rchest

Orchestra User Guide

This document contains an installation and user guide
for Orchestra 4.2.0 (also known as Nova Orchestra)

Orchestra Team
- September 2009 -

Copyright © 2009 Bull SAS - OW2 Consortium



Table of Contents

Fg11 oo (¥ oi [Tl H PSPPI iii
1. General INFOMMEIION ... .ceeitieee ettt e ettt e et e e e e et eeeaba s 1
1.1. NOVA OrChESIra OVEIVIEW .....ceeiiieeieii ettt ettt e e e e et eeenanns 1

1.2, FEAIUIES TISE ..ottt ettt 1

L.3. RESIICIIONS ..ttt ettt e et e ettt e et e e e e e aee 2

O T oo [ oo RSP PUPPPPPUPPPINt 3

2. PrEFBOUISITES ...oee ittt ettt 4
2.1 HBIMOWEIE ...ttt ettt ettt e e e e e e e ae 4

2.2, SOFIWEAIE ..ttt et et e e ean e ee 4

3 INSEAIELHON QUITE ...ttt 5
3.1 WeED Service FrameWOIKS ......couuuiiiiiiie e 5
311 APACNE AXIS ..t 5

312, APACNE CXF et 5

3.2. Orchestra Tomcat distribDULION ...........oooiiiiiiii e 5
2.1 INSATBIION ...ttt et 5

3.2.2. Database MaNAQEMENL .......ccuuuieiiiiie ettt et e et e e e s 6

3.2.3. Orchestra direCtory SITUCTUIE ... ..ccuuueiiiiie et 6

3.3. Orchestra OSGI Felix distribDUtion ............cooouiiiiiiii e 7
331 INSLATBIION .ttt 7

3.3.2. Database MaNaQEMENL .......cc.uuieiiiiie ettt ettt e et eeeaa s 8

3.3.3. Orchestra direCtory SITUCTUIE .......couuuieiiiii e 8

4. CoNnfiguration AN SENVICES ......uuuiiiiiii ettt e et ettt e e e e e 10
4.1, SIMPlE CONFIQUIALTON ....vuieiiiie et 10

A.2. SEIVICES CONTAINET ...iettieiiit ettt ettt e et e ettt e e e et e e e e et e e e eatanaeeees 10
4.2.1. Environment.Xml file ......oooeei e 10

A3 SEIVICES ...ttt ettt 12
A.3.1. PUDIISNEN .o 13

A.3.2. INVOKES ...ttt ettt ettt e eaaas 13

4.3.3. REPOSITONY ...ttt ettt et e et e et e et e e 13

A.34. PEISISIENCE . .ceetuieeeii ettt ettt e et e e e 13

4.3.5. Journal @nd HiStOrY .........uiiiiiiiiiieiii e e 14

G K ST @ 0= 1= PP 15

R N 101 £ T PO PUPPTTRN 15

4.3.8. Finished instance handler (FIH) .......ooooiiiiii e 15

B USEN QUITE ...ttt ettt 16
5.1. Start and StOp NOVA OrChESIIa .....cevueiiiii e 16

5.2. Deploying / UNdeplOying @ PrOCESS ......cceuruuieeiiiieeetetiia e et e et e et e e et eeene s 16

5.3, Other COMMENS ... .oeeiitiee ettt e et e e et e e b s 16

5.4. RUNNING the @XAMPIES .....coeiiiei e e e 17

5.5. RUNNING The TESIS ....vuieiii ettt 17

5.6. CONFIQUIING LOGGES ....neiiitieeeeete ettt ettt ettt e e e e enaa e e eneas 18

6. DEVEIOPEI'S QUIE ...ttt ettt 19
B.1. NOVA OFChESITA APIS ...ttt et e 19
6.1.1. Getting started with Nova Orchestra APIS .........ooiiiiiiiiii e 19

6.2. NOVA Orchestra ClENE Jar .......ceuuuiiiiiiii e e e 19




Introduction

This documentation is targeted to Orchestra users. It presents the installation procedure and a quick user
guide of Nova Orchestra features.

Chapter 1, General information describes the new version Orchestra v4 called Nova Orchestra
Chapter 2, Prerequisites describes the prerequisites to the installation of Nova Orchestra
Chapter 3, Installation guide describes how to install the Orchestra engine

Chapter 4, Configuration and Services describes main configuration features and default services

Chapter 5, User guide This chapter will guide you through the discovery of the functionalities of Nova
Orchestra.

Chapter 6, Developer's guide guides you through APIs of Nova Orchestra.




Chapter 1. General information

1.1. Nova Orchestra Overview

Nova Orchestra is the name of new version of Orchestra.

“Nova’ technology isbased onthe“ ProcessVirtual Machine” conceptual model for processes. The Process
Virtual Machine defines a generic process engine enabling support for multiple process languages (such
BPEL, XPDL...).

On top of that, it leads to a pluggable and embeddable design of process engines that gives modeling
freedom to the business analyst. Additionally, it enables the developer to leverage process technology
embedded in a Java application.

For more information about the Process Virtual Machine, check Nova Orchestra FAQs [http:/
orchestra.ow2.org/xwiki/bin/view/Man/FAQ] on the Orchestra web site [http://orchestra.ow2.org] .

