IELEMENT traderconstraint (#PCDATA) >

<IELEMENT traderexport
(traderservicetypename
, traderproperties

) >

<IELEMENT traderpolicy
(traderpolicyname
, traderpolicyvalue

)>
<IELEMENT traderpolicyname (#PCDATA) >
<IELEMENT traderpolicyvalue (#PCDATA) >
<IELEMENT traderpreference (#PCDATA) >

<IELEMENT traderproperties
(traderproperty+) >

<IELEMENT traderproperty
(traderpropertyname
, traderpropertyvalue

) >
<I[ELEMENT traderpropertyname (#PCDATA) >
<IELEMENT traderpropertyvalue (#PCDATA) >

<IELEMENT traderquery
(traderservicetypename
, traderconstraint
, traderpreference?
, traderpolicy*
, traderspecifiedprop*

) >
<IELEMENT traderservicetypename (#PCDATA) >

<I[ELEMENT traderspecifiedprop (#PCDATA) >

Note —These still need to be explained in text. In the mean time, look at the trader
spec. The correspondence should be obvious.

69.7.2.50 The usagename Element

A user defined “friendly” name.

69-320 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Assembly Descriptor 29 October

69

<I[ELEMENT usagename (#PCDATA) >

69.7.2.51 The usesidentifier Element

A child element ofusingcomponent usesidentifieridentifies which uses “port” on the
component is to participate in the relationship. The type of the using interface must
match the type of the connected provides interface.

<IELEMENT usesidentifier (#PCDATA) >

69.7.2.52 The usingcomponent Element

Specifies the interface using side of an interface connection relationship. The
usesidentifier child element identifies the particulasesport. The component with

this uses port is identified by @@mponentinstantiationref or afindby element. The
componentinstantiationref identifies a component within the assembly. Thelby
element points to an existing component that can be found within a naming service or
trader, or using a stringified object reference.

<IELEMENT usesport
(usesidentifier
. (componentinstantiationref
| findby
)
)>

69.8 Property File Descriptor

The property file details component or home attribute settings. Properties are described
using an XML vocabulary described below. The property file is used at deployment
time to configure a home or component instance. A configurator uses the property file
to determine how to set component and component home property attributes.

The property file may be edited using a text editor or with the help of a GUI tool. A
packaged component may be shipped with a set of default properties that may be
altered by the end user.

The suggested file extension for property files is “.cpf’, for Component Property File.

69.8.1 Property File Example

The following property descriptor example has 3 propertirdferSize, niceGuys
andsanityTestTime The bufferSize parameter is a long type; theceGuysproperty
is a sequence of strings; and thanityTestTime property is a structure of type
timestruct, containing 3 shorts.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Property File Descriptor 29 October 1999

69

<properties>

<simple name=bufSize type="long">
<description>Size of Whizitron input buffer</description>
<value>4096</value>
<defaultvalue>256</defaultvalue>

</simple>

<sequence name="niceGuys" type="sequence<string>">
<simple type="string"><value>Dave</value></simple>
<simple type="string"><value>Ed</value></simple>
<simple type="string"><value>Garrett</value></simple>
<simple type="string"><value>Jeff</value></simple>
<simple type="string"><value>Jim</value></simple>
<simple type="string"><value>Martin</value></simple>
<simple type="string"><value>Patrick</value></simple>

</sequence>

<struct name="sanityTestTime" type="timestruct">
<description>Time to start daily sanity check</description>
<simple name="hour" type="short"><value> 24 </value></simple>
<simple name="minute" type="short"><value> 0 </value></simple>
<simple name="second" type="short"><value> 0 </value></simple>
</struct>
</properties>

The properties document has 3 major elemensimple, sequenceandstruct.

The simple element describes a single primitive idl type. Téeguenceslement
corresponds to an IDL sequence, and shreict element corresponds to an IDL struct.

Note —If the user of the property file does not have static information about the types
specified in the property file then it will likely need to construct the type into a
DynAny .

69.8.2 Property File XML Elements

This section describes the XML elements that make up a properties file. The section is
organized starting with the root element of the properties docunpeoperties,

followed by all subordinate elements, in alphabetical order. The complete properties
file DTD may be found in Section 695.3, “properties.dtd,” on page 695-345.

69-322 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Property File Descriptor 29 October 1999

69

69.8.2.1 The properties Root Element

The properties element is the root element of the properties document. It contains an
optional description and any combinationgifnple, sequence andstruct elements.

<I[ELEMENT properties
(description?
(simple
| sequence
| struct
)*
) >

69.8.2.2 The choice Element
<IELEMENT choice (#PCDATA) >

The choiceelement is used to specify a valid simple property value.

69.8.2.3 The choices Element

<IELEMENT choices (choice+) >

The choiceselement is a list of one or more choice elements.

69.8.2.4 The defaultvalue Element

<IELEMENT defaultvalue (#PCDATA) >

The defaultvalue element is used to specify a default simple property value.

69.8.2.5 The description Element

<IELEMENT description (#PCDATA) >

The description element is used to provide a description of its enclosing element.

69.8.2.6 The properties Element

The root element of the properties file. See section 69.8.2.1 on page 323.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Property File Descriptor 29 October 1999

69

69-324

69.8.2.7 The simple Element

The simple element is used to specify an attribute value of a primitive tygi@ple
contains a mandatoryalue element, and optionalescription, choices and
defaultvalue elements.

Thevalue element is used to specify the value of the simple type. Ifvidlee element
is empty, the value is deemed unspecified. If the value is unspecified, and there is a
defaultvalue defined, then the default value will be used.

The description, choicesand defaultvalue child elements may be used to provide
guidance to the end user in deciding how to set the attributes.

<I[ELEMENT simple
(description?
, value
, choices?
, defaultvalue?

) >

name CDATA #IMPLIED
type (boolean

| char

| double

| float

| short

| long

| objref

| octet

| short

| string

| ulong

| ushort
) #REQUIRED >

<IATTLIST simple

name

The name attribute specifies the name of the attribute as it appears in IDL. The name
attribute is required, except when the property is used in a sequence.

type
The type attribute specifies the type of the corresponding attribute. Property types are
either an IDL primitive data type, or an objref.

Note —The objref is in its stringified form in the property element. The stringified
object reference is converted into a proper object reference before being assigned to its
corresponding attribute.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Property File Descriptor 29 October 1999

69

69.8.2.8 The sequence Element

The sequenceelement is used to represent a sequence of similar types. It may be a
sequence of simple types, a sequence of structs, or a sequence of sequences. The orde
of the sequence elements in the property file is preserved in the constructed sequence.
An optional description may be used to describe the sequence property.

<I[ELEMENT sequence
(description?
. (simple*
| struct*
| sequence*
)
) >

name CDATA #IMPLIED
type CDATA #REQUIRED >

<IATTLIST sequence

name

The name attribute specifies the name of the sequence as it appears in IDL. The name
attribute is required, except when the sequence property is used in another sequence.

type
The type attribute specifies the type of the corresponding IDL sequence. The type of
each element in the sequence must match the sequence type.

69.8.2.9 The struct Element

The struct element corresponds to an IDL structure. It may be composed of simple
properties, sequences, or other structs.

<IELEMENT struct
(description?
. (simple
| sequence
| struct
)*
)>

name CDATA #IMPLIED
type CDATA #REQUIRED >

<IATTLIST struct

name

The name attribute specifies the name of the struct attribute as it appears in IDL. The
name attribute is required, except when the structure property is used in a sequence.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Property File Descriptor 29 October 1999

69

type
The type attribute specifies the type of the corresponding IDL struct.

69.8.2.10 The value Element

Thevalue element is used to specify a simple value.

