[image: image2.wmf]

[image: image1.wmf]
Ent/AA.xxxx/Auteur/OF

Ent/AA.xxxx/Auteur/OF

 DEFINIR "DateDeNote" "03/02/03"03/02/03

NOTE INTERNE THALES COMMUNICATIONS MASSY

A
:

De
:

CC
:

Date
:

Réf.
:

Objet
:
MICROCCM framework install guide

3Overview

Purpose of the document
3
Intended audience
3
Document organisation
3
Naming conventions
3
Environment variables
3
References
4
Overall information
5
Framework organisation
5
Development environment and prerequisite
5
Installing microCCM component framework step by step
7
Introduction
7
Procedure
7
Variables configuration
7
Installing RTE-Component Framework
7
Installing Generator
7
Installing tests
7
Installing deployment
8
Overview of MPC tool
9
Introduction
9
MPC installation directories overview
9
Base_Project description
9
Building the code generator
11
Overview
11
MPC projects details
11
MPC files in generators directory
11
MPC files in includes directory
12
MWC file and Makefile generation for MicroCCM generator
12
Compilation process
12
building the « deployment » binaries
13
Overview
13
Compiling process
13
Building the “tools” libraries
14
Overview
14
Compilation process
14

MICROCCM framework install guide

Overview

At the very beginning of the microCCM component framework we have used a makefile environment. The build system and the files organisation was not so easy to maintain. So, we try to look for a build system which offers the following features :

It shall be as simple as possible to maintain.

It shall be open source.

It shall be compatible with linux system and other RT-OS.

It shall be suited for a medium sized project as ours.

It shall be able to generate Makefile file.

In fact, some open source tools can generate Makefile files. We have chosen the MPC (Make Project Creator) tool which enforces all these requirements. It's an open source tooI, developed by OCI and used by TAO. It permits to generate many different types of projects (Visual c++, automake, gnuace, make etc.)

Purpose of the document

This document aims to give some informations about the directory organisation and how to build the microCCM component framework. This includes the tool used for code generation, as well as external tools used.

This document will not explain how to use the « make » tool. In order to have further details on these tools the user has to consult more complete documents.

Intended audience

Mainly, people that wish to build the microCCM framework. Particularly, it targets people who want to develop microCCM component framework libraries and code generation tool.

Document organisation

Chapter 1 contains foreword, defines all conventions (typographic or not) and variables used in this document.

Chapter 2 details the installation procedure step by step.

Chapter 3 show the directory organisation

Chapter 4 details the organisation and the build of the code generator.

Chapter 5 details the organisation and the build of the «external» library.

 Naming conventions

In the rest of the document we have decided to apply some typographics conventions.

Environment variables

In order to understand the signification of the following symbols, we need to give some precision:

A command in a terminal is preceded by a “$” symbol and a space character. The command is in bold font.

The environment variables are represented as majuscule bold characters. Their value can be accessed by placing a “$” symbol before the variable.

 For example :

$ export CVSROOT=/tmp which set the CVSROOT variable

$ echo $CVSROOT which display the value of CVSROOT.

There are other environment variables :

microCCM_DIR is the directory where the source code of microCCM has been installed i.e. the corresponding uncompressed archive directory. For example if the archive is called microccm-0.8.0.tar.gz then the variable setting is:

 $ export microCCM_DIR=/dir/to/microccm-0.8.0/trunk

References

This chapter lists and classifies all the different documents referred to in this document.

It gives the information concerning each of these documents, and each is assigned a local index number; throughout the document, this index is given between square brackets for simpler and systematic cross-referencing.

Title
Identification
Reference

[1]. MPC guide.pdf

[2]. Microccm_install_guide.doc

[1]

Overall information

Framework organisation

Before building microCCM component framework, here is the following organisation:

directory
description

$(microCCM_DIR)/generators
Code of microccm generator

$(microCCM_DIR)/doc

Documentation (install_guide.doc and user_guide.doc)

$(microCCM_DIR)/examples
Examples to build components

$(microCCM_DIR)/includes

Microccm cpp Headers and included IDL files

$(microCCM_DIR))/tests

Microccm feature tests

$(microCCM_DIR)/etc
Microccm configuration files (event temporary one)

$(microCCM_DIR)/services

Microccm services (Event etc.) needed by some component features

$(microCCM_DIR)/bin

All microccm executables (e.g for the generator)

$(microCCM_DIR)/tools
Needed external tools (bzip2, XML tool, …)

$(microCCM_DIR)/deployment
Code to deploy and install component

$(microCCM_DIR)/lib
 Links to libraries

$(microCCM_DIR)/mpc_config
Configuration files for MPC tool

After the code generator and the libraries have been built, the following files are created :

· some libraries in $(microCCM_DIR)/lib

· libComponentStubsTAO.so

· libMCCMGenerator.so

· Some binaries in $(microCCM_DIR)/bin

· Idl3_to_idl2.exe

· Idl3_to_CORBA.exe

· Idl3_to_cpp_executors.exe

Development environment and prerequisite

For the microCCM component framework, the following configuration has been used:

· The generator supports the following configurations:

· The main configuration provided

· Operating system: Linux - kernel 2.6 (Fedora Core 3)

· Platform: intel x86.