1.2. Features list

Nova Orchestrais a Web Service Orchestration engine that provides BPEL 2.0 support. Business Process
Execution Language (BPEL ) isan XML language created by the Oasis Consortium. More information and
the specifications can be found on Oasis web site [www.0asi s-open.org/committees/wsbpel /]

NovaOrchestra provides support for aimost all of BPEL 2.0. Hereafter, you can find thelist of the activities
supported :

» Scope

* Receive

* Reply

* Invoke

» Assign

e Empty

* Sequence
* Flow

o If

» Some static analysis
* wait

» while

* repeatUntil
» forEach

e pick



http://orchestra.ow2.org/xwiki/bin/view/Main/FAQ
http://orchestra.ow2.org/xwiki/bin/view/Main/FAQ
http://orchestra.ow2.org/xwiki/bin/view/Main/FAQ
http://orchestra.ow2.org
http://orchestra.ow2.org
www.oasis-open.org/committees/wsbpel/
www.oasis-open.org/committees/wsbpel/

Genera information

* compensate

* compensateScope

o throw

* rethrow

* exit

This version provides Web Service support using the Axis 1.4 framework or CXF 2.2.3.
Nova Orchestrais shipped with a complete test suite and a few examples.

Nova Orchestra is persistable. This means that al the data concerning your processes definition and
intances execution is stored in a Database using a persistece framework (hibernates by default). The
following database systems have been successfully tested :

¢ H2 Database (default)
* Postgres (8.3)

« MySQL (5.0)

» Oracle (10g)

1.3. Restrictions

Nova Orchestracomes out with an innovative architecture based on ageneric and extensible engine, called
"The Process Virtual Machine" and a powerful injection technology allowing services pluggability.

This new version of Orchestra is aimed at showing the power of its very innovative architecture by
providing support for all the basic activitiesdefined in the BPEL standard. Asstated in the previous section,
thisversion provides the possibility to persist the processes definition and execution. The next release will
provide support for the last important BPEL statement not yet supported named eventHandler. Orchestra
will then provide full support of BPEL 2.0. The next stage will be to extend Orchestrato provide the first

Open Source Business Process Server to power your SOA infrastructure. Stay tuned ! Check the roadmap
[http://wiki.orchestra.objectweb.org/xwiki/bin/view/Main/Roadmap] for more information.

This version does not support the following features :
» Some restrictionsin assign statement :

¢ no extensionAssignOperation

« validate not supported
» Some restrictions in scope statement

* isolated not supported

» exitOnStandardFault not supported

< eventHandlers not supported

» Thefollowing BPEL 2.0 statements are not supported :



http://wiki.orchestra.objectweb.org/xwiki/bin/view/Main/Roadmap
http://wiki.orchestra.objectweb.org/xwiki/bin/view/Main/Roadmap

Genera information

* vdidate
e extensionActivity
e import

* extensions

1.4. Tooling

For the new version, Nova Orchestra does not ship a graphical designer. Nova Orchestra engine has
been tested with processes created using the Netbeans BPEL designer [http://www.netbeans.org/kb/55/
bpel_gsg.html]. It is also possible to use the Eclipse BPEL designer [www.eclipse.org/bpel/] . Download
and installation instruction are available on the project web site. However we have encountered afew bugs
in the eclipse designer. So we advise the use of NetBeans.

This version of Nova Orchestra provides an new Web 2.0 administration console. This console will be
improved in following releases to add monitoring capabilities.



http://www.netbeans.org/kb/55/bpel_gsg.html
http://www.netbeans.org/kb/55/bpel_gsg.html
http://www.netbeans.org/kb/55/bpel_gsg.html
www.eclipse.org/bpel/
www.eclipse.org/bpel/

Chapter 2. Prerequisites

2.1. Hardware

A 1GHz processor isrecommended, with aminimum of 512 Mb of RAM. Windows users can avoid swap
file adjustments and get improved performance by using 1Gb or more of RAM

2.2. Software

* NovaOrchestrarequires Java Development Kit (JDK) 1.5 (also called JDK 5.0) but also runs with next
release.

The JDK software can be downloaded from http://java.sun.com/j2se/1.5.0
» Nova Orchestrarequires Apache Ant 1.7.1 or higher

It can be downloaded from http://ant.apache.org




Chapter 3. Installation guide

Nova Orchestra comes in two kinds of distribution:
» Tomcat distribution: Orchestrais embedded in aweb application deployed in tomcat container.
» Felix OSGI distribution: Orchestrais embedded in an OSGI bundle deployed in felix OSGI platform.

As explained in Chapter 4, Configuration and Services, Orchestra can use different Web Service
frameworks. Apache Axisl and CXF are supported. For each web service framework, a tomcat package
and afelix package are provided.

Theinstallation and configuration steps are independent of the web service framework.

3.1. Web Service Frameworks
3.1.1. Apache Axis

Orchestra web service implementation based on Axis 1.4 offers basic web service capabilities.

