[image: image2.wmf]

[image: image1.wmf]
Ent/AA.xxxx/Auteur/OF

Ent/AA.xxxx/Auteur/OF

 DEFINIR "DateDeNote" "03/02/03"03/02/03

THALES COMMUNICATIONS MASSY

A
:

De
:

CC
:

Date
:

Réf.
:

Objet
:
microccm ApplicaTion’s user guide

31.
Overview

1.1.
Purpose of the document
3
1.2.
Intended audience
3
1.3.
Naming Conventions
3
1.3.1.
Environment variables
3
1.4.
References
3
2.
Overview of some lightweight CCM features
5
3.
Development process overview
7
4.
A MicroCCM component framework example
8
4.1.
IDL3 components and their interfaces
8
4.2.
Writing the business code
10
4.2.1.
Implementing the Component2 (consumer) component
10
4.2.2.
Implementing the component1 (publisher) component
10
4.3.
Writing the MPC project file and the workspace file
11
4.3.1.
Writing “events.mwc” workspace file
11
4.3.2.
Writing “events.mpc” file
11
5.
Creating binaries and libraries
21
5.1.
Generating Makefiles from MPC files
21
5.2.
Compiling the project
21
6.
launching the application
22
6.1.
In-process deployment overview
22
6.1.1.
Introduction
22
6.1.2.
HomeFinder
22
6.1.3.
Component_Loader
22
6.2.
Process step by step
23
6.2.1.
Starting TAO’s Naming Service in a shell terminal:
23
6.2.2.
Starting the Event channel factory:
23
6.2.3.
Starting the HomeFinder
23
6.2.4.
Starting the Component_Loader
23
6.2.5.
Run binary files aims to instantiate the « client.exe »:
23

1. Overview

For the microCCM - Component Framework some guides are dedicated to framework development itself. This guide is devoted to someone who wants to use the Component Framework to build component based application, without working precisely on the development of microCCM generator itself.

1.1. Purpose of the document

This document proposes to show through an example how an application can be built. All the steps from the design to the executable launch are explained. This guide, through an example, presents the component framework’s event system feature based on the CORBA Event service.

1.2. Intended audience

The reader shall have some CORBA notions, in order to understand terms such as stub, skeletons, IDL etc.

This document concerns people that have already installed and built the framework and whishes to know how to create and use a component based application.

1.3. Naming Conventions

In the rest of the document we have decided to apply the following typographics conventions.

1.3.1. Environment variables

In order to understand the signification of the following symbols, we need to give some precisions:

· A command in a terminal is preceded by a “$” symbol and a space character. The command is in bold font. For example:

$export microCCM_DIR=/home/arthur/microcmm-0.8.0

· The environment variables are represented as majuscule bold characters. Their value can be accessed by placing a “$” symbol before the variable.

 For example :

$ export CVSROOT=/tmp which set the CVSROOT variable

$ echo $CVSROOT which display the value of CVSROOT.

· Code fragments are showing by the following font, for example:

#include <iostream>

1.4. References

This chapter lists and classifies all the different documents referred to in this document.

It gives the information concerning each of these documents, and each is assigned a local index number; throughout the document, this index is given between square brackets for simpler and systematic cross-referencing.

Title
Identification
Reference

1. Microccm_user_guide.doc

[1]

2.

[2]

2. Overview of some lightweight CCM features

The Leightweight-CCM component model contains some features defined hereinafter. Four kind of ports to connect components: Facet, Receptacle, Event Sink, Event Sources.

Facet and Receptacles are used to connect components following a synchronous model.

The CCM event model represented by Event Sink end Event Source ports provides an asynchronous mechanism based on the “producer/consumer {1..n}” architecture. In order to receive any events, consumers has to subscribe for such a given event type. Then, the « push » mode is used. There are two types of events ports : sink and source. Each component could have many source and sink ports. An event source port can send typed events to many event sink ports which receive them.

· Facet

The facet aims to provide code to other components that interact with them. Each facet has a reference used by the other components.

The IDL3 keyword used for a facet is « provides ».

