rchest

Orchestra User Guide

This document contains an installation and user guide for Orchestra 4.4.0

Orchestra Team
- April 2010 -

Copyright © 2010 Bull SAS - OW2 Consortium

Table of Contents

Fg11 oo (¥ oi [Tl H PSPPI iii
1. General INFOMMEIIONceeitieee ettt e ettt e et e e e e et eeeaba s 1
1.1, OrChESIIa OVEIVIEBWceeeeieeeii ettt ettt e et e et eeeaa s 1

1.2, FEAIUIES TISE ..ottt ettt 1

L.3. RESIICIIONS ..ttt ettt e et e ettt e et e e e e e aee 1

O T oo [oo RSP PUPPPPPUPPPINt 2

2. PrEFBOUISITES ...oee ittt ettt 3
2.1 HBIMOWEIE ...ttt ettt ettt e e e e e e e ae 3

2.2, SOTIWEIE ...ttt et et 3

3 INSEAIELHON QUITE ...ttt 4
3.1 WeED Service FrameWOIKScouuuiiiiiiie e 4
311 APACNE AXIS ..t 4

312, APACNE CXF et 4

3.2. Orchestra Tomcat distribDULIONoooiiiiiiii e 4
2.1 INSATBIION ...ttt et 4

3.2.2. Database MaNAQEMENLccuuuieiiiiie ettt et e et e e e s 5

3.2.3. Orchestra direCtory SITUCTUIEccuuueiiiiie et 6

3.3. Orchestra OSGI Felix distribDUtioncooouiiiiiiii e 7
331 INSLATBIION .ttt 7

3.3.2. Database MaNaQEMENLcc.uuieiiiiie ettt ettt e et eeeaa s 7

3.3.3. Orchestra direCtory SITUCTUIEcouuuieiiiii e 7

4. CoNnfiguration AN SENVICESuuuiiiiiii ettt e et ettt e e e e e 10
4.1, SIMPlE CONFIQUIALTONvuieiiiie et 10

A.2. SEIVICES CONTAINET ...iettieiiit ettt ettt e et e ettt e e e et e e e e et e e e eatanaeeees 10
4.2.1. Environment.Xml fileoooeei e 10

A3 SEIVICES ...ttt ettt 12
A.3.1. PUDIISNEN .o 13

A.3.2. INVOKES ...ttt ettt ettt e eaaas 13

4.3.3. REPOSITONY ...ttt ettt et e et e et e et e e 13

A.34. PEISISIENCE . .ceetuieeeii ettt ettt e et e e e 13

4.3.5. Journal @nd HiStOrYuiiiiiiiiiieiii e e 14

G K ST @ 0= 1= PP 15

4.3.7. Asynchronous Executions (JOBS)ocoveiiiieiiiiinic 15

4.3.8. Finished instance handler (FIH)ooooiiiiii e 16

4.3.9. Undeployed process handler (UPH)coooiiiiiiiiiiie e 17

4.3.10. Clustering CONfIQUIALIONueiieiieieiie ettt et e e 17

B USEN QUITE ...ttt ettt 18
5.1. Start and SOP OFCNESIIAceveueieieiii ettt e e et e e eaaans 18

5.2. Deploying / UNdeplOying @ PrOCESScceuruuieeiiiieeetetiia e et e et e et e e et eeene s 18

5.3, Other COMMENSoeeiitiee ettt e et e e et e e b s 18

5.4. RUNNING the @XAMPIEScoeiiiei e e e 19

5.5. RUNNING The TESISvuieiii ettt 19

5.6. CONFIQUIING LOGGESneiiitieeeeete ettt ettt ettt e e e e enaa e e eneas 20

5.7. Using Apache Camel With OrCheStra...........uuiiiiiiieiiii e e 20
5.7.1. How to create a Camel context fOr @ ProCeSS ?.....cc.uuueveriiieeiiieeeeiiee e 20

5.7.2. How to use camel context instead of HTTP for Web Service interactions ?........... 21

6. DEVEIOPEI'S QUIE ...ttt ettt 22
B.1. OFChESITA APIS ...t et e 22
6.1.1. Getting started with Orchestra APISiviiiiii e 22

6.2. OrChestra CHENE JAI ...ccevviieiiii et 22

6.3. Adding new Orchestra services implementationsoceeveieriiinieeii e 23

Introduction

This documentation is targeted to Orchestra users. It presents the installation procedure and a quick user
guide of Orchestra features.