3.1.2. Apache CXF

Orchestra web service implementation based on CXF offers advanced web service capabilities.
CXF implementation adds support for:
» WS-addressing

* WSRM

3.2. Orchestra Tomcat distribution

3.2.1. Installation

Unzip the orchestra-tomcat distribution package.

|>unzi p orchestra-tontat-4.2.0.zip |

A new directory or chestr a-t oncat - 4. 2. 0 will be created. It contains an ant fileto install and start
Orchestra.

3.2.1.1. Basic installation

Remark : Nova Orchestra runs in Apache Tomcat serviet container. Tomeat 5.5.23 is delivered with the
Orchestra Package.

Toinstall Orchestra, go to orchestra directory and launch the install by running ant:

>cd orchestra-tontat-4.2.0
>ant install

The install script installs Tomcat and Nova Orchestra. The default installation activates the persistence
using the H2 Database.




Installation guide

I mpor tant

if your network is based on a proxy, please specify the proxy settings in your JAVA_OPTS
environment property. The system properties to specify are described in the java
documentation [ http://java.sun.convj2se/1.5.0/docs/guide/net/properties.html].

3.2.1.2. Advanced installation: Using another tomcat distribution.

3.2.2.

3.2.3.

Nova Orchestrais shipped with aligthweight Apache Tomcat Servlet container. This section explains how
to install Nova Orchestrain an existing tomcat distribution.

Theinstall.propertiesfilein the conf directory contains the information used by orchestrainstallation. The
default content is:

catal i na. home=${orchestra.dir}/tontat
catal i na. base=${cat al i na. hone}

To use another tomcat installation, just update the catalina.home and catalina.base properties before
caling:

[>ant install |

Database Management

The default configuration of Nova Orchestra uses the Database persistence service and the HSQL
Database. Nova Orchestra has also been tested with Oracle, MySQL and Postgres database system.
To change to mysgl, postgres or Oracle, you need to put the corresponding JDBC driver in the
directory $CATALI NA BASE/ conmon/ | i b and modify the hi ber nat e. properti es file (see
Section 4.3.4.1, “ Database Access Configuration™)

Orchestra directory structure

Hereafter is detailled the structure of Orchestra installation. The installation directory contains the
following structure :

READNVE
bui I d. xni
install.xmn
Li cence. t xt
toncat/
conf/
doc/
exanpl es/
i b/

Let's present those items :
 README

Thisfile gives the basic information related to Nova Orchestra
* build.xml

Thisfileis an ant file that provides tasksto install and use Nova Orchestra. Just typing ant will result
giving you the usage.

e install.xml



http://java.sun.com/j2se/1.5.0/docs/guide/net/properties.html
http://java.sun.com/j2se/1.5.0/docs/guide/net/properties.html
http://java.sun.com/j2se/1.5.0/docs/guide/net/properties.html

Installation guide

Thisfileisanantfilethat iscalledwhenyourunant i nstal | (noneed to specify the use of thisfile)
* License.itxt
The license of Nova Orchestra. All of Nova Orchestrais available under the LGPL license.
* conf/
This directory contains al the configuration files of Nova Orchestra
* tomcat/
This directory isthe default Tomcat installation shipped with Nova Orchestra.
* doc/
This directory contains the documentation of Nova Orchestra. It contains :
* userGuide.pdf
For PDF documentation
e html/userGuide.html
For HTML documentation in asingle page
* html/userGuide/userGuide.html
For HTML documentation in different pages
e examples/

Thisdirectory containsthe examples provided with Nova Orchestra package. See Section 5.4, “ Running
the examples’

o lib/

This directory contains the libraries used in Nova Orchestra.

3.3. Orchestra OSGI Felix distribution

3.3.1. Installation

Unzip the orchestra-felix distribution package.

[punzip orchestra-felix-4.2.0.zip

A new directory or chestra-f el i x-4. 2. 0 will becreated. It contains an ant file to install and start
Orchestra.

Remark : Nova Orchestrarunsin Apache Felix OGS platform. Felix 1.8.1 isdelivered with the Orchestra
Package.

There is no specific installation step for running Orchestra:

[>cd orchestra-felix-4.2.0




Installation guide

3.3.2.

3.3.3.

The default configuration activates the persistence using the H2 Database.

I mpor tant

if your network is based on a proxy, please specify the proxy settings in your JAVA_OPTS
environment property. The system properties to specify are described in the java
documentation [ http://java.sun.convj2se/1.5.0/docs/guide/net/properties.html].

Database Management

The default configuration of Nova Orchestra uses the Database persistence service and the HSQL
Database. Nova Orchestra has aso been tested with Oracle, MySQL and Postgres database system. To
change to mysql, postgres or Oracle, you need to install the corresponding JDBC driver bundle in the
OSGl platform and modify the hi ber nat e. properti es file (see Section 4.3.4.1, “ Database Access
Configuration™)

Orchestra directory structure

Hereafter is detailled the structure of Orchestra instalation. The installation directory contains the
following structure :

READVE
bui I d. xm
Li cence. t xt
bundl e/
conf/
doc/
exanpl es/
i b/

Let's present those items :
 README

Thisfile gives the basic information related to Nova Orchestra
* build.xml

Thisfileisan ant file that provides tasks to use Nova Orchestra. Just typing ant will result giving you
the usage.