· Compiler: gcc-3.4 or gcc-3.2

· In order to use the generator, we have to use an Interface Repository. Two possibilities is provided (see section ??):

· One can use the OpenCCM IFR (with Jacorb ORB),

· Or, the user can choose TAO IFR: ACE 5.4.3 and TAO 1.4.3. This tool is compiled with options “debug=0” and “optimize=1”. The TAO Naming and Event service has to be installed.

· All the Unix commands are proposed in the Bourne Again SHell (bash).

· The resulting code (run-time) is generated for the following configurations:

· The main configuration provided :

· Operating system: Linux - kernel 2.6 (Fedora Core 3)

· Platform: intel x86.

· Compiler: gcc-3.4 or gcc-3.2

· ACE 5.4.3 and TAO 1.4.3. (see section ??)

· All the Unix commands are proposed in the Bourne Again SHell (bash).

Installing microCCM component framework step by step

Introduction

There are 2 steps for the installation of the application: configuring environment variables, installing and finally compiling the application.

Procedure

Variables configuration

Before installing the application, the user must configure some environment variables.

There are two possibilities:

Either the user can type in $microCCM_DIR directory:

$. ./set_environment.sh

Or, one can execute the following shell commands:

· Configuring environment variables for TAO :

for example:

$ export ACE_ROOT=/install/dir/of/TAO/ACE_wrappers

$ export TAO_ROOT=$ACE_ROOT/TAO

$ export LD_LIBRARY_PATH=$ACE_ROOT/lib

$ export PATH=$TAO_ROOT/TAO_IDL:$ACE_ROOT/bin:$PATH

· Configuring some variables for OpenCCM:

$cd OPENCCM_INSTALL_DIR/JacORB-2.1/bin

$. ./envi.OpenCCM.sh

· Configuring some variables for microCCM component framework:

 The path (from) for the project of the application working directory:

$export microCCM_DIR=$PWD

$export PATH=$microCCM_DIR/bin:$PATH

$export LD_LIBRARY_PATH=$microCCM_DIR/lib:$LD_LIBRARY_PATH

Installing RTE-Component Framework

In order to create all the executables and libraries the user can proceed this way:

Installing Generator

in the $microCCM_DIR directory, the user can type

$ generateMakefiles.sh MCCMGenerator.mwc

$ make

Installing tests

· The events test:

$ cd $microCCM_DIR/tests/unit/events

$ generateMakefiles.sh events.mwc

$ make

· The components_connection test:

$ cd $microCCM_DIR/tests/unit/components_connection

$ generateMakefiles.sh components_connection.mwc

$ make

Installing deployment

$ cd $microCCM_DIR/deployment

$ generateMakefiles.sh Deployment.mwc

$ make

Overview of MPC tool

Introduction

MPC (Make Project Creator) is a tool developed by OCI and used at the moment for building ACE/TAO code. The tool is constituted of two perl programs: mwc.pl and mpc.pl.

· Mwc.pl is used to compile workspace files (.mwc extension), containing all the project files and their respective directories.

· Mpc.pl is used to compile project files (.mpc extension). This type of file may contains different configurations defining projects such as source files, library names and paths, included files, name of executables etc.

MPC aims to generates project files for different kind of development environment (IDE), like Visual c++ (VC 6-7), Automake, Borland, Make, Gnuace, Green-Hills etc.

MPC allows to ease the process for defining a project, by using some kind of simple scripts such as mpc and mwc files.

MPC installation directories overview

The two programs have been extracted from the ACE/TAO install directories, and reinstall in the $microCCM_DIR/config_mpc directory in order to be used in an independant manner for microCCM.

1. In config_mpc/modules, one can find all the perl modules called by the main programs (mpc.pl and mwc.pl). This directory contains all perl module files (.pm) providing both generic features (common to all kind of projects) (e.g. Parser.pm, Options.pm, ...) and specific one dedicated to the type of project the user wishes to create (e.g. MakeProjectCreator.pm for Makefiles, VC7ProjectCreator.pm for visual C++ v7.0, BorlandProjectCreator.pm for Borland, ...). To suit our needs, we choose to adapt the code of MakeProjectCreator.pm. It is designed
to configure the corresponding template file and input template file. We have redefined these files, they are now called: “mcm_make.mpd” and “mccm_makedll.mpt”.