<I[ELEMENT value (#PCDATA) >

69-326 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Property File Descriptor 29 October 1999

69

69.9 Component Deployment

Components, component homes, and component assemblies are deployed on target
hosts in a network using a deployment tool provided by an ORB or tool vendor.

The aim of deployment is to install and “hook-up” a logical component topology to a
physical computing environment. The deployment is specified by an assembly file, or
in the degenerate case, an individual component file.

The basic steps in the deployment process are:

1. ldentify on which hosts the components are to be installed. This information will
most likely come from an interaction between tool and user. Components are
deployed either singly or together with other components as part of a process or
host collocation.

2. Install component implementations on each platform where corresponding
component instances are to be deployed. If a component implementation, uniquely
identified by a UUID, is already installed on a host then it does not have to be
installed again.

3. Instantiate components and component homes on particular hosts. The mapping for
doing so was determined in step 1.

4. Connect components as specified in the assembly descriptor’s connect block.

A stand-alone component file may be deployed as well as assembly files. In that case,
step 4 does not apply. Unless otherwise noted, all interfaces defined in the subsequent
sections are in th®eployment module which is imbedded within theomponents

module (see Section 695.1, “softpkg.dtd,” on page 695-335 for a description of the
naming structure proposed by this specification).

69.9.1 Participants in Deployment

The deployment of a component or component assembly is carried out by a
deployment application in conjunction with a set of helper objects. The helper objects
include component repositories, assembly and component factories, an object
representing an assembly itself, and a container.

The following class diagram and scenario represents a deployment architecture.

Note —Of the interfaces described below, oromponentinstallation,
AssemblyFactory andAssemblyare required by this specification; the other
interfaces are included for illustrative purposes and to support an end-to-end scenario.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999

69

69-328

69.9.1.1 Deployment Architecture

<<instantiates >>
AssemblyFactory {--------------ooo oo > Assembly

P i '
P 4
- , ' '
- 4 !
. '

<<instantiates . >>

S T
. ComponentServer -

. N A :
. _Container
<<instantiates ‘. >> |
| v
A ComponentHome
Componentinstallation <<instantiates . >>
Component

Figure 69-1 Deployment Architecture

69.9.1.2 Deployment Scenario
The steps in deploying and activating a component assembly could unfold as follows.

1. The deployment application has a conversation with the user to determine where
each component or collocation is to be placed. Information about where
components are to be located is recorded in a copy of the component assembly
descriptor. This marked-up assembly descriptor will be used later b&xgkembly
object to direct the creation of the assembly.

2. Next the component implementations are installed on the platforms where they are
to be used. The deployment application cafistall on thelnstallation object,
passing the component implementatidnand a string denoting the address of the
component file. If the component has not already been installed on the target
platform, then thenstallation object retrieves the component file and makes it
available in the local environment.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999

69

3. The deployment application then createsfasembly object. Assembly objects
coordinate the creation and destruction of component assemblies ASaembly
object represents an assembly instantiatddsembly objects are created by
calling anAssemblyFactory object on the host where the assembly object is to be
created. ThéAssemblyFactory is passed a string pointing to the assembly
descriptor file.If necessary, thisssemblyFactory brings the assembly descriptor
into the local environment and makes its location known toAssembly object.

4. The assembly descriptor uses the assembly descriptor as a recipe for creating the
assembly. The descriptor specifies which components and component homes to
create, where they are to be located, what components are to be collocated with
each other, and what components are to be connected with each other. Based on this
information theAssembly object creates each component and component home
and “hooks-up” the assembly.

5. In creating a component, thessembly object must create a component server,
create a container within the server, install a home object within the container, and
then use the home to create the component. This work is completed with the help of
a set of objects on each host. These @eeverActivator , ComponentServer |,
Container , and theComponentHome .

6. TheAssembly object first calls theServerActivator on the target host to create
the component server. There is one instance ofSerActivator object on each
host. TheAssembly object creates the component server by calling the
create_component_server operation on the&erverActivator object. This
operation creates an empty server process and returns a reference to the
ComponentServer object of the newly created process.

7. Each server contains a singl®mponentServer object. It is used by the
Assembly object to create containers within the server. A container is created
when theAssembly object callscreate_container on theComponentServer
object, passing in a container identifier or list of container attributes. The
create_container operation returns a reference to tGentainer interface of the
newly created container.

8. TheAssembly object uses th€ontainer interface to install the component home
into the container. This is accomplished by callingtall_home on the
Container object. Theinstall_home operation takes a componeidt parameter
and returns a reference to the home interface.

9. In order to create the home, tl®ntainer must load the DLL, shared object file,
or .class file into the container process. To determine the path or the or fully
gualified name of the component implementation, the container calls the
get_implementation operation of thdnstallation object. It passes in thigl of
the component implementation and is returned the absolute location or name of the
component implementation. The container then loads the implementation and
instantiates the home object. The home object reference is then returned to the
Assembly object.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999

69

69-330

10. TheAssembly object uses the component’'s home object to create the component
instance. The instance is created by callangate_component on the home
referencecreate_component returns aCCMObject object reference.

11. If applicable, a configurator is applied to the component.

12. Once all of the components are installed, Assembly object connects
components in the assembly based on the information in the connect block of the
assembly descriptor. It does this by calling the receptacle connect operation on the
CCMObject reference.

13. Following the successful consummation of each connection in the assembly, the
Assembly object callsconfiguration_complete on each object in the assembly
to signal that all of its initial connections have been fixed.

69.9.2 Componentinstallation Interface

The Componentinstallation object is used to install, query, and remove component
implementations on a single platform. There is at most Gomponentinstallation
object per host.

It is intended that this interface be general enough to encompass a wide range of
underlying implementations, as ti@mponentinstallation interface will likely be
implemented on top of a vendor specific implementation repository.

exception Unknownimplid { };
exception InvalidLocation { };

interface Componentinstallation {
boolean install(in string implUUID, in string component_loc)
raises InvalidLocation;
boolean replace(in string implUUID, in string component_loc)
raises InvalidLocation;
boolean remove(in string implUUID)
raises UnknownImplid;

¥

install

Theinstall operation installs a component on the particular host on which the
Componentinstallation object resides. Theomponent_locparameter points to the
location of the component package. TingplUUID refers to a particular
implementation within that component package.

replace

Thereplace operation replaces a component implementation previously installed. The
component_locparameter points to the component package andntipdJUID points
to a particular implementation within the package.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999

69

remove

Theremove operation removes a previously installed component implementation. The
implUUID refers to the particular implementation.

69.9.3 AssemblyFactory Interface

The AssemblyFactory interface is used to creatsssembly objects. A single
AssemblyFactory object must be present on each host whisseembly objects are
to be created.

exception InvalidLocation { };
exception InvalidAssembly { };

interface AssemblyFactory {
Cookie create(in string assembly_loc)
raises InvalidLocation;
Assembly lookup(in Cookie c)
raises InvalidAssembly;
boolean destroy(in Cookie c)
raises InvalidAssembly;

h

create

The create operation creates afsssembly object on the host on which the
AssemblyFactory is located. It takes a string location for the assembly descriptor
and returns &ookie that may be used to reference the assembly later.Cdukie is
the same as specified in Section 61.5.2.4, “Cookie type,” on page 61-42, of this
document. The operation raises lawalidLocation exception if the assembly
descriptor could not be found.

lookup

Thelookup operation takes €ookie and returns an object reference to an
Assembly object. It throwslnvalidAssembly exception if theCookie did not
reference an existing assembly, known by tAssemblyFactory .

destroy

Thedestroy operation destroys the assembly referenced Bpakie . If the assembly
is active it will first tear down the assembly. The operation returns true if the assembly
was successfully destroyed, false otherwise.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999

69

69-332

69.9.4 Assembly Interface

The Assembly interface represents an assembly instantiation. It is used to build up
and tear down component assemblies. Building the assembly means that it is going to
instantiate all of the components in the assembly and create connections between them
as specified in the assembly descriptor. Tearing the assembly down means removing all
connections and destroying the components in the assembly.

enum AssemblyState {INACTIVE, INSERVICE};

interface Assembly {
boolean build();
boolean tear_down();
AssemblyState get_state();

h

build

The build operation builds the assembly and returns TRUE if the assembly was built
successfully and FALSE otherwise. If the build failed then blndd operation is
responsible for cleaning up any pieces of the assembly that were created.

tear_down

Thetear_down operation removes all of the objects in the assembly. It cannot be
responsible for any objects which the assembly objects created during operation.

get_state

The get_state operation returns whether the assembly is active or inactive. An
assembly will be inactive before it is built, while it is being built, when it is being torn
down, and after it has been torn down. It will be active after it is successfully built and
before it is torn down.