* License.itxt
The license of Nova Orchestra. All of Nova Orchestrais available under the LGPL license.
* conf/
This directory contains al the configuration files of Nova Orchestra
* bundle/
This directory contains Apache Felix bundles and Orchestra OSGI bundle.
* doc/
This directory contains the documentation of Nova Orchestra. It contains:

¢ userGuide.pdf



http://java.sun.com/j2se/1.5.0/docs/guide/net/properties.html
http://java.sun.com/j2se/1.5.0/docs/guide/net/properties.html
http://java.sun.com/j2se/1.5.0/docs/guide/net/properties.html

Installation guide

For PDF documentation
¢ html/userGuide.html
For HTML documentation in a single page
* html/userGuide/userGuide.html
For HTML documentation in different pages
* examples/

Thisdirectory contains the examples provided with Nova Orchestra package. See Section 5.4, “ Running
the examples’

o lib/

This directory contains the libraries used for tests.




Chapter 4. Configuration and Services

This chapter introduces the services configuration infrastructure provided by Nova Orchestra as well as
main servicesincluded in this version.

4.1. Simple configuration

The orchestra.properties file in the conf/ directory contains properties that can be easily changed. These
properties are used by both orchestra client and orchestra server. Here is the default orchestra.properties
file

orchestra. servl et. host =l ocal host
orchestra. servl et. port=8080
orchestra. servl et. pat h=orchestral servi ces

orchestra.jnx. port=9999
or chestra.j nx. obj ect Name=JMXAgent : nanme=or chest r aRenot eDepl oyer
orchestra.jnx.serviceU l =service:jmk:rm:///jndi/rm://]ocal host: 9999/ orchestraServer

« orchestra.serviet.host the host where orchestra server isinstalled.
« orchestra.serviet.port the port on which the web services will be exposed.

e orchestra.serviet.path the path on the server where the web services will be exposed.
Orchestraweb serviceswill be available from http://${ orchestra.servlet.host} :${ orchestra.servlet.port} /
$orchestra.servlet.path} /serviceName

* orchestra.jmx.port the port of the IMX server.
* orchestra.jmx.serviceUr| the IMX service url where the api mbeans will be available.

» orchestra.jmx.objectName the name of Orchestra mbean.

4.2. Services Container

4.2.1.

The Process Virtual Machine technology includes a services container allowing the injection of services
and objets that will be leveraged during the process definition and execution. Objects and services used
by the Orchestra engine are defined through a XML file. A dedicated parser and a wiring framework are
in charge of creating those objects. Service invoker, publisher, persistence and timers are examples of
pluggable services.

This services container (aka |oC container) can be configured through a configuration file. A default
configuration file isincluded in the package under the /conf directory (environment.xml).

This configuration is only used on the server side.
Environment.xml file
Thedefault environment.xml file created during theinstallation of Nova Orchestrais set to use the database

implementation of the persistence service. This file also sets the configuration of hibernate. Here is the
environment.xml file generated :