· Receptacle

A receptacle permits to ease the assembly of components. It gives the possibility to accept an interface reference represented by a facet. This shows the dependence toward this interface, implying to use another component.

The IDL3 keyword used for a receptacle is « uses ».

· Event source

Event source allows a component to send typed events and provides an API to connect consumers to sources.

Events source managing « 1 to n » connections (i.e. one source to multiple consumers) are publisher type. The consumers that wishes to receive a certain type of events have to subscribe to the corresponding publisher.

The event source presents some interfaces :

· It provides some operations such as many different consumers can connect to a same event source at the same time.

· The event management and dispatching is delegated to an Event Channel. (created by the container itself).

The declaration of an event source in IDL3 language is « publishes ».

· Event sink

It permits to a component to receive some typed events. As Its sink ports are public, the component can receive events from many different sources.

The IDL3 compiler generates a consumer interface (IDL2 mapping), whose component keeps a reference.

The declaration of an event sink in IDL3 language is « consumes ».

· Home of component

Its a type introduced for the CCM in CORBA 3.0. It aims to manage multiple instances of a same type of component. It permits to create instances of components during the execution, its contains a Factory, and some methods to find a component contained in the Factory. The home could manage only one type of component.

The declaration of a home in IDL3 language is made using the keyword « home » and the type of component it manages by the keyword : « manages ».

3. Development process overview

In order to design and develop a component based application with the microCCM Framework, the user has to follow the next steps :

· The user has to design the interfaces of components in IDL3 language (IDL3 files) and IDL2 interfaces used by the components.

· Then he shall define the implementation of components methods of provided interfaces (facet) and push methods for events sinks (for example classes inherited from executors object).

· The user has to create an MPC file for the project. It contains definitions of all the components files implied in the application: the user declares files (implementation of component provided interfaces, IDL3 files) and the generated files (microccm_*).

Then generates all the “Makefile” files by typing:

$generateMakefiles.sh name_of_workspace.mwc

Then type:

$make

This aims to generate component container and IDL2 mapping of IDL3 components, and two C++ files: one defining the “monolitihic” executor and the other one the CORBA implementation following Lightweight component model features like ports, etc. Moreover, it generates the needed features to define generic interceptors for container services.

All the IDL2 files are then compiled by the ORB IDL compiler. This generates all stubs and skeleton code of interfaces.

In turn, all the generated c++ files (executor, CORBA run-time, stubs and skeletons) and their corresponding implementation files are compiled with the chosen C++ compiler.

The application can be used at this step. The user can deploy himself all the components on different hosts, thanks to HomeFinder and Component_Loader tools.

But in case of using many components and complicated configurations for each one it is better to use a deployment tool. The user has to write XML files for configuration and packaging. Then, he has to launch the deployment tool which install (deployment on different hosts), which makes assembly, and configures the components application.

4. A MicroCCM component framework example

In order to give an illustration of the development process used we give an example the user can find in the distribution under the directory $microCCM_DIR/tests/unit/events.

While the application is launched « component1 » component (containing event sources) will send some string event type to « component2 » component which contains event sinks.

This example involves two components :

· component1 : This component contains different types of ports: it provides a facet (I1 interface) and contains a receptacle accepting I2 interface. This component contains two event sources, publishing two kinds of event: MyEvent1 and MyEvent2 . Besides, it contains an event sink to consume MyEvent1 event.

· component2: This component contains a facet (it can provide I2 interface) and a receptacle (It can use I3 interface). Therefore, it contains two event sinks consuming MyEvent1 and MyEvent2 events.

A tool called “Component_Loader.exe”, aims to load the Components embedded in generated shared libraries (.so), as well as services libraries for container (if so), and some other libraries needed by components.

A Client executable has to be launched in order to test components.

NB: To replace the two previous steps a script (called startall) setup all the needed tools (Naming Service, Event Factory, HomeFinder and Component_Loader).