2. In config_mpc/templates, all the template files (.mpd) and template input files (.mpt) are defined. They provide the definition of all kind of generated output project. The template file defines all the required fields to produce the right format for the given project (Makefile, automake, etc.). The template input file, provides the corresponding values to fill in some of the parameters. We have re-defined our template file: “mccm_make.mpd” and the corresponding template input file: “mccm_makedll.mpt”.

3. The config_mpc/config directory, contains files with global definition of some variables.

4. The config_mpc/base_projects directory, contains all projects files (.mpb) that define some basic configurations elements, i.e., library paths and names, includes path, executable names, needed to make new projects. For example, to make a new TAO client project, the user just need to make this project “inherit” from the “mccm_comp_client.mpb” file, thus, all the necessary TAO libraries, and files are included in the new project.

Base_Project description

Some specific files has been created in the base_projects directory, in order to ease the process of creating the generator and the process of creating components.

MPB files concerning the generator:

· mccm_generatorIib.mpb:

· Description: In the directory $microCCM_DIR/generators, MCCMGenerator.mpc, contains the project libMCCMGeneratorTAO, which permits to generate the shared library “libMCCMGenerator.so” installed in $microCCM_DIR/lib. This library contains all the object files we can find in the generators directory. In order to be called, by whatever binary code, we have created a project file called “mcc_generatorlib.mpb”.

· Usage: If someone wants to use the library “libMCCMGeneratorTAO” then he has to inherit from this project file, hence all the necessary configurations will be set.

MPB files dealing with component project building:

· mccm_lwComponentlib.mpb:

· Description: In the directory $microCCM_DIR/includes, a project file called MakelibComponentStubsTAO.mpc permits to make a library called libComponentStubsTAO.so. This one contains stubs and skeleton for the Lw_Components.idl file.

· mccm_comp_client.mpb:

· Description: This file aims be used by component application project (inheriting from mccm_comp_client.mpb) in order to generate all the chosen IDL interfaces from the input IDL3 file. Besides, all includes and libs configurations, this file define a custom type (IDL3toIDL2intf) that start a script called $microCCM_DIR/ bin/idl3_to_idl2_for_intf.sh. It takes some input parameters like IDL3 file and the selected interfaces (e.g. interface1), then, it generates one IDL file for each input interface, called microccm_name_of_interface.idl (e.g. microccm_interface1.idl). This file is then used in the mpc application project to create an executable.

· mccm_comp_project.mpb:

· Description: This file can be used to create a component project (inheriting from mccm_comp_project.mpb) in order to generate three kinds of files thanks to an IDL3 file (e.g. component1.idl3):

· Microccm_name_of_component.idl (e.g. microccm_component1.idl)

· Microccm_name_of_component_CORBA.cpp (e.g. microccm_component1_CORBA.cpp) and its header file (.h).

· Microccm_name_of_component_cpp_executors.cpp (e.g. microccm_component1_cpp_executors.cpp/.h)

The three custom types permits to call the 3 corresponding scripts, to generate the previous files. In turn, they are declared in the project itself (in the Source_Files and Header_Files sections) to be compiled. Besides, in order to call the scripts whith the right parameters, a file called codegen_config.txt in the directory $microCCM_DIR/etc permits to set some data like the chosen IFR, or the ORB for which the framework code will be generated.

Building the code generator

Overview

In this section, we attempt to describe how to generate all the executable files used for the code generation: it takes an idl3 file as parameters. For example “component1.idl3” and generates 3 kinds of files.

The directory generators contains all the source code for the MicroCCM generator.

In order to build the generator, the user has to install TAO or OpenCCM before. The generator send CORBA Interface Repository requests to an IR3 server (those one can be provided either from TAO or from OpenCCM), in order to obtain all data defined in the component IDL3 file. Then, thanks to these data, it generates for instance, two types of files: IDL files, and C++ files (containing the executor and CORBA code).

The result of compilation will produce some binaries written in the directory $microCCM_DIR/bin::

· "idl3_to_idl2.exe": to compile IDL3 files into IDL files.

· “idl3_to_CORBA.exe”: which produce c++ CORBA Component Implementation Framework (CIF) from IDL3 file.

· “idl3_to_cpp_executors.exe”: generates c++ executors used by the component implementation thanks to IDL3 file.

All the objects file concerning this platform, this orb, and this compiler will be written in the directory where the files are compiled.