10



Configuration and Services

<envi ronnent - def i ni ti on>
<environnent-factory>
<hi ber nat e- confi gurati on nane="hi bernate-configuration: core">
<properties resource="hibernate. properties"/>
<mappi ngs resour ce="hi bernat e/ bpel . core. mappi ngs. xm "/ >
<mappi ngs resour ce="hi bernat e/ bpel . noni t ori ng. mappi ngs. xm "/ >
<cache-configuration resource="hi bernate/bpel.cache.xm" usage="read-wite"/>
</ hi ber nat e- confi gurati on>
<hi ber nat e- sessi on-factory configurati on="hi bernat e-configuration: core"
nane="hi ber nat e- sessi on-factory: core"/>
<properties name="orchestra-properties" resource="orchestra.properties"/>
<hi ber nat e- confi gurati on nane="hi bernate-configuration: history">
<properties resource="hi bernate-history.properties"/>
<mappi ngs resour ce="hi bernat e/ bpel . noni t ori ng. mappi ngs. xm "/ >
<mappi ng resour ce="hi bernate/bpel .util.hbmxnm"/>
</ hi ber nat e- confi gurati on>
<j ob-executor auto-start="fal se" threads="10"/>
<conmand- servi ce>
<orchestra-retry-interceptor retries="10"/>
<envi ronnent -i nt erceptor/ >
<standard-transacti on-interceptor/>
</ command- servi ce>
<hi ber nat e- sessi on-factory configuration="hi bernate-configuration:history"
nane="hi ber nat e- sessi on-factory: history"/>
<repository class="org.ow2. orchestra. services.inpl.DbRepository"/>
<publ i sher cl ass="org.ow2. orchestra. axi s. Axi sPubl i sher"/>
<i nvoker class="org.ow2.orchestra.services.inpl.SOAPI nvoker" nane="servicel nvoker"/>
</ environnent-factory>
<envi r onnent >
<chai ner name="recorder">
<recorder class="org.ow2.orchestra. persistence.| og. Logger Recorder"/>
<ref object="journal"/>
</ chai ner >
<runti me- db- sessi on nane="runti me-sessi on: core" sessi on="hi bernate-session:core"/>
<ti mer-session/ >
<transaction/ >
<chai ner name="undepl oyed- pr ocess- handl er ">
<undepl oyed- pr ocess- handl er
cl ass="org. ow2. orchestra. services. handl ers. i npl . Ar chi veUndepl oyedPr ocessHandl er"/ >
</ chai ner >
<chai ner name="fi ni shed-i nstance-handl er">
<fi ni shed-i nstance- handl er
cl ass="org. ow2. orchestra. servi ces. handl ers. i npl . Del et eFi ni shedl nst anceHandl er"/ >
<fi ni shed-i nstance- handl er
cl ass="org. ow2. orchestra. servi ces. handl ers. i npl . Archi veFi ni shedl nst anceHandl er"/ >
</ chai ner >
<queri er - db- sessi on name="queri er-sessi on: core" sessi on="hi bernat e-sessi on: core"/>
<hi ber nat e- sessi on factory="hi bernat e-sessi on-factory:core" init="eager"
nane="hi ber nat e- sessi on: core"/ >
<chai ner name="ar chiver">
<archi ver cl ass="org.ow2. orchestra. persi stence.| og. Logger Archiver"/>
<ref object="history"/>
</ chai ner >
<message- sessi on/ >
<j ob- db- sessi on sessi on="hi ber nat e- sessi on: core"/ >
<hi ber nat e- sessi on factory="hi bernat e-sessi on-factory: history" init="eager"
nane="hi ber nat e- sessi on: hi story"/>
<journal class="org.ow2.orchestra. persistence.db. DbJournal " nanme="j ournal ">
<ar g>
<ref object="querier-session:core"/>
</ arg>
</j our nal >
<quer yApi name="queryList">
<ref object="journal"/>
<ref object="history"/>
</ quer yApi >
<queri er - db- sessi on name="queri er-sessi on: hi story" sessi on="hi bernat e-sessi on: history"/>
<hi story cl ass="org. ow2. orchestra. persi stence. db. DbHi story" nanme="hi story">
<ar g>
<ref object="querier-session:history"/>
</ arg>
</ hi story>
</ envi r onnment >
</ envi ronment - def i ni ti on>

Currently, following objects implementations can be injected in the environment:

11



Configuration and Services

 publisher: object intended for publishing services of the given bpel process. For web services based on
axis framework, degfault classis org.ow2.orchestra.axis.AxisPublisher. For web services based on cxf
framework, the default classis org.ow2.orchestra.cxf.CxfPublisher.

 invoker: object intended for external web services invocations. Default implementation is based on
SAAJ through the default implementation (class org.ow2.orchestra.services.impl.SOAPInvoker). For
web services based on cxf framework, the default classis org.ow?2.orchestra.cxf.Cxflnvoker

* repository: data repository storing processes and instances.. Db persistence (class
org.ow2.orchestra.execution.services.db.DbRepository) implementation is included in this RC.

* recorder: object responsible of process execution logs. Default implementation handles processlogsin
the command line console (org.ow2.orchestra.persistence.log.L oggerRecorder). Recorder and Journal
(see next) objects can be chained (new ones can be added as well on top of the recorder chainer). This
give you a powerful mechanism to handle process execution data

» journal: object responsible for storing or retrieving process execution data. Db persistence (class
org.ow2.orchestra.persistence.db.DbJournal) implementation is provided by default.

e archiver: object intended for process logs archiving. Default implementation
handles logs on process data archiving through the default implementation (class
org.ow2.orchestra.persistence.log.LoggerArchiver). Archiver and History (see next) objects can be
chained (new ones can be added as well on top of the archiver chainer). This give you a powerful
mechanism to handle process archived data

* history: object intended for storing or retrieving process archieved data. Default implementation is
provided and available in the following class. org.ow?2.orchestra.persistence.db.DbHistory.

* queryList: object intended to configure how the QueryRuntimeAPI will retrieve the process execution
data. Thisretrieval could be configured to chain with the expected order into the journal and the history.

« finished-instance-handler: action to perform when a process instance is finished. This object could
chain two distinct actions: for a given process instance, deleting the runtime object including its
activities from the repository and then store data in the archive and remove data from journal. Default
implementations are proposed for both chained actions.

* Note 1: As explained before persistence objects are provided as default implementations in the
environment. Notice that in a persistence configuration additional resources are required, i.e for hibernate
persistence you can specify mapings, cache configuration...

* Note 2: The environment is divided in two different contexts: application and block. Objects declared
inside the application context are created once and reused while objects declared inside the block context
are created for each operation.

4.3. Services

Servicesin Nova Orchestrais all about pluggability. To allow that, each service has been thought in terms
of an interface with different possible implementations. In the following lines you will find a description
of main services supported in Nova Orchestra.

The PVM includes aframework to allow theinjection of servicesand objectsthat will beleveraged during
the process definition and execution. Objects and services required in Orchestra are defined through an
XML file. A dedicated parser and wiring framework in the PVM isin charge of creating those objects.

A default environment file (environment.xml) is provided in the installed package.

12



Configuration and Services

4.3.1.

4.3.2.

4.3.3.