4.1. IDL3 components and their interfaces

Here is the component1.idl3 file :

#include <component1_intf.idl>

component component1

{

 provides
I1

my_interface_1;

 uses

I2

my_interface_2;

 publishes
MyEvent1

MyEvent1_source1;

 publishes
MyEvent2

MyEvent2_source1;

 consumes
MyEvent1

comp1_Myevent1_sink1;

};

home component1_home manages component1 { };

Here is the component1_intf.idl defining all provided interfaces (facet) and event type:

interface I1 {

 string do_something();

 void send_event();

};

interface I2 {

 void do_something();

};

eventtype MyEvent1 {

 public string event_name1;

};

eventtype MyEvent2 {

 public string event_name2;

};

We can notice the facet, the receptacle and the two events’ source and the event sink. Besides, we can see that this file includes the IDL2 interface needed I2. Moreover, while making the mapping from this IDL3 file to the corresponding IDL2 file, the declaration of the component will need the declaration of MyEvent1 and MyEvent2, so we must declare this two kinds of event thanks to the keyword eventtype.

Remark: There are some limitations regarding IDL3 event declaration:

· For the moment we can only use value member. That is a type declaration with a value.

· No valuetype inheritance are supported.

Here is the component2.idl3 file :

interface I2 {

 void do_something();

};

interface I3 {

 string say_something();

};

eventtype MyEvent1 {

 public string event_name1;

};

eventtype MyEvent2 {

 public string event_name2;

};

component component2 {

 provides
 I2

my_facet_I2;

 uses

 I3

my_recept_I3;

 consumes
 MyEvent1
MyEvent1_sink_1;

 consumes
 MyEvent1
MyEvent1_sink_2;

};

home component2_home manages component2 { };

We can see the facet , the receptacle and the two events’ sink.

The IDL3 home declaration for the component2 component has been made in the same file.

4.2. Writing the business code

The business code is located in component1_impl.cpp, component1_impl.h and component2_impl.cpp, component2_impl.h. The user can choose whatever names. However, the class must inherits from:

· The monolithic executor interface called CCM_name_of_component. For example : CCM_name_of_component.

· All the proxies for provided interfaces called: CCM_name_of_facet.

· The callback interface called: CCM_name_of_component_SessionComponent_impl

4.2.1. Implementing the Component2 (consumer) component

The class CCM_component2_impl inherits from CCM_component2, which contains all the methods that need to be implemented by the user, it corresponds to methods of interfaces defining in the IDL3 file.

Besides it inherits from all the interfaces corresponding to facets, in the example, CCM_I2.

And finally, it inherits from CCM_component2_SessionComponent_impl, which permits to access to the container, and receptacles via the context.

So the user has to implement all the facets. For instance, there is a facet «I2» contains a method do_something2, so it is implemented as we can see in the file “component2_impl.cpp”.

Besides, he has to implement the method push_MyEvent1_sink, in order to defined the behaviour while an event, of type “MyEvent1”, has been received on the sink “MyEvent1_sink”. And the same for the method push_MyEvent2_sink.

4.2.2. Implementing the component1 (publisher) component

The class component1 inherits from executor class CCM_component1, which contains the virtual method to get the provided interfaces (facets) (i.e. get_my_interface_1), and the configuration_complete method.

So the user has to implement the facets, as we can see in the file “component1_impl.cpp”, i.e. the class CCM_I1, which delegates the interface defined in the IDL3 file. The class has two methods : do_something() and send_event().

As for component2, it inherits from CCM_component1_SessionComponent_impl, which permits to access to the container, and receptacles via the context.

The method send_event() use the “push_MyEvent1_source1 (MyEvent1)” method, via the context, to send events (MyEvent1) to component consumers (sink) of the corresponding type.

4.3. Writing the MPC project file and the workspace file

The following paragraphs show a project example called “events_client”.

4.3.1. Writing “events.mwc” workspace file

This file consists in declaring MPC projects files to call:

In our example “events.mwc” file contains the following lines:

workspace {

events.mpc

}

4.3.2. Writing “events.mpc” file

4.3.2.1. introduction

This MPC file contains configurations data for all the tools in order to generate a “client” executable file called “test_example.exe” and all the shared libraries (one for each component).

· Firstly, the user has to choose the environment in order for the runtime-code of the framework, to be compiled with the right tools (compiler, IDL compiler,…). The environment is set in the workspace file (.mwc) (see section 4.3.2.2). If the default environment is used (i.e. gcc_linux_tao), then nothing has to be declared.