69.9.5 Component Entry Points (Component Home Factories)

Each component package contains a component implementation. A component
implementation is a dynamically loadable module such as a DLL, a shared library, or a
Java .class file. The component implementation file contains the code for the
component implementation and its associated home implementation.

To load a component into a container, the home for the component must first be
created. The home is then used to create component instances. The component’'s home
is created by calling a well known entry point in the component implementation file.

The entry point is an operation or function whose existence and signature is common
across all component implementation files. The generic entry point function allows a
container to create a component home without having to have specific knowledge of
that home or its associated component implementation.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999

69

Entry points are programming language specific. Depending on the language, it is
either a function or static method. The signature and semantics of the operation are
specified for Java and C++.

In general, the entry point function takes no arguments and returns a pointer or
reference to &lomeExecutorBase

Entry Points in Java

In Java, the entry point is the name of a class and static method which may be invoked
to create a servant which implements the component home. The method must have the
following signature:

public static HomeExecutorBase
foo();

For instance, if one wrote the following code for the entry point:
package bigbank.corbacomponents.Account;
public class AccountHomeFactory {
public static HomeExecutorBase create() {
return new AccountHomelmpl();
}
}

Then the string representing the entry point string would be
“bigbank.corbacomponents.Account.AccountHomeFactory.create

Entry Pointsin C++

In C++, the entry point is the symbol in a shared library or DLL which should be
invoked to return theHomeExecutorBase for the component’s home
implementation.

The entry point should have “C” linkage (i.e. no name-mangling) and have the
following signature:

HomeExecutorBase* (*)();
So for example:
extern "C" {

HomeExecutorBase* createAccountHome() {
return new AccountHomelmpl();

h
h

In this case, the entry point would simply beréateAccountHomé.

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999

69

69-334 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 Component Deployment 29 October 1999

XML DTDs 695

This chapter contains the definitions of the XML DTDs used by the CORBA
Components.

Issue — It contains all new text taken from the CCM final submission
orbos/99-07-01 with only minor editorial changes - Jeff Mischkinsky

This chapter contains the following sections.

Section Title Page
“softpkg.dtd” 695-335
“corbacomponent.dtd” 695-339
“properties.dtd” 695-345
“componentassembly.dtd” 695-346

695.1 softpkg.dtd

<l-- DTD for softpkg. Used to describe CORBA Component
implementations. The root element is <softpkg>.
Elements are listed alphabetically.
>
<l-- Simple xml link attributes based on W3C WD-xlink-19980303.
May change when XLL is finalized. -->
<IENTITY % simple-link-attributes "

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 softpkg.dtd 29 October1999 695-335

695

xml:link CDATA #FIXED 'SIMPLE'
href CDATA #REQUIRED
s

<IELEMENT author
(name
| company
| webpage
>

<IELEMENT code
((codebase
| fileinarchive
| link
)
, entrypoint?
, usage?
) >
<IATTLIST code
type CDATA #IMPLIED >

<!I-- If file not available locally, then download via codebase link -->
<IELEMENT codebase EMPTY >
<IATTLIST codebase

filename CDATA #IMPLIED

%simple-link-attributes; >

<IELEMENT compiler EMPTY >
<IATTLIST compiler
name CDATA #REQUIRED
version CDATA #IMPLIED >

<IELEMENT company (#PCDATA) >

<IELEMENT dependency
(softpkgref
| codebase
| fileinarchive
| localfile
| name
) >
<IATTLIST dependency
type CDATA #IMPLIED
action (assert | install) "assert">

<IELEMENT description (#PCDATA) >

<IELEMENT descriptor
(link
| fileinarchive
) >
<IATTLIST descriptor
type CDATA #IMPLIED>

<IELEMENT entrypoint (#PCDATA) >

695-336 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 softpkg.dtd 29 October 1999

695

<l-- The "extension" element is used for vendor-specific extensions -->

<IELEMENT extension (#PCDATA) >
<IATTLIST extension

class CDATA #REQUIRED
origin CDATA #REQUIRED
id 1D #IMPLIED
extra CDATA #IMPLIED
html-form CDATA #IMPLIED >

<l-- The "fileinarchive" element is used to specify a file in the

archive.

If the file is in another archive then link

is used to point to the archive in which the file may be found.

-->
<IELEMENT fileinarchive
(link?) >
<IATTLIST fileinarchive
name CDATA #REQUIRED >

<IELEMENT idl
(link
| fileinarchive
| repository

) >

<IELEMENT implementation
(description
code
compiler
dependency
descriptor
extension
programminglanguage
humanlanguage
0s
propertyfile
processor
| runtime
>
<IATTLIST implementation
id ID #IMPLIED >

<IELEMENT implref EMPTY >
<IATTLIST implref
idref CDATA #REQUIRED >

<IELEMENT humanlanguage EMPTY >
<IATTLIST humanlanguage
name CDATA #REQUIRED >

<IELEMENT license (#PCDATA) >

<IATTLIST license
%simple-link-attributes; >

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

softpkg.dtd

29 October 1999

695-337

695

695-338

<IELEMENT link (#PCDATA) >
<IATTLIST link
%simple-link-attributes; >

<l-- A file that should be available in the local environment -->

<IELEMENT localfile EMPTY >
<IATTLIST localfile
name CDATA #REQUIRED >

<IELEMENT name (#PCDATA) >

<I[ELEMENT os EMPTY >
<IATTLIST os
name CDATA #REQUIRED
version CDATA #IMPLIED>

<IELEMENT pkgtype (#PCDATA) >
<IATTLIST pkgtype
version CDATA #IMPLIED >

<IELEMENT processor EMPTY >
<IATTLIST processor
name CDATA #REQUIRED >

<IELEMENT programminglanguage EMPTY>
<IATTLIST programminglanguage

name CDATA #REQUIRED

version CDATA #IMPLIED >

<IELEMENT propertyfile
(fileinarchive
| link) >
<IATTLIST propertyfile
type CDATA #IMPLIED >

<IELEMENT resource
(' localfile
| codebase

) >

<IATTLIST resource
type CDATA #MPLIED >

<IELEMENT runtime EMPTY >
<IATTLIST runtime
name CDATA #REQUIRED
version CDATA #IMPLIED>

<IELEMENT softpkg
(title
| pkgtype
| author
| description?
| license
| idl

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

softpkg.dtd

29 October 1999

695

propertyfile
dependency
descriptor
implementation
| extension
>
<IATTLIST softpkg
name ID #REQUIRED
version CDATA #IMPLIED >

<IELEMENT softpkgref
((fileinarchive
| link
)
, implref?

