CORBA Components - Volume |

Joint Revised SUbmission

BEA Systems, Inc.

Cooperative Research Centre for Distributed Systems Technology
Expersoft Corporation

Genesis Development Corporation

IBM Corporation

Inprise Corporation

IONA Technologies, PLC

Oracle Corporation

Rogue Wave Software, Inc.

Unisys Corporation

Supported by:

Fujitsu, Limited.
Hewlett-Packard Company
Sun Microsystems, Inc.
UBS, AG

OMG TC Document orbos/99-07-01
August 2, 1999

Copyright 1999 by BEA Systems

Copyright 1999 by Cooperative Research Centre for Distributed Systems Technology
Copyright 1999 by Expersoft Corporation

Copyright 1999 by Genesis Development Corporation
Copyright 1999 by Hewlett-Packard Company
Copyright 1999 by IBM Corporation

Copyright 1999 by Inprise Corporation

Copyright 1999 by IONA Technologies, PLC
Copyright 1999 by Oracle Corporation

Copyright 1999 by Rogue Wave Software

Copyright 1999 by Unisys Corporation

The submitting companies listed above have all contributed to this “merged” submission. These
companies recognize that this draft joint submission is the joint intellectual property of all the
submitters, and may be used by any of them in the future, regardless of whether they ultimately
participate in a final joint submission.

The companies listed above hereby grant a royalty-free license to the Object Management
Group, Inc. (OMG) for worldwide distribution of this document or any derivative works thereof,
so long as the OM G reproduces the copyright notices and the below paragraphs on all distributed
copies.

The material in this document is submitted to the OMG for evaluation. Submission of this
document does not represent a commitment to implement any portion of this specification in the
products of the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE,THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The companies listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.
The information contained in this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved.
Except as otherwise provided herein, no part of this work may be reproduced or used in any
form or by any means—graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems— without the permission of one of the
copyright owners. All copies of this document must include the copyright and other information
contained on this page.

The copyright owners grant member companies of the OMG permission to make a limited
number of copies of this document (up to fifty copies) for their internal use as part of the OMG
evaluation process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer
Software Clause at DFARS 252.227.7013.

CORBA and Object Request Broker are trademarks of Object Management Group.
OMG is atrademark of Object Management Group.

Java, JavaBeans, Enterprise JavaBeans and all Java-based marks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

CORBA Components Volume | - orbos/99-07-01

Table of Contents

1 Introduction 1

Overview 2

Relationship to other CORBA Technology 3
CORBA Core and Object Services 3
Business Objects Interoperability Initiative 3
UML and the Meta Object Facility 4
Interface Repository 4

Guide to the Submission 4

Proof of Concept 5

Conventions 5

Submission Contact Points 6

2 Mappingto RFP Requirements9

Mandatory Requirements 9
Component Model Elements 9

Requirements for Component Description Facility 11

Requirements for Programming Model 12
Requirements for Mapping to JavaBeans 13
Security Requirements 14

Optional Requirements 15

3 Introduction to Components 17

Introduction 17
Typical Use Model 18
Anaysis/Design Phase 18
Component Declaration 19
Component Implementation 19
Component Packaging 19
Component Assembly 19
Component Deployment and Installation 20
Component Instance Activation 20
Component Model and IDL Extensions 20

Multiple Facets (interfaces) and Navigation 21

Receptacles 22
Events 23
Primary Key 23
Home Interfaces 23
Component Attributes and Configuration 24
Component Inheritance 24
Component Implementation 25
Executor 26

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01

Table of Contents

Composition 26
Composition Structure 26
Executor Definition 29
Container Programming Model 30
External APl Types 31
Container APl Types 31
CORBA Usage Moddl 31
Component Category 31
Transactions 32
Security 32
Events 33
Persistence 33
Component Implementations 33
Component Levels 33
Client Programming Model 34
Component-aware Clients 34
Component-unaware Clients 35
Container Architecture 35
Component Server 35
Container Categories 37
Persistence Integration 38
Event Integration 39
Component Assembly and Packaging 39
Component Deployment 40
Interworking Between CORBA Components and EJB 1.1 42
Component Meta Data 43
Other IDL Extensions 43
Local Interfaces 43
Import 43
Repository Id Declarations 43

4 Extensionsto CORBA Core 45

Local Interface Types 45
LocalObject 47
C++ Mapping of Local Object 47
Java Mapping of Local Object 48
Interface Repository Support for Local Types 51
Existing Interfaces Changed to Local Interfaces 51
Import 53
Repository identity declarations 55
Repository identity declaration 55
Repository identifier prefix declaration 56

iv CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

Table of Contents

IDL Grammar modifications 57
Keywords 58

5 Component Model 59

Component Model 59
Component levels 59
Ports 60
Components and facets 60
Component identity 61
Component homes 62
Component Definition 62
IDL Extensions for Components 62
Component Declaration 64
Syntax 64
Basic Components 65
Equivalent IDL 66
Component Body 67
Facets and Navigation 67
Syntax 67
Equivalent IDL 68
Semantics of facet references 68
Navigation 69
Provided References and Component Identity 73
Supported interfaces 73
Receptacles 75
Syntax 76
Equivaent IDL 76
Behavior 77
Receptacles interface 79
Events 82
Event types 82
Integrity of value types contained in anys 82
EventConsumer interface 82
Event service provided by container 83
Event Sources—publishers and emitters 83
Publisher 84
Emitters 86
Module scope of generated event consumer interfaces 87
Event Sinks 88
Eventsinterface 89
Attributes 91
Syntax 91

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 Y

Table of Contents

vi

L anguage mapping responsibilities 92
Behavior 92
Homes 93
Home header 93
Equivaent interfaces 95
Primary key declarations 98
Explicit operations in home definitions 99
Home inheritance 100
Semantics of home operations 102
CCMHome interface 103
KeylessCCMHome interface 104
Home Finders 105
Component Configuration 107
Exclusive configuration and operational life cycle phases 108
Configuration with attributes 109
Attribute Configurators 109
Factory-based configuration 111
Component Inheritance 113
CCMObject Interface 114

6 Component | mplementation 117

Component Implementation Framework (CIF) architecture 117
Component Implementation Definition Language (CIDL) 117
Component persistence and behavior 117
Implementing a CORBA Component 118
Behavioral elements: Executors 118
Unit of implementation : Composition 118
Composition structure 120
Compositions with managed storage 126
Rel ationship between home executor and abstract storage home 129
Executor definition 142
Proxy homes 151
Component object references 152

CIDL syntax for compositions 154
Composition definition 156
Catalog usage declaration 158
Home executor definition 159
Home implementation declaration 160
Storage home binding 160
Home persistence declaration 161
Executor definition 161
Segment definition 162

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

Table of Contents

Segment persistence declaration 162
Facet declaration 163
Feature delegation specification 163
Abstract Storage home del egation specification 165
Executor delegation specification 167
Language Mappings 168

7 The Container Programming Model 169

Introduction 170
External APl Types 172
Container APl Type 172
CORBA Usage Moddl 172
Component Categories 173
The Server Programming Environment 173
Component Containers 173
CORBA Usage Moddl 174
Component Factories 176
Component Activation 176
Servant Lifetime Management 176
Transactions 178
Security 180
Events 180
Persistence 182
Application Operation Invocation 183
Component Implementations 184
Component Levels 184
Component Categories 184
Server Programming Interfaces - Basic Components 189
Component Interfaces 190
Interfaces Common to both Container API Types 191
Interfaces Supported by the Session Container APl Type 197
Interfaces Supported by the Entity Container APl Type 200
Server Programming Interfaces - Extended Components 203
Interfaces Common to both Container API Types 203
Interfaces Supported by the Session Container APl Type 209
Interfaces Supported by the Entity Container APl Type 210
The Client Programming Model 217
Component-aware Clients 218
Component-unaware Clients 222

8 Integrating with Enter prise JavaBeans 225

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 Vii

Table of Contents

Enterprise JavaBeans Compatibility Objectives and Requirements 227
CORBA Component views for EJBs 228
Mapping of EJB to Component IDL definitions 229
Trandation of CORBA Component requests into EJB requests 232
CORBA Component view Example 235
EJB views for CORBA Components 236
Mapping of Component IDL to Enterprise JavaBeans specifications 237
Trandation of EJB requestsinto CORBA Component requests 240
Example 243

9 Container Architecture 245

Component Server 245

Component Levels 247

POA Creation 247

Binding the Container to CORBA services 248

Container APl Frameworks 249
Containers Categories 251

The Empty Container 252

The Service Container 253

The Session Container 257

The Process Container 266

The Entity Container 277

The EJBSession Container 283

The EJBEntity Container 288
Persistence I ntegration 295

Container-managed Persistence 296

Self-managed Persistence 297

Interactions between the Container and the Persistence Provider 297
Event Management Integration 298

Channel setup 299

Transmitting an event 300

Receiving an event 301

10 Packaging and Deployment 303

Component Packaging 304
Software Package Descriptor 304

A softpkg Descriptor Example 305

The Software Package Descriptor XML Elements 306
CORBA Component Descriptor 318

Component Feature Description 318

Deployment Information 319

viii CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

Table of Contents

CIDL Compiler Responsibilities 319

CORBA Component Descriptor Example 320

The CORBA Component Descriptor XML Elements 322
Component Assembly Packaging 342
Component Assembly File 342
Component Assembly Descriptor 342

Component Assembly Descriptor Example 344

Component Assembly Descriptor XML Elements 346
Property File Descriptor 365

Property File Example 365

Property File XML Elements 366
Component Deployment 371

Participants in Deployment 371

Componentlnstallation Interface 374

AssemblyFactory Interface 375

Assembly Interface 375

Component Entry Points (Component Home Factories) 376

11 Changesto CORBA and Services 379

Changes to the CORBA Core 379
Local interface types 380
LocalObject 381
C++ Mappings 382
Java Mappings 383
Core Interfaces Changed to Local 386
Import 387
Repository identity declarations 388
Repository identity declaration 388
Repository identifier prefix declaration 389
IDL Grammar modifications 390
Keywords 390
Component IDL extensions 391
Home IDL Extensions 393
Changes to the Object interface 394
Changes to GIOP 395
Changes to the Attribute declaration syntax 395
New Initial References 396
Changes to the Interface Repository 397
Changesto Rea Time CORBA 397
Changes to Object Services 397
Life Cycle Service 397
Transaction Service 397

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 iX

Table of Contents

Security Service 398
Naming Service 398
Notification Service 398

12 Conformance Criteria 399

Conformance Points 399
A Note on Tools 400

A IDL Summary 401

Module Architecture 401

The Core Module 402

The Components Module 403
Interfaces Defined Within the Components Module 403
Interfaces Defined Within the Basic Module 407
Interfaces Defined Within the Extended Module 409
Interfaces Defined Within the Transaction Module 412
Interfaces Defined Within the Events Module 413
Interfaces Defined Within the Deployment Module 414

B XML DTDs417

softpkg.dtd 417
corbacomponent.dtd 421
properties.dtd 427
componentassembly.dtd 429

C Comparing EJB and CCM 437

The Home Interfaces 437

The Component Interfaces 439
The Callback Interfaces 440
The Context Interfaces 442
The Transaction Interfaces 443
The Metadata I nterfaces 444

D Related Work 445

Polymorphism 445

Java Parameterized Type Proposals 445
Where Clauses 445
Constraining on Interface 446

CORBA Components Volume| - orbos/99-07-01

August 2, 1999 11:14 pm

Table of Contents

JavaBeans 446
COM 447
Rapide 448

E References 449

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 Xi

Table of Contents

Xii CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 10:05 pm

Introduction 1

The following companies are pleased to jointly submit this specification in response to
the CORBA Component Model RFP (Document orbos/97-06-12):

® BEA Systems, Inc.

® Cooperative Research Centre for Distributed Systems Technology (DSTC)
® Expersoft Corporation

® Genesis Development Corporation

® |BM Corporation

® [nprise Corporation

®* |ONA Technologies, PLC

® Oracle Corporation

®* Rogue Wave Software, Inc.

® Unisys Corporation

Recognizing the importance of aligning this specification with Enterprise JavaBeans™
(EJB) technology, the submitters are pleased to acknowledge the cooperation of:

® Sun Microsystems

In addition, we also acknowledge support from:
® Fujitsu, Limited

* Hewlett-Packard Company

® UBS, AG

CORBA Components Volume| - orbos/99-07-01 1-1

1-2

1.1 Overview

The submitters believe that a CORBA component model should focus on the strength
of CORBA as a server-side object model. To that end we have chosen to concentrate
on those issues that must be addressed to provide a server facility rather than a client
facility. We compare this model to the Enterprise JavaBean specification which was
released by Sun after the OMG’s Component RFP was issued rather than the
JavaBean™ model requested by the original RFP.

The submitters believe that the JavaBean model is inappropriate for server side
development.

Just as Sun chose to define a different component model with EJB than its JavaBean
predecessor, we choose to define CORBA components as a server-side model which
more closely aligns with EJB. The component model defined by this specification has
the following characteristics:

® |t defines extensions to IDL to support the definition of CORBA components and
the relationships between them.

® |t introduces CIDL, alanguage similar to IDL, as a mechanism for defining servant
implementations that enhances the ability to do automatic code generation on behal f
of the developer.

® |t defines extensions to the CORBA core object model to introduce the concept of
components to the OMA.

® |t defines interfaces necessary to support navigation among the multiple interfaces
supported by a CORBA component.

® |t defines a mechanism for tailoring CORBA components prior to deployment using
both metadata defined by the component model and runtime properties which can
be tailored using a design tool.

® |t introduces a deployment model to CORBA using XML to describe the run time
properties of a CORBA component.

® |t defines a container model for introducing CORBA services into the runtime
environment of a CORBA component.

® |t defines locality constrained interfaces for a component to interact with its
container.

® |t introduces the container programming model, a higher level abstraction of the
POA and the CORBA services for use by the developer and defines the container as
a simplified set of policies derived from the Portable Object Adaptor (POA).

® |t defines interfaces to manage object activation and passivation derived from the
POA policies selected.

® |t defines policies which support a simplified version of CORBA transactions.
These policies provide transaction control independent of the component
implementation and integrate synchronization between object state and persistent
storage prior to commit processing. They also permit the component itself to control
transaction demarcation.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:05 pm

1

® |t defines policies for managing servant lifetimes to optimize resource usage within
a process thereby enhancing the scalability of a compliant implementation.

® |t defines security policies which provide authorization based on role as described
by the CORBA Security Service.

® |t defines policies which provide persistent state management based on the POA for
all CORBA components, either with application assistance or automatically in
conjunction with the CORBA Persistent State Service.

® |t defines integration with the EJB component architecture which makes it possible
for an enterprise Bean to be supported as a basic CORBA component within a
container which provides activation, transactions, security, and persistence.

1.2 Relationship to other CORBA Technology

CORBA components extend the CORBA core object model and introduce a
deployment model into the OMA. They also provide a higher level of abstraction of
CORBA and object services, greatly simplifying CORBA programming.

1.2.1 CORBA Core and Object Services

CORBA Components extend the core object model through the introduction of
component types and support for multiple interfaces. Components use services above
the core, specifically the POA, transactions, security, events, and persistence in a
specialized way to offer the programmer a simpler programming abstraction. The
submitters believe that this abstraction is suitable for a broad spectrum of CORBA
applications.

1.2.2 Business Objects Interoperability Initiative

The Business Objects Interoperability Initiative seeks a framework suitable for
deploying a new category of CORBA objects, designated as business objects. It does
so by defining a meta-model which introduces the notion of business semantics to the
behavior description of these CORBA objects. The initiative also seeks a technology
mapping of these concepts to the CORBA model, including the CORBA services.

CORBA components can serve as an alternative technology mapping of this business
objects architecture, since it incorporates many of the design patterns used by business
objects in support of the various CORBA services. CORBA components, however, are
not the same as business objects because they do not of themselves define any of the
business semantics desired for the business object model.

August 2, 1999 10:05 pm CORBA Components Volume | - orbos/99-07-01 1-3

1.2.3 UML and the Meta Object Facility

Volume |1 of this specification (orbos/99-07-02) for CORBA components defines a
meta-model based on UML and a mapping of that meta-model to the MOF. The meta-
model includes the component extensions to IDL and the Interface Repository as well
as the component deployment model defined by this specification. This meta-model
requires no changes to UML.

1.2.4 Interface Repository

Volume |11 of this specification (orbos/99-07-03) contains an update to the Interface
Repository chapter of the CORBA Core 2.3 (formal/98-12-01) specification which
contains the changes introduced by CORBA components. It is published as a separate
volume since it is submitted as a new version of chapter 10 of the CORBA 2.3
specification.

1.3 Guidetothe Submission

Volume | of the submission is organized as follows:

® Chapter 2 provides a mapping of the submission to the requirements specified in the
CORBA Components RFP (orbos/97-06-12).

® Chapter 3 contains an overview of the architecture for CORBA components which
introduces the major concepts that are further described in the ensuing chapters.

® Chapter 4 introduces core changes to support locality-constrained interfaces which
are necessary to define the CORBA component model.

® Chapter 5 provides a description of the abstract model for Components including
the changes to IDL and the CORBA core.

® Chapter 6 describes the component implementation framework which supports
configuration of component implementations.

® Chapter 7 defines the programmer’s view of the container model with emphasis on
the contract between the container and the component programmer.

® Chapter 8 describes the integration of the EJB component architecture into the
CORBA component model including enhancements to the Javato IDL mapping and
interworking bridges for interoperability.

® Chapter 9 specifies the architecture of the container with emphasis on the contract
between the container provider and the ORB, POA, and the CORBA services.

® Chapter 10 provides a description of the deployment model, including packaging
and distribution.

® Chapter 11 provides instructions to the editor of the specific changes to CORBA
and the CORBA services introduced by this specification.

® Chapter 12 provides a description of the compliance criteria for conforming
implementations.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:05 pm

1

In addition to the normative parts of the specification, several appendices are provided
as clarifications:

* Appendix A summarizes the IDL introduced by this specification. All of this IDL
has been introduced in the normative portion of the specification.

® Appendix B summarizes the XML DTDs introduced by this specification. All of
this XML has been introduced in the normative portion of the specification.

® Appendix C provides a detailed summary of the interfaces of basic CORBA
components and compares these to the equivalent interfaces of V1.1 of the
Enterprise JavaBeans specification.

® Appendix D compares CORBA components to other component models including
JavaBeans and Rapide.

® Appendix E contains references to other work in this area.

1.4 Proof of Concept

1.5 Conventions

August 2, 1999 10:05 pm

The specification presented here is based on the extensive experience the submitting
companies have had with both “experimental” and commercia implementations,
including:

® Sun's Enterprise JavaBeans specification and commercial implementations by
BEA’'s WebL ogic Server, IBM’'s Websphere Advance Server, Inprise’s Application
Server, lona's EJBHome, Oracle’s Database and Application Servers, and Sun’s
Net Dynamics product.

® CORBA-based server frameworks in BEA’'s M3, IBM’s Component Broker, and
Rogue Wave's Nouveau ORB.

® Component libraries for Java, C++, and COM offered by Rogue Wave

Additionally, all of the submitters have engaged in prototyping functions beyond those
available in today’s products. Many of the alternative designs that were considered
have actually been implemented and tried by many users. The final choices that are
embodied in this submission were made based upon user and vendor experience.

Shipping product which implements this specification can be expected to be made
available almost concurrently with its final approval.

IDL appears using this font.
XML appears using this font.

L anguage M apped code appear s using this font.

I mportant Reminders appear using this font.

In some chapters, rationale appears using this font.

CORBA Components Volume | - orbos/99-07-01 1-5

In various places a few issues are highlighted. These are mostly areas where we have
discovered that some additional clarification may be needed.

Please note that any change bars have no semantic meaning. They show the places that
final edits were applied to the last reviewed draft submission. They are present for the
convenience of the submitters (and the editor who didn’t want to have to re-edit the
entire document to remove change bars and maintain two synchronized copies) so that
the final edits can be identified.

1.6 Submission Contact Points

All questions about this submission should be directed to:

Ed Cobb (Editor)

BEA Systems Inc.

2315 North 1st St.

San Jose, CA 95131

USA

phone: +1 408 570 8264
fax: +1 408 570 8942

email: ed.cobb@beasys.com

Keith Duddy

CRC for Distributed Systems Technology
University of Queensland

Brisbane 4072, Queensland

Australia

phone: +61 7 3365 4310

fax: +61 7 3365 4311

email: dud@dstc.edu.au

Shahzad Aslam-Mir
Expersoft Corporation

5825 Oberlin Drive

San Diego, CA 92121
phone: +1 619 824 4128
fax: +1 619 824 4110
email: sam@expersoft.com

David Frankel

Genesis Development Corporation
741 Santiago Court

Chico, CA 95973

USA

phone: +1 530 893 1100

fax: +1 530 893 1153

email: dfrankel@gendev.com

1-6 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:05 pm

August 2, 1999 10:05 pm

Jishnu Mukeriji
Hewlett-Packard Company
300 Campus Drive, MS 2E-62
Florham Park NJ 07932

USA

phone: +1 973 443 7528

fax: +1 973 443 7422

email: jis@fpk.hp.com

Chris Codella

IBM T. J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

USA

phone: +1 914 784 7511

fax: + 1 914 784 6040

email: codella@us.ibm.com

Jeff Mischkinsky

Inprise Corporation

951 Mariner’s Island Blvd.
San Mateo, CA 94404
USA

phone: +1 650 358 3049
fax: +1 650 286 2475
email: jeffm@inprise.com

Martin Chapman

IONA Technologies, PLC
The IONA Building
Shelbourne Rd.

Dublin 4,

Ireland

phone: +353 1 637 2000
fax: +353 1 637 2888

email: mchapman@iona.com

Jim Trezzo

Oracle Corporation

500 Oracle Parkway
Redwood Shores, CA 94065
USA

phone: +1 650 506 8240
fax: +1 650 654 6208

email: jtrezzo@us.oracle.com

Patrick Thompson

Rogue Wave Software

815 NW 9oth St.

Corvallis, OR 97330

USA

phone: +1 541 754 3189

fax: +1 541 758 4761

email: thompson@roguewave.com

CORBA Components Volume | - orbos/99-07-01

1-8

Sridhar lyengar

Unisys Corporation

25725 Jeronimo Road

Mission Viejo, CA, 92691

USA

phone: +1 714 380 5692

fax: +1 714 380 6600

email: sridhar.iyengar2@unisys.com

CORBA Components Volume| - orbos/99-07-01

August 2, 1999 10:05 pm

Mappingto RFP Requirements 2

August 2, 1999 10:05 pm

2.1 Mandatory Requirements
® Responses shall specify a component model for CORBA systems. This model shall

be structured as a natural extension of the existing CORBA object model, and
shall be informed by experiences with other successful component models, such
as JavaBeans and COM.

The component model specified in this submission is based on extensions to the
CORBA model. The submitters have focussed on a server side model and have
considered input from Enterprise JavaBeans, COM+, and existing CORBA-based
products.

Responses shall define the elements of a component model, and concrete
expressions of these elements in terms of CORBA technology.

All elements of the abstract model are specified using IDL with extensions to
support the component architecture. Packaging and deployment have not been
previously considered in CORBA specifications and, based on similar work in the
W3C, are specified using XML. The container specification is based on the Portable
Object Adaptor (POA) and uses a new local interface IDL construct to define
locality-constrained interfaces.

Responses shall build upon existing specifications, and be aligned with other
simultaneously emerging specifications.

The specification is based on CORBA 2.3 and the current levels of CORBA
transactions (1.1), CORBA security (1.2), and CORBA notification (1.1). It
integrates work in process for CORBA persistence.

2.1.1 Component Model Elements

® Responses shall clearly define the concept of component type and the structure

for a component typing system, and shall specify mechanisms for establishing and
expressing component type identity.

CORBA Components Volume| - orbos/99-07-01 2-9

2-10

These mechanisms are defined as part of the abstract model in Chapter 5. The
specification address both the type system for components and the notion of
component identity.

Responses shall define a concrete concept of component instance identity, and a
reliable means for determining whether two interface references belong to the
same component instance.

These mechanisms are defined as part of the abstract model in Chapter 5. Basic
components support a single CORBA interface. Extended components inherit from
Components::Navigation, which provide the necessary mechanisms for
determining if two interfaces are within the same component.

Responses shall describe the life cycle of a component, and specify interfaces and
mechanisms for managing its life cycle.

Component life cycle is described as part of the abstract model in Chapter 5. Life
cycle operations are also defined as part of the container APIs in Chapter 7.

Responses shall describe the association between a component and its interfaces,
and their relative life cycles. These descriptions shall be consistent with responses
to the Multiple Interfaces RFP.

These descriptions are provided as part of the abstract model in Chapter 5. Since the
ORBOS Task Force voted to terminate the Multiple Interfaces RFP in January 1999,
consistency with that specification is no longer applicable.

Responses shall specify interfaces for exposing and managing component
properties. Properties are an externally accessible view of a component’s abstract
state that can be used for design-time customizing of the component, and which
support mechanisms for notification (event generation) and validation when a
property’'s value changes. Responses shall define the relationship between
component properties and IDL interface attributes, if any.

These descriptions, which are based on an extended version of CORBA attributes,
are provided as part of the abstract model in Chapter 5. Although a mechanism for
distinguishing design time from run time is not mandated by this specification, such
a mechanism can be implemented using the configuration architecture defined in
Chapter 5. Because the component model is designed for the server, the property-
change notification system inherent in client component models like JavaBeans was
not adopted. Instead a more robust event mechanism based on CORBA notification
is specified.

Responses shall specify interfaces and mechanisms for serializing a component’s
state and for constructing a component from serialized state. The serialization
mechanism shall be suitable for storage and retrieval, and for externalizing state
over communication channels. To the extent possible, this serialization
mechanism shall be aligned with other existing or emerging serialization
mechanisms, such as the externalization service, proposed streaming mechanisms
for passing objects by value, proposed mechanisms in Messaging Service
responses, and so on. The intent of this requirement isto avoid further redundant
serialization interfaces in CORBA specifications.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:05 pm

Serialization, as it exists in JavaBeans, is not applicable to CORBA components.
Conseguently, no new serialization mechanisms are introduced in this specification.
The mechanism for saving and restoring a component’s abstract state is based on
the techniques proposed by the Persistent State Service submission which use state
declarations as part of the abstract model to provide representations of that state.

® Responses shall specify interfaces and mechanisms for generating events, and for
installing arbitrary event handlers (listeners) for specific events generated by
components. The event mechanism shall be coordinated with the property
mechanisms to support event generation when property values are modified. The
relationship between this component model’s event mechanism and the existing
CORBA Event Service shall be clearly defined. | f a response does not make use of
the existing Event Service, it shall provide rationale for this decision.

The event mechanism is defined as part of the abstract model in Chapter 5 and
permits arbitrary event handlers to consume events generated by the component. Its
architecture is based on the CORBA notification service which is derived from the
CORBA event service. This provides a robust event distribution mechanism more
scalable and functional than the event mechanism provided by other component
models such as JavaBeans and COM. The submitters believe that this is a more
appropriate solution for a server-side component model.

2.1.2 Requirements for Component Description Facility

® Responses shall specify an information model that describes components. In
conjunction with the information model, responses shall specify a set of interfaces
for a programmatic representation of this information model and a textual
representation (i.e. a description language) for the information model. This
language may be an extension to IDL or a complementary adjunct to IDL.
Responses shall provide rationale for their decision regarding the form of the
language and its relationship to IDL. The information model shall capture all the
salient features of components.

The component information model is addressed by this specification in multiple

ways:

» IDL extensions are defined in Chapter 5 to capture the designer’s intent and to
allow component tools to perform code generation.

» A Component Implementation Definition Language (CIDL) is introduced in
Chapter 6 to connect component servants to abstract state definitions to support
container-managed persistence and to define other properties of the component’s
implementation in the server.

» Run-time descriptions necessary to create instances of components and their
deployment characteristics are defined in Chapter 10 and described using XML
based on similar work being done in the W3C.

» A MOF-based meta-model is provided for both the abstract component model and
the deployment model in Volume 1.

® Responses shall specify how component descriptions are stored in a repository.
The relationship between this repository and existing CORBA repositories,

including the I nterface Repository, | mplementation Repository, and the Meta-
data repository shall be clearly defined. The information models supported by the

August 2, 1999 10:05 pm CORBA Components Volume | - orbos/99-07-01 2-11

description language and the repository shall be completely isomorphic. The
mapping between the description language and the repository contents shall be
reflexive.

This specification provides extensions to the Interface Repository (IR) which
contain the additional information associated with components. These extensions
are defined in Volume I11. The meta-models defined in Volume Il are based on the
MOF.

2.1.3 Requirements for Programming Model

® Responses shall describe a mapping from the component description information
to a concrete programming model, and define how that programming model is
expressed in programming languages that support | DL mappings.

This specification defines the abstract model as extensions to IDL in Chapter 5 and
the Component Implementation Definition Language (CIDL) in Chapter 6. The
container APIS are defined in Chapter 7 using the new local interface type
specified in Chapter 4. Where required, new language mappings are also defined.

®* The mapping shall automate the generation of as many programming details as
reasonably possible. For example, if the information in the component
description contains a complete description of a component’s state, the responses
shall describe how methods for serializing that state will be generated from the
description.

The specification was designed with the goal of automatic code generation.
Techniques for creating factory code as well as automating persistence were
introduced into the model. Based on the experience of the submitters, we believe
such automation is feasible with the techniques defined in this specification. Thisis
elaborated in Chapter 6.

® Responses shall specify interfaces and mechanisms so as to maximize the
portability of component implementation code between compliant
implementations of the specification. To this end, responses shall clearly define
the relationship between elements of component model and the interfaces
specified in the Enhanced ORB Portability specification, particularly the POA
and its related interfaces. Responses shall specify how the behaviors and policies
supported by the POA interfaces apply to components, and describe the
relationships between servants and component implementations. |f possible,
responses shall define how implementations of objects required by the POA, such
as servant managers, may be automatically generated from component
descriptions.

The container architecture defined in Chapter 9 is derived by specializing the
Portable Object Adaptor (POA). An exemplary design using a POA with a
ServantLocator which implements the container function is used to describe
container behavior and its integration with the POA. The POA policies which must
be used by the containers are clearly identified as are valid combinations of POA
policies which can be used to produce the required behavior.

® Responses shall specify how components can be passed as value parametersin
CORBA requests. This specification shall be aligned with responses to the Objects
by Value RFP.

| 2-12 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:05 pm

CORBA Components cannot be valuetypes so they cannot be passed as value
parameters in CORBA requests. Where needed, a component developer may
provide operations and attributes which produce valuetypes that encapsulate all or
part of the component’s state and behavior.

2.1.4 Requirements for Mapping to JavaBeans

® Responses shall specify a mapping from the proposed component model to the
JavaBeans component model. Responses shall define and address the mapping
between the intersection of the two component models (i.e. it is not a requirement
that the two models be isomorphic).

The basic component model defined by this specification is equivalent to the EJB
1.1 Component Architecture. As a result of this equivalence, an enterprise Bean is
a CORBA component. The extended model contains additional function beyond the
EJB 1.1 specification including events and tighter integration with the CORBA
object model. EJB integration is described in Chapter 8.

®* The mapping shall permit a CORBA component to present itself as a JavaBean to
Java programs and application building tools based on JavaBeans.

The specification defines a mechanism for a basic CORBA component to be
accessed by an EJB client and a CORBA client to access an enterprise Bean as if it
were a CORBA component. This permits two way interoperability between
components and allows the construction of application made up of both enterprise
Beans and CORBA components. This is described in Chapter 8.

®* The mapping shall support automatic generation of elements required to effect
the mapping.

® Component assembly tools can process both CORBA component descriptors and
EJB descriptors, permitting the creation of component assemblies from both
component types. This is described in Chapter 10.

® The mapping shall support both run-time and design-time needs. Responses shall
describe how component descriptions are mapped to Beanlnfo structures, so that
visual application building tools that rely on Beanlnfo can be used to configure
and assemble CORBA components and JavaBeans interchangeably.

The specification considers both design time and runtime. Since the component
model maps to Enterprise JavaBeans rather then JavaBeans, mapping to Beanlnfo
structures are neither required nor provided. The configuration architecture defined
in Chapter 5 provides mechanisms to distinguish between design time and run time.
Where possible, the submitters have adopted EJB syntax to minimize impact on
existing or planned EJB tools.

®* The mapping shall maximize interoperability between features of the CORBA
component model and the JavaBeans model.

All features of the EJB component architecture are accommodated in the basic
CORBA component model, either directly or by the EJB to CORBA interworking
mappings in Chapter 8, permitting two-way interoperability between EJB and
CORBA components.

August 2, 1999 10:05 pm CORBA Components Volume | - orbos/99-07-01 2-13

| 2-14

The version of the JavaBeans specification that shall be used is JavaBeans 1.0
Revision A unless it is superseded by a revised specification issued before the
submission due date. The specification is available at
<http://splash.javasoft.com/beans/beans.100A.pdf>.

This specification is based on V1.1 of the Enterprise JavaBeans specification
<ftp://ftp.java.sun.com/pub/ejb/1298432/ejb1l 1-PublicDraft3.pdf> dated June
28, 1999.

The JavaBeans specification is still under development and significant new
features are being considered. Submitters should track these developments.
Information about new draft specifications is available on the JavaBeans web
page at <http://splash.javasoft.com/beans>.

Since CORBA components is based on the Enterprise JavaBeans specification, not
the JavaBeans specification, this requirement is not applicable as written. However
the submitters have tracked changes to the EJB 1.0 specification which resulted in
the EJB 1.1 specification and incorporated them within this submission.

2.1.5 Security Requirements

What, if any, are the security sensitive objects that are introduced by the
proposal ?

Distributed components systems introduce no new security requirements beyond
those required of distributed object systems. All objects introduced in this proposal
can have CORBA security policies applied to them in the same way that other
objects participate.

Which accesses to security-sensitive objects must be subject to security policy
control?

The choice of objects subject to security policy control is up to the security
administrator at each site. CORBA components place no constraints on the
application of any security policy by any administrator.

Does the proposed service or facility need to be security-aware?

Under normal operating conditions, security policy may be set on individual
components and their interfaces by the administrator and it will be enforced by the
component container using CORBA security. The container API framework defined
in this specification (Chapter 7) allows the component implementation to perform
additional security checking by testing security roles against the credentials in effect
for CORBA security when an operation is dispatched.

What CORBAsecurity level and options are required to protect an implementation
of this proposal?

In general, this is up to the security administrator, however we recommend that
security level 2 be used with authentication, and authorization. Auditing policy is at
the discretion of the administrator as is message protection (except where export
restrictions apply). Note that CORBA security provides no portable way to use SSL
to establish client credentials.

What default policies should be applied to security sensitive objects introduced by
the proposal ?

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:05 pm

2

CORBA components introduces no new unique security regquirements beyond those
of today’s distributed object systems. Security administrators can choose the level
of protection they desire for any and all of the objects defined by CORBA
components.

® Of what security considerations must the implementors of your proposal be
aware?

A design goal of CORBA components is compatibility and interoperability with
Enterprise JavaBeans. The EJB 1.1 specification introduced major revisions in the
security area, including operation-level access-control lists (ACLSs). This capability
has been incorporated into the CORBA component specification.

Finally, this submission assumes a container will be built using a POA, most likely
a ServantLocator. CORBA security depends on interceptors which are neither
well-defined, portable between ORB implementations, nor demonstratively capable
of working with the POA. Fortunately, security policies can be defined with the
component deployment descriptor, enabling the component container to enforce
authorization security by calling CORBA security operations directly, even if the
security interceptor cannot.

2.2 Optional Requirements

® Responses may choose to specify enhancements to the standard CORBA Life
Cycle Service that apply to components.

Enhancements to life cycle services are defined within the Components module
(Chapter 5) and to the CosLifeCycle module (Chapter 11).

® Responses may choose to specify locality constraints for component management
and construction. If an RFP for describing locality constraints is issued within
the time frame of this RFP, responses to both RFPs shall be aligned

This submission introduces an new IDL construct, local interface, in Chapter 4 for
use in defining locality-constrained interfaces. This construct is used to define all
locality-constrained interfaces in this specification. Since the referenced RFP was
never issued, no alignment is necessary.

August 2, 1999 10:05 pm CORBA Components Volume | - orbos/99-07-01 2-15

2-16 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:05 pm

3.1 Introduction

August 2,199911:14 pm

| ntroductionto Components 3

The CORBA Component architecture consists of several interlocking conceptual
pieces that enable a complete distributed enterprise server computing architecture.
These include an Abstract Component Model, a Packaging and Deployment Model, a
Container Model, a mapping to EJB and an Integration Model for Persistence and
Transactions,.

This chapter provides an overview of these pieces. It describes the general use model
and then discusses in general terms the various pieces. The complete specification and
details can be found in the remaining chapters.

In order to build enterprise-scale applications, developers need to integrate their
business logic in a distributed architecture which includes (at a minimum) transactions,
persistence, events and naming. They also need to be able to tune their application and
have flexible deployment models. Modeling, designing, and implementing such
applications is quite complex. CORBA's flexibility gives the developer a myriad of
choices, and requires a vast number of details to be specified. The complexity is
simply too high to be able to do so efficiently and quickly.

This phenomenon, which is by no means limited to CORBA, has forced a search for
discovering useful patterns of building these kind of applications. As more experience
has been gained, we have discovered that a few basic models have widespread
applicability. By scoping the design space to these few patterns, much of the tedious
work can be shouldered by code generation tools. This is analogous to the work that
the current IDL compiler does to generate all the marshaling and remote invocation
code in IDL stubs and skeletons. The difference is now instead of generating stubs and
skeletons, it will be possible to generate most of a server, within a CORBA
Components framework, into which a developer can “drop” his business logic, or
component.

CORBA Components Volume| - orbos/99-07-01 3-17

The OMA framework for supporting the definition, code generation, packaging,
assembly, and deployment of these CORBA components is collectively called the
CORBA Component Model (CCM). It represents a major extension and addition to the
OMA and CORBA.

For the most part, CORBA until now, has concerned itself primarily with the
description of interfaces, client-side contracts if you will. With the adoption of the
POA, the first steps were taken towards specifying how implementations (servants) are
built and managed by the ORB. The CCM takes the next step and adds to IDL the
ability to define CORBA component and introduces CIDL to describe implementation
details sufficient to allow the entire server-side framework to be generated, assembled,
and deployed.

The CCM also defines an interworking mapping with the Enterprise JavaBeans 1.1
which enables an EJB to be viewed as a CCM component and conversely allows an
EJB 1.1 container, hosted in a CORBA environment, to be viewed as a CCM container.

Much of the work contained herein has been informed by the experiences people have
had providing component frameworks and tools for the two most common extant
component models, EJB and MTS, as well as the experience the submitters have had in
providing tools and frameworks for building CORBA servers.

The CCM comprises the following integrated and inter-related pieces:
® Abstract Component Model - extensions to IDL and the object model

® Component Implementation Framework - Component | mplementation Definition
Language (CIDL)

® Component Container Programming Model - component implementer and client
view

® Component Container Architecture -container provider view

® |ntegration with persistence, transactions, and events

® Component Packaging and Deployment

® [nterworking with EJB 1.1

¢ Component MetaData Model - Interface Repository and MOF extensions

3.2 Typical UseModd

3-18

This section describes a “typical” scenario of the steps that are followed in developing
and using components

3.2.1 Analysis/Design Phase

This phase includes all the modeling and analysis work that happens before a
developer is even ready to start designing CORBA components. This vital piece of
work is outside of the scope of this submission, although ultimately its result has to be

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

mapped and implemented via the CCM. The OMG has issued and is planning on
issuing several RFPs (as part of the so called Business Objective Initiative) whose goal
is to integrate these analysis and design activities with the CCM.

3.2.2 Component Declaration

A CORBA component is specified using (the new extensions) to IDL. The IDL is
compiled using a vendor supplied compiler, generating the stubs and metadata. These
extensions to IDL comprise the client view of components.

The output is client side stubs and metadata descriptors and IR entries.

The output is compiled code (shared libraries, Java bytecode, DLLs, etc.) aswell as an
XML description of the component.

3.2.3 Component Implementation

Platform and language independent features that are required to facilitate the automatic
generation of code for the component are specified in a new language, Component
Implementation Definition Language (CIDL). CIDL, an adjunct to the OMG's
traditional IDL, fulfills a similar role but from the component implementer’s
viewpoint. It allows for platform and language independent specification of features
such as integration with transaction, persistence, events, etc.

The component is implemented by “filling in” the business logic into the generated
skeletons and servants. Code is written in a concrete programming language, possibly
using a CORBA-component aware IDE, or just a basic text editor and compiler.

The output is an elaboration of the compiled code produced in the declaration phase.

3.2.4 Component Packaging

A component archive file contains the component implementation and component
descriptor. It is created and the component implementation is added to the archive.
Most probably some sort of an interactive, visual packaging tool is used. Although a
basic text editor and ZIP file management application could be used.

If no further assembly is required the component could be deployed, skipping the next
step.

The output is a component archive file.

3.2.5 Component Assembly

August 2, 1999 11:14 pm

The component is customized, connected to other components, and partitioned
producing a component assembly archive file. An assembly is a description of a
collection of protypical components (that may have been customized) along with a
description of their relationships.

CORBA Components Volume | - orbos/99-07-01 3-19

Using a (visual) design tool which presents a set of available components, components
may be:

® customized using property editors.
® connected to one another

® partitioned by specifying partitioning sets of components that are to be deployed
together within a single process or host

The output is a component assembly archive file which contains a set of component
archives and a descriptor describing the assembly.

Again, asimple text editor and ZIP file management tool could be used to produce the
assembly archive file.

If no further assembly is required the assembly could be deployed, or it may be used as
another “building block” to build yet more complex assemblies.

3.2.6 Component Deployment and Installation

In the field, a deployment/installation tool is used to deploy and install components
and assemblies to particular machines on the network. The tool can deploy single
components or complex component assemblies. It is used to install components and
homes, and to instantiate the initial connection topologies, on the deployment
machines. This submission leaves it to tool vendors to design and implement the
deployment/installation tool(s). Typically such atool would take as input a set of
component or assembly archives along with input from a user (the “deployer”) and
deploy them into a distributed environment.

The output is the components and assemblies installed and made available for use in
the field.

3.2.7 Component Instance Activation

Once deployed and installed, the component instances are available to be activated and
used via the standard CORBA ORB mechanisms.

3.3 Component Model and DL Extensions

3-20

Component is a new basic meta-type in CORBA. Component types are defined using
extensions to IDL that are specified in this submission and are represented in the
Interface Repository. A component is denoted by a component reference, which is
represented by an object reference.

There are two levels of components. basic and extended. Although they are both
managed by component homes, they differ in the range of capabilities they support.
Basic components, essentially provide a simple mechanism to “componentize’
ordinary CORBA abjects without adding a significant amount to the programming
model. Extended components provide a much richer set of functionality than the
existing CORBA model as outlined below.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

3

In general, the use of the word component applies to extended components. We try to
specifically qualify statements when talking about basic components.

Components support a variety of surface features. New features which support ways of
“connecting” to components are called ports and include:
« facets - distinct named interfaces and navigation between them provided to
clients

 receptacles - named connection points that describe the ability to use a reference
¢ event sources - named connection points that emit events of specified type to one
or more interested consumers, or to an event channel

 event sinks - named connection points into which events of a specified type may
be pushed

Other new features of the model include:
» primary keys - values exposed to clients to help identify particular components

« component attributes and configuration - named values exposed through
accessor and mutators, primarily used for component configuration

« standard Home interfaces that provide standard factory and finder operations

A component type is a specific, named collection of features that can be described by
and IDL component definition and/or a corresponding structure in an Interface
Repository. A component type is instantiated to create concrete entities (instances)
with state and identity. The component type encapsulates its internal representation and
implementation.

A component implementation ultimately takes the form of a component package, an
archive file containing one or more executable realizations of the component
implementation and meta-data describing the component type. Component packages
have two potential uses. A component package may be loaded into an application
assembly tool and used to construct an assembly of components that becomes a
package itself. Alternatively, a component package may be deployed directly into an
execution container, allowing instances of the component type to be constructed and
used by application clients.

Components are instantiated and “live” in a CORBA Component Container. Several
different categories of components and their corresponding containers are defined.

3.3.1 Multiple Facets (interfaces) and Navigation

August 2, 1999 11:14 pm

A component can provide multiple object references, called facets, which are capable
of supporting distinct (i.e., unrelated by inheritance) CORBA interfaces. The
component has a single distinguished reference whose interface conforms to the
component definition This distinguished reference supports an interface called the
component’s equivalent interface. The other interfaces provided by the component are
referred to as facets. Figure 3-1 illustrates the relationship between the component and
its provided references.

CORBA Components Volume | - orbos/99-07-01 321

3-22

facet references
support independent
provided interfaces K

Component reference supports
component’s equivalent interface

-

Component

/

O

\\ Implementations
of facet
// interfaces are

encapsulated

O
A

Figure3-1 Component Interfaces

The implementations of the facets are completely encapsulated by the component and
are not visible to clients. Clients may navigate to any of the facets either from other
facets or from the component reference. Basic components can not support facets.

A component home is a new meta-type that acts as a manager for instances of a
specified component type. A home may be thought of as a manager for the extent of
it's component type (within the scope of a container). Primary keys may be associated
with components by a component home. In the CCM, a primary key is a data value
which is exposed to a component’s clients that may be used to identify component
instances and obtain references to them (within the scope of a home). Component
home interfaces provide operations to manage component life cycles, and the
association between primary keys and component instances. Although multiple home
types can manage the same component type, at execution time a component instance is
managed by a single home object.

3.3.2 Receptacles

Receptacles provide the model for describing connections between components.
Receptacles may be simplex (manage a single connecting object reference) or muliplex
(manage multiple connecting object references).

The uses clause is used to define the relationship between a component and the other
interfaces to which it will be connected.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

3.3.3 Events

The CCM supports a publish/subscribe event model. The event model is a push model
and is compatible with CORBA natification. It defines a simplified APl which
supports a subset of the semantics of the Notification Service.

3.3.3.1 Event Sources

There are two categories of event sources: emitters and publishers.

A publisher event source allows for multiple subscribers with the component being the
only source publishing to that event channel. Publishers are intended to provide clients
with direct access to an event stream generated by the component. It is intended and
expected that clients subscribe directly to the publisher source.

An emitter event source allows for only one subscriber with the component potentially
being one of many possible sources pushing to the event channel. Emitters are
intended to be used for configuration purposes. It is expected that they will be
connected at initialization and configuration time to other elements of the system, and
that they will not be exposed directly to clients.

Event source are defined using the publishes and emits clauses.

3.3.3.2 Event Snks

An event sink describes the potential for a component to receive events of a specified
type. External entities, can obtain the reference for the consumer interface associated
with a sink. Unlike for event sources, event sinks do not distinguish between
connection (emits) and subscription (publishes). By declaring an event sink, a
component is declaring its willingness to accept events pushed from arbitrary sources.
If a component needs control over which sources can push events to a particular sink,
then it should not be declared as a port.

Even sinks are defined using the consumes clause.

3.3.4 Primary Key

An component may expose a primary key. Clients may use the primary key to find,
create, and destroy the component instance associated with a particular primary key
value.

3.3.5 Home Interfaces

When a component type implementation is deployed in a container, an object, called
the Home is created. Conceptually one can think of the Home as a type manager for
instances of its associated component type.

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 3-23

The Home provides the factory and finder operations needed to create and find
component instances for the type it manages. In addition to the implicit factory and
finder operations that are always available, the developer may define any number of
type specific factory/finder operations using newly defined extensionsto IDL.

Developers may also define other arbitrary operations as part of the definition of the
Home interface to expose other facilities they deem necessary for clients, e.g. query
operations.

3.3.6 Component Attributes and Configuration

The CCM provides features which enable designers to distinguish between interface
features that are intended for use in configuring a component, and those that are
intended to be used by applications once the component is “up and running”. To alarge
extent such a distinction is somewhat arbitrary. Hence the enforcement is largely up to
the component implementer.

Basically a developer may design a component to implement an explicit configuration
phase of its life cycle. Operations may be enabled (or disabled) depending upon which
phase of the configuration life cycle the component is in.

Component configuration is established primarily through its attributes. Towards this
end, this submission extends the current IDL attribute definition to allow the attribute
accessor/mutator operations to return user-defined exceptions.

The CCM supports the notion of dividing the component lifecycle into two mutually
exclusive phases, the configuration phase and the operational phase. During the
configuration phase, an agent will (usually) invoke attribute mutator operations for its
attribute set on the component instance which it is configuring. Completion of this
phase is signaled by invoking the configuration_complete operation.

The CCM defines the notion of a configurator object which encapsulates a specific
attribute configuration--a description of a set of invocations on a component’s attribute
mutator methods.

3.3.7 Component Inheritance

The various features defined for a component type are made available via a generic
interface CCM Object which aggregates generic Navigation, Receptacle, and Events
interfaces. The capabilities for home objects are made available with a generic
CCMHome interface. The type specific interfaces that correspond to a specific
component definition are generated following the rules for component inheritance.

3-24 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

3

interface Receptacles

The general scheme is depicted by the following diagram. For more specific details see
Chapter 5.

interface Events

interface Navigation

interface |
interface CCMObject
interface CCMHome
component A supports | | — 7 interface A
interface AHome [— -I home AHome manages A

3.4 Component |mplementation

August 2, 1999 11:14 pm

The Component Implementation Framework (CIF) defines the programming model for
constructing component implementations.

The CCM includes a declarative language, called the Component Implementation
Definition Language (CIDL) for describing implementations of component and
component homes, as well as their abstract states. CIDL compilers use CIDL
descriptions to generate implementation skeletons that automate many of the basic
behaviors of components such as navigation, identity, inquiries, activation, state
management, lifecycle management, etc. Component builders then extend these
skeletons to create complete implementations.

CIDL is a superset of Persistent State Definition Language (PSDL). It allows the
specification of an association between an abstract storage type and the form of the
internal state encapsulated by a component. The CIF and the container then cooperate
to manage the component’s persistent state automatically

CORBA Components Volume | - orbos/99-07-01 3-25

3-26

3.4.1 Executor

The term executor is used to denote the programming artifact that implements a
component’s behavior. The term home executor is used to denote the programming
artifact that implements the component home.

3.4.2 Composition

In actuality, a component implementation is made up of a potentially complex set of
artifacts that must cooperate to properly realize the correct behavior--the component
itself may be arelatively small piece. The aggregate entity which describes all of the
artifacts required to implement a component is called a composition.

A composition comprises the following elements:

® Component home as specified in an IDL home definition identifies the component
type managed by the home as the composition’s component type

® Abstract Sorage home binding (optional) identifies the abstract storage type that
will incarnate the component. The relationship between a home and the component
type it manages is isomorphic to that between an abstract storage home and the
abstract storage type it manages.

®* Home executor definition describes the relationships between the home executor
and other elements of the composition. It's name becomes the name of the
programming artifact (class).

® Component executor may specify a number of executor segments which are a
physical partitioning of the component which encapsulate independent state and
may be activated independently, as well as a delegation (or mapping) of certain
component attributes to storage members. It's name becomes the name of the
programming artifact (class).

® Delegation specification (optional) allows the mapping of operations defined on the
component home to (isomorphic) operations on either the abstract storage home or
the component executor.

® Proxy home (optional) implementations, which are not required to be collocated
with the container that executes the component implementation managed by the
home, may be defined in order to increase the scalability characteristics of the
CCM.

3.4.3 Composition Sructure

3.4.3.1 Minimal Composition

A valid compaosition binds these elements together in a consistent fashion as defined by
the CCM. The essential elements comprise a name for the composition, the
component’s category (service, session, process, or entity), the home type (which
implicitly identifies the component type), name of the generated home executor, name
of the generated component executor.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

A minimal composition definition (with no state management) looks like:

conposi tion <category> M/Conposition {
hone execut or MyHoneExecutor ({
i mpl ements MyHoneType;
manages MyExecutor;
s
b

Thisis pictured in Figure 3-2 below:

composition <category> <composition_name> {
home executor <home_executor_name>
implements <home_type>;
manages <executor_name>;

implements
component home < home executor
'
© manages manages
'
v implements
component executor
cIoL 4— explicitly defined in composition

implicitly defined by composition

4 - . explicitly defined elsewhere in IDL/CIDL

Figure3-2 A simple composition

3.4.3.2 Jate Management

Compositions may optionally include information to facilitate state management for a
component. The following additional elements are added: one or more catalogs that
provide the storage homes, an abstract storage home type to which the component
home is bound, and hence the component’s abstract storage type, and the component’s

category which must be either entity or process.

Such a composition looks like:

CORBA Components Volume | - orbos/99-07-01

conposition <category> M/Conposition {
uses catal og {
MyCat al ogType MyCat al og;
}
hone execut or MyHoneExecutor ({
i mpl enents MyHoneType;
bi ndsTo MyCat al og. MyAbst r act St or ageHorme;
manages MyExecutor;
b
b

Thisis pictured in Figure 3-3 below:

composition <category> <composition_name> {
uses catalog {

<catalog_type> <catalog_label>;

home executor <home_executor_name>
implements <home_type>;
bindsTo <catalog_label.storage_home>;
manages <executor_name>;

implements
<

component home home executor

' binds to
manages manages
'
implements
component executor
. storage home
provides _¥9”) g
. " " 1
'
catalog * manages stored as
'
storage object
4— explicitly defined in composition cIbL
implicitly defined by composition
4 - . explicitly defined elsewhere in IDL/CIDL IDL

Figure 3-3 A composition with managed storage

3.4.3.3 Home Operations

The CIF supports the automatic generation of default home executor implementations
of home operations assuming default semantics.

3-28 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

When explictly-defined factory operations, finder operations, and operations with
arbitrary signatures are declared on homes, the CIF cannot make any assumptions
about the intended semantics, and hence cannot generate default implementations.
CIDL does, however, allow the component implementer to specify explicitly how those
operations are to be implemented.

Such a composition looks like:

conposi tion <category> MyConposition {
hone execut or MyHoneExecut or {
/'l storage managenent specification
del egat esTo abstract storagehone{
MyHomeOQpl : MySt or ageHoneOpl,

s
del egat esTo executor {
MyHomeQp2 : MyExecut or Op2,

absinr;alct(lvyl—lorreOp& MyHomep4, ...);
}s
}

See Chapter 6 for more details.

3.4.4 Executor Definition

August 2, 1999 11:14 pm

Executor definitions specify the name of the executor, one or more distinct segments,
the generation of operation implementations that mange the state of stateful component
features such as receptacles, and a delegation declaration to describe the relationship
between particular stateful features and the members of the abstract storage type that
incarnates the component.

A monolithic executor is a single programming artifact (from a container’s
perspective). A component with a monolithic executor has a single abstract state, and
the “entire” component, along with its entire state, is activated whenever the
component is referenced.

In contrast, segmented executor, is made up of several programming artifacts, each of
which embody a separate “piece” of the component’s abstract state, and each of which
can be activated independently. Each segment corresponds to one or more the
component’s facets. They are very useful because they allow some of a component’s
facets to be serviced without activating and bringing into memory the “rest” of the
state.

Segmented executors may only be used with entity or process categories.

Such a composition looks like:

CORBA Components Volume | - orbos/99-07-01 3-29

conposition <category> M/Conposition {

hone execut or MyHoneExecutor ({
/'l storage managenent specification
manages MyExecutor {

segrment MySegment O {
storedOn MyCat al og. MyAbst r act St or ageHone;

provi des (MyFacetl, MFacet 2,

3.5 Container Programming Model

The container is the server’s runtime environment for a CORBA component
implementation. The container programming model is a concrete manifestation of the

container architecture which defines an APl framework.

3-30

)

This architecture is depicted in Figure 3-4 below and elaborated below.

7

>0 —-—0

@ — Home
-0
CORBA Callbacks
External Component +@
o—
I BT
©)]
Internal >
Container
ORB
Transactions Security Persistence Notification

Figure 3-4 Container Programming Model Architecture

CORBA Components Volume| - orbos/99-07-01

August 2, 1999 11: 14 pm

3.5.1 External API Types

External API types define the contract between the component developer and the
component client. The application interfaces (analogous to EJBObject interfaces)
are defined in the component IDL to support the specific application services. The
home interfaces (analogous to EJBHome) are used by the client to obtain access to
the application interfaces supported by the component. Two design patterns are
defined. All homes support factory operations. In addition, keyful homes support
finder operations.

3.5.2 Container API Types

Container API types define the API framework is composed of internal interfaces and
callback interfaces used by the component developer. The container APl type is
specified by the developer using CIDL The session types support transient component
references. The entity types support persistent component references.

3.5.3 CORBA Usage Model

The CORBA usage model defines the interactions between the container and the rest
of CORBA. It is controlled by policies which select between interaction patterns with
the POA and other CORBA services. The usage model is defined in CIDL, augmented
using XML, and used by the container factory to create a POA.

The CCM (pre)defines 3 different models which differ only in their interaction with
the POA:

stateless - use transient references with a POA servant that can support any object (of
the correct type)

conversational - use transient references with a POA servant dedicated to a specific
object

durable - use persistent references with a POA servant dedicated to a specific object

3.5.4 Component Category

August 2, 1999 11:14 pm

Component category selects which of several supported patterns of use and
capabilities that are “built-in” to the CCM. In effect it selects a specific (pre-defined)
combination of external API types and container API type.

The following table summarizes the categories in terms of the above defined concepts.

Chapter 7 contains the details.

Container Primary Component EJB Bean
CORBA Usage Model APl Type Key Categories Type
stateless session No Service
CORBA Components Volume | - orbos/99-07-01 331

3-32

Container Primary Component EJB Bean
CORBA Usage Model API Type Key Categories Type
conversational session No Session Session
durable entity No Process -
durable entity Yes Entity Entity

A high level description of the component categories follows:

A service component has behavior, but no state, and no identity. It is useful for
modeling things which provide only the single independent execution of an operation
(method). Examples include a CICS transaction, a “command” object, or a wrapper of
a legacy procedural application.

A session component has behavior, transient state, and non-persistent identity. It is

useful for modeling things which require (transient) state for the lifetime of a client
interaction but no persistence of that state in a persistent store. Examples include an
iterator or an MTS component.

A process component has behavior (possibly transactional), persistent state which is
not visible to the client, and persistent identity which is only visible to the client
through explicit user-defined operations. It is useful for modeling things that represent
business processes rather than entities. Examples include applying for a loan, creating
an order, etc.

An entity component has behavior (possibly transactional), persistent state, and
identity (which isvisible to clients) via a primary key. It is useful for modeling things
that represent business entities in the real world that have a non-transient existence.
Examples include customers, accounts, etc.

3.5.5 Transactions

Components may support either self-managed transactions or container-managed
transactions. A component using self-managed transactions is responsible for
delineating transaction demarcation itself, either using the container’s
UserTransaction interface or the CORBA Transaction Service. A component using
container-managed persistence has its transaction policies defined in its associated
descriptor, which are then used by the container to make the proper calls to the
CORBA Transaction Service.

3.5.6 Security

Security policy is applied consistently to all categories of components. The container
relies on CORBA security to consume the security policy declarations from the
deployment descriptor and to check the active credentials for invoking operations. The
security policy remains in effect until changed by a subsequent invocation on a
different component having a different policy.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

Access permissions are defined by the deployment descriptor associated with the
component. The granularity of permissions must be aligned by the deployer with a set
of rights recognized by the installed CORBA security mechanism since it will be used
to check permissions at operation invocation time. Access permissions can be defined
for any of the component’s ports as well as the component’s home interface.

3.5.7 Events

Because events can be emitted and consumed by clients as well as by component
implementations, operations for emitting and consuming events are generated from the
component IDL. The container is responsible for mapping these operations to the
CORBA notification service.

3.5.8 Persistence

The entity container defines two forms of persistence support for the purpose of
making component-state durable:

® container-managed persistence - is selected in CIDL by “connecting” a state
definition defined using PSDL (as specified in the CORBA Persistent State Service)
to a component segment in CIDL. The container, in conjunction with the generated
code, automatically saves and restores state as required.

* self-managed persistence - is selected by the appropriate CIDL declaration. In this
case the component developer takes responsibility for saving and restoring state by
implementing the callback interfaces that the container invokes at appropriate times.

3.5.9 Component Implementations

A component implementation consists of one or more executor s defined in CIDL, each
of which describes the implementation characteristics of a particular segment.
Component implementations comprised of a single segment (all session and some
entity) consist of a single executor which is activated in response to an operation
request made on any component facet. Component implementations comprised of
multiple segments (some entity), each of which is associated with a different abstract
state declaration, consist of multiple executors, each of which is independently
activated in response to an operation request made on the associated component facet.

3.5.10 Component Levels

August 2, 1999 11:14 pm

Corresponding to the levels of Component IDL, basic and extended, are corresponding
levels of component containers and appropriately structured modules and interfaces.

The implementation of a basic component may use transaction, security, and simple
persistence (i.e. a single segment) and relies upon the container to manage the
construction of CORBA object references. It is functionally equivalent to the EJB 1.1
specification.

CORBA Components Volume | - orbos/99-07-01 3-33

The implementation of extended components may use al the basic functionality
outlined above, as well as advanced persistence (multiple segments) plus the event
model and participates in the construction of CORBA object references.

3.6 Client Programming Model

3-34

The client programming model is defined (implicitly) by the IDL extensions defined
for the CCM. It is important to note that clients of CORBA components do not
themselves have to be CORBA components, nor do they have to be “component-
aware”.

Clients interact with a CORBA component by using the home interface and one or
more application interfaces which are defined in component IDL. The home supports
two design patterns - factories for creating new components and finders for finding
existing components. The presence or absence of a primary key declaration determines
whether the finder pattern is supported for a particular home.

3.6.1 Component-aware Clients

Component-aware clients “know” they are making requests against a component and
not an ordinary CORBA object They are defined and/or use the component IDL
extensions defined by this submission. These clients may use the features of CORBA
components that are not supported by pre-component CORBA objects, e.g. navigation
among multiple interfaces, type-specific component factories, finders, etc.

They may interact with the component using one of the following CORBA interfaces:
the equivalent interface, supported interfaces, provided interfaces, the home interface.
These interfaces are located using the newly defined component HomeFinder or a
naming service.

Initial references for services used by a component-aware clients come from
resolve_intial_references for the following services: NameService,
TransactionCurrent, SecurityCurrent, NotificationService, InterfaceRepository, and
HomeFinder.

The factory design pattern uses the HomeFinder to locate a type-specific component
factory (home). Components are then created by invoking the appropriate create
operations on the home.

The finder design pattern can be used to locate existing instances of entity components.
Clients may use the HomeFinder to locate the component’s home and then invoke it's
find operation, or they may use the Naming or Trader service to locate a specific
instance of the home.

A component-aware client may optionally delineate the boundaries of the transaction
to be used with a component. It uses the CORBA Transaction service to ensure that the
active transaction is associated with subsegquent operations on the component.

A component-aware client uses the existing CORBA security mechanism to manage
security using SSL for establishment of client credentials, or SECIOP.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

3

Component-aware clients wishing to emit or consume events use the component APls
defined in the CCM. They also directly use the CORBA Notification service directly
provided they only use the features supported by the CCM.

3.6.2 Component-unaware Clients

Component-unaware clients do not know that the object reference upon which they are
making requests represents and interface implemented by a CORBA component. They
only “know” about ordinary CORBA objects.

They interact only with the component’s supported interface. Navigation is not
supported. They also use resolve_intial_references, but would not use the new
HomeFinder interface.

The factory design pattern can only be used if the supported interface has the
appropriate application operations defined. Once a client obtains a reference to a home,
it can create component instances and invoke operations on the supported interface.
The client can use the Naming or Trader service, a CosLifeCycle FactoryFinder, or a
stringfied object reference.

The finder design pattern can be used to locate entity components using the Naming or
Trader Service. Since the registration happens “elsewhere’, the registering agent may
associate either the supported interface or any of the provided interfaces. The client
will have no way of knowing.

Transactions and security are handled the same as for component-aware clients.

Component-unaware clients wishing to emit or consume events must use the CORBA
Notification service directly, and stay within the subset supported by the CCM.

3.7 Container Architecture

This section provides and introduction to the component container architecture from
the viewpoint of the container provider. Basically the component container is a server-
side framework built on the ORB, POA, and a set of CORBA services which provide
the runtime execution environment for a CORBA component

3.7.1 Component Server

August 2, 1999 11:14 pm

A component server is a process which provides an arbitrary number of component
containers.

A container supports an associated container APl type (describes interactions with a
component) and manages one specific component category. It has an associated
CORBA usage model, which describes its interaction with the POA, ORB and a set of
CORBA services. It includes a specialized POA which is responsible for object
reference management and servant management.

A container (written in Java) can be an EJB container by supporting one of the EJB
container API types.

CORBA Components Volume | - orbos/99-07-01 3-35

3-36

A container is created as the result of deployment of component. A container manager,
using a container specification, determines the appropriate set of POA policies, a
container API type, and a set of CORBA service bindings to be used by the container,
and then acts as a factory to create the container. Container managers are themselves
created as part of the installation and deployment process.

The overall architecture is depicted below:

Container Manager
| [[|
EJB Session Entity Other
Container Container Container Container
POA1 POA2 POA3 POA4
ORB
Transactions Security Persistence Notification

Figure3-5 A Component Server

3.7.1.1 Component Levels

The CCM defines two levels of component containers: basic and extended. The
distinction does not affect the CORBA usage model or the container API type. It does
affect object reference management and the availability of supporting CORBA
services.

3.7.1.2 CORBA ServiceBindings

Basic CORBA containers use the following CORBA services: security, transactions,
and naming. Extended containers also use the persistence state service, as well as the
notification service. Container creation involves the use of
resolve_initial_references to obtain initia references to these services, as well
processing any container specific configuration data (e.g. channel initialization for
emitting and consuming events, initializing database connections for persistence).

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

3.7.1.3 API Frameworks

Several CORBA Component container APl types are defined by this submission as
well as EJB Session Bean and Entity Bean API types. The APl frameworks handle
such things as: creating object references, factories and finders, transactions, security,
events and persistence.

For basic CORBA component containers and the EJB container APIs, the container
provider must manage object reference creation. Containers provide access to the
factory and finder operations declared in IDL. The container interacts with the
Transaction Service on behalf of the component.

Containers rely on CORBA security to implement access policies.

Extended components have access to event services. The container provider is
responsible for setting up and managing the CORBA event channels used by the
notification service to support the CCM's event model.

For extended components, persistence is supported by the entity API type of
containers. Containers for basic components do not support persistence. Those
supporting session containers also do not.support persistence. Extended containers
provide access to the CORBA persistent state service in order to alow the component
developer to implement self-managed persistence.

All the entity container API types also support a get_primary_key operation.

The container supports the selected component thread safety policy-- serialize or
multithreaded by ensuring that the correct number of threads are allowed to enter
simultaneously.

Basic containers support only serialize.

3.7.2 Container Categories

August 2, 1999 11:14 pm

Much of the power of the CCM derives from its ability to support the automatic code
generation of aimost all of a CORBA server and the servants needed to implement an
application. The developer main remaining task is to write their business logic and
“drop it in” to the generated framework.

In particular, the framework supports the integration of persistence (via the Persistent
State Service specification) and the transactions (via the CORBA transaction service).

The container architecture defines 7 different container categories: four that
correspond to the four component categories, two for the EJB container API types, and
an empty container to support user-defined frameworks:

® The Service category manages the service category for access to stateless
components.

® The Session category manages the session component for stateful CORBA
components with transient state.

CORBA Components Volume | - orbos/99-07-01 3-37

3-38

® The Process category manages stateful process components which encapsulate data
access in the server.

®* The Entity category manages stateful entity components which share data access
responsibility between the client and server.

®* The EJBSession category manages EJB session beans.
®* The EJBENtity category manages EJB entity beans.

®* The Empty category provides no automatic management, but makes the standard
CORBA 3.0 interfaces available to the component implementation.

The detailed behavioral specification and requirements for each of these container
category types can be found in Chapter 9.

3.7.3 Persistence Integration

Component persistence is supported by the process, entity, and EJBEntity containers.

Two forms of persistence are supported for each category.

3.7.3.1 Container-managed Peristence

In container-managed the container-provider cooperates with the persistence-provider.
The declaration of abstract state is associated with a component or its facets, using
PSDL.

Code can be automatically generated to load and store the state at appropriate times, as
well as to implement the requisite factory and finder operations.

If the PSS is not used, then the component developer has to provide implementations
of al these operations.

3.7.3.2 Sdf-managed Persistence

In self-managed the component developer cooperates with the persistence-provider
directly. For process and entity containers, self-managed is assumed if there are no
PSDL definitions.

3.7.3.3 Interactions between the Container and Persistence
Provider

The design assumes that the container-provider and the persistence-provider are
different. The container provider as the following responsibilities for persistence
integration: establishing an association with the persistence mechanism, managing
database connections, mapping the persistence-specific APIs to the CORBA APIs, and
synchronizing component state.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

3.7.4 Event Integration

The CCM defines a simple model which supports two forms of the anonymous
publishing of events: to a dedicated channel or to a shared channel. The container is
responsible for mapping those semantics onto the Naotification service and delivering
the specified event types via a notification channel.

A component event is represented as a valuetype embedded in an any, permitting
emitter and publishers to be matched to consumers by event type, while allowing for
untyped channels to be used.

Containers are responsible for: setting up the channels, accepting a component event
and pushing it to a channel as a structured event., and conversely (receiving a
structured event and converting it to a component event).

3.8 Component Assembly and Packaging

August 2, 1999 11:14 pm

This submission uses a specialization of a general software packaging scheme to
describe and package components. It uses an XML vocabulary for describing software
packages and their dependencies. Components are packaged in zip archive files, each
of which have XML descriptors which describe their contents.

A component package is the vehicle for deploying a single component implementation,
A component assembly package is the vehicle for deploying a set of interrelated
component implementations. It is a template or pattern for instantiating a set of
components and homes, and introducing them to each other.

A Component package comprises one or more implementations of a component. Each
implementation implements the same component, but with characteristics that can
differ in such items as implementation language, operating system, or even runtime
behaviors. In general, it consists of a set of files and one or more descriptors, which
describe the package's characteristics and point to its various files. The collection of
files and descriptors may be grouped together into an archive file or kept separately.

A component or component assembly package may be installed on a computer or it
may be grouped with other components to for an assembly.

A Component assembly is a group of interconnected components and component
homes represented by an assembly package. An assembly package consists of a set of
component packages and an assembly descriptor which describes them, as well as
partitioning constraints and connections between ports--provides and/or other arbitrary
interfaces to uses, and emits/publishes to consumes.

The various descriptors are defined using an XML vocabulary which is defined by this
submission. The tools that are used in the component development and deployment
process are responsible for generating and consuming the descriptors as appropriate.

The component assembly archive file is a ZIP file.

CORBA Components Volume | - orbos/99-07-01 3-39

A package consists of a descriptor, which describes the basic characteristics of the
component’s implementations, a component descriptor which describes CCM specific
characteristics, and the set of files pointed to by the descriptor. The desciptor plus its
constituent files may either be placed in an archive file, or stored separately. We define
an XML vocabulary as the representation of a package.

A component assembly is a set of interrelated components represented by an assembly
package. The assembly descriptor specifies the constituent components, partitioning
constraints (used later in the deployment process), and connections (to connect
provides/uses ports and emits/consumes ports.

Chapter 10 provides the detailed specification of the file formats and XML DTDs.

3.9 Component Deployment

3-40

Components and assembly packages are deployed (installed) on target hosts on a
network using a deployment tool or application. Components within an assembly may
be installed on multiple machines.

A combination of information found in the assembly descriptor and information from a
user provides input to a deployment tool which installs and activates component homes
and instances. The tool also configures component properties and connects components
together via interface and event ports.

Using the logical topological information found in the assembly file, the deployment
application installs the components on the actual hosts.

The process is to identify the mapping from the logical description to the actual hosts
based upon input provided to the deployment tool. The appropriate component
implementations are then installed (if necessary) on the appropriate hosts. The
appropriate component instances are then instantiated, and connected as specified in
the assembly descriptor.

The actual deployment of a component or component assembly is carried out by a
deployment application, in conjunction with a set of “helper” objects which include an
installation object, an assembly factory and an object representing the assembly itself.
In addition, there must of course be some sort of a (logical) component repository
which the installation process consults.

* AssemblyFactory - located on the host where the Assembly objects it creates
are.

* Assembly - represents an assembly instantiation and coordinates the creation and
destruction of component assemblies, as well as coordinating the creation of
components and ensuring that they are connected.

* |nstallation - installs component implementations on the target host

The details of how the helper objects accomplish their task is left as an implementation
issue for the tool vendor. The assembly must create a component server, create
containers within that server, instantiate component homes within the containers, and

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

finally populate the containers with components. The following figure depicts this
process using interfaces that represent each of these tasks. However thisis purely a
descriptive architecture, which the installation tool is free to realize in any fashion.

AssemblyFactory |- --------

<<instantiates>>

| DeploymentApplication . ‘

v
v
\

. Container
<<instantiates>>'.
Y
ComponentHome

Componentlnstallation

August 2, 1999 11:14 pm

Figure 3-6 Installation Architecture

In the above figure, the specified installation objects are enclosed by solid rectangles
and have their names in “this font”. The objects indicated for illustrative purposes are
enclosed in dotted rectangles and have their names in “this font”.

The assembly object coordinates and calls each of these objects as part of the
installation process. Configurators are then applied to each component as required to
complete the first phase of the installation phase. The assembly then connects the
components in the assembly by calling the receptacle connect operations.
Configuration complete is then signaled to indicate that all the initial connections have
been made.

CORBA Components Volume | - orbos/99-07-01 341

3

3.10 Interworking Between CORBA Componentsand EJB 1.1

3-42

EJB Client

This submission describes how to build applications which mix CORBA components
and Enterprise JavaBeans (EJB). It describes how CORBA clients may use an EJB
component, by defining a CORBA view of an EJB. It also describes how a non-
CORBA EJB Java client may use a CORBA component, by defining an EJB view of a
CORBA component. It also defines extensions to the Java to IDL mapping to support
mapping EJB definitions into an IDL component definition.

The interworking architecture is described by the following diagram:

CCM Client EJB Client

CCM Client

\[/7 CCM View EJB View ‘\l/
V

Bridge

EJB

4 |

|
CCM

—— A

EJB Container Contract CCM Container

Component/Container

Figure 3-7 Interoperation in a mixed environment

Components of one kind, either EJB or CCM, are made accessible to clients of the
other by the combining the generation of the appropriate bindings (stubs) at
development time and by the appropriate translation of method invocations by the
bridge at runtime. Hence from the perspective of the CCM client, the EJB appears to
be a CORBA component, and from the perspective of the EJB client, the CORBA
component appears to be an EJB. Because there is a very close match between the 2
models, unlike interworking between other models, the bridge is “thin”, and hence
should be quite efficient.

One point to note is that the above diagram is a conceptual diagram. Implementations
are free to make a variety of choices about where the different elements are actually
located in areal system.

This submission defines compliance points to support seamless interworking between
the CCM and EJB 1.1 implementations. It defines 2 levels of the CCM: a Basic level
which is a subset of the full CCM which corresponds in functionality to that supported
by EJB 1.1, and an Extended level which encompasses the entire functionality.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

3.11 Component Meta Data

Extensions to the Interface Repository are defined so that it's information model
continues to be isomorphic to the IDL language as extended for components.

A MOF-based Component Metamodel is defined along with a DTD suitable for use
with XMI.

3.12 Other IDL Extensions

In order to facilitate the design and implementation of the CCM, several other
additions have been to IDL. These additions also address some outstanding and well-
known problems.

3.12.1 Local Interfaces

Several OMG specifications have found the need to define and use “locally
constrained” objects, describing their properties informally in the text surrounding
their definition. This submission formalizes the concept and clearly defines the
semantics of local interfaces. It does so by adding an optional local modifier to an
interface.

3.12.2 Import

Up until now, the only way to use IDL declarations declared in within other scopes has
been to include the entire IDL source for the definition and compile the everything,
generating new stubs and skeletons. This submission defines a new import statement
which allows for importing only the declaration from another scope or compilation.

3.12.3 Repository Id Declarations

This submission fixes a long standing issue with the way repository identifier values
are declared in IDL. Currently repository identifiers may be specified using several
different #pragma directives, which are not required to be supported.

This submission defines extensions to IDL to allow repository identifier values to be
declared in a portable, standard manner. It does so by adding typeid and typePrefix
declarations to the language, thereby eliminating the need to use the #pragma
mechanisms.

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 343

344

CORBA Components Volume| - orbos/99-07-01

August 2, 1999 11: 14 pm

Extensionsto CORBA Core 4

4.1 Local Interface Types

August 2, 1999 10:02 pm

This specification provides a new IDL keyword, local, for declaring locality-
constrained interfaces, defines the semantics of local interfaces and of local types
constructed thereof, and provides mechanisms for implementing locality constrained
objectsin C++ and Java. Local interfaces are CORBA object interfaces, but the
resulting type cannot be marshaled or remotely invoked. The local interface meta-type
is intended to obviate the need for PIDL, and to formalize the current practice of
defining special “locality-constrained” cases of CORBA interfaces.

The grammar for specifying local interfaces is defined by changing productions 6 and
7 of the CORBA 2.3 IDL BNF from:

<forward_dcl> ::=[“abstract”] “interface” <identifier>

<interface_header> ::=[“abstract”] “interface” <identifier>
[<interface_inheritance_spec>]

to:
<forward_dcl>::=[“abstract” | “local”] “interface” <identifier>
<interface_header> ::= [“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]

The semantics associated with local types are as follows:

® Aninterface declaration containing the keyword local declares alocal interface. An
interface declaration not containing the keyword local is referred to as an
unconstrained interface. An object implementing alocal interfaces is referred to as
alocal object.

CORBA Components Volume| - orbos/99-07-01 4-45

4-46

A local interface may inherit from other local or unconstrained interfaces.

An unconstrained interface may not inherit from alocal interface. An interface
derived from alocal interface must be explicitly declared local.

A valuetype may support a local interface.

Any IDL type, including an unconstrained interface, may appear as a parameter,
attribute, return type, or exception declaration of a local interface.

A local interface is alocal type, asisany non-interface type declaration constructed
using a local interface or other local type. For example, a struct, union, or
exception with a member that is alocal interface is also itself alocal type.

A local type may be used as a parameter, attribute, return type, or exception
declaration of alocal interface or of a valuetype.

A local type may not appear as a parameter, attribute, return type, or exception
declaration of an unconstrained interface or as a state member of a valuetype.

Local types cannot be marshaled and references to local abjects cannot be converted
to strings. Any attempt to marshal alocal object, such as via an unconstrained base
interface, as an Object, or as the contents of an any, or to pass a local object to
ORB::object_to_string, shall result ina MARSHAL system exception with
OMG minor code 2 (defined in Realtime CORBA specification).

The usage of client side language mappings for local types shall be identical to
those of equivalent unconstrained types.

The DIl is not supported on local objects, nor are asynchronous invocation
interfaces.

The non_existent, _is equivalent and _hash CORBA::Object pseudo-operations
shall be supported by references to local objects.

The _is a, get_interface, _get_domain_managers, _get_palicy,
_get_client_policy, _set_policy overrides, _get_policy_overrides, and
_validate_connection pseudo-operations, and any DIl support pseudo-operations,
may result inaNO_IMPLEMENT system exception with minor code ??? when
invoked on a reference to a local object.

L anguage mappings shall specify server side mechanisms, including base classes
and/or skeletons if necessary, for implementing local objects, so that invocation
overhead is minimized.

Invocations on local objects are not ORB mediated. Specifically, parameter copy
semantics are not honored, interceptors are not invoked, and the execution context
of alocal object does not have ORB service Current object contexts that are
distinct from those of the caller. Implementations of local interfaces are responsible
for providing the parameter copy semantics expected by clients.

Local objects have no inherent identities beyond their implementations’ identities as
programming objects. The lifecycle of the implementation is the same as the
lifecycle of the reference.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:02 pm

4

® |nstances of local objects defined as part of OMG specifications to be supplied by
ORB products or object service products shall be exposed through the
ORB::resolve_initial_references operation or through some other local object
obtained from resolve_initial_references.

4.1.1 LocalObject

Locality constrained objects are implemented by using CORBA::L ocalObject to
provide implementations of Object pseudo operations and any other ORB specific
support mechanisms that are appropriate for locality constrained objects. Object
implementation techniques are inherently language mapping specific. Therefore, the
L ocalObject type is not defined in IDL, but is specified by each language mapping.

The Local Object type provides implementations of the following Obj ect pseudo-
operations that raise the NO_IMPLEMENT system exception:

® jsa

® get interface

® get domain_managers

® get_policy

® get client_policy

® set policy overrides

® get policy overrides

® validate _connection

Additionally, it provides implementations of the following pseudo-operations:
® non_existent - always returns false

® hash - returns a hash value that is consistent for the lifetime of the object

® is equivalent - returns true if the references refer to the same Local Object
implementation

Attempting to use a L ocalObject to create a DIl request results in a
NO_IMPLEMENT system exception. Attempting to marshal or stringify a
LocalObject resultsin a MARSHAL system exception. Narrowing and widening of
references to L ocalObjects must work as for regular object references.

4.1.2 C++ Mapping of Local Object

August 2, 1999 10:02 pm

The C++ mapping of LocalObject is a class derived from CORBA::Object that is
used as a base class for locality constrained object implementations. A locality
constrained object is implemented by a class derived both from the class mapping the
interface and from CORBA::L ocalObject.

CORBA Components Volume | - orbos/99-07-01 4-47

4-48

nanmespace CORBA

{
cl ass Local Obj ect
public virtual Object
{
pr ot ect ed:
Local Obj ect ();
~Local Obj ect();
publi c:
virtual void _add_ref();
virtual void _remove_ref();
/'l pseudo operations not shown...
b
b

Member functions and any data members needed to implement the Cbj ect pseudo-
operations and any other ORB support functions must also be supplied but are not
shown.

_add ref

The _add_ref member function is called when the reference is duplicated. A default
implementation is provided that does nothing. A derived implementation may use this
operation to maintain a reference count.

_remove_ref

The _remove_ref member function is called when the reference is released. A default
implementation is provided that does nothing. A derived implementation may use this
operation to maintain a reference count, and del ete the object when the count becomes
Zero.

4.1.3 Java Mapping of Local Object

The Java mapping of LocalObject is a class which implements all the operations in
the org.omg.CORBA.Object interface. This class is used as a base class for locality
constrained object implementations. A locality constrained object is implemented by a
class which implements the generated signature Java interface and which extends the
org.omg.CORBA.LocalObject class.

The Java mapping will also provide Helper and Holder classes for alocal interface.
The Helper class will implement the narrow() operation. The Holder classes will
allow for use of local interfaces as out and inout parameters.