· Then, the user has to select the corresponding MPC base project where all the variables and scripts are pre-configured for the chosen environment. The default one is TAO, so the base project to inherit from is called “mccm_comp_project.mpb” (see section 4.3.2.3 and 4.3.2.6). Besides, the user needs to choose the IFR and generator kind by setting values in “codegen_config.txt” (see section 4.3.2.3).

· Projects inheriting from the previous mpb project selected, has to be written for the components. (see section 4.3.2.5).

· Finally, a project for the client is written (see section 4.3.2.4).

4.3.2.2. Configuring target environment

For the moment, the default target environment is the following one:

· Operating system: Linux - kernel 2.6.9 (Distribution Fedora core 3)

· Compiler:

g++ v3.4

· ORB: ACE-5.4.3 + TAO-1.4.3

An environment variable is determined by a variable called “configurations” in microCCM MPC template (mccm_makedll.mpt), by a triple value:

configurations = compiler_system_orb

e.g. the previous configuration is defined by:

configurations = gcc_linux_tao

for the moment the following configurations are defined:

Configurations value
Description

gcc_linux_tao
 G++-3.4 – linux kernel v2.6 – TAO-1.4.3

This configuration can be changed by using the following command in the project workspace file:

workspace {

omniorb {

cmdline = -value_template configurations=gcc_linux_omniorb

project.mpc

}

}

4.3.2.3. Configuring generator and project variables

Given the previous selected environment, the user shall use the correspondant project to configure all the needed variables like: includes, libs, libpaths and the right input parameters for the generator.

For the moment, only a TAO projects type can be used for component project (mccm_comp_project.mpb see section 4.3.2.6) , as well as for the client project (mccm_client_project.mpb).

In order to configure the behaviour of the generator some parameters have to be set in etc/codegen_config.txt:

· The IFR configuration:

In order for the generator to obtain IDL3 data, an IFR shall be started, two tools are proposed:

· TAO Interface Repository, the user has to set IFR variable of the scripts, this is done by setting the value of USED_IFR = tao_ifr in the file codegen_config.txt, in the directory $microCCM_DIR/etc.

· OpenCCM Interface Repository, the user has to set IFR variable of the scripts, this is done by the using the command: USED_IFR = openccm_ifr in the file codegen_config.txt.

· The ORB used by the run-time code generated:

The code is generated for a given ORB, so a script parameters (GEN) has to be set depending of the chosen configuration:

· For TAO orb, the user has to set GEN variable of the scripts, this is done by using the command: USED_GENERATOR = tao_generator in the file codegen_config.txt.

4.3.2.4. A “test_example” project

This project aims to create the client executable called “test_example.exe”, thanks to the code “client.cpp”.

It must inherit from another project “mccm_comp_client”, which contains all the common definitions (project variables, includes, libs, etc.) in order to create the right Makefile templates for a client.

Some specific project elements have to be added, in order to compile correctly, for example, the name of the IDL3 files, name of interfaces used in the client code.

project (events_client): mccm_comp_client {

exename = client.exe

IDL3toIDL2intf_Files {

commandflags += I1

 explicit_outputs = microccm_I1.idl

component1.idl3

}

IDL3toIDL2intf_Files {

commandflags += I2

explicit_outputs = microccm_I2.idl

component2.idl3

}

IDL_Files {

microccm_I1.idl

microccm_I2.idl

}

Source_Files {

client.cpp

}

}

Here is the mpc project to create the “test_example.exe” executable file.

The user firstly have to choose the right generator. All the generator executables and the corresponding shared libraries are ready (i.e. respectively in the $microCCM_DIR/bin and $microCCM_DIR/lib directories). The purpose of this mpc file, is to generate the makefile(s) with the right compiler options (librairies, includes etc.) as well as the right IDL3 compilers (idl3_to_idl2.exe, idl3_to_corba.exe and idl3_to_cpp_executor.exe). For the moment, only two possibilities are provided:

· Either, the user generates the code for TAO ORB, thanks to the OpenCCM Interface Repository.