) >
<IELEMENT title (#PCDATA) >
<IELEMENT usage (#PCDATA) >

<IELEMENT webpage (#PCDATA) >
<IATTLIST webpage
%simple-link-attributes; >

695.2 corbacomponent.dtd

<l-- DTD for CORBA Component Descriptor. The root element is
<corbacomponent>. Elements are listed alphabetically.
>

<l-- Simple xml link attributes based on W3C WD-xlink-19980303.
May change when XLL is finalized. -->

<IENTITY % simple-link-attributes "
xml:link CDATA #FIXED 'SIMPLE'
href CDATA #REQUIRED

<IELEMENT accessmode EMPTY>
<IATTLIST accessmode
mode (READ_ONLY|READ_WRITE) #REQUIRED >

<IELEMENT catalog EMPTY>
<IATTLIST catalog
type CDATA #REQUIRED >

<IELEMENT componentfeatures
(inheritscomponent?
, supportsinterface*
, ports
, operationpolicies?
, extension*

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 corbacomponent.dtd 29 October 1999

695

695-340

) >

<IATTLIST componentfeatures
name CDATA #REQUIRED
repid CDATA #REQUIRED >

<IELEMENT componentkind
(service
| session
| process
| entity
| unclassified

) >

<IELEMENT componentproperties
(' fileinarchive

) >

<IELEMENT componentrepid EMPTY >
<IATTLIST componentrepid
repid CDATA #IMPLIED >

<IELEMENT containermanagedpersistence

(storagehome

, pssimplementation?

, catalog?

, accessmode

, psstransaction
, params?

) >
<IELEMENT configurationcomplete EMPTY >
<IATTLIST configurationcomplete

set (true | false) #REQUIRED >

<IELEMENT consumes
(eventpolicy
, extension*) >
<IATTLIST consumes
consumesname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

<IELEMENT corbacomponent
(' corbaversion
, componentrepid
, homerepid
, componentkind
, interop?
, transaction?
, security?
, threading
, configurationcomplete
, extendedpoapolicy*
, repository?
, segment*
, componentproperties?

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

corbacomponent.dtd

29 October 1999

695

, homeproperties?
, homefeatures+
, componentfeatures+
, interface*
, extension*
) >
<IELEMENT corbaversion (#PCDATA) >

<IELEMENT emits
(eventpolicy
, extension*) >
<IATTLIST emits
emitsname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

<IELEMENT entity
(servant) >

<IELEMENT eventpolicy EMPTY>
<IATTLIST eventpolicy
policy (normal | default | transaction) #IMPLIED>

<IELEMENT extendedpoapolicy EMPTY>
<IATTLIST extendedpoapolicy
name CDATA #REQUIRED
value CDATA #REQUIRED >

<l-- The "extension" element is used for vendor-specific extensions -->
<IELEMENT extension (#PCDATA) >
<IATTLIST extension

class CDATA #REQUIRED
origin CDATA #REQUIRED
id 1D #IMPLIED
extra CDATA #IMPLIED
html-form CDATA #IMPLIED >

<l-- The "fileinarchive" element is used to specify a file in the
archive.
If the file is in another archive then link
is used to point to the archive in which the file may be found.
>
<IELEMENT fileinarchive
(link?) >
<IATTLIST fileinarchive
name CDATA #REQUIRED >

<IELEMENT homefeatures
(inheritshome?
, operationpolicies?
, extension*) >
<IATTLIST homefeatures
name CDATA #REQUIRED
repid CDATA #REQUIRED >

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 corbacomponent.dtd

29 October 1999

695

695-342

<IELEMENT homeproperties
(fileinarchive

) >

<IELEMENT homerepid EMPTY >
<IATTLIST homerepid
repid CDATA #IMPLIED >

<IELEMENT inheritscomponent EMPTY>
<IATTLIST inheritscomponent
repid CDATA #REQUIRED>

<IELEMENT inheritshome EMPTY>
<IATTLIST inheritshome
repid CDATA #REQUIRED>

<IELEMENT inheritsinterface EMPTY>
<IATTLIST inheritsinterface
repid CDATA #REQUIRED>

<IELEMENT ins EMPTY>
<IATTLIST ins
name CDATA #REQUIRED >

<IELEMENT interface
(' inheritsinterface*
, operationpolicies?) >
<IATTLIST interface
name CDATA #REQUIRED
repid CDATA #REQUIRED >

<IELEMENT interop EMPTY>

<IATTLIST interop
type CDATA #REQUIRED
direction (hasview | isview) #REQUIRED
descriptor CDATA #REQUIRED >

<IELEMENT link (#PCDATA) >
<IATTLIST link
%simple-link-attributes; >

<IELEMENT objref EMPTY>
<IATTLIST objref
string CDATA #REQUIRED >

<IELEMENT operation
(transaction?
, requiredrights?) >
<IATTLIST operation
name CDATA #REQUIRED >
<l-- an operation name of "*" specifies all operations in the current
scope -->

<IELEMENT operationpolicies
(operation+) >

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 corbacomponent.dtd

29 October 1999

695

<IELEMENT param EMPTY >
<IATTLIST param
name CDATA #REQUIRED
value CDATA #REQUIRED >

<IELEMENT params (param+) >

<IELEMENT poapolicies EMPTY>
<IATTLIST poapolicies
thread (ORB_CTRL_MODEL | SINGLE_THREAD_SAFE) #REQUIRED
lifespan (TRANSIENT | PERSISTENT) #REQUIRED
iduniqueness (UNIQUE_ID | MULTIPLE_ID) #REQUIRED
idassignment (USER_ID | SYSTEM_ID) #REQUIRED
servantretention (RETAIN | NON_RETAIN) #REQUIRED
requestprocessing (USE_ACTIVE_OBJECT_MAP_ONLY
|USE_DEFAULT_SERVANT
|USE_SERVANT_MANAGER) #REQUIRED
implicitactivation (IMPLICIT_ACTIVATION
INON_IMPLICIT_ACTIVATION) #REQUIRED >

<IELEMENT ports
(uses
| provides
| emits
| publishes
| consumes
>

<IELEMENT process
(servant) >

<IELEMENT provides
(operationpolicies?
, extension*) >

<IATTLIST provides
providesname CDATA #REQUIRED
repid CDATA #REQUIRED
facettag CDATA #REQUIRED >

<IELEMENT pssimplementation EMPTY>
<IATTLIST pssimplementation
id CDATA #REQUIRED >

<IELEMENT psstransaction (psstransactionisolationlevel?) >
<IATTLIST psstransaction
policy (TRANSACTIONAL|NON_TRANSACTIONAL) #REQUIRED >

<IELEMENT psstransactionisolationlevel EMPTY>
<IATTLIST psstransactionisolationlevel

level (READ_UNCOMMITTED|READ_COMMITTED|REPEATABLE_READ|SERIALIZABLE)
#REQUIRED >

<IELEMENT publishes
(eventpolicy

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 corbacomponent.dtd 29 October 1999

695

695-344

, extension*) >

<IATTLIST publishes
publishesname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

<IELEMENT repository
(ins
| objref
| link
) >
<IATTLIST repository
type CDATA #IMPLIED >

<IELEMENT requiredrights
(right*) >

<IELEMENT right
(description?) >
<IATTLIST right
name CDATA #REQUIRED >

<IELEMENT security
(requiredrights?) >
<IATTLIST security
rightsfamily CDATA #REQUIRED >

<IELEMENT segment
(segmentmember+
, containermanagedpersistence?
, extension*
) >
<IATTLIST segment
name CDATA #REQUIRED
segmenttag CDATA #REQUIRED >