ORB implementations must detect attempts to marshal local objects and throw a
CORBA::MARSHAL exception. In a Java ORB implementation the implementation
of the org.omg.CORBA .portable.OutputStream.write_Object() operation must
check if the object passed in is of type org.omg.CORBA.LocalObject and if so a
CORBA::MARSHAL exception must be thrown.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:02 pm

package org. ong. CORBA;
i mport org.ong. CORBA. portable.*;

public class Local Object
i mpl enment's org. ong. CORBA. Obj ect

{
public Local Object()
{}
public bool ean _is_equival ent (org. ong. CORBA. Obj ect that)
{
return equal s(that);
}
public boolean _non_existent()
{
return false;
}
public int _hash(int naxinmm
{
return hashCode();
}
public boolean _is_a(String Identifier)
{
t hr ow new NO_| MPLEMENT() ;
}
public org.ong. CORBA. Obj ect _duplicate()
{
t hr ow new NO_| MPLEMENT() ;
}
public void _rel ease()
{
t hr ow new NO_| MPLEMENT() ;
}
public Request _request(String operation)
{
t hr ow new NO | MPLEMENT() ;
}
public Request _create_request(
Cont ext ctx,
String operation,
NVLi st arg_|ist,
NanmedVal ue result)
{

t hr ow new NO | MPLEMENT() ;

August 2, 1999 10:02 pm CORBA Components Volume | - orbos/99-07-01 4-49

}

public Request _create_request(
Cont ext ctx,
String operation,
NVLi st arg_list,
NanmedVal ue result
Excepti onLi st exceptions,
Cont ext Li st cont exts)

{
t hr ow new NO_| MPLEMENT() ;
}
public org.ong. CORBA. Obj ect _get_interface()
{
t hr ow new NO_| MPLEMENT() ;
}
public org.ong. CORBA. Obj ect _get_interface_def()
{
t hr ow new NO_| MPLEMENT() ;
}
public ORB _orb()
{
t hr ow new NO_| MPLEMENT() ;
}
public Policy _get_policy(int policy_type)
{
t hr ow new NO_| MPLEMENT() ;
}
publ i ¢ Domai nManager[] _get_domai n_manager s()
{
t hr ow new NO_| MPLEMENT() ;
}

public org.ong. CORBA. Obj ect _set _policy_override(
Pol i cy[] policies,
Set Overri deType set _add)

{

t hr ow new NO_| MPLEMENT() ;
}
public boolean _is_Ilocal ()
{

t hr ow new NO_| MPLEMENT() ;
}

public Servant Obj ect _servant _prei nvoke(

4-50 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:02 pm

String operation,
O ass expect edType)

{
t hr ow new NO_| MPLEMENT() ;
}
public void _servant_ postinvoke(Servant Obj ect servant)
{
t hr ow new NO_| MPLEMENT() ;
}

public QutputStream _request(
String operation,
bool ean responseExpect ed)

{
}

t hr ow new NO_| MPLEMENT() ;

public I nputStream _i nvoke(Qut put Stream out put)
throws Applicati onException, Remarshal Exception

{
t hr ow new NO_| MPLEMENT() ;
}
public void _rel easeReply(lnputStreaminput)
{
t hr ow new NO_| MPLEMENT() ;
}
public bool ean val i date_connection()
{
t hr ow new NO | MPLEMENT() ;
}

4.1.4 Interface Repository Support for Local Types

This is defined in Volume 11 (orbos/99-07-03) of the CORBA components
specification, which is a complete replacement for the CORBA 2.3 Interface
Repository chapter.

4.1.5 Existing Interfaces Changed to Local Interfaces

Certain existing interfaces from various OMG specifications that are described as
locality constrained are changed to local interfaces by this specification. Some of these
changes, particularly CORBA::Current and its derived interfaces, could not be made
by any OMG RTF due to multiple services being effected. OMG RTFs may want to
consider changing additional interfaces or PIDL types to local objects.

The following CORBA 2.3 interfaces are changed to local interfaces:

August 2, 1999 10:02 pm CORBA Components Volume | - orbos/99-07-01 4-51

4-52

® CORBA::Current
® All the interfaces in the DynamicAny module

® All the interfaces in the PortableServer module

The following CORBA Messaging interfaces are changed to local interfaces:
®* CORBA::PolicyManager

® CORBA::PolicyCurrent

®* CORBA::Pollable

* CORBA::DllIPollable

® CORBA::PollableSet

® All the interfaces in the Messaging module that inherit CORBA::Policy
The following Realtime CORBA interfaces are changed to local interfaces:
¢ All the interfaces in the RT_CORBA module

® All the interfaces in the RT_PortableServer module

The following CORBA Security interfaces are changed to local interfaces:

SecurityLevell:
SecurityLevel2::
SecurityLevel2:
SecurityLevel2::
SecurityLevel2::AuditChannel
SecurityLevel2:
SecurityLevel2::
SecurityLevel2::QOPPolicy
SecurityLevel2::
SecurityLevel2::
SecurityLevel2::
SecurityLevel2::

SecurityLevel2:

:Current

PrincipalAuthenticator

:Credentials

ReceivedCredentials

:AuditDecision

AccessDecision

MechanismPolicy
InvocationCredentialsPolicy
EstablishTrustPolicy

DelegationDirectivePolicy

:Current

SecurityReplacable::Vault

SecurityReplacable::SecurityContext

SecurityReplacable::ClientSecurityContext

SecurityReplacable::ServerSecurityContext

The following CORBA transaction service interface is changed to a local interface:

® CosTransactions::Current

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:02 pm

4.2 1mport

This specification extends IDL to provide a mechanism for importing external name
scopes into IDL specifications.

The grammar for the import statement is described by the following BNF:
<specification> ::= <import>* <definition>"
<import>::=“import” <imported_scope>“;”

<imported_scope> ::= <scoped_name> | <string_literal>

The <imported_scope> non-terminal may be either a fully-qualified scoped name
denoting an IDL name scope, or a string containing the interface repository ID of an
IDL name scope, i.e., a definition object in the repository whose interface derives from
IR::Container.

The definition of import obviates the need to define the meaning of IDL constructs in
terms of “file scopes’. This specification defines the concepts of a specification as a

unit of IDL expression. In the abstract, a specification consists of a finite sequence of
ISO Latin-1 characters that form a legal IDL sentence. The physical representation of
the specification is of no consequence to the definition of IDL, though it is generally

associated with afile in practice.

Any scoped name that begins with the scope token (“::”) is resolved relative to the
global scope of the specification in which it is defined. In isolation, the scope token
represents the scope of the specification in which it occurs.

A specification that imports name scopes must be interpreted in the context of a well-
defined set of IDL specifications whose union constitutes the space from within which
name scopes are imported. By “a well-defined set of IDL specifications’, we mean
any identifiable representation of IDL specifications, such as an interface repository.
The specific representation from which name scopes are imported is not specified, nor
is the means by which importing is implemented, nor is the means by which a
particular set of IDL specifications (such as an interface repository) is associated with
the context in which the importing specification is to be interpreted.

The above wording is deliberately imprecise. For example, we describe
IDL specifications as being “ interpreted in a particular context” rather
than being compiled. Although IDL specifications exist most commonly as
text files, and are usually processed by compilers, these are implementation
artifacts that exist outside the scope of CORBA specifications. |DL specifi-
cations, from the perspective of CORBA specifications, are abstractions
that may take an arbitrary number of forms, as long as they are unambigu-
ously isomorphic to either a legal textual IDL specification or alegal con-
struct in an interface repository. The use of a specification for a particular
purpose (e.g., to generate stubs and skeletons) may be implemented in an
arbitrary number of different ways, with or without compilers.

In general, we expect that interface repositories will be a common means
for supporting theimport mechanism, and that compilerswill be a common
means for processing IDL specifications. In these cases, vendors will need

August 2, 1999 10:02 pm CORBA Components Volume | - orbos/99-07-01 4-53

to provide some means for users to associate the act of compilation with a
particular interface repository, possibly through the use of environment
variables or a systemregistry.

The effects of an import statement are as follows:

The contents of the specified name scope are visible in the context of the importing
specification. Names that occur in IDL declarations within the importing
specification may be resolved to definitions in imported scopes.

Imported | DL name scopes exist in the same space as names defined in subsequent
declarations in the importing specification.

IDL module definitions may re-open modules defined in imported name scopes.

Importing an inner name scope (i.e., a name scope nested within one or more
enclosing name scopes) does not implicitly import the contents of any of the
enclosing name scopes.

When a name scope is imported, the names of the enclosing scopes in the fully-
qualified pathname of the enclosing scope are exposed within the context of the
importing specification, but their contents are not imported. An importing
specification may not re-define or re-open a name scope which has been exposed
(but not imported) by an import statement.

Importing a name scope recursively imports all name scopes nested within it.

For the purposes of this specification, name scopes that can be imported (i.e.,
specified in an import statement) include the following: modules, interfaces,
valuetypes, structures, unions, and exceptions.

Redundant imports (e.g., importing an inner scope and one of its enclosing scopes
in the same specification) are disregarded. The union of all imported scopes is
visible to the importing program.

This specification does not define a particular form for generated stubs and
skeletons in any given programming language. |n particular, it does not imply any
normative relationship between units specification and units of generation and/or
compilation for any language mapping.

For example, assume that the following IDL has been processed and made
available for importing by a particular product:

module A {
struct outer {
float f;
string s;
h
interface | {
struct inner {
outer o;
string s;
h
h

interface J {
exception badThing {};

kh

4-54 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:02 pm

h
module B {

typedef sequence<octet> mysteryBlob;
h

Consider the following specification in that context:
import ::A:l:inner;

import ::A::J;

import ::B;

module B { // OK; re-opened
interface K {
void opl (in ::A:z:l:inner val); // OK
void op2(in ::A::outer val); // error; outer is not visible
void op3(in long n) raises (::A::J::badThing); // OK
void op4(in mysteryBlob blb); // OK;
// unqualified mysteryBlob resolves to imported B scope

}

module A { // error;
Il A is exposed, but not imported; it may not be re-opened

}

4.3 Repository identity declarations

This specification defines extensions to IDL to alow repository identifier values to be
declared in a portable, standard manner. This mechanism is intended to obviate the
#pragma mechanism currently specified (speaking in approximate terms) in section
10.6, “Repositorylds’, of the CORBA 2.3 specification. Should this specification be
adopted, the #pragma mechanisms shall be deprecated.

The following grammatical productions shall be added to the IDL grammar:
<type_id_dcl>::=“typeld” <scoped_name> <string_literal>

<type_prefix_dcl>::= “typePrefix” <scoped_name> <string_literal>

4.3.1 Repository identity declaration

August 2, 1999 10:02 pm

The syntax of arepository identity declaration is as follows:

<type_id_dcl> ::=“typeld” <scoped_name> <string_literal>
A repository identifier declaration includes the following elements:
® the keyword typeld

® a<scoped_name> that denotes the named IDL construct to which the repository
identifier is assigned

CORBA Components Volume | - orbos/99-07-01 4-55

® astring literal that must contain a valid repository identifier value

The <scoped_name> is resolved according to normal IDL name resolution rules, based
on the scope in which the declaration occurs. It must denote a previously-declared
name of one of the following IDL constructs:

¢ module

« interface

« component
* home

« facet

* receptacle

e event sink

* event source
« finder

« factory
 value type

« value type member
« value box

* constant

« typedef

e exception

« attribute

e operation

e enum

* |ocal

The value of the string literal is assigned as the repository identity of the specified type
definition. This value will be returned as the Repositoryld by the interface repository
definition object corresponding to the specified type definition. Language mappings
constructs, such as Java helper classes, that return repository identifiers shall return the
values declared for their corresponding definitions.

At most one repository identity declaration may occur for any named type definition.
An attempt to re-define the repository identity for atype definition isillegal, regardless
of the value of the re-definition.

If no explicit repository identity declaration exists for a type definition, the repository
identifier for the type definition shall be an IDL format repository identifier, as defined
in section 10.6.1 of the CORBA 2.3 specification.

4.3.2 Repository identifier prefix declaration

The syntax of arepository identifier prefix declaration is as follows:

<type_prefix_dcl> ::= “typePrefix” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:

4-56 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:02 pm

® the keyword typeld
® a<scoped_name> that denotes an IDL name scope to which the prefix applies

® astring literal that must contain the string to be pre-fixed to repository identifiersin
the specified name scope

The <scoped _name> is resolved according to normal IDL name resolution rules, based
on the scope in which the declaration occurs. It must denote a previously-declared
name of one of the following IDL constructs:

e module

« interface (including abstract or local interface)

« value type (including abstract, custom, and box value types)

« specification scope (::)

The specified string is pre-fixed to the body of all repository identifiersin the specified
name scope, whose values are assigned by default. To elaborate:

By “prefixed to the body of a repository identifier”, we mean that the specified string
isinserted into the default IDL format repository identifier immediately after the
format name and colon (“IDL:") at the beginning of the identifier. A forward slash (
‘I') character is inserted between the end of the specified string and the remaining
body of the repository identifier.

The prefix is only applied to repository identifiers whose values are not explicitly
assigned by atypeld declaration. The prefix is applied to all such repository identifiers
in the specified name scope, including the identifier of the construct that constitutes the
name scope.

Note that this specification does not provide a mechanismthat is analogous
to the #pragma version mechanism. It is the considered opinion of the sub-
mittersthat the current definition (or lack thereof) of the semantics of inter-
face repository identifier versionsis useless, or worse, misleading. To
provide a mechanism for assigning so-called versions numbers would only
invite further misuse.

4.4 DL Grammar modifications

In addition the extensions to IDL grammar specified in the previous sections, the
following productions shall be modified to define the scopes in which local, typeld,
and typePrefix may occur:

August 2, 1999 10:02 pm CORBA Components Volume | - orbos/99-07-01 4-57

<definition> ::= <type_dcl>"“;"
| <const_dcl>*“;"
| <except_dcl>*;”
| <interface>*“;”
| <module>“;”
| <value>*“;"
| <type_id_dcl>*“;"
| <type_prefix_dcl>*;"

<export> ::= <type_dcl>*“;"
| <const_dcl>*;"
| <except_dcl>*;”
| <attr_dcl>*;"
| <op_dcl>*;”
| <type_id_dclI>*;"
| <type_prefix_dcl>*“;”

4.4.1 Keywords

This specification defines the following new keywords in IDL:

import local typeld typePrefix

4-58 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:02 pm

Component Model)

5.1 Component Model

Component is a new basic meta-type in CORBA. The component meta-type is an
extension and specialization of the object meta-type. Component types can be specified
in IDL and represented in the Interface Repository. A component is denoted by a
component reference, which is represented by an object reference. Correspondingly, a
component definition is a specialization and extension of an interface definition.

A component type is a specific, named collection of features that can be described by
an IDL component definition or a corresponding structure in an Interface Repository.
Although the current specification does not attempt to provide mechanisms to support
formal semantic descriptions associated with component definitions, our intent is that a
component type definition is associated with a single well-defined set of behaviors.
Although there may be several realizations of the component type for different run-
time environments (e.g., OS/hardware platforms, languages, etc.), they should all
behave consistently. As an abstraction in a type system, a component type is
instantiated to create concrete entities (instances) with state and identity.

A component type encapsulates its internal representation and implementation.
Although the component specification includes standard frameworks for component
implementation, these frameworks, and any assumptions that they might entail, are
completely hidden from clients of the component.

5.1.1 Component levels

August 2,199911:14 pm

There are two levels of components. basic and extended. Both are managed by
component homes, but they differ in the capabilities they can offer. Basic components
essentially provide a simple mechanism to “componentize” a regular CORBA object,
without adding significantly to the pre-component programming model. Extended
components, on the other hand, provide a richer set of functionality than the existing
CORBA model.

CORBA Components Volume| - orbos/99-07-01 5-59

5-60

5.1.2 Ports

A basic component is very similar in functionality to an EJB as defined in
the Enterprise JavaBeans 1.1 specification. This allows mapping and inte-
gration at thislevel much easier.

Components support a variety of surface features through which clients and other
elements of an application environment may interact with a component. In general,
these surface features are called ports. The component model supports four basic kinds
of ports:

® Facets, which are distinct named interfaces provided by the component for client
interaction

® Receptacles, which are named connection points that describe the component’s
ability to use a reference supplied by some external agent

® Event sources, which are named connection points that emit events of a specified
type to one or more interested event consumers, or to an event channel

® Event sinks, which are named connection points into which events of a specified
type may be pushed.

® Attributes, which are named values exposed through accessor and mutator
operations. Attributes are primarily intended to be used for component
configuration, although they may be used in a variety of other ways.

Basic components or not allowed to offer facets, receptacles, event sources and sinks.
They may only offer attributes.

Extended components may offer any type of port.

5.1.3 Components and facets

A component can provide multiple object references, called facets, which are capable
of supporting distinct (i.e., unrelated by inheritance) CORBA interfaces. The
component has a single distinguished reference whose interface conforms to the
component definition. This reference supports an interface, called the component’s
equivalent interface, that manifests the component’s surface features to clients. The
equivalent interface allows clients to navigate among the component’s facets, and to
connect to the component’s ports.

Basic components cannot support facets, therefore attempts to navigate to other facets
will always fail. The equivalent interface of a basic component is the only object
available for a client to interact with.

The other interfaces provided by the component are referred to as facets. Figure 5-1
illustrates the relationship between the component and its facets.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

Component reference supports
component’s equivalent interface

-

Component

/

Implementations

\
= of facet
— interfaces are
O / encapsulated
/

A

facet references
support independent
facet interfaces K

Figure5-1 Component Interfaces and Facets

The relationship between the component and its facets is characterized by the
following observations:

* Theimplementations of the facet interfaces are encapsulated by the component, and
considered to be “parts’ of the component. The internal structure of a component is
opaque to clients.

® Clients can navigate from any facet to the component equivalent interface, and can
obtain any facet from the component equivalent interface.

® Clients can reliably determine whether any two references belong to the same
component instance.

®* Thelife cycle of afacet is bounded by the life cycle of its owning component.

5.1.4 Component identity

A component instance is identified primarily by its component reference, and
secondarily by its set of facet references (if any). The component model provides
operations to determine whether two references belong to the same component
instance, and (as mentioned above) operations to navigate among a component’s
references. The definition of “same” component instance is ultimately up to the

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 5-61

component implementor, in that they may provide a customized implementation of this
operation. However, the component framework provides standard implementations that
constitute de facto definitions of “sameness’ when they are employed.

Components may also be associated with primary key values by a component home.
Primary keys are data values exposed to the component’s clients that may be used in
the context of a component home to identify component instances and obtain
references for them. Primary keys are not features of components themselves; the
association between a component instance and a particular primary key value is
maintained by the home that manages the component.

5.1.5 Component homes

This specification defines a component home meta-type that acts as a manager for
instances of a specified component type. Component home interfaces provide
operations to manage component life cycles, and optionally, to manage associations
between component instances and primary key values. A component home may be
thought of as a manager for the extent of a type (within the scope of a container).

Component types are defined in isolation, independent of home types. A home
definition, however, must specify exactly one component type that it manages.
Multiple different home types can manage the same component type, though they
cannot manage the same set of component instances.

At execution time, a component instance is managed by a single home object of a
particular type. The operations on the home are roughly equivalent to static or class
methods in object-oriented programming languages.

5.2 Component Definition

5.2.1 IDL Extensions for Components

A component definition in IDL implicitly defines an interface that supports the
features defined in the component definition body. It extends the concept of an
interface definition to support features that are not supported in interfaces. Component
definitions also differ from interface definitions in that they support only single
inheritance from other component types.

The extensions to IDL for components are described by the following grammar.

5-62 CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

<definition> ::= <type_dcl>"“;"
| <const_dcl>*;"
| <except_dcl>*“;"
| <interface>"“;”
| <value>*“;”
| <module>*“;"
| <component>“;”
| <home_dcl>*;"

<component> ::= <component_dcl>
| <component_forward_dcl>

<component_forward_dcl> ::=“component” <identifier>
<component_dcl>::= <component_header>“{" <component_body>“}"
<component_header> ::= “component” <identifier>

[<component_inheritance_spec>]
[<supported_interface_spec>]

“w on

<supported_interface_spec> ::=“supports” <scoped_name>{"“,
<scoped_nhame> }*

<component_inheritance_spec>::="“." <scoped_name>
<component_body>::= <component_export>*
<component_export> ::= <provides_dcl>"“;"

| <uses_dcl>"*;"

| <emits_dcl>"*;”

| <publishes_dcl>*“;"

| <consumes_dcl>*“;"

| <attr_dcl>*;”

<provides_dcl>::="“provides” <interface_type> <identifier>

<interface_type> ::= <scoped_name>
| “Object”

<uses_dcl>::="uses” [“multiple”] < interface_type> <identifier>
<emits_decl>::=“emits” <scoped_name> <identifier>
<publishes_decl>::="“publishes” <scoped_name> <identifier>
<consumes_dcl>::="“consumes” <scoped_name> <identifier>

<attr_dcl> ::=<readonly_attr_spec>
| <attr_spec>

<readonly_attr_spec> ::="“readonly” “attribute” <param_type_spec>

CORBA Components Volume | - orbos/99-07-01

<readonly_attr_declarator>

<readonly_attr_declarator> ::= <simple_declarator> [<raises_expr>]
| <simple_declarator> {“,” <simple_declarator> }*

<attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>

<attr_declarator> ::= <simple_declarator> <attr_raises_expr>

| <simple_declarator> {“,” <simple_declarator> }*

<attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]
| <set_excep_expr>

<get_excep_expr> ::=“getRaises” <exception_list>
<set_excep_expr>::=“setRaises” <exception_list>
<exception_list>::="(" <scoped_name> { “,” <scoped_name>} +"“)"

<home_dcl>::= <home_header> <home_body>

<home_header> ::= “home” <identifier>[<home_inheritance_spec>]
“manages” <scoped_name> [<primary_key_spec>]

<home_inheritance_spec> ::=“:"” <scoped_name>
<primary_key_spec>::="“primaryKey” <scoped_name>
<home_body> ::=“{" <home_export>*“}"
<home_export ::= <export>

| <factory_dcl>"*;"

| <finder_dcl>*“;"

<factory_dcl>::=“factory” <identifier>"“(“ [<init_param_decls>]"“)" [
<raises_expr>]

<finder_dcl> ::= “finder” <identifier>“(“ [<init_param_decls>]")" [
<raises_expr>]

5.3 Component Declaration

5.3.1 Syntax

The syntax for declaring a component header is as follows:

5-64 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

<component_dcl>::= <component_header>“{" <component_body>“}"

<component_header> ::= “component” <identifier>
[<component_inheritance_spec>]
[<supported_interface_spec>]

<supported_interface_spec> ::= “supports” <scoped_name>{“,"
<scoped_name> }*

<component_inheritance_spec>::="“." <scoped_name>

A component header comprises the following elements:

® the keyword component

® an <identifier> that names the component type, and the equivalent interface, in the
enclosing scope

® anoptional <inheritance_spec>, consisting of a colon and a single <scoped_name>
that must denote a previously-defined component type; see Section 5.12,
“Component Inheritance” for details of component inheritance

® an optional <supported_interface spec> that must denote one or more previously-
defined IDL interfaces

5.3.2 Basic Components

August 2, 1999 11:14 pm

Basic components cannot avail themselves of certain features in the model. In
particular, they cannot inherit from other components, nor can they provide or use
interfaces, or make any event declarations. Therefore a basic component is declared
using as a restricted version of the above. In particular, no
<component_inheritance_spec> can be declared, and the <component_body>
shall only contain zero or more attribute declarations (<attr_dcl>).

To avoid ambiguity between basic and extended definitions, any component
declaration that matches the following pattern is a basic component:

“component” <identifier> [<supported_interface_spec>]
“{* {<attr_dcl>“;"}*“}"

Ideally the syntax should explicitly represent these rules. However this can
only be achieved by introducing a new keyword to distinguish between
basic and extended components.It was felt that an extra keyword would
cause problemsin the future, as the distinction between basic and extended
components gets blurred. This blurring may occur due to future devel op-
ment of both the CORBA Component Model and the Enterprise JavaBeans
specifications.

CORBA Components Volume | - orbos/99-07-01 5-65

5.3.3 Equivalent IDL

The client mappings (i.e., mappings of the externally-visible component features) for
component declarations are described in terms of equivalent IDL. All of the features of
components have equivalent formsin IDL as it exists at the time of this proposed
specification (i.e., IDL grammar as specified by CORBA version 2.3).

As described above, the component meta-type is a specialization of the interface meta-
type. Each component definition has a corresponding equivalent interface. In
programming language mappings, components are denoted by object references that
support the equivalent interface implied by the component definition.

Since basic components are essentially a profile, no specific rules are defined for them.

5.3.3.1 Smpledeclaration

For a component declaration with the following form:
component component_name{ ... };
the equivalent interface shall have the following form:

interface component_name
: Components::CCMObject { ... };

5.3.3.2 Supported interfaces

For a component declaration with the following form:

component <component_name>
supports <interface_name_1>, <interface_name_2>{ ... };

the equivalent interface shall have the following form:
interface <component_name>

: Components::CCMObiject,
<interface_name_1>, <interface_name_2>{ ... };

Supported interfaces are described in detail in Section 5.4.6 on page 73

5.3.3.3 Inheritance

For a component declaration with the following form:
component <component_name> : <base_name>{ ... };

the equivalent interface shall have the following form:

5-66 CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

interface <component_name> : <base_name>{ ... }

5.3.3.4 Inheritance and supported interfaces

For a component declaration with the following form:

component <component_name> : <base_name>
supports <interface_name_1>, <interface_name_2>{ ... };

the equivalent interface shall have the following form:

interface <component_name>
: <base_name>, <interface_name_1>, <interface_name_2>{ ... };

5.3.4 Component Body

A component forms a naming scope, nested within the scope in which the component
is declared. A component body can contain the following kinds of port declarations:

® Facet declarations (provides)

® Receptacle declarations (uses)

® Event source declarations (emits or publishes)
® Event sink declarations (consumes)

® Attribute declarations (attribute)

Declarations for facets, receptacles, events sources, event sinks and attributes all map
onto operations on the component’s equivalent interface. These declarations and their
meanings are described in detail below.

5.4 Facetsand Navigation

A component type may provide several independent interfaces to its clientsin the form
of facets. Facets are intended to be the primary vehicle through which a component
exposes its functional application behavior to clients during normal execution. A
component may exhibit zero or more facets.

5.4.1 Syntax

A facet is declared with the following syntax:

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 5-67

<provides_dcl>::="“provides” <interface_type> <identifier>

The interface type must be either the keyword Object, or a scoped name that denotes
a previously-declared interface type which is not a component interface, i.e., is not the
interface corresponding to a component definition. The identifier names the facet
within the scope of the component, allowing multiple facets of the same type to be
provided by the component.

5.4.2 Equivalent IDL

Facet declarations imply operations on the component interface that provide access to
the provided interfaces by their names. A facet declaration of the following form:

provides <interface_type> <name>;

results in the following operation defined on the equivalent interface:

<interface_type> provide_<name> ();

The mechanisms for navigating among a component’s facets are described in Section
5.4.4 on page 69. The relationships between the component identity and the facet
references, and assumptions regarding facet references, are described in Section 5.4.5
on page 73. The implementation of navigation operations are provided by the
component implementation framework in generated code; the user-provided
implementation of a component type is not responsible for navigation operations. The
responsibilities of the component servant framework for supporting navigation
operations are described in detail in Chapter 6.

5.4.3 Semantics of facet references

Clients of a component instance can obtain a reference to a facet by invoking the
provide_<name> operation on the equivalent interface corresponding to the
provides declaration in the component definition. The component implementation is
responsible for guaranteeing the following behaviors:

® |n general, a component instance should be prepared to return object references for
facets throughout the instance’s life cycle. A component implementation may, as
part of its advertised behavior, return a nil object reference as the result of a
provide_<name> operation.

® An object reference returned by a provide_<name> operation must support the
interface associated with the corresponding provides declaration in the component
definition. Specifically, when the _is_a operation is invoked on the object reference
with the Repositoryld of the provided interface type, the result must be TRUE,
and legal operations of the facet interface must be able to be invoked on the object
reference. If the type specified in the provides declaration is Object, then there
are no constraints on the interface types supported by the reference.

A facet reference provided by a component may support additional inter-
faces, such asinterfaces derived from the declared type, aslong asthe
stated contract is satisfied.

| 5-68 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

® Facet references must behave properly with respect to component identity and
navigation, as defined in Section 5.4.5 on page 73 and Section 5.4.4 on page 69.

5.4.4 Navigation

August 2, 1999 11:14 pm

Navigation among a component’s facets may be accomplished in the following ways:

® A client may navigate from any facet reference to the component that provides the
reference via CORBA::Object::get_component.

® A client may navigate from the component interface to any facet using the
generated provide_<name> operations on the equivalent interface.

® A client may navigate from the component interface to any facet using the generic
provide_facet operation on the Navigation interface (inherited by all component
interfaces through Components::CCMObject). Other operations on the
Navigation interface (i.e.,, provide_all_facets and provide_named_facets)
return multiple references, and can also be used for navigation. When using generic
navigation operations on Navigation, facets are identified by string values that
contain their declared names.

® A client may navigate from a facet interface that derives from the Navigation
interface directly to any other facet on the same component, using provide_facet,
provide_all_facets, and provide_named_facets.

® For components, such as basic components, that do not provide interfaces, only the
generic navigation operations are available on the equivalent interface. The
behavior of these operations, where there are no facets to navigate to, is defined
below.

The detailed descriptions of these mechanisms follow.

5.4.4.1 get_component()

The CORBA component specification extends the CORBA::Object pseudo interface
with a single operation:

module CORBA {
interface Object { // PIDL

Object get_component ();
|3
|3

If the target object reference is itself a component reference (i.e., it denotes the
component itself), the get_component operation returns the same reference (or
another equivalent reference). If the target object reference is a facet reference the
get_component operation returns an object reference for the component. If the target
reference is neither a component reference nor a provided reference, get_component
returns a nil reference.

CORBA Components Volume | - orbos/99-07-01 5-69

5-70

I mplementation of get_component

As with other operations on CORBA::Object, get_component isimplemented as a
request to the target object. Following the pattern of other CORBA::Object
operations (i.e., _interface, is_a, and _non_existent; see section 15.4.1.2 of the
CORBA 2.3 specification), the operation name in GIOP request corresponding to
get_component shal be“ _component”.

5.4.4.2 Component-specific provide operations
The provide_<name> operation implicitly defined by aprovides declaration can be
invoked to obtain a reference to the facet.

5.4.4.3 Navigation interface on the component

As described in Section 5.3 on page 64 al component interfaces implicitly inherit
directly or indirectly from CCMObject, which inherits from
Components::Navigation. The definition of the Components::Navigation
interface is as follows:

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

module Components {

valuetype FacetDescription {
public CORBA::Repositoryld InterfacelD;
public FeatureName Name;

h

valuetype Facet : FacetDescription {
public Object ref;

h

typedef sequence<Facet> Facets;
typedef sequence<FacetDescription>
FacetDescriptions;

exception InvalidName { };
interface Navigation {

Object provide_facet (in FeatureName name)
raises (InvalidName);

FacetDescriptions describe_facets();
Facets provide_all_facets();

Facets provide_named_facets (in NameList names)
raises (InvalidName);

boolean same_component (in Object ref);

h
h

This interface provides generic navigation capabilities. It isinherited by al component
interfaces, and may be optionally inherited by any interface that is explicitly designed
to be a facet interface for a component. The descriptions of Navigation operations
follow.

provide_facet

The provide_facet operation returns a reference to the facet denoted by the name
parameter. The value of the name parameter must be identical to the name specified in
the provides declaration. The valid names are defined by inherited closure of the actual
type of the component, i.e., the names of facets of the component type and all of its
inherited component types. If the value of the name parameter does not correspond to
one of the component’s facets, the InvalidName exception is raised. A component
that does not provide any facets (e.g., a basic component) will have no valid name
parameter to this operation and thus shall always raise the InvalidName exception.

CORBA Components Volume | - orbos/99-07-01 5-71

5-72

describe_facets

The describe_facets operation returns a sequence containing descriptions of all of
the facets provided by the target component. Each description is a value type
containing the Repositoryld of the facet’s interface and the name of the facet,
expressed as an unscoped local name relative to the owning component’s name scope.
The order in which these descriptions occur in the sequence is not specified. A
component that does not provide any facets (e.g., a basic component) shall return a
seguence of length zero.

provide_all_facets

The provide_all_facets operation returns a sequence of value objects, each of which
contains the Repositoryld of the facet interface and name of the facet, along with a
reference to the facet. The sequence must contain descriptions and references for all of
the facets in the component’s inheritance hierarchy. The order in which these values
occur in the sequence is not specified. A component that does not provide any facets
(e.g., abasic component) shall return a sequence of length zero.

provide_named_facets

The provide_named_facets operation returns a sequence of described references
(identical to the sequence returned by provide_all_facets), containing descriptions
and references for the facets denoted by the names parameter. If any name in the
names parameter is not a valid name for a provided interface on the component, the
operation raises the InvalidName exception. The order of values in the returned
sequence is not specified. A component that does not provide any facets (e.g., a basic
component) will have no valid name parameter to this operation and thus shall always
raise the InvalidName exception.

The same_component operation on Navigation is described in Section 5.4.5 on
page 73.

5.4.4.4 Navigation interface on facet interfaces

Any interface that is designed to be used as a facet interface on a component may
optionally inherit from the Navigation interface. When the navigation operations (i.e.,
provide_facet, provide_all_facets, provide_named_facets, and
describe_facets) are invoked on the facet reference, the operations shall return the
same results as if they had been invoked on the component interface that provided the
target facet. The skeletons generated by the Component Implementation Framework
will provide implementations of these operations that will delegate to the component
interface.

This option allows navigation from one facet to another to be per-
formed in a single request, rather than a pair of requests (to get the
component reference and navigate from there to the desired facet).
To illustrate, consider the following component definition:

module example {
interface foo : Components::Navigation {... };
interface bar { ... };

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

component baz session {
provides foo a;
provides bar b;

h
A client could navigate fromato b asfollows:

foo myFoo;

/I assume myFoo holds a reference to a foo provided by a baz
baz myBaz = bazHelper.narrow(myFoo.get_component());
bar myBar = myBaz.provide_b();

Or, it could navigate directly:

foo myFoo;
/I assume myFoo holds a reference to a foo provided by a baz
bar myBar = barHelper.narrow(myFoo.provide_interface(“b");

5.4.5 Provided References and Component Identity

The same_component operation on the Navigation interface alows clients to
determine reliably whether two references belong to the same component instance, that
is, whether the references are facets of or directly denote the same component instance.
The component implementation is ultimately responsible for determining what the
“same component instance” means. The skeletons generated by the Component
Implementation Framework provide an implementation of same_component, where
“same instance” is defined in terms of opaque identity values supplied by the
component implementation or the container in the container context. User-supplied
implementations can provide different semantics.

If afacet interface inherits the Navigation interface, then the same_component
operation on the provided interface should give the same results as the
same_component operation on the component interface that owns the provided
interface. The skeletons generated by the Component | mplementation Framework
provide an implementation of same_component for facets that inherit the
Navigation interface.

5.4.6 Supported interfaces

A component definition may optionally support one or more interfaces, or in the case
of extended components, inherit from a component that supports one or more
interfaces. When a component definition header includes a supports clause as follows:

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 5-73

component <component_name> supports <interface_name>{ ... };

the equivalent interface inherits both CCMObject and any supported interfaces, as fol-
lows:

interface <component_name>
: Components::CCMObject, <interface_name>{ ... };

The component implementation must supply implementations of operations defined on
supported interfaces. Clients must be able to widen a reference of the component’s
equivalent interface type to the type of any of the supported interfaces. Clients must
also be able to narrow a reference of type CCMObject to the type of any of the
component’s supported interfaces.

For example, given the following IDL:

module M {
interface | {
void op();
component A supports | {
provides | foo;
b
home AManager manages A { };

}

The AManager interface will be derived from KeylessCCMHome, support-
ing the create_component oper ation, which returns a reference of type
CCMONbject. This reference must be able to be narrowed directly from
CCMObject to I:

/1 java

M Avanager aHone = ...; // get A's hone
or g. ong. Conponent s. CCMbj ect myConmp =
aHone. cr eat e_comnponent () ;

M1 nyl = M Hel per. narrow(myConp) ;

/1 must succeed

For example, given the following IDL:

module M {

interface | {
void op();

h

component A supports | {
provides | foo;

h

componentB:A{... };

home BHome manages B {};

h
The equivalent IDL is:

module M {
interface 1 {

5-74 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

5.5 Receptacles

August 2, 1999 11:14 pm

void op();

interface A :
org.omg.Components.CCMObject, | { ... };
interface B: A{... };

h

which allows the following usage:

M BHorme bHonme = ... // get B s hone

M B nyB = bHome. create();

nmyB. op() ; /1l 1's operations are supported
/1l directly on B's interface

The supports mechanism provides programming convenience for light-
weight components that only need to implement a single operational inter-
face. A client can invoke operations from the supported interface directly
on the component reference, without narrowing or navigation:

M A nyA = aHone. create();
myA. op();

as opposed to

M A nyA = aHomne. create();
M1 nyl = nyA provide_foo();
nyl.op();

or, assuming that the client has A's home, but doesn’t statically know about
A'sinterface or home interface:

or g. ong. Conponent s. Keyl essCCMHone generi cHome =
/1 get A's hone;

or g. ong. Conmponent s. CCMbj ect myConmp =

generi cHone. cr eat e_conponent () ;

M1 nyl = M Hel per. narrow(myConp);
myl.op();

as opposed to

org. ong. CORBA. Obj ect obj =

myConp. provi de_i nterface(“fo0");

M1 nyl = M Hel per.narrow(obj);

nyl.op();

This mechanism allows component-unaware clients to receive a reference

to a component (passed as type CORBA:: Object) and use the supported
interface.

CORBA Components Volume | - orbos/99-07-01

A component definition can describe the ability to accept object references upon which
the component may invoke operations. When a component accepts an object reference
in this manner, the relationship between the component and the referent object is called
a connection; they are said to be connected. The conceptual point of connection is

5-75

5-76

called areceptacle. A receptacle is an abstraction that is concretely manifested on a
component as a set of operations for establishing and managing connections. A
component may exhibit zero or more receptacles.

5.5.1 Syntax

Receptacles are intended as a mechanical device for expressing a wide
variety of relationships that may exist at higher levels of abstraction. As
such, receptacles have no inherent higher-order semantics, such asimply-
ing ownership, or that certain operations will be transient across connec-
tions.

The syntax for describing a receptacle is as follows:

<uses_dcl>::="uses” [“multiple”] <interface_type> <identifier>

A receptacle declaration comprises the following elements:

The keyword uses.

The optional keyword multiple. The presence of this keyword indicates that the
receptacle may accept multiple connections simultaneously, and results in different
operations on the component’s associated interface.

An <interface type>, which must be either the keyword Object or a scoped hame
that denotes the interface type that the receptacle will accept. The scoped name
must denote a previously-defined non-component interface type.

An <identifier> that names the receptacle in the scope of the component.

5.5.2 Equivalent IDL

A uses declaration of the following form:

uses <interface_type> <receptacle_name>;

results in the following equivalent operations defined in the component interface:

void connect_<receptacle_name> (in <interface_type>conxn)
raises (

);

Components::AlreadyConnected,
Components::IinvalidConnection

<interface_type> disconnect_<receptacle_name> ()
raises (Components::NoConnection);

<interface_type> get_connection_<receptacle_name> ();

A uses declaration of the following form:

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

uses multiple <interface_type> <receptacle_name>;

results in the following equivalent operations defined in the component interface:

struct <receptacle_name>Connection {
<interface_type> objref;
Components::Cookie ck;

sequence <<receptacle_name>Connection>

<receptacle_name>Connections;

Components::Cookie
connect_<receptacle_name> (in <interface_type> connection)
raises (
Components::ExceededConnectionLimit,
Components::InvalidConnection

);

<interface_type> disconnect_<receptacle_name> (
in Components::Cookie ck
)

raises (Components::InvalidConnection);

<receptacle_name>Connections
get_connections_<receptacle_name> ();

5.5.3 Behavior

August 2, 1999 11:14 pm

5.5.3.1 Connect operations

Operations of the form connect_<receptacle_name> are implemented in part by
the component implementor, and in part by generated code in the component servant
framework. The responsihilities of the component implementation and servant
framework for implementing connect operations are described in detail in Chapter 6.
The receptacle holds a copy of the object reference passed as a parameter. The
component may invoke operations on this reference according to its design. How and
when the component invokes operations on the reference is entirely the prerogative of
the component implementation. The receptacle will hold a copy of the reference until
it is explicitly disconnected.

Simplex receptacles

If areceptacle’s uses declaration does not include the optional multiple keyword,
then only a single connection to the receptacle may exist at a given time. If a client
invokes a connect operation when a connection already exists, the connection
operation will raise the AlreadyConnected exception.

The component implementation may refuse to accept the connection for arbitrary
reasons. If it does so, the connection operation will raise the InvalidConnection
exception.

CORBA Components Volume | - orbos/99-07-01 5-77

Multiplex receptacles

If areceptacle’s uses declaration includes the optional multiple keyword, then
multiple connections to the receptacle may exist simultaneously. The component
implementation may choose to establish a limit on the number of simultaneous
connections allowed. If an invocation of a connect operation attempts to exceed this
limit, the operation will raise the ExceededConnectionLimit exception.

The component implementation may refuse to accept the connection for arbitrary
reasons. If it does so, the connection operation will raise the InvalidConnection
exception.

Connect operations for multiplex receptacles return values of type
Components::Cookie. Cookie values are used to identify the connection for
subsequent disconnect operations. Cookie values are generated by the receptacle
implementation (the responsibility of the supplier of the component-enabled ORB, not
the component implementor). Likewise, cookie equivalence is determined by the
implementation of the receptacle implementation.

The client invoking connection operations is responsible for retaining cookie values
and properly associating them with connected object references, if the client needs to
subsequently disconnect specific references. Cookie values must be unique within the
scope of the receptacle that created them. If a cookie value is passed to a disconnect
operation on a different receptacle than that which created it, results are undefined.

Cookie values are described in detail in Section 5.5.3.4, “ Cookie type”.

Cookie values are required because object references cannot be reliably
tested for equivalence.

5.5.3.2 Disconnect operations

Operations of the form disconnect_receptacle_name terminate the relationship
between the component and the connected object reference.

Simplex receptacles

If a connection exists, the disconnect operation will return the connected object
reference. If no connection exists, the operation will raise a NoConnection
exception.

Multiplex receptacles

The disconnect_receptacle_name operation of a multiplex receptacle takes a
parameter of type Components::Cookie. The ck parameter must be a value
previously returned by the connect_receptacle_name operation on the same
receptacle. It is the responsibility of the client to associate cookies with object
references they connect and disconnect. If the cookie value is not recognized by the
receptacle implementation as being associated with an existing connection, the
disconnect_receptacle_name operation raises an InvalidConnection exception.

5-78 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

5.5.3.3 get_connection and get_connections operations

Simplex receptacles

Simplex receptacles have operations named get_connection_receptacle_name. If
the receptacle is currently connected, this operation returns the connected object
reference. If there is no current connection, the operation returns a nil object reference.

Multiplex receptacles

Multiplex receptacles have operations named get_connections_receptacle_name.
This operation returns a sequence of structures, where each structure contains a
connected object reference and its associated cookie value. The sequence contains a
description of al of the connections that exist at the time of the invocation. If there are
no connections, the sequence length will be zero.

5.5.3.4 Cookietype
The Cookie valuetype is defined by the following IDL:

module Components {

valuetype Cookie {
private sequence<octet> CookieValue;
|3
|3

Cookie values are created by multiplex receptacles, and are used to correlate a connect
operation with a disconnect operation on multiplex receptacles.

Implementations of component-enabled ORBs may employ value type derived from
Cookie, but any derived cookie types must be truncatable to Cookie, and the
information preserved in the CookieValue octet sequence must be sufficient for the
receptacle implementation to identify the cookie and its associated connected
reference.

5.5.4 Receptacles interface

August 2, 1999 11:14 pm

The Receptacles interface provides generic operations for connecting to a
component’s receptacles. The CCMObject interface is derived from Receptacles.
For components, such as basic components, that do not use interfaces, only the generic
receptacles operations are available on the equivalent interface. The default behavior in
such cases is defined below.

The Receptacles interfaces is defined by the following IDL:

CORBA Components Volume | - orbos/99-07-01 5-79

5-80

module Components {

valuetype ConnectionDescription {
public Cookie ck;
public Object objref;

¥
typedef sequence<ConnectionDescription> ConnectedDescriptions;
interface Receptacles {

Cookie connect (
in FeatureName name,
in Object connection)
raises (
InvalidName,
InvalidConnection,
AlreadyConnected,
ExceededConnectionLimit);

void disconnect (
in FeatureName name,
in Cookie ck)

raises (
InvalidName,
InvalidConnection,
CookieRequired,
NoConnection);

ConnectionList get_connections (in FeatureName name)
raises (InvalidName);

h

connect

The connect operation connects the object reference specified by the connection
parameter to the receptacle specified by the name parameter on the target component.
If the specified receptacle is a multiplex receptacle, the operation returns a cookie
value that can be used subsequently to disconnect the object reference. If the receptacle
is a simplex receptacle, the return value is a nil. The following exceptions may be
raised:
® |f the name parameter does not specify a valid receptacle name, then the
InvalidName exception is raised.

® |f the receptacle is a simplex receptacle and it is aready connected, then the
AlreadyConnected exception is raised.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

5

® |f the object reference in the connection parameter does not support the interface
declared in the receptacle’s uses statement, the InvalidConnection exception is
raised.

® |f the receptacle is a multiplex receptacle and the implementation-defined limit to
the number of connections is exceeded, the ExceededConnectionLimit
exception is raised.

® A component that does not have any receptacles (e.g., a basic component) will have
no valid name parameter to this operation and thus shall always raise the
InvalidName exception.

disconnect

If the receptacle identified by the name parameter is a simplex receptacle, the
operation will disassociate any object reference currently connected to the receptacle.
The cookie value in the ck parameter is ignored. If the receptacle identified by the
name parameter is a multiplex receptacle, the disconnect operation disassociates the
object reference associated with the cookie value (i.e., the object reference that was
connected by the operation that created the cookie value) from the receptacle. The
following exceptions may be raised:

® |f the name parameter does not specify a valid receptacle name, then the
InvalidName exception is raised.

® |f the receptacle is a simplex receptacle there is no current connection, then the
NoConnection exception is raised.

® |f the receptacle is a multiplex receptacle and the cookie value in the ck parameter
does not denote an existing connection on the receptacle, the InvalidConnection
exception is raised.

® |f the receptacle is a multiplex receptacle and a null value is specified in the ck
parameter, the CookieRequired exception is raised.

® A component that does not have any receptacles (e.g., a basic component) will have
no valid name parameter to this operation and thus shall always raise the
InvalidName exception.

get_connections

The get_connections operation returns a sequence of ConnectionDescription
structs. Each struct contains an object reference connected to the receptacle named in
the name parameter, and a cookie value that denotes the connection. If the name
parameter does not specify a valid receptacle name, then the InvalidName exception
israised. A component that does not have any receptacles (e.g., a basic component)
will have no valid name parameter to this operation and thus shall always raise the
InvalidName exception.

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 5-81

5.6 Events

The CORBA component model supports a publish/subscribe event model. The event
model for CORBA components is designed to be compatible with CORBA
notification, as defined in OMG document telcom/98-11-01. The interfaces exposed by
the component event model provide a simple programming interface whose semantics
can be mapped onto a subset of CORBA notification semantics.

5.6.1 Event types

Event types in the CORBA Component event model are value types derived from the
abstract value type Components::EventBase, which is defined as follows:

module Components {
abstract valuetype EventBase { };

3
Applications derive specific concrete event types from this base type.

Since the underlying implementation of the component event mechanism provided by
the container is CORBA notification, event values shall be inserted into instances of
the any type. The resulting any values shall be inserted into a CORBA notification
structured event. The mapping between a component event and a notification event is
implemented by the container and is described in Section 9.4 on page 298.

5.6.2 Integrity of value types contained in anys

To ensure proper transmission of value type events, this specification makes the
following clarifications to the semantics of value types when inserted into anys:

When an any containing a value type is received as a parameter in an ORB-mediated
operation, the value contained in the any must be preserved, regardless of whether the
receiving execution context is capable of constructing the value (in its original form or
a truncated form), or not. If the receiving context attempts to extract the value, the
extraction may fail, or the extracted value may be truncated. The value contained in the
any shall remain unchanged, and shall retain its integrity if the any is passed as a
parameter to another execution context.

5.6.3 EventConsumer interface

5-82

The component event model is a push model. The basic mechanics of this push model
are defined by consumer interfaces. Event sources hold references to consumer
interfaces and invoke various forms of push operations to send events.

Component event sources hold references to consumer interfaces and push to them.
Component event sinks provide consumer references, into which other entities (e.g.,
channels, clients, other component event sources) push events.

Event consumer interfaces are derived from the
Components::EventConsumerBase interface, which is defined as follows:

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

module Components {
exception BadEventType {
CORBA::Repositoryld expected_event_type
|3
interface EventConsumerBase {
void push_event(in EventBase evt) raises (BadEventType);
|3
|3

Type-specific event consumer interfaces are derived from the EventConsumerBase
interface. Event source and sink declarations in component definitions cause type-
specific consumer interfaces to be generated for the event types used in the
declarations.

The push_event operation pushes the event denoted by the evt parameter to the
consumer. The consumer may choose to constrain the type of event it accepts. If the
actual type of the evt parameter is not acceptable to the consumer, the
BadEventType exception is raised. The expected_event_type member of the
exception contains the Repositoryld of the type expected by the consumer.

Note that this exception can only be raised by the consumer upon whose reference the
push_event operation was invoked. The consumer may be a proxy for an event or
notification channel with an arbitrary number of subscribers. If any of those
subscribers raise any exceptions, they will not be propagated back to the original event
source (i.e., the component).

5.6.4 Event service provided by container

Container implementations provide event services to components and their clients.
Component implementations obtain event services from the container during
initialization, and mediate client access to those event services. The container
implementation is free to provide any mechanism that supports the required semantics.
The container is responsible for configuring the mechanism and determining the
specific quality of service and routing policies to be employed when delivering events.
More detail is defined in Chapter 9, specifically Section 9.4 on page 298.

5.6.5 Event Sources—publishers and emitters

August 2, 1999 11:14 pm

An event source embodies the potential for the component to generate events of a
specified type, and provides mechanisms for associating consumers with sources.

There are two categories of event sources, emitters and publishers. Both are
implemented using event channels supplied by the container. An emitter can be
connected to at most one proxy provider by the container. A publisher can be
connected through the channel to an arbitrary number of consumers, who are said to
subscribe to the publisher event source. A component may exhibit zero or more
emitters and publishers.

A publisher event source has the following characteristics:

CORBA Components Volume | - orbos/99-07-01 5-83

5-84

® The equivalent operations for publishers allow multiple subscribers (i.e.,
consumers) to connect to the same source simultaneously.

® Subscriptions to a publisher are delegated to an event channel supplied by the
container at run time. The component is guaranteed to be the only source publishing
to that event channel.

An emitter event source has the following characteristics:

® The equivalent operations for emitters allow only one consumer to be connected to
the emitter at atime.

® The events pushed from an emitter are delegated to an event channel supplied by
the container at run time. Other event sources, however, may use the same channel.
Events pushed from an emitter are then pushed by the container into the consumer
interface supplied as a parameter to the connect_<source> operation.

In general, emitters are not intended to be exposed to clients. Rather, they
areintended to be used for configuration purposes. It is expected that emit-
terswill be connected at the time of component initialization and configu-
ration to consumer interfaces that are proxies for event channels that may
be shared between arbitrary clients, components and other system ele-
ments.

In contrast, publishers are intended to provide clients with direct access to
a particular event stream being generated by the component (embodied by
the publisher event source). It isour intent that clients subscribe directly to
the publisher source.

5.6.6 Publisher

5.6.6.1 Syntax

The syntax for an event publisher is as follows:

<publishes_decl>::="“publishes” <scoped_name> <identifier>
A publisher declaration consists of the following elements:
® the keyword publishes

® a<scoped_name> that denotes a previously-defined value type derived from
Components::EventBase

® an <identifier> that names the publisher event source in the scope of the
component

5.6.6.2 Equivalent IDL

For an event source declaration of the following form:

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

module <module_name> {
component <component_name> {
publishes <event_type> <source_name>;

The following equivalent IDL is implied:
module <module_name> {

module <component_name>EventConsumers {
interface <event_type>Consumer;

|3
interface <component_name> : Components::CCMObject {

Components::Cookie subscribe_<source_name> (

in
<component_name>EventConsumers::<event_type>Consumer
consumer

raises (
Components::ExceededConnectionLimit

<component_name>EventConsumers::<event_type>Consumer
unsubscribe_<source_name> (in Components::Cookie ck)
raises (Components::InvalidConnection);

h

module <component_name>EventConsumers {
interface <event_type>Consumer
: Components::EventConsumerBase {
void push (in <event_type> evt);
|3
|3
|3

5.6.6.3 Event publisher operations

subscribe_<source_name>

The subscribe_<source_name> operation connects the consumer parameter to an
event channel provided to the component implementation by the container. The
component will be the only publisher to that channel. If the implementation of the
component or the channel place an arbitrary limit on the number of subscriptions that
can be supported simultaneously, and the invocation of the subscribe operation would
cause that limit to be exceeded, the operation raises the ExceededConnectionLimit
exception.The Cookie value returned by the operation identifies the subscription

CORBA Components Volume | - orbos/99-07-01 5-85

formed by the association of the subscriber with the publisher event source. This value
can be used subsequently in an invocation of unsubscribe_<source_name> to
disassociate the subscriber from the publisher.

unsubscribe_<source name>

The unsubscribe_<source_name> operation destroys the subscription identified
by the ck parameter value, returning the reference to the subscriber. If the ck
parameter value does not identify an existing subscription to the publisher event
source, the operation raises a InvalidConnection exception.

5.6.7 Emitters

5.6.7.1 Syntax

The syntax for an emitter declaration is as follows:

<emits_decl> ::=“emits” <scoped_name> <identifier>
An emitter declaration consists of the following elements:
® the keyword emits

® a<scoped_name> that denotes a previously-defined value type derived from
Components::EventBase

® an <identifier> that names the event source in the scope of the component

5.6.7.2 Equivalent IDL

For an event source declaration of the following form:

module <module_name> {
component <component_name> {
emits <event_type> <source_name>;

h
h

The following equivalent IDL is implied:

5-86 CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

module <module_name> {
module <component_name>EventConsumers {
interface <event_type>Consumer;

|3
interface <component_name> : Components::CCMObject {

void connect_<source_name> (

in
<component_name>EventConsumers::<event_type>Consumer
consumer

raises (
Components::AlreadyConnected

<component_name>EventConsumers::<event_type>Consumer
disconnect_<source_name>()
raises (Components::NoConnection);

h

module <component_name>EventConsumers {
interface <event_type>Consumer
: Components::EventConsumerBase {
void push (in <event_type> evt);

5.6.7.3 Event emitter operations
connect_<source_name>

The connect_<source_name> operation connects the event consumer denoted by
the consumer parameter to the event emitter. If the emitter is already connected to a
consumer, the operation raises the AlreadyConnected exception.

disconnect_<source_name>

The disconnect_<source_name> operation destroys any existing connection by
disassociating the consumer from the emitter. The reference to the previously
connected consumer is returned. If there was no existing connection, the operation
raises the NoConnection exception.

5.6.8 Module scope of generated event consumer interfaces

The following observations and constraints apply to the equivalent IDL for event
source declarations:

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 5-87

5-88

®* The need for a typed event consumer interface requires the definition of a module
scope to guarantee that the interface name for the event subscriber is unique. The
module (whose name is formed by appending the string “ EventConsumers” to the
component type name) is defined in the same scope as the component’s equivalent
interface. The module is opened before the equivalent interface definition to
provide forward declarations for consumer interfaces. It is re-opened after the
equivalent interface definition to define the consumer interfaces.

® The name of a consumer interface is formed by appending the string “ Consumer” to
the name of the event type. One consumer interface type is implied for each unique
event type used in event source and event sink declarations in the component
definition.

5.6.9 Event Snks

An event sink embodies the potential for the component to receive events of a
specified type. An event sink is, in essence, a special-purpose facet whose type is an
event consumer. External entities, such as clients or configuration services, can obtain
the reference for the consumer interface associated with the sink.

Unlike event sources, event sinks do not distinguish between connection and
subscription. The consumer interface may be associated with an arbitrary number of
event sources, unbeknownst to the component that supplies the event sink. The
component event model provides no inherent mechanism for the component to control
which events sources may be pushing to its sinks. By exporting an event sink, the
component is, in effect, declaring its willingness to accept events pushed from
arbitrary sources. A component may exhibit zero or more consumers.

If a component implementation needs control over which sources can push
toaparticular sink it owns, the sink should not be exposed as a port on the
component. Rather, the component implementation can create a consumer

internally and explicitly connect or subscribeit to sources.

5.6.9.1 Syntax

The syntax for an event sink declaration is as follows:

<consumes_dcl>::=“consumes” <scoped_name> <identifier>

An event sink declaration contains the following elements:
® the keyword consumes

® a<scoped_name> that denotes a previously-defined value type that is derived from
the Components::EventBase abstract value type

® an <identifier> that names the event sink in the component’s scope

5.6.9.2 Equivalent IDL

For an event sink declaration of the following form:

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

module <module_name> {
component <component_name> {
consumes <event_type> <sink_name>;

The following equivalent IDL is implied:

module <module_name> {
module <component_name>EventConsumers {
interface <event_type>Consumer;

h

interface <component_name>: Components::CCMObject {
<component_name>EventConsumers::<event_type>Consumer
get_consumer_<sink_name>();

h

module <component_name>EventConsumers {
interface <event_type>Consumer
: Components::EventConsumerBase {
void push (in <event_type> evt);
|3
|3
|3

5.6.9.3 Event sink operations

The get_consumer_<sink_name> operation returns a reference that supports the
consumer interface specific to the declared event type.

5.6.10 Events interface

August 2, 1999 11:14 pm

The Events interface provides generic access to event sources and sinks on a
component. CCMObject is derived from Events. For components, such as basic
components, that do not declare participation in events, only the generic Events

operations are available on the equivalent interface. The default behavior in such cases
is described below.

The Events interface is described as follows:

CORBA Components Volume | - orbos/99-07-01 5-89

module Components {

exception InvalidName { };
exception InvalidConnection { };
exception AlreadyConnected { };
exception NoConnection { };

interface Events {
EventConsumerBase
get_consumer (in FeatureName sink_name)
raises (InvalidName);
Cookie subscribe (in FeatureName publisher_name,
in EventConsumerBase subscriber)
raises (InvalidName);
void unsubscribe (in FeatureName publisher_name,
in Cookie ck)
raises (InvalidName, InvalidConnection);
void connect_consumer (in FeatureName emitter_name,
in EventConsumerBase consumer)
raises (InvalidName, AlreadyConnected);
EventConsumerBase
disconnect_consumer (in FeatureName source_name)
raises (InvalidName, NoConnection);

h

get_consumer

The get_consumer operation returns the EventConsumerBase interface for the
sink specified by the sink_name parameter. If the sink_name parameter does not
specify a valid event sink on the component, the operation raises the InvalidName
exception. A component that does not have any sinks (e.g., a basic component) will
have no valid sink_name parameter to this operation and thus shall always raise the
InvalidName exception.

subscribe

The subscribe operation associates the subscriber denoted by the subscriber
parameter with the event source specified by the publisher_name parameter. If the
publisher_name parameter does not specify a valid event publisher on the
component, the operation raises the InvalidName exception. The cookie return value
can be used to unsubscribe from the source. A component that does not have any event
sources (e.g., a basic component) will have no valid publisher_name parameter to
this operation and thus shall always raise the InvalidName exception.

5-90 CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

unsubscribe

The unsubscribe operation disassociates the subscriber associated with ck parameter
with the event source specified by the publisher_name parameter. If the
publisher_name parameter does not specify a valid event source on the component,
the operation raises the InvalidName exception. If the ck parameter does not identify
a current subscription on the source, the operation raises the InvalidConnection
exception. A component that does not have any event sources (e.g., a basic component)
will have no valid publisher_name parameter to this operation and thus shall always
raise the InvalidName exception.

connect_consumer

The connect_consumer operation associates the consumer denoted by the
consumer parameter with the event source specified by the emitter_name
parameter. If the emitter_name parameter does not specify a valid event emitter on
the component, the operation raises the InvalidName exception. If a consumer is
already connected to the emitter, the operation raises the AlreadyConnected
exception. The cookie return value can be used to disconnect from the source. A
component that does not have any event sources (e.g., a basic component) will have no
valid emitter_name parameter to this operation and thus shall always raise the
InvalidName exception.

disconnect_consumer

The disconnect_consumer operation disassociates the currently connected
consumer from the event source specified by the emitter_name parameter, returning
a reference to the disconnected consumer. If the emitter_name parameter does not
specify a valid event source on the component, the operation raises the InvalidName
exception. If there is no consumer connected to the emitter, the operation raises the
NoConnection exception. A component that does not have any event sources (e.g., a
basic component) will have no valid emitter_name parameter to this operation and
thus shall always raise the InvalidName exception.

5.7 Attributes

The CORBA Component specification modifies the existing definition of attributes to
add the ability to raise independent exceptions on the attribute's accessor and mutator
operations. A component exhibits zero or more attributes.

5.7.1 Syntax

The modified syntax for attributes is as follows:

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 5-91

<attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>

<readonly_attr_spec> ::=“readonly” “attribute” <param_type_spec>
<readonly_attr_declarator>

<readonly_attr_declarator> ::= <simple_declarator> [<raises_expr>]
| <simple_declarator> {“,” <simple_declarator> }*

<attr_dcl> ::=[“readonly”] “attribute” <param_type_spec>

<simple_declarator>{"“,” <simple_declarator> }*
<attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>

<attr_declarator> ::= <simple_declarator> <attr_raises_expr>
| <simple_declarator> {“,” <simple_declarator> }*

<attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]
| <set_excep_expr>

<get_excep_expr> ::=“getRaises” <exception_list>
<set_excep_expr>::=“setRaises” <exception_list>
<exception_list>::="(" <scoped_name> { “,” <scoped_name>} +"“)"

These modifications to the existing attribute declaration syntax allow attribute get and
set methods to raise user-defined exceptions. Note the following characteristics of the
extended attribute declaration syntax:

® All existing attribute declarations using the previous syntax are still valid, and
produce exactly the same results.

® When an attribute declaration raises an exception (on get, set or both), the
declaration may not contain multiple declarators.

5.7.2 Language mapping responsibilities

The correspondence between an attribute declaration on an interface and the
corresponding operations exposed to a programmer are defined by language mappings;
there is no equivalent IDL for operations.

Language mappings shall specify accessor and mutator operations that are capable of
raising the exceptions described in the attribute declaration.

5.7.3 Behavior

Component implementations are required to supply the behavior of attribute
operations.

Attributes are intended to be reflected in the component’sinternal state, but

5-92 CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

should not be taken as a concrete description of internal state. The internal
state of a component is not visible to the component’s clients, and the
attribute declarations on a component type definition do not necessarily
imply the existence of corresponding concrete state variables in the compo-
nent. Attribute declarations are syntactic abbreviations for operationsto
examine and (optionally) set abstract state.

5.8 Homes

An IDL specification may include home definitions. A home definition describes an
interface for managing instances of a specified component type. The salient
characteristics of a home definition are as follows:

® A home definition implicitly defines an equivalent interface, which can be
described in terms of IDL as specified in CORBA 2.3a.

® A home definition must specify exactly one component type that it manages.
Multiple home definitions may manage the same component type.

This statement applies only to home and component types. An actual com-
ponent instance is managed by exactly one home instance. A component
instance can only exist in the context of a home. Component identities are
relative to the home to which they belong. Two homes with different defini-
tions may manage components of the same type, but they may not manage
the same instances.

® A home definition may specify a primary key type. Primary keys are values
assigned by the application environment that uniquely identify component instances
managed by a particular home. Primary key types must be value types derived from
Components::PrimaryKeyBase. There are more specific constraints placed on
primary key types, which are specified in Section 5.8.3.1, “Primary key type
constraints.

® The presence of a primary key specification in a home definition causes home's
equivalent interface to contain a set of implicitly defined operations whose
signatures are determined by the types of the primary key and the managed
component. These operations are specified in Section 5.8.2.2, “Home definitions
with primary keys’.

®* Home definitions may include any declarations that are legal in normal interface
definitions.

® Home definitions support single inheritance from other home definitions, subject to
a number of constraints, which are described in Section 5.8.5, “Home inheritance”.
The need to inherit home definitions introduces some complexity into the structure
of home equivalent interfaces. The details of home inheritance and the resulting
inheritance in equivalent interfaces is described in Section 5.8.5, “Home
inheritance”.

5.8.1 Home header

A <home_header> describes fundamental characteristics of a home interface,
including the following:

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 5-93

5-94

® the home type name

® an optional inherited base home type

® the component type managed by the home
® an optional primary key

5.8.1.1 Syntax

The syntax for a home definition is as follows:
<home_dcl>::= <home_header> <home_body>

<home_header> ::= “home” <identifier>[<home_inheritance_spec>]
“manages” <scoped_name> [<primary_key_spec>]

<home_inheritance_spec>::="." <scoped_name>
<primary_key_ spec>::="“primaryKey” <scoped name>
<home_body>::=“{" <home_export>*“}"

<home_export ::= <export>
| <factory dcl>"*;"
| <finder_dcl>*“;"

<factory_dcl>::="“factory” <identifier>“(“ [<init_param_decls>]"“)" [
<raises_expr>]

<finder_dcl>::="“finder” <identifier>“(“ [<init_param_decls>]1"“)" |
<raises_expr>]

A <home_header> consists of the following elements:

® the keyword home

® an <identifier> that names the home in the enclosing name scope

® an <inheritance spec>, consisting of a colon “:” and a <scoped_name> that
denotes a previously defined home type

® the keyword manages
® a<scoped_name> that denotes a previously defined component type

® an optional primary key definition, consisting of the keyword primaryKey
followed by a <scoped_name> that denotes a previously defined value type that is
derived from the abstract value type Components::PrimaryKeyBase.
Additional constraints on primary keys are described in Section 5.8.3.1, “Primary
key type constraints”.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

5.8.2 Equivalent interfaces

August 2, 1999 11:14 pm

Every home definition implicitly defines a set of operations whose names are the same
for all homes, but whose signatures are specific to the component type managed by the
home and, if present, the primary key type specified by the home.

Because the same operation names are used for these operations on different homes,
the implicit operations cannot be inherited. The specification for home equivalent
interfaces accommodates this constraint. A home definition results in the definition of
three interfaces, called the explicit interface, the implicit interface, and the equivalent
interface. The name of the explicit interface has the form <home_name>Explicit,
where <home_name> is the declared nhame of the home definition. Similarly, the
name of the implicit interface has the form <home_name>Implicit, and the name of
the equivalent interface is simply the name of the home definition, with the form
<home_name>. All of the operations defined explicitly on the home (including
explicitly-defined factory and finder operations) are represented on the explicit
interface. The operations that are implicitly defined by the home definition are
exported by the implicit interface. The equivalent interface inherits both the explicit
and implicit interfaces, forming the interface presented to programmer using the home.

The same names are used for implicit operationsin order to provide clients
with a simple, uniform view of the basic life cycle operations—creation,
finding, and destruction. The signatures differ to make the operations spe-
cific to the storage type (and, if present, primary key) associated with the
home. These two goal s—uniformity and type safety—are admittedly con-
flicting, and the resulting complexity of equivalent home interfaces reflects
this conflict. Note that this complexity manifests itself in generated inter-
faces and their inheritance relationships; the model seen by the client pro-
grammer isrelatively simple.

5.8.2.1 Home definitionswith no primary key

Given a home definition of the following form:

home <home_name> manages <component_type>
{
h

The resulting explicit, implicit, and equivalent local interfaces have the following
forms:

<explicit_operations>

CORBA Components Volume | - orbos/99-07-01 5-95

interface <home_name>Explicit
: Components::CCMHome

{
h

<equivalent_explicit_operations>

interface <home_name>Implicit
: Components::KeylessCCMHome

{
h

<component_type> create();

interface <home_name>:
<home_name>Explicit,
<home_name>Implicit

&

where <equivalent_explicit_operations> are the operations defined in the home
declaration (<explicit_operations>), with factory and finder operations transformed
to their equivalent operations, as described in Section 5.8.4, “Explicit operations in
home definitions”.

create
This operation creates a new component instance of the type managed by the home.

5.8.2.2 Home definitionswith primary keys

Given a home of the following form:

home <home_name>
manages <component_type>
primaryKey <key type>

{

h

The resulting explicit, implicit, and equivalent interfaces have the following forms:

<explicit_operations>

5-96 CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

interface <home_name>Explicit
: Components::CCMHome

{
<equivalent_explicit_operations>

|3

interface <home_name>Implicit

{
<component_type> create (in <key_type> key)
raises (Components::DuplicateKeyValue, Components::InvalidKey);
<component_type> find_by primary_key (in <key_type> key)
raises (Components::UnknownKeyValue, Components::InvalidKey);
void remove (in <key_type> key)
raises (Components::UnknownKeyValue, Components::InvalidKey);
<key type> get_primary_key (in <component_type> comp);

|3

interface <home_name>
: <home_name>Explicit ,
<home_name>Implicit

{};

where <equivalent_explicit_operations> are the operations defined in the home
declaration (<explicit_operations>), with factory and finder operations transformed to
their equivalent operations, as described in Section 5.8.4, “Explicit operations in home
definitions.

create

This operation creates a new component associated with the specified primary key
value, returning a reference to the component. If the specified key value is already
associated with an existing component managed by the storage home, the operation
raises an DuplicateKeyValue exception. If the key value was not a well-formed,
legal value, the operation raises the InvalidKey exception.

find_by primary_key

This operation returns a reference to the component identified by the primary key
value. If the key value does not identify an existing component managed by the home,
an UnknownKeyValue exception is raised. If the key value was not a well-formed,
legal value, the operation raises the InvalidKey exception.

remove

This operation removes the component identified by the specified key value.
Subsequent requests to any of the component’s facets shall raise a
OBJECT_NOT_EXIST system exception. If the specified key value does not identify

CORBA Components Volume | - orbos/99-07-01 5-97

an existing component managed by the home, the operation shall raise an
UnknownKeyValue exception. If the key value was not a well-formed, legal value,
the operation raises the InvalidKey exception.

5.8.3 Primary key declarations

Primary key values must uniquely identify component instances within the scope of the
home that manages them. Two component instances cannot exist on the same home
with the same primary key value.

Different home types that manage the same component type may specify different
primary key types. Consequently, a primary key type is not inherently related to the
component type, and vice versa. A home definition determines the association between
a component type and a primary key type The home implementation is responsible for
maintaining the association between specific primary key values and specific
component identities.

Note that this discussion pertains to component definitions as abstractions.
A particular implementation of a component type may be cognizant of, and
dependent upon, the primary keys associated with its instances. Such
dependencies, however, are not exposed on the surface of the component
type. A particular implementation of a component type may be designed to
be manageable by different home interfaces with different primary keys, or
it may beinextricably bound to a particular home definition. Generally, an
implementation of a component type and the implementation of its associ-
ated home are inter-dependent, although this is not absolutely necessary.

5.8.3.1 Primary key type constraints

Primary key and types are subject to the following constraints:

* A primary key type must be a value type derived from
Components::PrimaryKeyBase.

* A primary key type must be a concrete type with at least one public state member.
* A primary key type may not contain private state members.

* A primary key type may not contain any members whose type is a CORBA
interface reference type, including references for interfaces, abstract interfaces, and
local interfaces.

® These constraints apply recursively to the types of all of the members, i.e., members
which are structs, unions, value types, sequences or arrays may not contain interface
reference types. If the type of a member is a value type or contains a value type, it
must meet all of the above constraints.

5.8.3.2 PrimaryKeyBase

The base type for al primary keys is the abstract value type
Components::PrimaryKeyBase. The definition of PrimaryKeyBase is as
follows:

5-98 CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

module Components {
abstract valuetype PrimaryKeyBase { };

h

5.8.4 Explicit operations in home definitions

August 2, 1999 11:14 pm

A home body may include zero or more operation declarations, where the operation
may be a factory operation, a finder operation, or a normal operation or attribute.

5.8.4.1 Factory operations

The syntax of a factory operation is as follows:

<factory_operation> ::=“factory” <identifier>"“(“ [<init_param_decls>]")"
[<raises_expr>]

A factor operation declaration consists of the following elements:

* the keyword factory

® anidentifier that names the operation in the scope of the home definition

® anoptional list of initialization parameters (<init_param decls>) enclosed in
parentheses

® anoptional <raises expr> declaring exceptions that may be raised by the operation

A factory operation is denoted by the factory keyword. A factory operation has a
corresponding equivalent operation on the home's explicit interface. Given a factory
declaration of the following form:

home <home_name> manages <component_type> {
factory <factory_operation_name> (<parameters>)
raises (<exceptions>);

h

The equivalent operation on the explicit interface is as follows:

<component_type> <factory_operation_name> (<parameters>)
raises (<exceptions>);

A factory operation is required to support creation semantics, i.e., the reference
returned by the operation shall identify a component that did not exist prior to the
operation’s invocation.

5.8.4.2 Finder operations

The syntax of a finder operation is as follows:

CORBA Components Volume | - orbos/99-07-01 5-99

5-100

<finder_operation> ::=“finder” <identifier>“(“ [<init_param_decls>]1")"
[<raises_expr>]

A finder operation declaration consists of the following elements:
® the keyword finder
® anidentifier that names the operation in the scope of the storage home definition

® anoptional list of initialization parameters (<init_param decls>) enclosed in
parentheses

® anoptional <raises expr> declaring exceptions that may be raised by the operation

A finder operation is denoted by the finder keyword. A finder operation has a
corresponding equivalent operation on the home's explicit interface. Given a finder
declaration of the following form:

home <home_name> manages <component_type> {
finder <finder_operation_name> (<parameters>)
raises (<exceptions>);

h

The equivalent operation on the explicit interface is as follows:

<component_type> <finder_operation_name> (<parameters>)
raises (<exceptions>);

A finder operation is required to support the following semantics. The reference
returned by the operation shall identify a previously-existing component managed by
the home. The operation implementation determines which component’s reference to
return based on the values of the operation’s parameters.

5.8.4.3 Miscellaneousexports

All of the exports, other than factory and finder operations, that appear in a home
definition are duplicated exactly on the home's explicit interface.

5.8.5 Home inheritance

Given a derived home definition of the following form:

home <home_name>
: <base_home_name>
manages <component_type>

{
h

The resulting explicit interface has the following form:

<explicit_operations>

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

interface <home_name>Explicit
: <base_home_name>Explicit

{
h

<equivalent_explicit_operations>

where <equivalent_explicit_operations> are the operations defined in the home
declaration (<explicit_operations>), with factory and finder operations transformed to
their equivalent operations, as described in Section 5.8.4, “Explicit operations in home
definitions. The forms of the implicit and equivalent interfaces are identical to the
corresponding forms for non-derived storage homes, determined by the presence or
absence of a primary key specification.

A home definition with no primary key specification constitutes a pair (H, T) where H
isthe hometype and T is the managed component type. If the home definition includes
a primary key specification, it constitutes a triple (H, T, K), where H and T are as
previous and K is the type of the primary key. Given a home definition (H*, T") or (H’,
T, K), where K is a primary key type specified on H’, such that H' is derived from H,
then T must be identical to T or derived (directly or indirectly) from T.

Given a base home definition with a primary key (H, T, K), and a derived home
definition with no primary key (H’, T'), such that H’ is derived from H, then the
definition of H’ implicitly includes a primary key specification of type K, becoming
(H', T', K). The implicit interface for H' shall have the form specified for an implicit
interface of a home with primary key K and component type T'.

Given a base home definition (H, T, K), noting that K may have been explicitly
declared in the definition of H, or inherited from a base home type, and a home
definition (H’, T', K') such that H’ is derived from H, then T' must be identical to or
derived from T and K’ must be identical to or derived from K.

Note the following observations regarding these constraints and the structure of
inherited equivalent interfaces:

® |f a home definition does not specify a primary key directly in its header, but it is
derived from a home definition that does specify a primary key, the derived home
inherits the association with that primary key type, precisely as if it had explicitly
specified that type in its header. This inheritance is transitive. For the purposes of
the following discussion, home definitions that inherit a primary key type are
considered to have specified that primary key type, even though it did not explicitly
appear in the definition header.

® Operations on CCMHome are inherited by all home equivalent interfaces. These
operations apply equally to homes with and without primary keys.

® Operations on KeylessCCMHome are inherited by all homes that do not specify
primary keys

® |mplicitly-defined operations (i.e., that appear on the implicit interface) are only
visible to the equivalent interface for the specific home type that implies their
definitions. Implicitly-defined operations on a base home type are not inherited by a

CORBA Components Volume | - orbos/99-07-01 5-101

derived home type. Note that the implicit operations for a derived home may be
identical in form to the corresponding operations on the base type, but they are
defined in a different name scope.

* Explicitly-defined operations (i.e., that appear on the explicit interface) are
inherited by derived home types.

5.8.6 Semantics of home operations

Operations in home interfaces fall into two categories:

® Operations that are defined by the component model. Default implementations of
these operations must, in some cases, be supplied by the component-enabled ORB
product, without requiring user programming or intervention. Implementations of
these operations must have predictable, uniform behaviors. Hence, the required
semantics for these operations are specified in detail. For convenience, we will refer
to these operations as orthodox operations.

® Operations that are defined by the user The semantics of these operations are
defined by the user-supplied implementation. Few assumptions can be made
regarding the behavior of such operations. For convenience, we will refer to these
operations as heterodox operations.

Orthodox operations include the following:
® Operations defined on CCMHome and KeylessCCMHome.

® Operations that appear on the implicit interface for any home.

Heterodox operations include the following:

® Operations that appear in the body of the home definition, including factory
operations, finder operations, and normal IDL operations and attributes.

5.8.6.1 Orthodox operations

Because of the inheritance structure described in Section 5.8.5, “Home inheritance”,
problems relating to polymorphism in orthodox operations are limited. For the
purposes of determining key uniqueness and mapping key values to componentsin
orthodox operations, equality of value types (given the constraints on primary key
types specified in Section 5.8.3.1, “Primary key type constraints) are defined as
follows:

® Only the state of the primary key type specified in the home definition (which is
also the actual parameter type in operations using primary keys) shall be used for
the purposes of determining equality. If the type of the actual parameter to the
operation is more derived that the formal type, the behavior of the underlying
implementation of the operation shall be as if the value were truncated to the formal
type before comparison. This applies to all value types that may be contained in the
closure of the membership graph of the actual parameter value, i.e., if the type of a
member of the actual parameter value is a value type, only the state that constitutes
the member’s declared type is compared for equality.

5-102 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

5

® Two values are equal if their types are precisely equivalent and the values of all of
their public state members are equal. This applies recursively to members which are
value types.

® |f the values being compared constitute a graph of values, the two values are equal
only if the graphs are isomorphic.

® Union members are equal if both the discriminator values and the values of the
union member denoted by the discriminator are precisely equal.

®* Members which are sequences or arrays are considered equal if all of their members
are precisely equal, where order is significant.

5.8.6.2 Heterodox operations

Polymorphism in heterodox operations is somewhat more problematic, as they are
inherited by homes that may specify more-derived component and primary key types.
Assume a home definition (H, T, K), with an explicit factory operation f that takes a
parameter of type K, and a home definition (H’, T', K’), such that H’ is derived from
H, T’ is derived from T, and K’ is derived from K. The operation f (whose parameter
type is K) is inherited by equivalent interface for H’. It may be the intended behavior
of the designer that the actual type of the parameter to invocations of f on H’ should be
K’, exploiting the polymorphism implied by inheritance of K by K'. Alternatively, it
may be the intended behavior of the designer that actual parameter values of either K
or K’ are legitimate, and the implementation of the operation determines what the
appropriate semantics of operation are with respect to key equality.

This specification does not attempt to define semantics for polymorphic equality.
Instead, we define the behavior of operations on home that depend on primary key
values in terms of abstract tests for equality that are provided by the implementation of
the heterodox operations.

Implementations of heterodox operations, including implementations of key value
comparison for equality, are user-supplied. This specification imposes the following
constraints on the tests for equality of value types used as keys in heterodox
operations:

® For any two actual key values A and B, the comparison results must be the same for
all invocations of all operations on the home.

® The comparison behavior must meet the general definition of equivalence, i.e., it
must be symmetric, reflexive, and transitive.

5.8.7 CCMHome interface

The definition of the CCMHome interface is as follows:

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 5-103

5-104

module Components {
interface CCMHome {
CORBA::IRObject get_component_def();
CORBA::IRObject get_home_def ();
void remove_component (in CCMObject comp);
¥
¥

get_component_def

The get_component_def operation returns an object reference that supports the
IR::ComponentDef interface, describing the component type associated with the
home object. In strongly typed languages, the IRObject returned must be narrowed to
IR::ComponentDef before use.

get_home_def

The get_home_def operation returns an object reference that supports the
IR::HomeDef interface describing the home type. In strongly typed languages, the
IRObject returned must be narrowed to IR::HomeDef before use.

remove_component

Theremove_component operation causes the component denoted by the reference
to cease to exist. Subsequent invocations on the reference will cause an
OBJECT_NOT_EXIST system exception to be raised. If the component denoted by
the parameter does not exist in the container associated with target home object,
remove_component raises a BAD_PARAM system exception.

5.8.8 KeylessCCMHome interface

The definition of the KeylessCCMHome interface is as follows:

module Components {
interface KeylessCCMHome {
CCMObject create_component();
|3
|3

create_component

The create_component operation creates a new instance of the component type
associated with the home object. A home implementation may choose to disable the
parameter-less create_component operation, in which case it shall raise a
NO_IMPLEMENT system exception.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

5.9 HomeFinders

August 2, 1999 11:14 pm

The HomeFinder interface is, conceptually, a greatly simplified analog of the
CoslLifeCycle::FactoryFinder interface. Clients can use the HomeFinder interface
to obtain homes for particular component types, of particularly home types, or homes
that are bound to specific names in a naming service.

A reference that supports the HomeFinder interface may be obtained from the ORB
pseudo-object by invoking CORBA::ORB::resolve_initial_references, with the
parameter value “ComponentHomeFinder”. This requires the following
enhancement to the ORB interface definition:

module CORBA {

interface ORB {
Object resolve_initial_references (in ObjectID identifier)
raises (InvalidName);
¥
3

The string, “ComponentHomeFinder” is added to the list of valid ObjectID values.

The HomeFinder interface is defined by the following IDL:
module Components {
exception HomeNotFound { };

interface HomeFinder {

CCMHome find_home_by_component_type (
in CORBA::Repositoryld comp_repid)
raises (HomeNotFound);

CCMHome find_home_by_home_type (
in CORBA::Repositoryld home_repid)
raises (HomeNotFound);

CCMHome find_home_by_name (
in string home_name)
raises (HomeNotFound);

|3
|3

find_home_by component_type

Thefind_home by component_type operation returns a reference which supports the
interface of a home object that manages the component type specified by the
comp_repid parameter. This parameter contains the repository identifier of the
component type required. If there are no homes that manage the specified component
type currently registered, the operation raises the HomeNotFound exception.