· Or, he can generate the same code (for TAO), but this way, with TAO Interface Repository, this is the default configuration.

Now, the user has to enter some project specific elements in order to configure the Makefile options properly:

In order to create some needed new directories for the project the user has to delacre it, using “newdirs” instruction. Besides, he can declare directories to include (option -I dir) while compiling the code, by means of “includes” keyword.

newdirs += generated

includes += . generated

· The project shall link with the component loader shared library. It consists in code which can load all the components

libs += comp_loader_process

will call libcomp_loader_process.so while the compiler is in the link stage.

· The directory where stubs and skeleton files are generated by the IDL compiler, for example, we can use the directory previously created (using “newdirs”) thanks to “idlgendir” keyword:

idlgendir += $(PWD)/generated

· The name of the executable to generate e.g.:

 exename = test_example.exe

Then the user has to declare four others kinds of data in the “client” files:

· Source_Files scope: which contains all C++ files with .cpp extension.

· Header_Files scope: which contains all C++ header files with .h extension.

· IDL_Files scope: which contains all IDL files.

· IDL3toIDL2intf_Files scope: contains all the parameters to create IDL2 file (i.e. microccm_x.idl) for some chosen interfaces x (where x is the name of the interface) thanks to the IDL3 file.

This scope aims to declare, which interfaces in the IDL3 file, the tool (ir3_to_idl2_for_int.exe)will generate in an IDL2 file (.idl). Then, the client could use only these needed interfaces.

· The first instruction “commandflags” allows the user to declare the interfaces he has chosen in the IDL3 file declared afterwards, in order for the generator to create them:
for example: commandflags += I1 I2 name_of_interface ...

· For the second parameter the user has to declare the name of the output files corresponding to the interfaces defined previously: for example,
explicit_outputs = microccm_I1.idl microccm_I2.idl microccm_name_of_interfaceN.idl ...

· The last parameter consists in declaring the IDL3 file where all the previously declared can be found. It must be unique.

4.3.2.5. A component’s MPC project.

Here is the project for the component1, “events_commponent1” in “events.mpc” file:

project (events_component1): mccm_comp_project {

newdirs += generated

includes += . ./generated

sharedname = component1

IDL3IDL2_Files {

commandflags = component1 component1_home

explicit_outputs = microccm_component1.idl

component1.idl3

}

IDL3CPPEXECUTORS_Files {

commandflags = component1 component1_home

explicit_outputs = microccm_component1_executor.h

microccm_component1_executor.cpp

component1.idl3

}

IDL3CPPCORBA_Files {

commandflags = component1 component1_home gen_desc_file.txt

explicit_outputs = microccm_component1_CORBA.h

microccm_component1_CORBA.cpp

component1.idl3

}

IDL_Files {

microccm_component1.idl

}

Source_Files {

component1_impl.cpp

microccm_component1_executor.cpp

microccm_component1_CORBA.cpp

}

Header_Files {

component1_impl.h

microccm_component1_executor.h

microccm_component1_CORBA.h

}

}

Let's have a look on the project details.

Global project setting:

This permits to have some parameters already set (e.g. for “events_component1”). This project contains definitions common to all projects based on components, inheriting from these project avoid the user to always rewrite the same environment setting. For example, all the declarations in which project directories shall be declared (e.g. includes += $(PWD) $(microCCM_DIR)/includes and libpaths += $(PWD) $(microCCM_DIR)/lib).

The user has to make the project inherits from “mccm_comp_project” project.

At the beginning of the project there some common declarations “newdirs” and “includes” , as for the client MPC project. These options permits respectively to create new directories (if it hasn't been created before), and declare some directories to include while compiling the .cpp files (-I).

The name of the shared library generated by the project is defined by the keyword
“sharedname”:

In this example we have: sharedname = component1, will output the file “libcomponent1.so”.

Following these declarations we have six scopes:

· IDL3IDL2_Files scope: contains all the definitions to compile IDL3 file into IDL2 file (i.e. microccm_x.idl).

· IDL3_CPPEXECUTORS_Files scope: contains all the definitions to compile IDL3 file into a c++ file with executors definition (i.e. microccm_x_executor.cpp /.h).