Chapter 1, General information describes the new version Orchestra v4

Chapter 2, Prerequisites describes the prerequisites to the installation of Orchestra

Chapter 3, Installation guide describes how to install the Orchestra engine

Chapter 4, Configuration and Services describes main configuration features and default services

Chapter 5, User guide This chapter will guide you through the discovery of the functionaities of
Orchestra.

Chapter 6, Developer's guide guides you through APIs of Orchestra.

Chapter 1. General information

1.1. Orchestra Overview

The new version of Orchestrais based on the “Process Virtual Maching” conceptual model for processes.
The Process Virtual Machine defines a generic process engine enabling support for multiple process
languages (such BPEL, XPDL...).

On top of that, it leads to a pluggable and embeddable design of process engines that gives modelling
freedom to the business analyst. Additionally, it enables the developer to leverage process technology
embedded in a Java application.

For more information about the Process Virtua Machine, check Orchestra FAQs [http:/
orchestra.ow2.org/xwiki/bin/view/Main/FAQ] on the Orchestraweb site [http://orchestra.ow2.org] .

1.2. Features list

Orchestra is a Web Service Orchestration solution that provides BPEL 2.0 support. Business Process
Execution Language (BPEL) isan XML language created by the Oasis Consortium. More information and
the specifications can be found on Oasis web site [www.0asis-open.org/committees/wsbpel/]

Orchestra provides full support of the BPEL 2.0 standard.
This version provides Web Service support using the Axis 1.4 framework or CXF 2.2.5.
Orchestrais shipped with a compl ete test suite and a few examples.

Orchestrais persistable. This means that al the data concerning your processes definition and instances
execution is stored in a Database using a persistence framework (hibernate by default). The following
database systems have been successfully tested :

* H2 Database (defaullt)
» Postgres (8.3)

« MySQL (5.0)

» Oracle (10g)

1.3. Restrictions

Orchestracomes out with an innovative architecture based on ageneric and extensible engine, called "The
Process Virtual Machine" and a powerful injection technology allowing services pluggability.

This new version of Orchestra is aimed at showing the power of its very innovative architecture by
providing support for all the basic activitiesdefined inthe BPEL standard. Asstated in the previous section,
this version provides the possibility to persist the processes definition and execution. The 4.2 release
provides support for the last important BPEL statement named eventHandler. Orchestra now provides
full support of BPEL 2.0. The next stage will be to extend Orchestra to provide the first Open Source
Business Process Server to power your SOA infrastructure. Stay tuned ! Check the roadmap [http://
wiki.orchestra.objectweb.org/xwiki/bin/view/Main/Roadmap] for more information.

This version has some restrictions on the following aspects :

http://orchestra.ow2.org/xwiki/bin/view/Main/FAQ
http://orchestra.ow2.org/xwiki/bin/view/Main/FAQ
http://orchestra.ow2.org/xwiki/bin/view/Main/FAQ
http://orchestra.ow2.org
http://orchestra.ow2.org
www.oasis-open.org/committees/wsbpel/
www.oasis-open.org/committees/wsbpel/
http://wiki.orchestra.objectweb.org/xwiki/bin/view/Main/Roadmap
http://wiki.orchestra.objectweb.org/xwiki/bin/view/Main/Roadmap
http://wiki.orchestra.objectweb.org/xwiki/bin/view/Main/Roadmap