Littleis guaranteed about the home interface returned by this operation. If
the definition of the returned home specified a primary key, thereisno
generic factory operation available on any standard interface (i.e, pre-

CORBA Components Volume | - orbos/99-07-01 5-105

defined, as opposed to generated type-specific interface) supported by the
home. The only generic factory operation that is potentially availableis
Components::K eylessCCMHome::create_component. The client must
first attempt to narrow the CCM Home reference returned by the
find_home_by_component_type to K eylessCCM Home. Otherwise, the
client must have specific out-of-band knowl edge regarding the home inter-
face that may be returned, or the client must be sophisticated enough to
obtain the HomeDef for the home and use the DI to discover and invoke a
create operation on a type-specific interface supported by the home.

find_home by home_type

The find_home_by _home_type operation returns a reference that supports the
interface of the type specified by the repository identifier in the home _repid
parameter. If there are no homes of this type currently registered, the operation raises
the HomeNotFound exception.

The current LifeCycle find_factories operation returns a sequence of facto-
riesto the client requiring the client to choose the one which will create the
instance. Based on the experience of the submitters, CORBA components
defines operations which allows the server to choose the “ best” home for
the client request based on its knowledge of workload, etc.

Since the operation returns a reference to CCMHome, it must be narrowed to the
specific home type before it can be used.

find_home_by name

The find_home by name operation returns a home reference bound to the name
specified in the home_name parameter. This parameter is expected to contain a name
in the format described in the Interoperable Naming Service specification (orbos/98-
10-11), section 4.5, “ Stringified Names’. The implementation of this operation may be
delegated directly to an implementation of CORBA naming, but it is not required. The
semantics of the implementation are considerably less constrained, being defined as
follows:

®* The implementation is free to maintain multiple bindings for a given name, and to
return any reference bound to the name.

It is generally expected that implementations that do not choose to use
CORBA naming will do so for reasons of scalability and flexibility, in
order, for example, to provide a home which islogically more “local” to
the home finder (and thus, the client).

® The client’s expectations regarding the returned reference, other than that it
supports the CCMHome interface, are not guaranteed or otherwise mediated by the
home. The fact that certain names may be expected to provide certain home types or
qualities of implementation are outside of the scope of this interface, and are not
addressed by this specification.

Thisis no different than any application of naming servicesin general.
Applications that require clients to be more discriminating are free to use
the Trader service, or any other similar mechanism that allows query or
negotiation to select an appropriate home. This mechanismisintentionally

kept simple.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

5

If the specified name does not map onto a home object registered with the finder, the
operation raises the HomeNotFound exception.

5.10 Component Configuration

The CORBA component model provides mechanisms to support the concept of
component configurability.

Experience has proven that building re-usable components invol ves mak-
ing difficult trade-offs between providing well-defined, reasonably-scoped
functionality, and providing enough flexibility and generality to be useful
(or re-useful) across a variety of possible applications. Packaging assump-
tions of the component architecture preclude customizing a component’s
behavior by directly altering its implementation or (in most cases) by
deriving specialized sub-types. Instead, the model focuses on extension and
customization through delegation (e.g., via dependencies expressed with
uses declarations) and configuration. Our assumption is that generalized
components will typically provide a set of optional behaviors or modalities
that can be selected and adjusted for a specific application.

The configuration framework is designed to provide the following capabili-
ties:

« Theability to define attributes on the component type that are used to
establish a component instance’s configuration. Component attributes
areintended to be used during a component instance'sinitialization to
establish its fundamental behavioral properties. Although the compo-
nent model does not constrain the visibility or use of attributes defined
on the component, it is generally assumed that they will not be of
interest to the same clients that will use the component after it is con-
figured. Rather, it isintended for use by component factories or by
deployment tools in the process of instantiating an assembly of com-
ponents.

« Theability to define a configuration in an environment other than the
deployment environment (e.g., an assembly toal), and store that con-
figuration in a component package or assembly package to be used
subsequently in deployment.

« Theability to define such a configuration without having to instantiate
the component type itself.

« Theability to associate a pre-defined configuration with a component
factory, such that component instances created by that factory will be
initialized with the associated configuration.

e Support for visual, interactive configuration tools to define configura-
tions. Specifically, the framework allows component implementorsto
provide a configuration manager associated with the component
implementation. The configuration manager interface provides
descriptive information to interactive users, constrains configuration
options, and performs validity checks on proposed configurations.

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 5-107

5-108

The CORBA component model allows a distinction to be made between interface
features that are used primarily for configuration, and interface features that are used
primarily by application clients during normal application operation. This distinction,
however, is not precise, and enforcement of the distinction is largely the responsibility
of the component implementor.

It is the intent of this specification (and a strong recommendation to component
implementors and users) that operational interfaces should be either provided
interfaces or supported interfaces. Features on the component interface itself, other
than provided interfaces, (i.e., receptacles, event sources and sinks) are generally
intended to be used for configuration, although there is no structural mechanism for
limiting the visibility of the features on a component interface. A mechanism is
provided for defining configuration and operational phasesin a component’slife cycle,
and for disabling certain interfaces during each phase.

The distinction between configuration and operational interfacesis often
hard to makein practice. For example, we expect that operational clients
of a component will want to receive events generated by a component. On
the other hand, some applications will want to establish a fixed set of event
source and sink connections as part of the overall application structure,
and will want to prevent clients from changing those connections. Likewise,
the responsibility for configuration may be hard to assign—in some appli-
cationsthe client that creates and configures a component may be the same
client that will useit operationally. For thisreason, the CORBA component
model provides general guidelines and optional mechanisms that may be
employed to characterize configuration operations, but does not attempt to
define a strict separation of configuration and operational behaviors.

5.10.1 Exclusive configuration and operational life cycle phases

A component implementation may be designed to implement an explicit configuration
phase of itslife cycle, enforcing serialization of configuration and functional operation.
If thisis the case, the component life cycle is divided into two mutually exclusive
phases, the configuration phase and the operational phase.

The configuration_complete operation (inherited from
Components::CCMObject) is invoked by the agent effecting the configuration to
signal the completion of the configuration phase. The InvalidConfiguration
exception is raised if the state of the component configuration state at the time
configuration_complete isinvoked does not constitute an acceptable configuration
state. It is possible that configuration may be a multi-step process, and that the validity
of the configuration may not be determined until the configuration process is complete.
The configuration_complete operation should not return to the caller until either 1)
the configuration is deemed invalid, in which case the InvalidConfiguration
exception is raised, or 2) the component instance has performed whatever work is
necessary to consolidate the final configuration and is prepared to accept requests from
arbitrary application clients.

In general, component implementations should defer as much consolida-
tion and integration of configuration state as possible until
configuration_complete isinvoked. In practice, configuring a highly-con-
nected distributed object assembly has proven very difficult, primarily

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

because of subtle ordering dependencies that are difficult to discover and
enforce. If possible, a component implementation should not be sensitive to
the ordering of operations (interface connections, configuration state
changes, etc.) during configuration. Thisis one of the primary reasons for
the definition of configuration_complete.

5.10.1.1 Enforcing exclusion of configuration and operation

The implementation of a component may choose to disable changes to the
configuration after configuration_complete is invoked, or to disable invocations of
operations on provided interfaces until configuration_complete isinvoked. If an
implementation chooses to do either (or both), an attempt to invoke a disabled
operations should raise a BAD_INV_ORDER system exception.

Alternatively, a component implementation may choose not to distinguish between
configuration phase and deployment phase. In this case, invocation of
configuration_complete will have no effect.

The component implementation framework provides standard mechanisms to support
disabling operations during configuration or operation. Certain operations are
implemented by the component implementation framework (see Chapter 6), and may
not be disabled.

5.11 Configurationwith attributes

A component’s configuration is established primarily through its attributes. An
attribute configuration is defined to be a description of a set of invocations on a
component’s attribute set methods, with specified values as parameters.

There are a variety of possible approaches to attribute configuration at run time,
depending on the design of the component implementation and the needs of the
application and deployment environments. The CORBA component model defines a
set of basic mechanisms to support attribute configuration. These mechanisms can be
deployed in a number of ways in a component implementation or application.

5.11.1 Attribute Configurators

August 2, 1999 11:14 pm

A configurator is an object that encapsulates a specific attribute configuration that can
be reproduced on many instances of a component type. A configurator may invoke any
operations on a component that are enabled during its configuration phase. In general,
a configurator is intended to invoke attribute set operations on the target component.

5.11.1.1 The Configurator interface

The following interface is supported by all configurators:

CORBA Components Volume | - orbos/99-07-01 5-109

5-110

module Components {

interface Configurator {
void configure (in CCMObject comp)
raises (WrongComponentType);

h
h

configure

The configure operation establishes its encapsulated configuration on the target
component. If the target component is not of the type expected by the configurator, the
configure operation raises the WrongComponentType exception.

5.11.1.2 The SandardConfigurator interface

The StandardConfigurator has the following definition:
module Components {

valuetype ConfigValue {
FeatureName name;
any value;

k
typedef sequence<ConfigValue> ConfigValues;

interface StandardConfigurator : Configurator {
void set_configuration (in ConfigValues descr);
¥
¥

The StandardConfigurator interface supports the ability to provide the configurator
with a set of values defining an attribute configuration.

set_configuration

The set_configuration operation accepts a parameter containing a sequence of
ConfigValue instances, where each ConfigValue contains the name of an attribute
and a value for that attribute, in the form of an any. The name member of the
ConfigValue type contains the unqualified name of the attribute as declared in the
component definition IDL. After a configuration has been provided with
set_configuration, subsequent invocations of configure will establish the
configuration on the target component by invoking the set operations on the attributes
named in the value set, using the corresponding values provided in the anys.
Invocations on attribute set methods will be made in the order in which the values
occur in the sequence.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

5.11.2 Factory-based configuration

Factory operations on home objects may participate in the configuration process in a
variety of ways.

® A factory operation may be explicitly implemented to establish a particular
configuration.

® A factory operation may apply a configurator to newly-created component
instances. The configurator may be supplied by an agent responsible for deploying
a component implementation or a component assembly.

® A factory operation may apply an attribute configuration (in the form of a
Components::ConfigValues sequence) to newly-created instances. The attribute
configuration may be supplied to the home object by an agent responsible for
deploying a component implementation or a component assembly.

* A factory operation may be explicitly implemented to invoke
configuration_complete on newly-created component instances, or to leave
component instances open for further configuration by clients.

® A factory operation may be directed by an agent responsible for deploying a
component implementation or assembly to invoke configuration_complete on
newly-created instances, or to leave them open for further configuration by clients.

If no attribute configuration is applied by a factory or by a client, the state established
by the component implementation’s instance initialization mechanism (e.g., the
component servant constructor) constitutes the default configuration.

5.11.2.1 HomeConfiguration interface

The implementation of a component type’s home object may optionally support the
HomeConfiguration interface. The HomeConfiguration interface is derived from
Components::CCMHome. In general, the HomeConfiguration interface is
intended for use by an agent deploying a component implementation into a container,
or an agent deploying an assembly.

The HomeConfiguration interface allows the caller to provide a Configurator
object and/or a set of configuration values that will be applied to instances created by
factory operations on the home object. It also allows the caller to cause the home
object’s factory operations to invoke configuration_complete on newly-created
instances, or to leave them open for further configuration.

The HomeConfiguration allows the caller to disable further use of the
HomeConfiguration interface on the home object.

The Configurator interface and the HomeConfiguration interface are
designed to promote greater re-use, by allowing a component implementor
to offer a wide range of behavioral variationsin a component implementa-
tion. As stated previously, the CORBA component specification is intended
to enable assembling applications from pre-built, off-the-shelf component
implementations. An expected part of the assembly processis the customi-
zation (read: configuration) of a component implementation, to select from
among available behaviors the behaviors suited to the application being

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 5-111

5-112

assembled. We anticipate that assemblieswill need to define configurations
for specific component instances in the assembly, but also that they will
need to define configurations for a deployed component type, i.e., all of the
instances of a component type managed by a particular home object.

The HomeConfiguration interface is defined by the following IDL:
module Components {

interface HomeConfiguration : CCMHome {
void set_configurator (in Configurator cfg);
void set_configuration_values (
in ConfigValues config);
void complete_component_configuration (in boolean b);
void disable_home_configuration();

h
h

set_configurator

This operation establishes a configurator object for the target home object. Factory
operations on the home object will apply this configurator to newly-created instances.

set_configuration_values

This operation establishes an attribute configuration for the target home object, as an
instance of Components::ConfigValues. Factory operations on the home object
will apply this configurator to newly-created instances.

complete_component_configuration

This operation determines whether factory operations on the target home object will
invoke configuration_complete on newly-created instances. If the value of the
boolean parameter is TRUE, factory operations will invoke
configuration_complete on component instances after applying any required
configurator or configuration values to the instance. If the parameter is FAL SE,
configuration_complete will not be invoked.

disable_home_configuration

This operation serves the same function with respect to the home object that the
configuration_complete operation serves for components. This operation disables
further use of operations on the HomeConfiguration interface of the target home
object. If aclient attempts to invoke HomeConfiguration operations, the request will
raise a BAD_INV_ORDER system exception. This operation may also be interpreted
by the implementation of the home as demarcation between its own configuration and
operational phases, in which case the home implementation may disable operations and
attributes on the home interface.

If a home object is supplied with both a configurator and a set of configuration values,
the order in which set_configurator and set_configuration_values are invoked
determines the order in which the configurator and configuration values will be applied

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

to component instances. If set_configurator is invoked before
set_configuration_values, the configurator will be applied before the configuration
values, and vice-versa

The component implementation framework defines default implementations of factory
operations that are automatically generated. These generated implementations will
behave as specified here. Component implementors are free to replace the default
factory implementations with customized implementations. If a customized home
implementation chooses to support the HomeConfiguration interface, then the
factory operation implementations must behave as specified, with respect to
component configuration.

5.12 Component Inheritance

The mechanics of component inheritance are defined by the inheritance relationships
of the equivalent IDL component interfaces. The following rules apply to component
inheritance:

® All interfaces for non-derived component types are derived from CCMObject.

® |f acomponent type directly supports one or more IDL interfaces, the component
interface is derived from both CCMObject and the supported interfaces.

® A derived component type may not directly support an interface.

®* The interface for a derived component type is derived from the interface of its base
component type.

* A component type may have at most one base component type.
® The features of a component that are expressed directly on the component interface
are inherited as defined by IDL interface inheritance. These include:
* operations implied by provides statements
 operations implied by uses statements
* operations implied by emits statements
» operations implied by publishes statements
* operations implied by consumes statements
* aftributes

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 5-113

5-114

pre-defined

interface Receptacles

interface Events

interface Navigation

interface CCMHome

A A

interface |
interface CCMODbject
component A supports | | — 7 interface A
I component B l — — — 7 interface B

interface AHome

- — -I home AHome manages A

interface BHome

5.12.1

- — — l home BHome manages A

Figure5-2 Component inheritance and related interface inheritance

CCMObject Interface
The CCMODbject interface is defined by the following IDL:

CORBA Components Volume| - orbos/99-07-01

August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

module Components

interface CCMObject
: Navigation, Receptacles, Events {
CORBA::IRObject get_component_def ();
CCMHome get_ccm_home();
PrimaryKeyBase get_primary_key()
raises (NoKeyAvailable);
void configuration_complete()
raises (InvalidConfiguration);
void remove();

h

get_component_def

This operation returns an IRObject reference to the component definition in the
Interface Repository. The interface repository representation of a component is defined
in Volume 111 of this specification. In strongly typed languages, the IRObject returned
must be narrowed to IR::ComponentDef before use.

get_ccm_home

This operation returns a CCMHome reference to the home which manages this
component.

get_primary_key

This operation is equivalent to the same operation on the component’s home interface.
It returns a primary key value if the component is being managed by a home which
defines a primary key. Otherwise, the NoKeyAvailable exception is raised.

configuration_complete

This operation is called by a configurator to indicate that the initial component
configuration has completed. If the component determines that it is not sufficiently
configured to allow normal client access, it raises the InvalidConfiguration
exception.The component configuration process is described in Section 5.10 on page
107.

remove

This operation is called when a component is about to be destroyed. The component
can perform any cleanup processing required (e.g. releasing resources) prior to its
destruction.

CORBA Components Volume | - orbos/99-07-01 5-115

5-116

CORBA Components Volume| - orbos/99-07-01

August 2, 1999 11: 14 pm

Component | mplementation 6

The Component Implementation Framework (CIF) defines the programming model for
constructing component implementations. The CIF includes a declarative language,
called the Component Implementation Definition Language (CIDL) for describing
implementations of components and component homes. The CIF uses CIDL
descriptions to generate programming skeletons that automate many of the basic
behaviors of components, including navigation, identity inquiries, activation, state
management, lifecycle management, and so on.

6.1 Component Implementation Framework (CIF) architecture

As a programming abstraction, the CIF is designed to be compatible with the existing
POA framework, but also to insulate programmers from its complexity. In particular,
the CIF can be implemented using the existing POA framework, but it does not
directly expose any elements of that framework.

6.1.1 Component Implementation Definition Language (CIDL)

The focal point if the CIF is Component |mplementation Definition Language (CIDL),
a declarative language for describing the structure and state of component
implementations. Component-enabled ORB products generate implementation
skeletons from CIDL definitions. Component builders extend these skeletons to create
complete implementations.

6.1.2 Component persistence and behavior

August 2, 1999 11:07 pm

CIDL is a superset of the Persistent State Definition Language, defined in the
Persistent State Service specification (document orbos/99-07-07).

A CIDL implementation definition may optionally associate an abstract storage type
with the component implementation, such that the abstract storage type defines the
form of the internal state encapsulated by the component. When a component

CORBA Components - orbos/99-07-01 6-117

6-118

implementation declares an associated abstract storage type in this manner, the CIF and
the run-time container environment cooperate to manage the persistence of the
component state automatically.

This chapter addresses the elements of the CIF that pertain to the implementation of a
component’s behavior.

6.1.3 Implementing a CORBA Component

The remainder of section 6.1 provides an overview of the concepts involved in
building component implementations. It is intended to provide a high-level description
that will serve as a framework for understanding the more formal descriptions that
follow in subsequent sections. While the information in this section is normative (with
the exception of italicized, indented rationale), it is not intended to be a complete or
precise specification of the CIF, or al of the possible design options from which a
component implementor may choose.

6.1.4 Behavioral elements. Executors

We coin the term executor to indicate the programming artifact that supplies the
behavior of a component or a component home. In general, the terms executor or
component executor refer to the artifact that implements the component type, and the
term home executor refers to the artifact that implements the component home.

We chose to use the word executor rather than servant to avoid confusion
with POA servants. POA servants, while conceptually similar to executors,
are significantly different in detail, and map to different typesin program-
ming languages. Executor is pronounced with the accent on the second syl-
lable (e.g.-ZEK-yoo-tor).

We have tried to avoid terminology that is specific to object-oriented pro-
gramming languages, such as class, base class, derive, and so on, in an
attempt to be precise and acknowledge that the CIF framework may be
mapped to procedural programming languages. Hence, we typically use
the word artifact or programming artifact to denote what may conveniently
be thought of as a class, and likewise, the term skeleton to denote a gener-
ated abstract base class that is extended to form a complete implementa-
tion class. We hope thisis not overly distracting to the reader.

6.1.5 Unit of implementation : Composition

An implementation of a component comprises a potentially complex set of artifacts
that must exhibit specific relationships and behaviors in order to provide a proper
implementation. The CIDL description of a component implementation is actually a
description of this aggregate entity, of which the component itself may be a relatively
small part. In order to enable more concise discussion, we coin the term composition to
denote both the set of artifacts that constitute the unit of component implementation,
and the definition itself. composition is the CIDL meta-type that corresponds to an
implementation definition.

A composition definition specifies the following elements:

CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

August 2, 1999 11:07 pm

Component home

A composition definition specifies a component home type, imported from IDL. The
specification of a component home implicitly identifies the component type for which
the composition provides an implementation (i.e., the component type managed by the
home, as specified in the IDL home definition).

Abstract Storage home binding

A composition optionally specifies an abstract storage home to which the component
home is bound. The specification of an abstract storage home binding implicitly
identifies the abstract storage type that incarnates the component. The relationship
between a home and the component it manages to isomorphic to the relationship
between an abstract storage home and the abstract storage type it manages. When a
home binds to an abstract storage home, the component managed by the home is
implicitly bound to the abstract storage type of this abstract storage home.

Home executor

A composition definition specifies a home executor definition. The name of the home
executor definition is used as the name of the programming artifact (e.g., the class)
generated by the CIF as the skeleton for the home executor. The contents of the home
executor definition describe the relationships between the home executor and other
elements of the composition, determining the characteristics of the generated home
executor skeleton.

Component executor

A composition specifies an executor definition. The name of the executor definition is
used as the name of the programming artifact generated by the CIF as the skeleton of
the component executor. The body of the executor definition optionally specifies
executor segments, which are physical partitions of the executor, encapsulating
independent state and capable of being independently activated. Segments are
described in Section 6.1.9.1, “ Segmented executors’. The executor body may also
specify a mapping, or delegation, of certain component features (e.g., attributes) to
storage members.

Delegation specification

A composition may optionally provide a specification of home operation delegation.
This specification maps operations defined on the component home to isomorphic
operations on either the abstract storage home or the component executor. The CIF
uses this description to generate implementations of operations on the home executor,
and to generate operation declarations on the component executor.

Proxy home

A composition may optionally specify a proxy home. The CIF supports the ability to

define proxy home implementations, which are not required to be collocated with the
container that executes the component implementation managed by the home. In some
configurations, proxy homes can provide implementations of home operations without

CORBA Components- orbos/99-07-01 6-119

6-120

contacting the container that executes the actual home and component implementation.
Support for proxy homes is intended to increase the scalability of the CORBA
Component Model. The use of proxy homes is completely transparent to component
clients and, to a great extent, transparent to component implementations. Proxy home
behavior is described in Section 6.1.10.1, “Proxy home delegation”.

6.1.6 Composition structure

A composition binds all of the previously-described elements together, and requires
that the relationships between the bound entities define a consistent whole.

Note that a component home type necessarily implies a component type (i.e., the
managed component type specified in the home definition). Likewise, an abstract
storage home implies an abstract storage type. It is unnecessary, therefore, for a
composition to explicitly specify a component type or an abstract storage type. They
are implicitly determined by the specification of a home and abstract storage home.

It may seem odd that the center of focus for compositionsis the home
rather than the component, but this works out to be reasonably intuitive in
practice. The home is the primary point of contact for a client, and the
home's interface and behavior have a major influence on the interaction
between the client and the component.

A composition definition specifies a name that identifies the composition within the
enclosing module scope, and which constitutes the name of a scope within which the
contents of the composition are contained. The essential parts of a composition
definition are the following:

® the name of the composition

® thelife cycle category of the component implementation, either service, session,
process, or entity, as defined in Section 7.1.4 on page 173.

® the home type being implemented (which implicitly identifies the component type
being implemented)

® the name of the home executor to be generated

® the name of the component executor skeleton to be generated

A composition definition has the following essential form:

compaosition <category> <composition_name> {
home executor <home_executor_name> {
implements <home_type>;
manages <executor_name>;
|3
|3

where <composition_name> is the name of the composition, <category> identifies the
life cycle category supported by the composition, <home_executor_name> is the name
assigned to the generated home executor skeleton, <home type> is the name of a
component home type imported from IDL, and <executor _name> is the name assigned
to the generated component executor skeleton.

CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

This is a schematic representation of the minimal form of a composition, which
specifies no state management. The structure of the composition specified by this
schematic isillustrated in Figure 6-1, “Minimal composition structure and
relationships’. Note that the component type itself is not explicitly specified. It is
unambiguously implied by the specification of the home type, as is the relationship
between the executor and the component (i.e., that the executor implements the
component).

composition <category> <composition_name> {
home executor <home_executor_name>
implements <home_type>;
manages <executor_name>;

implements
component home < home executor

!
manages manages

!

v implements
component executor
cIbL 4— explicitly defined in composition
implicitly defined by composition
IDL 4. - - explicitly defined elsewhere in IDL/CIDL

Figure6-1 Minima composition structure and relationships

General disclaimer and abdication of responsibility with regardsto pro-
gramming examples:

Before presenting programming examples, it should be noted that all exam+
ples are non-normative illustrations. In particular, the implementations
provided in the examples of code that is to be generated by the CIF are
merely schematic representations of the intended behaviors; they are by no
means indicative of the actual content of a real implementation (e.g., they
generally don't include exception handling, testing for validity, etc.).

Although the grammar for CIDL has not been presented yet, a simple
examplewill help illustrate the concepts described in the previous sections.
Assume the following IDL component and home definitions:

/I Example 1
I

August 2, 1999 11:07 pm CORBA Components- orbos/99-07-01 6-121

6-122

CORBA Components - orbos/99-07-01

/l USER-SPECIFIED IDL
1
module LooneyToons {
interface Bird {
void fly (in long how_long);
h
interface Cat {
void eat (in Bird lunch);
2
component Toon {
provides Bird tweety;
provides Cat sylvester;

The following example shows a minimal CIDL definition that describes an
implementation binding for those IDL definitions:

/I Example 1

I

/I USER-SPECIFIED CIDL
I

import ::LooneyToons;

module MerryMelodies {
// this is the composition:
composition session Toonimpl {
home executor ToonTownlmpl {

implements LooneyToons::ToonTown;
manages ToonSessionimpl;

In this example, Toonlmpl is the name of the composition. It defines the
name of the generated home executor to be ToonTownImpl, which imple-
mented the ToonTown home interface imported from IDL. The home exec-
utor definition also specified the name of the component executor,
ToonSessionImpl, which is managed by the home executor. Note that the
component type (Toon) is not explicitly named—it isimplied by the specifi-
cation of the home ToonTown, which is known to manage the component
type Toon. Thus, the declaration “ manages ToonSessionlmpl” implic-
itly defines the component executor ToonSessionimpl to be the implemen-
tation of the component type Toon.

This CIDL specification would cause the generation of the following arti-
facts:

e The skeleton for the component executor ToonSessionimpl

¢ The complete implementation of the home executor ToonTownImpl

August 2, 1999 11:07 pm

We provide the following brief sketches of generated implementation skele-
tonsin Javato help illustrate the programming model for component
implementations.

Java <interface>Operations interfaces for all of the IDL interfaces are
generated, precisely as currently specified by the current Java IDL lan-

guage mapping:

/1 Exanple 1

I

/| CGENERATED FROM | DL SPECI FI CATI O\
I

package LooneyToons;

i mport org.ong. Conponents. *;

public interface BirdOperations {
public void fly (long how_|l ong);

}

public interface CatOperations {
voi d eat (LooneyToons.Bird | unch);

}

public interface ToonOperations

ext ends CCMObj ect Oper ati ons {
LooneyToons. Bird provide_tweety();
LooneyToons. Cat provi de_syl vester();

}

public interface ToonTownExplicitQperations
ext ends CCMHomeQperations { }

public interface ToonTownl nplicit Qperations
ext ends Keyl essCCMHoneQper ati ons {
Toon create();

}

public interface ToonTownOperations extends
ToonTownExpl i ci t Operati ons,
ToonTownExpl i cit Operations {}

/1 Exanple 1

I

/| GENERATED FROM Cl DL SPECI FI CATI ON:
I

package MerryMel odi es;

i mport LooneyToons;

i mport org.ong. Conponents. *;

abstract public class ToonSessi onl npl

August 2, 1999 11:07 pm CORBA Components- orbos/99-07-01 6-123

6-124

CORBA Components - orbos/99-07-01

i mpl enents ToonQper ati ons, Sessi onConponent,
Execut or Segnent Base
{
/1 CGenerated inplenmentations of operations
/1 inherited from Sessi onConponent and
/1 Execut or Segnent Base are omtted here.
/1

prot ected ToonSessionlnpl () {
/1 generated inplementation ...

}

/1l The foll owing operations nust be inpl enented
/1 by the conponent devel oper:

abstract public BirdOperations
_get _facet_tweety();

abstract public CatQperations
_get _facet_sylvester();

The generated executor abstract base class ToonSessionimpl imple-
ments all of the operations inherited by ToonOper ations, including opera-
tions on CCMObject and its base interfaces. It also implements all of the
operationsinherited through Sessi onConponent , which areinternal
operationsinvoked by the container and the internals of the home imple-
mentation to manage executor instance lifecycle.

A complete implementation of the home executor ToonTownlImpl is gener-
ated fromthe CIDL specification:

/1l Exanple 1

/1

/| GENERATED FROM Cl DL SPECI FI CATI ON:
/1

package MerryMel odi es;

i mport LooneyToons;

i mport org. ong. Conponents. *;

public class ToonTownl npl
i mpl ement s LooneyToons. ToonTownQOper at i ons,
Execut or Segnent Base, CCMHone
{
/'l I npl enentations of operations inherited
/1 from Execut or Base and CCMHore
/1 are omitted here.
I
/1 ToonHonel npl al so provides inplenentations
/1 of operations inherited fromthe conponent
/1 home interface ToonTown

CCMDbj ect creat e_conponent ()
{

return create();

August 2, 1999 11:07 pm

}

voi d renove_conponent (CCMbj ect conp)

{
}

Toon create()

{
}

/1l and so on...

The user-provided executor implementation must supply the following:

* Implementations of the operations _get _t weet y and
_get _syl vest er, which must return implementations of the
Bi r dOper at i ons and Cat Oper at i ons interfaces

e said implementations of the behaviors of the facets tweety and
sylvester, respectively

The following example shows one possible implementation strategy:

/1 Exanple 1

I

/1 PROVI DED BY COVPONENT PROGRAMVER:
I

i mport LooneyToons. *;
i mport MerryMel odi es. *;

public class nyToonl npl extends Toonl npl
i mpl enents BirdQperations, CatQperations {

protected | ong timeFl own;
protected Bird | astBirdEaten;

public nyToonlnpl () {
super () ;
ti meFl owmn = O;
| astBirdEaten = nil;

}

public void fly (long how_|ong) {
ti meFl owmn += how_| ong);

}

public void eat (Bird [unch) {
| ast BirdEaten = | unch;

}

public BirdOperations _get_facet_tweety() {
return (BirdQperations) this;

}
public CatOperations _get_facet_sylvester() {
return (CatOperations) this;

}

August 2, 1999 11:07 pm CORBA Components- orbos/99-07-01 6-125

6-126

This simple example implements all of the facets directly on the executor.
Thisis not the only option; the programming objects that implement
BirdOperations and CatOperations could be constructed separately and
managed by the executor class.

Thefinal bit of implementation that the component programmer must pro-
videisan extension of the home executor that acts asa component executor
factory, by implementing the create_executor_segment method. This
class must also provide an implementation of a static method called
create_home_executor that returns a new instance of the home executor
(asan ExecutorSegmentBase). This static method acts as an entry point
for the entire composition.

/1 Exanple 1

/1

/1 PROVI DED BY COVPONENT PROGRAMVER:
/1

i mport LooneyToons. *;

i mport MerryMel odi es. *;

public class nyToonTownl npl extends ToonTownl npl

{
protected nyToonTownl npl () { super(); }
Execut or Segnent Base
create_executor_segnent (int segid) {
return new nyToonl npl ();
}
public static ExecutorSegnent Base
create_hone_executor() {
return new nyToonTownl npl () ;
}
}

Note that these last two classes congtitute the entirety of the code that must
be supplied by the programmer. The implementations of operations for nav-
igation, executor activation, object reference creation and management,
and other mechanical functions are either generated or supplied by the
container.

6.1.7 Compositions with managed storage

A composition definition may also contain a variety of optional specifications, most of
which are related to state management. These include the following elements:

® one or more catalogs that provide the storage homes to the composition
implementation. Each specified catalog is assigned a alias, or label, that identifies
the catalog within the context of the composition.

CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

® an abstract storage home type to which the component home is bound (this
implicitly identifies the abstract storage type to which the component itself is
bound)

® the life cycle category of the composition must be either entity or process to
support managed storage

When state management is added to a composition definition, the definition takes the
following general form, expressed as a schematic:

August 2, 1999 11:07 pm CORBA Components- orbos/99-07-01 6-127

6-128

composition <category> <composition_name> {
uses catalog {
<catalog_type> <catalog_label>;
|3
home executor <home_executor_name> {
implements <home_type> ;
bindsTo <catalog_label.abstract_storage_home>;
manages <executor_name>;
|3
|3

where the additional elements are as follows: <catalog_type> identifies the type of a
catalog previously defined in PSDL, <catalog_label> is an alias by which the catalog
can be identified in the composition definition, and

<catalog_label.abstract_storage home> denotes a particular abstract storage home
provided by the catalog.

The structure of the resulting composition and the relationships between the elements
isillustrated in Figure 6-2, “ Structure of composition with managed storage”.

CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

composition <category> <composition_name> {
uses catalog {

<catalog_type> <catalog_label>;
home executor <home_executor_name>
implements <home_type>;

bindsTo <catalog_label.storage_home>;
manages <executor_name>;

implements
component home < home executor
' binds to
,manages manages
.
implements
component executor
. storage home
provides _§” . g
.
catalog ' manages stored as
'
'
storage object
4— explicitly defined in composition CIbL
implicitly defined by composition
<. - - explicitly defined elsewhere in IDL/CIDL IDL

Figure 6-2 Structure of composition with managed storage

In many cases, it is expected that an abstract storage home will be intentionally
designed to support a particular component home.

6.1.8 Relationship between home executor and abstract storage home

When a composition specifies managed storage, the relationship between the home
executor and the abstract storage home to which the home executor binds determines
many of the characteristics of the implementation, including what implementation
elements may be generated and how they will behave. This section provides an
overview of the basic concepts involved in home implementations and their
relationships to abstract storage homes.

August 2, 1999 11:07 pm CORBA Components- orbos/99-07-01 6-129

6-130

In general, operations on a home interface provide life cycle management. As
described in Section 5.8 on page 93, when a home definition does not specify a
primary key, the resulting equivalent home interface has the following operations:

® ageneric create_component operation inherited from KeylessCCMHome
® aremove_component operation inherited from CCMHome
® an implicitly-defined type-specific parameter-less create operation

When a home definition specifies a primary key, the resulting equivalent home
interface has the following operations:

® aremove_component operation inherited from CCMHome
® an implicitly-defined type-specific create operation with a primary key parameter
® animplicitly-defined type-specific remove operation with a primary key parameter

® an implicitly-defined type-specific find_by primary_key operation

6.1.8.1 PrimaryKey Binding

A component home can define its primary key as a valuetype with a number of public
data members, whereas abstract storage home define keys as lists of attributes. A
composition can only bind a component home with a primary key to an abstract
storage home that defines a key on a state member whose type is this valuetype. In
there are more than one key satisfying this condition, the first key is used.

For example:
valuetype SSN {
public string social_security_number;

h

abstract storagetype Person {
readonly state SSN social_security_number;
state string name;
state string address;

h

abstract storagehome PersonStore of Person {
key social_security_number;

h

A home with primary key SSN can be bound to PersonStore. The key
social_security_number is called the matching key.

CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

August 2, 1999 11:07 pm

6.1.8.2 Implicit delegation of home operations

When a composition specifies managed storage, finder operations can be implemented
in terms of finder operations on the abstract storage home to which the home executor
is bound.

Table 6-1 Delegation of finder operations to finder operations on the bound abstract
storagehome

home operation abstract storagehome operation

component find_by primary_key (key) ref< X>
find_ref_by matching_key name
(matching_key)

®* Thefind_by primary_key operation uses the
find_ref_by_matching_key_name operation on the abstract storagehome. The
returned storage reference is used to create an object reference for the component
and returned to the invoking client.

® Destruction operations delegate to destroy_object operations on the reference.

The validity of these implementation semantics are predicated on the following
assumptions:

®* Theinitia state of the storage object created by the storage home constitutes avalid
initial state for the component.

® All of the persistent state of the component is defined on (or reachable from) the
storage object whose PID is associated with the component instance.

® The executor is monoalithic, not segmented. Home operations can also be delegated
to abstract storage homes when the executor is segmented, but the process is
slightly more complex, and is discussed in full in Section 6.1.9.1 on page 142.

If these assumptions do not hold (in particular, either of the first two), the component
implementor can provide custom implementations of one or more home operations to
accomodate the implementation requirements.

The following example extends the previous example to illustrate managed
storage and storage home delegation. The example highlights differences
from the previous, and does not repeat elements that are identical:

/I Example 2

1

/l USER-SPECIFIED IDL

1

module LooneyToons { // IDL

identical to previous example, except for the addition of the
primary key:

valuetype EpisodeName : Components::PrimaryKeyBase {
public string name;

kh

CORBA Components- orbos/99-07-01 6-131

home ToonTown manages Toon primaryKey EpisodeName {

kh

The CIDL now defines abstract storage types, abstract storage homes, and
a catalog. The composition binds:

/I Example 2

1

/l USER-SPECIFIED CIDL
1

import ::LooneyToons;

module MerryMelodies {

abstract storagetype ToonState {
state LooneyToons::EpisodeName episode_name;
state string name;
state unsigned long time_flown;
state LooneyToons::Bird last_bird_eaten;

%
abstract storagehome ToonStateHome of ToonState
{
key episode_name;
factory create(episode_name);
2

catalog ToonCatalog {
provides ToonStateHome TSHome;

h
// this is the composition:

composition entity Toonimpl {
uses catalog { ToonCatalog store; };
home executor ToonTownlmpl {
implements LooneyToons:: ToonTown {
bindsTo store. TSHome;
manages ToonEntitylmpl;

In this example, the composition binds the component home ToonTown to
the abstract storage home ToonStateHome, and thus, implicitly binds the
component type Toon to the abstract storage type ToonState. Note that
the primary key (if any) in the home must match a key in the abstract stor-
age home. Aswill be seen later in the CIDL grammar specification, the
keyword entity in the implementation binding declaration specifies a par-
ticular lifecycle model for the resulting implementation.

This CIDL specification would cause the generation of the following pro-

6-132 CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

gramming objects:

¢ The skeleton for the component executor ToonEntitylmpl

« Theimplementation of the home executor ToonTownImpl

« Theincarnation interface for the abstract storage type ToonState
* Theinterface for the abstract storage home ToonStateHome

« Theinterface for the catalog ToonCatal og.

Note that the complete implementation of the home executor may not be
able to be generated in some cases, e.g., when no abstract storage typeis
declared or when user-defined operations with arbitrary signatures appear
on the component home definition.

Note al so that the implementations of the storage-related interfaces Toon-
State and ToonStateHome are not necessarily provided by the same
product that generates the component implementation skeletons. The CIF
is specifically designed to decouple the executor implementation from the
storage implementation, so that these capabilities may be provided by dif-
ferent products. A component-enabled ORB product is only required to
generate the programming interfaces for the abstract storage type and
homes through which the executor implementation will interact with one or
more storage mechanisms. The implementations of these interfaces may be
supplied separately, perhaps deferred until run-time.

Theinterfaces generated fromthe IDL are identical, with the exception of
the addition of the primary key:

/1 Exanple 2

I

/| CGENERATED FROM | DL SPECI FI CATI O\
/1

package LooneyToons;

i nport org.ong. Conponents. *;
sanme as previous except for the foll ow ng:

public interface ToonTownl nplicitQOperations {
Toon creat e(LooneyToons. Epi sodeNane key)
t hrows Dupli cateKey, |nvalidKey;
Toon find_by_prinmary_key
(LooneyToons. Epi sodeNane key)
t hrows UnknownKey, I nvali dKey;
voi d renove(LooneyToons. Epi sodeNane key)
t hrows UnknownKey, I nvali dKey;
LooneyToons. Epi sodeNane
get _primary_key(Toon conp);
}

public interface ToonTownOperati ons extends
ToonTownExpl i ci t Operati ons,
ToonTownExpl i cit Operations {}

August 2, 1999 11:07 pm CORBA Components- orbos/99-07-01 6-133

The abstract storage type ToonSate results in the generation of the follow-
ing incarnation interfaces:

/1 Exanple 2
/1
/| GENERATED FROM Cl DL SPECI FI CATI ON:
/1
package MerryMel odi es;

| i mport org.ong. CosPersistentState. *;
i mport LooneyToons. *;

| public interface ToonState extends StorageChject {
public string name();
public void nane (String val);
public long tine_flown();
public void tine_flown (long val);
public Bird last_bird_eaten();
public void last_bird_eaten (Bird val);

The storage home ToonStateHome results in the generation of the follow-
ing interface:

/1 Exanple 2

I

/| GENERATED FROM Cl DL SPECI FI CATI ON:
I

/1 no explicit operations
public interface ToonSt at eHone

ext ends StorageHoneBase {

public ToonState
find_by_epi sode_nane (Epi sodeNanme K);

publ i ¢ ToonSt at eRef
find_ref_by_ epi sode_nanme (Epi sodeNane K);

/1 Exanple 2

I

/| GENERATED FROM Cl DL SPECI FI CATI ON:
/1

package MerryMel odi es;

i mport LooneyToons;

abstract public class Toonl npl

i mpl enents LooneyToons. ToonOper ati ons,
Execut or Segnent Base, Per si st ent Conponent

| 6-134 CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

/'l Generated inplenentations of operations

/1 inherited from CCMXj ect and

/| Execut or Segnent Base and Per si st ent Conponent
/1 are omitted here.

/1

/1 Toonl npl al so provides inplenentations of
/1 operations inherited from ToonState, that
/1 delegate to a separate incarnation object:

protected ToonStatel ncarnation _state;
protected Toonlnpl () { _state = null; }

public void set_incarnation (ToonState state) ({
_Sstate = state;

}

/1 The foll owing operations nust be inpl enent ed
/'l by the conponent devel oper:

abstract public BirdOperations
_get _facet_tweety();

abstract public CatQperations
_get _facet_sylvester();

An implementation of the home executor ToonHomel mpl is generated from
the CIDL specification:

/1 Exanple 2

/1

/1 GENERATED FROM CI DL SPECI FI CATI ON:
/1

package MerryMel odi es;

i mport LooneyToons;

public class ToonTownl npl
i mpl ement s LooneyToons. ToonTownQOper at i ons,
Per si st ent Conponent, Execut or Segrnent Base
{
/1 I npl enentations of operations inherited
/1 from Persi stent Conponent and
/| Execut or Segnent Base
/1 are omitted here.
I
/1 ToonHonel nmpl al so provides inplenentations
/1 of operations inherited fromthe conponent
/1 honme interface ToonTown, that del egate
/1 designated operations on the storage hone
I

/1 values set during initialization
/1 and activation:

August 2, 1999 11:07 pm CORBA Components- orbos/99-07-01 6-135

protected Entity2Context _origin;
protected ToonSt at eHone _st or ageHone;

Toon creat e(Epi sodeNane key)

{
/Il create a storage object with the key
ToonSt at enew_st at e=_st or ageHon®. cr eat e(key) ;
/1 REVISIT - Bernard Normer 7/27/1999
/1 don’t know how to conplete this nethod
}
Toon fi nd(Epi sodeNane key)
{
ToonSt at eRef ref =
_storageHone. find_ref_by_epi sode_nane(key);
/Il create reference fromref
// and return , sanme as above...
}

// and so on...

The user-provided executor uses the storage accessors and mutators on the
incarnation:

/1 Exanple 2

I

/1 PROVI DED BY COVPONENT PROGRAMVER:
I

i mport LooneyToons. *;

i mport MerryMel odi es. *;

public class nyToonl npl extends Toonl npl
i mpl ements BirdQperations, CatQperations {

public nyToonlnpl () { super(); }

void fly (long how_ | ong) {

_state.timeFl own
(_state.tinmeFlown() + how_| ong);

}

void eat (Bird lunch) {
_state.last_bird_eaten(lunch);

}

Bi rdOperations get _facet_tweety() {
return (BirdQperations) this;

}

Cat Qperations get_facet_sylvester() {
return (CatOperations) this;

}

6-136 CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

August 2, 1999 11:07 pm

6.1.8.3 Explicit delegation of home operations

The previous section described the default home executor implementation generated by
the CIF. Default delegation can only be implemented for home operations or the home
base interfaces, and implicitly-defined home operations (i.e., orthodox home
operations). The syntax for home definitions permits explicitly-defined factory
operations, finder operations, and operations with arbitrary signatures to be declared on
the home. The CIF makes no assumptions about the semantics of these operations (i.e.,
the heterodox operations), other than the assumptions that factory operations return
references for newly-created components, and finder operations return references for
existing components that were indirectly identified by the parameters of the finder
operation. Implementations of these operations are not generated by default. CIDL
does, however, allow the component implementor to specify explicitly how heterodox
home operations are implemented. A CIDL home executor definition may optionally
include the declarations illustrated in the following schematic CIDL example:

composition <category> <composition_name> {

home executor <home_executor_name> {
... [l assume storage management specified

delegatesTo abstract storagehome (
<home_opg>: <storage_home_opgy>,
<home_op,>: <storage_home_op>, ...

)i

delegatesTo executor(
<home_op,>: <executor_op,>, ...

)i

abstract(<home_ops>, <home_op,>, ...);

5
5

Delegation to abstract storage home

The delegatesTo abstract storagehome declaration specifies a sequence of
operation mappings, where each operation mapping specifies the name of an operation
on the home, and the name of an operation on the storage home. The signatures of the
operations must be compatible, as defined in Section 5.8.4 on page 99. Based on this
declaration, the CIF generates implementations of the home operations on the home
executor that delegate to the specified operations on the abstract storage home.

Delegation to executor

The delegatesTo executor declaration specifies a sequence of operation mappings,
similar to the delegatesTo abstract storagehome declaration. The name on the
left hand side of the mapping (i.e., to the left of the colon, ‘") must denote an
explicitly-declared factory operation on the home, or the identifier “create”, denoting
the implicitly-declared factory operation. The right hand side of each mapping

CORBA Components- orbos/99-07-01 6-137

specifies the name of an abstract operation that will be generated on the component
executor. The component implementor provides the implementation of the executor
operation, and the CIF provides an implementation of the operation on the home
executor that delegates to the executor.

The delegation of home operations to executors is problematic, since home operations
(other than factories) have no target component. For this reason, only factory
operations may be delegated to the component executor. The CIF implements this
delegation by defining an additional facet on the component executor, called a factory
facet. A factory facet is only exposed to the home executor; clients cannot navigate to
the factory facet, and the factory facet is not exposed in component meta-data, or
described in the FacetDescription values returned from
Navigation::describe_facets or Navigation::provide_all_facets.

The implementation of the factory operation on the home executor that delegates to the
component executor must first create an object reference that denotes the factory facet.
The home operation then invokes the mapped factory operation on the object
reference, causing the activation of the component and ensuring that the execution of
the operation on the component occurs in a proper invocation context.

If the factory operation being delegated is any operation other than the orthodox
create operation, and the home definition includes a primary key specification, the
operation generated on the factory facet of the component executor returns a value of
the specified primary key type. The delegating operation on the home executor
associates the primary key value returned from the component executor with the
storage object (i.e., the storage object’s PID) created to incarnate the component
instance.

The use of PID valuesto create object references obviates the need to have
two versions of a create method on the executor, asis the case in EJB with
create and postCreate methods. An appropriate calling context can be cre-
ated before the factory operation is invoked on the executor.

These precise semantics of and requirements for factory operations delegated to the
executor are described in detail in Section 5.8.4.1 on page 99.

Suppressing generated implementation

The abstract specification overrides the generation of implementations for orthodox
home operations. The name of any explicitly-defined operation on the home may be
specified in the operation list of the abstract declaration. The CIF will not implement
the specified operations, instead |eaving unimplemented abstract operation declarations
(on whatever appropriate equivalent exists for the particular language mapping).

The following example extends the previous example to illustrate delega-
tion of home operations to the abstract storage home and the executor. The
example highlights differences from the previous, and does not repeat ele-
ments that are identical:

/l Example 3
I
/I USER-SPECIFIED IDL

CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

I
module LooneyToons { // IDL

identical to previous example, except for the home:

home ToonTown manages Toon primaryKey EpisodeName {
factory createToon(
in string name, in long num, in Bird bref);
void arbitrary_operation();

The CIDL now defines abstract storage types, abstract storage homes, and
a catalog. The composition binds:

/I Example 3

1

/l USER-SPECIFIED CIDL
I

import ::LooneyToons;

module MerryMelodies {
... identical to the previous example, except for:

abstract storagehome ToonStateHome of ToonState

{
key episode_name;
factory create();
void do_something();
3

composition entity Toonlmpl {

uses catalog { ToonCatalog store; };

home executor ToonTownlmpl {
implements LooneyToons::ToonTown;
bindsTo store. TSHome;
manages ToonEntitylmpl;
delegatesTo abstract storagehome

(arbitrary_operation : do_something);

delegatesTo executor (createToon : createToon);

Inthisexample, the arbitrary _operation on the home interface ToonTown
is delegated to the storage home operation do_something. Note that the
operations have identical signatures. The createToon factory operation is
delegated to an operation of the same name on the executor. This delega-
tion causes the implicit definition of a factory facet on the component with
the following interface:

August 2, 1999 11:07 pm CORBA Components- orbos/99-07-01 6-139

6-140

CORBA Components - orbos/99-07-01

interface ToonlmplFactoryFacet {
EpisodeName createToon(
in string name, in long num, in Bird bref);

Thisinterfaceis not part of the public interface of the component; itsuseis
restricted to the home executor. In fact, the IDL need not be generated. All
of the code that uses the factory facet is either generated by the CIF, or
derived from CIF-generated skeletons, so the CIF can simply generate lan-
guage mappings for the interface without actually providing any IDL for it.
Note also that only a subset of the normal language mapping artifacts are
required, including (in the case of Java) the abstract Operations interface,
the POA tie class to be used internally by the executor, and a local stub to
allow the home executor to make a del egating invocation. There is no need
to generate a remote stub, as the facet is never exposed outside of the con-
tainer.

The abstract storage home ToonStateHome interface has the added
do_something operation on the explicit interface:

/1 Exanple 3
/1
/1 GENERATED FROM CI DL SPECI FI CATI ON:
/1
public interface ToonSt at eHone
ext ends StorageHoneBase {
public void do_sonething();
I

The ToonImpl executor skeleton class supports an additional facet (the
factory facet), which is returned by the _get_factory_facet operation:

/1 Exanple 3

I

/| GENERATED FROM Cl DL SPECI FI CATI ON:
/1

package MerryMel odi es;

i mport LooneyToons;

abstract public class Toonl npl
i mpl enents LooneyToons. ToonOper ati ons,
Execut or Segnent Base, Per si st ent Conponent {
sane as previous
/1 The foll ow ng operations must be inpl emented
/1 by the conponent devel oper:

abstract public Toonl npl Fact oryFacet Qper ati ons
_get _factory_facet();

abstract public BirdOperations
_get _facet_tweety();

abstract public CatQperations

August 2, 1999 11:07 pm

_get _facet_sylvester();

The CIF generates implementations of the delegated operations on the
home executor:

/1 Exanple 3

/1

/1 GENERATED FROM CI DL SPECI FI CATI ON:
/1

package MerryMel odi es;

i mport LooneyToons;

public class ToonTownl npl
i mpl ement s LooneyToons. ToonTownQOper at i ons,
CCMHone, Execut or Segnent Base

/'l values set during initialization
/1 and activation:

protected ToonSt at eHone _st or ageHone;
protected Entity2Context _origin;

Toon creat eToon(
String nane, |long num Bird bref)

{
ToonSt ate new_st at e=
_storageHone. create();
/1l etc.
}

void arbitrary_operation() {
_storageHone. do_sonet hi ng() ;

}

/1 Exanple 3

I

/1 PROVI DED BY COVPONENT PROGRAMVER:
I

i mport LooneyToons. *;
i mport MerryMel odi es. *;

public class nyToonl npl extends Toonl npl

i mpl enents Bi rdQperations, CatQperations,
Toonl npl Fact or yFacet Oper ati ons{

August 2, 1999 11:07 pm CORBA Components- orbos/99-07-01 6-141

6-142

Epi sodeNane

createToon(String nane, long num Bird bref) {
/1 presunably, the main reason for doing
/1l this kind of delegation is to initialize
/] state in the context of the conponent:
how_| ong(num ;
| ast _bird_eaten(bref);
Epi sodeNaneDef aul t Factory _keyFactory

= new Epi sodeNaneDef aul t Factory();

return _keyFactory. create(nane);

}

Toonl npl Fact or yFacet Oper ati ons
_get _factory_facet() {
return
(Toonl npl Fact or yFacet Operations) this;

6.1.9 Executor definition

The home executor definition must include an executor definition. An executor
definition specifies the following characteristics of the component executor:

The name of the executor, which is used as the name of the generated executor
skeleton

Optionally, one or more distinct segments, or physical partitions of the executor.
Each segment encapsul ates independent state and is capable of being independently
activated. Each segment also provides at least one facet.

Optionally, the generation of operation implementations that manage the state of
stateful component features (i.e., receptacles, attributes, and event sources) as
members of the component incarnation.

a delegation declaration that describes a correspondence between stateful
component features and members of the abstract storage type that incarnates the
component. The CIF uses this declaration to generate implementations of the
feature-specific operations (e.g., connect_ and disconnect_ operations for
receptacles, accessors and mutators for attributes) that store the state associated
with each specified feature in the storage member indicated on the right hand side
of the delegation.

6.1.9.1 Segmented executors

A component executor may be monolithic or segmented. A monoalithic executor is,
from the container’s perspective, a single artifact. A segmented executor is a set of
physically distinct artifacts. Each segment may have a separate abstract state

CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

6

August 2, 1999 11:07 pm

declaration. Each segment must provide at least one facet defined on the component
definition. The life cycle category of the composition must be entity or process if
the executor specifies segmentation.

The primary purpose for defining segmented executors is to allow requests on a subset
of the component’s facets to be serviced without requiring the entire component to be
activated. Segments are independently activated. When the container receives a request
whose target is a facet of a segmented executor, the container activates only the
segment that provides the required facet.

The following schematic CIDL illustrates the declaration of a segmented executor:
composition <category> <composition_name> {

home executor <home_executor_name> {
... [l assume storage management specified

manages <executor_name> {
segment <segment_nameg> {
storedOn <catalog_label.abstract_storage_home>;
provides (<facet_nameg>, <facet_name;>, ...);
|3

segment <segment_name;>{ ... };

h
h

The abstract storage home specified in the segment’s storedOn declaration implicitly
specifies the abstract storage type that incarnates the segment. The home executor will
use this abstract storage home to create and manage instances of the segment state (i.e.,
incarnations). If the component home specifies a primary key, then al of the abstract
storage homes associated with executor segments must specify a matching key. The
facets specified in the segment’s provides declaration are implemented on the
segment.

A segmented executor has a distinguished segment associated with the component. The
component segment is implicitly declared, and supplies all of the facets not provided
by separate segments, as well as all other component features and supported interfaces.

Figure 6-3, “Monoalithic executor and reference information structure”, and Figure 6-4,
“Segmented executor and reference information structure”, illustrate the structure of
monolithic and segmented executors, and the relationships between facets, storage
objects, and segments. These figures also illustrate the identity information that is
embedded in component and facet object references. Component identity information
is described in more detail in Section 5.1.4 on page 61.

CORBA Components- orbos/99-07-01 6-143

component segment (segment 1D = 0)

component facet ¢
\ incarnation
Qi/facetlD=O (PID=p)
fact A O——— facetID=F;
facetB O——+ facetlID=F,
facet C O——+ facetID=F;
target facet state ID (PID)
component reference info 0 P
facet A referenceinfo Fr P

Figure 6-3 Monolithic executor and reference information structure

6-144 CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

August 2, 1999 11:07 pm

component segment (segment 1D = 0)
component facet ¢
incarnation

\ /facetIDZO (PID =Py)

O—
facet A O——7— facetID=F;

N
- e

facet B O—1— fecetID=F,
facet C O—1— fecetID=F;

segment (segment ID = S,)

segment descriptors
target segment 1D
segment ID state ID

target facet ID
component reference info 0 0 0 Py
Si| P
facet B referenceinfo F, S 0 Po
S| P

Figure 6-4 Segmented executor and reference information structure

The details of the structure and behavior of segments and requirements for their
implementation are specified in Section 6.2.9 on page 162.

The following example extends the previous example 2 to illustrate seg-
mented executors. The example highlights differences from the previous,
and does not repeat elements that are identical:

CORBA Components- orbos/99-07-01 6-145

6-146

CORBA Components - orbos/99-07-01

I
/I USER-SPECIFIED IDL
I
module LooneyToons { // IDL
identical to previous example 2

h

The CIDL now defines abstract storage types, abstract storage homes, and
a catalog. The composition binds:

I

/I USER-SPECIFIED CIDL
I

import ::LooneyToons;

module MerryMelodies {

... identical to example 2 except for new storage, storage home
and executor definitions

abstract storagetype ToonState {
state LooneyToons::EpisodeName episode_name;
state string name;
state LooneyToons::Bird last_bird_eaten;

kh

abstract storagehome ToonStateHome of ToonState {
key episode_name;

Bok

abstract storagetype BirdSegState {
state unsigned long time_flown;

b

abstract storagehome BirdSegStateHome of BirdSegState {
key episode_name;

k

catalog ToonCatalog {
provides ToonStateHome TSHome;
provides BirdSegStateHome BSSHome;

kh

composition entity Toonimpl {
uses Catalog { ToonCatalog store; };
home executor ToonTownlmpl {
implements LooneyToons::ToonTown {
bindsTo store. TSHome;
manages ToonEntitylmpl {
segment BirdSegment {
storedOn ToonPS.BSSHome;
provides (tweety);

August 2, 1999 11:07 pm

The storage home BSSHome on the ToonCatal og catalog is bound to the
segment BirdSegment, which implicitly binds the segment executor for
BirdSegment to the abstract storage type BirdSegSate. This segment pro-
vides the facet tweety, |eaving the remaining facet (sylvester) on the compo-
nent segment.

The mappings of the CIDL abstract storage types, abstract storage homes,
and the catalog e are not presented, as they are not affected by the segmen-
tation.

The generated component executor base class Toonlmpl is also not pre-
sented, asthe changes aretrivial. The facet accessor _get_facet tweety is
no longer present on the component executor. There are other internal
changes that are not visible to the component implementor. The executor
for the new BirdSegment has the following form:

/1 Exanple 4

I

/| GENERATED FROM Cl DL SPECI FI CATI ON:
/1

package MerryMel odi es;

i mport LooneyToons;

abstract public class BirdSegnent
i mpl enents Execut or Segnent Base,
Per si st ent Conponent

{

/1 CGenerated inplementations of operations

/1 inherited from CCMj ect and

/1 Execut or Segnent Base and Persi st ent Conponent
/] are onmitted here.

I

protected BirdSegState _state;
protected BirdSegnent() { _state = null; }
public void set_incarnation (

Bi rdSegSt ate state) {
_State = state;

}

/'l The foll owing operations nust be inpl enent ed
/'l by the conponent devel oper:

abstract public BirdQOperations
_get _facet_tweety();

August 2, 1999 11:07 pm CORBA Components- orbos/99-07-01 6-147

6-148

CORBA Components - orbos/99-07-01

Note that the BirdSegment executor does not implement any IDL interface
directly, as does the component segment. It is remotely accessible only
through a provided facet.

A generated implementation of the home executor ToonHomelmpl is con-
siderably different from the previous example 2. The create method must
create references for all of the segments and construct a Componentld with
the proper information::

I

/| GENERATED FROM Cl DL SPECI FI CATI ON:
I

package MerryMel odi es;

i mport LooneyToons;

public class ToonTownl npl
i mpl enents LooneyToons. ToonTownQper ati ons,
CCMHone, Execut or Segnent Base
{
/1 1nplenentations of operations inherited
/1 from CCMHonme and Execut or Segnent Base
/1 are onmitted here.
/1
/1 ToonHonel mpl al so provides inplenentations
/1 of operations inherited fromthe conponent
/1 honme interface ToonTown, that del egate
/1 designated operations on the storage hone
I

/'l values set during initialization
// and activation:
protected Entity2Context _origin;
prot ected ToonSt at eHone _t oonSt or ageHore;
protected BirdSegSt at eHore _bi r dSt or ageHone;

Toon creat e(Epi sodeNane key)

{
ToonState new toon =
_toonSt or ageHone. cr eat e(key);
/]l etc.
}

I

/1 PROVI DED BY COVPONENT PROGRAMVER:
/1

i mport LooneyToons. *;

i mport MerryMel odi es. *;

public class nyToonl npl extends Toonl npl
i mpl enents Cat Operations {

August 2, 1999 11:07 pm

public nyToonlnpl () { super(); }

void fly (long how_ | ong) {
_state.tinmeFl own
(_state.tinmeFlown() + how_|long);

}

void eat (Bird lunch) {
_state.last_bird_eaten(lunch);

}

Bi rdOperati ons get_facet_tweety() {
return (BirdQperations) this;

}

Cat Qperations get_facet_sylvester() {
return (CatOperations) this;

}

}

public class nyBirdSegl mpl extends BirdSegnent
i mpl enents BirdQperations {

public nyBirdSeglnpl () { super(); }

void fly (long how_ | ong) {
_state.tinmeFl own
(_state.tinmeFlown() + how_|long);

}

Bi rdOperati ons get _facet_tweety() {
return (BirdQperations) this;

The programmer must also supply a different implementation of the
create_executor_segment operation on the home executor, that uses the
segment D value to determine which executor to create.

/1 Exanple 4

I

/1 PROVI DED BY COVPONENT PROGRAMVER:
I

i mport LooneyToons. *;

i mport MerryMel odi es. *;

public class nyToonTownl npl extends ToonTownl npl
{
protected nyToonTownl npl () { super(); }

Execut or Segnent Base
create_executor_segnent (int segid) {

/1 case discrimnator values are constants
/'l generated on the executor segment classes

August 2, 1999 11:07 pm CORBA Components- orbos/99-07-01 6-149

switch (segid) {
case Toonl npl . _segment _id_val ue :
return new nyToonl npl ();
case BirdSegment._segment _id_val ue :
return new nyBirdSegl npl ();
def aul t
rai se an exception

6.1.9.2 Delegation of feature state

An executor may also optionally declare a correspondence between stateful component
features (which include receptacles, attributes and event sources) and members of the
abstract storage type that incarnates the component (or the distinguished component
segment, in the case of a segmented executor). The CIF uses this declaration to
generate implementations of the feature-specific operations (e.g., connect_ and
disconnect_ operations for receptacles, accessors and mutators for attributes) that store
the state associated with each specified feature in the storage member indicated on the
right hand side of the delegation. The following schematic CIDL illustrates a feature
delegation:

composition <category> <composition_name> {

home executor <home_executor_name> {
... [l assume storage management specified

manages <executor_name> {
delegatesTo abstract storagetype (
<feature_nameg> : <storage_member_nameg>,
<feature_name,> : <storage_member_name,>, ...

h

The type of the storage member must be compatible with the type associated with the
feature, as defined in Chapter 5. In the case of attributes, the ClF-generated
implementations of accessors and mutators retrieve and store the attribute value in the
specified storage member. The executor programming model allows implementors to
intercept invocations of the generated accessor and mutator invocations and replace or
extend their behaviors. In the case of receptacles and event sources, the
implementations of the connect_<receptacle_name>,
disconnect_<receptacle_name>, connect_<source_name>,
disconnect_<source_name>, subscribe_<source_name> and
unsubscribe_<source_name> operations store the connected object references in
the specified members of the storage object that incarnates the component.

| 6-150 CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

This mechanismis only particularly useful if the connected object refer-
ences are persistent references, capable of causing server and object acti-
vation if necessary.

6.1.10 Proxy homes

August 2, 1999 11:07 pm

A composition definition may include a proxy home declaration. A proxy home
implements the component home interface specified by the composition definition, but
the implementation is not required to be collocated with the container where the
components managed by the home are activated.

Proxy homes are, in essence, remote projections of the actual home implementation,
which is always collocated with the executing component implementation. A proxy
home may be able to implement some subset (or potentially, all) of the operations
defined on the component home without contacting the actual home implementation.
Operations that cannot be locally implemented by the proxy home are delegated to the
actual home. The run-time implementation of the CIF (including the supporting
infrastructure of the container and the home finder) is responsible for maintaining the
associations between proxy homes and the actual home they represent. The container
provides an interface for registering proxy homes, described in Section 7.4.1.3 on page
205.

Proxy homes offer the capacity for considerably increased scalability over collocated
homes, particularly when the home operations can be implemented locally by the
proxy home implementation. The following schematic CIDL illustrates a proxy home
definition:

composition <category> <composition_name> {

home executor <home_executor_name> {
implements <home_type> ;
bindsTo <catalog_label.abstract_storage_home>;

|3
proxy home <proxy_executor_name> {
delegatesTo home (<home_opgy>, <home_op4>, ...);
abstract (<home_op,>, <home_ops>, ...);
|3
|3

The <proxy_executor_name> is used as the name of the generated skeleton artifact for
the proxy home executor. The proxy home declaration implicitly acquires the
characteristics of the actual home, as declared in the home executor definition (which
must precede the proxy home definition in the composition scope). In particular, the
proxy home implements the same home, and binds to the same abstract storage home.
The operation delegations specified in the actual home executor definition are also
acquired by the proxy home, but certain delegations are transformed according to rules
specified in Section 6.1.10.1 on page 152.

CORBA Components- orbos/99-07-01 6-151

6-152

6.1.10.1 Proxy home delegation

For proxy homes in compositions that specify managed state, the CIF assumes that the
proxy home has connectivity to the same persistent store as the actual home. Based on
this assumption, the default implementations of orthodox operations on the proxy
home executor are delegated directly to the storage home, precisely as they are in the
actual home executor. In general, other operations are delegated to the actual home, by
default, although the specific rules for determining the implementation of proxy home
operations are somewhat more involved, and are described completely in Section 6.2.3
on page 159.

6.1.11 Component object references

The CIF defines an information model for component object references. This
information model is encapsulated within the object_key field of an 110P profile, or an
equivalent field in other profiles. The information model is an abstraction; no standard
encoding within an object_key is specified. It is the responsibility of the container and
the underlying ORB to encode this information for insertion into object references and
to extract this information from the object_key in incoming requests, decode it, and use
it to activate the appropriate component or segment and dispatch the request to the
proper facet.

The Entity2Context interface, described in Section 7.4.3.7 on page 216 is used by the
component implementation to provide this information to the container, with which the
container creates the object references for the component and its facets. The
Componentld interface encapsul ates the component reference information. Examples
2, 3, and 4 in the previous sections illustrate the use of the Entity2Context and
Componentld interfaces to create object references. Figure 6-3, “Monolithic executor
and reference information structure”, and Figure 6-4, “ Segmented executor and
reference information structure”, illustrate the structure of the information
encapsulated in Componentld, and its relationship to executor structure.

6.1.11.1 Facet identifiers

The CIF implementation allocates numeric identifiersto facets. The facet ID values are
interpreted by generated code in the component implementation, so the assignment of
values does not need to be uniformly specified; the a given CIF implementation’s
choice of facet ID values does not affect portability or interoperability.

6.1.11.2 Segment identifiers

The CIF implementation must also allocate numeric identifiers to segments. Similar to
facet 1Ds, segment IDs are aso interpreted by the component implementation, so no
uniform allocation mechanism is specified. The implementation of
create_executor_segment (on the home executor implementation) provided by the
component implementor must interpret segment 1D values in order to create and return

CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

6

the appropriate segment executor. The generated implementations of segment executor
skeletons define symbolic constants to assist the component implementor in this

mapping.

6.1.11.3 Sateidentifiers

State identifier is an abstraction that generalizes different representations of state
identifiers, the primary of which isthe pid of the CORBA persistent state service. The
generic representation of a state identifier is StateldValue, an abstract valuetype from
which specific, concrete state identity types are derived. Implementations of the
concrete sub-types are responsible for converting their representations to byte
sequences and back again.

6.1.11.4 Monolithic reference information

Monolithic references contain a facet identifier and a single state identifier. The facet
identifier denotes the target facet of the reference (or, of requests made on the
reference). The state identifier is interpreted by the component implementation and
used to retrieve the component’s state. In the case of automatically managed state, the
ClIF-generated implementation interprets the state identifier as a pid, using it to
incarnate the component’s storage object.

Note that navigation from one facet’s reference to another consists of
merely replacing the target facet identifier with the facet identifier of the
desired facet. This can be accomplished without activating the component.

6.1.11.5 Segmented referenceinformation

The reference information for segmented executors consists of the following:
® atarget facet identifier
® atarget segment identifier

® asequence of segment descriptors, each of which contains:
« the segment identifier of the segment being described
« the state identifier for the segment

The target facet identifier denotes the target of requests made on the reference, and the
target segment identifier denote the segment on which that facet is implemented. The
seguence of segment descriptors contains one element for each segment, including the
component segment. This sequence is invariant for all references to a given
component, over the lifetime of the component.

In the case of segmented executors, navigation is accomplished by replac-
ing the facet and segment identifiers.

August 2, 1999 11:07 pm CORBA Components- orbos/99-07-01 6-153

6.1.11.6 Component identity

The state identifier of the component segment (or the single state identifier in the case
of monolithic executors) is interpreted as the unique identity of the component, within
the scope of the home to which it belongs. Equivalence of component identity is
defined as equivalence of state identifier values of the component segment.

6.2 CIDL syntaxfor compositions

The grammar for CIDL that pertains to compositions is defined by the following BNF
productions:

6-154 CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

August 2, 1999 11:07 pm

<composition>::=>:;=“composition” <category> <identifier> “{"
<composition_body>“}"

<category> ::= “entity” | “process” | “service” | “session”

<composition_body> ::=[<catalog_use_dcl>] <home_executor_def>
[<proxy_home_def>]

n ow

<catalog_use_dcl>::="uses” “catalog”
H{H <Catalog_dcl>+ H}” u;”

<catalog_dcl> ::= <catalog_type_spec> <catalog_label>
<catalog_type_spec>::=<scoped_name>

<catalog_label> ::= <identifier>

<home_executor_def>::="home” “executor” <identifier>"“{"
<home_executor_body>*“}" ;"

<home_executor_body>::= <home_impl_dcl>
[<abstract_storage _home_binding>]
[<stored_on_dcl>]
<executor_def>
[<abstract_storage _home_delegation_spec>]
[<executor_delegation_spec>]
[<abstract_spec>]

<home_impl_dcl>::= “implements” <home_type_name> “;"
<home_type_name> ::= <scoped_name>

<abstract_storage_home_binding> ::= “bindsTo”
<abstract_storage_home_name>*“;"

<abstract_storage_home_name> ::= <catalog_label>“.
<abstract_storage _home_label>

<abstract_storage _home_label> ::= <identifier>

<home_persistence_dcl>::=“storedOn” <abstract_storage _home_name>

[T
l

<executor_def> ::= “manages” <identifier>
[<executor_body>]"“;"

<eXGCUtOI‘_b0dy> = “{” <eXeCut0r_member>+ [}"
<executor_member> ::= <segment_def> | <feature_delegation_spec>

<segment_def>::=“segment” <identifier>“{" <segment_member>+ “}"

CORBA Components- orbos/99-07-01 6-155

<segment_member> ::= <segment_persistence_dcl>*“;”
| <facet_dcl>*“;"

<segment_persistence_dcl> ::= “storedOn”
<abstract_storage_home_name> *;”

<facet_dcl>::=“provides” “facet” <identifier>{"“,” <identifier> }*

<feature_delegation_spec> ::= “delagatesTo
<feature_delegation_list>

storage”

<feature_delegation_list>::=*(" <feature_delegation> { “,”
<feature_delegation>}*“)”

<feature_delegation> ::= <feature_name> “:" <storage_member_name>

<feature_name> ::= <identifier>

<storage_member_name> ::= <identifier>

<abstract_storage_home_delegation_spec> ::= “delegatesTo” “abstract”
“storagehome” <delegation_list>"“;”

<executor_delegation_spec> ::= “delegatesTo” “executor”
<delegation_list>*“;”
<delegation_list> ::=“(" <delegation> { “,” <delegation> }*“)”

<delegation> ::= <operation_name> [“:” <operation_name>]

<operation_name> ::= <identifier>

<abstract_spec> ::=“abstract” <operation_list>";"
<operation_list>::="(" <operation_name> { “,” <operation_name> }*“)”
<proxy_home_def>::="“proxy” “home” <identifier>"“{"

<proxy_home_member>+*“}" “;”

<proxy_home_member>::= <home_delegation_spec>"“;"
| <abstract_spec>

<home_delegation_spec> ::=“delegatesTo” “home” <delegation_list>

6.2.1 Composition definition

The syntax for composition definitions is as follows:

6-156 CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

August 2, 1999 11:07 pm

<composition>::=>:;=“composition” <category> <identifier> “{"
<composition_body>“}"

<category> ::= “entity” | “process” | “service” | “session”
<composition_body> ::=[<catalog_use_dcl>] <home_executor_def>
[<proxy_home_def>]

A composition definition is a named scope that contains elements that constitute the
composition. The elements of a composition definitions are as follows:

® the keyword composition

® the specification of the life cycle category, one of the keywords service, session,
process, or entity. Subsequent definitions and declarations in the composition
must be consistent with the declared category, as defined in Section 6.2.1.1 on page
157.

® anidentifier that names the composition in the enclosing module scope

® the composition body

The composition body consists of the following elements:
® an optiona catalog usage declaration
® amandatory home executor definition

® an optiona proxy home definition.

6.2.1.1 Lifecyclecategory and constraints

Certain composition configurations are only valid for certain life cycle categories.
Chapter 7 describes the life cycle-related constraints from the perspective of the
container. These constraints map onto corresponding constraints in component and
composition definitions. The following lists define the CIDL constructs that are either
mandatory or invalid for the designated life cycle category.

Note that these constraints supersede the conditionality of constructs based on CIDL
syntax. If a construct is described below as mandatory for the category in question, it
is mandatory regardless of it's syntactic properties. All of the constructs described as
invalid for a particular category are, of necessity, syntactically optional.

CORBA Components- orbos/99-07-01 6-157

6-158

Table 6-2 Constraints for service and session components

Service and | Mandatory None
Session

Invalid abstract storage home bound to home executor:
<abstract_storage _home_binding> in home
executor body

component home implemented by home executor
specifies a primary key

component home implemented by home executor
specifies explicit finder operations

segmented executor: <segment_def> in executor
body

Table 6-3 Constraints for process components

Process Mandatory None

Invalid component home implemented by home executor
specifies a primary key

Table 6-4 Constraints for entity components

Entity Mandatory | component home implemented by home executor
specifies a primary key

Invalid none

6.2.2 Catalog usage declaration

The syntax for a catalog usage declaration is as follows:

<catalog_use_dcl>::="uses” “catalog”
H{H <Catalog_dcl>+ H}” u;”

<catalog_dcl> ::= <catalog_type_spec> <catalog_label>
<catalog_type_spec>::=<scoped_name>

<catalog_label> ::= <identifier>

A catalog usage declaration consists of the following elements:
® the keywords uses and catalog

® ablock containing one or more catalog label declarations

A catalog label declaration consists of the following elements:

CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

® ascoped name denoting a previously-defined catalog

® anidentifier that denotes a putative catalog of the specified type within the scope of
the composition

A catalog usage declaration identifies catalog types that are used by the composition
and assigns them labels that are used within the scope of the composition to refer to a
putative catalog of the specified type. A catalog usage declaration also causes the CIF
to generate implementation of the following behaviors:

During the activation of a home executor, the CIF-generated activate implementation
on the home executor shall obtain the CosPersistentState::CatalogBase interface
from the component context, and invoke get_catalog on it, requesting a catalog of
each type specified in the catalog usage declaration. The catalogs are requested by
their repository ID values. The home shall maintain references to the specified
catalogs, and make them available to the executors.

6.2.3 Home executor definition

August 2, 1999 11:07 pm

The syntax for a home executor definition is as follows:

<home_executor_def>::="“home” “executor” <identifier>“{"
<home_executor_body>*“}" ;"

<home_executor_body>::= <home_impl_dcl>
[<abstract_storage _home_binding>]
[<home_persistence_dcl>]
<executor_def>
[<abstract_storage _home_delegation_spec>]
[<executor_delegation_spec>]
[<abstract_spec>]

A home executor definition consists of the following elements:
® the keywords home and executor

® anidentifier that names the home executor definition within the scope of the
composition.

® ahome executor body.
The home executor body consists of the following elements:
® ahome implementation declaration

® an optional abstract storage home binding, specifying the storage home upon which
the components managed by the home are stored

® an optional home persistence declaration, identifying an abstract storage home upon
which the state of the home executor itself is to be stored

® an executor definition, describing the component executor managed by the home
executor

CORBA Components- orbos/99-07-01 6-159

6-160

® an optional delegation specification describing the mapping of home operations to
storage home operations

® an optional delegation specification describing the mapping of home factory
operations to the operations on the component executor

® an optional abstract specification, declaring operations on the home executor that
are to be left unimplemented, overriding default generated implementations

The <identifier> in the header of the home executor definition is used as the basis for
the name of the skeleton artifact generated by the CIF. The specific forms of the
executors are defined in language mappings. The general requirements for language
mappings of homes executors are defined in Section 6.3 on page 168.

6.2.4 Home implementation declaration

The syntax of a home implementation declaration is as follows:
<home_impl_dcl> ::="implements” <home_type_name>*“;”

<home_type_name> ::= <scoped_name>
The home implementation declaration consists of the following elements:
® the keyword implements

® ascoped name denoting a component home imported from IDL

The home implementation declaration specifies the component home which is to be
implemented by the home executor being defined. The generated skeleton must
support the home equivalent interface, as defined in Section 5.8.2 on page 95.
Implementations of orthodox home operations are generated if the life cycle category
of the composition is either entity or process and the home executor specifies an
abstract storage home binding, or if the life cycle category of the executor is either
session or service.

The detailed semantics of generated implementations are described in Section 6.3 on
page 168.

6.2.5 Sorage home binding

The syntax for a storage home binding is as follows:

<storage_home_binding> ::=“bindsTo” <abstract_storage_home_name>

[Tl
l

<abstract_storage_home_name> ::= <catalog_label>“.
<storage_home_label>

<storage_home_label> ::= <identifier>

An abstract storage home binding declaration consists of the following elements:

CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

® the keyword bindsTo

® an abstract storage home name

An abstract storage home name consists of a catalog label, a period separator, and a
storage home label. The catalog label must denote a catalog previously declared in the
catalog usage declaration in the current composition definition. The storage home label
must denote a storage home declared as a member of the catalog type associated with
the catalog label.

6.2.6 Home persistence declaration

The syntax for a home persistence declaration is as follows:

<home_persistence_dcl>::=“storedOn” <abstract_storage_home_name>

.y
)

A home persistence declaration consists of the following elements:
® the keyword storedOn

® an abstract storage home name

A home persistence declaration establishes that the home executor is itself persistent,
and that it's persistent state is managed by the container. The abstract storage type of
the specified abstract storage home constitutes the state of the component home. The
specific responsibilities of generated home executors related to home persistence are
described in Section 6.3 on page 168.

6.2.7 Executor definition

August 2, 1999 11:07 pm

The syntax for an executor definition is as follows:

<executor_def> ::= “manages” <identifier>
[<executor_body>]"“;"

<executor_body> ::="“{" <executor_member>+*“}"

<executor_member> ::= <segment_def> | <feature_delegation_spec>
An executor definition has the following elements:

® the keyword manages

® and identifier that names the component executor being defined

® an executor body, containing one or more members enclosed in braces

An executor member is either a segment definition or a feature delegation
specification, as defined below.

CORBA Components- orbos/99-07-01 6-161

6-162

The identifier in the executor definition forms the basis of the name of the
programming artifact generated as the executor skeleton. The details of executor
structure and responsibilities are defined in Section 6.3 on page 168, and in CIDL

language mappings.

6.2.8 Segment definition

The syntax for a segment definition is as follows:
<segment_def>::=“segment” <identifier> “{" <segment_member>+“}"

<segment_member> ::= <segment_persistence_dcl>"“;"
| <facet_dcl>*“;"

A segment definition consists of the following elements:
® the keyword segment
® anidentifier that names the segment in the scope of the executor definition

® one or more segment members enclosed in braces

A segment member is either a segment persistence declaration, or a facet declaration,
as described below.

If a segment definition occurs in an executor definition, the corresponding executor is
said to be a segmented executor. If no segment definition occurs in a executor
definition, the executor is said to be monolithic.

A separate skeleton is generated by the CIF for each segment of a segmented executor.
Segments are independently activated. Each segment is assigned a segment identifier,
which as a numeric value of type short, by the CIF implementation. The segment
identifier is interpreted internally by the generated implementation during activation.
Segment identifiers are also used in component identities, as described in Section
7.4.3.1 on page 210. There is no canonical mechanism for assigning segment identifier
values (other than the component segment), as the values of segment identifiers does
not affect portability or interoperability.

All executors have a distinguished segment, the component segment, that supports the
component facet (i.e., the facet supporting the component equivalent interface). The
segment identifier value of the component segment is always zero. If a component
does not explicitly declare segments, the monolithic executor is still considered in
some contexts to be the component segment executor.

The details of segment structure and implementation responsibilities are described in
Section 6.3 on page 168.

6.2.9 Segment persistence declaration

The syntax for a segment persistence declaration is as follows:

CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

<segment_persistence_dcl> ::= “storedOn”
<abstract_storage_home_name>"“;”

A segment persistence declaration has the following elements:
® the keyword storedOn

® an abstract storage home name

A segment persistence declaration specifies the abstract storage home upon which the
state of the segment will be stored. The abstract storage type of the storage home
constitutes the state of the segment.

The detailed structure of segments, and implementations responsibilities with respect
to segment persistence are described in Section 6.3 on page 168.

6.2.10 Facet declaration

The syntax for a facet declaration is as follows:

<facet_dcl>::="“provides” “facet” <identifier>{"“,” <identifier> }*
A facet declaration has the following elements:
® the keywords provides and facet

® one or more identifiers separated by commas, where each identifier denotes a facet
defined by the component type implemented by the composition (i.e., the
component type managed by the home which is implemented by the home executor
defined in the composition).

A facet declaration associates one or more component facets with the segment. The
generated segment executor will provide the specified facets. A facet name may only
appear in a single segment definition. Facets that are not explicitly declared in a
segment definition are provided by the component segment.

The detailed structure of segments, and implementations responsibilities with respect
to providing facets are described in Section 6.3 on page 168.

6.2.11 Feature delegation specification

August 2, 1999 11:07 pm

The syntax for a feature delegation specification is as follows:

CORBA Components- orbos/99-07-01 6-163

<feature_delegation_spec> ::= “delagatesTo” “abstract” “storagetype”
<feature_delegation_list>
<feature_delegation_list>::=*(" <feature_delegation> { “,”

<feature_delegation>}*“)”
<feature_delegation> ::= <feature_name> “:" <storage_member_name>
<feature_name> ;.= <identifier>

<storage_member_name> ::= <identifier>

A feature delegation specification has the following elements:
® the keywords delegatesTo, abstract and storagetype

® alist of feature delegation specifications, enclosed in parentheses and separated by
commas.

A feature delegation specification consists of the following elements:

® anidentifier that denotes a stateful feature of the component implemented by the
composition

® acolon

® anidentifier that denotes a member of the abstract storage type of the abstract
storage home specified in the abstract storage home binding in the home executor
definition
A feature delegation specification defines an association between a stateful feature of
the component being implemented and a member of the abstract storage type that
incarnates the component (or the component segment). The component executor
skeleton generated by the CIF will provide implementations of feature management
operations that store the feature's state in the specified storage member. Stateful
features include attributes, receptacles, and event sources.

The following constraints regarding feature delegation must be observed:

® Feature delegation specifications may only occur in an executor definition when the
home executor specified an abstract storage home binding.

6-164 CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

® The type of the storage member specified in a feature delegation must be
compatible with the type of the feature. Compatibility, for the purposes of feature
delegation is defined in Table 6-5 on page 165.