<IELEMENT segmentmember EMPTY>
<IATTLIST segmentmember
facettag CDATA #REQUIRED >

<IELEMENT servant EMPTY >
<IATTLIST servant

lifetime (component|method|transaction|container) #REQUIRED >

<IELEMENT service EMPTY >

<IELEMENT session
(servant) >

<IELEMENT storagehome EMPTY>
<IATTLIST storagehome
id CDATA #REQUIRED >

<IELEMENT supportsinterface

(operationpolicies?
, extension*) >

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

corbacomponent.dtd

29 October 1999

695

<IATTLIST supportsinterface
repid CDATA #REQUIRED >

<IELEMENT threading EMPTY>
<IATTLIST threading
policy (serialize | multithread) #REQUIRED >

<IELEMENT transaction EMPTY >
<IATTLIST transaction

use (self-managed|not-supported|required|supports|requires-
new|mandatory|never) #REQUIRED >

<IELEMENT unclassified
(poapolicies) >

<IELEMENT uses (extension*) >
<IATTLIST uses
usesname CDATA #REQUIRED
repid CDATA #REQUIRED >

695.3 properties.dtd

<l-- DTD for CORBA Component property file. The root element
is <properties>. Elements are listed alphabetically.
>

<IELEMENT choice (#PCDATA) >
<IELEMENT choices (choice+) >
<IELEMENT defaultvalue (#PCDATA) >
<IELEMENT description (#PCDATA) >

<IELEMENT value (#PCDATA) >

<IELEMENT properties
(description?
, (simple
| sequence
| struct
)*
) >

<IELEMENT simple
(description?
, value
, choices?
, defaultvalue?

) >

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 properties.dtd 29 October 1999 695-345

695

<IATTLIST simple
name CDATA #IMPLIED
type (boolean

| char

| double

| float

| short

| long

| objref

| octet

| short

| string

| ulong

| ushort

) #REQUIRED >

<IELEMENT sequence
(description?
, (simple*
| struct*
| sequence*
)
) >
<IATTLIST sequence
name CDATA #IMPLIED
type CDATA #REQUIRED >

<IELEMENT struct
(description?
, (simple
| sequence
| struct
)*
) >
<IATTLIST struct
name CDATA #IMPLIED
type CDATA #REQUIRED >

695.4 componentassembly.dtd

<l-- DTD for Component Assembly Descriptor. The root element
is <componentassembly>. Elements are listed
alphabetically.
>

<l-- Simple xml link attributes based on W3C WD-xlink-19980303.
May change slightly when XLL is finalized.
-->
<IENTITY % simple-link-attributes "
xml:link CDATA #FIXED 'SIMPLE'

695-346 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd

29 October 1999

695

href CDATA #REQUIRED " >

<!I-- If file not available locally, then download via codebase link -->
<IELEMENT codebase EMPTY >
<IATTLIST codebase

filename CDATA #IMPLIED

%simple-link-attributes; >

<IELEMENT componentassembly
(description?
, componentfiles
, partitioning
, connections?
, extension*
) >
<IATTLIST componentassembly
id ID #REQUIRED
derivedfrom CDATA #IMPLIED >

<IELEMENT componentfile
(fileinarchive
| codebase
| link
) >
<IATTLIST componentfile
id 1D #REQUIRED
type CDATA #IMPLIED >

<IELEMENT componentfileref EMPTY >
<IATTLIST componentfileref
idref CDATA #REQUIRED >

<IELEMENT componentfiles
(componentfile+

) >

<IELEMENT componentimplref EMPTY >
<IATTLIST componentimplref
idref CDATA #REQUIRED >

<IELEMENT componentinstantiation
(usagename?
, componentproperties?
, registercomponent*

, extension*
) >
<IATTLIST componentinstantiation
id 1D #REQUIRED >

<IELEMENT componentinstantiationref EMPTY >
<IATTLIST componentinstantiationref
idref CDATA #REQUIRED >

<IELEMENT componentproperties
(fileinarchive

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd

29 October 1999

695

| codebase

) >

<IELEMENT componentsupportedinterface
(componentinstantiationref
| findby
)>

<IELEMENT connectevent
(consumesport
, (emitsport
| publishesport
)
) >
<IATTLIST connectevent
id ID #IMPLIED >

<IELEMENT connecthomes
(proxyhome
, destinationhome
) >

<IATTLIST connecthomes
id ID #IMPLIED >

<IELEMENT connectinterface
(usesport
, (providesport
| componentsupportedinterface
| existinginterface
| homeinterface
)
) >
<IATTLIST connectinterface
id ID #IMPLIED >

<IELEMENT connections
(' connectinterface
| connectevent
| connecthome
| extension
>
<IELEMENT consumesidentifier (#PCDATA) >
<IELEMENT consumesport
(consumesidentifier
, (componentinstantiationref
| findby
)
)>
<IELEMENT description (#PCDATA) >

<IELEMENT destination (#PCDATA) >

695-348 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd 29 October 1999

695

<IELEMENT destinationhome
(homeplacementref
| findby
) >

<IELEMENT emitsidentifier (#PCDATA) >

<IELEMENT emitsport
(emitsidentifier
, (componentinstantiationref
| findby
)
)>

<IELEMENT executableplacement
(usagename?
, componentfileref
, componentimplref

, invocation?
, destination?
, extension*
) >
<IATTLIST executableplacement
id 1D #REQUIRED

cardinality CDATA "1" >

<IELEMENT existinginterface
(findby)>

<l-- The "extension" element is used for vendor-specific extensions -->
<IELEMENT extension (#PCDATA) >
<IATTLIST extension

class CDATA #REQUIRED
origin CDATA #REQUIRED
id 1D #IMPLIED
extra CDATA #IMPLIED
html-form CDATA #IMPLIED >

<l-- The "fileinarchive" element is used to specify a file in the
archive.
If the file is independent of an archive then link is used to point

to
the archive in which the file may be found.
-->
<IELEMENT fileinarchive
(link?) >

<IATTLIST fileinarchive
name CDATA #REQUIRED >

<IELEMENT findby
(namingservice
| stringifiedobjectref
| traderquery
| homefinder

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd

29 October 1999

695

| extension

) >

<IELEMENT homefinder EMPTY >
<IATTLIST homefinder
name CDATA #REQUIRED >

<IELEMENT homeinterface
(homeplacementref
| findby
)>

<IELEMENT homeplacement
(usagename?
, componentfileref
, componentimplref?
, homeproperties?
, componentproperties?
, registerwithhomefinder*
, registerwithnaming*
, registerwithtrader*
, componentinstantiation*
, destination?

, extension*
) >
<IATTLIST homeplacement
id 1D #REQUIRED

cardinality CDATA "1" >

<IELEMENT homeplacementref EMPTY >
<IATTLIST homeplacementref
idref CDATA #REQUIRED >

<IELEMENT homeproperties
(fileinarchive
| codebase

) >

<IELEMENT hostcollocation
(usagename?
, impltype?
, (homeplacement
| executableplacement
| processcollocation
| extension
)+
, destination?
) >
<IATTLIST hostcollocation
id ID #IMPLIED
cardinality CDATA "1" >

<IELEMENT impltype EMPTY >
<IATTLIST impltype
language CDATA #REQUIRED

695-350 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

componentassembly.dtd

29 October 1999

695

version CDATA #IMPLIED >

<IELEMENT invocation EMPTY >
<IATTLIST invocation
args CDATA #REQUIRED >

<IELEMENT link (#PCDATA) >
<IATTLIST link
%simple-link-attributes; >

<IELEMENT namingservice EMPTY >
<IATTLIST namingservice
name CDATA #REQUIRED >

<IELEMENT partitioning
(homeplacement
| executableplacement
| processcollocation
| hostcollocation
| extension
>

<IELEMENT processcollocation
(usagename?