Genera information

e Somerestrictionsin assign statement :
* no extensionAssignOperation
« validate not supported
e Some restrictions in scope statement
« isolated not supported
* exitOnStandardFault not supported
e Thefollowing BPEL 2.0 statements are not supported :
 validate
* extensionActivity
e import

¢ extensions

1.4. Tooling

For the new version, Orchestra does not ship a graphical designer. Orchestra engine has been tested with
processes created using the Netbeans BPEL designer [http://www.netbeans.org/kb/55/bpel_gsg.html]. It
is also possible to use the Eclipse BPEL designer [www.eclipse.org/bpel/] . Download and installation
instruction are available on the project web site. However we have encountered afew bugsin the eclipse
designer. So we advise the use of NetBeans. There is awork in progress to provide a Web 2.0 designer
that will be accessible directly from the console. A preview is already available.

Thisversion of Orchestra provides an new Web 2.0 administration console. This console will beimproved
in following releases to add monitoring capabilities.

http://www.netbeans.org/kb/55/bpel_gsg.html
http://www.netbeans.org/kb/55/bpel_gsg.html
www.eclipse.org/bpel/
www.eclipse.org/bpel/

Chapter 2. Prerequisites

2.1. Hardware

A 1GHz processor isrecommended, with aminimum of 512 Mb of RAM. Windows users can avoid swap
file adjustments and get improved performance by using 1Gb or more of RAM

2.2. Software

* Orchestra requires Java Development Kit (JDK) 1.5 (also called JDK 5.0) but also runs with following
releases.

The JDK software can be downloaded from http://java.sun.com/j2se/1.5.0
 Orchestrarequires Apache Ant 1.7.1 or higher

It can be downloaded from http://ant.apache.org

Chapter 3. Installation guide

Orchestra comes in two kinds of distribution:

» Tomcat distribution: Orchestrais embedded in aweb application deployed in tomcat container.

» Felix OSGI distribution: Orchestrais embedded in an OSGI bundle deployed in felix OSGI platform.
As explained in Chapter 4, Configuration and Services, Orchestra can use different Web Service
frameworks. Apache Axisl and CXF are supported. For each web service framework, a tomcat package

and afelix package are provided.

Theinstallation and configuration steps are independent of the web service framework.

3.1. Web Service Frameworks
3.1.1. Apache Axis

Orchestraweb service implementation based on Axis 1.4 offers basic web service capabilities.

3.1.2. Apache CXF

Orchestraweb service implementation based on CXF offers advanced web service capabilities.
CXF implementation adds support for:

» WS-addressing

* WSRM

» Apache Camel

3.2. Orchestra Tomcat distribution

3.2.1. Installation

Unzip the orchestra-tomcat distribution package.

|>unzi p orchestra-tontat-4.4.0.zip |

A new directory or chest r a- t ontat - 4. 4. 0 will becreated. It containsan ant fileto install and start
Orchestra.

3.2.1.1. Basic installation

Remark : Orchestra runs in Apache Tomcat serviet container. Tomcat 5.5.23 is delivered with the
Orchestra Package.

Toinstall Orchestra, go to orchestra directory and launch the install by running ant:

|>cd orchestra-tontat-4.4.0

Installation guide

[>ant install |

The install script installs Tomcat and Orchestra. The default installation activates the persistence using
the H2 Database.

I mportant

if your network is based on a proxy, please specify the proxy settings in your JAVA OPTS
environment property. The system properties to specify are described in the java
documentation [http://java.sun.conmvj2se/1.5.0/docs/guide/net/properties.html] .

3.2.1.2. Advanced installation: Using another tomcat distribution.

Orchestra is shipped with a lightweight Apache Tomcat Servlet container. This section explains how to
install Orchestrain an existing tomcat distribution.