Table 6-5 Type compatibility for feature delegation purposes

Feature Sorage member type

attribute must be identical to feature for all types
except object reference and valuetype;
for object reference and valuetype
storage member must be of identical
type or base type (direct or indirect)

receptacle (simplex) must be identical to feature type or base
interface (direct or indirect) of feature

type

receptacle (multiplex) sequence of type compatible with
receptacle type as defined above

emitter event source must be identical to feature type or base
interface (direct or indirect) of feature

type

publisher event source long*

* The persistent state maintained internally by the component is the Channelld of the
notification channel created by the container.

6.2.12 Abstract Sorage home delegation specification

August 2, 1999 11:07 pm

The syntax for a storage home delegation specification is as follows:

<abstract_storage_home_delegation_spec> ::= “delegatesTo” “abstract”

“storagehome” <delegation_list>"“;”
<delegation_list> ::=“(" <delegation> { “,” <delegation> }* “)”
<delegation> ::= <operation_name> [“:” <operation_name>]

<operation_name> ::= <identifier>

An abstract storage home delegation specification has the following elements:

® the keywords delegatesTo, abstract, and storagehome

® alist of delegation specifications enclosed in parentheses and separated by commas
A delegation specification has the following elements:

® anidentifier that denotes an operation on the home equivalent interface supported
by the home executor

CORBA Components- orbos/99-07-01 6-165

® an optional delegation target, consisting of a colon, followed by identifier that
denotes an operation on the abstract storage home to which the home is bound (i.e.,
the abstract storage home specified in the abstract storage home binding)

An abstract storage home del egation specification associates an operation on the home
interface with an operation on the abstract storage home interface. The CIF shall
generated an implementation of the specified home operation that delegates to the
specified abstract storage home operation.

If the optional delegation target is omitted, the home operation is assumed to be
delegated to an operation on the abstract storage home with the same name. If no such
operation exists on the abstract storage home, the specification is not legal.

The signature of the abstract storage home operation must be compatible with the
abstract storage home. Signature compatibility, from the perspective of abstract storage
home delegation, has the following definition:

® |f the home operation is an explicit factory operation, the abstract storage home
operation must be an explicit factory operation.

* |f the home operation is not a factory, the return type of the home operation must be
identical to the return type of the abstract storage home operation, except when the
return type is an object reference type or avalue type. If the return type of the home
operation is an object reference type or a value type, the return type of the storage
home operation must be identical to, or more derived than, the return type of the
home operation.

® For each exception explicitly raised by the storage home operation, an identical
exception must appear in the raises clause of the home operation. The inverse is
not true—the home operation may raise exceptions not raised by the abstract
storage home operation.

® The number of parameters in the parameter lists of the home operation and the
abstract storage home operation must be equal. Each parameter in the abstract
storage home operation must be compatible with the parameter in the same position
in the signature of the home operation, where compatibility is defined as follows:

« |If the parameter in the home operation is neither an object reference type nor a
value type, the type of the corresponding parameter in the abstract storage home
operation must be identical.

« |If the parameter type in the home operation is an object reference and the
parameter is an in parameter, the corresponding parameter in the abstract storage
home operation must be identical to, or a base type (direct or indirect) of, the
parameter in the home operation.

« |If the parameter type in the home operation is an object reference and the
parameter is an out parameter, the corresponding parameter in the abstract
storage home operation must be identical to, or more derived than, the parameter
in the home operation.

« |If the parameter type in the home operation is an object reference and the
parameter is an inout parameter, the corresponding parameter in the abstract
storage home operation must be identical to the parameter in the home operation.

6-166 CORBA Components - orbos/99-07-01 August 2, 1999 11:07 pm

The following additional constraints and rules apply to abstract storage home
delegation:

® An operation on the home interface may delegate to at most one operation on the
abstract storage home interface.

® An operation on the abstract storage home interface may be the target of at most
one delegation from the home interface.

* |mplicitly defined operations on the home (i.e., orthodox operations) delegate by
default to cognate operations on the abstract storage home, as described by Section
5.8.6.1 on page 102. These default delegations may be over-ridden by explicit
delegations. If an operation on the abstract storage home that is normally the default
target of a delegation appears as the target of an explicit delegation, then the home
operation that normally would have delegated to that target by default shall have no
generated implementation (unless one is explicitly defined).

The detailed semantics and implementation responsibilities of delegated abstract
storage home operations are described in Section 6.3 on page 168.

6.2.13 Executor delegation specification

August 2, 1999 11:07 pm

The syntax for an executor delegation specification has the following form:

<executor_delegation_spec> ::= “delegatesTo” “executor”
<delegation_list>"“;"

An executor delegation specification consists of the following elements;
® the keywords delegatesTo and executor

® adelegation list, identical structurally to the delegation list of the abstract storage
home delegation specification

An executor delegation specification defines an operation on the component executor,
to which the specified home operation will be delegated. The following constraints
apply to executor delegation specifications:

® Only factory operations may be delegated to the executor, including explicitly
declared factories and implicit create operations.

® |f no delegation target is explicitly specified, the operation defined on the executor
shall have the same name as the delegating home operation.

® The signature of the defined operation on the executor shall be identical to the
signature of the home operation, with the exception that the return type of the
executor operation shall be void if the home does not specify a primary key, or the
return type shall be the type of the primary key if the home specifies a primary key.

The CIF shall generate an implementation of the home operation that delegates to the
defined operation on the executor. The detailed semantics and implementation
responsibilities are described in Section 6.3 on page 168.

CORBA Components- orbos/99-07-01 6-167

6.3 Language Mappings

6-168

Issue — To be provided as errata.

CORBA Components - orbos/99-07-01

August 2, 1999 11:07 pm

August 2,199911:14 pm

TheContainer Programming Model 4

This chapter describes the container programming model offered for CORBA
components. The container is the server’s runtime environment for a CORBA
component implementation. This environment is implemented by a deployment
platform such as an application server or a development platform like an IDE. A
deployment platform typically provides a robust execution environment designed to
support very large numbers of simultaneous users. A development platform would
provide enough of a runtime to permit customization of CORBA components prior to
deployment but perhaps support a limited number of concurrent users. From the point
of view of the CORBA component implementation, such differences are “qualities of
service” characteristics and have no effect on the set of interfaces the component
implementor can rely on. This chapter is organized as follows:

® Section 7.1 on page 170 introduces the programming model and defines the
elements that comprise it.

The container programming model is an APl framework designed to simplify the
task of building a CORBA application. Although the framework does not exclude
the component developer from using any function currently defined in CORBA, it
is intended to be complete enough in itself to support a broad spectrum of
applications.

® Section 7.2 on page 173 describes the programming model the component
implementor is to follow.

The programming model identifies the architectural choices which must be made to
develop a CORBA component which can be deployed in a container.

® Section 7.3 on page 189 describes the interfaces seen by the component devel oper.

These interfaces constitute the contract between the container provider and the
component implementor. Together with the client programming interfaces defined
in Chapter 5 which can be used by servers as well as clients, they define the server
programmer’s API.

® Section 7.5 on page 217 describes the client view of a CORBA component.

CORBA Components Volume| - orbos/99-07-01 7-169

7.1

7-170

Introduction

The client programming model as defined by the IDL extensions has been
described previously (Chapter 5). This section describes the specific use of CORBA
required by a client, which is NOT itself a CORBA component, to use a CORBA
component written to the server programming model described in Section 7.3 on

page 189.

Note — Many of the names used for various concepts are variables in the text to allow
them to be easily changed. In this version of the document the changes identified in
Table 7-1 have been made. Goal is both clarity and synergy with EJB.

Table 7-1 Glossary of Terms

Term Used in 99-02-05 Term Used in 99-04-16 | Term Used in 99-07-01
external types external API types external API types
container type container API type container API type

container implementation type CORBA usage model CORBA usage model
component category component category component category
NoKeyVisibility keyless keyless
PrimaryKeyVisibility keyfull keyfull
stateless stateless stateless
conversational conversational conversational
durable durable durable
transient session session
persistent entity entity
service service service
session session session
process process process
entity entity entity
basic
extended

The container programming model is made up of several elements:

®* The external API types which define the interfaces available to a component client

®* The container API type which defines the API framework used by the component

developer

CORBA Components Volume| - orbos/99-07-01

August 2, 1999 11: 14 pm

v

August 2, 1999 11:14 pm

®* The CORBA usage model which defines the interactions between the container and
the rest of CORBA (including the POA, the ORB and the CORBA services)

®* The component category which is the combination of the container API type (i.e.
the server view) and the external API types (i.e. the client view)

The overall architecture is depicted in Figure 7-1 below::

7

@ — Home
C
I
e B
n CORBA Callbacks
t External | Component @
@
_/ ¢ ° z
Internal >
Container
ORB
Transactions Security Persistence Notification

Figure 7-1 The Architecture of the Container Programming Model

The external API types are defined by the component IDL including the home
specification. These interfaces are righteous CORBA objects and are stored in the
Interface Repository for client use.

The container API type is a framework made up of internal interfaces and callback
interfaces used by the component developer. These are defined using the new local
interface declaration in IDL for specifying locality-constrained interfaces. The
container API type is selected using CIDL which describes component
implementations.

The EJB session bean and entity bean can be viewed as two examples of
container API type since they offer different sets of framework APIsto the
EJB programmer. However, each of them also impliesa client view i.e. the
external API types. EJB does not define a term for the two framework API
setsit supports.

CORBA Components Volume | - orbos/99-07-01 7-171

7-172

The CORBA usage model is controlled by policies which specify distinct interaction
patterns with the POA and a set of CORBA services. These are defined by CIDL,
augmented using XML, and used by the container factory to create a POA when the
container is created.

The component category is a specific combination of external API types and container
API type used to implement an application with the CORBA component technol ogy.

7.1.1 External API Types

The external API types of a component are the contract between the component
developer and the component client. We distinguish between two forms of external
API types: the home interface and the application interfaces.

These are analogous to the EJBHome and EJBODbject interfaces of
Enterprise JavaBeans.

Home interfaces support operations which allow the client to obtain references to one
of the application interfaces the component implements. From the client’s perspective,
two design patterns are supported - factories for creating new objects and finders for
existing objects. These patterns are distinguished by the presence of a primaryKey
parameter in the home IDL declaration.

® A home interface with a primaryKey declaration supports finders and its client is
a keyfull client.

* A home interface without a primaryKey declaration does not support finders and
its client is a keyless client. All home types support factory operations.

7.1.2 Container API Type

The container API type defines an API framework, i.e. the contract between a
specific component and its container. This specification defines two base types which
define the common APIs and a set of derived types which provide additional function.
The session container API type defines a framework for components using transient
object references. The entity container API type defines a framework for components
using persistent object references.

7.1.3 CORBA Usage Model

A CORBA usage model specifies the required interaction pattern between the
container, the POA and the CORBA services. We define three CORBA usage models
as part of this specification. Since all support the same set of CORBA services, they
are distinguished only by their interaction with the POA.

® stateless - which uses transient object references in conjunction with a POA servant
which can support any Objectld

® conversational - which uses transient references in conjunction with a POA servant
that is dedicated to a specific Objectld

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

v

® durable - which uses persistent references in conjunction with a POA servant that
is dedicated to a specific Objectld

It should be obvious that the fourth possibility (persistent referenceswith a
POA servant that can support any Objectld) makes no sense and isthere-
fore not included.

7.1.4 Component Categories

The component categories are defined as the valid combinations of external API types,
container API type, and CORBA usage model. The following table summarizes the

categories and identifies their EJB equivalent:

Table 7-2 Definition of the Component Categories

Container Primary Component EJB Bean
CORBA Usage Model API Type Key Categories Type
stateless session No Service -
conversational session No Session Session
durable entity No Process -
durable entity Yes Entity Entity

7.2 The Server Programming Environment

The component container provides interfaces to the component. These interfaces
support access to CORBA services (transactions, security, notification, and
persistence) and to other elements of the component model. This section describes the
features of the container which are selected by the deployment descriptor packaged
with the component implementation. These features comprise the design decisions to
be made in developing a CORBA component. Details of the interfaces provided by the
container are provided in Section 7.3 on page 189.

7.2.1 Component Containers

August 2, 1999 11:14 pm

Containers provide the run-time execution environment for CORBA components. A
container is aframework for integrating transactions, security, events, and persistence
into a component’s behavior at runtime. A container provides the following functions
for its component:

® all component instances are created and managed at runtime by its container

® containers provide a standard set of services to a component, enabling the same
component to be hosted by different container implementations

Components and homes are deployed into containers with the aid of container specific
tools. These tools generate additional programming language and metadata artifacts
needed by the container. The tools provide the following services:

CORBA Components Volume | - orbos/99-07-01 7-173

7-174

® editing the configuration metadata
® editing the deployment metadata

® generating the implementations needed by the containers to support the component

The container framework defines two forms of interfaces:

® Internal interfaces - These are locality-constrained interfaces defined as local
interface types which provide container functions to the CORBA component.

These are similar to the EJBContext interface in Enterprise JavaBeans.

® Callback interfaces- These are also local inter face types invoked by the container
and implemented by a CORBA component.

These interfaces provide functions anal ogous to the SessionBean and
EntityBean interfaces defined by Enterprise JavaBeans.

This architecture is depicted in Figure 7-1 on page 171.

We define a small set of container API types to support a broad spectrum of
component behavior with their associated internal and callback interfaces as part of
this specification. These container API types are defined using the new local
interface declaration in IDL introduced in Section 4.1 on page 45 for specifying
locality-constrained interfaces.

Additional component behavior is controlled by policies specified in the deployment
descriptor. This specification defines policies which support POA interactions
(CORBA usage model), servant lifetime management, transactions, security, events,
and persistence. See the deployment chapter (Chapter 10), specifically Section 10.3 on
page 318, for details of how container policies are specified.

CORBA containers are designed to be used as Enterprise JavaBeans containers. This
allows a CORBA infrastructure to be the foundation of EJB, enabling a more robust
implementations of the EJB specification. To support enterprise Beans natively within
a CORBA container, the container must support the API frameworks defined by the
EJB specification. This architecture is defined in Chapter 8 of this specification.

7.2.2 CORBA Usage Model

The CORBA Component Specification defines a set of CORBA usage models which
create either TRANSIENT or PERSISTENT object references and use either a 1:1 or
1:N mapping of Servant to Objectld. These CORBA usage models are summarized
in Table 7-3 below. A given component implementation supports one and only one
CORBA usage model.

Table 7-3 CORBA Usage Model Definitions

CORBA Usage Model Object Reference Servant:OID Mapping
stateless TRANSIENT 1:N
conversational TRANSIENT 11

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

Table 7-3 CORBA Usage Model Definitions

CORBA Usage Model Object Reference Servant:OID Mapping
durable PERSISTENT 1:1
(Invalid) PERSISTENT 1:N

A CORBA usage model is specified using CIDL and is used to either create or select a
component container at deployment time.

7.2.2.1 Component References

TRANSIENT objects support only the factory design pattern. They are created by
operations on the home interface defined in the component declaration.

PERSISTENT objects support either the factory design pattern or the finder design
pattern, depending on the component category. PERSISTENT objects support self-
managed or container-managed persistence. PERSISTENT objects can be used with
the CORBA persistent state service or any user-defined persistence mechanism. When
the CORBA persistent state service is used, servant management is aligned with the
Persistentld defined by the CORBA persistent state service and the container
supports the transformation of an Objectld to and from a Persistentid. A
Persistentld provides a persistent handle for a class of objects whose permanent state
resides in a persistent store (e.g. a database).

Home references are exported for client use by registering them with a HomeFinder
which the client subsequently interrogates or by binding them to the CORBA naming
service in the form of externaly visible names.

EJB clients find references to EJBHome using JNDI, the Java API for Cos-
Naming. Placing home referencesis CosNaming supports both the CORBA
component client and the EJB client programming models.

7.2.2.2 Servant to Objectld Mapping

Component implementations may use either the 1:1 or 1:N mapping of Servant to
Objectld with TRANSIENT references (stateless and conver sational CORBA usage
model, respectively) but may use only the 1:1 mapping with PERSISTENT
references.

* A 1:N mapping alows a Servant to be shared among all requests for the same
interface and therefore requires the object to be stateless (i.e. it has no identity).

* A 1:1 mapping binds a Servant to a specific Objectld for an explicit servant
lifetime policy (see Section 7.2.5 on page 176) and therefore is stateful.

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 7-175

7-176

7.2.2.3 Threading Considerations

CORBA components support two threading models: serialize and multithread. A
threading policy of serialize means that the component implementation is not thread
safe and the container will prevent multiple threads from entering the component
simultaneously. A threading policy of multithread means that the component is
capable of mediating access to its state without container assistance and multiple
threads will be allowed to enter the component simultaneously. Threading policy is
specified in CIDL.

A threading policy of serializeis required to support an enterprise Bean
since they are defined to be single-threaded.

7.2.3 Component Factories

A home is a component factory, responsible for creating instances of al interfaces
exported by a component. Factory operations are defined on the home interface using
the factory declaration. A default factory is automatically defined whose
implementation may be generated by tools using the information provided in the
component IDL. Specialized factories (e.g. factories that accept user-defined input
arguments) must be implemented by the component developer. Factory operations are
typically invoked by clients but may also be invoked as part of the implementation of
the component. A CORBA component implementation can locate its home interface
using an interface provided by the container.

7.2.4 Component Activation

CORBA components rely on the automatic activation features of the POA to tailor the
behavior of the components using information present in the component’s deployment
descriptor. Once references have been exported, clients make operation requests on the
exported references. These requests are then routed by the ORB to the POA that
created the reference and then the component container. This enables the container to
control activation and passivation for components, apply policies defined in the
component’s descriptor, and invoke callback interfaces on the component as necessary.

7.2.5 Servant Lifetime Management

Servants are programming language objects which the POA uses to dispatch operation
requests based on the Objectld contained in the object key. The server programming
model for CORBA components includes facilities to efficiently manage the memory
associated with these programming objects. To implement this sophisticated memory
management scheme, the server programmer makes several design choices:

® The container API type must be chosen.
®* The CORBA usage model must be chosen.

* A servant lifetime policy is selected. CORBA components support four servant
lifetime policies (method, transaction, component, and container).

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

® The designer is required to implement the callback interface associated with his
choice.

The servant lifetime policies are defined as follows:

method

The method servant lifetime policy causes the container to activate the component on
every operation request and to passivate the component when that operation has
completed. This limits memory consumption to the duration of an operation request
but incurs the cost of activation and passivation most frequently.

transaction

The transaction servant lifetime policy causes the container to activate the component
on the first operation request within a transaction and leave it active until the
transaction completes and which point the component will be passivated. Memory
remains allocated for the duration of the transaction.

component

The component servant lifetime policy causes the container to activate the component
on the first operation request and leave it active until the component implementation
requests it to be passivated. After the operation which requests the passivation
completes, the component will be passivated by the container. Memory remains
allocated until explicit application request.

container

The container servant lifetime policy causes the container to activate the component
on the first operation request and leave it active until the container determines it needs
to be passivated. After the current operation completes, the component will be
passivated by the container. Memory remains allocated until the container decides to
reclaim it.

The following table (Table 7-4) shows the relationship between the CORBA usage
model, the container API type, and the servant lifetime policies.

Table 7-4 Servant Lifetime Policies by Container API Type

Container API
CORBA Usage Model Type Valid Servant Lifetime Policies
stateless session method
conversational session method, transaction, component, container
durable entity method, transaction, component, container

Servant lifetimes policies may be defined for each segment within a component.

CORBA Components Volume | - orbos/99-07-01 7-177

7.2.6 Transactions

CORBA components may support either self-managed transactions (SMT) or
container-managed transactions (SMT). A component using self-managed
transactions will not have transaction policies defined with its deployment descriptor
and is responsible for transaction demarcation using either the container’s
UserTransaction interface or the CORBA transaction service. A component using
container-managed transactions defines transaction policies in its associated descriptor.
The selection of container-managed transactions vs. self-managed transactions is a
component-level specification.

When container-managed transactions are selected, additional transaction policies are
defined in the component’s deployment descriptor. The container uses these
descriptions to make the proper calls to the CORBA transaction service. The
transaction policy defined in the component’s deployment descriptor is applied by the
container prior to invoking the operation. Differing transaction policy declarations can
be made for operations on any of the component’s ports as well as for the component’s
home interface.

Previous versions of this specification provided for transaction policy dec-
larations to be made at the component-level and applied equally to all
interfaces and their operations. The EJB 1.1 specification per mits separate
transaction policy declarations to be made at the operation level. This
capability has been incorporated into CORBA components.

The following table (Table 7-5) summarizes the effect of the various transaction policy
declarations and the presence or absence of a client transaction on the transaction
which is used to invoke the requested operation on the component.

Table 7-5 Effects of Transaction Policy Declaration

Transaction Attribute Traﬁls:gtr:]':ion Component’s Transaction
NOT_SUPPORTED - -
T1 -
REQUIRED - T2
T1 T1
SUPPORTS - -
T1 T1
REQUIRES_NEW - T2
T1 T2
MANDATORY - EXC (TRANSACTION_REQUIRED)
T1 T1
NEVER - -
T1 EXC (INVALID_TRANSACTION)

7-178 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

not_supported

This component does not support transactions. If the client does not provide a current
transaction the operation is invoked immediately. If the client provides a current
transaction, it is suspended (CosTransactions::Current::suspend) before the
operation is invoked and resumed (CosTransactions::Current::resume) when the
operation completes.

required

This component requires a current transaction to execute successfully. If one is
supplied by the client, it is used to invoke the operation. If one is not provided by the
client, the container starts a transaction (CosTransactions::Current::begin) before
invoking the operation and attempts to commit the transaction
(CosTransactions::Current::commit) when the operation completes.

supports

This component will support transactions if one is available. If one is provided by the
client, it is used to invoke the operation. If one is not provided by the client. the
operation is invoked outside the scope of a transaction.

requires_new

This component requires its own transaction to execute successfully. If no transaction
is provided by the client, the container starts one
(CosTransactions::Current::begin) before invoking the operation and tries to
commit it (CosTransactions::Current::commit) when the operation completes. If
atransaction is provided by the client, it is first suspended
(CosTransactions::Current::suspend), a new transaction is started
(CosTransactions::Current::begin), the operation invoked, the component’s
transaction attempts to commit (CosTransactions::Current::commit), and the
client’s transaction is resumed (CosTransactions::Current::resume).

mandatory

The component requires that the client be in a current transaction before this operation
isinvoked. If the client isin a current transaction, it is used to invoke the operation. If
not, the TRANSACTION_REQUIRED exception is raised.

never

This component requires that the client not be in a current transaction to execute
successfully. If no current transaction exist, the operation is invoked. If a current
transaction exists, the INVALID_TRANSACTION exception is raised.

EJB 1.1 hasall of the above transaction policies. Their definitionin EJBis
identical to their definition in CORBA Components. The “ never” policy
was added in EJB 1.1. The bean-managed transaction policy of EJB (self-
managed transactions) has also been added to CORBA components.

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 7-179

7-180

7.2.7 Security

Security policy is applied consistently to all categories of components. The container
relies on CORBA security to consume the security policy declarations from the
deployment descriptor and to check the active credentials for invoking operations. The
security policy remains in effect until changed by a subsequent invocation on a
different component having a different policy.

Access permissions are defined by the deployment descriptor associated with the
component. The granularity of permissions must be aligned by the deployer with a set
of rights recognized by the installed CORBA security mechanism since it will be used
to check permissions at operation invocation time. Access permissions can be defined
for any of the component’s ports as well as the component’s home interface.

Previous versions of this specification provided for security policy declara-
tions to be made at the component-level and applied equally to all inter-
faces and their operations. The EJB 1.1 specification allows separate
security policy declarations to be made at the operation level. This capa-
bility has been incorporated into CORBA components.

Issue — The security model used by EJB and being adopted by CORBA
components requires the secure transportation of security credentials
between systems. Today that is only possible if SECIOP is used as the
CORBA transport. Like EJB, CORBA components is looking toward the
responses to the Secure | nteroperability RFP2 to define a more generally
applicable solution.

7.2.8 Events

CORBA components use a simple subset of the CORBA notification service to emit
and consume events. The subset can be characterized by the following attributes:

® Events are represented as valuetypes to the component implementor and the
component client

® The event data structure is mapped to an any in the body of a structured event
presented to and received from CORBA notification.

* The fixed portion of the structured event is added to the event data structure by the
container on sending and removed from the event data structure when receiving

® Components support two forms of event generation using the push model:
» a component may be an exclusive supplier of a given type of event.

» a component may supply events to a shared channel that other CORBA
notification users are also utilizing

®* A CORBA component consumes both forms of events using the push model.

® Events have transaction and security policies associated with the component’s event
ports as defined in the deployment descriptor.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

® All channel management is implemented by the container, not the component.

® Filters are set administratively by the container, not the component

Because events can be emitted and consumed by clients as well as component
implementations, operations for emitting and consuming events are generated from the
specifications in component IDL. The container is responsible for mapping these
operations to the CORBA notification service to provide a robust event distribution
network.

7.2.8.1 Transaction Policiesfor Events

Transaction policies are defined for component event ports which include both events
being generated and events being consumed. The possible values are as follows:

normal

A normal event policy indicates the event should be generated or consumed outside
the scope of atransaction. If a current transaction is active, it is suspended before
sending the event or invoking the operation on the proxy object provided by the
component.

default

A default event policy indicates the event should be generated or consumed regardless
of whether a current transaction exists. If a current transaction is active, the operation
is transactional. If not, it is non-transactional .

transaction

A transaction event policy indicates the event should be generated or consumed
within the scope of atransaction. If a current transaction is not active, a new one is
initiated before sending the event or invoking the operation on the proxy object
provided by the component. The new transaction is committed as soon as the operation
is complete.

Transaction policy declarations can be defined in the deployment descriptor for each
event port defined by the component.

7.2.8.2 Security Policiesfor Events

CORBA components permits access control policies based on roles to be associated
with the generation and consumption of events. This is accomplished by associating
ACLs with the component ports used to emit/publish and consume events and using
CORBA security to restrict access. These policies provide access control based on role
for both event generation and consumption.

CORBA Components Volume | - orbos/99-07-01 7-181

7-182

7.2.9 Persistence

The entity container APl type supports the use of a persistence mechanism for making
component state durable, e.g. storing it in a persistent store like a database. The entity
container API type defines two forms of persistence support:

® container-managed persistence (CMP) - the component developer simply defines
the state which is to be made persistent and the container (in conjunction with
generated code) automatically saves and restores state as required.

Container-managed persistence is selected by defining the abstract state associated
with a component segment using the state declaration language of the CORBA
persistent state service and connecting that state declaration to a component
segment using CIDL.

* self-managed persistence (SMP) - the component developer assumes the
responsibility for saving and restoring state when requested to do so by the
container.

Self-managed persistence is selected via CIDL declaration and triggered by the
container invoking the callback interfaces (which the component must implement)
defined later in this chapter (Section 7.3 on page 189).

The following table (Table 7-6) summarizes the choices and their required
responsibilities:

Table 7-6 Persistence Support for Entity Container APl Type

Persistence Persistence Persistence Callback
Support Mechanism Responsibility Classes Interfaces
Container CORBA Container Generated Generated
Managed Code Code
Container User Container Component Generated
Managed implements Code
Self-managed CORBA Component Generated Component
Code implements
Self-managed User Component Component Component
implements implements

Container-managed vs. self-managed persistence is selected via the deployment
descriptor for each segment of the component.

7.2.9.1 Container-managed Persistence

Container-managed persistence may be accomplished using the CORBA persistent
state service or any user-defined persistence mechanism. When the CORBA persistent
state service is used, the container manages all interactions with the persistence
provider and the component developer need not use the persistence interfaces offered

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

by the container. With container-managed persistence using the CORBA persistent
state service, it is possible to provide automatic code generation for the storage
factories, finders, and some callback operations.

If container-managed persistence is to be accomplished with a user-defined persistence
mechanism, the component developer must implement the various persistence classes
defined in the persistence framework.

Container-managed persistence is selected using CIDL and tailored using XML at
deployment time to specify connections to specific persistence providers and persistent
stores.

7.2.9.2 Self-managed Persistence

Self-managed persistence is also supported by the entity container API type. Like
container-managed persistence, the component developer has two choices: to use the
CORBA persistent state service or some user-defined persistence mechanism. But
since no declarations are available to support code generation, the component
developer is responsible for implementing both the callback interfaces and the
persistence classes. The container supports access to a component persistence
abstraction provided by the CORBA persistent state service, which hides many of the
details of the underlying persistence mechanism from the component developer.

Self-managed persistence is selected using CIDL and tailored using XML at
deployment time to specify connections to specific persistence providers and persistent
stores.

7.2.10 Application Operation Invocation

August 2, 1999 11:14 pm

The application operations of a component can be specified on both the component’s
supported interfaces and the provided interfaces. These operations are normal CORBA
object invocations.

In Enterprise JavaBeans, all remote invocations are made on the EJBOb-
ject interface whose implementation intercepts the object-dispatch and del-
egates application operation invocations to a particular bean instance.
CORBA components are real CORBA interfaces eliminating the need for
delegation, and use the facilities of the POA to intercept object dispatch.
This eliminates the need for an equivalent concept in CORBA components,
reducing the number of artifacts which need to be generated, installed, and
activated/passivated.

Application operations may raise exceptions, both application exceptions (i.e. those
defined as part of the IDL interface definition) and system exceptions (those that are
not). Exceptions defined as part of the IDL interfaces defined for a component (that
includes both provided interfaces and supported interfaces) are raised back to the client
directly and do not affect the current transaction. All other exceptions raised by the
application are intercepted by the container which then raises the
TRANSACTION_ROLLEDBACK exception to the client, if a transaction is active.
Otherwise they are reported back to the client directly.

CORBA Components Volume | - orbos/99-07-01 7-183

7-184

7.2.11 Component |mplementations

A component implementation consists of one or more executor s as described in
Chapter 6. Each executor describes the implementation characteristics of a particular
component segment. The session container API type consists of a single executor with
a single segment which is activated in response to an operation request on any
component facet. The entity container APl type can be made up of multiple segments,
each of which is associated with a different abstract state declaration. Each segment is
independently activated when an operation request on a facet associated with that
segment is received.

7.2.12 Component Levels

The CORBA component specification defines two levels of component function which
can be used by component developers and supported by CORBA container providers:

® basic - The basic CORBA component supports a single interface (or multiple
interfaces related by inheritance) and does not define any ports (provided interfaces
or event source/sinks). The implementation of a basic component may use
transaction, security, and simple persistence (i.e. a single segment) and relies on its
container to manage the construction of CORBA object references.

The basic component is functionally equivalent to the EJB 1.1 Component
Architecture.

® extended - The extended component is a basic component with multiple ports
(supported interfaces, provided interfaces and/or event source/sinks). The
implementation of the extended component may use all basic function, advanced
persistence (multiple segments) plus the event model and participates in the
construction of component object references.

The component interfaces defined in this specification have been structured into
functional modules corresponding to the two levels of components defined above.

® Basic container APIs are defined in Section 7.3 on page 189.
® Extended container APIs are defined in Section 7.4 on page 203.

Partitioning the component function into two discrete packages permitsthe
EJB 1.1 APIsto be used to implement basic CORBA componentsin Java. It
also supports the construction of CORBA components in any supported
CORBA language which can be accessed by EJB clients. Thisis described
further in Chapter 8.

7.2.13 Component Categories

Asindicated in Section 7.1.4 on page 173, this specification defines four component

categories whose behavior is specified by the two container API types. Additionally
we reserve a component category to describe the empty container (i.e. a container API
type which does not use one of the API frameworks defined in this specification). The

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

four component categories are described briefly in the following sections. The
component categories are independent of the component levels defined in Section
7.2.12 on page 184.

7.2.13.1 The Service Component

The service component is a CORBA component with the following properties:
® no state

® no identity

® Dbehavior

The lifespan of a service component is equivalent to the lifetime of a single operation
request (i.e. method) so it is useful for functions such as command objects which have
no duration beyond the lifetime of a single client interaction with them. A service
component can also be compared to a traditional TP monitor program like a Tuxedo
service or a CICS transaction. A service component provides a simple way of
wrapping existing procedural applications.

A service component is equivalent to a statel ess EJB session bean.

The following table (Table 7-7) summarizes the characteristics of a service component
as seen by the server programmer:

Table 7-7 Service Component Design Characteristics

Design Characteristic

Property

External Interfaces

As defined in the component IDL

Internal Interfaces

Base Set plus
SessionContext (basic)
Session2Context (extended)

Callback Interfaces

SessionComponent

CORBA Usage Model stateless
External API Types keyless
Client Design Pattern Factory
Persistence No

Servant Lifetime Policy method

Transactions May use, but not included in current transaction
Events Transactional or Non-transactional
Executor Single segment with a single servant and no managed storage

CORBA Components Volume | - orbos/99-07-01

7-185

Because of its absence of state, any programming language servant can service any
Objectld, enabling such servants to be managed as a pool or dynamically created as
required, depending on usage patterns. Because a service component has no identity,
Objectlds can be managed by the POA, not the component implementor, and the
client sees only the factory design pattern.

The service component can use either container-managed or self-managed transactions.

7.2.13.2 The Session Component

The session component is a CORBA component with the following properties:
® transient state
® identity which is not persistent

® behavior

The lifespan of a session component is specified using the servant lifetime policies
defined in Section 7.2.5 on page 176. A session component (with a transaction
lifetime policy) is similar to an MTS component and is useful for modeling things like
iterators, which require transient state for the lifetime of a client interaction but no
persistent store.

The session component is equivalent to the stateful session bean of EJB.

The following table (Table 7-8) summarizes the characteristics of a session component
as seen by the server programmer:

Table 7-8 Session Component Design Characteristics

Design Characteristic Property

External Interfaces As defined in the component IDL

Internal Interfaces Base Set plus
SessionContext (basic)
Session2Context (extended)

Callback Interfaces

SessionComponent plus (optionally)
SessionSynchronization

CORBA usage model conversational
Client Design Pattern Factory
External API Types keyless
Persistence No
Servant Lifetime Policy Any

Transactions

May use, but not included in current transaction

Events

Transactional or Non-transactional

CORBA Components Volume| - orbos/99-07-01

August 2, 1999 11: 14 pm

August 2, 1999 11:14 pm

Table 7-8 Session Component Design Characteristics

Design Characteristic Property

Executor Single segment with a single servant and no managed storage

A programming language servant is allocated to an Objectld for the duration of the
servant lifetime policy specified. At that point, the servant can be returned to a pool
and re-used for a different Objectld. Alternatively, servants may be dynamically
created as required, depending on usage patterns. Becalse a session component has no
persistent identity, Objectlds can be managed by the container, however extended
components may choose to participate in creating references if desired, and the client
sees only the factory design pattern.

The session component can use either container-managed or self-managed transactions.

7.2.13.3The Process Component

The process component is a CORBA component with the following properties:

® persistent state which is not visible to the client and is managed by the process
component implementation or the container

® persistent identity which is managed by the process component and can be made
visible to the client only through user-defined operations

® behavior which may be transactional.

The process component is intended to model objects that represent business processes
(e.g. applying for a loan, creating an order, etc.) rather than entities (e.g. customers,
accounts, etc.). The major difference between process components and entity
components is that the process component does not expose its persistent identity to the
client (except through user-defined operations).

The process component could be used to implement the stateful session
bean defined by EJB (which does not have identity) when its behavior is
non-transactional. However, we choose to use the session component
instead. Snce a process component can exhibit transactional behavior, itis
more like the entity bean.

The following table (Table 7-9) summarizes the characteristics of process component
as seen by the server programmer:

Table 7-9 Process Component Desigh Characteristics

Design Characteristic Property
External Interfaces As defined in component IDL
Internal Interfaces Base set plus

EntityContext (basic)
Entity2Context (extended)

Callback Interfaces EntityComponent

CORBA Components Volume | - orbos/99-07-01 7-187

7-188

Table 7-9 Process Component Design Characteristics

Design Characteristic Property
CORBA usage model durable
Client Design Pattern Factory
External API Types keyless
Persistence Self-managed with or without PSS

or Container-managed with or without PSS

Servant Lifetime Policy Any

Transactions May use, and can be included in current transaction
Events Non-transactional or transactional events
Executor Multiple segments with associated managed storage

A process component may have transactional behavior. The container will interact with
the CORBA transaction service to participate in the commit process.The process
component must use contai ner-managed transactions.

Thisisidentical to the EJB restriction for Entity Beans.

The process component can use container-managed or self-managed persistence
using either the CORBA persistent state service or a user-defined persistence
mechanism. The implications of the various choices are described in Section 7.2.9 on
page 182. The entity container uses callback interfaces which enable the process
component’s implementation to retrieve and save state data at activation and
passivation respectively.

7.2.13.4The Entity Component

The entity component is a CORBA component with the following properties:

® persistent state which is visible to the client and is managed by the entity
component implementation or the container

® identity which is architecturally visible to its clients through a primaryKey
declaration

® behavior which may be transactional.

As a fundamental part of the architecture, entity components expose their persistent
state to the client as a result of declaring a primaryKey value on their home
declaration.

The entity component is used to implement the entity bean in the Enter-
prise JavaBeans specification.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

v

The following table (Table 7-10) summarizes the characteristics of entity component
as seen by the server programmer:

Table 7-10 Entity Component Design Characteristics

Design Characteristic Property

External Interfaces As defined in the component IDL

Internal Interfaces Base set plus
EntityContext (basic)
Entity2Context (extended)

Callback Interfaces EntityComponent

CORBA usage model durable

Client Design Pattern Factory or Finder

External API Types keyfull

Persistence Self-managed with or without PSS

or Container-managed with or without PSS

Servant Lifetime Policy Any

Transactions May use, and can be included in current transaction
Events Non-transactional or transactional events
Executor Multiple segments with associated managed storage

The entity component must use container-managed transactions. The container will
interact with the CORBA transaction service to participate in the commit process.

Thisisidentical to the EJB restriction for Entity Beans.

The entity component can use container-managed or self-managed persistence using
either the CORBA persistent state service or a user-defined persistence mechanism.
The implications of the various choices are described in Section 7.2.9 on page 182.
The entity container uses callback interfaces which enable the entity component’s
implementation to retrieve and save state data at activation and passivation,
respectively.

7.3 Server Programming I nterfaces- Basic Components

August 2, 1999 11:14 pm

This section defines the local interfaces used and provided by the component devel oper
for basic components. These interfaces are then grouped as follows:

® interfaces common to both container API types
® interfaces supported by the session container API type only

® interfaces supported by the entity container API type only

CORBA Components Volume | - orbos/99-07-01 7-189

7-190

Unless otherwise indicated, all of these interfaces are defined within the Basic module
embedded within the Components module (See appendix A.1 on page 401 for the
proposed naming structure for CORBA 3.0 suggested by this specification).

7.3.1 Component Interfaces

All components deal with three sets of interfaces:

internal interfaces which are used by the component devel oper and provided by the
container to assist in the implementation of the component’s behavior,

exter nal interfaces which are used by the client and implemented by the component
developer, and

callback interfaces which are used by the container and implemented by the
component, either in generated code or directly, in order for the component to be
deployed in the container.

A container API type defines a base set of internal interfaces which the component
developers use in their implementation. These interfaces are then augmented by others
that are unique to the component category being devel oped.

CCMContext - which serves as a bootstrap and provides accessors to the other
internal interfaces.

Each container API type has it’'s own specialization of CCMContext which we
refer to as a context.

The CCMcontext interface serves the same role in CORBA components
that the EJBContext interface does in Enterprise JavaBeans, viz. it pro-
vides the component implementation with access to the runtime services
implemented by the container.

UserTransaction - which wraps the demarcation subset of the CORBA
transaction service required by the application devel oper.

The User Transaction interface serves the same purpose in CORBA com-
ponents as JTA (javax.transaction.User Transaction) does with EJB.

EnterpriseComponent - which is the base class that al callback interfaces
derive from.

All components implement a callback interface which is determined by the
component category.

The Enter prissComponent interface in CORBA components serves the
samerole as EnterpriseBean in EJB.

When a component instance is instantiated in a container, it is passed a reference to its
context, alocal interface used to invoke services. For basic components, these services
include transactions and security The component uses this reference to invoke
operations required by the implementation at runtime beyond what is specified in its
deployment descriptor.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

7.3.2 Interfaces Common to both Container APl Types

August 2, 1999 11:14 pm

This section describes the interfaces and operations provided by both container API
types to support al categories of CORBA components.

7.3.2.1 The CCMContext Interface

The CCMContext is an internal interface which provides a component instance with
access to the common container-provided runtime services applicable to both
container API types. It serves as a “bootstrap” to the various services the container
provides for the component.

The CCMContext iseguivalent to the EJBContext in Enterprise Java-
Beans.

The CCMContext provides the component access to the various services provided by
the container. It enables the component to simply obtain all the references it may
require to implement its behavior.

typedef SecurityLevel2::Credentials Principal;
exception lllegalState { };

local interface CCMContext {

Principal get_caller_principal();

CCMHome get_CCM_home();

boolean get_rollback_only()
raises (lllegalState);

Transaction::UserTransaction get_user_transaction()
raises (lllegalState);

boolean is_caller_in_role (in string role);

void set_rollback_only()
raises (lllegalState);

h

get_caller_principal

Theget_caller_principal operation obtains the CORBA security credentials in effect
for the caller. Security on the server is primarily controlled by the security policy in
the deployment descriptor for this component. The component may use this operation
to determine the credentials associated with the current client invocation.

get CCM_home

The get_ CCM_home operation is used to obtain a reference to the home interface.
The home is the interface which supports factory and finder operations for the
component and is defined by the home declaration in component IDL.

CORBA Components Volume | - orbos/99-07-01 7-191

7-192

get_rollback_only

The get_rollback_only operation is used by a component to test if the current
transaction has been marked for rollback. The get_rollback _only operation returns
TRUE if the transaction has been marked for rollback, otherwise it returns FAL SE. If
no transaction is active, the lllegal State exception is raised. When
get_rollback_only isissued by a component, it resultsin a
CosTransaction::Current::get_status being issued to the CORBA transaction
service and the status value returned being tested for the MARKED_ROLLBACK
state.

get_user_transaction

The get_user_transaction operation is used to access the
Transaction::UserTransaction interface. The UserTransaction interface is used
to implement self-managed transactions. The lllegalState exception is raised if this
component is using container-managed transactions.

is caller_in_role

Theis_caller_in_role operation is used by the CORBA component to compare the
current credentials to the credentials defined by the role parameter. If they match,
TRUE isreturned. If not, FAL SE is returned.

set_rollback _only

The set_rollback_only operation is used by a component to mark an existing
transaction for abnormal termination. If no transaction is active, the lllegalState
exception israised. When set_rollback_only isissued by a component, it resultsin a
CosTransaction::Current::rollback_only being issued to the CORBA transaction
service. The rules for the use of this operation are equivalent to the rules of its
corresponding CORBA transaction service operation.

7.3.2.2 TheHomelInterface

A home is an external interface which supports factory and finder operations for the
component. These operations are generated from the home IDL declaration (see
Section 5.8 on page 93). The context supports an operation (get. CCM _home) to
obtain a reference to the component’s home interface.

7.3.2.3 The UserTransaction Interface

A CORBA component may use either container-managed or self-managed
transactions, depending on the component category. With container-managed
transactions, the component implementation relies on the transaction policy
declarations packaged with the deployment descriptor and contains no transaction APIs
in its implementation code.

Thisisidentical to container-managed transactions in EJB or the default
processing of an MTS component.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

v

A component specifying self-managed transactions may use the CORBA transaction
service directly to manipulate the current transaction or it may choose to use a simpler
AP, defined by this specification, which exposes only those transaction demarcation
functions needed by the component implementation.

Manipulation of the current transaction must be consistent between the client, the
transaction policy specified in the deployment descriptor, and the component
implementation.

For example, if the client or the container starts a transaction, the compo-
nent may not end it (commit or rollback). Therulesto be used are defined
by the CORBA transaction service.

If the component uses the CosTransactions::Current interface, all operations
defined for Current may be used as defined by the CORBA transaction service with
the following exceptions:

® The Control object returned by suspend may only be used with resume.

® Operations on Control are not supported with CORBA components and may raise
the NO_IMPLEMENT system exception.

The Control interface in the CORBA transaction service supports acces-
sorsto the Coordinator and Terminator interfaces. The Coordinator is
used to build object versions of XA resource managers. The Terminator is
used to allow a transaction to be ended by someone other than the origina-
tor. Since neither function is within the scope of the demarcation subset of
CORBA transactions used with CORBA components, we allow CORBA
transaction services implementations used with CORBA components to
raisesthe NO_IMPLEMENT exception. This provides the same level of
function as the bean-managed transaction policy in Enterprise Java-
Beans.

The UserTransaction is an internal interface implemented by the container and is
defined within its own module, Transaction, within the Components module
(Components::Transaction). Because the UserTransaction is a wrapper over
CosTransactions::Current, it is thread specific. The UserTransaction exposes a
simple demarcation subset of the CORBA transaction service to the component. The
context supports an operation (get_user _transaction) to obtain a reference to the
UserTransaction interface. The UserTransaction interface is defined by the
following IDL:

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 7-193

7-194

typedef sequence<octet> TranToken;
exception NoTransaction { };
exception NotSupported { };
exception SystemError { };

exception Rollback { };

exception HeuristicMixed { };
exception HeuristicRollback { };
exception Security { };

exception InvalidToken { };

enum Status {
ACTIVE,
MARKED_ROLLBACK,
PREPARED,
COMMITTED,
ROLLED_BACK,
NO_TRANSACTION,
PREPARING,
COMMITTING,
ROLLING_BACK

h

local interface Transaction {
void begin ()

raises (NotSupported, SystemError);

void commit ()
raises (Rollback, NoTransaction,

HeuristicMixed, HeuristicRollback,

Security, SystemError);
void rollback ()
raises (NoTransaction,
Security, SystemError);
void set_rollback_only ()

raises (NoTransaction, SystemError);

Status get_status()
raises (SystemgError);
void set_timeout (in long to)
raises (SystemgError);
TranToken suspend ()

raises (NoTransaction, SystemError);

void resume (in TranToken txtoken)
raises (InvalidToken, SystemError);

h

begin

The begin operation is used by a component to start a new transaction and associate it
with the current thread. When begin isissued by a component, it resultsin a
CosTransaction::Current::begin with report_heuristics set to TRUE being
issued to the CORBA transaction service. The rules for the use of this operation are
equivalent to the rules of its corresponding CORBA transaction service operation. The

CORBA Components Volume| - orbos/99-07-01

August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

NotSupported exception is return if it is received from the CORBA transaction
service. Since nested transactions are not supported by CORBA component containers,
this indicates an attempt to start a new transaction when an existing transaction is
active. All other exceptions are converted to the SystemError exception.

commit

The commit operation is used by a component to terminate an existing transaction
normally. When commit is issued by a component, it results in a
CosTransaction::Current::commit being issued to the CORBA transaction service.
The rules for the use of this operation are equivalent to the rules of its corresponding
CORBA transaction service operation. If no transaction is active, the NoTransaction
exception is raised. If the TRANSACTION_ROLLEDBACK system exception is
returned, it is converted to the Rollback exception. The
CosTransaction::HeuristicMixed and CosTransaction::HeuristicRollback
exceptions are reported as the HeuristicMixed and HeuristicRollback exceptions
respectively. The NO_PERMISSION system exception is converted to the Security
exception. All other exceptions are converted to the SystemError exception.

rollback

Therollback operation is used by a component to terminate an existing transaction
abnormally. When rollback is issued by a component, it resultsin a
CosTransaction::Current::rollback being issued to the CORBA transaction
service. The rules for the use of this operation are equivalent to the rules of its
corresponding CORBA transaction service operation. If no transaction is active, the
NoTransaction exception is raised. The NO_PERMISSION system exception is
converted to the Security exception. All other exceptions are converted to the
SystemError exception.

set_rollback _only

The set_rollback_only operation is used by a component to mark an existing
transaction for abnormal termination. When set_rollback_only isissued by a
component, it results in a CosTransaction::Current::rollback_only being issued
to the CORBA transaction service. The rules for the use of this operation are
equivalent to the rules of its corresponding CORBA transaction service operation. If no
transaction is active, the NoTransaction exception is raised. All other exceptions are
converted to the SystemError exception.

get_status

The get_status operation is used by a component to determine the status of the
current transaction. If no transaction is active, it returns the NoTransaction status
value. Otherwise it returns the state of the current transaction. When get_status is
issued by a component, it resultsin a CosTransaction::Current::get_status being
issued to the CORBA transaction service. The status values returned by this operation
are equivalent to the status values of its corresponding CORBA transaction service
operation. All exceptions are converted to the SystemError exception.

CORBA Components Volume | - orbos/99-07-01 7-195

7-196

set_timeout

The set_timeout operation is used by a component to associate a time-out value with
the current transaction. The timeout value (to) is specified in seconds. When
set_timeout isissued by a component, it resultsin a
CosTransaction::Current::set_timeout being issued to the CORBA transaction
service. The rules for the use of this operation are equivalent to the rules of its
corresponding CORBA transaction service operation. All exceptions are converted to
the SystemError exception.

suspend

The suspend operation is used by a component to disconnect an existing transaction
from the current thread. The suspend operation returns a TranToken which can only
be used in a subsequent resume operation. When suspend isissued by a component,
it results in a CosTransaction::Current::suspend being issued to the CORBA
transaction service. The rules for the use of this operation are more restrictive than the
rules of its corresponding CORBA transaction service operation:

® Only one transaction may be suspended

® The suspended transaction is the only transaction that may be resumed.

If no transaction is active, the NoTransaction exception is raised. All other
exceptions are converted to the SystemError exception.

resume

The resume operation is used by a component to reconnect a transaction previously
suspended to the current thread. The TranToken identifies the suspended transaction
which is to be resumed. If the transaction identified by TranToken has not been
suspended, the InvalidToken exception is raised. When resume isissued by a
component, it results in a CosTransaction::Current::resume being issued to the
CORBA transaction service. The rules for the use of this operation are more restrictive
than the rules of its corresponding CORBA transaction service operation since the
single suspended transaction is the only transaction that may be resumed. All other
exceptions are converted to the SystemError exception.

The User Transaction interface is equivalent to the User Transaction
interface (javax.transaction.User Transaction) in EJB with the addition
of the suspend and resume operations.

7.3.2.4 The EnterpriseComponent I nterface

All CORBA components must implement an interface derived from the
EnterpriseComponent interface to be housed in a component container.
EnterpriseComponent is a callback interface which defines no operations.

Enter prissComponent is equivalent to the Enter priseBean interface of
Enterprise JavaBeans.It supports operations to associate the context with
the component.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

local interface EnterpriseComponent {

h

7.3.3 Interfaces Supported by the Session Container API Type

August 2, 1999 11:14 pm

This section describes the interfaces supported by the session container API type. This
includes both internal interfaces provided by the container and callback interfaces
which must be implemented by components deployed in this container API type.

7.3.3.1 The SessionContext I nterface

The SessionContext is an internal interface which provides a component instance
with access to the container-provided runtime services. It serves as a “bootstrap” to the
various services the container provides for the component.

The SessionContext isintended to be the analogue of SessionContext in
Enterprise JavaBeans.

The SessionContext enables the component to simply obtain all the references it
may require to implement its behavior.

exception lllegalState { };

local interface SessionContext : CCMContext {
Object get CCM_object()
raises (lllegalState);

h

get CCM_object

The get_ CCM_object operation is used to get the reference used to invoke the
component. For basic components, this will always be the component reference. For
extended components, this will be a specific facet reference. If this operation is issued
outside of the scope of a callback operation, the lllegalState exception is returned.

7.3.3.2 The SessionComponent Interface

The SessionComponent is a callback interface implemented by a session CORBA
component. It provides operations for disassociating a context with the component and
to manage servant lifetimes for a session component.

The SessionComponent is analogous to the SessionBean interface of
Enterprise JavaBeans.

CORBA Components Volume | - orbos/99-07-01 7-197

7-198

enum CCMExceptionReason {
SYSTEM_ERROR,
CREATE_ERROR,
REMOVE_ERROR,
DUPLICATE_KEY,
FIND_ERROR,
OBJECT_NOT_FOUND,
NO_SUCH_ENTITY};

exception CCMException {
CCMExceptionReason reason};

local interface SessionComponent : EnterpriseComponent {
void set_session_context (in SessionContext ctx)
raises (CCMException);
void ccm_activate()
raises (CCMException);
void ccm_passivate()
raises (CCMException);
void ccm_remove ()
raises (CCMException);

h

set_session_context

The set_session_context operation is used to set the SessionContext of the
component. The container calls this operation after a component instance has been
created. This operation is called outside the scope of an active transaction.The
component may raise the CCMException with the SYSTEM_ERROR minor code to
indicate a failure caused by a system level error.

ccm_activate

The ccm_activate operation is called by the container to notify a session component
that it has been made active. The component instance should perform any initialization
required prior to operation invocation.The component may raise the CCMException
with the SYSTEM_ERROR minor code to indicate a failure caused by a system level
error.

ccm_passivate

The ccm_passivate operation is called by the container to notify a session
component that it has been made inactive. The component instance should release any
resources it acquired at activation time.The component may raise the CCMException
with the SYSTEM_ERROR minor code to indicate a failure caused by a system level
error.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

ccm_remove

The ccm_remove operation is called by the container when the servant is about to be
destroyed. It informs the component that it is about to be destroyed.The component
may raise the CCMException with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

7.3.3.3 The SessionSynchronization Interface

The SessionSynchronization interface is a callback interface which may optionally
be implemented by the session component. It permits the component to be notified of
transaction boundaries by its container.

The SessionSynchronization interface is the analogue of the SessionSyn-
chronization interfacein EJB.

exception CCMException {
CCMExceptionReason reason};

local interface SessionSynchronization {
void after_begin ()
raises (CCMException);
void before_completion ()
raises (CCMException);
void after_completion (
in boolean committed)
raises (CCMException);

h

after_begin
The after_begin operation is called by the container to notify a session component
that a new transaction has started, and that the subsequent operations will be invoked

in the context of the transaction.The component may raise the CCMException with
the SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

before_completion

The before_completion operation is called by the container just prior to the start of
the two-phase commit protocol. The container implements the
CosTransactions::Synchronization interface of the CORBA transaction service
and invokes the before_completion operation on the component before starting its
own processing. The component may raise the CCMException with the
SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

after_completion

The after_completion operation is called by the container after the completion of the
two-phase commit protocol. If the transaction has committed the committed value is
set to TRUE. If the transaction has been rolled back, the committed value is set to
FAL SE. The container implements the CosTransactions::Synchronization

CORBA Components Volume | - orbos/99-07-01 7-199

7-200

interface of the CORBA transaction service and invokes the after_completion
operation on the component after completing its own processing. The component may
raise the CCMException with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

7.3.4 Interfaces Supported by the Entity Container API Type

This section describes the interfaces supported by the entity container API type. This
includes both internal interfaces provided by the container and callback interfaces
which must be implemented by components deployed in this container API type.

7.3.4.1 TheEntityContext Interface

The EntityContext isaninternal interface which provides a component instance with
access to the container-provided runtime services. It serves as a “bootstrap” to the
various services the container provides for the component.

The EntityContext isintended to be the analogue of EntityContext in
Enterprise JavaBeans.

The EntityContext enables the component to simply obtain all the references it may
require to implement its behavior.

exception lllegalState { };

local interface EntityContext : CCMContext {
Object get_ CCM_object ()
raises (lllegalState);
PrimaryKeyBase get_primary_key ()
raises (lllegalState);

h

get CCM_object

The get_ CCM_object operation is used to obtain the reference used to invoke the
component. For basic components, this will always be the component reference. For
extended components, this will be a specific facet reference. If this operation is issued
outside of the scope of a callback operation, the lllegalState exception is returned.

get_primary_key

The get_primary_key operation is used by an entity component to access the
primary key value declared for this component’s home. This operation is equivalent to
issuing the same operation on the component’s home interface. If this operation is
issued outside of the scope of a callback operation, the lllegalState exception is
returned.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

7.3.4.2 The EntityComponent Interface

The EntityComponent is a callback interface implemented by both process and
entity components. It contains operations to manage the persistent state of the
component.

EntityComponent is equivalent to the EntityBean interface in Enterprise
JavaBeans.

Issue — As currently defined, any operation request will cause the container
to activate the component segment, if required. Since the component
reference is well-structured, we could consider the possibility of trapping
navigation operations prior to activation and executing them without actually
activating the component (or we could leave that to clever implementations).

exception CCMException {
CCMExceptionReason reason};

local interface EntityComponent : EnterpriseComponent {
void set_entity_context (in EntityContext ctx)
raises (CCMException);
void unset_entity_context ()
raises (CCMException);
void ccm_activate ()
raises (CCMException);
void ccm_load ()
raises (CCMException);
void ccm_store ()
raises (CCMException);
void ccm_passivate ()
raises (CCMException);
void ccm_remove ()
raises (CCMException);

h

set_entity _context

The set_entity _context operation is used to set the EntityContext of the
component. The container calls this operation after a component instance has been
created. This operation is called outside the scope of an active transaction.The
component may raise the CCMException with the SYSTEM_ERROR minor code to
indicate a failure caused by a system level error.

CORBA Components Volume | - orbos/99-07-01 7-201

7-202

unset_entity context

The unset_entity _context operation is used to remove the EntityContext of the
component. The container calls this operation just before a component instance is
destroyed. This operation is called outside the scope of an active transaction. The
component may raise the CCMException with the SYSTEM_ERROR minor code to
indicate a failure caused by a system level error.

ccm_activate

The ccm_activate operation is called by the container to notify the component that it
has been made active. For most CORBA component implementations, no action is
required. The component instance should perform any initialization (other than
establishing its state) required prior to operation invocation. This operation is called
within an unspecified transaction context.The component may raise the
CCMEXxception with the SYSTEM_ERROR minor code to indicate a failure caused
by a system level error.

ccm_load

The ccm_load operation is called by the container to instruct the component to
synchronize its state by loading it from its underlying persistent store. When container-
managed persistence is implemented using the CORBA persistent state service, this
operation can be implemented in generated code. If self-managed persistence is being
used, the component is responsible for locating its state in a persistent store. This
operation executes within the scope of the current transaction. The component may
raise the CCMException with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

ccm_store

The ccm_store operation is called by the container to instruct the component to
synchronize it state by saving it in its underlying persistent store. When container-
managed persistence is implemented using the CORBA persistent state service, this
operation can be implemented in generated code. If self-managed persistence is being
used, the component is responsible for saving its state in the persistent store. This
operation executes within the scope of the current transaction. The component may
raise the CCMException with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

ccm_passivate

The ccm_passivate operation is called by the container to notify the component that
it has been made inactive. For most CORBA component implementations, no action is
required. The component instance should perform any termination processing (other
than saving its state) required prior to being passivated. This operation is called within
an unspecified transaction context. The component may raise the CCMException
with the SYSTEM_ERROR minor code to indicate a failure caused by a system level
error.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

ccm_remove

The ccm_remove operation is called by the container when the servant is about to be
destroyed. It informs the component that it is about to be destroyed. This operation is
always called outside the scope of a transaction. The component raises the
CCMException with the REMOVE_ERROR minor code if it is does not allow the
destruction of the component. The component may raise the CCMException with the
SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

The EntityComponent interface is equivalent to the EntityBean interface
in Enterprise JavaBeans. Container-managed persistence with the CORBA
persistent state service supports automatic code generation for ccm_load
and ccm_store. For self-managed persistence, the component implementor
provides the ccm_load and ccm_stor e methods. Since both process and
entity components have persistent state and container-managed persis-
tence, the same callback interfaces can be used.

7.4 Server Programming I nterfaces - Extended Components

This section defines the local interfaces used and provided by the component devel oper
for extended components. These interfaces are grouped as in Section 7.3 on page 189.
Unless otherwise indicated, all of these interfaces are defined within the Extended
module embedded within the Components module (See appendix A.1 on page 401
for the proposed naming structure for CORBA 3.0 suggested by this specification).
Extended components add interfaces in the following areas:

® CCM2Context - which adds functions unique to extended components.

Each container API type has it's own specialization of CCM2Context which we
refer to as a context. The context for extended components adds accessors to
persistence and event services and supports operations for managing servant
lifetime policy, and creating and managing object references in conjunction with the
POA.

® Componentld - which encapsulates a component identifier, which is an abstract
information model used to locate the component’s state.

Only the entity container API type supports the Componentld interface.

® Event - which offers the subset of the CORBA notification service supported by
CORBA components.

7.4.1 Interfaces Common to both Container API Types

August 2, 1999 11:14 pm

This section describes the interfaces and operations provided for extended components
by both container API types to support all categories of CORBA components.

7.4.1.1 The CCM2Context Interface

The CCM2Context is an internal interface which extends the CCMContext
interface to provide the extended component instance with access to additional
container-provided runtime services applicable to both container API types. These

CORBA Components Volume | - orbos/99-07-01 7-203

7-204

services include advanced persistence using the CORBA persistent state service, events
using CORBA natification, and runtime management of component references and
servants using the POA.The CCM2Context is defined by the following IDL:

typedef CosPersistentState::CatalogBase CatalogBase;
typedef CosPersistentState:: Typeld Typeld;

exception PolicyMismatch { };
exception PersistenceNotAvailable { };

local interface CCM2Context : CCMContext {
HomeRegistration get_home_registration ();
Events::Event get_event();
void req_passivate ()
raises (PolicyMismatch);
CatalogBase get_persistence (
in Typeld catalog_type_id)
raises (PersistenceNotAvailable);

h

get_home registration

The get_home_registration operation is used to obtain a reference to the
HomeRegistration interface. The HomeRegistration is used to register component
homes so they may be located by the HomeFinder.

get_event

The get_event operation is used to obtain a reference to the Event interface. The
Event interface is used by the component to emit or publish events for external
consumption or to subscribe to events it needs to process.

req_passivate

Thereq_passivate operation is used by the component to inform the container that it
wishes to be passivated when its current operation completes. To be valid, the
component must have a servant lifetime policy of component or container. If not the
PolicyMismatch exception is raised.

get_persistence

The get_persistence operation provides the component access to a persistence
framework provided by an implementation of the CORBA persistence state service. It
returns a CosPersistentState::CatalogBase which serves as an index to the
available storage homes. The CatalogBase is identified by its
CosPersistentState:: Typeld catalog_type id. If the CatalogBase identified by
catalog_type id is not available on this container, the PersistenceNotAvailable
exception is raised.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

7.4.1.2 The HomeRegistration Interface

The HomeRegistration is an internal interface which may be used by the CORBA
component to register its home so it can be located by a HomeFinder.

The HomeRegistr ation interface allows a component implementation to
advertise a home instance that can be used to satisfy a client’s find_home
request. It may also be used by an administrator to do the same thing. It is
likely that the combination of HomeRegistration and HomeFinder inter-
faces will work within the domain of a single container provider unless
multiple implementations use other shareable directory mechanisms, e.g.
an LDAP global directory. Federating HomeFindersisa similar problem
to federating CORBA security domains and we defer to the security people
for an architecture for such federation rather than attempting to specify
such an architecture in this specification.

The HomeRegistration interface is defined by the following IDL:

local interface HomeRegistration {
void register_home (
in CCMHome home,
in string home_name);
void unregister_home (in CCMHome home);

h

register_home

Theregister_home operation is used to register a component home with the
HomeFinder so it can be located by a component client. The home parameter
identifies the home being registered and can be used to obtain both the
IR::ComponentDef (CCMHome::get_component_def) andtheIR::InterfaceDef
(CORBA::Object::get_interface_def) to support both
HomeFinder::find_home_by_component_type and
HomeFinder::find_home_by home_type. Thehome_name parameter identifies
an Interoperable Naming Service (INS) name that can be used as input to the
HomeFinder::find_home_by_name operation. If the home_name parameter is
NULL, no name is associated with this home so this home cannot be retrieved by
name.

unregister_home

The unregister_home operation is used to remove a component home from the
HomeFinder. Once unregister_home completes, a client will never be returned a
reference to the home specified as being unregistered. The home parameter identifies
the home being unregistered.

7.4.1.3 The ProxyHomeRegistration Interface

Because CORBA components exploit the dynamic activation features of the POA, it is
possible for some component types to provide a home which is not collocated with the
component instances it creates. This permits load balancing criteria to be applied in
selecting the actual server and POA where this instance will be created. The

CORBA Components Volume | - orbos/99-07-01 7-205

ProxyHomeRegistration is an internal interface, derived from
HomeRegistration, which can be used by the CORBA component to register a
remote home (i.e. one that is NOT collocated with the component) so it can be
returned by a HomeFinder. The ProxyHomeRegistration interface is defined by
the following IDL:

exception UnknownActualHome { };
exception ProxyHomeNotSupported { };

local interface ProxyHomeRegistration : HomeRegistration {
void register_proxy_home (
in CCMHome rhome,
in CCMHome ahome)
raises (UnknownActualHome, ProxyHomeNotSupported);

h

register_proxy_home

Theregister_proxy_home operation is used to register a component home, not
collocated with the instances that it can create, with the HomeFinder so the proxy
home can be used by component clients. The rhome parameter identifies the proxy
home being registered. The ahome parameter identifies the actual home which the
rhome is associated with. If the actual home specified by ahome is not known, the
UnknownActualHome exception is raised. If this component does not support proxy
homes, the ProxyHomeNotSupported exception is raised. Support for proxy homes
is a component implementation option.

7.4.1.4 TheEvent Interface

The Event is an internal interface which supports operations for emitting and
publishing events and for subscribing to events emitted or published by others. The
Event and LocalCookie interfaces are defined in their own module
(Components::Events) and provide a simple mechanism for connecting the
component to a CORBA notification channel established and managed by the
container. The implementations of the operations generated from the emits, publishes,
and consumes declaration in the component’s IDL (see Section 5.6 on page 82)
delegate to these interfaces. The context supports an operation (get_event) to obtain a
reference to the Event interface. The Event interface is defined by the following IDL:

typedef CosNotification::EventHeader EventHeader;
typedef CosNotifyChannnelAdmin::Channelld Channel;

exception ChannelUnavailable { };
exception InvalidSubscription { };
exception InvalidName { };
exception InvalidChannel { };

local interface LocalCookie {
boolean same_as (in LocalCookie cookie);

h

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

local interface Event {
EventConsumerBase create_channel
(out Channel chid)
raises (ChannelUnavailable);
LocalCookie subscribe (
in EventConsumerBase ech,
in Channel chid)
raises (ChannelUnavailable);
void unsubscribe (in LocalCookie cookie)
raises (InvalidSubscription);
EventConsumerBase obtain_channel (
in string supp_name,
in EventHeader hdr)
raises (InvalidName);
void listen (in EventConsumerBase ecb,
in string csmr_name)
raises (InvalidName);
void push (in EventBase evt);
void destroy_channel (in Channel chid)
raises (InvalidChannel);

h

same_as

The same_as operation compares two LocalCookie instances for egquivalence and
returns TRUE if equivalent, otherwise it returns FAL SE.

create_channel

The create_channel operation is used by a component to bind a notification channel
to be used to push component events. This operation corresponds to a publishes
declaration in component IDL. It returns an EventConsumerBase which can be
used to push events into the channel. When a create_channel operation is issued by
a component, the container interacts with CORBA noatification to create an event
channel for the components exclusive use. If the container cannot connect to the
channel, the ChannelUnavailable exception is raised. The chid is returned to the
component as an identifier of the channel.

subscribe

The subscribe operation allows the component to express interest in receiving one or
more events. The ecb identifies an EventConsumerBase which the container will
use to push the event to the component. If the container is not connected to the
channel, the ChannelUnavailable exception is raised. The EventConsumerBase
must implement the push operation defined by the <event_type>Consumer
interface. The subscribe operation returns a cookie which is used to delete the
subscription.

CORBA Components Volume | - orbos/99-07-01 7-207

unsubscribe

The unsubscribe operation deletes the subscription specified by the cookie
previously returned by subscribe. If no subscription is associated with the cookie, the
InvalidSubscription exception is raised.

obtain_channel

The obtain_channel operation is used by the component to obtain an
EventConsumerBase which it can use to push events. This operation corresponds to
an emits declaration in component IDL. The supp_name string identifies an
Interoperable Naming Service (INS) name which is used to identify the
SupplierAdmin to be used by CORBA notification. The name is associated with the
SupplierAdmin thorough container specific configuration data. The
obtain_channel operation may optionally specify the EventHeader required by
CORBA notification which will be used for all events pushed to this channel. If hdr is
present, it is prefixed to all events pushed to this channel. If not, it is defaulted as
described in Section 9.4 on page 298. If the supp_name is not recognized, the
InvalidName exception is raised.

listen

The listen operation is used by the component to inform the container that it would
like to receive events of a particular type. This corresponds to the consumes
declaration in component IDL. The cmsr_name string identifies an INS name which is
used to identify the ConsumerAdmin to be used by CORBA natification. The name
is associated with the ConsumerAdmin thorough container specific configuration
data. The component provides an EventConsumerBase interface that implements
the push operation on the <event_type>Consumer interface. If the cmsr_name is
not recognized, the InvalidName exception is raised.

push

The push operation is used by a component to transmit an event. The event evt is a
valuetype derived from EventBase.

destroy_channel

The destroy_channel operation is used by a component to delete the channel
identified by chid. The InvalidChannel exception can be raised if the chid parameter
is not the value previously returned by create_channel.

EJB does not have an event API yet, but oneis under development. The
Java 2 Platform, Enterprise Edition (J2EE) does however have a messag-
ing API (JMS) which supports publish/subscribe. Thisis an area that will
need to be harmonized with EJB in the future.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

7.4.2 Interfaces Supported by the Session Container API Type

This section describes the interfaces supported for extended components by the session
container API type. This includes both internal interfaces provided by the container
and callback interfaces which must be implemented by components deployed in this
container API type.

7.4.2.1 The Session2Context Interface

The Session2Context is an internal interface which extends the SessionContext
to provides a component instance with access to additional container-provided runtime
services for the session container API type. It adds the ability to create references for
components deployed in a session container API type. The Session2Context is
defined by the following IDL:

enum BadComponentReferenceReason {
NON_LOCAL_REFERENCE,
NON_COMPONENT_REFERENCE,
WRONG_CONTAINER,

h

exception BadComponentReference {
BadComponentReferenceReason reason
¥

exception lllegalState { };

local interface Session2Context : SessionContext, CCM2Context {
Object create_ref (
in CORBA::Repositoryld repid);
Object create_ref _from_oid (
in PortableServer::Objectld oid,
in CORBA::Repositoryld repid);
PortableServer::Objectld get_oid_from_ref (
in Object ref)
raises (lllegalState, BadComponentReference);

h

create ref

The create_ref operation is used to create a reference to be exported to clients to
invoke operations. The repid parameter identifies the Repositoryld associated with
the interface for which a reference is being created.

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 7-209

7-210

create ref_from_oid

The create_ref_from_oid operation is used to create a reference to be exported to
clients which includes information provided by the component which it can use on
subsequent operation requests. The oid parameter identifies the Objectld to be
encapsulated in the reference and the repid parameter identifies the Repositoryld
associated with the interface for which a reference is being created.

get_oid_from_ref

The get_oid_from_ref operation is used by the component to extract the oid
encapsulated in the reference. The ref parameter specifies the reference which contains
the oid. This operation must be called within an operation invocation. If not the
IllegalState exception is raised. If the reference was not created by this container, the
BadComponentReference with the WRONG_CONTAINER minor code is raised.

7.4.3 Interfaces Supported by the Entity Container APl Type

This section describes the interfaces provided for extended components by the entity
container API type. This includes both internal interfaces provided by the container
and callback interfaces which must be implemented by components deployed in this
container API type.

7.4.3.1 Component Identifiers

The Componentld interface is an internal interface provided by the entity container
API type through which the component implementation and the container exchange
identity information, referred to as component identifiers. The Componentlid
interface encapsulates a component identifier, which is an abstract information model.
The Componentld interface is used in the following ways:

® Component implementations (usually home executor implementations) create
component identifiers to describe new components, and to create object references
that encapsulate the provided description. The Entity2Context interface acts as a
factory for component identifiers and as the factory for object references.

® The container encodes the information encapsulated by the component identifier in
the object identifier value it uses internally to create the object reference on the
encapsulated POA. The encoding is not specified, since a container’s choice of
encoding does not affect interoperability or portability.

® While dispatching an incoming request, the container extracts and decodes the
component identifier from the Objectld. The extracted component identifier is
made available to the component executor through the context before the request is
dispatched to the component.

® When the container invokes ccm_load in the component executor, the
implementation of ccm_load uses the contents of the component identifier to
locate and incarnate the required component state.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

v

In the following discussions, component identifiers and component object references
are sometimes used as though the terms were synonymous. Since there is a one-to-one
relationship between a component identifier and an object reference created from the
component identifier, this discussion occasionally uses the term “component
reference” to mean “the component reference created from the component identifier in
guestion”, for the sake of brevity.

The Componentld interface does not explicitly specify the state representation it
encapsulates. The abstract state is implied by the interface and reflects the structure of
the executor it describes (see Chapter 6 for a complete discussion of executor
structure).

A component identifier encapsulates the following information:
* A facet identifier value denoting the target facet of the component reference

* A segment identifier value denoting the target segment of the component reference
(i.e., the segment that supports the target facet)

® A sequence of segment descriptors

A segment descriptor includes the following:
* A segment identifier denotes the segment being described

* A dtate identifier value that denotes the persistent state of the segment in some
storage mechanism.

A monolithic executor is represented as a degenerate case of the generalized
component identifier, where the target segment identifier is set to zero and the
sequence of segment descriptors contains a single element, whose segment identifier is
zero and whose state identifier denotes the persistent state of the component’s single
segment.

The facet identifier value zero is reserved to denote the component facet, i.e., the facet
that supports the component equivalent interface. The segment identifier value zero is
reserved to denote the segment that supports the component facet. For monolithic
executors, the segment identifier values is always zero.

State identifier is an abstraction that generalizes a variety of possible state identity
schemes. This specification provides a mechanism for describing state identifiers that
can be extended by component implementors, allowing customization for storage
mechanisms that do not support the standard persistence interfaces.

The Componentld local interface and supporting constructs are defined by the
following IDL:

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 7-211

7-212

CORBA Components Volume| - orbos/99-07-01

typedef short Segmentlid;
const Segmentld COMPONENT_SEGMENT = 0;

typedef short Facetld;
const Facetld COMPONENT_FACET =0;

typedef sequence<octet> IdData;
typedef CosPersistentState::pid Persistentld;

exception InvalidStateldData {};

typedef short StateldType;
const StateldType PERSISTENT_ID = 0;

abstract valuetype StateldValue {
StateldType get_sid_type();
IdData get_sid_data();

¥

local interface StateldFactory {
StateldValue create (in IdData data) raises (InvalidStateldData);

h

valuetype PersistentldValue : StateldValue {
private Persistentld pid;
Persistentld get_pid();
init (in Persistentld pid);

k

valuetype SegmentDescr {

private StateldValue sid;

private Segmentld seg;

StateldValue get_sid();

Segmentld get_seg_id();

init (in StateldValue sid, in Segmentld seg);
¥

typedef sequence<SegmentDescr> SegmentDescrSeq;

local interface Componentld {
Facetld get_target_facet();
Segmentld get_target_segment();
StateldValue get_target_state id (in StateldFactory sid_factory)
raises (InvalidStateldData);
StateldValue get_segment_state_id (
in Segmentld seg,
in StateldFactory sid_factory)
raises (InvalidStateldData);
Componentld create_with_new_target (
in Facetld new_target_facet,
in Segmentld new_target_segment);

August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

SegmentDescrSeq get_segment_descrs (
in StateldFactory sid_factory)
raises (InvalidStateldData);

h

7.4.3.2 SateldValue abstract valuetype

The StateldValue type is the base valuetype for concrete, storage-specific state
identity values. The container interacts with state identities completely in terms of this
interface. A single pre-defined concrete value type derived from StateldValue is
provided for Persistentld state identities. Component implementors, or suppliers of
storage mechanisms that do not support the CORBA component persistence model can
provide their own state identity types by deriving from StateldValue and
implementing the required behaviors properly.

get_sid_type

The get_sid_type operation returns a discriminator (physically, a short) that
identifies the type of the state identity encapsulated by the StateldValue. This
specification defines the value zero (0) to denote a
Components::Extended::Persistentld state identifier.

Issue — do we need to define this as an OMG-allocated space?

get_sid_data

The get_sid_data operation returns the encapsulated state identity expressed in a
canonical form, as a sequence of octets. The implementation of the derived concrete
value type is responsible for converting its encapsulated data into this form, and for
supplying a factory which can construct an instance of the concrete type from an
IdData value (a sequence of octets).

7.4.3.3 SateldFactory Interface

StateldFactory is the abstract base interface for factories of state identity values
derived from StateldValue. An implementation of StateldFactory must be supplied
with the implementation of a concrete state identity type. If the IdData octet sequence
provided in the data parameter cannot be decoded to create a proper instance of the
expected state identity concrete type, the operation raises an Invalid StateldData
exception.

create

The create operation constructs an instance of a concrete state identifier from the
octet sequence parameter. This operation performs the inverse of the transformation
performed by the get_sid_data.

CORBA Components Volume | - orbos/99-07-01 7-213

7-214

7.4.3.4 PersistentldValue valuetype

The PersistentldValue type is a specialization of StateldValue that encapsulates a
Persistentld value for inclusion in a component identifier.

get_pid
The get_pid operation returns the Persistentld value encapsulated by the value type.

init
The initializer for PersistentldValue creates an instance of the valuetype that
encapsulates the Persistentld value passed as a parameter.

get_sid_value

The implementation of get_sid_value for PersistentldValue performs no
transformation on the encapsulated Persistentld value. The sequence of octets
returned by get_sid_value isidentica to the encapsulated Persistentld value.

7.4.3.5 SegmentDescr valuetype

The SegmentDescr type describes an executor segment, encapsulating a segment
identifier and a state identifier. A component identifier for a segmented executor
encapsulates a sequence of SegmentDescr instances.

get_sid
The get_sid operation returns the state identity value of the segment being described.

get_seg_id
The get_seg_id operation returns the segment identifier of the segment being
described.

init
Thisinitializer sets the value of the encapsulated segment identifier and state identifier
to the values of the respective parameters.

7.4.3.6 Componentld Interface

The Componentld interface encapsulates a complete component identity. Instances
of Componentld can only be created by the Entity2Context interface, which is
supplied by the container, or by duplicating an existing component identifier with a
new target value, with Componentid::create_with_new_target. Instances of
Componentld are aso provided by the EntityContext interface in the context of a
CORBA invocation. The value of the component identifier provided by the
Entity2Context shall be identical to the component identifier value used to create the
object reference on which the invocation was made. The Componentld interface is a

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

read-only interface. Once a component identifier is constructed by the
create_component_id operation or constructed internally and provided through the
Entity2Context interface, the value of the component identifier cannot be altered.

get_target facet

The get_target_facet operation returns the facet identifier of the facet which is the
target of the component reference, i.e., the target of requests made on the component
reference.

get_target_segment

The get_target_segment operation returns the segment identifier of the target
segment, i.e., the segments that provides the target facet.

get_target state id

The get_target_state_id operation returns the state identifier of the target segment.
The StateldFactory specified in the sid_factory parameter is used by the
implementation of get_target_state_id to construct the proper state identifier from
the octet sequence encapsulated by the component identifier. If the state identifier of
the target segment is a PersistentldValue, the sid_factory parameter may be nil.
Container implementations shall provide a default implementation of StateldFactory
to be used when the encapsulated state identifier value is a PersistentldValue. If
provided (or default) factory cannot construct a correct state identifier of the expected
type from the undecoded octet sequence encapsulated by the component identifier, the
operation raises an InvalidStateld Data exception.

get_segment_state id
The get_segment_state_id operation returns the state identifier of the segment

specified by the seg parameter. The semantics are otherwise identical to
get_target_state_id, with respect the meaning and use of the sid_factory parameter.

get_segment_descrs

The get_segment_descrs operation returns a sequence containing al of the
segment descriptors encapsulated by the component identifier. The sequence is a copy
of the encapsulated sequence. The state identifier factory in the sid_factory parameter
(or the default) is used by the implementation of get_segment_descrs to construct
state identifiers of the appropriate concrete subtype of StateldValue. If provided (or
default) factory cannot construct a correct state identifier of the expected type from the
undecoded octet sequence encapsulated by the component identifier, the operation
raises an InvalidStateldData exception.

create_with_new_target

The create_with_new_target operation creates a new component identifier that is
identical to the target component identifier, except that the target facet and target
segment values are replaced with the values of the new_target_facet and
new_target_segment parameters, respectively.

CORBA Components Volume | - orbos/99-07-01 7-215

7-216

Thisoperation isintended primarily to be used in implementing navigation
operations.

7.4.3.7 The Entity2Context Interface

The Entity2Context is an internal interface which extends the EntityContext
interface to provide the extended component with access to additional container-
provided runtime services for managing object references and advanced persistence.
Object references for components deployed in a entity container API type can choose
to use the CORBA persistent state service or some user defined persistence
mechanism. The Componentld interface (defined in Section 7.4.3.6 on page 214)
encapsulates this distinction when a reference is to be used. The Entity2Context is
defined by the following IDL.

exception BadComponentReference {
BadComponentReferenceReason reason
k

exception lllegalState { };

local interface Entity2Context : EntityContext, CCM2Context {
Componentld get_component_id ()
raises (lllegalState);
Componentld create_component_id (
in Facetld target_facet,
in Segmentld target_segment,
in SegmentDescrSeq seq_descrs);
Componentld create_monolithic_component_id (
in Facetld target_facet,
in StateldValue sid);
Object create_ref from_cid (
in CORBA::Repositoryld repid,
in Componentld cid);
Componentld get_cid_from_ref (
in Object ref)
raises (BadComponentReference);

h

get_component_id

The get_component_id operation is used to obtain a reference to the
Componentld interface. The Componentld interface encapsulates a persistence
identifier which can be used to access the component’s persistence state. If this
operation is issued outside of the scope of a callback operation, the lllegalState
exception is returned.

create_component_id

The create_component_id operation creates a component identifier value,
initializing it with the values specified in the parameters. The target_facet parameter
contains the facet identifier of the target facet, the target_segment parameter contains

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

v

the segment identifier of the target segment, and the seq_descrs parameter contains a
seguence of segment descriptors describing all of the segments that constitute the
component executor.

create_monolithic_component_id

The create_monolithic_component_id operation provides a simplified signature
for creating a component identifier value for monolithic executors, which have asingle
segment. The target_facet parameter contains the facet identifier of the target facet,
and the sid parameter contains the state identifier for the single executor segment. The
target segment identifier encapsulated by the component identifier is set to zero, and
the sequence of segment descriptors encapsulated by the component identifier has a
single element, initialized with segment identifier value zero, and state identifier value
specified by the sid parameter.

create ref from_cid

The create_ref _from_cid operation is used by a component factory to create an
object reference which can be exported to clients. The cid parameter specifies the
Componentld value to be placed in the object reference and made available (using
the get_component_id operation on the context) when the EntityComponent
callback operations are invoked. The repid parameter identifies the Repositoryld
associated with the interface for which a reference is being created.

get_cid from ref

The get_cid_from_ref operation is used by a persistent component to retrieve the
Componentld encapsulated in the reference (ref). The Componentld interface
supports operations to locate the state in some persistent store. The
BadComponentReference exception can be raised if the input referenceis not local
(NON_LOCAL_REFERENCE), not a component reference
(NON_COMPONENT_REFERENCE), or created by some other container
(WRONG_CONTAINER).