· IDL3CPPCORBA_Files scope: contains all the definitions to compile IDL3 file into a c++ file with CORBA support (i.e. microccm_x_CORBA.cpp /.h).

· IDL_Files scope: which contains all C++ files with .cpp extension.

· Header_Files scope: which contains all C++ header files with .h extension.

· IDL_Files scope: which contains all IDL files with .idl extension.

The last three items have been already explained in the client part. The first three kinds of declarations are detailed below:

IDL3IDL2_Files declaration:

This scope aims to declare, the name of the component's Home, as well as the name of the Component itself, previously declared in the IDL3 file. Hence, the tool (idl3_to_idl2.exe) will generate an IDL2 file (microccm_x.idl) containing the IDL2 mapping (lw-CCM component model compliant) defining all the component's characteristics (ports, home, ...).

· The first instruction “commandflags” allows the user to declare the name of the component (first place) and the name of its home (second place), the user has to declare them in this order, the name should correspond to those declared in the IDL3 file. for example: commandflags += component1 component1_home

· For the second parameter the user has to declare the name of the output files corresponding to the name of component given previously: for example: explicit_outputs = microccm_component1.idl

· The last parameter is the IDL3 file where all the previously declared can be found. It must be unique.

IDL3_CPPEXECUTORS_Files declaration:

This scope aims to declare, the name of the component's Home, as well as the name of the Component itself, previously declared in the IDL3 file. Hence, the tool (ir3_to_cpp_executors.exe) will generate a C++ (.cpp) file and its header file (.h) (microccm_x_executor.cpp / .h) containing the executor (part of lw-CCM CIF) defining all the component's characteristics (ports, home, ...).

· The first instruction “commandflags” allows the user to declare the name of the component (first place) and the name of its home (second place), the user has to declare them in this order, the names should correspond to those declared in the IDL3 file.
for example: commandflags += component1 component1_home

· For the second parameter the user has to declare the name of the output files corresponding to the name of component given previously:
 for example:
explicit_outputs =
microccm_component1_executor.cpp

microccm_component1_executor.h

· The last parameter is the IDL3 file where all the previously declared can be found. It must be unique.

IDL3CPPCORBA_Files declaration:

This scope aims to declare, the name of the component's Home, as well as the name of the Component itself, previously declared in the IDL3 file, in order for the tool (ir3_to_corba.exe) to generate a C++ (.cpp) file and its header file (.h) (microccm_x_CORBA.cpp / .h) containing the CORBA environment realisation (part of lw-CCM CIF) of the component's characteristics (ports, home, ...).

· The first instruction “commandflags” allows the user to declare the name of the component (first place) and the name of its home (second place), the user has to declare them in this order, the names should correspond to those declared in the IDL3 file.

· Besides, the user has to declare the name of a file containing some parameters, the tool will taken into account to generate the CORBA files. This file (called gen_desc_file.txt) can be either empty, or can contain informations to generate the interceptors for the container: it has the following form:

name_of_interface name_of_method1

name_of_interface name_of_method2

for example: commandflags += component1 component1_home gen_desc_file.txt

· For the second parameter the user has to declare the name of the output files corresponding to the name of component given previously:
 for example
explicit_outputs =
microccm_component1_CORBA.cpp

microccm_component1_CORBA.h

· The last parameter is the IDL3 file where all the previously declared can be found. It must be unique.

Among part, all these declarations contains files created by the user to define business code of the component (like component1_impl.cpp and component1_impl.h). Besides, they contain the declaration of the files that will be generated in order for MPC tool to create the right files parameters for Makefile. (all the files whose prefix is microccm_).

Specifically for C++ files they are generated with the following format:

· microccm_name_of_component_executor.cpp (.h)

· microccm_name_of_component_CORBA.cpp (.h),

Finally,

· All the IDL files, including those generated before (microccm_x.idl), thanks to ir3_to _idl2.exe tool, have to be compiled by the IDL compiler of the chosen ORB (e.g. TAO_IDL – the idl compiler of TAO), in order to generate stubs and skeletons. To do this, the name of the IDL file created has to be added in, this scope:

for example in the IDL_Files scope, we have the following line:

microccm_component1.idl

· All the CPP files, generated (microccm_x_CORBA.cpp, microccm_x_cpp_executors.cpp) a
nd those created by the user (e.g. component1_impl.cpp) have to be deared in the Source_Files scope.