The install.properties file in the conf directory contains the information used by Orchestra installation.
The default content is:

catal i na. home=${orchestra. dir}/toncat
catal i na. base=${cat al i na. hone}

To use another tomcat installation, just update the catalina.home and catalina.base properties before
caling:

[>ant install |

3.2.1.3. Advanced installation: into JOnAS

Orchestra is shipped with a ligthweight Apache Tomcat Servlet container. This section explains how to
install Orchestrain a JONAS Application Server.

3.2.1.3.1. JOnAS 4

3.2.2.

» Delete or upgrade xml-apis.jar, xerceslmpl.jar and xalan-xxx.jar from $JONAS ROOT/lib/endorsed.
These libraries are needed for 2EE compatibility, but JOnAS4 can run fine without them. JOnAS4 has
old versions of these libraries, which creates incompatibility issues with Orchestra.

» Copy Orchestra conf into $JONAS BASE/conf (copy al files from orchestra conf directory to
$IONAS_BASE/conf).

* Copy jdbc jar driver into $JONAS_BASE/lib/ext

* In orchestra.properties, change orchestra.servlet.port value to your JOnAS's tomcat port configuration
(cf SIONAS BASE/conf/server.xml)

» Copy Orchestrawar (availablein orchestralib/ directory) to $JONAS_BA SE/webapps and start JOnAS

Database Management

The default configuration of Orchestra uses the Database persistence service and the H2 Database.
Orchestra has a so been tested with Oracle, MySQL and Postgres database system. To change to mysq,
postgres or Oracle, you need to put the corresponding JDBC driver in the directory SCATALI NA BASE/

conmon/ | i b and modify the hi ber nat e. properti es file (see Section 4.3.4.1, “ Database Access
Configuration™)

http://java.sun.com/j2se/1.5.0/docs/guide/net/properties.html
http://java.sun.com/j2se/1.5.0/docs/guide/net/properties.html
http://java.sun.com/j2se/1.5.0/docs/guide/net/properties.html

Installation guide

3.2.3. Orchestra directory structure

Hereafter is detailled the structure of Orchestra instalation. The installation directory contains the
following structure :

READVE
bui I d. xm
install.xm

conmon. xn
Li cence. t xt
toncat/
conf/
doc/
exanpl es/
i b/

resour ces/

Let's present those items :
* README

Thisfile gives the basic information related to Orchestra
* build.xml

Thisfileisan ant filethat providestasksto install and use Orchestra. Just typing ant will result giving
you the usage.

¢ install.xml and common.xml
These files are ant files that are used by build.xml
* License.itxt
The license of Orchestra. All of Orchestrais available under the LGPL license.
* conf/
Thisdirectory contains all the configuration files of Orchestra.
* tomcat/
Thisdirectory isthe default Tomcat installation shipped with Orchestra.
* doc/
This directory contains the documentation of Orchestra. It contains:
* userGuide.pdf
For PDF documentation
¢ html/userGuide.html
For HTML documentation in asingle page
* html/userGuide/userGuide.html

For HTML documentation in different pages

Installation guide

e examples/

This directory contains the examples provided with Orchestra package. See Section 5.4, “Running the
examples’

o lib/
This directory contains the libraries used in Orchestra.
* resources/

This directory contains Orchestra database creation scripts for supported databases and Orchestra
environment configuration examples.

3.3. Orchestra OSGI Felix distribution

3.3.1. Installation

3.3.2.

3.3.3.

Unzip the orchestra-felix distribution package.

|>unzip orchestra-felix-4.4.0.zip

A new directory or chestra-felix-4. 4.0 will becreated. It contains an ant file to install and start
Orchestra.

Remark : Orchestra runs in Apache Felix OGS platform. Felix 2.0.2 is delivered with the Orchestra
Package.

There is no specific installation step for running Orchestra:

|>cd orchestra-felix-4.4.0

The default configuration activates the persistence using the H2 Database.

I mportant

if your network is based on a proxy, please specify the proxy settings in your JAVA_OPTS
environment property. The system properties to specify are described in the java
documentation [http://java.sun.convj2se/1.5.0/docs/guide/net/properties.html] .