The Componentld structure is dependent on the home implementation and
the container, in particular, its implementation of the Entity2Context
interface. It islikely that a Componentl d created by one container will not
be under standabl e by another, hence the possibility of the
WRONG_CONTAINER exception.

7.5 TheClient Programming Model

August 2, 1999 11:14 pm

This section describes the architecture of the component programming model as seen
by the client programmer. The client programming model as defined by the IDL
extensions has been described previously (Chapter 5). This section focuses on the use
of standard CORBA by the client who wishes to communicates with a CORBA
component implemented in a Component Server.

This material servesthe same purpose asthe“ Enterprise JavaBeansto
CORBA Mapping” specification doesfor EJB. It enables a CORBA client
who is not itself a CORBA component, to communicate with a CORBA

CORBA Components Volume | - orbos/99-07-01 7-217

7-218

component using standard CORBA.

The client interacts with a CORBA component through two forms of external
interfaces - a home interface and one or more application interfaces. Home interfaces
support operations which alow the client to obtain references to an application
interface which the component implements.

From the client’s perspective, the home supports two design patterns - factories for
creating new objects and finders for existing objects. These are distinguish by the
presence of a primaryKey parameter in the home IDL.

* if aprimaryKey is defined, the home supports both factories and finders and the
client may use both.

* if aprimaryKey is not defined, the home supports only the factory design pattern
and the client must create new instances.

Two forms of clients are supported by the CORBA component model:

® Component-aware clients - These clients know they are making requests against a
component (as opposed to an ordinary CORBA object) and can therefore avail
themselves of unique component function, e.g. navigation among multiple
interfaces and component type factories.

® Component-unaware clients - These clients do not know that the interface they are
making requests against is implemented by a CORBA component so they can only
invoke functions supported by an ordinary CORBA object, e.g. looking up a name
in a Naming or Trader service, searching for a particular type of factory using a
factory finder, etc.

7.5.1 Component-aware Clients

Clients that are defined using the IDL extensions in Chapter 5 are referred to as
component-aware clients. Such clients can avail themselves of the unique features of
CORBA components which are not supported by ordinary CORBA objects. The
interaction between these clients and a CORBA component are outlined in the
following sections. A component-awar e client interact with a component through one
or more CORBA interfaces:

® the equivalent interface implied by the component IDL declaration,
® zero or more supported interface declared on the component specification.

® zero or more interfaces defined by the provides clauses in the component
definition,
® the home interface which supports factory and finder operations

Furthermore a component-aware client locates those interfaces using the
Components::HomeFinder or a naming service. The starting point for client
interactions with the component is the resolve_initial_references operation on
CORBA::ORB which provides the initial set of object references.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

7.5.1.1 Initial References

Initial references for all services used by a component client are obtained using the
CORBA::ORB::resolve_initial_references operation. This operation currently
supports the following references required by a component client:

®* Name Service (“NameService”)

® Transaction Current (“ TransactionCurrent”)
® Security Current (“SecurityCurrent”)

®* Notification Service (“NotificationService”)

* Interface Repository (“InterfaceRepository”) for DIl clients.

Additionally, this specification adds Components::HomeFinder. This reference is
obtained using a new ObjectID, “ComponentHomeFinder” with
CORBA::ORB::resolve_initial_references. The client uses this operation (defined
in Section 5.9 on page 105) to obtain a reference to the HomeFinder interface.

7.5.1.2 Factory Design Pattern

For factory operations, the client invokes a create operation on the home. Default
create operations are defined for each category of CORBA components for which code
can be automatically generated. These operations return an object of type
CORBA::Component which must be narrowed to the specific type. Alternatively,
the component designer may specify custom factories as part of the component
definition to define a type-specific signature for the create operation. Because these
operations are defined in IDL, operation names can be chosen by the component
designer. All that is required is that the operations return an object of the appropriate

type.

A client using the factory design pattern uses the HomeFinder to locate the
component factory (CCMHome) by interface type. The HomeFinder returns a type-
specific factory reference which can then be used to create new instances of the
component interface. Once created, the client makes operation requests on the
reference representing the interface. Thisis illustrated by the following code fragment
below:

CORBA Components Volume | - orbos/99-07-01 7-219

7-220

/'l Resol ve HomeFi nder
org. ony. CORBA. (bj ect objref =
orb.resolve_initial _references("Conponent HomeFi nder”);

Conponent HomeFi nder ff =
Conmponent HomeFi nder Hel per . narrow obj ref);

org. ong. CORBA. (bj ect of =
ff.find_home_by type(AHonmeHel per.id());

AHone F = AHoneHel per. narrow (of);
or g. ong. Conmponent s. Component Base Alnst = F.create();
A Areal = AHel per.narrow (Alnst);

/1 Invoke Application Operation
answer = A foo(input);

7.5.1.3 Finder Design Pattern

A component-aware client wishing to use an existing component instance (rather than
create a new instance) uses a finder operation. Finders are supported for entity
components only. Client’s may use the HomeFinder as described in Section 5.9 on
page 105 to locate the component’s home or they may use CORBA naming to look up
a specific instance of the home by symbolic nhame.

Thelatter choice is equivalent to the EJB Component Architecture where
the client uses INDI (the Java version of CORBA naming) to look up
EJBHome (which provides client interfaces to factory and finder ser-
vices for Enterprise JavaBeans).

A client using the finder design pattern uses the CosNaming::NamingContext
interface to lookup a symbolic name. The nhaming service returns an object reference of
the type previously bound. The client then makes operation requests on the reference
representing the interface. This is illustrated by the following code fragment below:

org. ong. CORBA. (bj ect objref =
orb.resolve_initial _references(“Nam ngService”);

Nam ngCont ext ncRef = Nani ngCont ext Hel per. narrow(obj ref);
/'l Resolve the nhject Reference in Nam ng

NameConponent nc = new NameConponent (“A*,"");
NameConponent path[] = {nc};

A aRef = AHel per.narrow(ncref.resol ve(path));

/'l Invoke Application Operation
answer = A foo(input);

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

7.5.1.4 Transactions

A component-aware client may optionally define the boundaries of the transaction to
be used with CORBA components. If so, it uses the CORBA transaction service to
ensure that the active transaction is associated with subsequent operations on the
CORBA component.

The client obtains a reference to CosTransactions::Current by using the
CORBA::ORB::resolve_initial_references operation specifying an ObjectID of
“TransactionCurrent”. This permits the client to define the boundaries of the
transaction, i.e. how many operations will be invoked within the scope of the client’s
transaction. All operations defined for Current may be used as defined by the
CORBA transaction service with the following exceptions:

®* The Control object returned by get_control and suspend may only be used with
resume.

® QOperations on Control may raise the NO_IMPLEMENT exception with CORBA
components.

The Control interface in the CORBA transaction service supports acces-
sorsto the Coordinator and Terminator interfaces. The Coordinator is
used to build object versions of XA resource managers. The Terminator is
used to allow a transaction to be ended by someone other than the origina-
tor. Since neither function is within the scope of the demarcation subset of
CORBA transactions used with CORBA components, we allow CORBA
transaction services implementations used with CORBA components to
raisesthe NO_IMPLEMENT exception.

The following code fragment shows a typical usage:

org. ong. CORBA. (bj ect objref =
orb.resolve_initial _references(“Transacti onCurrent”);

Current txRef = CurrentHel per. narrow obj Ref);
t xRef . begi n() ;

/'l Invoke Application Operation

answer = A foo(input);

txRef.commit();

7.5.1.5 Security

A component-aware client uses the existing CORBA security mechanism to manage
security for a CORBA component. There are two scenarios possible;

® Useof SSL for establishing client credentials

CORBA security today does not define a standard API for clients to use with SSL
to set the credentials which will be used to authorize subsequent requests. The
credentials must be set in a way which is proprietary to the client ORB.

® Use of SECIOP by the client ORB.

CORBA Components Volume | - orbos/99-07-01 7-221

7-222

In this case, CORBA security does define an API and it must be used by the client
to establish the credentials to be used to authorize subsequent reguests.

Security processing for CORBA components uses a subset of CORBA security. For
SECIOP, the client sets the credentials to be used with subsequent operations on the
component by using operations on the SecurityLevel2::PrincipalAuthenticator.
The client obtains a reference to SecurityLevel2::Current by using the
CORBA::ORB::resolve_initial_references operation specifying an ObjectID of
“SecurityCurrent”. This permits the client to access the PrincipalAuthenticator
interface to associate security credentials with subsegquent operations. The following
code fragment shows a typical usage:

org. ong. CORBA. (bj ect objref =
orb.resolve_initial _references(“SecurityCurrent”);

org.ong. SecuritylLevel 2. Princi pal Aut henti cator secRef =
org. ong. SecurityLevel 2. Princi pal Aut henti cat or Hel per. narr ow
(obj Ref);

secRef.authenticate(...);

/'l Invoke Application Operation
answer = A foo(input);

7.5.1.6 Events

Component-aware clients wishing to emit or consume events use the component APIs
defined in Chapter 5. Alternatively, they may use CORBA notification directly and
conform to the subset supported by CORBA components (see Section 7.5.2.6 on page
224 for details).

7.5.2 Component-unaware Clients

CORBA components can also be used by clients who are unaware that they are making
requests against a component. Such clients can see only a single interface (the
supported interface of a component) and do not support navigation.

7.5.2.1 Initial References

Component-unaware clients obtain initial references using existing CORBA
mechanisms, viz. CORBA::ORB::resolve_initial_references. It is unlikely,
however, that this mechanism would be used to obtain a reference to the
HomeFinder.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

7.5.2.2 Factory Design Pattern

The factory design pattern can be used by component-unaware clients only if the
supported interface has application operations defined. This permits existing CORBA
objects to be easily converted to CORBA components, transparently to their existing
clients. The following techniques can be used:

® The reference to afactory finder (typically the CosLifeCycle::FactoryFinder)
can be stored in the Naming or Trader service and looked up by the client before
creating the instance.

* A reference to the home interface can be obtained from the Naming service.

This technique is equivalent to the EJB client programming model which
uses JNDI to look up a reference to EJBHome by name.

®* The reference to the home interface can be obtained from a Trader service.

® After locating a factory finder, the factory can be located using the existing
find_factories operation or by using the new find_factory operation on the
CoslLifeCycle::FactoryFinder interface. The find_factory is defined in Section
11.3.1 on page 397.

The current CosLifeCycle find_factories operation returns a sequence
of factories to the client requiring the client to choose the one which will
create the instance. To allow the server (i.e. the FactoryFinder) to make
the selection, we also add a new find_factory operation to CosLifeCy-
cle which allows the server to choose the “ best” factory for the client
request based on its knowl edge of workload, etc.

A FactoryFinder will return an Object. A component-unaware client may expect
to narrow thisto CosLifeCycle::GenericFactory and use the generic create
operation. For this reason, we allow the default creation operation on home to
return a GenericFactory interface. Thisis fully described in Section 5.8 on page
93.

® A stringified object reference can be retrieved from a file known by the component-
unaware client.

Once a reference to the home has been obtained, the client can create component
instances and make operation requests on the component. Each component exports at
least one IDL interface. A supported interface must be used by the client to invoke the
component’s application operations. Provided interfaces cannot be located using the
factory design pattern.

7.5.2.3 Finder Design Pattern

A component-unaware client can use CORBA naming to locate an existing entity
component. Unlike the factory design pattern, the name to be looked up by the client
can be either a supported interface or any of the provided interfaces. The following
techniques can be used:

® A symbolic hame associated with the component’s home can be looked up in a
Naming service to make an invocation of the finder operations.

CORBA Components Volume | - orbos/99-07-01 7-223

7-224

This technique is equivalent to the EJB client programming model which
uses JNDI to look up a reference to EJBHome by name.

* Alternatively, the reference to the home interface can be obtained from a Trader
service.

® thefinder operation can be invoked on the entity component to return areference to
the client.

7.5.2.4 Transactions

This is the same as component-aware clients (See Section 7.5.1.4 on page 221).
However, the possibility of the NO_IMPLEMENT exception being raised for
operations on Control may have a more serious impact, since the component-unaware
client may not be expecting that to happen.

7.5.2.5 Security

This is the same as component-aware clients (See Section 7.5.1.5 on page 221).

7.5.2.6 Events

Component-unaware clients wishing to emit or consume events must use the
equivalent CORBA notification interfaces and stay within the subset supported by
CORBA components (see Section 7.2.8 on page 180 for details). Thisis illustrated by
the following code fragment:

org. ong. CORBA. (bj ect objref =
orb.resolve_initial _references(“NotificationService”);

org. ong. CosNoti fi f yChannel Adni n. Event Channel Fact ory evf Ref =
or g. ong. Event Channel Fact or yHel per . narr om obj Ref) ;

/'l Create an Event Channel
org. ong. CosNot i f yChannel Admi n. Event Channel evcRef =
evf Ref.create_channel (...);

/] Obtain a SupplierAdm n
or g. ong. CosNot i f yChannel Admi n. Suppl i er Admi n publisher =
evcRef.new for_suppliers (...);

/1 And a Consuner Proxy
org. ong. CosNot i f yComm Pr oxyConsumer proxy =
publ i sher.obtain_notification_push_conmsumer (...);

/1 Publish a structured event
proxy. push_structured_event(...);

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:09 pm

| ntegrating with EnterpriseJavaBeans 8

This chapter describes how an Enterprise JavaBeans (EJB) component can be used by
CORBA clients, including CORBA components. The EJB will have a CORBA
component style remote interface that is described by CORBA IDL (including the
component extensions).

This chapter also describes how a CORBA component can be used by a Java client,
including an Enterprise JavaBeans component. The CORBA component will have an
EJB style remote interface that is defined following the Enterprise JavaBeans
specification.

The concepts in this chapter follow in the same prescription for interworking as laid
out in Chapter 17 of the CORBA 2.3 specification where it is discussed as follows:

How interworking can be practically achieved isillustrated in an Interworking Model,
shown in Figure 8-1 on page 226. It shows how an aobject in Object System B can be
mapped and represented to a client in Object System A. From now on, this will be
called a B/A mapping. For example, mapping a CORBA Component Model object to
be visible to an EJB client is a CCM/EJB mapping.

On theleft isaclient in object system A, that wants to send a request to a target object
in system B, on the right. We refer to the entire conceptual entity that provides the
mapping as a bridge. The goal isto map and deliver any request from the client
transparently to the target.

To do so, we first provide an object in system A called a View. The View is an object
in system A that presents the identity and interface of the target in system B mapped to
the vernacular of system A, and is described as an A View of a B target. The View
exposes an interface, called the View Interface, which is isomorphic to the target’s

CORBA Components Volume| - orbos/99-07-01 8-225

8-226

Object referencein A

View in A of targetin B
(object in system A)

interface in system B. The methods of the View Interface convert requests from system
A clients into requests on the target’s interface in system B. The View is a component
of the bridge. A bridge may be composed of many Views.

Object System A

Bridge Object System B

/ Object referencein B Target ok\Jject

implementation in B

Figure8-1 B/A Interworking Model

The bridge maps interface and identify forms between different object systems.
Conceptually, the bridge holds a reference in B for the target (although this is not
physically required). The bridge must provide a point of rendezvous between A and B,
and may be implemented using any mechanism that permits communication between
the two systems (IPC, RPC, network, shared memory, and so forth) sufficient to
preserve all relevant object semantics.

The client treats the View as though it is the real object in system A, and makes the
request in the vernacular request form of system A. The request is translated into the
vernacular of object system B, and delivered to the target object. The net effect is that
a request made on an interface in A is transparently delivered to the intended instance
inB.

The Interworking Model works in either direction. For example, if system A is EJB,
and system B is CCM, then the View is called the EJB View of the CCM target. The
EJB View presents the target’s interface to the EJB client. Similarly if system A is
CCM and system B is EJB, then the View is called the CCM View of the EJB target.
The CCM View presents the target’s interface to the CCM client.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:09 pm

8.1 Enterprise JavaBeans Compatibility Objectivesand Requirements

The objective is to allow the creation of distributed applications which mix CORBA
components running in CORBA component servers with EJB components running in
an EJB technology-based server. This objective allows a developer to create an
application by reusing existing components of either kind.

This requires development time and runtime transl ations between the CORBA
component and EJB domains provided by mediated bridges. It also requires that:

®* A CORBA component view for an EJB comply with the EJB to CORBA mapping
specification. In particular, this requires that:

« An EJB definition be mapped to a CORBA component definition following the
Java Language to IDL mapping plus the extensions to that mapping that are
specified in this chapter.

* Value objects of one kind (e.g. Keys for EJB) have counterpart value objects of
the other kind.

« CORBA components accessible viaCosNaming have their EJB views accessible
via JNDI, and vice versa.

®* An EJB view for a CORBA component comply with the EJB specification.

An application is to be built using both EJB and CORBA components deployed in their
respective containers. At component development time, EJB components are originally
defined in Java and CORBA components are originally defined in IDL. When
applications are assembled using both, the application assembly environment will most
commonly dictate which model these components must present to developers. During
application assembly, developers construct clients (which themselves may be
components) that make use of components in the way most natural to the particular
environment. Thus in a CORBA environment clients will expect to make use of both

August 2, 1999 11:09 pm CORBA Components Volume | - orbos/99-07-01 8-227

the CCM model and the EJB model as CORBA components, and in an EJB
environment, clients will expect to make use of both kinds as enterprise beans. All four
combinations of clients and components are illustrated in Figure 8-2 on page 228.

CCM Client EJB Client

EJB Client

Y

EJB View CCM Client

—

Bridge (Bridge)

Y

EJB

\1/7 CCM View
|

| |
CCM

R

EJB Container Contract CCM Container

A

Component/Container

Figure8-2 Interoperation in a mixed environment

In this scenario, components of one kind are made accessible to clients of another by
way of two mechanisms: generation of bindings at development time and method
tranglation at runtime. Thus, the containers provide an EJB view of a CORBA
component and a CCM view of an EJB.

For application developers in a CORBA environment, EJBs specified in Java are
mapped to CORBA IDL for use by CCM clients, and at runtime client calls on CCM
methods are translated by a bridge into EJB methods. In effect, the EJBs are CORBA
components.

For application developers in an EJB environment, CORBA components specified in
IDL are mapped to Java interfaces for use by EJB clients, and at runtime client calls on
EJB methods are translated by a bridge into CCM methods. In effect, the CORBA
components are EJBs.

8.2 CORBA Component viewsfor EJBs

8-228

This kind of view allows a CORBA client -- either a CORBA component or any piece
of code that uses CORBA, and either component-aware or not -- to access an EJB as a
CORBA component. To do this, two things are needed:

* A mapping of the definition of the existing EJB into the definition of a CORBA
component. This mapping takes an EJB’s RMI remote interface and home interface
and produces an equivalent CORBA component definition.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:09 pm

8

® A trandlation, at run-time, of CORBA component requests performed by a CORBA
client into EJB requests. This translation can be performed in terms of either
straight delegation, or as an interpretation of a CORBA client request in terms of
EJB requests.

8.2.1 Mapping of EJB to Component IDL definitions

August 2, 1999 11:09 pm

An EJB definition includes the following EJB interfaces:

®* An EJB home interface. This interface extends the pre-defined EJBHome
interface.

* An EJB remote interface. This interface extends the pre-defined EJBObject
interface.

Thus, for the purposes of this chapter, at least these EJB interfaces must be mapped
into IDL in order to obtain a CORBA component definition of a view that a CORBA
client can use to make requests on an existing EJB. An EJB home interface definition
maps into a CORBA component’s home definition, whose implied IDL inherits from
CCMHome. This means that EJBHome is mapped into CCMHome. Likewise, an
EJB remote interface definition maps into a basic CORBA component definition,
whose implied IDL inherits from CCMObject. This means that EJBObject is
mapped into CCMObject.

In addition, EJBHome and EJBObject make use of the following pre-defined EJB
interfaces:

®* The HomeHandle interface.
®* The Handle interface.

* The EJBMetaData interface.

Handles are an EJB concept that has no direct counterpart in CORBA components.
Thus, HomeHandle and Handle are not directly mapped into equivalent IDL.

Notice that although Interoperable Object References (I0Rs) and the ORB
provided operations that manipulate them (string_to_object and
object_to_string) are conceptually similar to Handles, there are enough
differences between |ORs and Handles to preclude a mapping from Han-
dlesto IORs.

Meta data is available to a CORBA client but not in the same form as that provided by
EJBMetaData. Given that an EJB maps into a CORBA component, whose definition
produces the meta data that a CORBA client expects, mapping EJBMetaData into
equivalent IDL is not required.

8.2.1.1 Javalanguageto IDL Mapping

The reader is assumed to be familiar with the specification for the Java to IDL
mapping, whose major aspects are repeated here for convenience.

* A Javainterface is an RMI/IDL remote interface if it at least extends
java.rmi.Remote and all of its methods throw java.r mi.RemoteException.

CORBA Components Volume | - orbos/99-07-01 8-229

® get- and set- name pattern names are translated to IDL attributes.

® |DL generated methods have only in parameters (but these can include object
references to remote objects, allowing reference semantics normally obtained by
using parameters of type java.rmi.Remote).

® Java objects that inherit from java.io.Serializable or java.io.Exter nalizable are
mapped to a CORBA valuetype. All object types appearing in RMI remotable
interfaces must inherit from these interfaces or from java.r mi.Remote. EJB Key
and Handle types must inherit from java.io.Serializable.

» However, the mapping does NOT require that methods on such objects or
constructors be mapped to corresponding I DL operations on valuetypes and init
specifications. The developer is expected to select those methods which should be
mapped to IDL operations, and the method signatures must meet the requirements
of the mapping.

» Objects which inherit from java.io.Externalizable or which implement
writeObject are understood to perform custom marshalling and the
corresponding custom marshallers must be created for the CORBA valuetype.

® Arrays are mapped to “boxed” CORBA valuetypes containing sequences because
Java arrays are dynamic.

® Java exceptions are subclassable; IDL exceptions are not. Consequently a name
pattern is used to map to IDL exceptions. The Java exception object is mapped to a
CORBA valuetype. The CORBA valuetype has an inheritance hierarchy like that of
the corresponding Java exception object.

® Some additional programming is required to define Java classes (including EJB
implementations) that are accessible via RMI/I1OP. This is to account for the fact
that 110P does not support distributed garbage collection.

8.2.1.2 EJBtoIDL mapping

In general, the CORBA component that results from mapping an EJB will support an
interface that is the Javato IDL map of the Remote interface of the EJB. The mapping
rules are as follows.

Mapping the Remote | nterface

® An EJB’s remote interface maps to a definition of a basic CORBA component that
supports the default interface. The form of the CORBA component definition is
component XXX supports XXXDefault.

®* An EJB’sremote interface declaration is used to create a supports declaration and
the corresponding IDL for the primary interface of the CORBA component that the
EJB maps to. The identifier of this supported interface on the component is
XXXDefault, where XXX is the name of the EJB remote interface. This generated
interface is referred to as the Default interface of the component that the given EJB
maps to.

| 8-230 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:09 pm

August 2, 1999 11:09 pm

Each operation on the Remote interface is mapped under Java to IDL to an
equivalent operation on the XXXDefault interface. Note that pairs of getXXX and
set XXX methods in the EJB remote interface will be mapped to IDL attributes.
Any exceptions thrown by a getXXX method is mapped to an exception in the
getRaises clause of the mapped IDL attribute. Likewise, any exception thrown by
a set XXX method is mapped to an exception in the setRaises clause of the
mapped IDL attribute. The actual definitions of the exceptions thrown are mapped
following the Java to IDL rules.

Mapping the Home |l nterface

An EJB’s home interface maps to a definition of a CORBA component home. The
form of the CORBA component home definition ishome YYY manages XXX,
where YYY is the name of the EJB home interface. Mapping an EJB home into a
CORBA component home requires the existence of meta data that links the EJB
home to the EJB that it hosts. These meta data are obtained from the EJB’s
deployment descriptor. Thus XXX is the name of the EJB that the EJB home hosts,
asitisgiven in the EJB deployment descriptor.

The EJB home methods called create are mapped into home factory declarations
in IDL. The actual names of each of the factory operations are produced following
the rules for mapping Java hames to IDL names in the Java to IDL specification.
The Java parameters of the operation are mapped to their corresponding IDL types
and names as defined by Javato IDL.

An EJB Primary Key class is mapped to a CORBA valuetype using the mapping
rulesin Javato IDL. This valuetype will be declared in the IDL for the CORBA
component home as the primary key valuetype for the component. The key
valuetype will inherit from Components::PrimaryKeyBase. If an EJB home
uses a primary key, then the form of the CORBA component home definition is
home YYY manages XXX primaryKey KKK, where KKK is the name of the
valuetype that the EJB primary key class maps to.

The EJB home operation named findByPrimaryK ey is mapped into the
find_by primary_key(in <key-type> primaryKey) operation on the
component’s implicit home interface.

Finder and Creator EJB operations that return an RMI style object reference are
mapped into Component IDL operations which return a CORBA Component Object
Reference (Components::CCMODbject).

EJB home operations prefixed find whose return type is the type of the EJB hosted
by the EJB home are mapped into component home finder operationsin IDL. The
actual names of each of the finder operations are produced following the rules for
mapping Java names to IDL names in the Java to IDL specification. The Java
parameters of the operation are mapped to their corresponding IDL types and names
as defined by Javato IDL.

Finder EJB operations that return a Java Enumeration are mapped into CORBA
component operations which return an IDL Object Reference to an interface of type
Enumeration. Thisinterface is declared as:

CORBA Components Volume | - orbos/99-07-01 8-231

8-232

module Components {

interface Enumeration {
boolean has_more_elements();
CCMObject next_element();

3

3

The Enumeration interface isjust the RMI/IIOP image of the Java Enumer-
ation class as defined in the JDK 1.1.6+. Sun has said that they intend to
replace this with the JDK 1.2 (Java 2.0) Collections in a future version of

the EJB specification. Subsequent to such a specification being issued, the
CORBA components specification will be updated to correspond.

® |n order for an EJB home definition that defines findByPrimaryKey to be
successfully mapped onto a CORBA component home definition, it must define a
create method that takes the primary key of the hosted EJB as its sole argument
and returns an instance of the hosted EJB. This create method is mapped to create(
in <key-type> key) on the CORBA component implicit home interface.

8.2.2 Translation of CORBA Component requests into EJB requests

A CORBA client that uses a CORBA component view on an EJB expects to be able to
perform CORBA component requests on such a view. These requests need to be
translated into EJB requests at run-time. This translation can be performed at the
client-side, server-side, or a combination of the two. Table 8-1 lists the CORBA
component operations that a CORBA client can perform requests on by interface, and
it lists the corresponding EJB methods that these requests translate into, also by
interface.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:09 pm

Notice that a CORBA client may use operations on object references such as
string_to_object and object_to_string that may be considered as analogous to EJB
Handle methods. However, these operations are not seen by the bridge since they are

Table 8-1 Translation of CCM operation requests into EJB method requests

CCM Interface

Operation called by client

EJB interface

Method invoked by bridge

CCMHome

ComponentDef
get_component_def ();

void remove_component (
in CCMObject comp)
raises (CCMException);

EJBHome

EJBMetaData
getEJBMetaData ()
throws RemoteException;

void remove (Handle handle
) throws RemoveException,
RemoteException;

<home-name>Explicit

<home-name>Implicit

<name> createXXX (
<arg-list>)

raises (DuplicateKeyValue,
InvalidKey);

<name> findXXX (
<arg-list>)
raises (<exceptions>);

<name> create (

in <key-type> key)

raises (DuplicateKeyValue,
InvalidKey);

<name>
find_by_primary_key (

in <key-type> key)

raises (UnknownKeyValue,
InvalidKey);

void remove (

in <key-type> key)

raises (UnknownKeyValue,
InvalidKey);

<key_type>get_primary_key
(in <name> comp);

<home-name>

EJBHome

EJBObject

<name> create (
<arg-list>)

throws CreateException,
DuplicateKeyException;

<name> findXXX (
<arg-list>)
throws <exceptions>;

<name> create (

Object primaryKey)
throws CreateException,
DuplicateKeyException;

<name> findByPrimaryKey (
<key-type> key)

throws FinderException,
ObjectNotFoundException;

void remove (

Object primaryKey)
throws RemoveException,
RemoteException;

Object getPrimaryKey ()
throws RemoteException;

August 2, 1999 11:09 pm

CORBA Components Volume | - orbos/99-07-01

8-233

Table 8-1 Translation of CCM operation requests into EJB method requests

CCM Interface Operation called by client | EJB interface | Method invoked by bridge
CCMObject ComponentDef EJBHome EJBMetaData
get_component_def (); getEJBMetaData ()
throws RemoteException;
CCMHome get_home (); EJBObject EJBHome getEJBHome ()
throws RemoteException;
PrimaryKeyBase Object getPrimaryKey ()
get_primary_key (); throws RemoteException;
void remove(); void remove ()
throws RemoveException,
RemoteException;
void Translation performed by
configuration_complete () bridge is to raise the
raises (InvalidConfiguration); NO_IMPLEMENT exception
<name> <res-type> <operation> (<name> <res-type> <operation> (
<arg-list>) <arg-list>)
raises (<exceptions>); throws <exceptions>;
<res-type> getXXX () <res-type> getXXX ()
throws <exceptions>; throws <exceptions>;
void setXXX (<arg-list>) void setXXX (<arg-list>)
throws <exceptions>; throws <exceptions>;

performed on the ORB and thus no translation for these operations on the part of the
bridge is required.

The following restrictions apply:

create (in <key_type> key) on the component implicit home interface can only
be validly invoked by a CORBA client if the underlying EJB home declares the
findByPrimaryKey operation.

remove (in <key_type> key) on the component implicit home interface can only
be validly invoked by a CORBA client if the underlying EJB home declares the
findByPrimaryKey operation.

get_primary_key on the component implicit home and on CCMObject can only
be validly invoked by a CORBA client if the underlying EJB home declares the
findByPrimaryKey operation.

configuration_complete on CCMObject is not translated by the bridge, a

reguest on this operation by a CORBA client raises the NO_IMPLEMENT
exception.

8-234 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:09 pm

8.2.3 CORBA Component view Example

August 2, 1999 11:09 pm

In this section we show a simple EJB together with the corresponding Component IDL.
Note that the EJB deployment metadata is needed to generate the IDL; this is because
the metadata binds together the Remote interface and the Home interface.

Below are the remote interfaces of the EJB.
package exanpl e;

class Custinfo inplenents java.io. Serializable
{

public int custNo;

public String cust Naneg;

public String custAddr;

s
class CustBal inplenments java.io. Serializable
{
public int custNo;
public float acctBal;
s

interface Custonerlnquiry extends javax.ejb. EJBOhj ect

{
Cust I nfo getCustlnfo(int iCustNo)
throws java.rm . Renot eExcepti on;
Cust Bal get CustBal (i nt i CustNo)
throws java.rm . Renot eExcepti on;

H

i nterface CustonerlnquiryHone extends javax.ejb. EJBHonme

{

Custonerlnquiry create()
throws java.rm . Renot eExcepti on;

s

Below are the contents of the descriptor classes as they might be expressed in an
equivalent XML document.

<ejb-jar>
<sessi on>
<descri ption>
</ descri ption>
<ej b- name> Custonerlnquiry </ejb-nane>
<home> exanpl e. Cust oner | nqui r yHone </ hone>
<renot e> exanpl e. Cust onmer | nqui ry </renote>
<ej b-cl ass> exanpl e. Cust oner | nqui ryBean </ ej b-cl ass>
<session-type> Stateful </session-type>
</ sessi on>
</ejb-jar>

CORBA Components Volume | - orbos/99-07-01 8-235

The EJB is a session bean, and in this case, its Create operation requires no
parameters. The two operations take a key value and return values to the caller. The
EJB implementation will use JDBC to retrieve the information to be returned by the
operations on the Customer Inquiry EJB.

The serializable value classes are translated by RMI/11OP into CORBA concrete
valuetypes as follows:

valuetype Custinfo
public long custNo;

public ::CORBA::WStringValue custName;
public ::CORBA::WStringValue custAddr;

|3
valuetype CustBal
{
public long custNo;
public float custBal;
|3

The information in the deployment descriptor and the home and remote interface
declarations is introspected and used to generate the following IDL.

interface CustomerinquiryDefault

{
CustInfo getCustinfo(in long iCustNo);

CustBal getCustBal(in long iCustNo);
¥

component Customerlnquiry supports CustomerinquiryDefault

{

¥
home CustomerinquiryHome manages Customerinquiry
{
factory create();
k

8.3 EJBviewsfor CORBA Components

8-236

This kind of view allows a Java client -- either an EJB or any other piece of Java code
-- to access a CORBA component as an EJB. To do this, two things are needed:

® A mapping of the Component IDL definition of a CORBA component into an EJB
definition. This mapping only considers that portion of the Component IDL
language that has a counterpart in the EJB specification language and it ignores the
rest.

® A trandlation, at run-time, of EJB requests performed by a Java client into CORBA
component requests.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:09 pm

8

8.3.1 Mapping of Component IDL to Enterprise JavaBeans specifications

The portion of the Component extensions to the IDL language that can be mapped to
the EJB specification language is denoted by the following subset of the Component
extensions to IDL grammar.

August 2, 1999 11:09 pm CORBA Components Volume | - orbos/99-07-01 8-237

8-238

<component_dcl> ::= <component_header> “{" <component_body>“}"

<component_header> ::= “component” <identifier> [
<supported_interface_spec>]

w N

<supported_interface_spec> ::= “supports” <scoped_name>{“,
<scoped_name> }*

<component_body>::= <component_export>*
<component_export> ::= <attr_dcl>"“;”
<attr_dcl> ::= <readonly_attr_spec> | <attr_spec>

<readonly_attr_spec> ::=“readonly” “attribute” <param_type_spec>
<readonly_attr_declarator>

<readonly_attr_declarator> ::= <simple_declarator> [<raises_expr>] |

<simple_declarator>{"“,” <simple_declarator> }*
<attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>

<attr_declarator> ::= <simple_declarator> <attr_raises_expr> |

<simple_declarator>{"“,” <simple_declarator> }*

<attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>] |
<set_excep_expr>

<get_excep_expr> ::=“getRaises” <exception_list>
<set_excep_expr>::=“setRaises” <exception_list>
<exception_list>::="(" <scoped_name> { “,” <scoped_name>} +"“)"

<home_dcl> ::= <home_header> <home_body>

<home_header> ::= “home” <identifier> “manages” <scoped_name> [
<primary_key_spec>]

<primary_key_spec> ::= “primaryKey” <scoped_name>
<home_body>::=“{" <home_export>**"}"

<home_export> ::= <factory_dcl>*;" | <finder_dcl>*;"
<factory_dcl>::=“factory” <identifier>*“(" [<init_param_decls>]“)" [

<raises_expr>]

<finder_dcl> ::= “finder” <identifier>“(“ [<init_param_decls>]")" [
<raises_expr>]

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:09 pm

The rules for mapping a CORBA component definition into an EJB definition are
defined in the following sections. Where appropriate, these rules rely on the standard
IDL to Java mapping.

Mapping the component definition

® A basic CORBA component definition is mapped to an EJB remote interface
definition.

® The name of the EJB remote interface is the name of the basic CORBA component
in the Component IDL definition.

® For each operation defined in each interface that the CORBA component
supports, amethod definition will be included in the EJB remote interface that the
CORBA component maps to. That is, the EJB to which the basic CORBA
component maps defines all the supported operations defined by the basic CORBA
component.

® The signatures of the CORBA component operations are mapped to signatures of
EJB remote interface methods following the IDL to Java mapping rules.

® For each attribute XXX that the CORBA component defines, the corresponding EJB
remote interface defines a pair of getXXX and setXXX methods, where XXX isthe
name of the given attribute. If the attribute definition includes a getRaises
exception clause, then the corresponding get XXX method definition in the EJB
remote interface will include a throws exception clause. Likewise, if the attribute
definition includes a setRaises exception clause, then the corresponding setXXX
method definition in the EJB remote interface will include a throws exception
clause.

® Exceptions raised by CORBA component definition operations and attributes are
mapped to exceptions thrown by EJB method definitions using the standard IDL to
Java mapping rules.

Mapping the Component Home definition

®* A CORBA component’s home definition is mapped to an EJB home's remote
interface definition. That is a definition of the form home XXX manages YYY |
primaryKey KKK] is mapped to an EJB home interface with name XXX.

® The methods defined by the EJB home remote interface include the implicit as well
as the explicit methods of the CORBA component’s home definition.

® |mplicit CORBA component home operations are mapped to EJB home remote
interface methods as follows:
« <conmponent _type> create (in <key_type> key) raises
(Conponent s: : Dupl i cat eKeyVal ue,
Component s: : I nval i dKey) ; mapsto <conponent _type>
create (<key_ type> key) throws
Dupl i cat eKeyException, CreateException.

August 2, 1999 11:09 pm CORBA Components Volume | - orbos/99-07-01 8-239

8-240

» <component _type> find_by primary_key (in <key_type> key)
rai ses (Conponents:: UnknownKeyVal ue,

Conponent s: : I nval i dKey) ; mapsto <conponent _t ype>
fi ndByPri maryKey(<key_ type> key) throws
nj ect Not FoundExcepti on, Fi nder Excepti on.

*void renmove (in <key_type> key) raises
(Conponent s: : UnknownKeyVal ue, Conponents:: | nvalidKey);
maps to the remove by key method defined in EJBHome.

» <key type> get_primary_key (in <component_type> conp);
has no counterpart in an EJB home definition. Given that EJBObject already
defines get Pri mar yKey, it is not necessary to map get _pri mary_key on
the implicit home to an EJB home operation.

® Explicit CORBA component basic home operations are mapped to EJB home
remote interface methods as follows:

¢ A factory operation maps to an overloaded create method with the
corresponding arguments and exceptions.

» A finder operations maps to a find<identifier> method with the corresponding
arguments and exceptions, where <identifier> is the name of the finder
operation.

e The signatures of factory and finder operations are mapped to signatures of EJB
home interface methods following the IDL to Java mapping rules.

* A valuetype that is used to define the primary key of a CORBA component home
is mapped to a Java class under the rules of the standard IDL to Java mapping. In
addition, such a Java class is defined to extend java.io.Serializable.

8.3.2 Trandlation of EJB requests into CORBA Component requests

A Java client that uses an EJB view on a CORBA component expects to be able to
perform EJB requests on such a view. These requests need to be translated into
CORBA component requests at run-time. This translation can be performed at the
client-side, the server-side, or a combination of the two. Table 8-2 lists the EJB

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:09 pm

methods that a Java client can perform requests on by interface, and it lists the
corresponding CORBA component operations that these requests translate into, also by

interface.

Table 8-2 Translation of EJB method requests into CCM operation requests

EJB Interface

Method called by client

CCM interface

Operation called by
bridge

EJBHome

EJBMetaData getEJBMetadata ()
throws RemoteException;

void remove (Handle handle)
throws RemoveException, RemoteException;

void remove (
Object primaryKey)
throws RemoveException, RemoteException;

HomeHandle getHomeHandle ()
throws RemoteException;

CCMHome

<home-
name>Implicit

Translation performed by
bridge does not call a
CCM standard operation

void remove_component (
in CCMObject comp)
raises (CCMException);

void remove (

in <key-type> key)
raises
(UnknownKeyValue,
InvalidKey);

Translation performed by
bridge does not call a
CCM standard operation

<home-name>

<name> create (
<arg-list>)

throws CreateException,
DuplicateKeyException;

<name> findByXXX (
<arg-list>)
throws <exceptions>;

<name>
findByPrimaryKey (
<key-type> key)

<home-
name>Explicit

<home-
name>Implicit

<name> createXXX (
<arg-list>)

raises
(DuplicateKeyValue,
InvalidKey);

<name> findXXX (
<arg-list>)
raises (<exceptions>);

<name>
find_by_primary_key (
in <key-type> key)

throws FinderException, raises
ObjectNotFoundException; (UnknownKeyValue,
InvalidKey);
EJBObject EJBHome getEJBHome () CCMObject CCMHome

throws RemoteException;

Object getPrimaryKey ()
throws RemoteException;

void remove ()
throws RemoveException, RemoteException;

boolean isldentical (EJBObject object)
throws RemoteException;

Handle getHandle ()
throws RemoteException;

CORBA::Object

get_CCM_home ();

PrimaryKeyBase
get_primary_key ();

void remove ();

boolean is_equivalent ();

Translation performed by
bridge does not call a
CCM standard operation

August 2, 1999 11:09 pm

CORBA Components Volume | - orbos/99-07-01

8-241

Table 8-2 Translation of EJB method requests into CCM operation requests

EJB Interface

Method called by client

CCM interface

Operation called by
bridge

<name>

<res-type> <operation> (
<arg-list>)
throws <exceptions>;

<res-type> getXXX ()
throws <exceptions>;

void setXXX (<arg-list>)
throws <exceptions>;

<name>

<res-type> <operation> (
<arg-list>)
raises (<exceptions>);

<res-type> get_ XXX ()
raises (<exceptions>);

<res-type> set_ XXX ()
raises (<exceptions>);

EJBMetadata

EJBHome getEJBHome ()
throws RemoteException;

Class getHomelnterfaceClass ()
throws RemoteException;

Class getRemotelnterfaceClass ()
throws RemoteException;

Class getPrimaryKeyClass ()
throws RemoteException;

boolean isSession ()
throws RemoteException;

boolean isStatelessSession()
throws RemoteException

Translation performed by
bridge on all these
invocations does not call
a CCM standard operation

| 8242

In addition, the EJB programming model allows a Java client to:

® | ocate EJB homes and distinguished EJB objects via JINDI

® Demarcate transactions via a UserTransaction object, after locating this object

via JNDI

These requests are translated into similar requests provided by the CORBA component

programming model, as follows:

® | ocation of home and EJB objects requires the definition of a mapping of JNDI to
the COSNaming service. It also requires the mapping of a COSNaming name space

into a JINDI name space.

® Transaction demarcation requires the definition of a mapping of JTA to the
CORBA transaction service. It also requires that a JNDI name space location be
populated with an object that implements UserTransaction and that maps to the
corresponding CORBA transaction service object.

CORBA Components Volume| - orbos/99-07-01

August 2, 1999 11:09 pm

8.3.3 Example

August 2, 1999 11:09 pm

We show a simple CORBA component definition and its corresponding EJB mapping.
The basic CORBA component Account is defined in terms of aregular IDL interface
AccountOps. The home AccountHome is defined to manage Account and to usea

primary key.
interface AccountOps

void debit(in double amt) raises (NotEnoughFunds);
void credit(in double amt);

}

component Account supports AccountOps
{ readonly attribute double balance;

}

valuetype AccountKey

{ public long acctNo;

}

home AccountHome manages Account primaryKey AccountKey

{
}

The following EJB definition is derived from the definition of Account and its home.

finder largeAccount(double threshold);

CORBA Components Volume | - orbos/99-07-01 8-243

public interface Account extends javax.ejb.EJBObject
{
public void debit(double amount)
throws NotEnoughFunds, java.rmi.RemoteException;
public void credit(double amount)
throws java.rmi.RemoteException;
public double getBalance()
throws java.rmi.RemoteException;

}

public class AccountKey implements java.io.Serializable

{

public long acctNo;

public AccountKey(long k) { acctNo =k; }
}

public interface AccountHome extends javax.ejb.EJBHome
{
public Account create(AccountKey key)
throws DuplicateKeyException, CreateException,
java.rmi.RemoteException;
public Account findByPrimaryKey(Account key)
throws ObjectNotFoundException, FinderException,
java.rmi.RemoteException;
public Account findByLargeAccount(double threshold)
throws java.rmi.RemoteException;

8-244 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:09 pm

Container Architecture 9]

This chapter describes the architecture of the component container as seen by the
container provider. The component container is a server-side framework built on the
ORB, the Portable Object Adaptor (POA), and a set of CORBA services, which
provides the runtime environment for a CORBA component. Component containers
may be implemented by an existing ORB vendor or by companies not in that business
today using the facilities of a CORBA_3 ORB enhanced to support the core changes
identified in this specification (see Section 11.1 on page 379 for details).

The container architecture in sections 9.1, and 9.2 of this chapter is described in terms
of an exemplary design for building component containers on the POA using a
ServantLocator. Thisis not the only possible design choice. Other designs are aso
possible athough there are specific combinations of POA policies that cannot be made
to work. These are indicated as rationale in the body of the text. A component
container that exhibits the same behavior as the exemplary design presented in this
chapter is conformant, even if it implements the container using a different design.

9.1 Component Server

A component server is a process which includes an arbitrary number of component
containers:

® Each container has an associated container API type, which describes it’s
interaction with the component, and an associated CORBA usage model, which
describes its interaction with the POA, the ORB, and a set of CORBA services.

® Each container supports a single container API type and manages a specific
component category. Multiple component instances of the same component
category can be deployed in the same container.

August 2,1999 11:14 pm CORBA Components Volume| - orbos/99-07-01 9-245

9-246

* Each container includes (or is associated with) a specialized POA® which is
responsible for creating references and managing servants for the components in
that container.

® A container is created by a container manager, which is a factory for component
containers, based on descriptive information packaged with the component.

® Container managers themselves are created as part of the installation and
deployment process for CORBA components. The details of deployment are
described in Section 10.8 on page 371.

® A component container can be an EJB container by supporting one of the EJB
container API types (Session Bean or Entity Bean). More information on integrating
EJB containers with CORBA is provided in Chapter 8.

The overall architecture is depicted in Figure 9-1 below:

Container Manager
| | | |
EJB Session Entity Other
Container| | |Container Container Container
POA1 POA2 POA3 POA4
ORB
Transactions Security Persistence Notification

Figure9-1 A Component Server

A component container is created as a result of component deployment as outlined in
Section 10.8 on page 371. The container specification is translated by the container
manager into a set of POA policies, a container API type, and a set of CORBA service
bindings that will be used by the container. This enables the container to implement
internal interfaces, based on these bindings, which offer services to the component
and invoke callback interfaces which the component developer must implement.

1.Theterm “POA” isused to refer to not only the interface POA, but all the related interfaces
(ServantM anager, ServantL ocator, etc.) necessary to create references and activate object
instances in response to client requests.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

9.1.1 Component Levels

CORBA components define two levels of component functionality - basic and
extended. These differ in the number of APIs and related functions made available to
the component implementor. This distinction has no effect on the CORBA usage model
or the container API type but does effect reference creation and which CORBA
services are supported by the container. These distinctions are noted at the appropriate
points in the text.

9.1.2 POA Creation

August 2, 1999 11:14 pm

A POA is used to create references that will be exported to clients and to handle
activation of component instances when operation requests are received. Creating a
container usually involves the creation of a POAZ for container use. The CORBA
usage model associated with a particular container APl type determines some of the
policies which must be associated with the POA. These have been previously described
in Section 7.2 on page 173. Others, which are orthogonal to the container functionality
(e.g. the use of firewall proxies), can be passed as input to the container manager. It is
the responsibility of the container manager to then create a POA which satisfies these
requirements.

CORBA::ORB::resolve_initial_references with an ObjectID of “RootPOA” is
used to locate the root POA. The component category determines the CORBA usage
model and some of the POA policies which must be used. The container manager uses
this information to create a POA and its associated interfaces and to bind the AP
framework associated with the container API type.

The container manager design for creating a POA described below uses a
ServantL ocator architecture which enables specialized ServantM anager
interfaces to implement the container function by being on the invocation
path for all requests directed to the component. The API frameworks and
their associated deployment descriptors defined for the container API
typesin this specification require the container to intervene before and
after each operation request to implement the required function. This pre-
cludes certain POA policy choices, e.g. the use of a ServantActivator
which is only called when the requested object is not in the POA's active
object map. While other designs using different POA policies may be possi-
ble, this one was chosen because it best describes how the container behav-
ior needs to be implemented.

The steps required are as follows:

®* The CORBA::Policy objects required by the POA are created with the proper
values. The CORBA usage model requires or (in some cases) suggests specific POA
policies. An example of a set that will work for each CORBA usage model can be
found in Section 7.2 on page 173.

2.1t may be possible in some casesto actually use the root POA. Thisis not excluded, but has
not been validated.

CORBA Components Volume | - orbos/99-07-01 9-247

9-248

®* A POA iscreated using the POA:create_poa operation specifying a sequence of
the Policy abjects created in the previous step as input. The complete set of Policy
objects includes the mandatory set (dictated by the CORBA usage model), the
orthogonal set (specified as input to container creation), and the implementation-
specific set (chosen by the container provider to deliver the proper semantics).

® The container API type value is used to determine which ServantManager should
be assigned to the POA (POA::set_servant_manager).

In the exemplary design, we use a unique ServantManager for each container API
type (session and entity) defined by CORBA components. For EJB CORBA
containers, there would also be two container APl types corresponding to the EJB
Session Bean and Entity Bean.

®* The newly created POA is then activated (POA::activate)

In this exemplary design, a different container is defined for each component category
and the container implementation is actually provided by the ServantManager. A
ServantLocator design allows the container to be on the invocation path for every
operation request. These component POASs specify the USE_SERVANT_MANAGER
policy, enabling a ServantManager to be used to associate a servant with the request
to instantiate the object. In standard CORBA, the ServantManager interface is
implemented by user applications, but in the exemplary design for use with
components, the specialized ServantLocator is implemented by the container
provider.

There is a high degree of overlap between many of the component catego-
riesand their requirements for CORBA usage model making it feasible to
build a single container that supports more than one component category.
The exemplary design uses a container per component category for sim-
plicity. Mapping a component implementation to a container by component
category is a function of deployment and supports either a container per
component category, asin the exemplary design, or multiple component
categoriesin a single container as valid implementation choices.

9.1.3 Binding the Container to CORBA services

Basic CORBA components for all container API types defined in this specification use
the following CORBA services:

® security
® transactions
® naming

Extended CORBA components for all container API types defined in this specification
also support the following additional CORBA services:

® persistence

®* notification

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

As part of container creation, accessibility to these CORBA services must be
established and bindings created. At a minimum, this includes the use of the
resolve_initial_references operation on CORBA::ORB to obtain initial references
to these services. It also includes processing any container specific configuration data
required for a particular service, e.g.

® setting up the channels to be used for emitting and consuming events,
® creating and initializing database connections to be used for persistence, and

® determining the naming context to be used to resolve component local names.

9.1.4 Container APl Frameworks

August 2, 1999 11:14 pm

The container API types defined by this specification provide frameworks into which
a CORBA component is deployed. We define two container APl types and their
associated APIs in this specification. The EJB SessionBean and EntityBean
interfaces represent two additional container API types. Each framework manages
interactions with the ORB, the POA, and the CORBA services on behalf of the
CORBA component it supports, alowing the component developer to concentrate on
application logic. The major functions handled by the API frameworks (in association
with the ORB, POA, and the CORBA services) include:

® creating object references
® factories and finders

® transactions

® security

® events

® persistence

A brief description of each of these is provided in the following sections.

9.1.4.1 Creating Object References

In CORBA, object references are created and managed by the POA. A component
container creates these reference with specialized information which comes from either
the container provider, the component implementor, or the persistence provider,
depending on both the component category and the deployment options specified.

For basic CORBA component containers and the EJB container API types, the
container provider must manage object reference creation itself since these are not
exposed to the programmer. The basic container is also responsible for binding
references to the component home in the CORBA naming service so they can be
accessed by the client as specified in the client programming model (Section 7.5 on
page 217). For EJB containers, only EJBObject and EJBHome have externally
visible object references and these are implemented by the container, not the EJB
programmer (see Section 8.2 on page 228 for more details).

CORBA Components Volume | - orbos/99-07-01 9-249

9.1.4.2 Factoriesand Finders

Factory and finder operations are declared using the home IDL declaration and are
associated with the component’s home interface. All basic containers provides access
to this interface at runtime. Extended containers also support a set of operations for
externalizing component homes for use by external clients.

For EJB container API types, factories and finders are defined on EJBHome using a
naming scheme defined by the Enterprise JavaBeans 1.1 specification.

9.1.4.3 Transactions

The container interacts with the CORBA transaction service on behalf of the
component. Transaction policies, defined in the deployment descriptor, are translated
into CORBA transaction service operations. For CORBA components with self-
managed transactions, the container also provides the
Transaction::UserTransaction interface, a simplified form of the demarcation part
of the CORBA transaction service which the component implementor uses to support
transaction functions at runtime.

For EJB container API types, the javax.jts.User Transaction interface (which is a
subset of Transaction::UserTransaction), is mapped to the CORBA transaction
service.

9.1.4.4 Security

The container relies on the CORBA security service to implement access control based
on security policies defined in the deployment descriptor. The container also provides
security operations which the component implementor uses to support security
functions at runtime.

9.1.45 Events

Extended CORBA components have access to an event service supported by the
container. The container provider is responsible for setting up and managing the event
channels used by CORBA notification to support the component event model. The
component event model relies on configuration information, local to the container
implementor, to handle quality of service properties, filters, and the number and types
of event channels.The container also provides access to the Event interface, which
provides the mapping between the component event model and CORBA natification,
to alow the component to both generate and process events. Integrating the component
event model with CORBA notification is addressed in Section 9.4 on page 298.

At the time this specification was produced, the EJB container API types
did not support an event API although the Java Messaging Service (JMS)
API has been defined separately (from EJB) and supports similar function.
An event API is targeted for EJB 2.0.

9-250 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

9.1.4.6 Persistence

For extended components, persistence is supported by containers for the entity
container API type. Component containers supporting the session container API type
do not support persistence. Component containers for basic components do not offer a
persistence API. For extended components, the container provides access to a set of
APIs provided by the CORBA persistent state service which offers the functions
necessary to implement self-managed persistence. Persistence considerations are
covered in more detail in Section 9.3 on page 295.

For basic components, all entity container API types (including EJB Entity Beans)
support a getPrimaryK ey operation on the context equivalent to the
get_primary_key operation on component homes which declare a primary key.
Component persistence (both container-managed and self-managed) is assumed to be
implemented using JDBC or some other unspecified persistence APl (e.g. JSQL or
ODBC) and is therefore not defined as part of these container API types.

9.1.4.7 Threading

CORBA components support two forms of thread safety: serialize, and multithread.
These choices are described in Section 10.3.5.54 on page 340. The container
implements these choices by either ensuring that only a single thread enters a
component at atime (serialize) or by allowing multiple threads to enter a component
simultaneously (multithread).

Basic container API types (including EJB) support only the serialize threading policy.

9.2 ContainersCategories

August 2, 1999 11:14 pm

The exemplary design delineates container categories corresponding to the four
component categories with their associated container API types, two container
categories for the EJB container API types, and an empty container category to
support creation of user-defined frameworks:

® The Service container which manages the service component designed for high-
performance access to stateless CORBA components (Section 9.2.2 on page 253).

® The Session container which manages the session component for stateful CORBA
components with transient state (Section 9.2.3 on page 257).

® The Process container which manages stateful process components which
encapsulates all data access in the server using any persistence mechanism (Section
9.2.4 on page 266).

® The Entity container which manages stateful entity components which shares data
access responsibility between the client and the server using any persistence
mechanism (Section 9.2.5 on page 277).

®* The EJBSession container which manages EJB Session Beans (Section 9.2.6 on
page 283).

CORBA Components Volume | - orbos/99-07-01 9-251

9-252

® The EJBEntity container which manages EJB Entity Beans (Section 9.2.7 on page
288).

® The Empty container which makes the entire suite of CORBA interfaces available
to a component’s implementation without restriction (Section 9.2.1 on page 252).

These container categories are one to one with their component categories. The
relationship between component categories, container API types and CORBA usage
models was described previously in Section 7.1 on page 170. The following sections
describe each of the container categories in more detail.

9.2.1 The Empty Container

The Empty container exposes al CORBA functions directly to the component
developer. No framework is provided to simplify programming, however al the
functions necessary to build such a framework are available. The component devel oper
can choose any function currently defined in CORBA. The empty container is the
means by which the advanced functions of CORBA components (e.g. multiple
interfaces, packaging, and deployment) are made available to any CORBA
applications, including those that do not fit the profiles of the other component
categories. Thisisillustrated in Figure 9-2 below:

CORBA Component Implementation
in the Empty Container

POA

Service 1 Service 2 Servicen Service n+1|

Figure 9-2 The Empty Container

Note that a CORBA component deployed in the empty container can use
any arbitrary set (including the null set) of CORBA services. This specifi-
cation places no constraints on what can be used within the existing
CORBA architecture.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

9.2.2 The Service Container

The service container implements the runtime environment for a service component. A
service container can be implemented using a POA with the policies enumerated in
Table 9-1. Required values must be specified for al container designs. Design values
correspond to the ServantLocator design used by the exemplary design.

Table 9-1 POA Policies for a Service Container

Policy Name

Required Value

Design Value

Thread ORB_CTRL_MODEL

Lifespan TRANSIENT

Object Id Uniqueness N/A

Id Assignment SYSTEM_ID

Implicit Activation

NO_IMPLICIT_ACTIVATION

Servant Retention

NO_RETAIN

Transaction Policy

ALLOWS_SHARED

Request Processing

USE_SERVANT_MANAGER

Thread

A thread policy value of ORB_CTRL__ MODEL is required to allow the container to
serialize access to components that are not thread safe (serialize). Thread safe
components (multithread) will not be protected from multiple threads entering the
component simultaneously.

Lifespan

A lifespan policy value of TRANSIENT is required since service components have
neither state nor identity3.

Object | d unigueness

The Object 1d uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN as it is in the exemplary design.

I d assignment

An Id assignment policy value of SYSTEM_ID allows the POA to assign Objectlid
values. Since service components have no identity, the service container has no need to
manage Objectld assignment.

3.In practice, the distinction between PERSISTENT and TRANSIENT referencesisdifficult, if not impossible, to ob-
serve. The semantics associated with the definition of TRANSIENT are closer to the semantics of this category of com-

ponent.

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01

9-253

9-254

implicit activation

The implicit activation policy must be set to NO_IMPLICIT_ACTIVATION when the
servant retention policy is NON_RETAIN.

servant retention

A servant retention policy value of NO_RETAIN isrequired to use a ServantLocator
in the exemplary design.

transaction policy

A transaction policy value of ALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

reguest processing

A request processing policy value of USE_SERVANT_MANAGER allows the
container to be implemented in the servant manager.

9.2.2.1 Creating Object References

For service components, Objectlds have ho meaning since a service component has
neither state or identity. The exemplary design allows the POA to create them
transparently to both the container and the component.

9.2.2.2 Factoriesand Instances

A component home implementation for a service component creates object references
and component instances in response to the client’s create reguests. Extended service
components may register their home with the HomeFinder to make it available to
clients through find operations or the component home can be bound in the name
service. For service components, the component instance and its home need not be
collocated. Since instances have no state, they can be created anywhere when a request
is received. Object references for both the component’s supported interfaces and any
provided interface are created by the POA within the service container.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

9.2.2.3 Invoking an Operation

Figure 9-3 below outlines the steps necessary to make an operation invocation on a
service component:

Operation foo on Component Z

HomeRegistration

Client Client ORB HomeFinder Z Z_impl
register _home(ZHome)
(1) -
(2)| resolve initial_references
. - -
IComponentHomeFinder|
Home
H omeFinder.find_home_by_type(ZHome)
3) ™
< ZHome
ZHome.create
(4) -
< Z
£00.7 Servant
©) 0o. POA Locator
|
pre_invoke
> lookup_servant
(6) —
invoke(foo)
-
(7
post_invoke
> release_servgnt
®) o
g
©)

Figure 9-3 Using a Service Component

1. Component implementation registers a service component factory (i.e. its home)
with the HomeFinder (HomeRegistration.register _home).

2. Client uses ORB.resolve initial_referencesto get a reference to the
ComponentHomeFinder. Since the HomeFinder is a righteous CORBA object,
it's implementation may be located anywhere.

3. Client uses the HomeFinder.find_home_by_type operation to find a component
home (Zhome) that creates component instances of type Z.

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 9-255

4. Client invokes a create operation on the component home (ZHome.create). Since
Z is a service component, the home creates a reference and defers activation.

5. Client invokes the foo operation on Z (Z.fo0).

6. The POA invokes the ServantLocator and requests an executor to process the
request (ServantL ocator.pre_invoke).The ServantLocator locates an
appropriate executor or creates a new one. It returns the associated servant to the
POA.

7. The POA dispatches the request to the component implementation (I nvoke Z.foo0).

8. After the request completes, the POA invokes the ServantLocator
(ServantL ocator.post_invoke). The ServantLocator releases the associated
executor to the pool.

9. The POA returns foo response to the client.

9.2.2.4 Servant Lifetime Management

The service component requires a servant lifetime policy of method. A servant with a
method lifetime policy is activated on the first pre_invoke prior to an operation being
dispatched on the component’s interface and passivated in the post_invoke following
the operation invocation. This behavior is shown in Figure 9-4 below:

: Transent
Client POA servantL ocator £
(1) Z foo
pre—inVOke lookup_servant
) I I
(3) set_context
(4) e
activate
5 Z foo
>
post_invoke
(6) » release_servant
(7) passivate
e
0 | T

Figure 9-4 Service Container with a Method Lifetime Policy

1. Client invokes foo operation on Z (Z.fo0).

9-256 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

2. POA invokes pre_invoke operation on ServantLocator
(ServantL ocator.pre_invoke).

3. ServantLocator finds an available executor and returns associated servant to the
POA, and invokes callback operation to set context.

4. ServantLocator then invokes activate callback operation. The component
developer must implement the activate operation.

5. POA then dispatches foo operation to Z.

6. When foo operation completes, POA invokes post_invoke operation on
ServantLocator (ServantL ocator.post_invoke).

7. ServantLocator then invokes passivate callback operation. The component
developer must implement the passivate operation.

8. POA then returns foo response back to client. Since the servant lifetime policy is
method, the executor is released.

9.2.3 The Session Container

August 2, 1999 11:14 pm

The session container implements the runtime environment for a session component. A
session container can be implemented using a POA with the policies enumerated in
Table 9-2. Required values must be specified for al container designs. Design values

correspond to the ServantLocator design used by the exemplary design.

Table 9-2 POA Policies for a Session Container

Policy Name

Required Value

Design Value

Thread ORB_CTRL_MODEL
Lifespan TRANSIENT

Object Id Uniqueness N/A
Id Assignment USER_ID

Implicit Activation

NO_IMPLICIT_ACTIVATION

Servant Retention

NO_RETAIN

Transaction Policy

ALLOWS_SHARED

Request Processing

USE_SERVANT_MANAGER

Thread

A thread policy value of ORB_CTRL___ MODEL is required to allow the container to
serialize access to components that are not thread safe (serialize). Thread safe

components (multithread) will not be protected from multiple threads entering the
component simultaneously.

CORBA Components Volume | - orbos/99-07-01

9-257

Lifespan

A lifespan policy value of TRANSIENT is required since session components have
transient state and identity™.

Object Id uniqueness

The Object 1d uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

I d assignment

An Id assignment policy value of USER_ID isrequired to allow the session container
to assign unique Objectlds with input from the component. This supports a
structuring of Objectld values which the container can exploit within its
implementation.

implicit activation

The implicit activation policy must be set to NO_IMPLICIT_ACTIVATION when the
servant retention policy is NON_RETAIN.

servant retention

A servant retention policy value of NO_RETAIN is required to use a
ServantLocator.

transaction policy

A transaction policy value of ALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

reguest processing

A request processing policy value of USE_SERVANT_MANAGER allows the
container to be implemented in the servant manager.

9.2.3.1 Creating Object References

For basic session components, Objectlds are always managed by the session
container without involvement from the component implementor. Extended session
components create their own references using container APIs. The container
implementor is responsible for maintaining uniqueness. This permits Objectlds to be
encapsulated by the container provider in implementation specific ways.

4.In practice, the distinction between PERSISTENT and TRANSIENT referencesis difficult, if not impossible, to ob-
serve. The semantics associated with the definition of TRANSIENT are closer to the semantics of this category of com-

ponent.

9-258

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

9.2.3.2 Factoriesand Instances

The home implementation for a session component creates object references and
component instances in response to the client’s create requests. Extended session
components may register their home with the HomeFinder to make it available to
clients through find operations or the component home can be bound in the name
service. For session components, the component instance and the factory must be
collocated. Object references for both the component’s supported interfaces and any
provided interface are created by the POA within the session container.

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 9-259

9-260

9.2.3.3 Invoking an Operation

Figure 9-3 below outlines the steps necessary to make an operation invocation on a
session component:

Operation foo on Component A

HomeRegistration

Client Client ORB HomeFinder A A _impl
(€] register_home(AHome)
-

2 -

resolve_initial_referlences

IComponentHomeFindey|

Home
H omeFinder.find_home_by_type(AHome)

©) >

< AHome
4 AHome.create

< A

¢ Servant
5 00.A POA | ocator
|
pre_invoke
(6) > lookup_servant
invokeﬁ‘oo)_
@ >
post_invoke
(8) > release_servant
-

(9) |-
(10)

Figure 9-5 Using a Session Component

1. Component implementation registers a session component’s home with the
HomeFinder (HomeRegistration.register_home).

2. Client uses ORB.resolve initial_referencesto get a reference to the
ComponentHomeFinder. Since the HomeFinder is a righteous CORBA object,
it's implementation may be located anywhere.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

9

August 2, 1999 11:14 pm

3. Client uses the HomeFinder.find_home_by_type operation to find a component
home (Ahome) that creates component instances of type A.

4. Client invokes a create operation on the component home (AHome.create). Since
A is a session component, the home creates a reference and may defer activation
until the first operation invocation.

5. Client invokes the foo operation on A (A.fo0).

6. The POA invokes the ServantLocator and requests an executor to process the
request (ServantL ocator.pre_invoke).The ServantLocator locates an
appropriate executor or creates a new one. The POA dispatches the request to the
component implementation (I nvoke A.foo).

7. After the request completes, the POA invokes the ServantLocator
(ServantL ocator.post_invoke).

8. POA then returns foo response back to client.

9. Steps|[5] through [8] are repeated until the operation following the expiration of the
servant lifetime policy. At that point, the ServantLocator releases the associated
executor to the poal.

9.2.3.4 Servant Lifetime Management

The session container supports multiple servant lifetime policy values. An executor is
activated on the first pre_invoke prior to an operation being dispatched on the
component’s interface and is passivated in the post_invoke following the expiration
of the servant lifetime policy. This is illustrated in the following sections:

CORBA Components Volume | - orbos/99-07-01 9-261

9-262

Method Lifetime

A session component with amethod lifetime policy has its executor activated on every
pre_invoke and passivated on every post_invoke. This behavior is shown in
Figure 9-6:

Client POA ServantLocator A
(2) A.foo
pre—i nVOke lookup_servant
@) e
) set_context
>
activate
(4) -
(5) A.foo >
(6) post_invoke
7) |y passivate
>
(8)] release servant
F— — —

Figure 9-6 Session component with a Method Lifetime Policy

1. Client invokes foo operation on A (A.foo).

2. POA invokes pre_invoke operation on ServantLocator
(ServantL ocator.pre_invoke).

3. ServantLocator finds an available executor and returns associated servant to the
POA, and invokes callback operation to set context.

4. ServantLocator then invokes activate callback operation. The component
developer must implement the activate operation.

5. POA then dispatches foo operation to A.

6. When foo operation completes, POA invokes post_invoke operation on
ServantLocator (ServantL ocator.post_invoke).

7. ServantLocator then invokes passivate callback operation. The component
developer must implement the passivate operation.

8. POA then returns f00 response back to client and releases executor.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

Transaction Lifetime

A session component with a transaction lifetime policy is activated on the first

pre_invoke within a new transaction. Subsequent pre_invoke operations do not
cause activation. Passivation occurs when the current transaction completes
(successfully or unsuccessfully). The ServantLocator implements this policy using

the CORBA transaction service CosTransactions::Synchronization interface. This
behavior is shown in Figure 9-7:

Servant
Client oTs POA L ocator
Current.begin
1 >
(2) A.fool >
3 pre_invoke
>
4) Coor dinagpr.register | synchronization lookup_servant
®) F
set_context
activate
©) B
(7) A.fool
|
(8) post_invoke
>
9) |-
(1) pre_invoke
>
(12) A.foo2 -
(13) post_invoke
>
(14) r=
Current.commit
(15) -
Synchronization.before_completion
(16) P passivate
(17
(18)

Figure 9-7 Session Component with a Transaction Lifetime Policy

August 2, 1999 11:14 pm

CORBA Components Volume | - orbos/99-07-01

A

9-263

1. Client begins a transaction with the CORBA transaction service (Current.begin)
2. Client invokes fool operation on A (A.fool).

3. POA invokes pre_invoke operation on ServantLocator
(ServantL ocator.pre_invoke).

4. ServantLocator registers a Synchronization object with the CORBA
transaction service (Coordinator.register_synchronization) to be called by the
CORBA transaction service at the start of the commit process.

5. ServantLocator finds an available executor and returns associated servant to the
POA, and invokes callback operation to set context.

6. ServantLocator then invokes activate callback operation. The component
developer must implement the activate operation.

7. POA then dispatches fool operation to A.

8. When fool operation completes, POA invokes post_invoke operation on
ServantLocator (ServantL ocator.post_invoke).

9. POA then returns foo1l response back to client.
10. Client invokes foo2 operation on A.

11. POA invokes pre_invoke operation on ServantLocator
(ServantL ocator.pre_invoke). Since A is aready active, the ServantLocator
returns to the POA.

12. POA then dispatches f002 operation to A.

13. When foo2 operation completes, POA invokes post_invoke operation on
ServantLocator (ServantL ocator.post_invoke).

14. POA then returns f002 response back to client.
15. Client attempts to terminate the transaction by calling commit (Current.commit)

16. CORBA transaction service notifies ServantLocator prior to the start of phase
one of commit (Synchronization.before completion).

17. ServantLocator then invokes passivate callback operation. The component
developer must implement the passivate operation.

18. CORBA transaction service continues the two-phase commit process.

Component Lifetime

A session component with a component lifetime policy is activated on the first
pre_invoke prior to an operation being dispatched on the component'’s interface.
Passivation occurs either in the post_invoke following an application requested
passivation or when the process terminates, whichever occurs first. This behavior is
shown in Figure 9-8 on page 265.

9-264 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

Container Lifetime

A session component with a container lifetime policy is activated on the first
pre_invoke prior to an operation being dispatched on the component’s interface.
Passivation occurs either in the post_invoke following an application-requested
passivation or in the post_invoke following an operation when the system needs to
reclaim the memory, whichever occurs first. This behavior is identical to component
behavior, except that failures can be simulated when the container determines that it
needs to reclaim the memory associated with this component making it more likely
that the final response will be returned to the client. This behavior is captured in
Figure 9-8 below.

Servant
Client POA L ocator A
(l) A .fool
pre_invoke
@) set_context
—_contex
©) -
4) activate
(5) A fool
>
©) post_invoke
—
(7) |-
8 A.foo2
®) - Failure OR req_passivate
9) post_invoke]
(10) passivate
—
(1)

Figure 9-8 A Session Component with Component or Container Lifetime Policy

1. Client invokes fool operation on A (A.fool).

2. POA invokes pre_invoke operation on ServantLocator
(ServantL ocator.pre_invoke).

3. ServantLocator finds an available executor and returns associated servant to the
POA, and invokes callback operation to set context.

CORBA Components Volume | - orbos/99-07-01 9-265

9-266

4. ServantLocator then invokes activate callback operation. The component
developer must implement the activate operation.

5. POA then dispatches fool operation to A.

6. When fool operation completes, POA invokes post_invoke operation on
ServantLocator (ServantL ocator.post_invoke). Since activation policy is
component or container, the ServantLocator just returns to the POA.

7. POA then returns foo1l response back to client.

8. Client continues invoking foo2 operation (A.f002). Either a failure occurs or A
requests to be passivated (Session2Context.req_passivate).

9. When foo2 operation completes, POA invokes post_invoke operation on
ServantLocator (ServantL ocator.post_invoke).

10. ServantLocator then invokes passivate callback operation. The component
developer must implement the passivate operation.

11. POA then returns foo2 response back to client (if possible).

9.2.4 The Process Container

The process container implements the runtime environment for a process component.
A process container can be implemented using a POA with the policies outline in
Table 9-3. Required values must be specified for al container designs. Design values
correspond to the ServantLocator design used by the exemplary design.

Table 9-3 POA Policies for a Process Container

Policy Name Required Value Design Value
Thread ORB_CTRL_MODEL

Lifespan PERSISTENT

Object Id Uniqueness N/A

Id Assignment USER_ID

Implicit Activation NO_IMPLICIT_ACTIVATION
Servant Retention NO_RETAIN

Transaction Policy ALLOWS SHARED

Request Processing USE_SERVANT_MANAGER

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

Thread

A thread policy value of ORB_CTRL__ MODEL is required to allow the container to
serialize access to components that are not thread safe (serialize). Thread safe
components (multithread) will not be protected from multiple threads entering the
component simultaneously.

Lifespan

A lifespan policy value of PERSISTENT is required since process components have
both persistent state and identity.

Object Id uniqueness

The object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

I d assignment

An Id assignment policy value of USER_ID is required to allow the process container
to assign unique Objectlds with input from the component implementation and the
persistence mechanism. This not only supports a structuring of Objectld values which
the container can exploit within its implementation, but also makes it possible for the
component implementor or the persistence mechanism to locate state from the
Objectld.

implicit activation

The implicit activation policy must be set to NO_IMPLICIT_ACTIVATION when the
servant retention policy is NON_RETAIN.

servant retention

A servant retention policy value of NO_RETAIN is required to use a
ServantLocator.

transaction policy

A transaction policy value of ALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

request processing

A request processing policy value of USE_SERVANT_MANAGER allows the
container to be implemented in the servant manager.

9.2.4.1 Creating Object References

The process container is responsible for creating and managing unique Objectlds
which can be used to locate an external copy of the component’s persistent state. That
state can be explicitly declared and managed by the container (container-managed
persistence) or not declared and managed by the application (self-managed

CORBA Components Volume | - orbos/99-07-01 9-267

9-268

persistence). These Objectlds are opaque both to the client and to the container, and
may or may not use the CORBA persistence mechanism. This makes it possible to
have factories for process components which create only object references and defer
instance creation until an operation request is actually received. This enables workload
to be distributed among several functionally equivalent servers.

9.2.4.2 Factoriesand Instances

The process component’s home is responsible for creating references and exporting
them to clients. Component instances are created on demand when a reference is used
to invoke an operation.

Factory operations are typically invoked by clients but may also be invoked as part of
the implementation of a specific interface provided by the component. A CORBA
component implementation locates its home (which supports the factory operations)
using the context provided by its container. Object references for both the component’s
interfaces and any provided interface are created by the POA which supports the
container for that component.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

9.2.4.3 Invoking an Operation

Figure 9-9 outlines the steps necessary to make an operation request on a process

component:

Operation foo on Component B Flow

HomeRegistration

Client Client ORB POA HomeFinder B_impl
(1) register_home(Bhome)
——MMM—
(2)| resolve initial_references
—>
IComponentHomeFinder| ~ B -
H omeFinder.find_home_by_type(BHome)
) -
< BHome
CCMHome
BHome.create
@ -
< B
Servant
f00.B L ocator
5 |
pre_invoke
—>
lookup] servant_fagtory
©) I N
invoke (B)
7 .
0 post_invoke
4>
()
9)<a
(19)

Figure 9-9 Using the Process Container

1. Component implementation registers a process component home with the
HomeFinder (HomeRegistration.register _factory).

August 2, 1999 11:14 pm

CORBA Components Volume | - orbos/99-07-01

9-269

9-270

10.

Client uses ORB.resolve initial_referencesto get a reference to the
ComponentHomeFinder. Since the HomeFinder is a righteous CORBA object,
it's implementation may be located anywhere.

Client uses the HomeFinder.find_home_by_type operation to find a component
home (BHome) that creates component instances of type B.

Client invokes a create operation on the component home (BHome.create). Since
B is process component, the home need only create a reference; instance creation
can be deferred until an operation is requested.

Client invokes the foo operation on B (B.foo). Since B is not active, the POA
invokes the pre_invoke operation on the ServantLocator
(ServantL ocator.pre_invoke).

The ServantLocator creates a new executor to handle the request. It then returns
the associated servant to the POA to process the request.

The POA then dispatches the request to the servant (invoke(B))

After the request completes, the POA invokes the ServantLocator
(ServantL ocator.post_invoke).

The POA returns foo response to client.

Steps [5] through [9] are repeated until the operation following the expiration of the
servant lifetime policy. At that point, the ServantLocator releases the associated
executor to the poal.

9.2.4.4 Servant Lifetime Management

The process component can have multiple servant lifetime policies specified in its
deployment descriptor. The ServantLocator implements these different policies by
making activation decisions during pre_invoke and passivation decisions during
post_invoke. Thisisillustrated in the following sections:

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

Method Lifetime

A process component with a method lifetime policy has its executor activated on
every pre_invoke and passivated on every post_invoke. This behavior is shown in
Figure 9-10:

Client POA ServantLocator g
(1) B.foo .
M»lookw_wvam_faa ry
@ it
(3) set_context
4 >
@ | activate o
®) s
(6) B.foo .~
(7) post_invoke
(8) L g StOre
—
9 passivate
——
(10) unset_context
1 |4 M

Figure 9-10 A Process Component with a Method Lifetime Policy

1. Client invokes foo operation on B (B.f00).

2. POA invokes pre_invoke operation on the ServantLocator
(ServantL ocator.pre_invoke).

3. ServantLocator finds an available executor and returns associated servant to the
POA, and invokes callback operation to set context.

4. ServantLocator creates anew B and invokes the activate callback operation. For
most component implementations, no action is required.

5. ServantLocator then invokes the load callback operation. If the component has
declared its abstract state using CORBA persistence, this callback will be executed
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the component
developer must implement the load operation.

6. POA then dispatches foo operation to B.

CORBA Components Volume | - orbos/99-07-01 9-271

9-272

10.

11.

When foo operation completes, POA invokes post_invoke operation on
ServantLocator (ServantL ocator.post_invoke).

ServantLocator then invokes the store callback operation. If the component has
declared its abstract state using CORBA persistence, this callback will be executed
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the devel oper
must implement the store operation.

ServantLocator then invokes passivate callback operation. For most component
implementations, no action is required.

ServantLocator invokes callback operation to unset the context and releases the
executor.

POA then returns foo response back to client.

Transaction Lifetime

A process component with a transaction lifetime policy has its executor activated on
the first pre_invoke within a new transaction. Subsequent pre_invoke operations do
not cause activation. Passivation occurs when the current transaction completes

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

9

(successfully or unsuccessfully). The ServantLocator implements this policy using
the CORBA transaction service CosTransactions::Synchronization interface. This
behavior is shown in Figure 9-11.

Servant
Client oTs POA L ocator B
Current.begin

«y =

(2) B.fool >

3 pre invoke
>

4) Coordinﬂ)r.register synchronization lookup_servant

(5) i get__corﬁex?

(6) ™

% activate)

load
(8) B.fool e
|

©) post_invoke
>

(10) (=

(12) pre_invoke
>

(13) B.foo2 -

(14) post_invoke
>

(15) =

Current.commit
(16) > " _
Synchronization.before_completion
a7 - store
(18) »
passivate
® .
1) unset_context

Figure 9-11 A Process Component with a Transaction Lifetime Policy

1. Client begins a transaction with the CORBA transaction service (Current.begin)

2. Client invokes fool operation on B (B.fool).

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 9-273

9-274

10.
11.
12.

13.

14.

15.
16.
17.

18.

19.

20.

POA invokes pre_invoke operation on ServantLocator
(ServantL ocator.pre_invoke).

ServantLocator registers a Synchronization object with the CORBA
transaction service (Coordinator.register_synchronization) to be called by the
CORBA transaction service at the start of the commit process.

ServantLocator finds an available executor and returns associated servant to the
POA, and invokes callback operation to set context.

ServantLocator creates a new B and invokes activate callback operation. For
most component implementations, no action is required.

ServantLocator then invokes load callback operation.If the component has
declared its abstract state using CORBA persistence, this callback will be executed
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the component
developer must implement the load operation.

POA then dispatches fool operation to B.

When fool operation completes, POA invokes post_invoke operation on
ServantLocator (ServantL ocator.post_invoke).

POA then returns fool response back to client.
Client invokes foo2 operation on B.

POA invokes pre_invoke operation on ServantLocator
(ServantL ocator.pre_invoke). Since B is already active, the ServantLocator
returns to the POA.

POA then dispatches foo2 operation to B.

When f002 operation completes, POA invokes post_invoke operation on
ServantLocator (ServantL ocator.post_invoke).

POA then returns foo2 response back to client.
Client attempts to terminate the transaction by calling commit (Current.commit)

CORBA transaction service notifies ServantLocator prior to the start of phase
one of commit (Synchronization.before_completion).

ServantLocator then invokes store callback operation. If the component has
declared its abstract state using CORBA persistence, this callback will be executed
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the devel oper
must implement the store operation.

ServantLocator then invokes passivate callback operation. For most component
implementations, no action is required.

ServantLocator invokes callback operation to unset context and releases the
executor.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

21. CORBA transaction service continues the two-phase commit process.

Component Lifetime

A process component with a component lifetime policy has its executor activated on
the first pre_invoke prior to an operation being dispatched on the component’s
interface. Passivation occurs either in the post_invoke following an application
requested passivation or when the process terminates, whichever occurs first. This
behavior is shown in Figure 9-12 below.

Container Lifetime

A process component with a container lifetime policy has its executor activated on the
first pre_invoke prior to an operation being dispatched on the component’s interface.
Passivation occurs either in the post_invoke following an application-requested
passivation or in the post_invoke following an operation when the system needs to
reclaim the memory, whichever occurs first. This behavior is identical to component
behavior, except that failures can be simulated when the container determines that it

CORBA Components Volume | - orbos/99-07-01 9-275

9-276

needs to reclaim the memory associated with this component making it more likely
that the final response will be returned to the client. This behavior is captured in
Figure 9-12 below.

Servant
Client POA L ocator B
(1) B.fool
5 pre invoke
(2) set_context
(3) >
(4) activate)
) Bfool | load
(6) -
@ post_invoke
>

8) |- vat

Failure OR e pasve e‘
9) B.foo2 - I
(10) post_invoke

L | Store
——

(11) passivate
(12) -
(13) unset_context
(14)

Figure 9-12 Process Component with Component or Container Lifetime Policies

1. Client invokes fool operation on B (B.fool).

2. POA invokes pre_invoke operation on ServantLocator
(ServantL ocator.pre_invoke).

3. ServantLocator finds an available executor and returns associated servant to the
POA, and invokes callback operation to set context.

4. ServantLocator invokes activate callback operation. For most component
implementations, no action is required.

5. ServantLocator then invokes load callback operation.If the component has
declared its abstract state using CORBA persistence, this callback will be executed
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the component
developer must implement the load operation.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

6. POA then dispatches fool operation to B.

7. When fool operation completes, POA invokes post_invoke operation on
ServantLocator (ServantL ocator.post_invoke). Since activation policy is
component or container, the ServantLocator just returns to the POA.

8. POA then returns fool response back to client.

9. Client invokes foo2 operation on B (B.fo02). Either a failure occurs or B requests
to be passivated (Entity2Context.req_passivate).