4.3.2.6. TAO mccm_comp_project.mpb project details

The component project must inherit from mccm_comp_project, to have all its compiler environment set for TAO, and generation scripts set with right parameters.

The file provides three kinds of data:

· The TAO ORB configuration:

The project inherits from some MPC TAO projects :

taolib, mccm_taodefaults, event, mccm_lwcomponentlibTAO

They configure all defaults TAO libs, includes etc. Besides there are some specific configuration dedicated to micrcoccm:

 idlflags += -I. -I $(microCCM_DIR)/includes -I $(microCCM_DIR)

 idlflags += -D USE_TAO -Ge 1

 idlflags += -I $(TAO_ROOT)

 idlgendir += $(PWD)/generated

· The compiler options for microccm:

includes += ./generated

includes += $(microCCM_DIR)/includes $(microCCM_DIR)/includes/generated $(microCCM_DIR)/services/events

includes += .

libpaths += $(microCCM_DIR)/lib

libs += EventFactoryStubsTAOlibout = .

· The generator custom types:

A custom definition allows the user to define its own type of file. Some default MPC types, like Source_Files for cpp files or IDL_Files for idl files, permits to define which tool has to be called when one of these kind of files is encountered. E.g. when an IDL file (declared in the IDL_Files scope) shall be compiled, the tool define in the IDL_COMPILER variable is called (this is tao_idl for instance).

The Define_Custom MPC keyword permits to define what to do when a certain type of file shall be compiled.

· The IDL3IDL2 custom type section:

Define_Custom(IDL3IDL2) {

 automatic = 0

 command = $(microCCM_DIR)/bin/idl3_to_idl2.sh

 commandflags +=

 inputext = .idl3

 pre_filename = microccm_

 generic_outputext = .idl

}

This section permits to declare that when an IDL3 file is encoutered (inputext = .idl3), it shall be compiled with the script idl3_to_idl2.sh (command = $(microCCM_DIR)/bin/idl3_to_idl2.sh) which creates an IDL file (generic_outputext = .idl) with a microccm_ prefix (pre_filename = microccm_).

· The IDL3CPPEXECUTORS custom type section:

Define_Custom(IDL3CPPEXECUTORS) {

 automatic = 0

 command = $(microCCM_DIR)/bin/idl3_to_cpp_executors.sh

 commandflags +=

 inputext = .idl3

 pre_filename = microccm_

 pre_extension = _executor

 source_outputext = .cpp

 header_outputext = .h

}

This section permits to declare that when an IDL3 file is encoutered (inputext = .idl3), it shall be compiled with the script idl3_to_cpp_executors.sh (command = $(microCCM_DIR)/bin/idl3_to_cpp_executors.sh) which creates a cpp and its header files (source_outputext = .cpp and header_outputext = .h) with a microccm_ prefix (pre_filename = microccm_).

· The IDL3CPPCORBA custom type section:

Define_Custom(IDL3CPPCORBA) {

 automatic = 0

 command = $(microCCM_DIR)/bin/idl3_to_corba.sh

 commandflags +=

 inputext = .idl3

 pre_filename = microccm_

 pre_extension = _CORBA

 source_outputext = .cpp

 header_outputext = .h

}

This section permits to declare the follwing behaviour: when an IDL3 file is encoutered (inputext = .idl3), it shall be compiled with the script idl3_to_corba.sh (command = $(microCCM_DIR)/bin/idl3_to_corba.sh) which creates a cpp and its header files (source_outputext = .cpp and header_outputext = .h) with a microccm_ prefix (pre_filename = microccm_).

5. Creating binaries and libraries

5.1. Generating Makefiles from MPC files

All the project needs a workspace file (.mwc) in order to generate a Makefile, which in turn call all Makefile.name_of_project, one per project, corresponding to the name_of_project declared in the .mpc files.