Database Management

The default configuration of Orchestra uses the Database persistence service and the H2 Database.
Orchestra has also been tested with Oracle, MySQL and Postgres database system. To change to mysqgl,
postgres or Oracle, you need to install the corresponding JDBC driver bundle in the OSGI platform and
modify the hi ber nat e. properti es file (see Section 4.3.4.1, “ Database Access Configuration”)

Orchestra directory structure

Hereafter is detailled the structure of Orchestra instalation. The installation directory contains the
following structure :

READVE
bui I d. xm
Li cence. t xt

http://java.sun.com/j2se/1.5.0/docs/guide/net/properties.html
http://java.sun.com/j2se/1.5.0/docs/guide/net/properties.html
http://java.sun.com/j2se/1.5.0/docs/guide/net/properties.html

Installation guide

bundl e/
felix/
conf/
doc/
exanpl es/
lib/
resour ces/

Let's present those items :

README
Thisfile gives the basic information related to Orchestra
build.xml

Thisfileis an ant file that provides tasks to use Orchestra. Just typing ant will result giving you the
usage.

License.txt
The license of Orchestra. All of Orchestrais available under the LGPL license.
conf/
This directory contains all the configuration files of Orchestra.
bundle/
This directory contains Orchestra OSGI bundles and dependencies.
felix/
This directory contains the Apache Felix bundle.
doc/
This directory contains the documentation of Orchestra. It contains:
¢ userGuide.pdf
For PDF documentation
e html/userGuide.html
For HTML documentation in asingle page
* html/userGuide/userGuide.html
For HTML documentation in different pages
examples/

This directory contains the examples provided with Orchestra package. See Section 5.4, “Running the
examples’

lib/

This directory contains the libraries used for tests.

Installation guide

* resources/

This directory contains Orchestra database creation scripts for supported databases and Orchestra
environment configuration examples.

Chapter 4. Configuration and Services

This chapter introduces the services configuration infrastructure provided by Orchestra as well as main
servicesincluded in this version.

4.1. Simple configuration

The orchestra.properties file in the conf/ directory contains properties that can be easily changed. These
properties are used by both orchestra client and orchestra server. Here is the default orchestra.properties
file

orchestra. servl et. host =l ocal host
orchestra. servl et. port=8080
orchestra. servl et. pat h=orchestral servi ces

orchestra.j nx. port=9999
or chestra.j nx. obj ect Nane=JMXAgent : nane=or chest r aRenot eDepl oyer
orchestra.jnx.serviceUr |l =service:jm:rm:///jndi/rm://]ocal host: 9999/ orchestraServer

* orchestra.serviet.host the host where orchestra server isinstalled.

« orchestra.serviet.port the port on which the web services will be exposed.

» orchestra.serviet.path the path on the server where the web services will be exposed.
Orchestraweb serviceswill be available from http://${ orchestra.servlet.host} : ${ orchestra.servlet.port} /
$orchestra.servlet.path} /serviceName

* orchestra.jmx.port the port of the IMX server.

* orchestra.jmx.serviceUrl the IMX service url where the api mbeans will be available.

« orchestra.jmx.objectName the name of Orchestra mbean.

4.2. Services Container

4.2.1.

The Process Virtual Machine technology includes a services container alowing the injection of services
and objets that will be leveraged during the process definition and execution. Objects and services used
by the Orchestra engine are defined through a XML file. A dedicated parser and a wiring framework are
in charge of creating those objects. Service invoker, publisher, persistence and timers are examples of
pluggable services.

This services container (aka 10C container) can be configured through a configuration file. A default
configuration file isincluded in the package under the /conf directory (environment.xml).

This configuration is only used on the server side.