10. When foo2 operation completes, POA invokes post_invoke operation on
ServantLocator (ServantL ocator.post_invoke).

11. ServantLocator then invokes store callback operation.If the component has
declared its abstract state using CORBA persistence, this callback will be executed
as generated code. If no abstract state is declared, the generated code simply
returns. If abstract state is declared not using CORBA persistence, the devel oper
must implement the store operation.

12. ServantLocator then invokes passivate callback operation. For most component
implementations, no action is required.

13. ServantLocator invokes callback operation to unset context and releases the
executor.

14. POA then returns foo response back to client (if possible).

9.2.5 The Entity Container

The entity container provides the runtime environment for the entity component. A
entity container can be implemented using a POA with the policies outlined in

Table 9-4. These values are equivalent to those specified for the process container in
Section 9.2.4 on page 266. Required values must be specified for all container designs.
Design values correspond to the ServantLocator design used by the exemplary
design.

Table 9-4 POA Policies for the Entity Container

Policy Name Required Value Design Value
Thread ORB_CTRL_MODEL

Lifespan PERSISTENT

Object Id Uniqueness N/A

Id Assignment USER_ID

Implicit Activation NO_IMPLICIT_ACTIVATION
Servant Retention NO_RETAIN

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 9-277

9-278

Table 9-4 POA Policies for the Entity Container

Policy Name

Required Value

Design Value

Transaction Policy

ALLOWS_SHARED

Request Processing

USE_SERVANT_MANAGER

Thread

A thread policy value of ORB_CTRL__ MODEL is required to allow the container to
serialize access to components that are not thread safe (serialize). Thread safe
components (multithread) will not be protected from multiple threads entering the
component simultaneously.

Lifespan

A lifespan policy value of PERSISTENT is required since entity components have
both persistent state and identity.

Object | d unigueness

The object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

I d assignment

An Id assignment policy value of USER_ID is required to allow the entity container to
assign unique Objectlds with input from the component implementation and the
persistence mechanism. This not only supports a structuring of Objectld values which
the container can exploit within its implementation, but also makes it possible for the
component implementor or the persistence mechanism to locate state from the
Objectld.

implicit activation

The implicit activation policy must be set to NO_IMPLICIT_ACTIVATION when the
servant retention policy is NON_RETAIN.

servant retention

A servant retention policy value of NO_RETAIN isrequired to use a
ServantLocator.

transaction policy

A transaction policy value of ALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

request processing

A request processing policy value of USE_SERVANT_MANAGER allows the
container to be implemented in the servant manager.

9.2.5.1 Creating Object References

The entity container is responsible for creating and managing unique Objectlds
which can be used to locate an external copy of the component’s persistent state. That
state can be explicitly declared and managed by the container (container-managed
persistence) or not declared and managed by the application (self-managed
persistence). The entity container supports operations for associating primary keys
with a Componentld (cid). Every entity component instance is associated with one
and only one primary key. The entity container provides operations on its
ServantLocator to create an Objectld from acid.

9.2.5.2 Factoriesand New Instances

A entity component’s home is responsible for both creating references and creating
new instances of entity components. Since entity components are also incarnationsin a
persistent store, creating a new instance of the entity component has the effect of
creating a new record in a persistent store.

Factory operations are typically invoked by clients but may also be invoked as part of
the implementation of a specific interface provided by the component. The entity
component implementation locates its home (which supports the factory operations)
using the context provided by its container. Object references for both the component’s
interfaces and any provided interface are created by the POA which supports the
container for the entity component.

CORBA Components Volume | - orbos/99-07-01 9-279

9.2.5.3 Invoking an Operation on a New Instance

Figure 9-13 shows the necessary steps to make an operation request on a new entity

component:
Operation foo on a new Component C Flow
. . ~ HomeRegistration .
Client Client ORB POA HomeFinder C C_impl
register _home(CHome)
) -
(2) | resolve initial_references
e - -
IComponentHomeFindey|
H omeFinder.find_home_by_type(CHome)
) -
CHome
~ CCMHome PSS
CHome.create(primary_key)
@ -
create(key)
C -
) -
foo.C Servant
(6) > ~ Locator
pre_invoke
—>
create| key
7 >
©) -
invoke (C)
©) >
post_invoke
(10) S
(1) |
(12)

Figure 9-13 Using the Entity Container to Create new Entity Components

1. Component implementation registers the entity component home with the
HomeFinder (HomeRegistration.register_factory).

9-280 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

10.

11
12.

. Client uses ORB.resolve initial_referencesto get a reference to the

ComponentHomeFinder. Since the HomeFinder is a righteous CORBA object,
it's implementation may be located anywhere.

Client uses the HomeFinder.find_home_by_type operation to find a component
home (CHome) that creates component instances of type C.

Client invokes a create operation on the component home (CHome.cr eate) using
aprimary key. Since C is an entity component, the home must talk to a persistence
mechanism to create a new record in the persistent store using the same primary

key.
A reference to C is returned to the client.

Client invokes the foo operation on C (C.fo0). Since C is not active, the POA
invokes the pre_invoke operation on the ServantLocator
(ServantL ocator.pre_invoke).

The ServantLocator talks to the persistence mechanism to find the incarnation
associated with this request. The persistence mechanism finds the appropriate
incarnation and returns it to the ServantLocator.

The ServantLocator creates a new executor to handle the request. The associated
servant is returned to the POA to process the request.

The POA then dispatches the request to the servant (invoke(C))

After the request completes, the POA invokes the ServantLocator
(ServantL ocator.post_invoke).

The POA returns foo response to client.

Steps [6] through [11] are repeated until the operation following the expiration of
the servant lifetime policy. At that point, the ServantLocator releases the
associated executor.

9.2.5.4 Findersand Existing Instances

The entity component may also correspond to an existing element in a persistent store.
If so, afinder is responsible for locating the Persistentld and associating an
incarnation with an instance of the entity component. The home interface for entity
components supports finder operations.

The client will use either the HomeFinder or the Naming service to locate the home
interface. A CORBA component implementation can locate its home interface using
the context provided by its container.

CORBA Components Volume | - orbos/99-07-01 9-281

9.2.5.5 Invoking an Operation on an Existing Instance
Figure 9-14 shows the necessary steps to make an operation request on an existing
entity component:

Operation foo on an Existing Component C Flow

Name
Client Client ORB POA Service Context C C_impl

ind(CHome,” namestring”)
M ke
-
(2)| resolve initial_refefences
— |- -
NamingService
Nami ngContext.lookup(CHome,” namestring”)
&) -
CHome
PSS
@ CHomefind(prjmary_key)
P> find(key)
C -
(5
- Servant
foo.C Manager
() |
pre_invoke
—>
find
O >
8 -
invoke (C)
) >
post_invoke
(10 .
(1)l
12)

Figure 9-14 Using the Entity Container to Locate Existing Entity Components

1. Container tools binds the entity component home to a string (“namestring”) with
CosNaming.

9-282 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

10.

11
12.

. Client uses ORB.resolve initial_referencesto get a reference to the

NamingService. Since the NamingContext is a righteous CORBA abject, its
implementation may be located anywhere.

Client uses the NamingContext.lookup operation to find the home (CHome)
that finds component instances of type C.

Client invokes a find operation on the home (CHome.find) using a primary key.
Since C is an entity component, the home must talk to the persistence mechanism
to locate an element in the persistent store with the same primary key.

A reference to C is returned to the client.

Client invokes the foo operation on C (C.foo). Since C is not active, the POA
invokes the pre_invoke operation on the ServantLocator
(ServantL ocator.pre_invoke).

. The ServantLocator talks to the persistence mechanism to find the incarnation

associated with this request. The persistence mechanism find the appropriate
incarnation and returns it to the ServantLocator.

The ServantLocator creates a new executor to handle the request. The associated
servant is returned to the POA.

The POA then dispatches the request to the servant (invoke(C))

After the request completes, the POA invokes the ServantLocator
(ServantL ocator.post_invoke).

POA returns foo response to client.

Steps [6] through [11] are repeated until the operation following the expiration of
the servant lifetime policy. At that point, the ServantLocator releases the
associated executor to the pool.

9.2.5.6 Servant Lifetime Management

The entity container supports multiple servant lifetime policies.Support for multiple
servant lifetime policies is equivalent to the process container as described in Section
9.2.4.4 on page 270.

9.2.6 The EJBSession Container

The EJBSession container implements the runtime environment for a EJB Session
Beans in a CORBA component container. The EJBSession container can be
implemented using a POA with the policies enumerated in Table 9-5. These values can

August 2, 1999 11:14 pm

CORBA Components Volume | - orbos/99-07-01 9-283

9-284

be the same as a session container enabling the same POA to be used. Required values
must be specified for all container designs. Design values correspond to the
ServantLocator design used by the exemplary design.

Table 9-5 POA Palicies for a EJBSession Container

Policy Name Required Value Design Value

SINGLE THREAD_MODEL
Thread ORB_CTRL_MODEL
Lifespan TRANSIENT
Object Id Uniqueness N/A

SYSTEM_ID
Id Assignment USER_ID

Implicit Activation

NO_IMPLICIT_ACTIVATION

Servant Retention

NO_RETAIN

Transaction Policy

ALLOWS_SHARED

Request Processing

USE_SERVANT_MANAGER

Thread

A thread policy value of ORB_CTRL__ MODEL allows the container to serialize
access to Session Beans which must be single-thread. A thread policy value of
SINGLE_THREAD_MODEL can also be used to rely on serialization in the POA,
rather than the container.

Lifespan

A lifespan policy value of TRANSIENT is required since EJB Session Beans may
have transient state and identity.

Object | d unigueness

The object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

I d assignment

An Id assignment value of SYSTEM _ID is sufficient for EJB Session Beans since the
EJB Component Architecture does not expose object references. A value of USER_ID
allows the container to assign unique Objectlds itself. This supports a structuring of
Objectld values which the container can exploit within its implementation.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

implicit activation

The implicit activation policy must be set to NO_IMPLICIT_ACTIVATION when the
servant retention policy is NON_RETAIN.

servant retention

A servant retention policy value of NO_RETAIN isrequired to use a
ServantLocator.

transaction policy

A transaction policy value of ALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

reguest processing

A request processing policy value of USE_SERVANT_MANAGER allows the
container to be implemented in the servant manager.

9.2.6.1 Creating Object References

Object references are not exposed to the bean programmer for EJB Session Beans.
Only EJBHome and EJBObject have externally visible references and they are
created by the EJB container’s tools, not the enterprise Bean programmer. To support a
Session Bean in a CORBA EJB container, the container provider will need to do the
following:

® create interface definitions for EJBHome and EJBObject and store those
definitions in the interface repository.

® create entries in CORBA naming using the symbolic name defined by EJB which
point to the instances of EJBHome and EJBObject to be used by this Session
Bean.

® create an implementation of EJBHome which delegate factory operations to the
enterprise Bean's create methods.

® create an implementation of EJBObject which delegate application operations to
the enterprise Bean's application operations.

9.2.6.2 Factoriesand Instances

EJB client programmers locate factories using JNDI. From the EJB client’s
perspective, factories for Session Beans are operations implemented on EJBHome.
The enterprise Bean developer implements the operations and the container provider
stores its symbolic name in CORBA naming so it can be accessed by a client JINDI
call and implements the EJBHome object which delegates to the enterprise Bean's
create operation. A factory operation on EJBHome creates instance of the enterprise
Bean which is derived from EJBObject. Because home operations are delegated to
the enterprise Bean, EJBHome and EJBObject must be collocated.

CORBA Components Volume | - orbos/99-07-01 9-285

9.2.6.3 Invoking an Operation

EJB clients make all operation requests on EJBObject. Installing a Session Bean in
an EJBSession container requires the container to create an EJBObject
implementation of the enterprise Bean's operations which ultimately delegates the
processing of the request to the implementation. In many EJB container
implementations, the EJBObject implementation implements the EJB container
functions, including setting declarative transaction and security policies before
invoking the enterprise Bean's operations.

9-286 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

9

August 2, 1999 11:14 pm

In the CORBA environment of the exemplary design, these functions are performed by
the specialized ServantLocator for the EJBSession Container before the operation
request on EJBObject is actualy dispatched by the POA.This allows the generated
EJBObject implementation to simply delegate the operation request to the Session
Bean.This isillustrated in Figure 9-15 below:

Operation foo on EJB Component J

. . Directory .
Client Client ORB JNDI EJBObject 3 impl
(1) NamingCantext.bind (EIJBHome, { name”)

-
Home
JNDI .logkup(*“ name*)

2 >

- EJBHome
) EJBHome.create

- EJBObject

. EJBSessionServant
(4) foo.EJBObject POA | gcator
|
pre_invoke
(5) » lookup_servant
invoka_foo)_
(6) >
7 >
0 post_invoke
(8) > release_servant
L — _>

(9 -
(10)

Figure 9-15 Dispatching an operation request in a CORBA EJB container

1. Container tools binds a session bean’s home with CORBA naming to enable access
via INDI (NamingContext.bind).

2. Client uses JNDI to locate the EJBHome (Jhome) that creates component
instances of type J.

CORBA Components Volume | - orbos/99-07-01 9-287

9-288

3. Client invokes a create operation on the Session Bean home (EJBHome.create).
Since J is a session bean, the home creates a reference and del egates the processing
of the create operation to an €jbcreate operation of the enterprise Bean.

4. Client invokes the foo operation on EJBObject (EJBODbject.foo).

5. The POA invokes the ServantLocator and requests an executor to process the
request (ServantL ocator.pre_invoke).The ServantLocator locates an
appropriate executor or creates a new one. It returns the associated servant to the
POA.

6. The POA dispatches the request to the EJBObject implementation (Invoke
EJBODbject.foo).

7. The EJBObject implementation delegates the operation to the Session Bean
implementation.

8. After the request completes, the POA invokes the ServantLocator
(ServantL ocator.post_invoke).

9. POA then returns foo response back to client.

10. Steps|[4] through [7] are repeated until the operation following the expiration of the
servant lifetime policy. At that point, the ServantLocator releases the associated
executor to the pool.

9.2.6.4 Servant Lifetime Management

Enterprise JavaBeans relies on the garbage collection features of the Java language to
manage bean lifetimes. This is equivalent to a servant lifetime policy of container.

9.2.7 The EJBEntity Container

The EJBENtity container provides the runtime environment for an EJB Entity Bean.
An EJBEntity container can be implemented using a POA with the policies outlined
in Table 9-6. These values can be made equivalent to those specified for the process
and entity containers enabling the same POA to be used. Required values must be
specified for all container designs. Design values correspond to the ServantLocator
design used by the exemplary design.

Table9-6 POA Policies for the EJBEntity Container

Policy Name Required Value Design Value
ORB_CTRL_MODEL

Thread SINGLE_THREAD_MODEL

Lifespan PERSISTENT

Object Id Uniqueness N/A

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

August 2, 1999 11:14 pm

Table 9-6 POA Policies for the EJBEntity Container

Policy Name

Required Value

Design Value

Id Assignment

USER_ID
SYSTEM_ID

Implicit Activation

NO_IMPLICIT_ACTIVATION

Servant Retention

NO_RETAIN

Transaction Policy

ALLOWS_SHARED

Request Processing

USE_SERVANT_MANAGER

Thread

A thread policy value of ORB_CTRL___ MODEL allows the container to serialize
access to Entity Beans which must be single-thread. A thread policy value of
SINGLE_THREAD_MODEL can also be used to rely on serialization in the POA,
rather than the container.

Lifespan

A lifespan policy value of PERSISTENT is required since Entity Beans have both
persistent state and identity.

Object Id uniqueness

The object Id uniqueness policy value is not applicable when the servant retention
policy is NON_RETAIN.

I d assignment

An Id assignment policy value of SYSTEM_ID is sufficient for EJB Entity Beans
since the EJB Component Architecture does not expose object references. Entity Beans
do support the concept of Handle which could be implemented as a CORBA
persistent object reference. If so, a value of USER_ID alows the container to assign
an unique Objectld which can be an EJB Handle or some index to it.

implicit activation

The implicit activation policy must be set to NO_IMPLICIT_ACTIVATION when the
servant retention policy is NON_RETAIN.

servant retention

A servant retention policy value of NO_RETAIN isrequired to use a

ServantLocator.

CORBA Components Volume | - orbos/99-07-01

9-289

9-290

transaction policy

A transaction policy value of ALLOWS_SHARED is required to permit the container
to set transaction policy based on the component’s deployment descriptor.

request processing

A request processing policy value of USE_SERVANT_MANAGER allows the
container to be implemented in the ServantManager.

9.2.7.1 Creating Object References

Object references are not exposed directly to the enterprise Bean programmer for
Entity Beans although they are exposed indirectly via the Handle. Only EJBHome
and EJBObject have externally visible references and they are created by the EJB
container’s tools, not the enterprise Bean programmer. To support an Entity Bean in a
CORBA EJB container, the container provider will need to do the following:

® create interface definitions for EJBHome and EJBObject and store those
definitions in the interface repository.

® create entries in CORBA naming using the symbolic name defined by EJB which
point to the instances of EJBHome and EJBObject to be used by this Entity
Bean.

® create an implementation of EJBHome which delegate factory and finder
operations to the enterprise Bean's gjbcreate and g bfind<METHOD> operations.

® create an implementation of EJBObject which delegate application operations to
the enterprise Bean's application operations.

9.2.7.2 Factoriesand New Instances

EJB client programmers locate EJBHome using JNDI. From the EJB client’s
perspective, factories for Entity Beans are operations implemented on EJBHome. The
enterprise Bean developer implements the operations and the container provider
implements the EJBHome object which delegates to the enterprise Bean's gjbcreate
operations. The container also stores a symbolic name for EJBHome in CORBA
naming so it can be accessed by a client INDI call. A create operation on EJBHome
creates an instance of the enterprise Bean which derives from EJBObject. Because
home operations are delegated to the enterprise Bean, EJBHome and EJBObject
must be collocated.

9.2.7.3 Invoking an Operation on a New Instance

EJB clients make all operation requests on EJBObject. Installing an Entity Bean in an
EJBENtity container requires the container to create an EJBObject implementation
of the enterprise Bean’s methods which ultimately delegates the processing of the
request to the bean implementation. In many EJB container implementations, the

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

9

EJBObject implementation implements the EJB container functions, including setting
declarative transaction and security policies before invoking the enterprise Bean's
operations.

In the CORBA environment of the exemplary design, these functions are performed by
the ServantManager for the EJBEntity Container before the operation request on
EJBObject is actually dispatched by the POA.This allows the generated EJBObject

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 9-291

9-292

implementation to simply delegate the operation request to the enterprise Bean.
Figure 9-16 shows the necessary steps to make an operation request on an Entity Bean
in the EJBEntity container:

Operation foo on a new Entity Bean K Flow

Directory

Client Client ORB POA JNDI K K_impl
(1) bind (EJBHome, “name”)
-
JNDI .Jookup(“ name”)
&) -
EJBHome
- EJBHome PSS
EJBHome.create(primary_key)
) -
create(key)
EJBODbject L
(4
fop.EJBODj ect EJBEntityServant

5) > L ocator

pre_invoke

—>

create| k
(6) i >
O -
invoke(EJBObject.foo)

8 >
€) >

post_invoke
(10 >
(1)
(12

Figure 9-16 Using the EJBEntity Container to Create new Entity Beans

1. Container tools binds a entity bean’s home with CORBA naming to enable access
via INDI (NamingContext.bind).

2. Client uses JNDI to locate the EJBHome (Khome) that creates component
instances of type K.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

3. Client invokes a create operation on the entity bean home (EJBHome.create)
using a primary key. Since K is an entity bean, the home must talk to a persistence
mechanism to create a new record in the persistent store using the same primary

key.
4. A reference to EJBODbject is returned to the client.

5. Client invokes the foo operation on EJBObject (EJBObject.foo). Since
EJBODbject is not active, the POA invokes the pre_invoke operation on the
ServantLocator (ServantL ocator.pre_invoke).

6. The ServantLocator talks to the persistence mechanism to find the incarnation
associated with this request. The persistence mechanism finds the appropriate
incarnation and returns it to the ServantLocator.

7. The ServantLocator creates a new executor to handle the request. The associated
servant is returned to the POA to process the request.

8. The POA then dispatches the request to the servant (invok e(EJBObj ect.foo))

9. The EJBObject implementation delegates the operation to the Entity Bean
implementation.

10. After the request completes, the POA invokes the ServantLocator
(ServantL ocator.post_invoke).

11. The POA returns foo response to client.

12. Steps [5] through [11] are repeated until the operation following the expiration of
the servant lifetime policy. At that point, the ServantLocator releases the
associated executor.

9.2.7.4 Findersand Existing Instances

EJB client programmers locate EJBHome using JNDI. From the EJB client’s
perspective, finders for entity beans are also operations implemented on EJBHome.
The enterprise Bean developer implements the operations and the container provider
implements the EJBHome object which delegates to the enterprise Bean's

€ bfind<M ETHOD> operation. The container also stores a symbolic name for
EJBHome in CORBA naming so it can be accessed by a client JNDI call. A
findByPrimaryK ey operation on EJBHome locates an instance of EJBObject using
a primary key. Because home operations are delegated to the enterprise Bean,
EJBHome and EJBObject must be collocated.

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 9-293

9-294

9.2.7.5 Invoking an Operation on an Existing Instance

Figure 9-17 shows the necessary steps to make an operation request on an existing
Entity Bean in an EJBEntity container:

Operation foo on an Existing Component K Flow

Name
Client Client ORB POA Service K K_impl
) kind(EJBHome," name”)
——————————
~ B =
NamingContext.lookup(EJBHome,” namestring”)
&) -
EJBHome
PSS
3 EJBHomefind(primary_key)
P> find(key)
EJBODbject L
(4) e :
EJBEntityServant
foo.EJBObject Manager
®) |
pre_invoke
—>
find
(6) >
O -
invoke(EJBOBject.foo)
8 >
€) -
post_invoke
(10 >
(1)
(12

Figure 9-17 Using the EJBEntity Container to Locate Existing Entity Beans

1. Container tools binds the entity bean’s home to a string (“ name”) with
CosNaming.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

2. Client uses JNDI.lookup operation to find the home (EJBHome) that finds
component instances of type K.

3. Client invokes afind operation on the home (EJBHome.find) using a primary key.
Since K is an entity bean, the home must talk to the persistence mechanism to
locate an element in the persistent store with the same primary key.

4. A reference to EJBODbject is returned to the client.

5. Client invokes the foo operation on EJBObject (EJBObject.foo). Since
EJBODbject is not active, the POA invokes the pre_invoke operation on the
ServantLocator (ServantL ocator.pre_invoke).

6. The ServantLocator talks to the persistence mechanism to find the incarnation
associated with this request. The persistence mechanism find the appropriate
incarnation and returns it to the ServantLocator.

7. The ServantLocator creates a new executor to handle the request. The associated
servant is returned to the POA.

8. The POA then dispatches the request to the servant (invoke(EJBODbj ect.foo)).

9. The EJBObject implementation delegates the operation to the Entity Bean

10. After the request completes, the POA invokes the ServantLocator

(ServantL ocator.post_invoke).

11. POA returns foo response to client.

12. Steps [5] through [11] are repeated until the operation following the expiration of

the servant lifetime policy. At that point, the ServantLocator releases the
associated executor to the pool.

9.2.7.6 Servant Lifetime Management

Enterprise JavaBeans relies on the garbage collection features of the Java language to
manage bean lifetimes. This is equivalent to a servant lifetime policy of container.
However, since entity beans are required to use transactions, the EJBEntity container
may choose to implement a servant lifetime policy of transaction.

9.3 Persistencelntegration

August 2, 1999 11:14 pm

Component persistence is supported by the process, entity, and EJBEntity containers.
The container architecture permits the persistence provider to be separate from the
container provider since we expect that these functions will often be provided by
different vendors. This section describes the various forms of persistence support
available for CORBA components and the responsibilities of the container, the
persistence provider, and the component developer.

Two forms of component persistence are supported by each of the containers
supporting persistence:

CORBA Components Volume | - orbos/99-07-01 9-295

9-296

® Container-managed persistence where the container provider interacts with the
persistence provider and

® Self-managed persistence where the component developer must interact with the
persistence provider.

These are described more fully in the following sections.

The process and entity containers also support a run time accessor to a set of
persistence API functions, provided by the CORBA persistent state service, which
enable the component to save and restore its private state. If other mechanisms are
used for component persistence (e.g. SQL, ODBC, etc.), it is the responsibility of the
component developer to implement the mapping directly. Thisisillustrated in

Figure 9-18 below:

)

o+ — — 1@
‘f ® CORBA PSS
: External | Componentg— — — | @
e o—|
n go)
t

6 &

Callbacks Container @

_/

Figure 9-18 Container Persistence Architecture

The entity and EJBENtity containers also support access to the primary key. A
primaryKey value is associated with the component’s home for these container
categories.

9.3.1 Container-managed Persistence

Container-managed persistence supports the declaration of abstract state associated
with the component or its facets. This abstract state is declared using a state
declaration language defined by the CORBA persistence state service. State which isto
be container-managed can use the CORBA persistence state service or it may use some
other persistence mechanism as long as that mechanism can support the persistence
framework defined by the CORBA persistent state service.

When CORBA persistence is used, code can be generated to support the ccm_load
and ccm_store operations on the EntityComponent interface or the ejbLoad and
ejbStore operations of the EJB Entity container. For process and entity containers
supporting extended components, this code may make use of the runtime access to the
persistence provider. For basic components, access to a persistence mechanism is not
specified and |eft to the container implementation.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

Thisisidentical to the design for EJB 1.1 which specifies the fields which
participate in container-managed persistence, but |eaves how those fields
are made persistent to the container providers. Although common expecta-
tion is that JDBC will be used, that is not mandated.

For EJB Entity containers, it is likely that this code will utilize JDBC or some other
Java persistence mechanism since there is not an abstract state definition language
currently defined for EJB.

If CORBA persistence is not used in the process and entity containers, the component
developer must implement the ccm_load and ccm_store operations as well as
provide implementations for all factory and finder methods defined on the component’s
home.

9.3.2 Salf-managed Persistence

Self-managed persistence is also supported by the same container categories. Self-
managed persistence is assumed by process and entity containers if abstract state
declarations do not exist for a particular component. With self-managed persistence,
automatic code generation for saving and restoring state is not possible, so the
responsibility lies completely with the component developer. Again, the devel oper may
chose between the CORBA persistence state service and other persistence mechanisms.

For process and entity containers supporting extended components, the container
provides run time access to the CORBA persistent state service which may be used.
For basic components, the persistence API is the responsibility of the component
implementor and is not specified. It is expected that normal database APIs such as
ODBC, JDBC, or SQL will be used. Extended component developers must use the
operations on Entity2Context to create a Componentld that encapsulates the
information model which describes the persistent state associated with a component.
These operations are defined in Section 7.4.3.6 on page 214.

9.3.3 Interactions between the Container and the Persistence Provider

August 2, 1999 11:14 pm

The design for CORBA components assumes the likelihood that containers and
persistence solutions will be provided by different vendors.This assumption effects
both the component developer and the container provider. The component developer is
isolated from the persistence provider by the CORBA persistent state service which
defines persistence APIs for the component developer. The container provider has
several responsibilities for persistence integration. These include:

® establishing connection to the persistence mechanism,
® managing DB connections with the persistence store

® synchronizing component state with durable state.

These subjects are covered in the next sections.

CORBA Components Volume | - orbos/99-07-01 9-297

9.3.3.1 Connecting to the Persistence Mechanism

As part of creating a container supporting persistence (process, entity, and EJBEntity
containers), connectivity to the persistence mechanism must be established. This
includes obtaining initia references the persistence provider makes available through
the ORB, connecting to the persistence provider (including the exchange of security
information required), and obtaining references from the persistence provider to
implement an accessor to the persistence APIs provided by the CORBA persistence
state service.

We assume most of the information necessary to allow this to happen will
come from contai ner-specific configuration data, although some of it may
be standardized when the OMG adopts a specification for CORBA persis-
tence. By ensuring that the component developer has accessto all required
persistence functions, the unspecified configuration data effects only the
container implementation.

9.3.3.2 Managing DB Connections

Most persistence providers today require that a DB connection be allocated by a client
before any data access operations can be invoked. Typically, thisis a very expensive
operation, which must be done infrequently to achieve reasonable system performance.
We expect container implementations to manage a pool of such connections, which are
constructed as part of the container creation process, and allocate these to component
implementations as needed, typically for the duration of a transaction, although a
connection may be retained longer if the container does not need it for some other
component. As aresult, component implementations will not have to deal with this
function directly and the DB connection can be assigned to a component when its
initial request to the persistence provider is made.

9.3.3.3 Synchronization of Component Sate with Persistence Sate

The interfaces provided by the CORBA persistent state service supports flush
operations which can be used by the component developer to transfer state from the
container domain to the persistence domain.

® For self-managed persistence, the component developer assumes this responsibility
by implementing the ccm_store callback operation.

® For container-managed persistence, the container assumes this responsibility and
invokes the flush operation on each persistent store involved in the current
transaction.

Both approaches guarantee that the persistence provider, and not the component
developer or the container, assumes the responsibility for durability of persistent state.

9.4 Event Management Integration

9-298

CORBA components define a simple event model which supports two forms of event
communication:

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

® events which are published anonymously to a dedicated channel

® events which are published anonymously to a shared channel

The container is responsible for mapping those semantics onto the CORBA notification
service. Although it is possible to connect event consumers and suppliers directly in
some cases, the container will always deliver component events through a notification
channel to ensure a more robust event distribution mechanism and to allow consistent
transaction semantics (defined with the event deployment descriptor) to be applied to
both the delivery of the event to the channel and the removal of the events from the
channel (i.e. a two-transaction model).

A component event is represented as a CORBA valuetype. This permits event emitters
and publishers to be matched with their consumers by the event types they wish to
exchange. The event architecture as described in Section 5.6 on page 82 requires that
the valuetype be able to be transmitted as a CORBA any through an event channel.
This makes it possible for the container to use untyped notification channels for
transmitting the actual event. The containers responsibility can be broken into three
major areas and is described in the next few sections:

® setting up the channels to be used, including all the required proxies

® accepting a CORBA component event and pushing it to an event channel as a
structured event

® receiving a structured event from an event channel and converting it to a CORBA
component event

9.4.1 Channe setup

August 2, 1999 11:14 pm

When a component is installed in a container, the deployment descriptor contains
information about the types of events published or emitted and the types of events the
component consumes. The container is responsible for initializing the CORBA
notification service and establishing the event channels to be used.

® For published events, it accomplishes this with the Event::create_channel
operation which creates a unique channel for this event type.

® For emitted events, it connects the component to a pre-configured channel which
supports the CosNotifyChannelAdmin::SupplierAdmin.

® [For consumed events, it connects the component to a pre-configured channel which
supports the CosNotifyChannelAdmin::ConsumerAdmin.

The actual channel names are not defined in the deployment descriptors and must be
made available to the container in container-specific configuration data. This allows
the installation to configure shared channels to be used by other users of CORBA
notification as well as component implementations. The container must create a unique
channel for events which are designated as emanating from this component only. The
technique by which uniqueness is ensured is not specified.

There are several possible schemes that could be made to work. Channels
could be given unique names using something like a UUID to ensure
uniqueness. Hierarchical namesis another possibility, where all channels

CORBA Components Volume | - orbos/99-07-01 9-299

9-300

created by a specific container would be prefixed by the name of the con-
tainer (perhaps a URL). CORBA Security could also be used to prevent
events from being pushed to a channel which is dedicated to component
events. Other schemes are also possible.

The CORBA notification service supports filters on both the supply side and the
consume side of a channel and allows them to be configured on the channel itself, or
on the proxy being used to supply or consume events. This specification allows the
container provider to setup filters in any way it chooses since they too must be made
available to the container at container creation time through a container-specific
configuration file.

9.4.2 Transmitting an event

When a CORBA component emits or publishes an event (using the push operation on
<event_ type>Consumer), the operation is delegated to the container by the
generated code so that the container can actually push this event to the proper channel.
The following steps are required:

® channel lookup - for emitted events, thisis the channel configured for general use at
container start-up, for published events, this is the channel established by the
container for the purpose of pushing this event type.

® Constructing the notification EventHeader - The EventHeader consists of some
static information, including the two-part (domain_name and atype_name)
event_type (not to be confused with the <event_type> of the CORBA valuetype
which holds the event) and event_name. These fields may optionally be provided
on the Event::obtain_channel operation. If not, they are defaulted as outlined in
Table 9-7 below.

® |f configuration-defined filterable data is to be associated with this event, it is
placed in the portion of the structured event header defined by the CORBA
notification service (CosNotification::FilterableEventBody). Container
implementations are not required to insert filterable data.

® The valuetype representing the actual event data is placed into the any portion of
the structured event.

®* A CosNotifyComm::push_structured_event isissued to CORBA notification.

Table 9-7 Structured Event Header

Event Header field Default Value
domain_name CCM or blank
type_name Repository Id of <event_type>
event_name blank
filterable_data blank

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:14 pm

9.4.3 Recelving an event

In order to receive an event, the container must connect its proxy to the event channel
the event is to be received on and implement the
CosNotifyComm::structured_push_consumer interface. The container connects
to the channel as a result of an Event::listen operation. The container performs a
CosNotifyChannelAdmin::connect_structured_push_consumer operation on
behalf of the component. The listen operation receives all events from the channel,
subject to filter constraints.

When the container’s structured_push_consumer interfaceisinvoked, it performs
the following processing:

® |t extract the event data from the any portion of the structured event and converts it
to a CORBA valuetype which represents the event.

® |t removes the domain_name, type_name, and event_name from the
EventHeader.

® |t extracts the <event_type> from the component event in the any portion of the
event data structure.

® |t invokes <event_type>Consumer::push passing in the valuetype
<event_type>.

August 2, 1999 11:14 pm CORBA Components Volume | - orbos/99-07-01 9-301

9-302 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 11:14 pm

August 2,199911:13 pm

Packaging and Deployment 10

Component implementations may be packaged and deployed.

A CORBA Component package maintains one or more implementations of a
component. It may be installed on a computer or grouped together with other
components to form an assembly. A component assembly is a group of interconnected
components represented by an assembly package.

A package, in general, consists of one or more descriptors and a set of files. The
descriptors describes the characteristics of the package and points to its various files.
The files that make up a package, including the descriptor, may be grouped together in
an archive file or stored separately. When stored separately, the descriptor contains
pointers to the location of each file.

The component package is a specialization of a general software package. The
software packaging scheme, described here, could be used to package arbitrary
software entities. In fact it was initially inspired by the Open Software Description
(OSD) note to the W3C. OSD isan XML vocabulary for describing software packages
and their dependencies. We have extended OSD dlightly, without loss of generality, to
support component packaging.

A component package may be deployed alone, asis, or it may be included in a
component assembly package and deployed as part of the assembly along with the
other components of the assembly.

A component assembly is a set of interrelated components and component homes
represented by an assembly package. A component assembly package consists of a set
of component packages and an assembly descriptor. The assembly descriptor specifies
the components that make up the assembly, partitioning constraints, and connections.
Connections are between interface ports, represented by provides and uses features and
between event ports, represented by emits, produces, and consumes features.

Component and assembly packages are provided as input to a deployment tool.

CORBA Components - orbos/99-07-01 10-303

10

A deployment tool deploysindividual components and assemblies of components to an
installation site, usually a set of hosts on a network. The user of the deployment tool
guides in determining where each component should be installed. Components within
an assembly may be installed on a single machine or scattered across a network.

Based on an assembly descriptor and user input, the deployment tool installs and
activates component homes and instances; it configures component properties and
connects components together via interface and event ports, as indicated in the
assembly descriptor.

10.1 Component Packaging

A software package is represented by a descriptor and a set of files. The descriptor and
associated files are grouped together in a ZIP archive file. The software package could
be used to describe arbitrary software packages.

In relation to CORBA Components, software packages are used to package a CORBA
Component implementation.

10.2 Software Package Descriptor

10-304

The contents of a software package is described by a software package descriptor. The
descriptor consists of general information about the software followed by one or more
sections describing implementations of that software. An XML vocabulary is used to
describe component software packages. The descriptor file has a “.csd” extension.
CSD stands for CORBA Software Descriptor. When used in an archive, the CSD file
for the archive is placed in atop level directory called “meta-inf”.

The structure and intent of the descriptor can be better understood by looking at an
example.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

10.2.1 A softpkg Descriptor Example

<softpkg name="Bank" version="1,0,1,0">
<pkgtype>CORBA Component</pkgtype>
<title>Bank</title>
<author>
<company>Acme Component Corp.</company>
<webpage href="http://www.acmecomponent.com/>
</author>
<description>Yet another bank example</description>
<license href="http://www.acmecomponent.com/license.html!" />
<idl id="IDL:M1/Bank:1.0" ><link href="ftp://x/y/Bank.idl” /></id|>

<propertyfile><fileinarchive name="bankprops.cpf"/></propertyfile>

<implementation id="DCE:700dc518-0110-11ce-ac8f-0800090b5d3e” >
<os name="WinNT" version="4,0,0,0" />
<os name="Win95" />
<processor name="x86" />
<compiler name="MyFavoriteCompiler" />
<programminglanguage name="C++" />

<dependency type="ORB"><name>ExORB</name></dependency>

<descriptor type="CORBA Component”>
<fileinarchive>processcontainer.ccd</fileinarchive>
</descriptor>

<code type="DLL">
<fileinarchive name="bank.dll"/>
<entrypoint>createBankHome</entrypoint>
</code>

<dependency type="DLL">
<localfile name="rwthr.dll"/>
</dependency>

</implementation>

<implementation id="DCE:297f3e18-0110-11ce-ac8f-08074982ad3e”
variation="RemoteHome" >
<0s name="Solaris" version="5,5,0,0" />
<processor name="sparc" />
<l-...->
</implementation>

<implementation> <!-- another implementation --> </implementation>
</softpkg>

August 2,1999 11:13 pm CORBA Components- orbos/99-07-01 10-305

10

10-306

10.2.2 The Software Package Descriptor XML Elements

This section describes the XML elements that make up a software package descriptor.
The section is organized starting with the root element of the package descriptor
document, softpkg, followed by al subordinate elements, in aphabetical order. The
complete softpkg DTD may be found in Appendix B on page 417.

Note — An effective strategy for studying an XML DTD isto recursively navigate from
the root element, which in this case is softpkg, to each child element.

10.2.2.1 The softpkg Root Element

The softpkg element is the root element of the document. Aswell, it isa child element
of dependency. It contains a set of general child elements that describe the software
package. This is followed by one or more implementation specifications.

A softpkg archive may contain multiple implementations of a component. This allows
the component implementor to provide specialized implementations for different
operating systems, compilers, or ORBSs, or to provide different programming language
implementations of the component. Each implementation is represented in the softpkg
descriptor as a distinct implementation element.

<IELEMENT softpkg
(title
| pkgtype
| author
| description
| license
| idl
| propertyfile
| dependency
| descriptor
| implementation
| extension
) >
<IATTLIST softpkg
name ID #REQUIRED
version CDATA #OPTIONAL >

The attributes are as follows:

name

Uniquely identifies the package within the package.
version

Specifies the version of the component. The format of the version string is numerical
major and minor version numbers separated by commas (e.g., “1,0,0,0").

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

10.2.2.2 The author Element

The author element is used to identify the author of the softpkg. It may contain name,
company, and webpage child elements.

<IELEMENT author
(name
| company
| webpage
)< >

10.2.2.3 The code Element

The code element points to afile in the archive which implements the component. This
could be, for example, aDLL, a.so, or a.classfile. The fileinarchive child element is
used to indicate the code file within the archive. codebase and link are used to point to
code files outside of any archive. The optional entrypoint child element is used to
specify an entry point to the code. The optional usage element is used to describe how
to use, i.e., invoke, the code.

<IELEMENT code
((codebase
| fileinarchive
| link
)
, entrypoint?
, usage?
) >
<IATTLIST code
type CDATA #IMPLIED >

The type attribute specifies the type of code. The types “DLL", “Executable”, and
“Java Class” shall be recognized as valid types.

10.2.2.4 The codebase Element

The codebase element is used to specify a resource. If the resource isn’t available in
the local environment, then a link specifies where it may be obtained. codebase has an
EMPTY content model.

<IELEMENT codebase EMPTY >
<IATTLIST codebase
filename CDATA #IMPLIED
%simple-link-attributes; >

codebase has two attributes: name - the name of the resource, and hr ef--as defined in
simple-link-attributes--the link.

CORBA Components- orbos/99-07-01 10-307

10

10-308

10.2.2.5 The company Element

The company element, an optional child element of author, specifies the company
that created the softpkg. It contains string data.

<IELEMENT company (#PCDATA) >

10.2.2.6 The compiler Element

The optional compiler element specifies the compiler used to create an
implementation. compiler has an empty content model.

<IELEMENT compiler EMPTY >
<IATTLIST compiler
name CDATA #REQUIRED
version CDATA #IMPLIED >

The required attribute name, specifies the name of the compiler and the optional
version, the version of the compiler. The version is specified in a “w,x,y,z" format.

10.2.2.7 The dependency Element

The dependency element is used to specify environmental or other dependencies. The
type of dependency is specified by the type attribute. The dependency element is a
child element of both the softpkg element and implementation elements. When used
as a child of softpkg, it specifies general dependencies applicable to all
implementations. When used as a child of implementation, it specifies
implementation specific dependencies.

<I[ELEMENT dependency
(softpkgref
| codebase
| fileinarchive
| localfile
| name
) >
<IATTLIST dependency
type CDATA #IMPLIED
action (assert | install)"assert">

The type attribute specifies the type of the resource required. This may be set to, for
example, “DLL", “.s0”, or “.class’.

When action is set to assert, the installation process must verify that the dependency
exists in the environment. If action is set to install, the installation process must install
the dependency if it does not already exist.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

10.2.2.8 The description Element

The description element contains a string description. It is used to describe its parent
element. It contains string content.

<IELEMENT description (#PCDATA) >

10.2.2.9 The descriptor Element

The descriptor element is used to refer to descriptor files associated with a softpkg or
implementation. In a CORBA Component softpkg, it is used to point to the CORBA
Component descriptor.

<IELEMENT descriptor
(link
| fileinarchive
) >
<IATTLIST descriptor
type CDATA #IMPLIED>

The type attribute is the type of the descriptor.

Note — With respect to the CORBA Component model, A type of “CORBA
Component” is used to indicate a CORBA component descriptor (described in section
10.3.4 on page 320).

10.2.2.10The entrypoint Element

The entrypoint element specifies the entry point to a software package. See section
10.8.5 on page 376 for information on CORBA component entry points.

CORBA Components- orbos/99-07-01 10-309

10

10-310

<IELEMENT entrypoint (#PCDATA) >

10.2.2.11The extension Element

The extension element is used to add experimental or vendor specific elements to the
softpkg DTD. The content model of the extension element is PCDATA, meaning that
it can have character data or markup.

An effort has been made to make the extension element an optional child element of
all non-trivial elements. Processors may ignore extension elements that they do not
recognize.

<IELEMENT extension (#PCDATA) >
<IATTLIST extension

class CDATA #REQUIRED
origin CDATA #REQUIRED
id ID #IMPLIED
extra CDATA #IMPLIED

html-form CDATA #IMPLIED >

The attributes of the extension element are as follows:
class

Used to distinguish this extension element usage. A processing application identifies
extension elements that it understands by examining an extension element’s class and
origin attributes.

origin

An origin attribute is required to identify the party responsible for the extension; for
example, an ORB vendor.

id

An optional 1D attribute which must be unique in the file.

extra

An extra attribute that may be used however the originator wishes.
html-form

The html-form element is used for formatting. The content will be formatted per the
html element type indicated, e.g., “".

10.2.2.12Thefileinarchive Element

The fileinarchive element is used to specify afile in the same archive as the
descriptor. The optional link element may be used to point to an external archive, in
which case the file will be looked for in that file.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

<IELEMENT fileinarchive
(link?) >
<IATTLIST fileinarchive
name CDATA #REQUIRED >

The name attribute specifies the name or path of the element in the archive.

10.2.2.13The humanlanguage Element

The humanlanguage element specifies a spoken language. humanlanguage has an
EMPTY content model.

<I[ELEMENT humanlanguage EMPTY >
<IATTLIST humanlanguage
name CDATA #REQUIRED >

The human language name is specified in the name attribute.

10.2.2.14Theidl Element

The idl element points to file or repository containing an idl definition.

<IELEMENT idl
(link
| fileinarchive
| repository

) >

10.2.2.15The implementation Element

The implementation element contains descriptive information about a particul ar
implementation of the software represented by the softpkg descriptor. An
implementation is described by platform dependencies, descriptors, dependencies, code
filename, entry points and other characteristics.

August 2,1999 11:13 pm CORBA Components- orbos/99-07-01 10-311

10

<IELEMENT implementation
(description
| code
| compiler
| dependency
| descriptor
| extension
| programminglanguage
| humanlanguage
| os
| propertyfile
| processor
| runtime
>
<IATTLIST implementation
id ID #IMPLIED >

Theid attribute is a DCE UUID which uniquely identifies the implementation.

The variation attribute is used to indicate a variation from a normal implementation.
The interpretation of the variation attribute depends on user of the softpkg.

Note — The only valid variation string defined by the CORBA Component model is
“ProxyHome”. The ProxyHome variation indicates that the component
implementation contains a proxy home only, not a full component implementation.

10.2.2.16Theimplref Element

The implref element is used to refer to an implementation within a softpkg.

<IELEMENT implref EMPTY >
<IATTLIST implref
idref CDATA #REQUIRED >

The idref attribute refers to a unique implementation element id in the softpkg
descriptor.

10.2.2.17Thelicense Element

The license child element of softpkg is used to point to the text of a usage license. The
license is pointed to by an href attribute. The license element may have arbitrary string
content.

| 10-312 CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

<IELEMENT license (#PCDATA) >
<IATTLIST license
%simple-link-attributes; >

10.2.2.18Thelink Element

Thelink element is used to specify a generic link. The href attribute indicates the link.
The element can have string content.

<IELEMENT link (#PCDATA) >
<IATTLIST link
%simple-link-attributes; >

10.2.2.19Thelocalfile Element

The localfile element is used to specify afile that is expected to be found in the local
environment.

<IELEMENT localfile EMPTY >
<IATTLIST localfile
name CDATA #REQUIRED >

The name of the file is specified in the name attribute.

10.2.2.20The name Element

The name element, as an optional child element of author, specifies the name of the
author. It has string content.

<IELEMENT name (#PCDATA) >

10.2.2.21The os Element

The os element is used to specify a particular operating system that the implementation
will work with. This can be specified multiple times if the implementation will work
on more than one os.

<IELEMENT os EMPTY >
<IATTLIST os
name CDATA #REQUIRED
version CDATA #IMPLIED>

The name attribute specifies the name of the operating system.
The version attribute specifies the version of the osin “w,x,y,z" format.

Legal values include:
* AIX

CORBA Components- orbos/99-07-01 10-313

10

10-314

®* BSDi

* VMS

® DigitalUnix
* DOS

* HPBLS

* HPUX

®* |RIX

® Linix

®* MacOS

* 0S/2

* AS/400

®* MVS

* SCO CMW
® SCO ODT
® Solaris

®* SunOS

® UnixWare
* VxWorks
®* Win95

* WIinNT

10.2.2.22The pkgtype Element

The pkgtype element is used to identify the type of software that the softpkg
represents. This specification reserves package types “CORBA Component” and
“CORBA Interface Impl” for the packaging of CORBA component and interface
implementations.

<IELEMENT pkgtype (#PCDATA) >
<IATTLIST pkgtype
version CDATA #IMPLIED >

The optional version attribute specifies a version of the package type.

10.2.2.23The processor Element

The processor element indicates the type of processor that the implementation must
run on, if there is any such constraint.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

<IELEMENT processor EMPTY >
<IATTLIST processor
name CDATA #REQUIRED >

The name of the processor is indicated in the name attribute.

Legal values include:
® x86

® mips

® apha

® ppc

® sparc

® 680x0

® vax

* AS/400

® S/390

10.2.2.24The programminglanguageEl ement

The programminglanguage element specifies the type of the component
implementation. programminglanguage has an empty content model.
programminglanguage is a child element of implementation.

<IELEMENT programminglanguage EMPTY>
<IATTLIST programminglanguage

name CDATA #REQUIRED

version CDATA #IMPLIED >

The required programminglanguage name and optional version attributes specify the
programming language used to implement the component.

10.2.2.25The propertyfile Element

The propertyfile element is used to refer to a property file associated with the softpkg
or implementation.

A property file of a particular type, defined at the top level of the descriptor, may be
overridden by implementation specific property files of that type, defined in an
implementation element.

CORBA Components- orbos/99-07-01 10-315

10

<IELEMENT propertyfile
(fileinarchive
| link) >

<IATTLIST propertyfile
type CDATA #IMPLIED >

The type attribute, distinguishes a property file from other types of property files. If
there is only one type of property file, or if the type of property fileisimplicit given a
context, then the type is not required.

10.2.2.26 Theruntime Element

The runtime element specifies a runtime required by a component implementation. An
example of aruntime is a Java VM.

<!/ELEMENT runtime EMPTY >
<IATTLIST runtime
name CDATA #REQUIRED
version CDATA #IMPLIED>

The name and version of the runtime are specified in the name and version
attributes. The version is specified in “w,x,y,z" format.

10.2.2.27The simple-link-attributes Entity

The simple-link-attributes entity is used to specify link attributes. The default link
form is a simple link.

<IENTITY % simple-link-attributes "

xml:link CDATA #FIXED 'SIMPLE’
href CDATA #REQUIRED
">

The user of an element that uses these link attributes will likely only need to be
concerned with the href attribute. However the user may specify other attributes if
desired.

Note — In the context of CORBA Components, the href attribute may be used to
specify INS format names.

To demonstrate the usage of an element that employs the simple-link-attributes entity,
consider the following element definition:

<I[ELEMENTexampleelement EMPTY >
<IATTLIST exampleelement
%simple-link-attributes; >

This could be used as follows:

| 10-316 CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

<exampleelement href="http://www.abc.com/xyz” />

Issue — The W3C XLL work is still in progress at the time of this writing.
This entity definition will be modified if necessary when the W3C work
completes.

10.2.2.28The softpkg Element
This is the root element of the descriptor. See section 10.2.2.1 on page 306.

10.2.2.29The softpkgref Element

The softpkgref element refers to an external softpkg. The file is referenced by a
fileinarchive element or alink. An optional implref element refers to a particular
implementation within the softpkg descriptor.

<IELEMENT softpkgref
((fileinarchive
| link
)

, implref?

) >

10.2.2.30Thetitle Element

The title element is used to specify the friendly, or tool name of the softpkg. The title
element contains string data.

<IELEMENT title (#PCDATA) >

10.2.2.31The usage Element

The usage element contains a string usage description.
<IELEMENT usage (#PCDATA) >

10.2.2.32The webpage Element

The webpage element, an optional child element of author, specifies a web page
associated with the author.

<IELEMENT webpage (#PCDATA) >

<IATTLIST webpage
%simple-link-attributes; >

CORBA Components- orbos/99-07-01 10-317

10

10.3 CORBA Component Descriptor

10-318

The CORBA Component descriptor describes a component. It is referred to by a
<descriptor type="CORBAComponent> element in a softpkg descriptor
describing a CORBA component.The CORBA Component descriptor specifies
component characteristics, used at design and deployment time. A component
descriptor file has a recommended “.ccd” extension, standing for CORBA Component
Descriptor.

The component descriptor is generated by a CIDL compiler. This is convenient as the
CIDL compiler has much of the necessary information at hand. However, the compiler
doesn’t have all of the information required. The user, likely with the help of a
packaging tool, will have to modify the generated descriptor. This could be done
manually, but it is more likely to be done with the help of a packaging tool.

The component descriptor is described using an XML vocabulary. The complete XML
DTD for the descriptor isin Appendix B on page 417. This chapter will discuss each
element of the descriptor in detail.

10.3.1 Component Feature Description

The component descriptor provides information that a design tool may use to display
information about a component. This includes information about the interfaces that the
component supports and its ports.

Note — For the purpose of component packaging and deployment we will use the term
ports to collectively describe the interfaces that a component uses and provides and the
events that it emits, publishes, and consumes. In addition, provides and uses ports will
be called interface ports, and emits, publishes, and consumes ports will be termed
event ports.

The component descriptor describes the structure of a component with respect to
supported interfaces, inherited components, and uses and provides ports. The
component is described by a componentfeatures element, which describes inherited
components, supported interfaces, used and provided interfaces, and emitted, published
and consumed events. |f the component inherits from other components then the
features of that component are described in a separate componentfeatur es element and
referenced by the inheritscomponent. The primary componentfeatur es element of the
descriptor isindicated by the repositoryid element of the component descriptor.

Each interface supported or provided by a component is described by an interface
element. Interface elements are referenced by the repository id of the interface. An
interface has a name and a repository id, and may inherit from other interfaces. The
inheritance relationship is represented by the inheritsinterface element.

This information allows atool to display the features of a component and to connect
components together based on those features. For example, a component which uses
interface X could be connected to another component that provides interface X, based
on information in each component’s descriptor.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

10.3.2 Deployment Information

At deployment time, the component descriptor is used to determine the type of
container in which the component needs to be installed and to provide information
about the component to the container.

The componentkind element tells the creator of the container what kind of container
to create. A componentkind can be either session, service, process, or entity.

The transaction element indicates the transactiona characteristic of the component.
The eventpolicy is used to indicate the quality of service of event ports

The threading element indicates how the container should dispatch operations on the
component instance. If threading is set to multithread then the component is ready to
accept multiple threads of control within a single instance. The component takes
responsibility for protecting its internal state. If threading is set to serialize then the
container will serialize all calls to a single instance. Note that although the component
will not need to protect instance state, the container may employ other threads to
invoke other instances of the component type, thus the component must protect any
static or class data.

The configurationcomplete element tells the deployment agent whether the
component expects for configuration_complete to be called after its properties
have been set and its ports configured to their initial state (e.g., as described by a
component assembly descriptor).

The segments element provides the container with information necessary to map
segment tags to segment names, segment tags to facet tags, and segment tags to
abstract storage home types. The facettag element references a provides interface
element described elsewhere in the descriptor. The provides element maps facet tags to
provided interface names. A container uses the information provided by these elements
to construct data structures mapping segment tags to segment names, facet tags to facet
names, and segment tags to facet tags. Note that a segment tag can map to more than 1
facet tag.

10.3.3 CIDL Compiler Responsibilities

A CIDL compiler is responsible for generating an initial component descriptor. This
initial descriptor is vendor specific and may be manipulated directly by the user or
using vendor supplied tools.

August 2,1999 11:13 pm CORBA Components- orbos/99-07-01 10-319

10

10.3.4 CORBA Component Descriptor Example

<?xml version="1.0"?>
<IDOCTYPE corbacomponent SYSTEM "corbacomponent.dtd">

<corbacomponent>

<corbaversion> 3.0 </corbaversion>
<componentrepid repid="IDL:BookStore:1.0" />
<homerepid repid="IDL:BookStoreHome:1.0" />
<componentkind>

<entity>

<servant lifetime="process" />

</entity>
</componentkind>
<security rightsfamily="corba" />
<threading policy="multithread" />
<configurationcomplete set="true" />

<segment name="bookseg" segmenttag="1">

<segmentmember facettag="1" />

<segmentmember facettag="2" />

<containermanagedpersistence>
<storagehome id="PSDL:BookHome:1.0" />
<pssimplementation id="ACME-PSS" />
<catalog type="PSDL:BookCatalog:1.0" />
<accessmode mode="READ_ONLY" />
<psstransaction policy="TRANSACTIONAL" >

<psstransactionisolationlevel level="SERIALIZABLE" />

</psstransaction>

<params>
<param name="x" value="1" />
</params>
</containermanagedpersistence>
</segment>

<homefeatures name="BookStoreHome"
repid="IDL:BookStoreHome:1.0">
<operationpolicies>
<operation hame="*">
<transaction use="never" />
</operation>
</operationpolicies>
</homefeatures>

<componentfeatures name="BookStore" repid="IDL:BookStore:1.0">
<inheritscomponent repid="IDL:Acme/Store:1.0" />
<ports>
<provides
providesname="book_search"
repid="IDL:BookSearch:1.0"
facettag="1">

| 10-320 CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

<operationpolicies>
<operation name="getByAuthor">
<requiredrights>
<right name="get"/>
</requiredrights>
</operation>
<operation name="getByTitle">
<requiredrights>
<right name="get"/>
</requiredrights>
</operation>
<operation name="getByISBN">
<requiredrights>
<right name="get"/>
</requiredrights>
</operation>
</operationpolicies>
</provides>
<provides
providesname="shopping_cart"
repid="IDL:CartFactory:1.0"
facettag="2" />
<uses
usesname="ups_rates"
repid="IDL:ShippingRates:1.0" />
<uses
usesname="fedex_rates"
repid="IDL:ShippingRates:1.0" />
<emits
emitsname="low_stock"
eventtype="StockRecord">
<eventpolicy policy="normal" />
</emits>
<publishes
publishesname="offer_alert"
eventtype="SpecialOffer">
<eventpolicy policy="normal" />
</publishes>
</ports>
</componentfeatures>

<componentfeatures name="Store" repid="IDL:Acme/Store">
<supportsinterface repid="IDL:Acme/GeneralStore">
<operationpolicies>
<operation name="*">
<transaction use="required" />
</operation>
</operationpolicies>
</supportsinterface>
<ports>
<provides

CORBA Components- orbos/99-07-01 10-321

10

providesname="admin"
repid="IDL:Acme/StoreAdmin:1.0"
facettag="3" />
</ports>
</componentfeatures>

<interface name="BookSearch" repid="IDL:BookSearch:1.0">
<inheritsinterface repid="IDL:SearchEngine:1.0" />
</interface>
<interface name="SearchEngine" repid="IDL:SearchEngine:1.0"/>
<interface name="CartFactory" repid="IDL:CartFactory:1.0"/>
<interface name="ShippingRates" repid="IDL:ShippingRates:1.0"/>
<interface name="StoreAdmin" repid="IDL:Acme/StoreAdmin:1.0">
<operationpolicies>
<operation hame="*">
<transaction use="required" />
<requiredrights>
<right name="manage"/>
<right name="set"/>
</requiredrights>
</operation>
</operationpolicies>
<l/interface>
<interface name="GeneralStore" repid="IDL:Acme/GeneralStore:1.0"/>

</corbacomponent>

10.3.5 The CORBA Component Descriptor XML Elements

This section describes the XML elements that make up a component descriptor. The
section is organized starting with the root element of the component descriptor
document, cor bacomponent, followed by all subordinate elements, in alphabetical
order. The complete CORBA component descriptor DTD may be found in Appendix B
on page 417.

| 10-322 CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

10.3.5.1 The corbacomponent Root Element

The corbacomponent element is the root element of the CORBA component
descriptor.

<IELEMENT corbacomponent

(corbaversion

, componentrepid

, homerepid

, componentkind

, interop?

, transaction?

, Security?

, threading

, configurationcomplete
, extendedpoapolicy*

, repository?

, segment*

, componentproperties?
, homeproperties?

, homefeatures+

, componentfeatures+

, interface*

, extension*

) >

These elements must be provided in the order presented.

corbaversion tells which version of CORBA the component is assuming.

componentrepid is the interface repository id of the component. It also refersto a
componentfeatures element later in the descriptor.

homerepid is the interface repository id of the home. It also refers to a
homefeatures element later in the descriptor.

componentkind describes properties of the component which will determine what
kind of container the component must reside in.

interop specifies interoperation information, e.g., with EJB.

transaction determines transaction policies for the entire component. This policy is
optional and may be overridden on individual facets or supported interfaces.

security specifies CORBA security rights family for the component.

threadingpolicy determines whether calls to the component will be serialized or
not.

configurationcomplete is set if the component expects for
configuration_complete to be called on the component after all of its properties
have been set and its ports have been connected.

extendedpoapolicy is used to set a POA policy for the component beyond the base
POA policies. For example, firewall policies.

CORBA Components- orbos/99-07-01 10-323

10

10-324

® repository provides a reference to a repository, such as the interface repository.

® segment describes a segment including its name, tag, member facets, and storage
home type.

* homefeatures describes the structure of the component’s homes.
® componentproperties specifies the default component properties file.
®* homeproperties specifies the default home properties file.

* componentfeatures describes inherited components, supported interfaces, uses and
provides ports, and emits, publish, and consumes ports of the component. If the
primary component inherits from other components, those components are
described in separate componentfeature elements.

® interface describes the simple name and repository id of an interface and points to
inherited interfaces. Between the componentfeatures and interface elements, one
can navigate al of the interfaces that a component uses, provides, supports, and
inherits.

® extension may be used by a user or vendor to provide proprietary information in the
component descriptor.

These are the top-level elements of the document. These descriptor elements are
described in terms of attributes and other elements. The remainder of this section will
describe the top-level and child elements in detail.

Elements are presented in alphabetical order so that they will be easy to locate.

See Appendix B.2 on page 421 for the full text of the component descriptor DTD.

10.3.5.2 The accessmode Element
Child element of container managedper sistence.

The accessmode element identifies whether the persistent state may be read and
written or only read.

<I[ELEMENT accessmode EMPTY>
<IATTLIST accessmode
mode (READ_ONLY|READ_WRITE) #REQUIRED >

The mode attribute identifies the access mode.

10.3.5.3 The catalog Element

Child element of container managedper sistence.

The catalog element identifies the catalog to used in loading and storing persistent
state.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

<IELEMENT catalog EMPTY>
<IATTLIST catalog
type CDATA #REQUIRED >

The type attribute identifies the type of catalog.

10.3.5.4 The componentfeatures Element
Child element of corbacomponent.

The componentfeatures element is used to describe a component with respect to the
components that it inherits from, the interfaces that the component supports, and its
provides, uses, emits, publish, and consumes ports. A component also has the features
that it inherits from other components. In addition, supported interfaces may inherit
from other interfaces. By following the inheritance chain, a graph is formed from the
primary component to a set of ports, supported interfaces, and other components. The
root component in this graph is identified by the repositoryid child element of

cor bacomponent.

The information obtained by traversing the componentfeatures graph may be displayed
by graphical tools. But more importantly, it allows component assembly tools to decide
what ports on a component are capable of connecting to ports on other components.

<IELEMENT componentfeatures
(inheritscomponent?
, supportsinterface*
, ports
, operationpolicies?
, extension*
) >

<IATTLIST componentfeatures
name CDATA #REQUIRED
repid CDATA #REQUIRED >

The name attribute is the non-qualified name of the component.

The repid attribute is the fully qualified repository id of the component. repid is also
used to refer to this component from elsewhere in the descriptor, for example from the
inheritscomponent element).

10.3.5.5 The componentkind Element
Child element of corbacomponent.

The componentkind element defines the component category. For more information
on these categories, see Section 7.1.4 on 173.

CORBA Components- orbos/99-07-01 10-325

10

10-326

<IELEMENT componentkind
(service
| session
| process
| entity
| unclassified

) >

10.3.5.6 The componentproperties Element

The componentproperties element specifies a default component property file. The
format of the property file is described in section 10.7 on page 365.

<I[ELEMENT componentproperties
(fileinarchive
) >
10.3.5.7 The componentrepid Element
Child element of corbacomponent.

componentrepid identifies the repository id of the component described by this
descriptor. The repository id also serves to point to the primary componentfeatures
element for this component within the descriptor, so as to distinguish it from inherited
components.

<IELEMENT componentrepid EMPTY >
<IATTLIST componentrepid
repid CDATA #IMPLIED >

repid is the fully qualified repository id of the component.

10.3.5.8 The configurationcompl ete Element
Child element of corbacomponent.

The configurationcomplete attribute is used to set whether configuration_complete
should be called on the component after it has been fully configured.

<IELEMENT configurationcomplete EMPTY >
<IATTLIST configurationcomplete
set (true | false) #REQUIRED >

10.3.5.9 The consumes Element

Child element of ports.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

A consumes port specifies an event that the component expects to receive. At
deployment or creation time, the component will be connected via a channel to other
components or entities that emit the event. The eventpolicy allows the transaction
policy of the event port to be specified.

<IELEMENT consumes
(eventpolicy
, extension*) >
<IATTLIST consumes
consumesname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

consumesname

The consumesname attribute identifies the name associated with the consumes
statement in idl.

eventtype

The eventtype attribute identifies the repository id of the event that the component
expects to consume.

10.3.5.10The contai ner managedper sistence Element
Child element of segment.

An containermanagedper sistence element specifies attributes required by the
container to manage the component’s persistent state using a PSS. storagehome
indicates the type of abstract storage home, pssimplementation identifies a particular
PSS implementation to be used, if not specified then the default PSS is used, as
determined by the container implementation. catalog specifies the catalog type.
accessmode specifies the access mode--read only or read-write. psstransactionpolicy
specifies whether transactions are to be used or not and, if so, the isolation level.
params is used to specify vendor specific parameters.

<IELEMENT containermanagedpersistence
(storagehome
, pssimplementation?
, catalog?
, accessmode
, psstransactionpolicy
, params?

) >

10.3.5.11The corbacomponent Element

The root element of this CORBA Component descriptor. See section 10.3.5.1.

CORBA Components- orbos/99-07-01 10-327

10

10-328

10.3.5.12 The cor baver sion Element
Child element of corbacomponent.

The corbaversion is used to identify the version of CORBA that the component
implementation is assuming. The version is represented by a major and minor number
separated by a“.”. For example, “<corbaversion>3.0</corbaversion>".

<IELEMENT corbaversion (#PCDATA) >

10.3.5.13The emits Element

Child element of ports.

An emits port specifies an event that the component generates. At deployment or
creation time, the component will be connected to a channel in which it can be
connected to consuming components. The eventpolicy allows the transaction policy of
the event port to be specified.

<IELEMENT emits
(eventpolicy
, extension*) >
<IATTLIST emits
emitsname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

The emitsname attribute identifies the name associated with the emits statement in idl.

The eventtype attribute identifies the repository id of the emitted events.

10.3.5.14The entity Element
Child element of componentkind.

The entity component kind is described in Section 7.1.4 on 173.

<IELEMENT entity
(servant) >
10.3.5.15The eventpolicy Element

Child element of corbacomponent.

Event policies define the quality of service associated with the event ports of the
component. The possible values are defined Section 7.2.8 on 180.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

<!ELEMENT eventpolicy EMPTY>
<IATTLIST eventpolicy
policy (normal | default | transaction) #IMPLIED>

10.3.5.16 The extendedpoapolicy Element
Child element of corbacomponent.

The extendedpoapolicy element is a nhame-value pair used to specify POA policies
beyond the base set of policies. It is for new policies, such as firewall, or future POA
policies yet to be defined. The extendedpoapolicy element must not be used to specify
any of the base POA policies. A set of POA policiesis predefined for each component
category, except for the unclassified category. Only the unclassified component type is
flexible with respect to base POA policies; these are set using the poapolicies child
element of the unclassified element.

<IELEMENT extendedpoapolicy EMPTY>
<IATTLIST extendedpoapolicy

name CDATA #REQUIRED

value CDATA #REQUIRED >

The name attribute is the name of the poa policy as defined in the specification where
it originated.

The value attribute is a valid attribute for the policy as defined in the specification
where it originated.
10.3.5.17The extension Element

Child element of corbacomponent, componentfeatures, homefeatures.

See section 10.2.2.11 on page 310.

10.3.5.18Thefileinarchive Element
See section 10.2.2.12 on page 310.

10.3.5.19The homefeatures Element

Child element of corbacomponent.

The homefeatures element is used to describe a component home with respect to the
homes that it inherits from and the operationpolicies of its interface.

August 2,1999 11:13 pm CORBA Components- orbos/99-07-01 10-329

10

10-330

<I[ELEMENT homefeatures
(inheritshome?
, Operationpolicies?
, extension*) >

<IATTLIST homefeatures
name CDATA #REQUIRED
repid CDATA #REQUIRED >

The name attribute is the non-qualified name of the home.

The repid attribute is the fully qualified repository id of the home. repid is also used
to refer to this component from elsewhere in the descriptor, for example from the
inheritshome element.

10.3.5.20The homeproperties Element

The homepr operties element specifies a default home property file. The format of the
property file is described in section 10.7 on page 365.

<IELEMENT homeproperties
(fileinarchive
) >

10.3.5.21The homerepid Element

Child element of corbacomponent.

homerepid identifies the repository id of the home of the component described by this
descriptor. The home repository id also serves to point to the primary homefeatures
element for the home within the descriptor, so as to distinguish it from inherited
homes.

<!I[ELEMENT homerepid EMPTY >
<IATTLIST homerepid
repid CDATA #IMPLIED >

repid is the fully qualified repository id of the component.

10.3.5.22The inheritscomponent Element
Child element of componentfeatures.

The inheritscomponent element specifies an inherited component.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

<!IELEMENT inheritscomponent EMPTY>
<IATTLIST inheritscomponent
repid CDATA #REQUIRED>

The repid identifies is the repository id of the inherited component, it also serves to
refer to the componentfeatures element of the inherited component, elsewhere in the
descriptor.

10.3.5.23Theinheritshome Element

Child element of homefeatures.

The inheritshome element specifies an inherited home.

<IELEMENT inheritshome EMPTY>
<IATTLIST inheritshome
repid CDATA #REQUIRED>

The repid identifiesis the repository id of the inherited home, it also serves to refer to
the homefeatures element of the inherited home, elsewhere in the descriptor.

10.3.5.24Theinheritsinterface Element
Child element of interface.

Theinheritsinterface element is used to specify interface inheritance. This allows, for
example, for a derivation chain to be followed from a supported or provided interface
up to but excluding the Object interface.

<IELEMENT inheritsinterface EMPTY>
<IATTLIST inheritsinterface
repid CDATA #REQUIRED>

The repid identifiesis the repository id of the inherited interface, and it is used to refer
to the interface element of the inherited interface, elsewhere in the descriptor.

10.3.5.25Theins Element

Child element of repository.

The ins element is used to specify an interoperable naming service name.

<IELEMENT ins EMPTY>
<IATTLIST ins
name CDATA #REQUIRED >

name is the INS name.

CORBA Components- orbos/99-07-01 10-331

10

10-332

10.3.5.26 Theinterface Element

Child element of corbacomponent.

Specifies an interface that the component, either directly or through inheritance,
provides, uses, or supports. The operationpolicies child element specifies default
transaction policies and required security rights for uses of the interface.

<IELEMENT interface
(inheritsinterface*
, operationpolicies?) >
<IATTLIST interface
name CDATA #REQUIRED
repid CDATA #REQUIRED >

The name attribute is the non-qualified name of the interface.

The repid attribute is the fully qualified repository id of the interface. repid is also
used to refer to this interface from elsewhere in the descriptor, for example from the
inheritsinterface element.

10.3.5.27Theinterop Element

Child element of corbacomponent.

The interop element is used to specify whether this component interoperates with
another component type by acting as a view for that type or having a view of that type.

<IELEMENT interop EMPTY>

<IATTLIST interop
type CDATA #REQUIRED
direction (hasview | isview) #REQUIRED
descriptor CDATA #REQUIRED >

The type attribute is the other component type, e.g., “EJB 1.1".

The direction attribute says whether the CORBA component is a view for the other
component type or the other way around.

The descriptor attribute references the descriptor file of the foreign component within
the component archive.

10.3.5.28Thelink Element
See section 10.2.2.18 on page 313.

10.3.5.29The objref Element

Child element of repository.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

The objref element is used to specify a stringified object reference.

<!ELEMENT objref EMPTY>
<IATTLIST objref
string CDATA #REQUIRED >

The string attribute holds the stringified object reference.

10.3.5.30The operation Element
Child element of operationpalicies.

The operation element is used to specify transaction and required security rights for a
particular operation (or group of operations if name="*").

<!IELEMENT operation
(transaction?
, requiredrights?) >
<IATTLIST operation
name CDATA #REQUIRED >

The name attribute specifies the name of the operation. If the name is specified as “*”
then the policies specified by this element apply to all operations in the particular
scope in which the operationpolicies parent element is defined.

10.3.5.31The operationpolicies Element

Child element of componentfeatures, homefeatures, interface, provides, and
supportsinterface,.

The oper ationpolicies element is used to specify a set of operation policies. It consists
of alist of operation child elements which each may specify security or transaction
policies of an operation or set of operations.

The scope of the operationpolicies element depends upon where it is specified. As a
child of componentfeatures it specifies the policies for the component operations,
such as the operations effecting facets, receptacles, and event ports. When used as a
child of homefeatures it specifies the palicies of the home interface operations. As a
child of interface it specifies the operation policies for all uses of the particular
interface. Operation policies set in a supportsinterface or provides element specify
operation policies for a particular use of an interface. Note that operation policies set in
supportsinterface or provides element supersede policies set in an interface element.

<!IELEMENT operationpolicies
(operation+) >

10.3.5.32The param Element

Child element of params.

CORBA Components- orbos/99-07-01 10-333

10

10-334

The param element is used to specify a name-value pair.

<IELEMENT param EMPTY >
<IATTLIST param
name CDATA #REQUIRED
value CDATA #REQUIRED >

The name attribute specifies the name.

The value attribute specifies the value.

10.3.5.33The params Element
Child element of container managedper sistence.

The params element is used to specify a set of one or more name-value pairs.

<IELEMENT params (param+) >

10.3.5.34The poapolicies Element
Child element of unclassified.

The poapolicies element is used to identify POA creation parameters for an empty
container in which an unclassified category component will reside.

<IELEMENT poapolicies EMPTY>
<IATTLIST poapolicies
thread (ORB_CTRL_MODEL | SINGLE_THREAD_SAFE) #REQUIRED
lifespan (TRANSIENT | PERSISTENT) #REQUIRED
idunigueness (UNIQUE_ID | MULTIPLE_ID) #REQUIRED
idassignment (USER_ID | SYSTEM_ID) #REQUIRED
servantretention (RETAIN | NON_RETAIN) #REQUIRED
requestprocessing (USE_ACTIVE_OBJECT_MAP_ONLY
|[USE_DEFAULT_SERVANT
|[USE_SERVANT_MANAGER) #REQUIRED
implicitactivation (IMPLICIT_ACTIVATION
[INON_IMPLICIT_ACTIVATION) #REQUIRED >

The poapolicies attributes are as defined in the base POA specification.

Note — Not al combinations of POA policies are valid. A good component packaging
tool will not permit the user to specify invalid POA policy combinations. If however,
an invalid combination of policiesis used to configure the empty container, the
container/POA should throw an exception.

10.3.5.35The ports Element

Child element of componentfeatures.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

The ports element describes what interfaces a component provides and uses, and what
events it emits, publishes, and consumes. Any number of uses, provides, emits,
publishes, and consumes elements can be specified in any order.

<IELEMENT ports
(uses
| provides
| emits
| publishes
| consumes
<>

10.3.5.36 The process Element

Child element of componentkind.

The process component kind is described in Section 7.1.4 on 173.
<IELEMENT process
(servant) >

10.3.5.37The provides Element

Child element of ports.
The provides element specifies an interface that is provided by the component.

The optional operationpolicies child element allows transaction policies and required
rights to be specified for the provided interface. The policies specified here override
any policies specified in the interface element, as identified by the repid.

<IELEMENT provides
(operationpolicies?
, extension*) >

<IATTLIST provides
providesname CDATA #REQUIRED
repid CDATA #REQUIRED
facettag CDATA #REQUIRED >

The providesname is the name given to the provides port in IDL.

The repid is the fully qualified repository id of the component. It is also used to
reference an interface element elsewhere in the descriptor.

The facettag is the tag for the facet. This attribute is used in combination with the
segmentmember element, defined in section 10.3.5.47 on page 338, to associate a
facet with a segment.

10.3.5.38The pssimplementation Element

Child element of container managedper sistence.

CORBA Components- orbos/99-07-01 10-335

10

10-336

The pssimplementation element identifies a particular vendor’s PSS implementation.

<IELEMENT pssimplementation EMPTY>
<IATTLIST pssimplementation
id CDATA #REQUIRED >

The id attribute identifies the particular PSS implementation.

10.3.5.39psstransaction Element
Child element of containermanagedper sistence

The psstransaction element is used to specify the PSS transactional policies
associated with the entity or process component.

<IELEMENT psstransaction (psstransactionisolationlevel?) >
<IATTLIST psstransaction
policy (TRANSACTIONAL|NON_TRANSACTIONAL) #REQUIRED >

10.3.5.40psstransactionisol ationlevel Element
Child element of psstransaction.

The psstransactionisolationlevel element is used to specify the transaction isolation
level when persistent store access is transactional.

<IELEMENT psstransactionisolationlevel EMPTY>
<IATTLIST psstransactionisolationlevel
level (READ_UNCOMMITTED|READ_COMMITTED|
REPEATABLE_READ|SERIALIZABLE) #REQUIRED >

The level attribute identifies one of four isolation levels.

10.3.5.41The publishes Element

Child element of ports.

A publishes port specifies an event that the component publishes. At deployment or
creation time, the component will be connected to a channel by which it can be
connected to consuming components. The eventpolicy allows the transaction policy of
the event port to be specified.

<IELEMENT publishes
(eventpolicy
, extension*) >
<IATTLIST publishes
publishesname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

The publishesname attribute identifies the name associated with the emits statement in
idl.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

The event_type attribute identifies the repository id of the published events.

10.3.5.42Therepository Element
Child element of corbacomponent.

The repository element is used to point to a repository, such as the interface repository.

<!IELEMENT repository
(ins
| objref
| link
) >
<IATTLIST repository
type CDATA #IMPLIED >

The type attribute specifies the type of repository. Currently, the only predefined value
for type is “CORBA Interface Repository”.

10.3.5.43requiredrights Element

Child element of operation and security.

The requiredrights element specifies alist of required rights. When used as a child of
operation, the rights specified must belong to arights family specified in the security
element. When used as a child of security the list of rights specify the available rights
in the rights family.

<!IELEMENT requiredrights
(right*) >
10.3.5.44right Element

Child element of requiredrights.

The right element specifies a particular required right. The right must be a member of
the rights family specified by the security element.

<!IELEMENT right
(description?) >
<IATTLIST right
name CDATA #REQUIRED >

The name attribute is the name of the required right.

10.3.5.45The security Element

Child element of corbacomponent.

CORBA Components- orbos/99-07-01 10-337

10

The security element is an optional child element of corbacomponent; it is required
whenever rights are assigned to component operations within the descriptor. It
specifies the rights family assumed when defining component operation rights. The
optional requiredrights element may be used to document the rights available in the
rights family.

<IELEMENT security
(requiredrights?) >
<IATTLIST security
rightsfamily CDATA #REQUIRED >

The rightsfamily attribute defines the rights family; for example, the “CORBA” rights
family.

10.3.5.46The segment Element
Child element of corbacomponent.

The segment element describes a component segment. It consists of alist of one or
more segmentmember child elements, indicating the facets that the segment supports,
and a container managedper sistence element indicating that the persistent state of the
segment is managed by the container. If the container managedper sistence element is
not present then the persistent state, if any, is managed by the component. Note that the
container managedper sistence element is only employed for entity and process
components.

<IELEMENT segment
(segmentmember+
, containermanagedpersistence?
, extension*
) >
<IATTLIST segment
name CDATA #REQUIRED
segmenttag CDATA #REQUIRED >

name is the name of the segment.

segmenttag is the segment’s tag.

10.3.5.47The segmentmember Element
Child element of segment.

The segmentmember element specifies a facet that is a member of a segment.

| 10-338 CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

<IELEMENT segmentmember EMPTY>
<IATTLIST segmentmember
facettag CDATA #REQUIRED >

The facettag attribute indicates the member facet's tag. It corresponds to a provided
interface with the same facet tag elsewhere in the descriptor. (See the provides tag
element in section 10.3.5.37 on page 335.)

10.3.5.48The servant Element

Child element of entity, process, session.

Servant lifetime policies control the lifetime of the servant which implements a
component’s operations and provide an aid to efficiently manage storage of
components within a server process. Servant lifetime policies are fixed for service
components. Servant lifetime policies must be specified for session, process and
entity components and are implemented by the component using APIs provided by the
container.

<IELEMENT servant EMPTY >
<IATTLIST servant
lifetime (component|method|transaction|container) #REQUIRED >

The possible values are defined in Section 7.2.5 on 176.

10.3.5.49The service Element

Child element of componentkind.

Specifies that the component is of the service category. The service component kind
is described in Section 7.2.13.1 on 185.

<IELEMENT service EMPTY >

10.3.5.50The session Element

Child element of componentkind.

Specifies that the component is of the session category. The session component
category is described in Section 7.2.13.2 on 186.

<IELEMENT session
(servant) >

10.3.5.51The storagehome Element

Child element of segment.

CORBA Components- orbos/99-07-01 10-339

10

10-340

The storagehome element specifies an abstract storage home type.

<IELEMENT storagehome EMPTY>
<IATTLIST storagehome
id CDATA #REQUIRED >

The id attribute specifies the repository id of the abstract storage home.

10.3.5.52The simple-link-attributes Entity
See section 10.2.2.27 on page 316.

10.3.5.53The supportsinterface Element
Child element of componentfeatures.

The supportsinterface element identifies an interface that the component supports, as
defined in IDL.

The optional operationpolicies child element allows transaction policies and required
rights to be specified for the supported interface. The policies specified here override
any policies specified in the interface element, as identified by the repid.

<IELEMENT supportsinterface
(operationpolicies?
, extension*) >

<IATTLIST supportsinterface
repid CDATA #REQUIRED >

The repid is the fully qualified repository id of the component. It is also used to
reference an interface element elsewhere in the descriptor.

10.3.5.54Thethreading Element

Child element of corbacomponent.

The threading element determines the threading policy of the container in which it is
placed.

<IELEMENT threading EMPTY>
<IATTLIST threading
policy (serialize | multithread) #REQUIRED >

Setting policy to serialize means that the container will serialize cals to the container.

Setting policy to multithread means that multiple threads of control can be active in
the component at one time.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

10.3.5.55Thetransaction Element

Child element of corbacomponent.

The transaction element controls the way transactions are managed by the container
for this component. Seven possible values can be selected by the component devel oper
to provide maximum flexibility.

<IELEMENT transaction EMPTY >
<IATTLIST transaction

use (self-managed|not-supported|required|supports|requires-
new|mandatory|never) #REQUIRED >

If the transaction use attribute is set to self-managed then it is assumed that the
component will manage transactions on its own. Other use values indicate that
transactions are to be managed by the container; the meaning of these values are
defined in the container chapter, Section 7.2.6 on 178.

10.3.5.56The unclassified Element

Child element of componentkind.

The unclassified element identifies that the component is of the unclassified sort. See
Section 7.2.1 on 173 for more information on the unclassified component category.

<IELEMENT unclassified
(poapolicies) >

10.3.5.57The uses Element

Child element of ports.

The uses element specifies an interface that is used by the component, as specified in
a component IDL uses declaration.

<IELEMENT uses (extension*) >
<IATTLIST uses
usesname CDATA #REQUIRED
repid CDATA #REQUIRED >

The usesname is the name given to the uses port in IDL.

The repid is the fully qualified repository id of the component. It is also used to
reference an interface element elsewhere in the descriptor.

August 2,1999 11:13 pm CORBA Components- orbos/99-07-01 10-341

10

10.4 Component Assembly Packaging

A component package is the vehicle for deploying a single component implementation,
A component assembly package is the vehicle for deploying a set of interrelated
component implementations. It is a template or pattern for instantiating a set of
components and introducing them to each other.