MPC projects details

MPC files in generators directory

In the directory $microCCM_DIR/generators, the file MCCMGenerator.mpc contains all the configurations to generate the corresponding “Makefile” files. It will generate one Makefile per project. There are five projects:

 One of them called: libMCCMGenerator, aims to create a library. It generates “Makefile.libMCCMGenerator”, which in turn produces a shared library (libMCCMGenerator.so) of the generator’s code itself.

 All other projects aims to produce executable code:

· This mpc project will generated a makefile (Makefile.idl3_to_ild2), which permits to create idl3_to_idl2.exe binary.

· This project idl3_to_corba project, aims to produce a makefile (Makefile.idl3_to_corba) which permits to create the file idl3_to_corba.exe

· idl3_to_cpp_executors project, aims to produce a makefile (Makefile.idl3_to_cpp_executors) which permits to create the file idl3_to_cpp_executors.exe

In order to generate the makefile for the library libMCCMGenerator.so, the mpc project
inherits from some base projects: taolib.mpb, mccm_taodefaults.mpb which contain all
paths, libaries and include paths, needed to compile a project containing references to TAO
libraries such as: PortableServer, libTAO, etc. Among other things, this project use lib_TAO_IFR_Client.so, the TAO shared library, that permits to send IFR requests to the chosen IFR server. Therefore, some specific configurations, dedicated to this project, have been added: library's name, installation directory

All the executable projects, inherit from taoexe.mpb, mccmgeneratorlib.mpb contains all
the configurations to use the previous generated library (libMCCMGenerator.so), and
ifr_client.mpb contains configurations to link with Interface Repository libraries.

MPC files in includes directory

In the directory $microCCM_DIR/includes, the file contains all the configurations to generate the corresponding “Makefile” files. It will generate one Makefile per project. There are three projects:

 All the projects produce Makefile to create shared libraries (.so) of stubs and skeletons for some ORBs:

libComponentStubsTAO produces Makefile.libComponentStubsTAO. The latter, creates stubs and skeleton from the LightWeight component IDL2 file (Lw_component.idl) for TAO, and creates libComponentStubsTAO.so.

MWC file and Makefile generation for MicroCCM generator

The user launches the “Makefile” generation, using perl scripts mpc.pl and mwc.pl (those located in the $microCCM_DIR/bin directory). The user doesn’t need to invoke them directly, mwc.pl perl program is invoked by a script called generateMakefiles.sh (in the $microCCM_DIR/bin directory) with all the needed parameters. Here is the detail:

$ $microCCM_DIR/bin/mwc.pl -type make \

-template mccm_make \

-value_template soext=so -include $microCCM_DIR/config_mpc/templates \

-include $microCCM_DIR/config_mpc/base_projects

In the $microCCM_DIR directory, the workspace file, MCCMGenerator.mwc contains all the needed projects allowing to generate the right makefiles, which in turn creates all MicroCCM code generator libraries and executables, i.e. those located in includes and generators directories. Hence, all Makefiles can be generated by executing the following command:

$ generateMakefiles.sh MCCMGenerator.mwc

Compilation process

Once the makefiles (Makefile and Makefile.MCCMGenerator) has been generated in the $microCCM_DIR directory, the user can simply type the following command:

$ make

Then all the needed libraries will be installed in the $microCCM_DIR/lib directory, and the binaries will be installed in the $microCCM_DIR/bin directory

building the « deployment » binaries

Overview

All the files directly involved in the creation of deployment binaries are located in:

$microCCM_DIR/deployment/

with its subdirectories:

$microCCM_DIR/deployment/HomeFinder contains the needed files to create HomeFinder executable, which permits to register and retrieve all the components Homes via CORBA calls. It has been installed in $microCCM_Dir/bin directory.

$microCCM_DIR/deployment/Component_Loader contains the needed files to create Component_Loade.exe executable, which permits to register all the components Homes via Homefinder and load all components and services shared libraries. It has been installed in $microCCM_Dir/bin directory.

$microCCM_DIR/deployment/doc which contains all the doc files.

Compiling process

In $microCCM_DIR/deployment directory you can type:

$ generateMakefiles MCCMDeployment.mwc

and to compile all the files:

$ make

Building the “tools” libraries

Overview

Inside the $microCCM_DIR/tools directory, the user can find three subdirectories:

· TinyXML: this is a tool used by deployment in order to parse XML files.

· Bzip2: this is a tool used by deployment in order to compress/uncompress shared object files.

· Tftp: This is a tool which implements client and server running with Trivial FTP protocol. This is used when deployment phase is transferring data.

Compilation process

Inside the directory $microCCM_DIR/tools type:

$ generateMakefiles.sh MakeLibTools.mwc

$ make

1/1

03/02/03

4/1

[image: image1.wmf][image: image2.wmf]_-283451280.doc

_-292026416.doc