, impltype?
, (homeplacement
| extension
)+
, destination?
) >
<IATTLIST processcollocation
id ID #IMPLIED

cardinality CDATA "1" >
<IELEMENT providesidentifier (#PCDATA) >

<IELEMENT providesport
(providesidentifier
, (componentinstantiationref
| findby
)
)>

<IELEMENT publishesidentifier (#PCDATA) >

<IELEMENT publishesport
(publishesidentifier
, (componentinstantiationref
| findby
)
)>

<IELEMENT registercomponent

(' (emitsidentifier
| providesidentifier

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

componentassembly.dtd

29 October 1999

695

695-352

| publishesidentifier
)?

, (registerwithnaming
| registerwithtrader
)+

) >

<IELEMENT registerwithhomefinder EMPTY >
<IATTLIST registerwithhomefinder
name CDATA #REQUIRED >

<IELEMENT registerwithnaming EMPTY >
<IATTLIST registerwithnaming
name CDATA #MPLIED >

<IELEMENT registerwithtrader
(traderproperties) >
<IATTLIST registerwithtrader
tradername CDATA #IMPLIED >
<l-- DEVNOTE: is tradername necessary? -->

<l-- DEVNOTE: Should trader properties be specified in component file?

And in assembly file? -->

<IELEMENT proxyhome
(homeplacementref
| findby
) >

<IELEMENT stringifiedobjectref (#PCDATA) >
<IELEMENT traderconstraint (#PCDATA) >

<IELEMENT traderexport
(traderservicetypename
, traderproperties
) >
<IELEMENT traderpolicy
(traderpolicyname
, traderpolicyvalue

) >
<IELEMENT traderpolicyname (#PCDATA) >
<IELEMENT traderpolicyvalue (#PCDATA) >
<IELEMENT traderpreference (#PCDATA) >

<IELEMENT traderproperties
(traderproperty+) >

<IELEMENT traderproperty

(traderpropertyname
, traderpropertyvalue

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04

componentassembly.dtd

29 October 1999

695

) >
<IELEMENT traderpropertyname (#PCDATA) >
<IELEMENT traderpropertyvalue (#PCDATA) >

<IELEMENT traderquery
(traderservicetypename
, traderconstraint
, traderpreference?
, traderpolicy*
, traderspecifiedprop*

) >
<IELEMENT traderservicetypename (#PCDATA) >
<IELEMENT traderspecifiedprop (#PCDATA) >
<IELEMENT usagename (#PCDATA) >
<IELEMENT usesidentifier (#PCDATA) >
<IELEMENT usesport

(usesidentifier

, (componentinstantiationref

| findby

)
)>

CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd 29 October 1999

695

695-354 CORBA 3.0 CCM FTF DRAFT ptc/99-10-04 componentassembly.dtd 29 October 1999

	OMG CIDL Syntax and Semantics
	60.1 Overview
	60.2 Lexical Conventions
	60.2.1 Keywords

	60.3 OMG CIDL Grammar
	60.4 OMG CIDL Specification
	60.5 Composition Definition
	60.5.1 Life cycle category and constraints

	60.6 Catalog Usage Declaration
	60.7 Home Executor Definition
	60.8 Home Implementation Declaration
	60.9 Storage Home Binding
	60.10 Home Persistence Declaration
	60.11 Executor Definition
	60.12 Segment Definition
	60.13 Segment Persistence Declaration
	60.14 Facet Declaration
	60.15 Feature Delegation Specification
	60.16 Abstract Storage Home Delegation Specification
	60.17 Executor Delegation Specification
	60.18 Abstract Spec Declaration
	60.19 Proxy Home Declaration
	60.20 Scoping Rules

	Component Model
	61.0.0.1 Contents
	61.1 Component Model
	61.1.1 Component levels
	61.1.2 Ports
	61.1.3 Components and facets
	61.1.4 Component identity
	61.1.5 Component homes

	61.2 Component Definition
	61.3 Component Declaration
	61.3.1 Basic Components
	61.3.2 Equivalent IDL
	61.3.2.1 Simple declaration
	61.3.2.2 Supported interfaces
	61.3.2.3 Inheritance
	61.3.2.4 Inheritance and supported interfaces

	61.3.3 Component Body

	61.4 Facets and Navigation
	61.4.1 Equivalent IDL
	61.4.2 Semantics of facet references
	61.4.3 Navigation
	61.4.3.1 get_component()
	61.4.3.2 Component-specific provide operations
	61.4.3.3 Navigation interface on the component
	61.4.3.4 Navigation interface on facet interfaces

	61.4.4 Provided References and Component Identity
	61.4.5 Supported interfaces

	61.5 Receptacles
	61.5.1 Equivalent IDL
	61.5.2 Behavior
	61.5.2.1 Connect operations
	61.5.2.2 Disconnect operations
	61.5.2.3 get_connection and get_connections operations
	61.5.2.4 Cookie type

	61.5.3 Receptacles interface

	61.6 Events
	61.6.1 Event types
	61.6.2 Integrity of value types contained in anys
	61.6.3 EventConsumer interface
	61.6.4 Event service provided by container
	61.6.5 Event Sources—publishers and emitters
	61.6.6 Publisher
	61.6.6.1 Equivalent IDL
	61.6.6.2 Event publisher operations

	61.6.7 Emitters
	61.6.7.1 Equivalent IDL
	61.6.7.2 Event emitter operations

	61.6.8 Module scope of generated event consumer interfaces
	61.6.9 Event Sinks
	61.6.9.1 Equivalent IDL
	61.6.9.2 Event sink operations

	61.6.10 Events interface

	61.7 Homes
	61.7.1 Equivalent interfaces
	61.7.1.1 Home definitions with no primary key
	61.7.1.2 Home definitions with primary keys

	61.7.2 Primary key declarations
	61.7.2.1 Primary key type constraints
	61.7.2.2 PrimaryKeyBase

	61.7.3 Explicit operations in home definitions
	61.7.3.1 Factory operations
	61.7.3.2 Finder operations
	61.7.3.3 Miscellaneous exports

	61.7.4 Home inheritance
	61.7.5 Semantics of home operations
	61.7.5.1 Orthodox operations
	61.7.5.2 Heterodox operations

	61.7.6 CCMHome interface
	61.7.7 KeylessCCMHome interface

	61.8 Home Finders
	61.9 Component Configuration
	61.9.1 Exclusive configuration and operational life cycle phases
	61.9.1.1 Enforcing exclusion of configuration and operation

	61.10 Configuration with attributes
	61.10.1 Attribute Configurators
	61.10.1.1 The Configurator interface
	61.10.1.2 The StandardConfigurator interface

	61.10.2 Factory-based configuration
	61.10.2.1 HomeConfiguration interface

	61.11 Component Inheritance
	61.11.1 CCMObject Interface

	61.12 Conformance Requirements
	61.12.1 A Note on Tools
	61.12.2 Changes to Object Services
	61.12.2.1 Life Cycle Service
	61.12.2.2 Transaction Service
	61.12.2.3 Security Service

	CCM Implementation Framework
	615.0.0.1 Contents
	615.1 Introduction
	615.2 Component Implementation Framework (CIF) architecture
	615.2.1 Component Implementation Definition Language (CIDL)
	615.2.2 Component persistence and behavior
	615.2.3 Implementing a CORBA Component
	615.2.4 Behavioral elements: Executors
	615.2.5 Unit of implementation : Composition
	615.2.6 Composition structure
	615.2.7 Compositions with managed storage
	615.2.8 Relationship between home executor and abstract storage home
	615.2.8.1 Primary Key Binding
	615.2.8.2 Implicit delegation of home operations
	615.2.8.3 Explicit delegation of home operations