An assembly package consists of a descriptor and a set of component packages and
property files. These files may by packaged together in an archive file or distributed.
When distributed, the descriptor represents the package and holds links to its
associated files.

The component assembly descriptor describes which components make up the
assembly, how those components are partitioned, and how they are connected to each
other. A component assembly descriptor is the recipe for deploying a set of
interconnected components.

An assembly is normally created visually within a design tool, however it is possible to
create assemblies using more primitive tools.

Note — An assembly specifies an initial configuration. The actual connected graph of
components may evolve beyond that initial configuration. The assembly does not
address the evolution of this graph.

10.5 Component Assembly File

The component assembly archive file is a ZIP file containing a component assembly
descriptor, a set of component archive files, and, if necessary, a set of component
property files. The component assembly archive file has a “.aar” extension.

10.6 Component Assembly Descriptor

10-342

A component assembly descriptor is specified using an XML vocabulary. Each
component assembly package must contain a single descriptor file. Component
descriptors have a “.cad” extension. CAD stands for Component Assembly Descriptor.

The assembly descriptor describes a component assembly. It consists of elements
describing the components used in the assembly, connection information, and
partitioning information.

A component instantiation is always relative to a home. A deployed home is caled a
home “placement”.

Component instantiations are connected by their provides and uses interfaces, or by
their emits, publishes, and consumes events. If one component provides an interface of
a particular type and another component uses an interface of that type, then we can
pass the reference of the provided interface to the component that uses it, in effect
connecting the two components. In the same way, we connect two components where
one emits or publishes an event that the other consumes.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

Sets of component instances may be partitioned. Components may be free or
partitioned to a generic set of hosts and processes. This is really a process of
conveying that specific components are to be collocated within a single process or
host. Free components, components that are not used in a collocation may be deployed
in any manner at deployment time.

When used in an archive, the CAD file for the archiveis placed in atop level directory
called “meta-inf”.

CORBA Components- orbos/99-07-01 10-343

10

10.6.1 Component Assembly Descriptor Example

The following example illustrates how to write a component assembly descriptor. For
further information, see the element descriptions that follow and the XML DTDs in the
appendix.

<IDOCTYPE componentassembly SYSTEM "componentassembly.dtd">

<componentassembly id="277123">
<description>Example assembly"</description>
<componentfiles>
<componentfile id="A">
<fileinarchive name="ca.ccd"/>
</componentfile>
<componentfile id="B">
<fileinarchive name="cb.ccd"/>
</componentfile>
<componentfile id="C">
<fileinarchive name="cc.ccd">
<link href="ftp://lwww.xyz.com/car/cc.car"/>
<[fileinarchive>
</componentfile>
<componentfile id="D">
<fileinarchive name="cd.ccd"/>
</componentfile>
<componentfile id="E">
<fileinarchive name="ce.ccd"/>
</componentfile>
<componentfile id="F">
<fileinarchive name="cf.ccd"/>
</componentfile>
</componentfiles>

<partitioning>

<homeplacement id="AaHome">
<componentfileref idref="A"/>
<componentinstantiation id="Aa"/>

</homeplacement>

<processcollocation cardinality="*">
<usagename>Example process collocation</usagename>
<impltype language="C++" /> <!-- optional -->
<homeplacement id="BbHome">
<componentfileref idref="B" />
<componentinstantiation id="Bb"/>
</homeplacement>
<homeplacement id="CcHome">
<componentfileref idref="C"/>
<componentinstantiation id="Cc"/>

10-344 CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

</homeplacement>
</processcollocation>

<hostcollocation cardinality="1">
<usagename>Example host collocation</usagename>
<processcollocation cardinality="*">
<homeplacement id="DdHome" >
<componentfileref idref="D"/>
<componentinstantiation id="Dd"/>
</homeplacement>
<homeplacement id="EdHome">
<componentfileref idref="E"/>
<componentinstantiation id="Ee"/>
</homeplacement>
</processcollocation>
<homeplacement id="FfHome" >
<componentfileref idref="F"/>
<componentinstantiation id="Ff"/>
</homeplacement>
</hostcollocation>

<homeplacement id="AaaHome">

<usagename>Example home for A components</usagename>
<componentfileref idref="A"/>
<componentimplref idref="an A impl"/>
<homeproperties>

<fileinarchive name="AHomeProperties.cpf"/>
</homeproperties>
<componentproperties>

<fileinarchive name="defaultAProperties.cpf"/>
</componentproperties>
<registerwithhomefinder name="AaHome"/>

<componentinstantiation id="Aaa">
<usagename>Example component instantiation </usagename>
<componentproperties>
<fileinarchive name="AaaProperties.cpf"/>
</componentproperties>
<registercomponent>
<registerwithnaming name="sink"/>
<registerwithtrader>
<traderproperties>
<traderproperty>
<traderpropertyname>ppm</traderpropertyname>
<traderpropertyvalue>10</traderpropertyvalue>
</traderproperty>
<traderproperty>
<traderpropertyname>weight</traderpropertyname>
<traderpropertyvalue>333</traderpropertyvalue>
</traderproperty>
</traderproperties>

CORBA Components- orbos/99-07-01 10-345

10

10-346

</registerwithtrader>
</registercomponent>
</componentinstantiation>
</homeplacement>

</partitioning>

<connections>
<connectinterface>
<usesport>
<usesidentifier>abc</usesidentifier>
<componentinstantiationref idref="Aa"/>
</usesport>
<providesport>
<providesidentifier>abc</providesidentifier>
<componentinstantiationref idref="Bb" />
</providesport>
</connectinterface>
<connectevent>
<consumesport>
<consumesidentifier>pgr</consumesidentifier>
<componentinstantiationref idref="Aaa"/>
</consumesport>
<emitsport>
<emitsidentifier>mno</emitsidentifier>
<componentinstantiationref idref="Ee"/>
</emitsport>
</connectevent>
</connections>

</componentassembly>

10.6.2 Component Assembly Descriptor XML Elements

This section describes the XML elements that make up a component assembly
descriptor. The section is organized starting with the root element of the descriptor
document, componentassembly, followed by all subordinate elements, in al phabetical
order. The complete component assembly DTD may be found in Appendix B.4 on page
429.

10.6.2.1 The componentassembly Root Element

The componentassembly element is the root element of the component assembly
descriptor. The description element is text describing the assembly. The
componentfiles element lists the component files that are used in the assembly, the
partitioning element describes how homes and components are to be deployed. The

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

connections element describes how deployed components and homes are to be
connected. The extension element can be used to add proprietary or experimental
elements to the component assembly document.

<I[ELEMENT componentassembly
(description?
, componentfiles
, partitioning
, connections?
, extension*
) >
<IATTLIST componentassembly
id ID #REQUIRED
derivedfrom CDATA #IMPLIED >

Theid attribute is a DCE UUID which uniquely identifies the assembly.

The derivedfrom attribute is used to point to an assembly from which this assembly
was derived. The derivedfrom attribute contains the id of the source assembly.

Note — The derivedfrom attribute is for a deployment tool that wants to create a copy
of an assembly descriptor and archive to describe an actual deployment; it maintains
the relationship between the “clone”’ and the original. The new assembly descriptor
would have the destination addresses for each placement and collocation defined; and
collocations with non-ordinal cardinality in the original assembly would be copied to
one or more collocations, with singular cardinality, in the derived assembly. The new
archive file might prune constituent component archive files to contain single
implementations to facilitate copying component implementations to target deployment
hosts.

10.6.2.2 The codebase Element

See section 10.2.2.4 on page 307.

10.6.2.3 The componentfil e Element

The componentfile element refers to a component archive file containing a component
and home implementation. componentfile elements are referenced by homeplacement
elements.

componentfile contains either a fileinarchive, link or codebase element.

CORBA Components- orbos/99-07-01 10-347

10

<I[ELEMENT componentfile
(fileinarchive
| codebase
| link
) >

<IATTLIST componentfile
id ID #REQUIRED
type CDATA #IMPLIED >

The id attribute must uniquely identify the componentfile element within the
descriptor.

The optional type attribute specifies the type of component file. If unspecified then the
file is assumed to be CORBA component. An example use of the type attribute would
be to specify an EJB component file, where type="EJB 1.1".

10.6.2.4 The componentfil eref Element

The componentfileref element refers to a particular componentfile element in the
componentfiles block.

<I[ELEMENT componentfileref EMPTY >
<IATTLIST componentfileref
idref CDATA #REQUIRED >

The idref attribute corresponds to a unique componentfile id attribute.

10.6.2.5 The componentfil es Element

The componentfiles element is used to list al of the component files that are used in
the assembly. At least one component file must be specified.

Each component file is uniquely identified for reference elsewhere in the descriptor.
Multiple component instances may refer to a single component file.

<I[ELEMENT componentfiles
(componentfile+

) >

10.6.2.6 The componentimplref Element

The componentimplref element is used to refer to a particular implementation in a
component file.

10-348 CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

<!I[ELEMENT componentimplref EMPTY >
<IATTLIST componentimplref
idref CDATA #REQUIRED >

The idref attribute refers to a unique implementation element id in the component
descriptor. The componentimplref is optional if there is only one implementation in
the component file. Or it may be set at deployment time depending on the type of
platform that the component is deployed to.

10.6.2.7 The componentinstanti ation Element

The componentinstantiation element describes a particular instantiation of a
component relative to a home placement. The componentinstantiation element is a
direct child of the homeplacement element.

The usagename child element is used to specify a name for the placement, possibly for
display in atool. The componentproperties element refers to a property file
associated with this instantiation. It is used to configure the component once it is
created and after the home sets initial property values (as specified in the
homeplacement componentproperties element). The registercomponent element
instructs the installation process to register the component or its provided interfaces
with a naming service or trader.

<IELEMENT componentinstantiation
(usagename?
, componentproperties?
, registercomponent*
, extension*
) >

<IATTLIST componentinstantiation
id ID #REQUIRED >

Theid attribute is a unique identifier within the assembly descriptor for the
component. The id is used to refer to the component instance in the connect block.

10.6.2.8 The componentinstantiationref Element

The componentinstantiationref element refers to a particular
componentinstantiation element in the assembly descriptor.

<IELEMENT componentinstantiationref EMPTY >
<IATTLIST componentinstantiationref
idref CDATA #REQUIRED >

The idref attribute corresponds to a unique componentinstantiation id attribute.

CORBA Components- orbos/99-07-01 10-349

10

10-350

10.6.2.9 The componentproperties Element

The componentproperties element specifies a property file for a home. If the
component file has a default property file in the component package, the component
property file overrides the default. The property file may be specified by either a
fileinarchive or a codebase child element. The format of the property file is described
in section 10.7 on page 365.

When the componentproperties element is specified as part of a homeplacement
element, then the properties are used to configure each component created through that
home. When componentproperties is specified as part of a componentinstantiation
element, the properties are used to configure that single instantiation. If component
properties are set on both a homeplacement and an associated
componentinstantiation, then the component will be configured first by the
homeplacement component properties and then by the componentinstantiation
component properties.

<I[ELEMENT componentproperties
(fileinarchive
| codebase
) >

10.6.2.10The componentsuppor tedinterface Element

Specifies a component with a supports interface that can satisfy an interface
connection to a uses port within a connectinterface element. The component is
identified by a componentinstantiationref or a findby element. The
componentinstantiationref identifies a component within the assembly. The findby
element points to an existing component that can be found within a naming service or
trader, or using a stringified object reference.

<IELEMENT componentsupportedinterface
(componentinstantiationref
| findby
)>

10.6.2.11The connectevent Element

The connectevent element is used in the connections element to specify a connection
from a consumes port, of one component, to an emits or publishes port of another
component.

The consumesport element identifies a component and associated consumes port. The
emitsport element identifies a component associated emits port. The publishesport
element identifies a component and associated publishesport.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

<I[ELEMENT connectevent
(consumesport
, (emitsport
| publishesport
)
) >
<IATTLIST connectevent
id ID #IMPLIED >

Theid attribute is a unique identifier within the assembly descriptor. It is not required
or used elsewhere in the assembly descriptor, however someone (or a tool) might want
to use it to refer to a particular connectevent element.

10.6.2.12The connecthomes Element

The connecthomes element is used to specify a connection between a proxyhome and
another home.

The proxyhome element refers to the proxy home. The destinationhome element
refers to the home to which the proxy home will be connected. The destination home
can be either another proxy home or an actual home.

<IELEMENT connecthomes
(proxyhome
, destinationhome
) >

<IATTLIST connecthomes
id ID #IMPLIED >

Theid attribute is a unique identifier within the assembly descriptor. It is not required
or used elsewhere in the assembly descriptor, however someone (or atool) might want
to use it to refer to a particular connecthome element.

10.6.2.13The connectinterface Element

The connectinterface element is used to connect a component’s uses port to an
interface. The interface may be a provided or supported interface of another
component, it may be an existing interface (other than those provided by components
in the assembly), or it may be a home interface.

The usesport element identifies the component and port where the connection is to be
made. The providesport element identifies a component and provides port. The
componentsupportedinter face element identifies a component that has a supported
interface which will satisfy the uses port. The existinginterface element identifies a
way to find an existing interface that will satisfy the uses. The homeinter face element
identifies a homeinterface that the uses port requires.

CORBA Components- orbos/99-07-01 10-351

10

<IELEMENT connectinterface
(usesport
. (providesport
| componentsupportedinterface
| existinginterface
| homeinterface
)
) >
<IATTLIST connectinterface
id ID #IMPLIED >

Theid attribute is a unique identifier within the assembly descriptor. It is not required
or used elsewhere in the assembly descriptor, however someone (or a tool) might want
to use it to refer to a particular connectinterface element.

10.6.2.14The connections Element

The connections element is used to satisfy component uses and consumes
dependencies and to connect homes. The connectinter face element is used to connect
component uses ports to interfaces. the connectevent element is used to connect a
components consumes port to event producers. The connecthome element is used to
connect a proxy home to another home.

<IELEMENT connections
(connectinterface
| connectevent
| connecthome
| extension
<>

Note — If acomponentinstantiation involved in a connection has a cardinality greater
than 1, or if it is part of a process or host collocation with a cardinality greater than 1,
then multiple connections will be realized from or to each instance of the component.
That is, the connection will be made for each instantiation of the component.

10.6.2.15The consumesidentifier Element

A child element of consumingcomponent, consumesidentifier identifies which
consumes “port” on the component is to participate in the relationship. The type of the
consumes event must match the type of the connected emits or publishes event.

| 10-352 CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

<IELEMENT consumesidentifier (#PCDATA) >

10.6.2.16 The consumesport Element

Specifies the event-consuming side of an event connection relationship. The
consumesidentifier child element identifies the particular consumes port. The
component with this consumes port is identified by a componentinstantiationref or a
findby element. The componentinstantiationref identifies a component within the
assembly. The findby element points to an existing component that can be found
within a naming service or trader, or using a stringified object reference.

<IELEMENT consumesport
(consumesidentifier
. (componentinstantiationref
| findby
)
)>

10.6.2.17The description Element

The description element contains a string description. It is used to describe its parent
element. It contains string content.

<IELEMENT description (#PCDATA) >

10.6.2.18The destination Element

The destination element is used to record where a homeplacement,
executableplacement, hostcollocation, or processcollocation is to be (or has been)
deployed. The format of the destination string is determined by a particular
deployment tool.

<IELEMENT destination (#PCDATA) >

10.6.2.19The destinationhome Element

Identifies a home to be connected to by a proxy home. The home is identified by a
homeplacementref or a findby element. The homeplacementref identifies a home
within the assembly. The findby element points to an existing home that can be found
within a home finder, naming service, or trader, or using a stringified object reference.

August 2,1999 11:13 pm CORBA Components- orbos/99-07-01 10-353

10

10-354

<IELEMENT destinationhome
(homeplacementref
| findby
) >

10.6.2.20The emitsidentifier Element

The emitsidentifier identifies an emits “port” on a component. The identifier
corresponds to a emits identifier specified in IDL.

<IELEMENT emitsidentifier (#PCDATA) >

10.6.2.21The emitsport Element

Specifies the event-emiting side of an event connection relationship. The
emitsidentifier child element identifies the particular emits port. The component with
this emits port is identified by a componentinstantiationref or a findby element. The
componentinstantiationref identifies a component within the assembly. The findby
element points to an existing component that can be found within a naming service or
trader, or using a stringified object reference.

<IELEMENT emitsport
(emitsidentifier
., (componentinstantiationref
| findby
)
)>

10.6.2.22The executabl eplacement Element

This executableplacement element describes a deployment of an executable. The
executableplacement element may be a direct child of the partitioning element which
states that it has no collocation constraints; or it may be a child element of the
hostcollocation element.

The usagename child element is used to specify a name for the placement, possibly for
use in atool. The componentfileref element specifies the component file. The
componentimplref element refers to a specific implementation in the softpkg
descriptor. Note that the implementation referred to by componentimplref must have a
code type of “Executable’. The invocation element specifies any arguments with
which the executable should be invoked. The destination element is used to record
where the executableplacement is to be deployed.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

<!IELEMENT executableplacement
(usagename?
, componentfileref
, componentimplref
, invocation?
, destination?
, extension*
) >

<IATTLIST executableplacement
id ID #REQUIRED
cardinality CDATA "1" >

Theid attribute is a unique identifier within the assembly descriptor for the
executableplacement.

The cardinality attribute specifies how many instantiations of this executable may be
deployed. Possible values for cardinality are a specific number, a “+” to specify 1 or
more, or a“*” to specify 0 or more. The default cardinality is“1”.

10.6.2.23The existinginterface Element

Specifies an interface that can satisfy an interface connection to a uses port within a
connectinterface element. The findby element points to an existing interface that can
be found within a naming service or trader, or using a stringified object reference.

<IELEMENT existinginterface
(findby) >

10.6.2.24The extension Element

See section 10.2.2.11 on page 310.

10.6.2.25Thefileinarchive Element
See section 10.2.2.11 on page 310.

10.6.2.26 The findby Element

The findby element is used to resolve a connection between two components. It tells
the installation agent how to locate a party, usually a component, interface, or home,
involved in the relationship. In the simplest case, the installer will know where the
item is because it was the one responsible for installing it. But if the item to be located
aready exists in the installation environment, the installer must know how to find it. It
could locate a component in a naming service, in a trader, a home finder, or by a
stringified object reference. The purpose of the findby element is to provide such
information.

CORBA Components- orbos/99-07-01 10-355

10

10-356

The namingser vice element specifies a naming service name. The
stringifiedobjectref element is a stringified IOR for the item. The traderquery is a
query for locating the item in atrader. The homefinder is a nameto look up ahomein
a home finder.

<IELEMENT findby
(namingservice
| stringifiedobjectref
| traderquery
| homefinder
| extension

) >

10.6.2.27The homefinder Element

The homefinder element is used to indicate a home finder name for a home.

<IELEMENT homefinder EMPTY >
<IATTLIST homefinder
name CDATA #REQUIRED >

The name attribute specifies the name of the home as registered with the home finder.
Home finders are defined in Section 5.9 on 105.

10.6.2.28The homei nterface Element

Specifies a home with an interface that can satisfy an interface connection to a uses
port within a connectinterface element. The home is identified by a
homeplacementref or a findby element. The homeplacementref identifies a home
within the assembly. The findby element points to an existing home that can be found
within a home finder, a naming service or trader, or using a stringified object
reference.

<I[ELEMENT homeinterface
(homeplacementref
| findby
) >

10.6.2.29The homeplacement Element

This homeplacement element describes a particular deployment of a component home.
The homeplacement element may be a direct child of the partitioning element which
states that it has no collocation constraints; or it may be a child element of the
hostcollocation or processcollocation elements which states specific host or process
collocation constraints.

The usagename child element is used to specify a name for the placement, possibly for
use in atool. The componentfileref element specifies the component file. The
componentimplref element refers to a specific implementation in the component file.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

The homeproperties element refers to a state file associated with the home placement;
it is used to configure the home after it is created. The componentpr operties element
refers to a property file used to configure all components created through the home.
The registerwithhomefinder element instructs the installation process to register the
home with the home finder. The registerwithnaming element instructs the installation
process to register the home with a naming service. The registerwithtrader element
instructs the installation process to register the home with a trader service. The
componentinstantiation element instructs the installation agent to create a component
using this home. The destination element is used to record where the homeplacement
is to be deployed, if designated.

<I[ELEMENT homeplacement
(usagename?
, componentfileref
, componentimplref?
, homeproperties?
, componentproperties?
, registerwithhomefinder*
, registerwithnaming*
, registerwithtrader*
, componentinstantiation*
, destination?
, extension*
) >
<IATTLIST homeplacement
id ID #REQUIRED
cardinality CDATA "1" >

Theid attribute is a unique identifier within the assembly descriptor for the
homeplacement. Theid is used to refer to the home in the connect block.

The cardinality attribute specifies how many instantiations of this component may be
deployed. Possible values for cardinality are a specific number, a “+" to specify 1 or
more, or a“*” to specify 0 or more. The default cardinality is“1”.

Note that if the cardinality is greater than 1 and there are any connections to this
homeplacement, then connections will be made to each instance of the deployed
home.

10.6.2.30The homeplacementref Element

The homeplacementref element refers to a particular homeplacement element in the
assembly descriptor.

<IELEMENT homeplacementref EMPTY >
<IATTLIST homeplacementref
idref CDATA #REQUIRED >

The idref attribute corresponds to a unique homeplacement id attribute.

CORBA Components- orbos/99-07-01 10-357

10

10-358

10.6.2.31The homeproperties Element

The homeproperties element specifies a property file for a home. The properties are
used to configure the home when it is created. The property file may be specified by
either a fileinarchive or a codebase child element. The format of the property fileis
described in section 10.7 on page 365.

<IELEMENT homeproperties
(fileinarchive
| codebase
) >

10.6.2.32The hostcollocation Element

A hostcollocation specifies a group of component instances that are to be deployed
together to a single host. The child elements are an optional usagename, an optional
impltype, and a list of processcollocation, homeplacement, and
executableplacement elements. If impltype is specified then each of the component
instances must have implementations supporting the implementation type. If impltype
is not specified, then at deployment time each of the collocated components must have
implementations supporting the target deployment platform.

<IELEMENT hostcollocation
(usagename?
, impltype?
., (homeplacement
| executableplacement
| processcollocation
| extension
)+
, destination?
) >
<IATTLIST hostcollocation
id ID #IMPLIED
cardinality CDATA "1" >

The id attribute uniquely identifies this host collocation in the component assembly
file. The cardinality attribute specifies how many instances of this host collocation
may be deployed. Possible values for cardinality are a specific number, a“+” to
specify 1 or more, or a“*” to specify 0 or more. The default cardinality is“1”.

Note that if the cardinality is greater than 1, and there are connections to components
within the hostcollocation, then connections will be made to the corresponding
components or component homes within each instance of the collocation.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

10.6.2.33Theimpltype Element

Issue — May not be necessary.

10.6.2.34Theinvocation Element

The invocation element is used to specify invocation arguments for an executable
placement.

<IELEMENT invocation EMPTY >
<IATTLIST invocation
args CDATA #REQUIRED >

The args attribute is a string containing the arguments to be used in invoking the
executable. Note, that argsis just the arguments to the executable, it does not include
the executable name.

10.6.2.35Thelink Element
See section 10.2.2.18 on page 313.

10.6.2.36 The namingservice Element

The naming service element is used to indicate that a component or interface should be
found using a naming service.

<IELEMENT namingservice EMPTY >
<IATTLIST namingservice
name CDATA #REQUIRED >

The name attribute specifies the naming service name to look up.

10.6.2.37The partitioning Element

Component partitioning specifies a deployment pattern of homes and components to
generic processes and hosts. The pattern is expressed via collocation constraints.

A particular usage of a component is always relative to a component home. Uses of
component homes are recognized in the assembly as home placements. A home
placement, and component instantiations relative to that home, may be collocated with
other home placements and component instantiations in a process. Processes and home
placements may be collocated within alogical host. A home placement that is not part
of a process or host collocation may be deployed without constraint.

An executable placement is the placement of a particular executable. It may be
partitioned without constraint or as part of a host collocation.

CORBA Components- orbos/99-07-01 10-359

10

10-360

Within a partitioning element, homeplacement, executableplacement and
collocation constraints are specified. The homeplacement child element specifies a
freely deployable home. The executableplacement element specifies a freely
deployable executable. The processcollocation and hostcollocation child elements are
used to group homeplacement together into deployable units.

A homeplacement may be declared as part of ahost or process collocation or by itself.
The actual host and process will be determined at deployment time. Home placements,
executable placements, process collocations, and host collocations all have an
associated cardinality. The default cardinality is“1”. An ordinal cardinality of 1 or
greater mandates that the deployable unit must be instantiated that many times,
cardinality of “+” indicates 1 or more, and “*” indicates zero or more.

<IELEMENT partitioning
(homeplacement
| executableplacement
| processcollocation
| hostcollocation
| extension
>

10.6.2.38The processcol | ocation Element

The processcollocation element specifies a group of home and associated component
instantiations that are to be deployed together to a single process. The child elements
are an optional usagename, an optional impltype, and alist of homeplacement
elements. If impltype is specified then each of the component instances must have
implementations supporting the implementation type. If impltype is not specified, then
at deployment time each of the collocated components have implementations
supporting the target deployment platform.

<!ELEMENT processcollocation
(usagename?
, impltype?
, (homeplacement
| extension
)+
) >
<IATTLIST processcollocation
id ID #IMPLIED
cardinality CDATA "1" >

The id attribute uniquely identifies this process collocation in the component assembly
file. The cardinality attribute specifies how many instances of this process collocation
may be deployed. Possible values for cardinality are a specific number, a“+” to
specify 1 or more, or a“*” to specify 0 or more. The default cardinality is“1”.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

Note that if the cardinality is greater than 1, and there are connections to components
and homes within the processcollocation, then connections will be made to
corresponding components or component homes within each instance of the
collocation.

10.6.2.39The providesidentifier Element

The providesidentifier identifies a provides “port” on a component. The identifier
corresponds to a provides identifier specified in component IDL.

<IELEMENT providesidentifier (#PCDATA) >

10.6.2.40The providesport Element

Specifies the interface providing side of an interface connection relationship. The
providesidentifier child element identifies the particular provides port. The
component with this provides port is identified by a componentinstantiationref or a
findby element. The componentinstantiationref identifies a component within the
assembly. The findby element points to an existing component that can be found
within a naming service or trader, or using a stringified object reference.

<!ELEMENT providesport
(providesidentifier
, (componentinstantiationref
| findby
)

)>

10.6.2.41The publishesidentifier Element

The publishesidentifier identifies a publishes “port” on a component. The identifier
corresponds to the identifier specified in IDL for the publishes port.

<IELEMENT publishesidentifier (#PCDATA) >

10.6.2.42The publishesport Element

Specifies the event-publishes side of an event connection relationship. The
publishesidentifier child element identifies the particular publishes port. The
component with this publishes port is identified by a componentinstantiationref or a
findby element. The componentinstantiationref identifies a component within the
assembly. The findby element points to an existing component that can be found
within a naming service or trader, or using a stringified object reference.

CORBA Components- orbos/99-07-01 10-361

10

10-362

<IELEMENT publishesport
(publishesidentifier
. (componentinstantiationref
| findby
)
)>

10.6.2.43Theregistercomponent Element

The registercomponent element is used to specify that a component, a provided
interface, or a published event should be registered with a naming service or trader.

Issue — In the case of events, what gets registered?

If an emitsidentifier, providesidentifier, or publishesidentifier is specified then that
element is registered. If none of the above are specified then it is implied that the
component itself is to be registered.

Registration may be through a naming service or trader. The registerwithnaming
element specifies a naming service registration and registerwithtrader specifies a
trader registration. The interface, event, or component registration may be registered
with both a naming service and a trader, multiple times. At least one registration must
take place.

<IELEMENT registercomponent

((emitsidentifier
| providesidentifier
| publishesidentifier
)?

, (registerwithnaming
| registerwithtrader
)+

) >

10.6.2.44The registerwithhomefinder Element

The registerwithhomefinder element tells the installer to register a component home
with the home finder.

<!IELEMENT registerwithhomefinder EMPTY >
<IATTLIST registerwithhomefinder
name CDATA #REQUIRED >

The name attribute is the name to register the home with in the home finder.

10.6.2.45The registerwithnaming Element

The registerwithnaming element tells the installer to register a component instance or
home with a naming service after it is created.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

<IELEMENT registerwithnaming EMPTY >
<IATTLIST registerwithnaming
name CDATA #IMPLIED >

The name attribute is the naming service name. If the name is not specified, it will be
determined at deployment time, possibly with interaction with the user.

10.6.2.46Theregisterwithtrader Element

The registerwithtrader element tells the installer to register a component instance or
home with a trader after it is created.

<!ELEMENT registerwithtrader
(traderproperties) >

<IATTLIST registerwithtrader
tradername CDATA #IMPLIED >

10.6.2.47The proxyhome Element

Identifies a proxy home that is to be connected to another home. The home is
identified by a homeplacementref or a findby element. The homeplacementr ef
identifies a home within the assembly. The findby element points to an existing home
that can be found within a home finder, naming service, or trader, or using a stringified
object reference.

<IELEMENT remotehome
(homeplacementref
| findby
) >
10.6.2.48The stringifiedobj ectref Element

The stringifiedobjectref element is used to locate a component by its object reference.

<IELEMENT stringifiedobjectref (#PCDATA) >

10.6.2.49Trader elements

The trader elements are used to register a home, component or interface with a trader
and to find a home, component or interface using a trader query. The trader elements
closely parallel trader functionality in name and purpose.

Issue — The trader elements have to be reviewed to make sure that they serve
the purpose intended. Also, consider using a property file.

CORBA Components- orbos/99-07-01 10-363

10

10-364

<IELEMENT traderconstraint (#PCDATA) >

<!ELEMENT traderexport
(traderservicetypename
, traderproperties

) >

<IELEMENT traderpolicy
(traderpolicyname
, traderpolicyvalue

) >
<IELEMENT traderpolicyname (#PCDATA) >
<IELEMENT traderpolicyvalue (#PCDATA) >
<IELEMENT traderpreference (#PCDATA) >

<!IELEMENT traderproperties
(traderproperty+) >

<!IELEMENT traderproperty
(traderpropertyname
, traderpropertyvalue

) >
<IELEMENT traderpropertyname (#PCDATA) >
<!IELEMENT traderpropertyvalue (#PCDATA) >

<!IELEMENT traderquery
(traderservicetypename
, traderconstraint
, traderpreference?
, traderpolicy*
, traderspecifiedprop*

) >
<IELEMENT traderservicetypename (#PCDATA) >

<IELEMENT traderspecifiedprop (#PCDATA) >

Note — These still need to be explained in text. In the mean time, look at the trader
spec. The correspondence should be obvious.

10.6.2.50The usagename Element

A user defined “friendly” name.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

<IELEMENT usagename (#PCDATA) >

10.6.2.51The usesidentifier Element

A child element of usingcomponent, usesidentifier identifies which uses “port” on
the component is to participate in the relationship. The type of the using interface must
match the type of the connected provides interface.

<IELEMENT usesidentifier (#PCDATA) >

10.6.2.52The usingcomponent Element

Specifies the interface using side of an interface connection relationship. The
usesidentifier child element identifies the particular uses port. The component with
this uses port is identified by a componentinstantiationref or a findby element. The
componentinstantiationref identifies a component within the assembly. The findby
element points to an existing component that can be found within a naming service or
trader, or using a stringified object reference.

<IELEMENT usesport
(usesidentifier
., (componentinstantiationref
| findby
)
)>

10.7 Property File Descriptor

The property file details component or home attribute settings. Properties are described
using an XML vocabulary described below. The property file is used at deployment
time to configure a home or component instance. A configurator uses the property file
to determine how to set component and component home property attributes.

The property file may be edited using a text editor or with the help of a GUI tool. A
packaged component may be shipped with a set of default properties that may be
altered by the end user.

The suggested file extension for property filesis “.cpf”, for Component Property File.

10.7.1 Property File Example

August 2, 1999 11:13 pm

The following property descriptor example has 3 properties: buffer Size, niceGuys,
and sanityTestTime.. The buffer Size parameter is along type; the niceGuys property
is a sequence of strings; and the sanityTestTime property is a structure of type
timestruct, containing 3 shorts.

CORBA Components- orbos/99-07-01 10-365

10

<properties>

<simple name=bufSize type="long">
<description>Size of Whizitron input buffer</description>
<value>4096</value>
<defaultvalue>256</defaultvalue>

</simple>

<sequence name="niceGuys" type="sequence<string>">
<simple type="string"><value>Dave</value></simple>
<simple type="string"><value>Ed</value></simple>
<simple type="string" ><value>Garrett</value></simple>
<simple type="string" ><value>Jeff</value></simple>
<simple type="string"><value>Jim</value></simple>
<simple type="string"><value>Martin</value></simple>
<simple type="string"><value>Patrick</value></simple>

</sequence>

<struct name="sanityTestTime" type="timestruct">
<description>Time to start daily sanity check</description>
<simple name="hour" type="short"><value> 24 </value></simple>
<simple name="minute" type="short"><value> 0 </value></simple>
<simple name="second" type="short"><value> 0 </value></simple>
</struct>
</properties>

The properties document has 3 major elements: simple, sequence and struct.

The simple element describes a single primitive idl type. The sequence element
corresponds to an IDL sequence, and the struct element corresponds to an IDL struct.

Note — If the user of the property file does not have static information about the types
specified in the property file then it will likely need to construct the type into a
DynAny.

10.7.2 Property File XML Elements

This section describes the XML elements that make up a properties file. The section is
organized starting with the root element of the properties document, properties,
followed by all subordinate elements, in aphabetical order. The complete properties
file DTD may be found in Appendix B.3 on page 427.

| 10-366 CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

10.7.2.1 The properties Root Element

The properties element is the root element of the properties document. It contains an
optional description and any combination of simple, sequence, and struct elements.

<!IELEMENT properties
(description?
, (simple
| sequence
| struct
)*
) >

10.7.2.2 The choice Element
<IELEMENT choice (#PCDATA) >

The choice element is used to specify a valid simple property value.
10.7.2.3 The choices Element

<!ELEMENT choices (choice+) >

The choices element is a list of one or more choice elements.
10.7.2.4 The defaul tval ue Element

<IELEMENT defaultvalue (#PCDATA) >

The defaultvalue element is used to specify a default simple property value.
10.7.2.5The description Element

<IELEMENT description (#PCDATA) >

The description element is used to provide a description of its enclosing element.

10.7.2.6 The properties Element

The root element of the properties file. See section 10.7.2.1 on page 367.

August 2,1999 11:13 pm CORBA Components- orbos/99-07-01 10-367

10

10-368

10.7.2.7 The simple Element

The simple element is used to specify an attribute value of a primitive type. simple
contains a mandatory value element, and optional description, choices, and
defaultvalue elements.

The value element is used to specify the value of the simple type. If the value element
is empty, the value is deemed unspecified. If the value is unspecified, and there is a
defaultvalue defined, then the default value will be used.

The description, choices and defaultvalue child elements may be used to provide
guidance to the end user in deciding how to set the attributes.

<IELEMENT simple
(description?
, value
, choices?
, defaultvalue?
) >
<IATTLIST simple
name CDATA #IMPLIED
type (boolean
| char
| double
| float
| short
| long
| objref
| octet
| short
| string
| ulong
| ushort
) #REQUIRED >

name

The name attribute specifies the name of the attribute as it appears in IDL. The name
attribute is required, except when the property is used in a sequence.

type
The type attribute specifies the type of the corresponding attribute. Property types are
either an IDL primitive data type, or an objref.

Note — The objref isin its stringified form in the property element. The stringified
object reference is converted into a proper object reference before being assigned to its
corresponding attribute.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

10.7.2.8 The sequence Element

The sequence element is used to represent a sequence of similar types. It may be a
seguence of simple types, a sequence of structs, or a sequence of sequences. The order
of the sequence elements in the property file is preserved in the constructed sequence.
An optional description may be used to describe the sequence property.

<IELEMENT sequence
(description?
. (simple*
| struct*
| sequence*
)
) >
<IATTLIST sequence
name CDATA #IMPLIED
type CDATA #REQUIRED >

name

The name attribute specifies the name of the sequence as it appearsin IDL. The name
attribute is required, except when the sequence property is used in another sequence.

type
The type attribute specifies the type of the corresponding IDL sequence. The type of
each element in the sequence must match the sequence type.

10.7.2.9 The struct Element

The struct element corresponds to an IDL structure. It may be composed of simple
properties, sequences, or other structs.

<IELEMENT struct
(description?
., (simple
| sequence
| struct
)*
) >
<IATTLIST struct
name CDATA #IMPLIED
type CDATA #REQUIRED >

name

The name attribute specifies the name of the struct attribute as it appearsin IDL. The
name attribute is required, except when the structure property is used in a sequence.

CORBA Components- orbos/99-07-01 10-369

10

type
The type attribute specifies the type of the corresponding IDL struct.

10.7.2.10Thevalue Element

The value element is used to specify a simple value.

<IELEMENT value (#PCDATA) >

| 10-370 CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

10.8 Component Deployment

Components, component homes, and component assemblies are deployed on target
hosts in a network using a deployment tool provided by an ORB or tool vendor.

The aim of deployment is to install and “hook-up” alogical component topology to a
physical computing environment. The deployment is specified by an assembly file, or
in the degenerate case, an individual component file.

The basic steps in the deployment process are;

1. Identify on which hosts the components are to be installed. This information will
most likely come from an interaction between tool and user. Components are
deployed either singly or together with other components as part of a process or
host collocation.

2. Install component implementations on each platform where corresponding
component instances are to be deployed. If a component implementation, uniquely
identified by a UUID, is already installed on a host then it does not have to be
installed again.

3. Instantiate components and component homes on particular hosts. The mapping for
doing so was determined in step 1.

4. Connect components as specified in the assembly descriptor’s connect block.

A stand-alone component file may be deployed as well as assembly files. In that case,
step 4 does not apply. Unless otherwise noted, all interfaces defined in the subsequent
sections are in the Deployment module which is imbedded within the Components
module (see Appendix A.1 on 401 for a description of the naming structure proposed
by this specification).

10.8.1 Participants in Deployment

The deployment of a component or component assembly is carried out by a
deployment application in conjunction with a set of helper objects. The helper objects
include component repositories, assembly and component factories, an object
representing an assembly itself, and a container.

The following class diagram and scenario represents a deployment architecture.

Note — Of the interfaces described below, only Componentlnstallation,
AssemblyFactory, and Assembly are required by this specification; the other
interfaces are included for illustrative purposes and to support an end-to-end scenario.

August 2,1999 11:13 pm CORBA Components- orbos/99-07-01 10-371

10

10.8.1.1 Deployment Architecture

<<instantiates>>
AssemblyFactory{- - - - - - - - - - _____. » Assembly

----------- ST . ComponentServer . !
_ DeploymentApplication . N '
' <<instantiates>> - !
Al |
. Container .
<<instantiates>> °. l
| « v

Al ComponentHome

Componentlnstallation <<instantiates>> !

v

Component

Figure 10-1 Deployment Architecture

10.8.1.2 Deployment Scenario
The steps in deploying and activating a component assembly could unfold as follows.

1. The deployment application has a conversation with the user to determine where
each component or collocation is to be placed. Information about where
components are to be located is recorded in a copy of the component assembly
descriptor. This marked-up assembly descriptor will be used later by the Assembly
object to direct the creation of the assembly.

2. Next the component implementations are installed on the platforms where they are
to be used. The deployment application calls install on the Installation object,
passing the component implementation id and a string denoting the address of the
component file. If the component has not already been installed on the target
platform, then the Installation object retrieves the component file and makes it
available in the local environment.

| 10-372 CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

3. The deployment application then creates an Assembly object. Assembly objects
coordinate the creation and destruction of component assemblies. Each Assembly
object represents an assembly instantiation. Assembly objects are created by
calling an AssemblyFactory object on the host where the assembly object is to be
created. The AssemblyFactory is passed a string pointing to the assembly
descriptor file.If necessary, the AssemblyFactory brings the assembly descriptor
into the local environment and makes its location known to the Assembly object.

4. The assembly descriptor uses the assembly descriptor as a recipe for creating the
assembly. The descriptor specifies which components and component homes to
create, where they are to be located, what components are to be collocated with
each other, and what components are to be connected with each other. Based on this
information the Assembly object creates each component and component home
and “hooks-up” the assembly.

5. In creating a component, the Assembly object must create a component server,
create a container within the server, install a home object within the container, and
then use the home to create the component. This work is completed with the help of
a set of objects on each host. These are ServerActivator, ComponentServer,
Container, and the ComponentHome.

6. The Assembly object first calls the ServerActivator on the target host to create
the component server. There is one instance of the ServerActivator object on each
host. The Assembly object creates the component server by calling the
create_component_server operation on the ServerActivator object. This
operation creates an empty server process and returns a reference to the
ComponentServer object of the newly created process.

7. Each server contains a single ComponentServer object. It is used by the
Assembly object to create containers within the server. A container is created
when the Assembly object calls create_container on the ComponentServer
object, passing in a container identifier or list of container attributes. The
create_container operation returns a reference to the Container interface of the
newly created container.

8. The Assembly object uses the Container interface to install the component home
into the container. This is accomplished by calling install_home on the
Container object. The install_home operation takes a component id parameter
and returns a reference to the home interface.

9. In order to create the home, the Container must load the DLL, shared object file,
or .class file into the container process. To determine the path or the or fully
qualified name of the component implementation, the container calls the
get_implementation operation of the Installation object. It passes in the id of
the component implementation and is returned the absolute location or name of the
component implementation. The container then loads the implementation and
instantiates the home object. The home object reference is then returned to the
Assembly object.

August 2,1999 11:13 pm CORBA Components- orbos/99-07-01 10-373

10

10-374

10. The Assembly object uses the component’s home object to create the component
instance. The instance is created by calling create_component on the home
reference. create_component returns a CCMObject object reference.

11. If applicable, a configurator is applied to the component.

12. Once al of the components are installed, the Assembly object connects
components in the assembly based on the information in the connect block of the
assembly descriptor. It does this by calling the receptacle connect operation on the
CCMObject reference.

13. Following the successful consummation of each connection in the assembly, the
Assembly object calls configuration_complete on each object in the assembly
to signal that all of itsinitial connections have been fixed.

10.8.2 Componentlnstallation Interface

The Componentinstallation object is used to install, query, and remove component
implementations on a single platform. There is at most one Componentinstallation
object per host.

It is intended that this interface be general enough to encompass a wide range of
underlying implementations, as the Componentinstallation interface will likely be
implemented on top of a vendor specific implementation repository.

exception Unknownimplid { };
exception InvalidLocation { };

interface Componentinstallation {
boolean install(in string implUUID, in string component_loc)
raises InvalidLocation;
boolean replace(in string implUUID, in string component_loc)
raises InvalidLocation;
boolean remove(in string implUUID)
raises UnknownImplid;

h

install

The install operation installs a component on the particular host on which the
Componentinstallation object resides. The component_loc parameter points to the
location of the component package. The implUUID refers to a particular
implementation within that component package.

replace

The replace operation replaces a component implementation previously installed. The
component_loc parameter points to the component package and the implUUID points
to a particular implementation within the package.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

remove

The remove operation removes a previously installed component implementation. The
implUUID refers to the particular implementation.

10.8.3 AssemblyFactory Interface

The AssemblyFactory interface is used to create Assembly objects. A single
AssemblyFactory object must be present on each host where Assembly objects are
to be created.

exception InvalidLocation { };
exception InvalidAssembly { };

interface AssemblyFactory {
Cookie create(in string assembly_loc)
raises InvalidLocation;
Assembly lookup(in Cookie c)
raises InvalidAssembly;
boolean destroy(in Cookie c)
raises InvalidAssembly;

h

create

The create operation creates an Assembly object on the host on which the
AssemblyFactory is located. It takes a string location for the assembly descriptor
and returns a Cookie that may be used to reference the assembly later. The Cookie is
the same as specified in Section 5.5.3.4 on 79, of this document. The operation raises
an InvalidLocation exception if the assembly descriptor could not be found.

lookup

The lookup operation takes a Cookie and returns an object reference to an
Assembly object. It throws InvalidAssembly exception if the Cookie did not
reference an existing assembly, known by this AssemblyFactory.

destroy

The destroy operation destroys the assembly referenced by a Cookie. If the assembly
isactive it will first tear down the assembly. The operation returns true if the assembly
was successfully destroyed, false otherwise.

10.8.4 Assembly Interface

The Assembly interface represents an assembly instantiation. It is used to build up
and tear down component assemblies. Building the assembly means that it is going to
instantiate all of the components in the assembly and create connections between them
as specified in the assembly descriptor. Tearing the assembly down means removing all
connections and destroying the components in the assembly.

August 2,1999 11:13 pm CORBA Components- orbos/99-07-01 10-375

10

10-376

enum AssemblyState {INACTIVE, INSERVICE};

interface Assembly {
boolean build();
boolean tear_down();
AssemblyState get_state();

h

build

The build operation builds the assembly and returns TRUE if the assembly was built
successfully and FALSE otherwise. If the build failed then the build operation is
responsible for cleaning up any pieces of the assembly that were created.

tear_down

The tear_down operation removes all of the objects in the assembly. It cannot be
responsible for any objects which the assembly objects created during operation.

get_state

The get_state operation returns whether the assembly is active or inactive. An
assembly will be inactive before it is built, while it is being built, when it is being torn
down, and after it has been torn down. It will be active after it is successfully built and
before it is torn down.

10.8.5 Component Entry Points (Component Home Factories)

Each component package contains a component implementation. A component
implementation is a dynamically loadable module such asaDLL, ashared library, or a
Java .class file. The component implementation file contains the code for the
component implementation and its associated home implementation.

To load a component into a container, the home for the component must first be
created. The home is then used to create component instances. The component’s home
is created by calling a well known entry point in the component implementation file.

The entry point is an operation or function whose existence and signature is common
across all component implementation files. The generic entry point function allows a
container to create a component home without having to have specific knowledge of

that home or its associated component implementation.

Entry points are programming language specific. Depending on the language, it is
either a function or static method. The signature and semantics of the operation are
specified for Java and C++.

In general, the entry point function takes no arguments and returns a pointer or
reference to a HomeExecutor Base.

CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

10

August 2, 1999 11:13 pm

Entry Pointsin Java

In Java, the entry point is the name of a class and static method which may be invoked
to create a servant which implements the component home. The method must have the
following signature:

public static HomeExecutor Base
foo();

For instance, if one wrote the following code for the entry point:
package bigbank.corbacomponents.Account;
public class AccountHomeFactory {
public static HomeExecutor Base create() {
return new AccountHomel mpl();

}
}

Then the string representing the entry point string would be
“bigbank.corbacomponents.Account.AccountHomeFactory.create”.

Entry Pointsin C++

In C++, the entry point is the symbol in a shared library or DLL which should be
invoked to return the HomeExecutorBase for the component’s home
implementation.

The entry point should have “C” linkage (i.e. no name-mangling) and have the
following signature:

HomeExecutor Base* (*)();

So for example:

extern"C" {
HomeExecutor Base* createAccountHome() {
return new AccountHomel mpl();
¥
¥

In this case, the entry point would simply be “createAccountHome”.

CORBA Components- orbos/99-07-01 10-377

10

| 10-378 CORBA Components - orbos/99-07-01 August 2, 1999 11:13 pm

Changesto CORBA and Services 1

This chapter will provide instructions for the OMG editors as to where the new
material which supports CORBA components will be placed in the existing OMG
specifications.

11.1 Changestothe CORBA Core

This section summarizes all the changes to the CORBA core introduced by the
CORBA components specification. All of these enhancements become part of the base
conformance point for CORBA.

local interface types (Section 4.1 on page 45)
CORBA::LocalObject (Section 4.1.1 on page 47)

C++ mappings for local interface types (Section 4.1.2 on page 47)
Java mappings for local interface types (Section 4.1.3 on page 48)
import statement enhancements (Section 4.2 on page 53)
repository identity declarations (Section 4.3 on page 55)

IDL grammar (Section 4.4 on page 57)

Component IDL (Section 5.3.1 on page 64)

© © N o 0 M w0 D P

Home IDL (Section 5.8.1.1 on page 94)

=
©

Changes to CORBA::Object (Section 5.4.4.1 on page 69)

[EEN
[N

. Attribute exceptions (Section 5.7 on page 91)

=
n

Changes to CORBA::ORB
 resolve_initial_references (Section 5.9 on page 105)

| August 2, 1999 10:07 pm CORBA Components Volume| - orbos/99-07-01 11-379

11

11-380

13. Changes to the Java to IDL mapping (Section 8.2.1.1 on page 229)

14. Changes to the Interface Repository (Volume Il - orbos/99-07-03)

11.1.1 Local interface types

The grammar for specifying local interfaces is defined by changing productions 6 and
7 of the CORBA 2.3 IDL BNF from:

<forward_dcl> ::=[“abstract”] “interface” <identifier>

<interface_header> ::=[“abstract”] “interface” <identifier>

to:

[<interface_inheritance_spec>]

<forward_dcl>::=[“abstract” | “local”] “interface” <identifier>

<interface_header> ::=[“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]

The semantics associated with local types are as follows:

An interface declaration containing the keyword local declares alocal interface. An
interface declaration not containing the keyword local is referred to as an
unconstrained interface. An object implementing alocal interfaces is referred to as
alocal object.

A local interface may inherit from other local or unconstrained interfaces.

An unconstrained interface may not inherit from alocal interface. An interface
derived from alocal interface must be explicitly declared local.

A valuetype may support a local interface.

Any IDL type, including an unconstrained interface, may appear as a parameter,
attribute, return type, or exception declaration of a local interface.

A local interface is alocal type, asisany non-interface type declaration constructed
using a local interface or other local type. For example, a struct, union, or
exception with a member that is alocal interface is also itself alocal type.

A local type may be used as a parameter, attribute, return type, or exception
declaration of alocal interface or of a valuetype.

A local type may not appear as a parameter, attribute, return type, or exception
declaration of an unconstrained interface or as a state member of a valuetype.

Local types cannot be marshaled and references to local objects cannot be converted
to strings. Any attempt to marshal alocal object, such as via an unconstrained base
interface, as an Object, or as the contents of an any, or to pass a local object to
ORB::object_to_string, shall result ina MARSHAL system exception with
OMG minor code 2 (defined in Realtime CORBA specification).

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:07 pm

11

The usage of client side language mappings for local types shall be identical to
those of equivalent unconstrained types.

The DIl is not supported on local objects, nor are asynchronous invocation
interfaces.

The _non_existent, _is equivalent and _hash CORBA::Object pseudo-operations
shall be supported by references to local objects.

The _is a, get_interface, get domain_managers, _get palicy,
_get_client_policy, _set_policy overrides, _get_policy_overrides, and
_validate_connection pseudo-operations, and any DIl support pseudo-operations,
may resultinaNO_IMPLEMENT system exception with minor code ??? when
invoked on a reference to a local object.

Language mappings shall specify server side mechanisms, including base classes
and/or skeletons if necessary, for implementing local objects, so that invocation
overhead is minimized.

Invocations on local objects are not ORB mediated. Specifically, parameter copy
semantics are not honored, interceptors are not invoked, and the execution context
of alocal object does not have ORB service Current object contexts that are
distinct from those of the caller. Implementations of local interfaces are responsible
for providing the parameter copy semantics expected by clients.

Local objects have no inherent identities beyond their implementations’ identities as
programming objects. The lifecycle of the implementation is the same as the
lifecycle of the reference.

Instances of local objects defined as part of OMG specifications to be supplied by
ORB products or object service products shall be exposed through the
ORB::resolve_initial_references operation or through some other local object
obtained from resolve_initial_references.

11.1.2 LocalObject

Locality constrained objects are implemented by using CORBA:: L ocalObject to
provide implementations of Object pseudo operations and any other ORB specific
support mechanisms that are appropriate for locality constrained objects. Object
implementation techniques are inherently language mapping specific. Therefore, the
L ocalObject type is not defined in IDL, but is specified by each language mapping.

August 2, 1999 10:07 pm

The Local Object type provides implementations of the following Obj ect pseudo-
operations that raise the NO_IMPLEMENT system exception:

is a

get_interface
get_domain_managers
get_policy
get_client_policy
set_policy_overrides

CORBA Components Volume | - orbos/99-07-01 11-381

11

11-382

® get policy overrides

® validate connection

Additionally, it provides implementations of the following pseudo-operations:
® non_existent - always returns false

® hash - returns a hash value that is consistent for the lifetime of the object

® is equivalent - returns true if the references refer to the same L ocal Object
implementation

Attempting to use a L ocalObject to create a DIl request results in a
NO_IMPLEMENT system exception. Attempting to marshal or stringify a
LocalObject resultsin a MARSHAL system exception. Narrowing and widening of
references to L ocalObjects must work as for regular object references.

11.1.3 C++ Mappings

The C++ mapping of LocalObject is a class derived from CORBA::Object that is
used as a base class for locality constrained object implementations. A locality
constrained object is implemented by a class derived both from the class mapping the
interface and from CORBA::L ocalObject.

nanmespace CORBA

{
cl ass Local Obj ect
public virtual Object
{
pr ot ect ed:
Local Obj ect ();
~Local Obj ect ();
publi c:
virtual void _add_ref();
virtual void _renmove_ref();
/'l pseudo operations not shown...
s
b

Member functions and any data members needed to implement the Cbj ect pseudo-
operations and any other ORB support functions must also be supplied but are not
shown.

_add_ref

The _add_ref member function is called when the reference is duplicated. A default
implementation is provided that does nothing. A derived implementation may use this
operation to maintain a reference count.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:07 pm

11

_remove_ref

The _remove_ref member function is called when the reference is released. A default
implementation is provided that does nothing. A derived implementation may use this
operation to maintain a reference count, and del ete the object when the count becomes
zero.

11.1.4 Java Mappings

August 2, 1999 10:07 pm

The Java mapping of LocalObject is a class which implements all the operations in
the org.omg.CORBA.Object interface. This class is used as a base class for locality
constrained object implementations. A locality constrained object is implemented by a
class which implements the generated signature Java interface and which extends the
org.omg.CORBA.LocalObject class.

The Java mapping will also provide Helper and Holder classes for alocal interface.
The Helper class will implement the narrow() operation. The Holder classes will
allow for use of local interfaces as out and inout parameters.

ORB implementations must detect attempts to marshal local objects and throw a
CORBA::MARSHAL exception. In a Java ORB implementation the implementation
of the org.omg.CORBA .portable.OutputStream.write_Object() operation must
check if the object passed in is of type org.omg.CORBA.LocalObject and if so a
CORBA::MARSHAL exception must be thrown.

CORBA Components Volume | - orbos/99-07-01 11-383

11

package org. ong. CORBA;
i mport org.ong. CORBA. portable. *;

public class Local Obj ect
i mpl enment's org. ong. CORBA. (bj ect

{
public Local Object()
{}
public bool ean _is_equival ent (org. ong. CORBA. Obj ect that)
{
return equal s(that);
}
public bool ean _non_existent ()
{
return false;
}
public int _hash(int nmaxinmm
{
return hashCode();
}
public boolean _is_a(String Identifier)
{
t hr ow new NO_| MPLEMENT() ;
}
public org.ong. CORBA. Obj ect _duplicate()
{
t hr ow new NO_| MPLEMENT() ;
}
public void _rel ease()
{
t hr ow new NO_| MPLEMENT() ;
}
public Request _request(String operation)
{
t hr ow new NO_| MPLEMENT() ;
}
public Request _create_request(
Cont ext ctx,
String operation,
NVLi st arg_list,
NamedVal ue result)
{

t hr ow new NO_| MPLEMENT() ;

| 11-384 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:07 pm

11

August 2, 1999 10:07 pm

}

public Request _create_request(
Cont ext ctx,
String operation,
NVLi st arg_|ist,
NanmedVal ue result
Excepti onLi st exceptions,
Cont ext Li st cont exts)

{
}

t hr ow new NO_| MPLEMENT() ;

public org.ong. CORBA. Obj ect _get interface()
{

}

t hr ow new NO_| MPLEMENT() ;

public org.ong. CORBA. Ohject get interface_def()

{
t hr ow new NO_| MPLEMENT() ;

}
public ORB _orb()
{
t hr ow new NO | MPLEMENT() ;
}

public Policy _get _policy(int policy_ type)
{

}

t hr ow new NO_| MPLEMENT() ;

publ i c Domai nManager[] _get domai n_manager s()

{
}

t hr ow new NO_| MPLEMENT() ;

public org.ong. CORBA. Obj ect _set policy_override(
Pol i cy[] policies,
Set Overri deType set add)

{

t hr ow new NO_| MPLEMENT() ;
}
public boolean _is_|ocal ()
{

t hr ow new NO | MPLEMENT() ;
}

public Servant Object _servant prei nvoke(

CORBA Components Volume | - orbos/99-07-01

11-385

11

11-386

String operation,
O ass expect edType)

{
t hr ow new NO_| MPLEMENT() ;
}
public void _servant_postinvoke(Servant Gbj ect servant)
{
t hr ow new NO_| MPLEMENT() ;
}

public QutputStream _request(
String operation,
bool ean responseExpect ed)

{
}

t hr ow new NO_| MPLEMENT() ;

public InputStream _i nvoke(Qut put St ream out put)
throws Applicati onExcepti on, Remarshal Exception

{
t hr ow new NO_| MPLEMENT() ;
}
public void _rel easeRepl y(I nputStream i nput)
{
t hr ow new NO_| MPLEMENT() ;
}
public bool ean vali date_connection()
{
t hr ow new NO_| MPLEMENT() ;
}

11.1.5 Core Interfaces Changed to Local

The following CORBA 2.3 interfaces are changed to local interfaces:
® CORBA::Current
® All the interfaces in the DynamicAny module

* All the interfaces in the PortableServer module

The following CORBA Messaging interfaces are changed to local interfaces:
®* CORBA::PolicyManager

® CORBA::PolicyCurrent

®* CORBA::Pollable

®* CORBA::DlIPollable

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:07 pm

11

®* CORBA::PollableSet
® All the interfaces in the Messaging module that inherit CORBA::Policy

11.1.6 Import

August 2, 1999 10:07 pm

This specification extends IDL to provide a mechanism for importing external name
scopes into IDL specifications.

The grammar for the import statement is described by the following BNF:
<specification> ::= <import>* <definition>"
<import>::=“import” <imported_scope>“;”

<imported_scope> ::= <scoped_name> | <string_literal>

The <imported scope> non-terminal may be either a fully-qualified scoped name
denoting an IDL name scope, or a string containing the interface repository ID of an
IDL name scope, i.e., a definition object in the repository whose interface derives from
IR::Container.

The definition of import obviates the need to define the meaning of IDL constructsin
terms of “file scopes’. This specification defines the concepts of a specification as a

unit of IDL expression. In the abstract, a specification consists of a finite sequence of
ISO Latin-1 characters that form a legal IDL sentence. The physical representation of
the specification is of no consequence to the definition of IDL, though it is generally

associated with afile in practice.

Any scoped name that begins with the scope token (“::”) is resolved relative to the
global scope of the specification in which it is defined. In isolation, the scope token
represents the scope of the specification in which it occurs.

A specification that imports name scopes must be interpreted in the context of a well-
defined set of IDL specifications whose union constitutes the space from within which
name scopes are imported. By “a well-defined set of IDL specifications’, we mean
any identifiable representation of IDL specifications, such as an interface repository.
The specific representation from which name scopes are imported is not specified, nor
is the means by which importing is implemented, nor is the means by which a
particular set of IDL specifications (such as an interface repository) is associated with
the context in which the importing specification is to be interpreted.

The effects of an import statement are as follows:

® The contents of the specified name scope are visible in the context of the importing
specification. Names that occur in IDL declarations within the importing
specification may be resolved to definitions in imported scopes.

® |mported IDL name scopes exist in the same space as names defined in subsequent
declarations in the importing specification.

® |DL module definitions may re-open modules defined in imported name scopes.

CORBA Components Volume | - orbos/99-07-01 11-387

11

11-388

Importing an inner name scope (i.e., a hame scope nested within one or more
enclosing name scopes) does not implicitly import the contents of any of the
enclosing name scopes.

When a name scope is imported, the names of the enclosing scopes in the fully-
qualified pathname of the enclosing scope are exposed within the context of the
importing specification, but their contents are not imported. An importing
specification may not re-define or re-open a name scope which has been exposed
(but not imported) by an import statement.

Importing a name scope recursively imports all name scopes nested within it.

For the purposes of this specification, name scopes that can be imported (i.e.,
specified in an import statement) include the following: modules, interfaces,
valuetypes, structures, unions, and exceptions.

Redundant imports (e.g., importing an inner scope and one of its enclosing scopes
in the same specification) are disregarded. The union of all imported scopes is
visible to the importing program.

This specification does not define a particular form for generated stubs and
skeletons in any given programming language. In particular, it does not imply any
normative relationship between units specification and units of generation and/or
compilation for any language mapping.

11.1.7 Repository identity declarations

The following grammatical productions shall be added to the IDL grammar:
<type_id_dcl>::=“typeld” <scoped_name> <string_literal>

<type_prefix_dcl> ::= “typePrefix” <scoped_name> <string_literal>

11.1.8 Repository identity declaration

The syntax of arepository identity declaration is as follows:

<type_id_dcl> ::=“typeld” <scoped_name> <string_literal>
A repository identifier declaration includes the following elements:
® the keyword typeld

® a<scoped_name> that denotes the named IDL construct to which the repository

identifier is assigned

® astring literal that must contain a valid repository identifier value

The <scoped_name> is resolved according to normal IDL name resolution rules, based
on the scope in which the declaration occurs. It must denote a previously-declared
name of one of the following IDL constructs:

¢ module
* interface

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:07 pm

11

« component
* home

« facet

* receptacle

* event sink

* event source
« finder

« factory

« value type

« value type member
« value box

* constant

* typedef

e exception

* attribute

e operation

e enum

* local

The value of the string literal is assigned as the repository identity of the specified type
definition. This value will be returned as the Repositoryld by the interface repository
definition object corresponding to the specified type definition. Language mappings
constructs, such as Java helper classes, that return repository identifiers shall return the
values declared for their corresponding definitions.

At most one repository identity declaration may occur for any named type definition.
An attempt to re-define the repository identity for atype definition isillegal, regardless
of the value of the re-definition.

If no explicit repository identity declaration exists for a type definition, the repository
identifier for the type definition shall be an IDL format repository identifier, as defined
in section 10.6.1 of the CORBA 2.3 specification.

11.1.9 Repository identifier prefix declaration

August 2, 1999 10:07 pm

The syntax of arepository identifier prefix declaration is as follows:

<type_prefix_dcl> ::= “typePrefix” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:

® the keyword typeld

® a<scoped_name> that denotes an IDL name scope to which the prefix applies

® astring literal that must contain the string to be pre-fixed to repository identifiersin
the specified name scope

CORBA Components Volume | - orbos/99-07-01 11-389

11

11-390

The <scoped_name> is resolved according to normal IDL name resolution rules, based
on the scope in which the declaration occurs. It must denote a previously-declared
name of one of the following IDL constructs:

e module

« interface (including abstract or local interface)

« value type (including abstract, custom, and box value types)

« specification scope (::)

The specified string is pre-fixed to the body of all repository identifiersin the specified
name scope, whose values are assigned by default. To elaborate:

By “prefixed to the body of a repository identifier”, we mean that the specified string
isinserted into the default IDL format repository identifier immediately after the
format name and colon (“IDL:") at the beginning of the identifier. A forward slash (
‘I') character is inserted between the end of the specified string and the remaining
body of the repository identifier.

The prefix is only applied to repository identifiers whose values are not explicitly
assigned by atypeld declaration. The prefix is applied to all such repository identifiers
in the specified name scope, including the identifier of the construct that constitutes the
name scope.

11.1.10 IDL Grammar modifications

In addition the extensions to IDL grammar specified in the previous sections, the
following productions shall be modified to define the scopes in which local, typeld,
and typePr efix may occur:

<definition> ::= <type_dcl>"“;”
| <const_dcl>*;"
| <except_dcl>*“;"
| <interface>"“;”
| <module>*“;"
| <value>*“;”
| <type_id_dcl>"*“;"
| <type_prefix_dcl>*“;"

<export> ;= <type_dcl>*“;"
| <const_dcl>*;"
| <except_dcl>*“;"
| <attr_dcl>*;"
| <op_dcl>*;”
| <type_id_dcl>"*;"
| <type_prefix_dcl>*“;"

11.1.11 Keywords

This specification defines the following new keywords in IDL:

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:07 pm

11

import local typeld typePrefix

11.1.12 Component IDL extensions

The extensions to IDL for components are described by the following grammar.

August 2, 1999 10:07 pm CORBA Components Volume | - orbos/99-07-01 11-391

11

<definition> ::= <type_dcl>"“;"
| <const_dcl>*“;"
| <except_dcl>*;”
| <interface>*“;”
| <value>*“;"
| <module>“;”
| <component> “;”
| <home_dcl>*“;”

<component> ::= <component_dcl>
| <component_forward_dcl>

<component_forward_dcl> ::=“component” <identifier>
<component_dcl>::= <component_header> “{" <component_body>“}"
<component_header> ::= “component” <identifier>

[<component_inheritance_spec>]
[<supported_interface_spec>]

w N

<supported_interface_spec> ::= “supports” <scoped_name>{“,
<scoped_name> }*

<component_inheritance_spec>::=":" <scoped_name>
<component_body> ::= <component_export>*
<component_export>::= <provides_dcl>";"

| <uses_dcl>";"

| <emits_dcl>*“;"

| <publishes_dcl>*“;"

| <consumes_dcl>*“;”

| <attr_dcl>"*;”

<provides_dcl>::="“provides” <interface_type> <identifier>

<interface_type> ::= <scoped_name>
| “Object”

<uses_dcl>::="uses” [“multiple”] <interface_type> <identifier>
<emits_decl>::=“emits” <scoped_name> <identifier>
<publishes_decl>::="publishes” <scoped_name> <identifier>
<consumes_dcl>::="“consumes” <scoped_name> <identifier>

<attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>

<readonly_attr_spec> ::=“readonly” “attribute” <param_type_spec>

| 11-392 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:07 pm

11

<readonly_attr_declarator>

<readonly_attr_declarator> ::= <simple_declarator> [<raises_expr>]
| <simple_declarator>{ “,” <simple_declarator> }*

<attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>

<attr_declarator> :;= <simple_declarator> <attr_raises_expr>

| <simple_declarator>{ “,” <simple_declarator> }*

<attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]
| <set_excep_expr>

<get_excep_expr> .= “getRaises” <exception_list>
<set_excep_expr>::=“setRaises” <exception_list>
<exception_list>::=“(" <scoped_name>{"“,” <scoped_name>}+")"

<home_dcl>::=<home_header> <home_body>

<home_header> ::= “home” <identifier>[<home_inheritance_spec>]
“manages” <scoped_name> [<primary_key spec>]

<home_inheritance_spec>::="." <scoped_name>
<primary_key_spec>::="“primaryKey” <scoped_name>
<home_body>::=“{" <home_export>*“}"
<home_export ::= <export>

| <factory_dcl>"*;"

| <finder_dcl>*“;"

<factory_dcl>::="“factory” <identifier>“(“ [<init_param_decls>]"“)" [
<raises_expr>]

<finder_dcl>::="“finder” <identifier>“(“ [<init_param_decls>]"“)" |
<raises_expr>]

11.1.13 Home IDL Extensions

The syntax for a home definition is as follows:

August 2, 1999 10:07 pm CORBA Components Volume | - orbos/99-07-01 11-393

11

11-394

<home_dcl> ::= <home_header> <home_body>

<home_header> ::= “home” <identifier>[<home_inheritance_spec>]
“manages” <scoped_name> [<primary_key_spec>]

<home_inheritance_spec> ::=“:” <scoped_name>
<primary_key_spec>::="“primaryKey” <scoped_name>
<home_body>::="{" <home_export>*“}"

<home_export ::= <export>
| <factory_dcl>"*;"
| <finder_dcl>*“;"

<factory_dcl>::=“factory” <identifier>"“(“ [<init_param_decls>]"“)" [
<raises_expr>]

<finder_dcl>::="finder” <identifier>“(“ [<init_param_decls>]1")" |
<raises_expr>]

A <home_header> consists of the following elements:

® the keyword home

® an <identifier> that names the home in the enclosing name scope

® an <inheritance spec>, consisting of a colon “:” and a <scoped_name> that
denotes a previously defined home type

® the keyword manages
® a<scoped_name> that denotes a previously defined component type

® an optional primary key definition, consisting of the keyword primaryKey
followed by a <scoped_name> that denotes a previously defined value type that is
derived from the abstract value type Components::PrimaryKeyBase.
Additional constraints on primary keys are described in Section 5.8.3.1, “Primary
key type constraints”’.

11.1.14 Changes to the Object interface

The CORBA component specification extends the CORBA::Object pseudo interface
with a single operation:

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:07 pm

11

module CORBA {
interface Object { // PIDL

Object get_component ();
|3
|3

If the target object reference is itself a component reference (i.e., it denotes the
component itself), the get_component operation returns the same reference (or
another equivalent reference). If the target object reference is a facet reference the
get_component operation returns an object reference for the component. If the target
reference is neither a component reference nor a provided reference, get_component
returns a nil reference.

11.1.15 Changesto GIOP

As with other operations on CORBA::Object, get_component isimplemented as a
request to the target object. Following the pattern of other CORBA::Object
operations (i.e., _interface, _is_a, and _non_existent; see section 15.4.1.2 of the
CORBA 2.3 specification), the operation name in GIOP request corresponding to
get_component shal be“ _component”.

11.1.16 Changes to the Attribute declaration syntax

August 2, 1999 10:07 pm

The modified syntax for attributes is as follows:

CORBA Components Volume | - orbos/99-07-01 11-395

11

11-396

<attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>

<readonly_attr_spec> ::=“readonly” “attribute” <param_type_spec>
<readonly_attr_declarator>

<readonly_attr_declarator> ::= <simple_declarator> [<raises_expr>]
| <simple_declarator> {“,” <simple_declarator> }*

<attr_dcl> ::=[“readonly”] “attribute” <param_type_spec>

<simple_declarator>{"“,” <simple_declarator> }*
<attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>

<attr_declarator> ::= <simple_declarator> <attr_raises_expr>
| <simple_declarator> {“,” <simple_declarator> }*

<attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]
| <set_excep_expr>

<get_excep_expr> ::=“getRaises” <exception_list>
<set_excep_expr>::=“setRaises” <exception_list>
<exception_list>::="(" <scoped_name> { “,” <scoped_name>} +"“)"

These modifications to the existing attribute declaration syntax allow attribute get and
set methods to raise user-defined exceptions. Note the following characteristics of the
extended attribute declaration syntax:

® All existing attribute declarations using the previous syntax are still valid, and
produce exactly the same results.

® When an attribute declaration raises an exception (on get, set or both), the
declaration may not contain multiple declarators.

11.1.17 New Initial References

This specification adds the Components::HomeFinder to the list of initial
references supported by the ORB. This reference is obtained using a new ObjectID,
“ComponentHomeFinder” with CORBA::ORB::resolve_initial_references.
The client uses this operation to obtain a reference to the HomeFinder interface. This
requires the following enhancement to the ORB interface definition:

module CORBA {
interface ORB {

Object resolve_initial_references (in ObjectID identifier)
raises (InvalidName);

h

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:07 pm

11

The string, “ComponentHomeFinder” is added to the list of valid ObjectID values.

The HomeFinder interface allows the client to obtain the home that creates
components of a specific type.

11.1.18 Changes to the Interface Repository

Volume |11 contains an updated version of Chapter 6 of the CORBA 2.3 specification
(formal/98-12-01) which should replace the current Chapter 6 in its entirety.

11.2 Changesto Real Time CORBA

The following Realtime CORBA interfaces are changed to local interfaces:
¢ All the interfaces in the RT_CORBA module

® All the interfaces in the RT_PortableServer module

11.3 Changesto Object Services

11.3.1 Life Cycle Service

To support the factory design pattern for creating a component instance and to allow
the server, rather than a client, to select from a group of functionally equivalent
factories based on load or other server-side visible criteria, the following operation is
added to the FactoryFinder interface of the CosLifeCycle module:

module CosLifeCycle {
interface FactoryFinder {
Factory find_factory (in Key factory_key) raises (noFactory);
|3

|3

The parameters of the above operation are as defined by CosLifeCycle with the
following clarifications:

®* Thefactory _key parameter is a name conforming to the Interoperable Naming
Specification (orbos/98-10-11) for stringified names

®* Thefactory_key parameter is used as an input to the find_home_by name
operation on Components::HomeFinder

® The default factory operation on the home is used to obtain a reference which can
be narrowed to the CosLifeCycle::GenericFactory type.

11.3.2 Transaction Service

The following CORBA transaction service interface is changed to a local interface:

® CosTransactions::Current

August 2, 1999 10:07 pm CORBA Components Volume | - orbos/99-07-01 11-397

11

11.3.3 Security Service

The following CORBA Security interfaces are changed to local interfaces:
® SecurityLevell::Current

® SecurityLevel2::PrincipalAuthenticator

® SecurityLevel2::Credentials

® SecurityLevel2::ReceivedCredentials

® SecurityLevel2::AuditChannel

® SecurityLevel2::AuditDecision

® SecurityLevel2::AccessDecision

® SecurityLevel2::QOPPolicy

® SecurityLevel2::MechanismPolicy

® SecurityLevel2::InvocationCredentialsPolicy
® SecurityLevel2::EstablishTrustPolicy

® SecurityLevel2::DelegationDirectivePolicy
® SecurityLevel2::Current

® SecurityReplacable::Vault

® SecurityReplacable::SecurityContext

® SecurityReplacable::ClientSecurityContext

® SecurityReplacable::ServerSecurityContext

11.3.4 Naming Service

No changes identified.

11.3.5 Notification Service

No changes identified.

| 11-398 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:07 pm

ConformanceCriteria 12

This chapter identifies the conformance points required for compliant implementations
of the CORBA Component model.

12.1 Conformance Points

The following conformance points are defined:

1. A CORBA ORB or COS vendor shall provide the relevant changes identified in
Chapter 11.

2. A CORBA ORB vendor need not provide implementations of Components aside
from the changes made to the Core to support components. Conversely a CORBA
Component vendor need not be a CORBA ORB vendor.

3. A CORBA Component vendor shall provide a conforming implementation of the
Basic Level of CORBA Components.

4. A CORBA Component vendor may provide a conforming implementation of the
Extended Level of CORBA Components.

5. In order to be conformant at the Basic level a non-Java product shall implement (at
a minimum) the following:

» the IDL extensions and generation rules to support the client and server side
component model for basic level components.

» CIDL. The multiple segment feature of CIDL (Section 6.2.8 on 162) need not be
supported for basic components.

 acontainer for hosting basic level CORBA components.

 the XML deployment descriptors and associated zip files for basic componentsin
the format defined in Section 10.1 on 304.

Such implementations shall work on a CORBA ORB as defined in 1. above.

August 2,1999 11:11 pm CORBA Components Volume| - orbos/99-07-01 12-399

12

12.2 ANoteon Tools

12-400

6. In order to be conformant at the Basic level a Java product shall implement (at a
minimum):
» EJB1.1, including support for the EJB 1.1 XML DTD,
* the java to IDL mapping, also known as RMI/110P
» EJB to IDL mapping as defined in Section 8.2.2 on 232.

Such implementations shall work in a CORBA interoperable environment,
including interoperable support for 110OP, CORBA transactions and CORBA
security.

7. In order to be conformant at the extended level, a product shall implement (at a
minimum) the requirements needed to achieve Basic PLUS
» |DL extensions to support the client and server side component model for
extended level components

» A container for hosting extended level CORBA components.

» the XML deployment descriptors and associated zip files for basic and enhanced
level components in the format defined in Section 10.1 on 304.

Such implementations shall work on a CORBA ORB as defined in 1. above.

8. A CORBA Component vendor may optionally support EJB clients interacting with
CORBA Components, by implementing the IDL to EJB mapping as defined in
Section 8.3.2 on 240.

9. This specification includes extensions to IDL, in the form of new keywords and
grammar. Although a CORBA ORB vendor need not be a CORBA Component
vendor, and vice-versa, it isimportant to maintain IDL as a single language. To this
end, all compliant products of any conformance points above shall be able to parse
any valid IDL definitions. However, it is permitted to raise errors, or to ignore,
those parts of the grammar that relate to another conformance point.

Conforming implementations as defined above may also implement any additional
features of this specification not required by the above conformance points.

Component implementations are expected to be supported by tools. It is not possible to
define conformance points for tools, since a particular tool may only support part of
the component development and deployment life-cycle. Hence a suite of tools may be
needed. The Component architecture contains a number of definitions that are relevant
to tools, including zip files and XML formats, as well as IDL interfaces for
customization and installation. Although it cannot be enforced, tools are expected to
conform to the relevant areas with which they are dealing. For example, a tool that
generates implementations for a particular platform is expected to generate XML
according to the <i npl enent at i on> clauses in the DTD defined in Chapter 10.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 11:11 pm

IDL SUmmary A

This appendix summarizes all the IDL defined for the CORBA component model. The
Component model is assumed to be part of the CORBA_3 level of the CORBA
specification. This is reflected in the module structure proposed by this specification.
The complete structure is a recommendation to the OMG regarding the structuring of
CORBA _3 definitions. Within this overall approach, the modules unique to CORBA
components are summarized, as they are defined in the body of this specification.

A.1 ModuleArchitecture

The component submitters suggest the following structure for CORBA_3:

| August 2, 1999 10:02 pm CORBA Components Volume| - orbos/99-07-01 A-401

module CORBA_3{
/I outer namespace for all CORBA_3 changes //;
module Core {
/I namespace for changes to the CORBA Core //;
|3
module Components {
/I namespace for all changes introduced by CORBA components //;
I all interfaces visible to both clients and servers defined here //;
module Basic {
/I container interfaces used by basic CORBA components
are defined in this namespace //;
|3
module Extended {
/I container interfaces used by extended CORBA components
are defined in this namespace //;
|3
module Transaction {
/l'interfaces used to access Container transactions //;
|3
module Events {
Il interfaces used to access Container event service //;
|3
module Deployment {
/l interfaces used to deploy components //;
|3
|3
|3

All of the changes to CORBA Core are defined with the Core module. Those changes
introduced by the CORBA component specification will be summarized within this
namespace in Appendix A.2. The submitters recommend that other changes to the Core
introduce by new adopted technology (e.g. messaging) or a Core RTF also be defined
this way.

The Components module is a namespace that includes all the additions for CORBA
components defined by this specification. It includes embedded module definitions for
those interfaces defined for use by the component implementor (module Basic,
module Extended, module Transaction, and module Events). Those interfaces
which can be used by either the client or the component implementation are defined
within the Components module.