4.3.4.

Currently, following objects are required for the execution environment :
* publisher

* invoker

* repository

* persistence

o timer

* journal and history

e querier

Example of implementation classes for these objects are embedded into the Orchestrajar and defined into
the environment.xml file.

Publisher

The publisher service sets the way the services proposed by the BPEL processes will be published. The
default implementation of this service uses the Axis Web Service Container.

Invoker

The invoker service sets the way the BPEL processes will call external services. The default
implementation of this service uses the SAAJimplementation.

Repository

The repository service sets the way the data will be handled by the engine. Nova Orchestra proposes one
implementation managing data in the database.

Persistence

Persistence is one of key technical services injected into the services container. This service, as well as
other major servicesin NovaOrchestra, isbased on aserviceinterface. That meansthat multiple persistence
implementations can be plugged on top.

The Persistence service interface is responsible to save and load objects from a relational database. By
default, a persistence implementation based on the Hibernate ORM framework is provided (JPA and JCR
to come).

The Process Virtual Machine core definition and execution el ements (processes, nodes, transitions, events,
actions, variables and executions) as well asthe BPEL extension ones (activities, conditions, variables...)
are persisted through this service. Process Virtual Machine core elements are al so cached by leveraging the
default persistence service implementation (Hibernate based). Processes and instances are stored through
this persistence service. Repository isthe term used in Nova Orchestra to store those entities.

This serviceis only used if the repository serviceis set to database.

4.3.4.1. Database Access Configuration

The default configuration of Nova Orchestra uses the Database persistence service and the H2 Database.
Nova Orchestra has also been tested with Oracle, MySQL and Postgres database system. To change to

13



Configuration and Services

mysql, postgres or Oracle, you need to install the corresponding JDBC driver (see Chapter 3, Installation
guide) and modify the hi ber nat e. properti es file: uncomment the corresponding lines :

# Hi bernate configuration

# For using Orchestra with HSQL

# hi bernate. dial ect or g. hi bernat e. di al ect. HSQLDi al ect
# hi bernate.connection.driver_class org. hsql db. j dbcDri ver

# hi bernate. connection.url jdbc: hsql db: fil e:db_orchestra

# hi bernat e. connecti on. user nane sa

# hi bernate. connecti on. password

# For using Orchestra with postgreSQ

# hibernate. dial ect or g. hi bernat e. di al ect. Post greSQLDi al ect
# hi bernate. connection.driver_class org. postgresql.Driver

# hi bernate. connection.url jdbc: postgresql ://server:port/db

# hi ber nat e. connecti on. user nane user

# hi bernate. connecti on. password pass

# For using Orchestra with MySQL

# hi bernate. dial ect or g. hi bernat e. di al ect. MySQL5I nnoDBDi al ect
# hi bernate.connection.driver_class com nysql . j dbc. Dri ver

# hi bernate. connection.url jdbc:nysql ://server:port/db

# hi ber nat e. connecti on. user nane user

# hi bernate. connecti on. password pass

hi ber nat e. di al ect or g. hi bernat e. di al ect. HSQLDi al ect

hi ber nat e. connection. driver_cl ass org. hsql db. j dbcDri ver

hi ber nat e. connection. url jdbc: hsql db: fil e:db_orchestra

hi ber nat e. connecti on. user nane sa

hi ber nat e. connecti on. passwor d

hi ber nat e. hbn2ddl| . aut o updat e

hi ber nat e. cache. use_second_| evel _cache true

hi ber nat e. cache. provi der_cl ass or g. hi ber nat e. cache. Hasht abl eCachePr ovi der
hi ber nat e. show_sq|l fal se

hi ber nat e. f or mat _sql fal se

hi ber nat e. use_sql _conment s fal se

hi ber nat e. byt ecode. use_refl ecti on_optim zer true

4.3.5. Journal and History

Thismodul e concernstheway in which the process datais stored during the process execution and archived
when the execution is completed. Thisisindeed acrucial module in a process solution.

Nova Orchestra unifies journal data et history data as the underlying essence of both isto handle process
data. For that to be done, we created the concept of processrecord. A record isaminimal set of attributes
describing a process entity execution. That means that each process entity related to the execution hasits
own associated record.

Those records are recorded during the process execution and stored depending on the persistence service
implementation (db, xml...). The Nova Orchestra API will retrieve record data from the records storage
and sent them back to the users (meaning that records also acts as value objectsin Nova Orchestra APIS).

Assoon asaprocessinstance isfinished, atypical scenario would be (by default) to moveinstance related
process data from the production environment to a history one. While the physical device and the data
structure could changed from one process engine deployment to another (XML, Bl database...), theinternal
format could remain the same (records). This is exactly what is happening in Nova Orchestra, when
archiving data the engine just move execution records from the production to the history environment
without data transformation in between.

Journal and history data are persisted in different database. Change hibernate.properties [hibernate-
history.properties] filein conf directory to modify the journal [history] database

14



Configuration and Services

4.3.6.

4.3.7.

4.3.8.

Querier

The querier isan API tool for getting process records corresponding to different criteria. It can get records
from journal, from history or both. This possibility is defined in the environment. Several parameters
will allow us to obtain this information by various criteria: their state (running or after delivery) or ID.
Depending on the circumstances this request will return arecord, a set of records or an empty table.