	615.2.9 Executor definition
	615.2.9.1 Segmented executors
	615.2.9.2 Delegation of feature state

	615.2.10 Proxy homes
	615.2.10.1 Proxy home delegation

	615.2.11 Component object references
	615.2.11.1 Facet identifiers
	615.2.11.2 Segment identifiers
	615.2.11.3 State identifiers
	615.2.11.4 Monolithic reference information
	615.2.11.5 Segmented reference information
	615.2.11.6 Component identity

	615.3 Language Mappings

	The Container Programming Model
	62.0.0.1 Contents
	62.1 Introduction
	62.1.1 External API Types
	62.1.2 Container API Type
	62.1.3 CORBA Usage Model
	62.1.4 Component Categories

	62.2 The Server Programming Environment
	62.2.1 Component Containers
	62.2.2 CORBA Usage Model
	62.2.2.1 Component References
	62.2.2.2 Servant to ObjectId Mapping
	62.2.2.3 Threading Considerations

	62.2.3 Component Factories
	62.2.4 Component Activation
	62.2.5 Servant Lifetime Management
	62.2.6 Transactions
	62.2.7 Security
	62.2.8 Events
	62.2.8.1 Transaction Policies for Events
	62.2.8.2 Security Policies for Events

	62.2.9 Persistence
	62.2.9.1 Container-managed Persistence
	62.2.9.2 Self-managed Persistence

	62.2.10 Application Operation Invocation
	62.2.11 Component Implementations
	62.2.12 Component Levels
	62.2.13 Component Categories
	62.2.13.1 The Service Component
	62.2.13.2 The Session Component
	62.2.13.3 The Process Component
	62.2.13.4 The Entity Component

	62.3 Server Programming Interfaces - Basic Components
	62.3.1 Component Interfaces
	62.3.2 Interfaces Common to both Container API Types
	62.3.2.1 The CCMContext Interface
	62.3.2.2 The Home Interface
	62.3.2.3 The UserTransaction Interface
	62.3.2.4 The EnterpriseComponent Interface

	62.3.3 Interfaces Supported by the Session Container API Type
	62.3.3.1 The SessionContext Interface
	62.3.3.2 The SessionComponent Interface
	62.3.3.3 The SessionSynchronization Interface

	62.3.4 Interfaces Supported by the Entity Container API Type
	62.3.4.1 The EntityContext Interface
	62.3.4.2 The EntityComponent Interface

	62.4 Server Programming Interfaces - Extended Components
	62.4.1 Interfaces Common to both Container API Types
	62.4.1.1 The CCM2Context Interface
	62.4.1.2 The HomeRegistration Interface
	62.4.1.3 The ProxyHomeRegistration Interface
	62.4.1.4 The Event Interface

	62.4.2 Interfaces Supported by the Session Container API Type
	62.4.2.1 The Session2Context Interface

	62.4.3 Interfaces Supported by the Entity Container API Type
	62.4.3.1 Component Identifiers
	62.4.3.2 StateIdValue abstract valuetype
	62.4.3.3 StateIdFactory Interface
	62.4.3.4 PersistentIdValue valuetype
	62.4.3.5 SegmentDescr valuetype
	62.4.3.6 ComponentId Interface
	62.4.3.7 The Entity2Context Interface

	62.5 The Client Programming Model
	62.5.1 Component-aware Clients
	62.5.1.1 Initial References
	62.5.1.2 Factory Design Pattern
	62.5.1.3 Finder Design Pattern
	62.5.1.4 Transactions
	62.5.1.5 Security
	62.5.1.6 Events

	62.5.2 Component-unaware Clients
	62.5.2.1 Initial References
	62.5.2.2 Factory Design Pattern
	62.5.2.3 Finder Design Pattern
	62.5.2.4 Transactions
	62.5.2.5 Security
	62.5.2.6 Events

	Integrating with Enterprise JavaBeans
	64.0.0.1 Contents
	64.1 Introduction
	64.2 Enterprise JavaBeans Compatibility Objectives and Requirements
	64.3 CORBA Component views for EJBs
	64.3.1 Mapping of EJB to Component IDL definitions
	64.3.1.1 Java Language to IDL Mapping
	64.3.1.2 EJB to IDL mapping

	64.3.2 Translation of CORBA Component requests into EJB requests
	64.3.3 CORBA Component view Example

	64.4 EJB views for CORBA Components
	64.4.1 Mapping of Component IDL to Enterprise JavaBeans specifications
	64.4.2 Translation of EJB requests into CORBA Component requests
	64.4.3 Example

	64.5 Comparing CCM and EJB
	64.5.1 The Home Interfaces
	64.5.2 The Component Interfaces
	64.5.3 The Callback Interfaces
	64.5.4 The Context Interfaces
	64.5.5 The Transaction Interfaces
	64.5.6 The Metadata Interfaces

	Component Container Architecture
	66.0.0.1 Contents
	66.1 Component Server
	66.1.1 Component Levels
	66.1.2 POA Creation
	66.1.3 Binding the Container to CORBA services
	66.1.4 Container API Frameworks
	66.1.4.1 Creating Object References
	66.1.4.2 Factories and Finders
	66.1.4.3 Transactions
	66.1.4.4 Security
	66.1.4.5 Events
	66.1.4.6 Persistence
	66.1.4.7 Threading

	66.2 Containers Categories
	66.2.1 The Empty Container
	66.2.2 The Service Container
	66.2.2.1 Creating Object References
	66.2.2.2 Factories and Instances
	66.2.2.3 Invoking an Operation
	66.2.2.4 Servant Lifetime Management

	66.2.3 The Session Container
	66.2.3.1 Creating Object References
	66.2.3.2 Factories and Instances
	66.2.3.3 Invoking an Operation
	66.2.3.4 Servant Lifetime Management

	66.2.4 The Process Container
	66.2.4.1 Creating Object References
	66.2.4.2 Factories and Instances
	66.2.4.3 Invoking an Operation
	66.2.4.4 Servant Lifetime Management

	66.2.5 The Entity Container
	66.2.5.1 Creating Object References
	66.2.5.2 Factories and New Instances
	66.2.5.3 Invoking an Operation on a New Instance
	66.2.5.4 Finders and Existing Instances
	66.2.5.5 Invoking an Operation on an Existing Instance
	66.2.5.6 Servant Lifetime Management

	66.2.6 The EJBSession Container
	66.2.6.1 Creating Object References
	66.2.6.2 Factories and Instances
	66.2.6.3 Invoking an Operation
	66.2.6.4 Servant Lifetime Management

	66.2.7 The EJBEntity Container
	66.2.7.1 Creating Object References
	66.2.7.2 Factories and New Instances
	66.2.7.3 Invoking an Operation on a New Instance
	66.2.7.4 Finders and Existing Instances
	66.2.7.5 Invoking an Operation on an Existing Instance
	66.2.7.6 Servant Lifetime Management

	66.3 Persistence Integration
	66.3.1 Container-managed Persistence
	66.3.2 Self-managed Persistence
	66.3.3 Interactions between the Container and the Persistence Provider
	66.3.3.1 Connecting to the Persistence Mechanism
	66.3.3.2 Managing DB Connections
	66.3.3.3 Synchronization of Component State with Persistence State