A.2 TheCoreModule

A-402

The Core module defines all the changes made to the CORBA core to support
components.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:02 pm

module CORBA {
interface Object { // PIDL

h
h

Object get_component ();

A.3 The Components Module

The Components module defines all the interfaces used to access or implement a
CORBA component. The Components module has the following structure:

module Components {

h

/l namespace for all changes introduced by CORBA components //;
/l all interfaces visible to both clients and servers defined here //;
module Basic {
/I container interfaces used by basic CORBA components
are defined in this namespace //;
|3
module Extended {
/I container interfaces used by extended CORBA components
are defined in this namespace //;
|3
module Transaction {
/l interfaces used to access Container transactions //;
|3
module Events {
Il interfaces used to access Container event service //;
|3
module Deployment {
Il interfaces used to deploy components //;

h

A.3.1 Interfaces Defined Within the Components Module

The interfaces defined within the Components module are accessible by either
component clients or component implementors. Those interfaces (described in Chapter
5) are defined by the following IDL:

August 2, 1999 10:02 pm CORBA Components Volume | - orbos/99-07-01 A-403

module Components {

typedef string FeatureName;
typedef sequence<FeatureName> NamelList;

valuetype Cookie {
private sequence<octet> cookieValue;

h

valuetype FacetDescription {
public CORBA::Repositoryld InterfacelD;
public FeatureName Name;

h

valuetype Facet : FacetDescription {
public Object Ref;

h

typedef sequence<Facet> Facets;
typedef sequence<FacetDescription>
FacetDescriptions;

exception InvalidName { };

exception InvalidConnection { };

exception ExceededConnectionLimit { };

exception AlreadyConnected { };

exception NoConnection { };

exception CookieRequired { };

exception DuplicateKeyValue { };

exception NoKeyAvailable { };

exception InvalidKey { };

exception UnknownKeyValue { };

exception BadEventType {
CORBA::Repositoryld expected_event_type

k

exception HomeNotFound { };

exception WrongComponentType { };

exception InvalidConfiguration { };

interface Navigation {
Object provide_facet (in FeatureName name)
raises (InvalidName);
FacetDescriptions describe_facets();

Facets provide_all_facets();

Facets provide_named_facets (in NameList hames)
raises (InvalidName);

boolean same_component (in Object ref);

| A-404 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:02 pm

h

valuetype ConnectionDescription {
public Cookie ck;
public Object objref;

|3

typedef sequence<ConnectionDescription> ConnectedDescriptions;
interface Receptacles {

Cookie connect (
in FeatureName name,
in Object connection)
raises (
InvalidName,
InvalidConnection,
AlreadyConnected,
ExceededConnectionLimit);

void disconnect (
in FeatureName name,
in Cookie ck)

raises (
InvalidName,
InvalidConnection,
CookieRequired,
NoConnection);

ConnectionList get_connections (in FeatureName name)
raises (InvalidName);

|3
abstract valuetype EventBase {};

interface EventConsumerBase {
void push_event (in EventBase evt) raises (BadEventType);

h

interface Events {

EventConsumerBase

get_consumer (in FeatureName sink_name)
raises (InvalidName);

Cookie subscribe (in FeatureName publisher_name,
in EventConsumerBase subscriber)
raises (InvalidName);

void unsubscribe (in FeatureName publisher_name,
in Cookie ck)
raises (InvalidName, InvalidConnection);

void connect_consumer (in FeatureName emitter_name,

August 2, 1999 10:02 pm CORBA Components Volume | - orbos/99-07-01 A-405

A-406

CORBA Components Volume| - orbos/99-07-01

in EventConsumerBase consumer)
raises (InvalidName, AlreadyConnected);
EventConsumerBase
disconnect_consumer (in FeatureName source_name)
raises (InvalidName, NoConnection);

h

abstract valuetype PrimaryKeyBase { };

h

interface CCMHome {
CORBA::IRObject get_component_def ();
CORBA::IRObject get_home_def ();
void remove_component (in CCMObject comp);

h

interface KeylessCCMHome {
CCMObject create_component();

h

interface HomeFinder {

CCMHome find_home_by_component_type (
in CORBA::Repositoryld comp_repid)
raises (HomeNotFound);

CCMHome find_home_by_home_type (
in CORBA::Repositoryld home_repid)
raises (HomeNotFound);

CCMHome find_home_by_name (
in string home_name)
raises (HomeNotFound);

h

interface Configurator {
void configure (in CCMObject comp)
raises (WrongComponentType);

h

valuetype ConfigValue {
FeatureName name;
any value;

¥
typedef sequence<ConfigValue> ConfigValues;

interface StandardConfigurator : Configurator {
void set_configuration (in ConfigValues descr);

h

interface HomeConfiguration : CCMHome {
void set_configurator (in Configurator cfg);

August 2, 1999 10:02 pm

void set_configuration_values (

in ConfigValues config);
void complete_component_configuration (in boolean b);
void disable_home_configuration();

h

interface CCMObject
: Navigation, Receptacles, Events {
CORBA::IRObject get_component_def ();
CCMHome get_ccm_home();
PrimaryKeyBase get_primary_key()
raises (NoKeyAvailable);
void configuration_complete()
raises (InvalidConfiguration);
void remove();

h

interface Enumeration {
boolean has_more_elements();
CCMObject next_element();
|3
|3

A.3.2 Interfaces Defined Within the Basic Module

The Basic Module is an embedded namespace within the Components module that
defines those interfaces used by the developer to implement a basic CORBA
component. Those interfaces (described in Chapter 7) are defined by the following
IDL:

August 2, 1999 10:02 pm CORBA Components Volume | - orbos/99-07-01 A-407

module Basic {
typedef SecurityLevel2::Credentials Principal;

enum CCMExceptionReason {
SYSTEM_ERROR,
CREATE_ERROR,
REMOVE_ERROR,
DUPLICATE_KEY,
FIND_ERROR,
OBJECT_NOT_FOUND,
NO_SUCH_ENTITY};

exception CCMException {
CCMExceptionReason reason};
exception lllegalState { };

local interface CCMContext {

Principal get_caller_principal();

CCMHome get_CCM_home();

boolean get_rollback_only()
raises (lllegalState);

Transaction::UserTransaction get_user_transaction()
raises (lllegalState);

boolean is_caller_in_role (in string role);

void set_rollback_only()
raises (lllegalState);

h

local interface EnterpriseComponent {

h

local interface SessionContext : CCMContext {
Object get_ CCM_object()
raises (lllegalState);

h

local interface SessionComponent : EnterpriseComponent {
void set_session_context (in SessionContext ctx)
raises (CCMException);
void ccm_activate()
raises (CCMException);
void ccm_passivate()
raises (CCMException);
void ccm_remove ()
raises (CCMException);

A-408 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:02 pm

h

local interface SessionSynchronization {
void after_begin ()
raises (CCMException);
void before_completion ()
raises (CCMException);
void after_completion (
in boolean committed)
raises (CCMException);

h

local interface EntityContext : CCMContext {
Object get CCM_object ()
raises (lllegalState);
PrimaryKeyBase get_primary_key ()
raises (lllegalState);

h

local interface EntityComponent : EnterpriseComponent {
void set_entity_context (in EntityContext ctx)
raises (CCMException);
void unset_entity_context ()
raises (CCMException);
void ccm_activate ()
raises (CCMException);
void ccm_load ()
raises (CCMException);
void ccm_store ()
raises (CCMException);
void ccm_passivate ()
raises (CCMException);
void ccm_remove ()
raises (CCMException);

h

A.3.3 Interfaces Defined Within the Extended Module

The Extended Module is an embedded namespace within the Components module
that defines the additional interfaces used by the developer to implement an extended
CORBA component. Those interfaces (described in Chapter 7) are defined by the
following IDL:

August 2, 1999 10:02 pm

CORBA Components Volume | - orbos/99-07-01 A-409

module Extended {

enum BadComponentReferenceReason {
NON_LOCAL_REFERENCE,
NON_COMPONENT_REFERENCE,
WRONG_CONTAINER,

h

typedef CosPersistentState::CatalogBase CatalogBase;
typedef CosPersistentState:: Typeld Typeld;
typedef CosPersistentState::pid Persistentld;

typedef short Segmentlid;
const Segmentld COMPONENT_SEGMENT = 0;

typedef short Facetld;
const Facetld COMPONENT_FACET =0;

typedef sequence<octet> IdData;
typedef short StateldType;
const StateldType PERSISTENT_ID = 0;

exception BadComponentReference {
BadComponentReferenceReason reason

k

exception lllegalState { };

exception PolicyMismatch { };

exception PersistenceNotAvailable { };

exception UnknownActualHome { };

exception proxyHomeNotSupported { };

exception InvalidStateldData {};

local interface CCM2Context : CCMContext {
HomeRegistration get_home_registration ();
Events::Event get_event();
void req_passivate ()
raises (PolicyMismatch);
CatalogBase get_persistence (
in Typeld catalog_type_id)
raises (PersistenceNotAvailable);

h

local interface HomeRegistration {
void register_home (
in CCMHome home,
in string home_name);
void unregister_home (in CCMHome home);

h

A-410 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:02 pm

local interface ProxyHomeRegistration : HomeRegistration {
void register_proxy_home (
in CCMHome rhome,
in CCMHome ahome)
raises (UnknownActualHome, ProxyHomeNotSupported);

h

local interface Session2Context : SessionContext, CCM2Context {
Object create_ref (
in CORBA::Repositoryld repid);
Object create_ref from_oid (
in PortableServer::Objectld oid,
in CORBA::Repositoryld repid);
PortableServer::Objectld get_oid_from_ref (
in Object ref)
raises (lllegalState, BadComponentReference);

h

abstract valuetype StateldValue {
StateldType get_sid_type();
IdData get_sid_data();

|3

local interface StateldFactory {
StateldValue create (in IdData data) raises (InvalidStateldData);

h

valuetype PersistentldValue : StateldValue {
private Persistentld pid;
Persistentld get_pid();
init (in Persistentld pid);

|3

valuetype SegmentDescr {

private StateldValue sid;

private Segmentid seg;

StateldValue get_sid();

Segmentld get_seg_id();

init (in StateldValue sid, in Segmentld seg);
|3

typedef sequence<SegmentDescr> SegmentDescrSeq;

local interface Componentld {

Facetld get_target_facet();

Segmentld get_target_segment();

StateldValue get_target_state id (in StateldFactory sid_factory)
raises (InvalidStateldData);

StateldValue get_segment_state_id (
in Segmentld seg,
in StateldFactory sid_factory)

August 2, 1999 10:02 pm CORBA Components Volume | - orbos/99-07-01 A-411

raises (InvalidStateldData);
Componentld create_with_new_target (

in Facetld new_target_facet,

in Segmentld new_target_segment);
SegmentDescrSeq get_segment_descrs (

in StateldFactory sid_factory)

raises (InvalidStateldData);

h

local interface Entity2Context : EntityContext, CCM2Context {
Componentld get_component_id ()
raises (lllegalState);
Componentld create_component_id (
in Facetld target_facet,
in Segmentld target_segment,
in SegmentDescrSeq seq_descrs);
Componentld create_monolithic_component_id (
in Facetld target_facet,
in StateldValue sid);
Object create_ref_from_cid (
in CORBA::Repositoryld repid,
in Componentld cid);
Componentld get_cid_from_ref (
in Object ref)
raises (BadComponentReference);
¥
¥

A.3.4 Interfaces Defined Within the Transaction Module

The Transaction Module is an embedded namespace within the Components
module that defines the transaction interfaces used by the developer to implement
CORBA components (both basic and extended). Those interfaces (described in Chapter
7) are defined by the following IDL:

A-412 CORBA Components Volume| - orbos/99-07-01 August 2, 1999 10:02 pm

module Transaction {
typedef sequence<octet> TranToken;

exception NoTransaction { };
exception NotSupported { };
exception SystemError { };
exception Rollback { };
exception HeuristicMixed { };
exception HeuristicRollback { };
exception Security { };
exception InvalidToken { };

enum Status {
ACTIVE,
MARKED_ROLLBACK,
PREPARED,
COMMITTED,
ROLLED_BACK,
NO_TRANSACTION,
PREPARING,
COMMITTING,
ROLLING_BACK

h

local interface Transaction {
void begin ()
raises (NotSupported, SystemError);
void commit ()
raises (Rollback, NoTransaction,
HeuristicMixed, HeuristicRollback,
Security, SystemError);
void rollback ()
raises (NoTransaction,
Security, SystemError);
void set_rollback_only ()
raises (NoTransaction, SystemError);
Status get_status()
raises (SystemError);
void set_timeout (in long to)
raises (SystemError);
TranToken suspend ()
raises (NoTransaction, SystemError);
void resume (in TranToken txtoken)
raises (InvalidToken, SystemError);
|3
|3

A.3.5 Interfaces Defined Within the Events Module

August 2, 1999 10:02 pm CORBA Components Volume | - orbos/99-07-01 A-413

A-414

The Events Module is an embedded namespace within the Components module that
defines the event interfaces used by the developer to implement an extended CORBA

component. Those interfaces (described in Chapter 7) are defined by the following
IDL:

module Events {

typedef CosNotification::EventHeader EventHeader;
typedef CosNotifyChannnelAdmin::Channelld Channel;

exception ChannelUnavailable { };
exception InvalidSubscription { };
exception InvalidName { };
exception InvalidChannel { };

local interface LocalCookie {
boolean same_as (in LocalCookie cookie);
|3
local interface Event {
EventConsumerBase create_channel
(out Channel chid)
raises (ChannelUnavailable);
LocalCookie subscribe (
in EventConsumerBase ech,
in Channel chid)
raises (ChannelUnavailable);
void unsubscribe (in LocalCookie cookie)
raises (InvalidSubscription);
EventConsumerBase obtain_channel (
in string supp_name,
in EventHeader hdr)
raises (InvalidName);
void listen (in EventConsumerBase ecb,
in string csmr_name)
raises (InvalidName);
void push (in EventBase evt);
void destroy_channel (in Channel chid)
raises (InvalidChannel);
|3
|3

A.3.6 Interfaces Defined Within the Deployment Module

The Deployment Module is an embedded namespace within the Components
module that defines the interfaces used to install components and assemblies in
containers. Those interfaces (described in Chapter 10) are defined by the following
IDL:

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 10:02 pm

August 2, 1999 10:02 pm

module Deployment {

enum AssemblyState {INACTIVE, INSERVICE};
exception Unknownimplid { };

exception InvalidLocation { };

exception InvalidAssembly { };

interface Componentinstallation {
boolean install(in string implUUID, in string component_loc)
raises InvalidLocation;
boolean replace(in string implUUID, in string component_loc)
raises InvalidLocation;
boolean remove(in string implUUID)
raises Unknownimplid;

|3
interface AssemblyFactory {
Cookie create(in string assembly_loc)
raises InvalidLocation;
Assembly lookup(in Cookie c)
raises InvalidAssembly;
boolean destroy(in Cookie c)
raises InvalidAssembly;
|3
interface Assembly {
boolean build();
boolean tear_down();
AssemblyState get_state();
|3

CORBA Components Volume | - orbos/99-07-01

A-415

A-416

CORBA Components Volume| - orbos/99-07-01

August 2, 1999 10:02 pm

B.1 softpkg.dtd

August 2, 1999 10:07 pm

XML DTDs

<!-- DID for softpkg. Used to descri be CORBA Conponent
i npl erentations. The root elenent is <softpkg>.
El enents are |isted al phabetically.
-->

<l-- Sinmple xm link attributes based on WBC WD- x| i nk- 19980303.

May change when XLL is finalized. -->

<IENTITY % sinple-link-attributes "
xm :1ink CDATA #FI XED * SI MPLE
hr ef CDATA #REQUI RED

">

<! ELEMENT aut hor
(name
| conpany
| webpage
)* >

<! ELEMENT code
((codebase
| fileinarchive
| link
)
, entrypoint?
, usage?
) >
<I ATTLI ST code
type CDATA #| MPLI ED >

<l-- If file not available |locally, then downl oad via codebase link -->

<! ELEMENT codebase EMPTY >
<! ATTLI ST codebase
filenane CDATA #l| MPLI ED

CORBA Components - orbos/99-02-01

B-417

B-418

%inple-link-attributes; >

<! ELEMENT conpil er EMPTY >

<! ATTLI ST conpi |l er

nane CDATA #REQUI RED
ver si on CDATA #| MPLI ED >

<! ELEMENT conpany (#PCDATA) >

<! ELEMENT dependency
(softpkgref
| codebase
| fileinarchive
| localfile
| nane
) >

<! ATTLI ST dependency
type CDATA

#| MPLI ED

action (assert | install) "assert">

<! ELEMENT description (#PCDATA) >

<! ELEMENT descri ptor
(link
| fileinarchive
) >

<! ATTLI ST descri ptor

type CDATA #l MPLI ED>

<! ELEMENT entrypoint (#PCDATA) >

<!-- The "extension" elenent is used for vendor-specific extensions -->
<! ELEMENT extensi on (#PCDATA) >

<! ATTLI ST ext ensi on

cl ass CDATA
origin CDATA
id 1D

extra CDATA

ht m - f or m CDATA

<l-- The "fil einarchive"
ar chi ve.

#REQUI RED
#REQUI RED
#| MPLI ED
#| MPLI ED
#l MPLI ED >

element is used to specify a file in the

If the file is in another archive then |link
is used to point to the archive in which the file may be found

>

<! ELEMENT fi |l ei narchive
(link?) >

<I ATTLI ST fil ei narchive

name CDATA #REQUI RED >

<! ELEMENT i dI
(link
| fileinarchive
| repository

) >

CORBA Components - orbos/99-02-01 August 2, 1999 10:07 pm

August 2, 1999 10:07 pm

<! ELEMENT i npl enent ati on
(description
code
conpi | er
dependency
descri ptor
extension
pr ogr anm ngl anguage
humanl anguage
0s
propertyfile
processor
| runtine
) >
<! ATTLI ST i npl enmrent ati on
id I D # MPLI ED >

<! ELEMENT i mpl ref EMPTY >
<! ATTLI ST i npl r ef
i dref CDATA #REQUI RED >

<! ELEMENT humanl anguage EMPTY >
<! ATTLI ST humanl anguage
nane CDATA #REQUI RED >

<l ELEMENT |icense (#PCDATA) >
<I ATTLI ST |icense
%inple-link-attributes; >

<l ELEMENT |ink (#PCDATA) >
<I ATTLI ST link
%inple-link-attributes; >

<l-- Afile that should be available in the |ocal environnent
<! ELEMENT | ocal file EMPTY >
<I ATTLI ST localfile

nane CDATA #REQUI RED >

<! ELEMENT name (#PCDATA) >

<! ELEMENT os EMPTY >

<I ATTLI ST os
nane CDATA #REQUI RED
ver si on CDATA #| VPLI ED>

<! ELEMENT pkgtype (#PCDATA) >
<! ATTLI ST pkgtype

ver si on CDATA #l MPLI ED >
<!l ELEMENT processor EMPTY >
<I ATTLI ST processor

nane CDATA #REQUI RED >

<! ELEMENT pr ogr amm ngl anguage EMPTY>

CORBA Components- orbos/99-02-01

S

B-419

B-420

<! ATTLI ST pr ogrami ngl anguage
name CDATA #REQUI RED
versi on CDATA #l MPLI ED >

<! ELEMENT propertyfile
(fileinarchive
| link) >

<! ATTLI ST propertyfile
type CDATA #l MPLI ED >

<I ELEMENT resource
(localfile
| codebase

) >

<I ATTLI ST resource
type CDATA #| MPLI ED >

<! ELEMENT runtime EMPTY >

<I ATTLI ST runtine
nane CDATA #REQUI RED
ver si on CDATA #| MPLI ED>

<! ELEMENT soft pkg
(title
| pkgtype
aut hor
description?
license
idl
propertyfile
dependency
descri ptor
i mpl ement ati on
| extension
)< >
<! ATTLI ST soft pkg
nanme ID #REQUI RED
ver si on CDATA #| MPLI ED >

<! ELEMENT sof t pkgr ef
((fileinarchive
| 1ink
)

, inplref?
) >
<IELEMENT title (#PCDATA) >
<! ELEMENT usage (#PCDATA) >
<! ELEMENT webpage (#PCDATA) >

<! ATTLI ST webpage
%inple-link-attributes; >

CORBA Components - orbos/99-02-01

August 2, 1999 10:07 pm

B.2 corbacomponent.dtd

<!-- DID for CORBA Conponent Descriptor. The root elenent is
<cor baconponent >. Elenents are |isted al phabetically.

August 2, 1999 10:07 pm

S

<l-- Sinple xm link attributes based on WVBC WD x| i nk- 19980303
May change when XLL is finalized
<IENTITY % sinple-link-attributes "

xm :link CDATA
hr ef CDATA

<! ELEMENT accessnobde EMPTY>
<I ATTLI ST accessnode

o>

#FI XED * SI MPLE’
#REQUI RED

node (READ _ONLY| READ WRI TE) #REQUI RED >

<! ELEMENT cat al og EMPTY>
<! ATTLI ST cat al og
type CDATA #REQUI RED >

<! ELEMENT conponent f eat ures
(inheritsconponent?
, supportsinterface*
, ports
, operationpolicies?
, extension*
) >

<! ATTLI ST conponent f eat ures
nane CDATA #REQUI RED
repi d CDATA #REQUI RED >

<! ELEMENT conponent ki nd
(service
| session
| process
| entity
| unclassified
) >

<! ELEMENT conponent properties
(fileinarchive

) >

<! ELEMENT conponent repi d EMPTY >
<! ATTLI ST conponentrepi d
repi d CDATA #| MPLI ED >

<! ELEMENT cont ai ner nranagedper si st ence

(storagehone
, pssinpl enent ati on?
, catal og?

CORBA Components- orbos/99-02-01

B-421

B-422

, accessnode
, psstransaction
, paranms?

) >

<! ELEMENT confi gurati onconpl ete EMPTY >
<! ATTLI ST confi gurati onconpl ete
set (true | false) #REQU RED >

<! ELEMENT consunes
(eventpolicy
, extension*) >
<! ATTLI ST consunes
consunmesnane CDATA #REQUI RED
eventtype CDATA #REQUI RED >

<! ELEMENT cor baconponent
(corbaversion
, conponentrepid
, honerepid
, conponent ki nd
, interop?
, transaction?
, security?
, threading
, configurationconplete
, extendedpoapolicy*
, repository?
, segnment*
, component properties?
, honeproperties?
, homef eat ures+
, conponent f eat ures+
, interface*
, extension*

) >
<! ELEMENT cor baversi on (#PCDATA) >

< ELEMENT emits
(eventpolicy
, extension*) >
<! ATTLI ST enits
em t sname CDATA #REQUI RED
eventtype CDATA #REQUI RED >

<! ELEMENT entity
(servant) >

<! ELEMENT event policy EMPTY>
<! ATTLI ST event policy
policy (normal | default | transaction) #l MPLI ED>

<! ELEMENT ext endedpoapol i cy EMPTY>
<! ATTLI ST ext endedpoapol i cy

CORBA Components - orbos/99-02-01 August 2, 1999 10:07 pm

August 2, 1999 10:07 pm

name CDATA #REQUI RED
val ue CDATA #REQUI RED >

<!-- The "extension" elenent is used for vendor-specific extensions
<! ELEMENT extensi on (#PCDATA) >
<! ATTLI ST ext ensi on

cl ass CDATA #REQUI RED

origin CDATA #REQUI RED

id 1D #| MPLI ED

extra CDATA #| MPLI ED

ht m - f or m CDATA #| MPLI ED >
<l-- The "fileinarchive" elenent is used to specify a file in the
ar chi ve.

If the file is in another archive then link

is used to point to the archive in which the file may be found

-->
<! ELEMENT fi |l ei narchive
(link?) >
<I ATTLI ST fil ei narchive
nane CDATA #REQUI RED >

<! ELEMENT honef eat ur es
(inheritshonme?
, operationpolicies?
, extension*) >
<I ATTLI ST honef eat ures
name CDATA #REQUI RED
repi d CDATA #REQUI RED >

<! ELEMENT honepr operties
(fileinarchive

) >

<! ELEMENT horer epi d EMPTY >
<! ATTLI ST honerepid
repi d CDATA #| MPLI ED >

<! ELEMENT i nherit sconponent EMPTY>
<! ATTLI ST i nheri t sconmponent
repi d CDATA #REQUI RED>

<! ELEMENT i nheritshonme EMPTY>
<I ATTLI ST i nheritshonme
repi d CDATA #REQUI RED>

<! ELEMENT i nheritsinterface EMPTY>
<I ATTLI ST inheritsinterface
repi d CDATA #REQUI RED>
<! ELEMENT i ns EMPTY>
<I ATTLI ST ins
nane CDATA #REQUI RED >

<! ELEMENT interface

CORBA Components- orbos/99-02-01

S

B-423

B-424

(inheritsinterface*
, operationpolicies?) >
<I ATTLI ST interface
name CDATA #REQUI RED
repi d CDATA #REQUI RED >

<! ELEMENT i nterop EMPTY>

<I ATTLI ST interop
type CDATA #REQUI RED
direction (hasview | isview) #REQU RED
descri ptor CDATA #REQUI RED >

<! ELEMENT I|ink (#PCDATA) >
<I ATTLI ST link
%inple-link-attributes; >

<! ELEMENT objref EMPTY>
<! ATTLI ST obj ref
string CDATA #REQUI RED >

<! ELEMENT operation
(transaction?
, requiredrights?) >
<! ATTLI ST operation
nane CDATA #REQUI RED >
<l-- an operation nane of "*" specifies all operations in the current
scope -->

<! ELEMENT operationpolicies
(operation+) >

<l ELEMENT param EMPTY >

<I ATTLI ST param
name CDATA #REQUI RED
val ue CDATA #REQUI RED >

<! ELEMENT parans (param+) >

<! ELEMENT poapolici es EMPTY>
<! ATTLI ST poapoli ci es
thread (ORB_CTRL_MODEL | SI NGLE _THREAD SAFE) #REQUI RED
i fespan (TRANSI ENT | PERSI STENT) #REQUI RED
i duni queness (UNIQUE_ID | MJLTIPLE_I D) #REQUI RED
i dassi gnment (USER_ID | SYSTEM I D) #REQUI RED
servantretention (RETAIN | NON_RETAI N) #REQUI RED
request processi ng (USE_ACTI VE_OBJECT_MAP_ONLY
| USE_DEFAULT_SERVANT
| USE_SERVANT_MANAGER) #REQUI RED
i mplicitactivation (I MPLICIT_ACTI VATI ON
| NONLI MPLI CI T_ACTI VATI ON) #REQUI RED >

<I ELEMENT ports
(uses
| provides
| emts

CORBA Components - orbos/99-02-01 August 2, 1999 10:07 pm

| publishes
| consunes
)* >

<l ELEMENT process
(servant) >

<! ELEMENT provi des
(operationpolicies?
, extension*) >

<! ATTLI ST provi des
provi desnane CDATA #REQUI RED
repid CDATA #REQUI RED
facettag CDATA #REQUI RED >

<! ELEMENT pssi npl enent ati on EMPTY>
<! ATTLI ST pssi npl enent ati on
i d CDATA #REQUI RED >

<! ELEMENT psstransaction (psstransactionisol ationlevel?) >
<! ATTLI ST psstransaction
pol i cy (TRANSACTI ONAL| NON_TRANSACTI ONAL) #REQUI RED >

<! ELEMENT psstransactioni sol ati onl evel EMPTY>
<! ATTLI ST psstransactioni sol ati onl eve

| evel (READ_UNCOWMM TTED| READ COWM TTED| REPEATABLE_READ| SERI ALI ZABLE)
#REQUI RED >

<! ELEMENT publ i shes
(eventpolicy
, extension*) >
<! ATTLI ST publ i shes
publ i shesnanme CDATA #REQUI RED
eventtype CDATA #REQUI RED >

<! ELEMENT repository
(ins
| objref
| link
) >
<! ATTLI ST repository
type CDATA #| MPLI ED >

<! ELEMENT requiredrights
(right*) >

<! ELEMENT ri ght
(description?) >
<! ATTLI ST ri ght
nane CDATA #REQUI RED >

<! ELEMENT security
(requiredrights?) >
<! ATTLI ST security
ri ghtsfam |y CDATA #REQUI RED >

| August 2, 1999 10:07 pm CORBA Components- orbos/99-02-01 B-425

<l ELEMENT segnent
(segment menber +
, cont ai ner managedper si st ence?
, extension*

) >
<I ATTLI ST segnent
name CDATA #REQUI RED

segnent t ag CDATA #REQUI RED >

<! ELEMENT segnent nenber EMPTY>
<! ATTLI ST segnent nenber
facettag CDATA #REQUI RED >

<! ELEMENT servant EMPTY >
<I ATTLI ST servant
lifetime (process|nethod|transaction) #REQUI RED >

<! ELEMENT servi ce EMPTY >

<! ELEMENT sessi on
(servant) >

<! ELEMENT st or agehone EMPTY>
<! ATTLI ST st or agehone
id CDATA #REQUI RED >

<! ELEMENT supportsinterface
(operationpolicies?
, extension*) >

<! ATTLI ST supportsinterface
repi d CDATA #REQUI RED >

<! ELEMENT t hr eadi ng EMPTY>
<! ATTLI ST t hr eadi ng
policy (serialize | multithread) #REQUI RED >

<! ELEMENT transacti on EMPTY >
<I ATTLI ST transacti on

new| mandat ory| never) #REQUI RED >

<! ELEMENT uncl assi fi ed
(poapolicies) >

<! ELEMENT uses (extension*) >
<I ATTLI ST uses
usesnanme CDATA #REQUI RED
repid CDATA #REQUI RED >

| B-426 CORBA Components - orbos/99-02-01

use (sel f-nmanaged| not - supported|required| supports]|requires-

August 2, 1999 10:07 pm

B.3 properties.dtd

<!-- DID for CORBA Conponent property file. The root el enent
is <properties> El ements are |isted al phabetically.
-->

<! ELEMENT choi ce (#PCDATA) >
<! ELEMENT choi ces (choice+) >
<! ELEMENT def aul tval ue (#PCDATA) >
<! ELEMENT description (#PCDATA) >

<! ELEMENT val ue (#PCDATA) >

<! ELEMENT properties
(description?
, (sinmple

| sequence

| struct

)*

>

)

<! ELEMENT si npl e
(description?
, val ue
, choices?
, def aul tval ue?
) >
<! ATTLI ST si npl e
name CDATA #| MPLI ED
type (bool ean
| char
| doubl e
| float
| short
| long
| objref
| octet
| short
| string
| ul ong
| ushort
) #REQUI RED >

| August 2, 1999 10:07 pm CORBA Components- orbos/99-02-01 B-427

B-428

<l ELEMENT sequence
(description?
, (sinmple*
| struct*
| sequence*
)
) >
<I ATTLI ST sequence
name CDATA #| MPLI ED

type CDATA #REQUI RED >

<! ELEMENT st ruct
(description?
, (simple
| sequence
| struct
)*
) >
<! ATTLI ST struct
name CDATA #| MPLI ED

type CDATA #REQUI RED >

CORBA Components - orbos/99-02-01

August 2, 1999 10:07 pm

B.4 componentassembly.dtd

August 2, 1999 10:07 pm

<!-- DID for CORBA Assenbly Descriptor. The root element is
<cor baconponent >. Elenents are |isted al phabetically.
-->

<l-- Sinple xm link attributes based on WBC WD x| i nk- 19980303

May change when XLL is finalized. -->

<IENTITY % sinple-link-attributes "
xm i nk CDATA #FI XED ' SI MPLE’
hr ef CDATA #REQUI RED

">

<! ELEMENT accessnbde EMPTY>
<! ATTLI ST accessnode
nmode (READ_ONLY| READ WRI TE) #REQUI RED >

<! ELEMENT cat al og EMPTY>
<! ATTLI ST cat al og
type CDATA #REQUI RED >

<! ELEMENT conponent f eat ures
(inheritsconmponent ?
, supportsinterface*
, ports
, operationpolicies?
, extension*
) >

<! ATTLI ST conponentf eat ures
nane CDATA #REQUI RED
repi d CDATA #REQUI RED >

<! ELEMENT conponent ki nd
(service
| session
| process
| entity
| unclassified
) >

<! ELEMENT comnponent properties
(fileinarchive

) >

<! ELEMENT cont ai ner managedper si st ence
(storagehone
, pssinpl enent ati on?
, catal og?
, accessnode
, psstransaction
, parans?
) >

<! ELEMENT confi gurationconpl ete EMPTY >

CORBA Components- orbos/99-02-01

B-429

B-430

<! ATTLI ST configurati onconpl ete
set (true | false) #REQU RED >

<! ELEMENT consunes
(eventpolicy
, extension*) >
<! ATTLI ST consunes
consumesnane CDATA #REQUI RED
eventtype CDATA #REQUI RED >

<! ELEMENT cor baconponent
(corbaversion
, repositoryid
, conponent ki nd
, interop?
, transaction?
, security?
, threading
, configurationconplete
, extendedpoapolicy*
, repository?
, segnment*
, component properties?
, honeproperties?
, homef eat ures+
, conponent f eat ures+
, interface*
, extension*

) >
<! ELEMENT cor baversi on (#PCDATA) >

< ELEMENT emits
(eventpolicy
, extension*) >
<I ATTLI ST enits
em t sname CDATA #REQUI RED
eventtype CDATA #REQUI RED >

<! ELEMENT entity
(servant) >

<! ELEMENT event policy EMPTY>
<! ATTLI ST event policy
policy (normal | default | transaction) #l MPLI ED>

<! ELEMENT ext endedpoapol i cy EMPTY>
<! ATTLI ST ext endedpoapolicy

nanme CDATA #REQUI RED

val ue CDATA #REQUI RED >

<I-- The "extension" elenent is used for vendor-specific extensions -->
<! ELEMENT extensi on (#PCDATA) >
<! ATTLI ST ext ensi on

cl ass CDATA #REQUI RED

CORBA Components - orbos/99-02-01 August 2, 1999 10:07 pm

August 2, 1999 10:07 pm

origin CDATA
id 1D
extra CDATA

ht m - f or m CDATA

<l-- The "fil einarchive"
ar chi ve.

#REQUI RED
#| MPLI ED
#| MPLI ED
#l MPLI ED >

element is used to specify a file in the

If the file is in another archive then |ink

is used to point to
>
<! ELEMENT fi |l ei narchive
(link?) >
<I ATTLI ST fil ei narchive

the archive in which the file may be found

name CDATA #REQUI RED >

<! ELEMENT honef eat ur es
(inheritshome?
, operationpolicies?
, extension*) >

<! ATTLI ST honefeatures

nane CDATA #REQUI RED
repi d CDATA #REQUI RED >

<! ELEMENT honepr operties
(fileinarchive

) >

<! ELEMENT i nherit sconponent EMPTY>
<! ATTLI ST i nheri t sconmponent
repi d CDATA #REQUI RED>

<! ELEMENT i nheritshonme EMPTY>

<! ATTLI ST i nheri t shone

repi d CDATA #REQUI RED>

<! ELEMENT i nheritsinterface EMPTY>
<I ATTLI ST i nheritsinterface
repi d CDATA #REQUI RED>

<! ELEMENT i ns EMPTY>
<I ATTLI ST ins

name CDATA #REQUI RED >

<! ELEMENT i nterface
(inheritsinterface*

, operationpolicies?) >

<I ATTLI ST interface

name CDATA #REQUI RED
repi d CDATA #REQUI RED >

<! ELEMENT i nterop EMPTY>
<I ATTLI ST interop

type CDATA #REQUI RED

direction (hasface

| isface) #REQUI RED

descri ptor CDATA #REQUI RED >

CORBA Components- orbos/99-02-01

B-431

<! ELEMENT I|ink (#PCDATA) >
<I ATTLI ST link
%inple-link-attributes; >

<! ELEMENT objref EMPTY>
<! ATTLI ST obj ref
string CDATA #REQUI RED >

<! ELEMENT operation
(transaction?
, requiredrights?) >
<! ATTLI ST operation
nane CDATA #REQUI RED >
<I-- an operation nane of "*" specifies all operations in the current
scope -->

<! ELEMENT operationpolicies
(operation+) >

<l ELEMENT param EMPTY >

<I ATTLI ST param
nane CDATA #REQUI RED
val ue CDATA #REQUI RED >

<! ELEMENT parans (paramt) >

<! ELEMENT poapolici es EMPTY>
<! ATTLI ST poapolici es
thread (ORB_CTRL_MODEL | SI NGLE_THREAD SAFE) #REQUI RED
l'i fespan (TRANSI ENT | PERSI STENT) #REQUI RED
i duni queness (UNIQUE_ID | MJLTIPLE_I D) #REQUI RED
i dassignnent (USER_ID | SYSTEM.|D) #REQUI RED
servantretention (RETAIN | NON_RETAI N) #REQUI RED
request processi ng (USE_ACTI VE_OBJECT_MAP_ONLY
| USE_DEFAULT_SERVANT
| USE_SERVANT_MANAGER) #REQUI RED
implicitactivation (I MPLICIT_ACTI VATI ON
| NON_I MPLI CI T_ACTI VATI ON) #REQUI RED >

<I ELEMENT ports
(uses
| provides

| emits

| publishes

| consunes

) >

<! ELEMENT pr ocess
(servant) >

<! ELEMENT provi des
(operationpolicies?
, extension*) >

<! ATTLI ST provi des

B-432 CORBA Components - orbos/99-02-01 August 2, 1999 10:07 pm

August 2, 1999 10:07 pm

provi desnane CDATA #REQUI RED
repid CDATA #REQUI RED
facettag CDATA #REQUI RED >

<! ELEMENT pssi npl enent ati on EMPTY>
<! ATTLI ST pssi npl enent ati on
i d CDATA #REQUI RED >

<! ELEMENT psstransaction (psstransactionisol ationlevel?) >

<! ATTLI ST psstransaction

pol i cy (TRANSACTI ONAL| NON TRANSACTI ONAL) #REQUI RED >

<! ELEMENT psstransactioni sol ati onl eve
<! ATTLI ST psstransactioni sol ati onl eve

| evel (READ_UNCOWM TTED| READ_COWM TTED| REPEATABLE_READ| SERI ALI ZABLE)

#REQUI RED >

<! ELEMENT publ i shes
(eventpolicy
, extension*) >
<! ATTLI ST publ i shes
publ i shesnanme CDATA #REQUI RED
eventtype CDATA #REQUI RED >

<! ELEMENT repository
(ins
| objref
| link
) >
<I ATTLI ST repository
type CDATA #| MPLI ED >

<! ELEMENT repositoryid EMPTY >
<! ATTLI ST repositoryid
repi d CDATA #l MPLI ED >

<! ELEMENT requiredrights
(right*) >

<! ELEMENT ri ght
(description?) >
<! ATTLI ST ri ght
nane CDATA #REQUI RED >

<! ELEMENT security
(requiredrights?) >
<! ATTLI ST security
ri ghtsfam |y CDATA #REQUI RED >

<l ELEMENT segnent
(segnent menber +
, cont ai ner nanagedper si st ence?
, extension*
) >
<! ATTLI ST segnent

CORBA Components- orbos/99-02-01

name CDATA #REQUI RED
segnent t ag CDATA #REQUI RED >

<! ELEMENT segnent nenber EMPTY>
<! ATTLI ST segnent nenber
facettag CDATA #REQUI RED >

<l ELEMENT servant EMPTY >
<I ATTLI ST servant
lifetime (process|nethod|transaction) #REQUI RED >

<! ELEMENT servi ce EMPTY >

<! ELEMENT sessi on
(servant) >

<! ELEMENT st or agehone EMPTY>
<! ATTLI ST st or agehone
i d CDATA #REQUI RED >

<! ELEMENT supportsinterface
(operationpolicies?
, extension*) >

<! ATTLI ST supportsinterface
repi d CDATA #REQUI RED >

<! ELEMENT t hr eadi ng EMPTY>
<! ATTLI ST t hr eadi ng
policy (serialize | multithread) #REQUI RED >

<! ELEMENT transacti on EMPTY >
<I ATTLI ST transaction

new| mandat ory| never) #REQUI RED >

<! ELEMENT uncl assi fi ed
(poapolicies) >

<! ELEMENT uses (extension*) >
<I ATTLI ST uses
usesnanme CDATA #REQUI RED
repid CDATA #REQUI RED >

| B-434 CORBA Components - orbos/99-02-01

use (sel f-nmanaged| not - supported|required| supports]|requires-

August 2, 1999 10:07 pm

August 2, 1999 10:07 pm

CORBA Components- orbos/99-02-01

B-435

B-436

CORBA Components - orbos/99-02-01

August 2, 1999 10:07 pm

Comparing EJB and CCM C

The following series of tables summarized the component APIs for Enterprise Java
Beans (EJB 1.1) and Basic CORBA Components.The tables are organized as follows:

1. The home interfaces that define the remote access protocols for creating or finding
EJBs or CORBA components (Section C.1 on 437).

2. The component interfaces that define the remote access protocols for invoking
business operations on EJBs or CORBA components (Section C.2 on 439).

3. The callback interfaces that the CORBA component or EJB programmer must
implement (Section C.3 on 440).

4. The Context interfaces that provide the component developer access to container-
provided services (Section C.4 on 442).

5. The Transaction interface that supports bean-managed or component-managed
transactions (Section C.5 on 443).

6. The metadata interfaces that support access to component metadata (Section C.6 on
444).

C.1 TheHomelnterfaces

Table C-1 compares the home interfaces and operations which make up the EJB and
CORBA component models. In EJB, the EJBHome object is created by the EJB
container provider’s tools and provides implementations for methods of the base class
and delegates factory or finder methods on a derived class (<hame>Home) to
similarly named methods on the bean itself (<name>Bean).

In the CORBA component model, homes are defined as righteous CORBA objects and
the associated factory or finder methods are generated as operations on the home and
the component devel oper implements these directly so the container need not provided

August 2, 1999 10:02 pm CORBA Components Volume| - orbos/99-04-16 C-437

delegation support. The component developer may not even need to provide
implementations for the default factory and finder operations if sufficient information
is provided with the component’s definition.

For CORBA clients to use EJB implementations, the container provider must
externalize EJBHome to the CORBA client as a CORBA component home. This is
accomplished by extensions to the Java to IDL mapping defined in Chapter 8. Foe EJB
clients to access CORBA component homes, the container provider must create an
EJBHome object that serves as a bridge between equivalent operations on EJBHome
and the CORBA component home. This bridge is also described in Chapter 8.

Table C-1 Comparing the home interfaces of EJB and CORBA components

Construct EJB Form CCM Form Notes
Module javax.ejb Components
Interface | EJBHome extends java.rmi.Remote CCMHome
Operation | public EJBMetaData get EJBMetaData () | ComponentDef get_component_def (); | CORBA IR supports
throws java.rmi.RemoteException more metadata
public HomeHandle getHomeHandle() CORBA::0bject_to_string
throws java.rmi.RemoteException provides same function
public void remove (void remove_component (CORBA references
HomeHandle handle) in CCMObject component) instead of handles
throws java.rmi.RemoteException, raises (CCMException); REMOVE_ERROR
RemoveException is minor code
public void remove (similar operation is
java.lang.Object primaryKey) defined on
throws java.rmi.RemoteException, <home>Implicit for
RemoveException Homes with primaryKey
Interface | HomeHandle extends java.io.Serializable CORBA reference used
for handle
public EJBHome getEJBHome() CORBA::string_to_object
throws java.rmi.RemoteException
Module <session-name> <session-home>
Interface | <session>home extends EJBHome <session-home>::CCMHome,
<session-home>Implicit,
<session-home>Explicit
Operation | public <session-name>Remote create (| <session-component> create (); Generated operation
<arg-type> <arg-list>) Inherited from
throws CreateException <home>Implicit
Module <entity-name> <entity-home>
Interface | <entity>home extends EJBHome <entity-home>::CCMHome,
<entity-home>Implicit,
<entity-home>Explicit
C-438 CORBA Components Volume| - orbos/99-04-16 August 2, 1999 10:02 pm

Table C-1 Comparing the home interfaces of EJB and CORBA components

Construct

EJB Form

CCM Form

Notes

Operation

public <entity-name>Remote create (
<arg-type> <arg-list>)

throws CreateException,
DuplicateKeyException

<entity-component> create ()
raises (InvalidKey,
DuplicateKey);

Generated operation
Inherited from
<home>Implicit

public <entity-name>Remote
findByPrimaryKey (
<arg-type> <arg-list>)
throws FinderException,
ObjectNotFoundException

<entity-component> find (
in <key-type> primaryKey)
raises (InvalidKey,
UnknownKeyType);

Generated operation
Inherited from
<home>Implicit

public <entity-name>Remote
find<method> (

<arg-type> <arg-list>)
throws FinderException,
ObjectNotFoundException

<entity-component> <find-method> (
in <arg-type> <arg-list>)
raises (<exceptions>);

Specified operation
Inherited from
<home>Explicit

C.2 TheComponent Interfaces

Table C-2 compares the component interfaces and operations which make up the EJB
and CORBA component models. In EJB, the EJBObject object is created by the EJB
container provider’s tools and provides implementations for methods of the base class
and delegates business methods to a derived class (<name>Remote).

In the basic CORBA component model, components are defined as righteous CORBA
objects and the associated business methods are defined as operations on a supported
interface and the component devel oper implements these directly so the container need
not provided delegation support.

For CORBA clients to use EJB implementations, the container provider must
externalize EJBObject to the CORBA client as a CORBA component. Thisis
accomplished by extensions to the Java to IDL mapping defined in Chapter 8. Foe EJB
clients to access CORBA components, the container provider must create an
EJBObject implementation that serves as a bridge between business methods on
EJBObject and the basic CORBA component’s supported interface. This bridge is
also described in Chapter 8.

Table C-2 Comparing the remote interfaces of EJB and CORBA components

throws java.rmi.RemoteException

Construct EJB Form CCM Form Notes
Module javax.ejb Components

Interface | EJBObject extends java.rmi.Remote | CCMObject

Operation | public EJBHome getEJBHome() CCMHome get_home();

public java.lang.Object primaryKey
getPrimaryKey()
throws java.rmi.RemoteException

operation defined on <entity>home

August 2, 1999 10:02 pm

CORBA Components Volume | - orbos/99-04-16

C-439

Table C-2 Comparing the remote interfaces of EJB and CORBA components

Construct EJB Form CCM Form Notes
public void remove (void remove() CORBA references instead of
Handle handle) raises (CCMException); | handles; REMOVE_ERROR
throws java.rmi.RemoteException, is minor code
RemoveException
public Handle getHandle() CORBA::0object_to_string
throws java.rmi.RemoteException
public boolean isldentical (boolean is_equivalent(
EJBObject obj) in Object obj);
throws java.rmi.RemoteException

Interface | Handle extends java.io.Serializable CORBA reference used for handle
public EJBObject getEJBObject() CORBA::string_to_object
throws java.rmi.RemoteException

Module <session-bean> <session-component>

Interface | <session>Remote extends EJBObject | <session>::CCMObject
<res-type> <operation> (<res-type> <operation> (| business methods
<arg-type> <arg-list>) in <arg-type> <arg-list)
throws <exceptions> raises (<exceptions>);

Module <entity-bean> <entity-component>

Interface | <entity>Remote extends EJBObject <entity>::CCMObject
<res-type> <operation> (<res-type> <operation> (| business methods
<arg-type> <arg-list>) in <arg-type> <arg-list)
throws <exceptions> raises (<exceptions>);

C.3 TheCallback Interfaces

Table C-3summarizes the callback interfaces the EJB programmer or basic CORBA
component programmer must implement. The EJB interfaces are specified as Java
interfaces in accordance with the EJB 1.1 specification dated June 28, 1999. The CCM
interfaces are specified in IDL as defined in this specification.

Table C-3 Comparing EJB and CCM Callback Interfaces

Construct EJB Form CCM Form Notes
Module javax.ejb Components::Basic
Interface | EnterpriseBean EnterpriseComponent
Interface | SessionBean extends EnterpriseBean | TransientComponent::EnterprissCompone
nt
Operation | public void setSessionContext (void set_transient_context (
SessionContext ctx) in TransientContext ctx)
throws EJBException raises (CCMException);
public void ejbActivate () void ccm_activate ()
throws EJBException raises (CCMException);
C-440 CORBA Components Volume| - orbos/99-04-16 August 2, 1999 10:02 pm

Table C-3 Comparing EJB and CCM Callback Interfaces

Construct EJB Form CCM Form Notes
public void ejbPassivate () void ccm_passivate ()
throws EJBException raises (CCMException);
public void ejbRemove () void ccm_remove ()
throws EJBException raises (CCMException);
Interface | <name>Bean extends SessionBean Home operations are
not delegated in CCM.
Operation | public void ejbCreate (Implemented on home,
<Arg-type> <arg-list>) CREATE_ERROR
throws CreateException, is minor code
EJBException)
Interface | SessionSynchronization TransientSynchronization
Operation | public void afterBegin () void after_begin ()
throws EJBException raises (CCMException);
public void beforeCompletion() void before_completion ()
throws EJBException raises (CCMException);
public void afterCompletion (void after_completion (
boolean committed) in boolean committed)
throws EJBException raises (CCMException);
Interface | EntityBean extends EnterpriseBean PersistentComponent::EnterpriseCompone
nt
Operation | public void setEntityContext (void set_persistent_context (
EntityContext ctx) in PersistentContext ctx)
throws EJBException raises CCMException;
public void unsetEntityContext () void unset_persistent_context ()
throws EJBException raises (CCMException);
public void ejbActivate () void ccm_activate ()
throws EJBException raises (CCMException);
public void ejbLoad () void ccm_load ()
throws EJBException raises (CCMException);
public void ejbStore () void ccm_store()
throws EJBException raises (CCMException);
public void ejbPassivate () void ccm_passivate ()
throws EJBException raises (CCMException);
public void ejbRemove () void ccm_remove () REMOVE_ERROR
throws RemoveException, raises (CCMException); is a minor code
EJBException
Interface | <name>Bean extends EntityBean Home operations are

not delegated in CCM.

August 2, 1999 10:02 pm

CORBA Components Volume | - orbos/99-04-16

Table C-3 Comparing EJB and CCM Callback Interfaces

Construct

EJB Form

CCM Form

Notes

Operation

public <key-type> ejbcreate (
<Arg-type> <arg-list>)
throws CreateException,
DuplicateKeyException,
EJBEXxception

Implemented on home,
CREATE_ERROR

and DUPLICATE_KEY
are minor codes

public void ejbPostCreate ()
throws CreateException,
DuplicateKeyException,
EJBException

post_create not
required in CCM due
to CORBA identity
model

public <key-type> findByPrimaryKey (
<Arg-type> <arg-list>)

throws FinderException,
NoSuchEntityException,
ObjectNotFoundException,
EJBException

Implemented on home,
FIND_ERROR,
NO_SUCH_ENTITY and
OBJECT_NOT_FOUND
are minor codes

public <key-type> find<method> (
<Arg-type> <arg-list>)

throws FinderException,
NoSuchEntityException,
ObjectNotFoundException,
EJBException

Implemented on home,
FIND_ERROR,
NO_SUCH_ENTITY and
OBJECT_NOT_FOUND
are minor codes

C.4 TheContext Interfaces

The context interfaces summarized in Table C-4 provide accessors to services provided
by the component container. The are used by the component developer when these

service are required.

Table C-4 Comparing the EJB and CCM Context Interfaces

Construct EJB Form CCM Form Notes
Module javax.ejb Components::Basic
Interface | EJBContext CCMContext
Operation | public java.security.Principal getCallerPrincipal() | Principal get_caller_principal();
public EJBHome getEJBHome() CCMHome get_ CCM_home();
public boolean getRollbackOnly() boolean get_rollback_only()
throws java.lang.lllegalState raises (lllegalState);
public javax.transaction.UserTransaction Transaction::UserTransaction
getUserTransaction () get_user_transaction ()
throws java.lang.lllegalState raises (lllegalState);
public boolean isCallerinRole (boolean is_caller_in_role(
java.lang.String (roleName) in string role);
public void setRollbackOnly() void set_rollback_only()
throws java.lang.lllegalState raises lllegalState;
Interface | SessionContext extends EJBContext TransientContext::CCMContext
C-442 CORBA Components Volume| - orbos/99-04-16 August 2, 1999 10:02 pm

Table C-4 Comparing the EJB and CCM Context Interfaces

Construct EJB Form CCM Form Notes

Operation | public EJBObject getEJBObject() CORBA::Object get_ CCM_Obiject() | this will be the
throws java.lang.lllegalState raises (lllegalState); component reference

Interface | EntityContext extends EJBContext PersistentContext::CCMContext

Operation | public EJBObject getEJBObject() CORBA::Object get CCM_Obiject() | this will be the

throws java.lang.lllegalState

raises (lllegalState);

component reference

public java.lang.Object getPrimaryKey ()
throws java.lang.lllegalState

PrimaryKeyBase get_primary_key()
raises (lllegalState);

C.5 TheTransaction Interfaces

Table C-5 summarizes the transaction interfaces provided for bean-managed or
component-managed transactions. Both EJB and CCM provide an accessor function in
the context to obtain a reference to a transaction service. The transaction service
supported for EJB is JTA, a subset of JTS which is equivalent to the CORBA
transaction service (OTS). The transaction service supported for CORBA components
is implemented by the component container as a wrapper over the CORBA transaction
service. Components::Transaction is functionally equivalent to JTA (which is not
a distinct compliance level for OTS) with the addition of suspend and resume.

Table C-5 Comparing the EJB Transaction service (JTA) with CORBA component transactions

Construct EJB Form CCM Form Notes

Module javax.transaction Components::Transaction

Interface | UserTransaction UserTransaction

Operation | public void begin() void begin () SystemError to avoid confusion
throws NotSupported, raises (NotSupported, with System Exception
SystemException SystemError);

public void commit()

throws RollbackException,
HeuristicMixedException,
HeuristicRollbackException,
java.security.SecurityException,
java.lang.lllegalStateException,
SystemException

void commit()
raises (Rollback,
HeuristicMixed,
HeuristicRollback,
Security,
lllegalState,
SystemError

map CORBA system exceptions
TRANSACTION_ROLLED_BACK
to ROLLBACK and
NO_IMPLEMENT to SECURITY

public void rollback()

throws java.security.SecurityException,
java.lang.lllegalStateException,
SystemException

void rollback()
raises (Security,
lllegalState,
SystemError);

public void setRollbackOnly()
throws SystemException

void set_rollback_only()
raises (SystemError);

public int getStatus()
throws SystemException;

Status get_status()
raises (SystemError);

August 2, 1999 10:02 pm

CORBA Components Volume | - orbos/99-04-16

C-443

Table C-5 Comparing the EJB Transaction service (JTA) with CORBA component transactions

Construct EJB Form CCM Form Notes

public void setTransactionTimeout (void set_transaction_timeout(

int seconds) in long to)

throws SystemException raises (SystemError);
TranToken suspend() CCM supports suspend/resume
raises (NoTransaction, which JTA does not
SystemError);
void resume(CCM supports suspend/resume
in TranToken) which JTA does not
raises (invalidToken,
SystemError);

C.6 TheMetadata Interfaces

C-444

The EJB component model supports a limited set of metadata through the
EJBMetaData interface. The CORBA component model extends the CORBA
interface repository to add component-unique metadata for components. This meta-
datais in addition to the metadata currently provided by the IR. When EJB clients
access CORBA components, the container provider must provide an implementation of
EJBMetaData which supports the necessary metadata from the Interface Repository
or the component descriptors. This is described further in Chapter 8. When CORBA
clients access EJB implementations, the Interface Repository is already populated for
the EJBHome and EJBObject interfaces, enabling client requests to be satisfied.
Table C-6 compares the metadata supported by EJB and CORBA Components.

Issue — This table will be completed after the I nterface Repository chapter is
ready.

Table C-6 Comparing component metadata between EJB and CORBA components

Construct EJB Form CCM Form Notes
Module javax.ejb IR
Interface | EJBMetaData ComponentDef

public EJBHome getEJBHome()

public java.lang.Class getHomelnterfaceClass()

public java.lang.Class getRemotelnterfaceClass()

public java.lang.Class getPrimaryKeyClass()

public boolean isSession()

public boolean isStatelessSession()

CORBA Components Volume| - orbos/99-04-16

August 2, 1999 10:02 pm

D.1 Polymorphism

Related Work D

This chapter explores languages and programming idioms which support the
expression of multiple interfaces and interface dependencies.

A popular idiom in object-oriented programming is for an object to depend on an
interface or an abstract base class. At runtime the object may receive a reference to the
interface, which is dynamically bound to its implementation.

The programmer usually becomes aware of the dependency by examining method
parameters or by reading comments or documentation. That is, there is no first class
language constructs to highlight the interface dependencies.

D.2 Java Parameterized Type Proposals

Emerging proposals for parameterized types in Java have introduced interesting
mechanisms for expressing type dependencies. Parameterized types express
dependencies on one or more other types, to be determined when the template is
instantiated.

D.2.1 Where Clauses

August 2, 1999 9:58 pm

In the language Theta [Liskov 95] and in a recent proposal for parameterized typesin
Java [Myers 97], parameters to parameterized types are constrained by where clauses.
Where clauses state explicitly which methods a parameter type must support in order
to be used as a parameter to the parameterized type. Thisis afirst class language
construct for stating method dependencies. For example

For example, in proposed Java syntax:

CORBA Components Volume| - orbos/99-07-01 D-445

interface Set [T]
where T { boolean equals(T t); }

{..}

D.2.2 Constraining on Interface

D.3 JavaBeans

Another proposal for parameterized types in Java [Agesen 97], allows type parameters
to be constrained to support a particular interface. That is, only types which implement
the given interface may be supplied as a type parameter to the parameterized type.

For example:

interface Equal<T> {
boolean equal(T);

}

class Set<T implements Equal<T>>

(..}

This mechanism is analogous to this submission’s specification of the uses statement
for specifying a required interface.

JavaBeans sidesteps the lack of first class language constructs to describe an object’s
interface dependencies. It uses a combination of naming conventions, introspection and
external representation to describe certain types of interface dependencies.

The JavaBeans specification provides a clever mechanism for a class to express its
runtime interface dependencies via a set of naming conventions and programming
idioms, which they call “design patterns’L. An introspector looks for these naming
conventions to determine what events a Bean generates and what kind of listener
interfaces may register with it. This information is stored in a BeanInfo object. A
Beanlnfo may also be written by hand, circumventing the introspection process (and
allowing deviation from prescribed haming conventions).

JavaBeans typically communicate with registered interfaces using events. The event,
which is usually a data object that communicates information about something that
happened, is transferred to the listening object via a method call.

1. An unfortunate choice of terms as JavaBeans design patterns are quite different from the design patterns as known
to the design patterns community and expressed in the Design Patterns book [Gamma 95].

D-446

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 9:58 pm

D.4 COM

August 2, 1999 9:58 pm

In COM [Rogerson 97], the interfaces that a component provides are specified in the
IDL specification of a component. A component is declared by a coclass declaration in
an IDL file. A coclass declares the interfaces that it provides by listing each in the
declaration. The interfaces that a component uses are specified as sour ce interfaces.
The source modifier indicates that the component is the source of cals to that
interface. A component with source interfaces must also provide the

| ConnectionPointContainer interface. | ConnectionPointContainer is used by
clients to query an objects source interfaces and to register their client interfaces as
sinks for the source interfaces.

coclass TangramModel

{

[default] interface ITangramModel ;
interface ITangramTransform ;
interface IConnectionPointContainer ;

// Outgoing source interface.
[source] interface ITangramModelEvent ;

h

The COM source interface declaration is similar to the uses statement in this
submission; non-source interfaces are similar to provides statements. While the
coclass must declare a default interface, this submission allows the component to
support operations of its own.

CORBA Components Volume | - orbos/99-07-01 D-447

D.5 Rapide

D-448

The provides and uses statements in this submission are similar to the Interface
Connection Architecture implemented in Rapide [Rapide 97] and discussed in
[Luckham 95]. The Rapide Interface Connection Architecture applies provides and
requires statements to individual functions in a class declaration. Class instances are
connected via a connect statement in which a requires method of one object is
connected to a provided method of another object.

For example:

class Parser is
provides:
function Initialize();
function FileName() return String;
requires
function Semantize(Tree);
function Generate(Tree);
specification ...
end Parser;

class Semanticizer is
provides:
function Semantize(Tree);
function Incremental_Semantize(Context : Tree; Addition : Tree);
requires:
function FileName() return String;
specification ...
end Semanticizer;

P: Parser; S: Semanticizer;
Connect

P.Semantize to S.Semantize;
S.FileName to P.FileName;

This submission specifies a similar notion of explicit dependency specification. The
difference being that we specify dependencies with respect to interfaces rather that
individual methods.

CORBA Components \Volume | - orbos/99-07-01 August 2, 1999 9:58 pm

August 2, 1999 9:58 pm

References E

[Agesen 97] Ole Agesen, Stephen N. Freund, John C. Mitchell, “Adding Type
Parameterization to the Java Language”, Proceedings of the 1997 OOPSLA--
Conference on Object-Oriented Programming Systems, Languages and Applications.

[Cheung 99] Susan Cheung, Vlada Matena, Java Transaction APR (JTA) 1.0.1, Sun
Microsystems, http://java.sun.com/products/jtal.

[Englander 97] Robert Englander, Developing Java Beans, O’ Reilly & Associates,
Sebastopol, CA, 1997.

[Gamma 95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design
Patterns - Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading,
MA, 1995.

[Hamilton 97] Graham Hamilton (Editor), JavaBeans Specification 1.01, Sun
Microsystems, http://www.javasoft.com/beans/docs/beans.101.pdf, 1997.

[Krishnam 99] Sanjeev Krishnan, Enterprise JavaBeans to CORBA Mapping, Sun
Microsystems, http://java.sun.com/products/ejb/docs.html.

[Liskov 95] Mark Kay, Robert Gruber, Barbara Liskov, “ Subtypes vs. Where Clauses:
Constraining Parametric Polymorphism”, Proceedings of the 1995 OOPSLA--
Conference on Object-Oriented Programming Systems, Languages and Applications.

[Luckham 95] David C. Luckham, James Vera, Sigurd Meldal, “ Three Concepts of
System Architecture”, Unpublished Manuscript, Stanford University CS Technical
Report, CSL-TR-95-674, July 19, 1995.

[Matena 99] Vlada Matena, Mark Hapner, Enterprise JavaBeans Specification 1.1, Sun
Microsystems, http://java.sun.com/products/ejb/docs.html.

[Myers 97] Andrew C. Myers, Joseph A. Bank, Barbara Liskov, “Parameterized Types
for Java’, Proceedings of the 1997 ACM Symposium on Principles of Programming
Languages (POPL).

CORBA Components Volume| - orbos/99-07-01 E-449

E-450

[Rapide 97] The Stanford Rapide Project, http://poset.stanford.edu/rapide/rapide-
pubs.html.

[Rogerson 97] Dale Rogerson, Inside COM, Microsoft Press, Redmond WA, 1997.

CORBA Components Volume| - orbos/99-07-01 August 2, 1999 9:58 pm

	1 Introduction 1
	2 Mapping to RFP Requirements 9
	3 Introduction to Components 17
	4 Extensions to CORBA Core 45
	5 Component Model 59
	6 Component Implementation 117
	7 The Container Programming Model 169
	8 Integrating with Enterprise JavaBeans 225
	9 Container Architecture 245
	10 Packaging and Deployment 303
	11 Changes to CORBA and Services 379
	12 Conformance Criteria 399
	A IDL Summary 401
	B XML DTDs 417
	C Comparing EJB and CCM 437
	D Related Work 445
	E References 449

	Introduction
	1.1 Overview
	1.2 Relationship to other CORBA Technology
	1.2.1 CORBA Core and Object Services
	1.2.2 Business Objects Interoperability Initiative
	1.2.3 UML and the Meta Object Facility
	1.2.4 Interface Repository

	1.3 Guide to the Submission
	1.4 Proof of Concept
	1.5 Conventions
	1.6 Submission Contact Points

	Mapping to RFP Requirements
	2.1 Mandatory Requirements
	2.1.1 Component Model Elements
	2.1.2 Requirements for Component Description Facility
	2.1.3 Requirements for Programming Model
	2.1.4 Requirements for Mapping to JavaBeans
	2.1.5 Security Requirements

	2.2 Optional Requirements

	Introduction to Components
	3.1 Introduction
	3.2 Typical Use Model
	3.2.1 Analysis/Design Phase
	3.2.2 Component Declaration
	3.2.3 Component Implementation
	3.2.4 Component Packaging
	3.2.5 Component Assembly
	3.2.6 Component Deployment and Installation
	3.2.7 Component Instance Activation

	3.3 Component Model and IDL Extensions
	3.3.1 Multiple Facets (interfaces) and Navigation
	3.3.2 Receptacles
	3.3.3 Events
	3.3.3.1 Event Sources
	3.3.3.2 Event Sinks

	3.3.4 Primary Key
	3.3.5 Home Interfaces
	3.3.6 Component Attributes and Configuration
	3.3.7 Component Inheritance

	3.4 Component Implementation
	3.4.1 Executor
	3.4.2 Composition
	3.4.3 Composition Structure
	3.4.3.1 Minimal Composition
	3.4.3.2 State Management
	3.4.3.3 Home Operations

	3.4.4 Executor Definition

	3.5 Container Programming Model
	3.5.1 External API Types
	3.5.2 Container API Types
	3.5.3 CORBA Usage Model
	3.5.4 Component Category
	3.5.5 Transactions
	3.5.6 Security
	3.5.7 Events
	3.5.8 Persistence
	3.5.9 Component Implementations
	3.5.10 Component Levels

	3.6 Client Programming Model
	3.6.1 Component-aware Clients
	3.6.2 Component-unaware Clients

	3.7 Container Architecture
	3.7.1 Component Server
	3.7.1.1 Component Levels
	3.7.1.2 CORBA Service Bindings
	3.7.1.3 API Frameworks

	3.7.2 Container Categories
	3.7.3 Persistence Integration
	3.7.3.1 Container-managed Peristence
	3.7.3.2 Self-managed Persistence
	3.7.3.3 Interactions between the Container and Persistence Provider

	3.7.4 Event Integration

	3.8 Component Assembly and Packaging
	3.9 Component Deployment
	3.10 Interworking Between CORBA Components and EJB 1.1
	3.11 Component Meta Data
	3.12 Other IDL Extensions
	3.12.1 Local Interfaces
	3.12.2 Import
	3.12.3 Repository Id Declarations

	Extensions to CORBA Core
	4.1 Local Interface Types
	4.1.1 LocalObject
	4.1.2 C++ Mapping of LocalObject
	4.1.3 Java Mapping of LocalObject
	4.1.4 Interface Repository Support for Local Types
	4.1.5 Existing Interfaces Changed to Local Interfaces

	4.2 Import
	4.3 Repository identity declarations
	4.3.1 Repository identity declaration
	4.3.2 Repository identifier prefix declaration

	4.4 IDL Grammar modifications
	4.4.1 Keywords

	Component Model
	5.1 Component Model
	5.1.1 Component levels
	5.1.2 Ports
	5.1.3 Components and facets
	5.1.4 Component identity
	5.1.5 Component homes

	5.2 Component Definition
	5.2.1 IDL Extensions for Components

	5.3 Component Declaration
	5.3.1 Syntax
	5.3.2 Basic Components
	5.3.3 Equivalent IDL
	5.3.3.1 Simple declaration
	5.3.3.2 Supported interfaces
	5.3.3.3 Inheritance
	5.3.3.4 Inheritance and supported interfaces

	5.3.4 Component Body

	5.4 Facets and Navigation
	5.4.1 Syntax
	5.4.2 Equivalent IDL
	5.4.3 Semantics of facet references
	5.4.4 Navigation
	5.4.4.1 get_component()
	5.4.4.2 Component-specific provide operations
	5.4.4.3 Navigation interface on the component
	5.4.4.4 Navigation interface on facet interfaces

	5.4.5 Provided References and Component Identity
	5.4.6 Supported interfaces

	5.5 Receptacles
	5.5.1 Syntax
	5.5.2 Equivalent IDL
	5.5.3 Behavior
	5.5.3.1 Connect operations
	5.5.3.2 Disconnect operations
	5.5.3.3 get_connection and get_connections operations
	5.5.3.4 Cookie type

	5.5.4 Receptacles interface

	5.6 Events
	5.6.1 Event types
	5.6.2 Integrity of value types contained in anys
	5.6.3 EventConsumer interface
	5.6.4 Event service provided by container
	5.6.5 Event Sources—publishers and emitters
	5.6.6 Publisher
	5.6.6.1 Syntax
	5.6.6.2 Equivalent IDL
	5.6.6.3 Event publisher operations

	5.6.7 Emitters
	5.6.7.1 Syntax
	5.6.7.2 Equivalent IDL
	5.6.7.3 Event emitter operations

	5.6.8 Module scope of generated event consumer interfaces
	5.6.9 Event Sinks
	5.6.9.1 Syntax
	5.6.9.2 Equivalent IDL
	5.6.9.3 Event sink operations

	5.6.10 Events interface

	5.7 Attributes
	5.7.1 Syntax
	5.7.2 Language mapping responsibilities
	5.7.3 Behavior

	5.8 Homes
	5.8.1 Home header
	5.8.1.1 Syntax

	5.8.2 Equivalent interfaces
	5.8.2.1 Home definitions with no primary key
	5.8.2.2 Home definitions with primary keys

	5.8.3 Primary key declarations
	5.8.3.1 Primary key type constraints
	5.8.3.2 PrimaryKeyBase

	5.8.4 Explicit operations in home definitions
	5.8.4.1 Factory operations
	5.8.4.2 Finder operations
	5.8.4.3 Miscellaneous exports

	5.8.5 Home inheritance
	5.8.6 Semantics of home operations
	5.8.6.1 Orthodox operations
	5.8.6.2 Heterodox operations

	5.8.7 CCMHome interface
	5.8.8 KeylessCCMHome interface

	5.9 Home Finders
	5.10 Component Configuration
	5.10.1 Exclusive configuration and operational life cycle phases
	5.10.1.1 Enforcing exclusion of configuration and operation

	5.11 Configuration with attributes
	5.11.1 Attribute Configurators
	5.11.1.1 The Configurator interface
	5.11.1.2 The StandardConfigurator interface

	5.11.2 Factory-based configuration
	5.11.2.1 HomeConfiguration interface

	5.12 Component Inheritance
	5.12.1 CCMObject Interface

	Component Implementation
	6.1 Component Implementation Framework (CIF) architecture
	6.1.1 Component Implementation Definition Language (CIDL)
	6.1.2 Component persistence and behavior
	6.1.3 Implementing a CORBA Component
	6.1.4 Behavioral elements: Executors
	6.1.5 Unit of implementation : Composition
	6.1.6 Composition structure
	6.1.7 Compositions with managed storage
	6.1.8 Relationship between home executor and abstract storage home
	6.1.8.1 Primary Key Binding
	6.1.8.2 Implicit delegation of home operations
	6.1.8.3 Explicit delegation of home operations

	6.1.9 Executor definition
	6.1.9.1 Segmented executors
	6.1.9.2 Delegation of feature state

	6.1.10 Proxy homes
	6.1.10.1 Proxy home delegation

	6.1.11 Component object references
	6.1.11.1 Facet identifiers
	6.1.11.2 Segment identifiers
	6.1.11.3 State identifiers
	6.1.11.4 Monolithic reference information
	6.1.11.5 Segmented reference information
	6.1.11.6 Component identity

	6.2 CIDL syntax for compositions
	6.2.1 Composition definition
	6.2.1.1 Life cycle category and constraints

	6.2.2 Catalog usage declaration
	6.2.3 Home executor definition
	6.2.4 Home implementation declaration
	6.2.5 Storage home binding
	6.2.6 Home persistence declaration
	6.2.7 Executor definition
	6.2.8 Segment definition
	6.2.9 Segment persistence declaration
	6.2.10 Facet declaration
	6.2.11 Feature delegation specification
	6.2.12 Abstract Storage home delegation specification
	6.2.13 Executor delegation specification

	6.3 Language Mappings

	The Container Programming Model
	7.1 Introduction
	7.1.1 External API Types
	7.1.2 Container API Type
	7.1.3 CORBA Usage Model
	7.1.4 Component Categories

	7.2 The Server Programming Environment
	7.2.1 Component Containers
	7.2.2 CORBA Usage Model
	7.2.2.1 Component References
	7.2.2.2 Servant to ObjectId Mapping
	7.2.2.3 Threading Considerations

	7.2.3 Component Factories
	7.2.4 Component Activation
	7.2.5 Servant Lifetime Management
	7.2.6 Transactions
	7.2.7 Security
	7.2.8 Events
	7.2.8.1 Transaction Policies for Events
	7.2.8.2 Security Policies for Events

	7.2.9 Persistence
	7.2.9.1 Container-managed Persistence
	7.2.9.2 Self-managed Persistence

	7.2.10 Application Operation Invocation
	7.2.11 Component Implementations
	7.2.12 Component Levels
	7.2.13 Component Categories
	7.2.13.1 The Service Component
	7.2.13.2 The Session Component
	7.2.13.3 The Process Component
	7.2.13.4 The Entity Component

	7.3 Server Programming Interfaces - Basic Components
	7.3.1 Component Interfaces
	7.3.2 Interfaces Common to both Container API Types
	7.3.2.1 The CCMContext Interface
	7.3.2.2 The Home Interface
	7.3.2.3 The UserTransaction Interface
	7.3.2.4 The EnterpriseComponent Interface

	7.3.3 Interfaces Supported by the Session Container API Type
	7.3.3.1 The SessionContext Interface
	7.3.3.2 The SessionComponent Interface
	7.3.3.3 The SessionSynchronization Interface

	7.3.4 Interfaces Supported by the Entity Container API Type
	7.3.4.1 The EntityContext Interface
	7.3.4.2 The EntityComponent Interface

	7.4 Server Programming Interfaces - Extended Components
	7.4.1 Interfaces Common to both Container API Types
	7.4.1.1 The CCM2Context Interface
	7.4.1.2 The HomeRegistration Interface
	7.4.1.3 The ProxyHomeRegistration Interface
	7.4.1.4 The Event Interface

	7.4.2 Interfaces Supported by the Session Container API Type
	7.4.2.1 The Session2Context Interface

	7.4.3 Interfaces Supported by the Entity Container API Type
	7.4.3.1 Component Identifiers
	7.4.3.2 StateIdValue abstract valuetype
	7.4.3.3 StateIdFactory Interface
	7.4.3.4 PersistentIdValue valuetype
	7.4.3.5 SegmentDescr valuetype
	7.4.3.6 ComponentId Interface
	7.4.3.7 The Entity2Context Interface

	7.5 The Client Programming Model
	7.5.1 Component-aware Clients
	7.5.1.1 Initial References
	7.5.1.2 Factory Design Pattern
	7.5.1.3 Finder Design Pattern
	7.5.1.4 Transactions
	7.5.1.5 Security
	7.5.1.6 Events

	7.5.2 Component-unaware Clients
	7.5.2.1 Initial References
	7.5.2.2 Factory Design Pattern
	7.5.2.3 Finder Design Pattern
	7.5.2.4 Transactions
	7.5.2.5 Security
	7.5.2.6 Events

	Integrating with Enterprise JavaBeans
	8.1 Enterprise JavaBeans Compatibility Objectives and Requirements
	8.2 CORBA Component views for EJBs
	8.2.1 Mapping of EJB to Component IDL definitions
	8.2.1.1 Java Language to IDL Mapping
	8.2.1.2 EJB to IDL mapping

	8.2.2 Translation of CORBA Component requests into EJB requests
	8.2.3 CORBA Component view Example

	8.3 EJB views for CORBA Components
	8.3.1 Mapping of Component IDL to Enterprise JavaBeans specifications
	8.3.2 Translation of EJB requests into CORBA Component requests
	8.3.3 Example

	Container Architecture
	9.1 Component Server
	9.1.1 Component Levels
	9.1.2 POA Creation
	9.1.3 Binding the Container to CORBA services
	9.1.4 Container API Frameworks
	9.1.4.1 Creating Object References
	9.1.4.2 Factories and Finders
	9.1.4.3 Transactions
	9.1.4.4 Security
	9.1.4.5 Events
	9.1.4.6 Persistence
	9.1.4.7 Threading

	9.2 Containers Categories
	9.2.1 The Empty Container
	9.2.2 The Service Container
	9.2.2.1 Creating Object References
	9.2.2.2 Factories and Instances
	9.2.2.3 Invoking an Operation
	9.2.2.4 Servant Lifetime Management

	9.2.3 The Session Container
	9.2.3.1 Creating Object References
	9.2.3.2 Factories and Instances
	9.2.3.3 Invoking an Operation
	9.2.3.4 Servant Lifetime Management

	9.2.4 The Process Container
	9.2.4.1 Creating Object References
	9.2.4.2 Factories and Instances
	9.2.4.3 Invoking an Operation
	9.2.4.4 Servant Lifetime Management

	9.2.5 The Entity Container
	9.2.5.1 Creating Object References
	9.2.5.2 Factories and New Instances
	9.2.5.3 Invoking an Operation on a New Instance
	9.2.5.4 Finders and Existing Instances
	9.2.5.5 Invoking an Operation on an Existing Instance
	9.2.5.6 Servant Lifetime Management

	9.2.6 The EJBSession Container
	9.2.6.1 Creating Object References
	9.2.6.2 Factories and Instances
	9.2.6.3 Invoking an Operation
	9.2.6.4 Servant Lifetime Management

	9.2.7 The EJBEntity Container
	9.2.7.1 Creating Object References
	9.2.7.2 Factories and New Instances
	9.2.7.3 Invoking an Operation on a New Instance
	9.2.7.4 Finders and Existing Instances
	9.2.7.5 Invoking an Operation on an Existing Instance
	9.2.7.6 Servant Lifetime Management

	9.3 Persistence Integration
	9.3.1 Container-managed Persistence
	9.3.2 Self-managed Persistence
	9.3.3 Interactions between the Container and the Persistence Provider
	9.3.3.1 Connecting to the Persistence Mechanism
	9.3.3.2 Managing DB Connections
	9.3.3.3 Synchronization of Component State with Persistence State

	9.4 Event Management Integration
	9.4.1 Channel setup
	9.4.2 Transmitting an event
	9.4.3 Receiving an event

	Packaging and Deployment
	10.1 Component Packaging
	10.2 Software Package Descriptor
	10.2.1 A softpkg Descriptor Example
	10.2.2 The Software Package Descriptor XML Elements
	10.2.2.1 The softpkg Root Element
	10.2.2.2 The author Element
	10.2.2.3 The code Element
	10.2.2.4 The codebase Element
	10.2.2.5 The company Element
	10.2.2.6 The compiler Element
	10.2.2.7 The dependency Element
	10.2.2.8 The description Element
	10.2.2.9 The descriptor Element
	10.2.2.10 The entrypoint Element
	10.2.2.11 The extension Element
	10.2.2.12 The fileinarchive Element
	10.2.2.13 The humanlanguage Element
	10.2.2.14 The idl Element
	10.2.2.15 The implementation Element
	10.2.2.16 The implref Element
	10.2.2.17 The license Element
	10.2.2.18 The link Element
	10.2.2.19 The localfile Element
	10.2.2.20 The name Element
	10.2.2.21 The os Element
	10.2.2.22 The pkgtype Element
	10.2.2.23 The processor Element
	10.2.2.24 The programminglanguageElement
	10.2.2.25 The propertyfile Element
	10.2.2.26 The runtime Element
	10.2.2.27 The simple-link-attributes Entity
	10.2.2.28 The softpkg Element
	10.2.2.29 The softpkgref Element
	10.2.2.30 The title Element
	10.2.2.31 The usage Element
	10.2.2.32 The webpage Element

	10.3 CORBA Component Descriptor
	10.3.1 Component Feature Description
	10.3.2 Deployment Information
	10.3.3 CIDL Compiler Responsibilities
	10.3.4 CORBA Component Descriptor Example
	10.3.5 The CORBA Component Descriptor XML Elements
	10.3.5.1 The corbacomponent Root Element
	10.3.5.2 The accessmode Element
	10.3.5.3 The catalog Element
	10.3.5.4 The componentfeatures Element
	10.3.5.5 The componentkind Element
	10.3.5.6 The componentproperties Element
	10.3.5.7 The componentrepid Element
	10.3.5.8 The configurationcomplete Element
	10.3.5.9 The consumes Element
	10.3.5.10 The containermanagedpersistence Element
	10.3.5.11 The corbacomponent Element
	10.3.5.12 The corbaversion Element
	10.3.5.13 The emits Element
	10.3.5.14 The entity Element
	10.3.5.15 The eventpolicy Element
	10.3.5.16 The extendedpoapolicy Element
	10.3.5.17 The extension Element
	10.3.5.18 The fileinarchive Element
	10.3.5.19 The homefeatures Element
	10.3.5.20 The homeproperties Element
	10.3.5.21 The homerepid Element
	10.3.5.22 The inheritscomponent Element
	10.3.5.23 The inheritshome Element
	10.3.5.24 The inheritsinterface Element
	10.3.5.25 The ins Element
	10.3.5.26 The interface Element
	10.3.5.27 The interop Element
	10.3.5.28 The link Element
	10.3.5.29 The objref Element
	10.3.5.30 The operation Element
	10.3.5.31 The operationpolicies Element
	10.3.5.32 The param Element
	10.3.5.33 The params Element
	10.3.5.34 The poapolicies Element
	10.3.5.35 The ports Element
	10.3.5.36 The process Element
	10.3.5.37 The provides Element
	10.3.5.38 The pssimplementation Element
	10.3.5.39 psstransaction Element
	10.3.5.40 psstransactionisolationlevel Element
	10.3.5.41 The publishes Element
	10.3.5.42 The repository Element
	10.3.5.43 requiredrights Element
	10.3.5.44 right Element
	10.3.5.45 The security Element
	10.3.5.46 The segment Element
	10.3.5.47 The segmentmember Element
	10.3.5.48 The servant Element
	10.3.5.49 The service Element
	10.3.5.50 The session Element
	10.3.5.51 The storagehome Element
	10.3.5.52 The simple-link-attributes Entity
	10.3.5.53 The supportsinterface Element
	10.3.5.54 The threading Element
	10.3.5.55 The transaction Element
	10.3.5.56 The unclassified Element
	10.3.5.57 The uses Element

	10.4 Component Assembly Packaging
	10.5 Component Assembly File
	10.6 Component Assembly Descriptor
	10.6.1 Component Assembly Descriptor Example
	10.6.2 Component Assembly Descriptor XML Elements
	10.6.2.1 The componentassembly Root Element
	10.6.2.2 The codebase Element
	10.6.2.3 The componentfile Element
	10.6.2.4 The componentfileref Element
	10.6.2.5 The componentfiles Element
	10.6.2.6 The componentimplref Element
	10.6.2.7 The componentinstantiation Element
	10.6.2.8 The componentinstantiationref Element
	10.6.2.9 The componentproperties Element
	10.6.2.10 The componentsupportedinterface Element
	10.6.2.11 The connectevent Element
	10.6.2.12 The connecthomes Element
	10.6.2.13 The connectinterface Element
	10.6.2.14 The connections Element
	10.6.2.15 The consumesidentifier Element
	10.6.2.16 The consumesport Element
	10.6.2.17 The description Element
	10.6.2.18 The destination Element
	10.6.2.19 The destinationhome Element
	10.6.2.20 The emitsidentifier Element
	10.6.2.21 The emitsport Element
	10.6.2.22 The executableplacement Element
	10.6.2.23 The existinginterface Element
	10.6.2.24 The extension Element
	10.6.2.25 The fileinarchive Element
	10.6.2.26 The findby Element
	10.6.2.27 The homefinder Element
	10.6.2.28 The homeinterface Element
	10.6.2.29 The homeplacement Element
	10.6.2.30 The homeplacementref Element
	10.6.2.31 The homeproperties Element
	10.6.2.32 The hostcollocation Element
	10.6.2.33 The impltype Element
	10.6.2.34 The invocation Element
	10.6.2.35 The link Element
	10.6.2.36 The namingservice Element
	10.6.2.37 The partitioning Element
	10.6.2.38 The processcollocation Element
	10.6.2.39 The providesidentifier Element
	10.6.2.40 The providesport Element
	10.6.2.41 The publishesidentifier Element
	10.6.2.42 The publishesport Element
	10.6.2.43 The registercomponent Element
	10.6.2.44 The registerwithhomefinder Element
	10.6.2.45 The registerwithnaming Element
	10.6.2.46 The registerwithtrader Element
	10.6.2.47 The proxyhome Element
	10.6.2.48 The stringifiedobjectref Element
	10.6.2.49 Trader elements
	10.6.2.50 The usagename Element
	10.6.2.51 The usesidentifier Element
	10.6.2.52 The usingcomponent Element

	10.7 Property File Descriptor
	10.7.1 Property File Example
	10.7.2 Property File XML Elements
	10.7.2.1 The properties Root Element
	10.7.2.2 The choice Element
	10.7.2.3 The choices Element
	10.7.2.4 The defaultvalue Element
	10.7.2.5 The description Element
	10.7.2.6 The properties Element
	10.7.2.7 The simple Element
	10.7.2.8 The sequence Element
	10.7.2.9 The struct Element
	10.7.2.10 The value Element

	10.8 Component Deployment
	10.8.1 Participants in Deployment
	10.8.1.1 Deployment Architecture
	10.8.1.2 Deployment Scenario

	10.8.2 ComponentInstallation Interface
	10.8.3 AssemblyFactory Interface
	10.8.4 Assembly Interface
	10.8.5 Component Entry Points (Component Home Factories)

	Changes to CORBA and Services
	11.1 Changes to the CORBA Core
	11.1.1 Local interface types
	11.1.2 LocalObject
	11.1.3 C++ Mappings
	11.1.4 Java Mappings
	11.1.5 Core Interfaces Changed to Local
	11.1.6 Import
	11.1.7 Repository identity declarations
	11.1.8 Repository identity declaration
	11.1.9 Repository identifier prefix declaration
	11.1.10 IDL Grammar modifications
	11.1.11 Keywords
	11.1.12 Component IDL extensions
	11.1.13 Home IDL Extensions
	11.1.14 Changes to the Object interface
	11.1.15 Changes to GIOP
	11.1.16 Changes to the Attribute declaration syntax
	11.1.17 New Initial References
	11.1.18 Changes to the Interface Repository

	11.2 Changes to RealTime CORBA
	11.3 Changes to Object Services
	11.3.1 Life Cycle Service
	11.3.2 Transaction Service
	11.3.3 Security Service
	11.3.4 Naming Service
	11.3.5 Notification Service

	Conformance Criteria
	12.1 Conformance Points
	12.2 A Note on Tools

	IDL Summary
	A.1 Module Architecture
	A.2 The Core Module
	A.3 The Components Module
	A.3.1 Interfaces Defined Within the Components Module
	A.3.2 Interfaces Defined Within the Basic Module
	A.3.3 Interfaces Defined Within the Extended Module
	A.3.4 Interfaces Defined Within the Transaction Module
	A.3.5 Interfaces Defined Within the Events Module
	A.3.6 Interfaces Defined Within the Deployment Module

	XML DTDs
	B.1 softpkg.dtd
	B.2 corbacomponent.dtd
	B.3 properties.dtd
	B.4 componentassembly.dtd

	Comparing EJB and CCM
	C.1 The Home Interfaces
	C.2 The Component Interfaces
	C.3 The Callback Interfaces
	C.4 The Context Interfaces
	C.5 The Transaction Interfaces
	C.6 The Metadata Interfaces

	Related Work
	D.1 Polymorphism
	D.2 Java Parameterized Type Proposals
	D.2.1 Where Clauses
	D.2.2 Constraining on Interface

	D.3 JavaBeans
	D.4 COM
	D.5 Rapide

	References