In the directory $microCCM_DIR/bin, there is a script called “generateMakefiles.sh” which takes the mwc file as parameter and permits to launch the creation of all the project makefiles.

So the user has to type on the shell command :

$ generateMakefiles.sh events.mwc

Then four files are generated:

· Makefile

· Makefile.events_client

· Makefile.events_component1

· Makefile.events_component2

5.2. Compiling the project

In order to compile the project the user has to type:

$ make

6. launching the application

6.1. In-process deployment overview

6.1.1. Introduction

In order to use components, and manage them, they have to be deployed, connected and started. In the CCM specification, the deployment is provided by deployment code or Deployment and Configuration specification. To deploy components, created by the microCCM framework, in the same process, a specific tool is used.

The main goal of this tool, is to allow the user to test all the components.

The process consists in first, loading all components thanks to HomeFinder and Component_Loader tools (registering component’s Home via the HomeFinder).

Then, a “client” written by the user, is started. Like a deployment could do, it retrieves the Home, instantiates, configures components, connect them, and finally, execute pre-defined a scenario.

6.1.2. HomeFinder

The HomeFinder is a CORBA object. It aims to store components Home, given its RepositoryId. Located in $microCCM_DIR/deployment/HomeFinder, It can be started in a process, and used by another CORBA code to register and retrieve a component’s home.

6.1.3. Component_Loader

Found in the directory $microCCM_DIR/deployment/Component_Loader, this tool permits to deploy components in the same process. It aims to read a file (passed in its arguments), describing a list of components and services, and loads the corresponding one. All the components to deploy have to be declared in a file, called for example “Comp_loader_file.txt” as shown below:

Component_lib ../component1/libComp1.so Comp1_home create_home_exec

Service_lib ../Trace_service/libTrace.so register_trace_service

Normal_lib libUtils.so

Thanks to three keywords, the user defines data the tool must load:

Component_lib: It permits to define components to load.

The fist field defines the name of the library to load.

The second field defines the name of the Home for the Component_Loader to register in the HomeFinder.

The last field in the line declares the entry-point of the method that creates the Home.

Service_lib: It permits to define services to load thanks to the following fields: The first one defines the path and name of the shared library containing the service to load.

The second one defines the entry-point of the shared library, that is to say, the name of the function (symbol) to call in the given shared library (.so).

Normal_lib: This keyword is used when some components need to load other “standard” (i.e. non-component) shared libraries.

6.2. Process step by step

6.2.1. Starting TAO’s Naming Service in a shell terminal:

The user must run the TAO’s Naming Service in order to bind and retrieve all the objects the user can type:

$
startnameservice

to run a local host, or use the following command:

$TAO_ROOT/orbsvcs/Naming_Service/Naming_Service -ORBEndPoint iiop://<host>:<port> -o naming.ior -m 0

6.2.2. Starting the Event channel factory:

If the components use the Event sink or source, the channel factory must be started.

The user can type the following command to start the factory on the localhost:

$ startfactory

or he can use the following command.

$ $microCCM_DIR/services/events/factory -ORBInitRef

NameService=corbaloc:iiop:<host>:<port>/NameService

where <host> is the IP address or hostname of the host where the Naming Service is running, and <port> is the port number on which the naming service is launched.

6.2.3. Starting the HomeFinder

In order to retrieve components, the HomeFinder tool has to be started:

the user has to type:

$ HomeFinder.exe

6.2.4. Starting the Component_Loader

The following command permits to load components shared library and services:

$ Component_Loader.exe Comp_loader_file.txt -ORBInitRef

NameService=corbaloc:iiop:<host>:<port>/NameService
where <host> is the IP address or hostname of the host where the Naming Service is running, and <port> is the port number on which the naming service is launched.

6.2.5. Run binary files aims to instantiate the « client.exe »:

Once the factory IOR has been, displayed, and all the Components are loaded the user can start the “client”:

$./client.exe -ORBInitRef

NameService=corbaloc:iiop:<host>:<port>/NameService

1/1

03/02/03

2/1

[image: image1.wmf][image: image2.wmf]_-290547192.doc

_-291943800.doc