Environment.xml file

The default environment.xml file created during the installation of Orchestra is set to use the database
implementation of the persistence service. This file also sets the configuration of hibernate. Here is the
environment.xml file generated :

10

Configuration and Services

<envi ronnent - definition>

<environnent-factory>
<j ob- executor auto-start="false" threads="10"/>
<properties nane="orchestra-properties" resource="orchestra. properties"/>
<hi ber nat e- sessi on-factory configurati on="hi bernate-configuration:core" init="eager" nanme="hi ber
<dead- j ob- handl er cl ass="org. ow2. orchestra. services. handl ers. i npl. Exi t|nstanceDeadJobHandl er"/>
<hi ber nat e- confi gurati on nanme="hi bernnate-configuration: core">
<properties resource="hibernate. properties"/>
<mappi ngs resour ce="hi ber nat e/ bpel . core. mappi ngs. xm "/ >
<mappi ngs resource="hi ber nat e/ bpel . moni tori ng. mappi ngs. xm "/ >
<cache-confi guration resource="hi bernate/bpel .cache. xm " usage="read-wite"/>
</ hi ber nat e- confi gurati on>
<command- servi ce>
<orchestra-retry-interceptor retries="10"/>
<environnent-interceptor/>
<standard-transacti on-interceptor/>
</ command- ser vi ce>
<hi ber nat e- confi gurati on nanme="hi bernate-configuration: history">
<properties resource="hibernate-history.properties"/>
<mappi ngs resource="hi ber nat e/ bpel . moni tori ng. mappi ngs. xm "/ >
<mappi ng resource="hi bernate/bpel.util.hbmxn"/>
</ hi ber nat e- confi gurati on>
<hi ber nat e- sessi on-factory configuration="hi bernate-configuration:history" init="eager" name="hi
<repository class="org.ow2. orchestra. services.inpl.DbRepository"/>
<publ i sher cl ass="org. ow2. orchestra. cxf.Cxf Publisher"/>
<i nvoker class="org.ow2.orchestra.cxf.Cxflnvoker" nanme="servicel nvoker"/>
</ environnent-factory>
<envi r onnment >
<hi ber nat e- sessi on factory="hi bernat e-sessi on-factory: core" nane="hi bernat e-sessi on: core"/>
<message-session retries="3"/>
<transaction/>
<chai ner name="archiver">
<archiver class="org.ow2. orchestra. persistence. | og. Logger Archiver"/>
<ref object="history"/>
</ chai ner >
<journal class="org.ow2.orchestra. persistence.db. DbJournal " nane="journal ">
<ar g>
<ref object="querier-session:core"/>
</ arg>
</j ournal >
<hi story class="org. ow2. orchestra. persi stence. db. DoHi st ory" nane="hi story">
<ar g>
<ref object="querier-session:history"/>
</ arg>
</ hi story>
<timer-session/>
<chai ner name="fi ni shed-i nstance-handl er">
<fini shed-instance-handl er class="org.ow2. orchestra. services. handl ers. i npl. Del et eFi ni shedl nst a
<fini shed-instance-handl er class="org.ow2. orchestra. services. handl ers. i npl. ArchiveFi ni shedl nst
</ chai ner >
<quer yApi name="queryList">
<ref object="journal"/>
<ref object="history"/>
</ quer yApi >
<chai ner name="recorder">
<recorder class="org.ow2.orchestra. persistence. | og. Logger Recorder"/>
<ref object="journal"/>
</ chai ner >
<chai ner name="undepl oyed- process- handl er">
<undepl oyed- process- handl er cl ass="org. ow2. orchestra. services. handl ers. i npl . Archi veUndepl oyedP
</ chai ner >
<queri er - db- sessi on nanme="queri er-session: history" session="hi bernate-session: history"/>
<runti me- db- sessi on name="runti ne-sessi on: core" sessi on="hi bernat e-sessi on: core"/>
<j ob- db- sessi on sessi on="hi ber nat e- sessi on: core"/ >
<queri er - db- sessi on nane="queri er-session: core" session="hi bernate-session:core"/>
<hi ber nat e- sessi on factory="hi bernate-sessi on-factory: history" name="hi ber nat e- sessi on: hi story"/
</ envi ronment >