Timers

To handle activities deadlines, atimer service is required that can schedule timers to be executed in the
future. Timers must have the ability to contain some contextual information and reference the program
logic that needs to be executed when the timer expires.

This service, as well as any other asynchrous service in Nova Orchestra is based on the Process Virtual
Machine Job executor framework. Job executor framework is responsible for handling jobs. A job could
be a timer scheduling or an asynchronous message for instance. When a job is created and stored in
the database, the job executor starts a new transaction, fetch the job from the database and perform the
instructions contained in the message.

The timer service is used for the BPEL statements "wait" and "onAlarm”.

The Database implementation uses the Job Executor module of the Process Virtua Machine for the
management of the timers. Its definition in the environment is the following : <timer-session />

For the Job Executor, the administrator can set the number of thread that will manage the jobs. This
information is also defined in the environment file with the following line :

|<j ob- executor threads='1' auto-start='false' /> |

The default number of thread for thejob executoris 1. It is advised to leave this value to avoid concurrency
problems.

Finished instance handler (FIH)

FIH are executed after the instance finished. Orchestra provides following implementationsin the package
org.ow2.orchestra.services.handlers.impl :

NoOpFinishedIinstanceHandler : do nothing

* CleanJournal FinishedlnstanceHandler : remove instance data from journal

ArchiveFinishedinstanceHandler : remove instance data from journal and put it in history

DeleteFinishedinstanceHandler : delete instance data from orchestra repository

15



Chapter 5. User guide
5.1. Start and Stop Nova Orchestra

Nova Orchestra is a webapp that can be deployed on Tomcat. So starting Nova Orchestra in fact starts
Tomcat with the correct environment. This can be performed from the installation directory with the
following command line :

>cd orchestra-tontat-4.2.0
>ant start

Starting Orchestrawill not be done in background. This means that the console starting Orchestrawill be
dedicated to the traces from Orchestra. To perform further actions, new consoles need to be opened.

To stop Nova Orchestra, type the following command line :

>cd orchestra-tonctat-4.2.0
>ant stop

5.2. Deploying / undeploying a process

Once Nova Orchestraiis started, it is then possible to deploy a new process on the engine:

|>ant depl oy - Dbpel =<process>. bpel -Dwsdl =<process>. wsdl - Dextwsdl =<wsdl| 1, wsdl 2> |

Nova Orchestra al so provides the possibility to use an archive to deploy a process. This archive should be
azip file with the extension .bar. Here is the command line to deploy such an archive:

|>ant depl oy - Dbar =<process>. bar |

Warning : The archive should be a zip file structured as described bellow :

/ <pr ocess>. bpel
/ <process>. wsdl
/ <files>. wsdl

To undeploy a process, use the following command line :

|>ant undepl oy - Dprocess=<process_nane> |

Warning : the process name should be fully qualified. This means that it needs to contain to namespace.
For instance:

|{ http://orchestra. ow2. or g/ weat her } weat her |

5.3. Other commands

Nova Orchestra provides a set of other commands that can be usefull

« A command to check the status of Nova Orchestra. This command tells if the engine is started and if
so, gives the names of processes deployed on the engine :

[>ant status |

* A command to simulate a Web Service call. This command will ssimulate a WS call to interact with a
deployed process :

|>ant cal | -Dendpoi nt=<service_url> -Dacti on=<SOAP_acti on> - Dmessage=<nessage> |

16



User guide

For example:

>ant call -Dendpoint=http://|ocal host: 8080/ orchestra
-Daction=http://orchestra. ow2. org/ weat her Arti facts/ process/ weat her PT
- Dnessage="<weat her Request xm ns='http://orchestra. ow2. or g/ weat her' >
<i nput >Gr enobl e, France</i nput >
</ weat her Request >"

5.4. Running the examples

The Nova Orchestra package contains examples of BPEL processes:

* loanApproval: invokes two local web services. This example istaken from the BPEL 2.0 standard.

Thisis an example from the BPEL 2.0 standards
» weather: invokes a remote Web Service and returns the current weather.
This example shows how to call areal world Web Service.
+ echo
This example shows a basic synchronous bpel process.
« orderingService
This example shows how to use pick instruction and correlations.
* producerConsumer

This example shows how executions can be saved and restarted after a crash.

A build.xml fileis provided for each of those samples. Those ant scripts provide the sametargetsto deploy,

launch and undeploy the sample. Go to the desired example and use the command lines :

>ant depl oy
>ant | aunch
>ant undepl oy

5.5. Running the tests

Nova Orchestrais delivered with atest suite to check if your installation is correct. There are 3 differents

testsavailable :

» Coretest suite. This suite tests the core functionnalities of the engine (e.g. BPEL activities, variables,
etc...). To run this test suite, the server should not be started.This test suite can be launched with the

following command :

[~ant test

» Remote test suite. This suite gives the possibility to test the Web Service stack deploying and launching
real processes. Thistest suite can be launched with the following command (server should be started) :

|>ant test-renote

» Sress test suite. This suite will launch a small stress test. This test suite can be launched with the

following command line :

[>ant test-stress

17



User guide

A command is also provided to launch those 3 test suites at once:

[>ant test-al

Theresults of the tests are available under the directory t est resul t s.