	66.4 Event Management Integration
	66.4.1 Channel setup
	66.4.2 Transmitting an event
	66.4.3 Receiving an event

	Packaging and Deployment
	69.0.0.1 Contents
	69.1 Introduction
	69.2 Component Packaging
	69.3 Software Package Descriptor
	69.3.1 A softpkg Descriptor Example
	69.3.2 The Software Package Descriptor XML Elements
	69.3.2.1 The softpkg Root Element
	69.3.2.2 The author Element
	69.3.2.3 The code Element
	69.3.2.4 The codebase Element
	69.3.2.5 The company Element
	69.3.2.6 The compiler Element
	69.3.2.7 The dependency Element
	69.3.2.8 The description Element
	69.3.2.9 The descriptor Element
	69.3.2.10 The entrypoint Element
	69.3.2.11 The extension Element
	69.3.2.12 The fileinarchive Element
	69.3.2.13 The humanlanguage Element
	69.3.2.14 The idl Element
	69.3.2.15 The implementation Element
	69.3.2.16 The implref Element
	69.3.2.17 The license Element
	69.3.2.18 The link Element
	69.3.2.19 The localfile Element
	69.3.2.20 The name Element
	69.3.2.21 The os Element
	69.3.2.22 The pkgtype Element
	69.3.2.23 The processor Element
	69.3.2.24 The programminglanguageElement
	69.3.2.25 The propertyfile Element
	69.3.2.26 The runtime Element
	69.3.2.27 The simple-link-attributes Entity
	69.3.2.28 The softpkg Element
	69.3.2.29 The softpkgref Element
	69.3.2.30 The title Element
	69.3.2.31 The usage Element
	69.3.2.32 The webpage Element

	69.4 CORBA Component Descriptor
	69.4.1 Component Feature Description
	69.4.2 Deployment Information
	69.4.3 CIDL Compiler Responsibilities
	69.4.4 CORBA Component Descriptor Example
	69.4.5 The CORBA Component Descriptor XML Elements
	69.4.5.1 The corbacomponent Root Element
	69.4.5.2 The accessmode Element
	69.4.5.3 The catalog Element
	69.4.5.4 The componentfeatures Element
	69.4.5.5 The componentkind Element
	69.4.5.6 The componentproperties Element
	69.4.5.7 The componentrepid Element
	69.4.5.8 The configurationcomplete Element
	69.4.5.9 The consumes Element
	69.4.5.10 The containermanagedpersistence Element
	69.4.5.11 The corbacomponent Element
	69.4.5.12 The corbaversion Element
	69.4.5.13 The emits Element
	69.4.5.14 The entity Element
	69.4.5.15 The eventpolicy Element
	69.4.5.16 The extendedpoapolicy Element
	69.4.5.17 The extension Element
	69.4.5.18 The fileinarchive Element
	69.4.5.19 The homefeatures Element
	69.4.5.20 The homeproperties Element
	69.4.5.21 The homerepid Element
	69.4.5.22 The inheritscomponent Element
	69.4.5.23 The inheritshome Element
	69.4.5.24 The inheritsinterface Element
	69.4.5.25 The ins Element
	69.4.5.26 The interface Element
	69.4.5.27 The interop Element
	69.4.5.28 The link Element
	69.4.5.29 The objref Element
	69.4.5.30 The operation Element
	69.4.5.31 The operationpolicies Element
	69.4.5.32 The param Element
	69.4.5.33 The params Element
	69.4.5.34 The poapolicies Element
	69.4.5.35 The ports Element
	69.4.5.36 The process Element
	69.4.5.37 The provides Element
	69.4.5.38 The pssimplementation Element
	69.4.5.39 psstransaction Element
	69.4.5.40 psstransactionisolationlevel Element
	69.4.5.41 The publishes Element
	69.4.5.42 The repository Element
	69.4.5.43 requiredrights Element
	69.4.5.44 right Element
	69.4.5.45 The security Element
	69.4.5.46 The segment Element
	69.4.5.47 The segmentmember Element
	69.4.5.48 The servant Element
	69.4.5.49 The service Element
	69.4.5.50 The session Element
	69.4.5.51 The storagehome Element
	69.4.5.52 The simple-link-attributes Entity
	69.4.5.53 The supportsinterface Element
	69.4.5.54 The threading Element
	69.4.5.55 The transaction Element
	69.4.5.56 The unclassified Element
	69.4.5.57 The uses Element

	69.5 Component Assembly Packaging
	69.6 Component Assembly File
	69.7 Component Assembly Descriptor
	69.7.1 Component Assembly Descriptor Example
	69.7.2 Component Assembly Descriptor XML Elements
	69.7.2.1 The componentassembly Root Element
	69.7.2.2 The codebase Element
	69.7.2.3 The componentfile Element
	69.7.2.4 The componentfileref Element
	69.7.2.5 The componentfiles Element
	69.7.2.6 The componentimplref Element
	69.7.2.7 The componentinstantiation Element
	69.7.2.8 The componentinstantiationref Element
	69.7.2.9 The componentproperties Element
	69.7.2.10 The componentsupportedinterface Element
	69.7.2.11 The connectevent Element
	69.7.2.12 The connecthomes Element
	69.7.2.13 The connectinterface Element
	69.7.2.14 The connections Element
	69.7.2.15 The consumesidentifier Element
	69.7.2.16 The consumesport Element
	69.7.2.17 The description Element
	69.7.2.18 The destination Element
	69.7.2.19 The destinationhome Element
	69.7.2.20 The emitsidentifier Element
	69.7.2.21 The emitsport Element
	69.7.2.22 The executableplacement Element
	69.7.2.23 The existinginterface Element
	69.7.2.24 The extension Element
	69.7.2.25 The fileinarchive Element
	69.7.2.26 The findby Element
	69.7.2.27 The homefinder Element
	69.7.2.28 The homeinterface Element
	69.7.2.29 The homeplacement Element
	69.7.2.30 The homeplacementref Element
	69.7.2.31 The homeproperties Element
	69.7.2.32 The hostcollocation Element
	69.7.2.33 The impltype Element
	69.7.2.34 The invocation Element
	69.7.2.35 The link Element
	69.7.2.36 The namingservice Element
	69.7.2.37 The partitioning Element
	69.7.2.38 The processcollocation Element
	69.7.2.39 The providesidentifier Element
	69.7.2.40 The providesport Element
	69.7.2.41 The publishesidentifier Element
	69.7.2.42 The publishesport Element
	69.7.2.43 The registercomponent Element
	69.7.2.44 The registerwithhomefinder Element
	69.7.2.45 The registerwithnaming Element
	69.7.2.46 The registerwithtrader Element
	69.7.2.47 The proxyhome Element
	69.7.2.48 The stringifiedobjectref Element
	69.7.2.49 Trader elements
	69.7.2.50 The usagename Element
	69.7.2.51 The usesidentifier Element
	69.7.2.52 The usingcomponent Element

	69.8 Property File Descriptor
	69.8.1 Property File Example
	69.8.2 Property File XML Elements
	69.8.2.1 The properties Root Element
	69.8.2.2 The choice Element
	69.8.2.3 The choices Element
	69.8.2.4 The defaultvalue Element
	69.8.2.5 The description Element
	69.8.2.6 The properties Element
	69.8.2.7 The simple Element
	69.8.2.8 The sequence Element
	69.8.2.9 The struct Element
	69.8.2.10 The value Element

	69.9 Component Deployment
	69.9.1 Participants in Deployment
	69.9.1.1 Deployment Architecture
	69.9.1.2 Deployment Scenario

	69.9.2 ComponentInstallation Interface
	69.9.3 AssemblyFactory Interface
	69.9.4 Assembly Interface
	69.9.5 Component Entry Points (Component Home Factories)

	XML DTDs
	695.1 softpkg.dtd
	695.2 corbacomponent.dtd
	695.3 properties.dtd
	695.4 componentassembly.dtd