5.6. Configuring Logger

Itis possibleto activate thelogs. To do so, thefilel oggi ng. pr oper ti es under thedirectory conf /

can be edited. Here is the content of that file:

handl ers= java. util .| oggi ng. Consol eHandl er

.l evel = SEVERE

j ava. util .l oggi ng. Consol eHandl er. | evel = FI NEST

java. util .l oggi ng. Consol eHandl er.formatter = org.ow2.orchestra.util.JbpnFormatter

# For exanple, set the comxyz.foo |ogger to only | og SEVERE nessages
# com xyz. foo. |l evel = SEVERE

#or g. ow2. or chestra. pvm | evel =I NFO

#or g. ow2. or chestra. | evel =FI NEST

#or g. ow2. or chest ra. pvm Execut i on. | evel =FI NEST
#or g. ow2. orchestra. wi re. | evel =FI NEST

Uncomment the last lines to activate the logs.

18



Chapter 6. Developer's guide

This chapter describes how to start playing with Nova Orchestra:

» How to develop asimple application by leveraging Orchestra APIs

6.1. Nova Orchestra APIs
6.1.1. Getting started with Nova Orchestra APIs

Actualy, four different APIs are available in Nova Orchestra :

* QueryRuntimeAPI that gives runtime information about instances of process and activities.

* QueryDefinitionAPI that givesinformation of process definition.

» ManagementAPI that gives the possibility to manage Orchestra (deploy / undeploy processes, etc...)

 InstanceManagementAPI that gives the possibility to manage instances of process (suspend / resume /
exit processinstance)

You can find detailled information about APIsin the javadocs. APIs are included in aMaven module. To
include this module you have to add following Maven dependency :

<dependency>
<groupl d>or g. ow2. or chest r a</ gr oupl d>
<artifactld>orchestra-api </artifactld>
<versi on>4. 2. 0</ ver si on>

</ dependency>

If you do not want / can't use Maven, you can create a Maven module which depends only on this
dependency and create an assembly. Then copy created jar to your project.

* QueryRuntimeAPI: to get recorded/runtime informations for instances and activities. It allows also to
get activities per state. Then operationsin this APl applies to process instances and activity instances.

Hereafter youwill find an example on how to accessto the QueryRuntimeAP! from your client application:

org. ow2. orchestra. facade. Queri er Runti meAPl querier Runti meAPl =
org.ow2. orchestra. facade. Accessor Uti | . get QueryRunti neAPI (String, String);

The method getQueryRuntimeAP! takes two arguments of type String. The first argument is the URL of
the IMX service. The second is the name of the object IMX. In case we use the default configuration, two
constants can be used which are: AccessorUtil.SERVICE_URL and AccessorUtil.OBJECT _NAME.

For a detailed insight on Nova Orchestra APIs, please take a look to the Nova Orchestra javadoc APIs
(available under /javadoc directory)

Similar methods exists to access to the QueryDefinitionAPl, ManagementAPlI and
I nstanceM anagementAPI.

6.2. Nova Orchestra Client jar

If youwant to call OrchestraAPlsfrom aremote application you can usethe Orchestraclient jar. It contains
all the needed classesfor you to build you application. Just download thejar and includeit in your classpath.

19



	Orchestra User Guide
	Table of Contents
	Introduction
	Chapter 1. General information
	1.1. Nova Orchestra Overview
	1.2. Features list
	1.3. Restrictions
	1.4. Tooling

	Chapter 2. Prerequisites
	2.1. Hardware
	2.2. Software

	Chapter 3. Installation guide
	3.1. Web Service Frameworks
	3.1.1. Apache Axis
	3.1.2. Apache CXF

	3.2. Orchestra Tomcat distribution
	3.2.1. Installation
	3.2.1.1. Basic installation
	3.2.1.2. Advanced installation: Using another tomcat distribution.

	3.2.2. Database Management
	3.2.3. Orchestra directory structure

	3.3. Orchestra OSGI Felix distribution
	3.3.1. Installation
	3.3.2. Database Management
	3.3.3. Orchestra directory structure


	Chapter 4. Configuration and Services
	4.1. Simple configuration
	4.2. Services Container
	4.2.1. Environment.xml file

	4.3. Services
	4.3.1. Publisher
	4.3.2. Invoker
	4.3.3. Repository
	4.3.4. Persistence
	4.3.4.1. Database Access Configuration

	4.3.5. Journal and History
	4.3.6. Querier
	4.3.7. Timers
	4.3.8. Finished instance handler (FIH)


	Chapter 5. User guide
	5.1. Start and Stop Nova Orchestra
	5.2. Deploying / undeploying a process
	5.3. Other commands
	5.4. Running the examples
	5.5. Running the tests
	5.6. Configuring Logger

	Chapter 6. Developer's guide
	6.1. Nova Orchestra APIs
	6.1.1. Getting started with Nova Orchestra APIs

	6.2. Nova Orchestra Client jar