hat e- sessi on-f act |

ber nat e- sessi on-f

hceHandl er"/ >
anceHandl er"/ >

ocessHandl er"/ >

</ envi ronnent - definition>

Currently, following objects implementations can be injected in the environment:

 publisher: object intended for publishing services of the given bpel process. For web services based on
axis framework, degfault classis org.ow2.orchestra.axis.AxisPublisher. For web services based on cxf
framework, the default classis org.ow2.orchestra.cxf.CxfPublisher.

11

Configuration and Services

 invoker: object intended for external web services invocations. Default implementation is based on
SAAJ through the default implementation (class org.ow2.orchestra.services.impl.SOAPInvoker). For
web services based on cxf framework, the default classis org.ow2.orchestra.cxf.Cxflnvoker

e repository: data repository storing processes and instances.. Db persistence (class
org.ow2.orchestra.execution.services.db.DbRepository) implementation is included in this RC.

 recorder: object responsible of process execution logs. Default implementation handles processlogsin
the command line console (org.ow2.orchestra.persistence.log.LoggerRecorder). Recorder and Journal
(see next) objects can be chained (new ones can be added as well on top of the recorder chainer). This
give you a powerful mechanism to handle process execution data

» journal: object responsible for storing or retrieving process execution data. Db persistence (class
org.ow2.orchestra.persistence.db.DbJournal) implementation is provided by default.

o archiver: object intended for process logs archiving. Default implementation
handles logs on process data archiving through the default implementation (class
org.ow2.orchestra.persistence.log.LoggerArchiver). Archiver and History (see next) objects can be
chained (new ones can be added as well on top of the archiver chainer). This give you a powerful
mechanism to handle process archived data

* history: object intended for storing or retrieving process archieved data. Default implementation is
provided and available in the following class: org.ow?2.orchestra.persistence.db.DbHistory.

» queryList: object intended to configure how the QueryRuntimeAPI will retrieve the process execution
data. Thisretrieval could be configured to chain with the expected order into the journal and the history.

« finished-instance-handler: action to perform when a process instance is finished. This object could
chain two or more distinct actions: for agiven process instance, deleting the runtime object including its
activities from the repository and then store data in the archive and remove data from journal. Default
implementations are proposed for both chained actions.

» undeployed-process-handler: action to perform when a process is un-deployed. This object could
chain distinct actions. Default implementation stores datain the archive and removes datafrom journal.

» dead-job-handler: action to perform when a asynchronous execution has failed all the retries. This
object could chain distinct actions. Default implementation exits the process instance that failed to
execute asynchronously.

* Note 1: As explained before persistence objects are provided as default implementations in the
environment. Notice that in a persistence configuration additional resources are required, i.e for hibernate
persistence you can specify mappings, cache configuration...

* Note 2: The environment is divided in two different contexts: environment-factory and environment.
Objectsdeclared inside the environment-factory context are created once and reused while objects declared
inside the environment context are created for each operation.

4.3. Services

Services in Orchestrais all about pluggability. To allow that, each service has been thought in terms of
an interface with different possible implementations. In the following lines you will find a description of
main services supported in Orchestra.

The PVM includes aframework to allow theinjection of services and objectsthat will be leveraged during
the process definition and execution. Objects and services required in Orchestra are defined through an
XML file. A dedicated parser and wiring framework in the PVM isin charge of creating those objects.

12

Configuration and Services

4.3.1.

4.3.2.

4.3.3.

4.3.4.

A default environment file (environment.xml) is provided in the installed package.
Currently, following objects are required for the execution environment :

* publisher

* invoker

* repository

* persistence

o timer

* journal and history

e querier

Example of implementation classes for these objects are embedded into the Orchestra jar and defined into
the environment.xml file.

Publisher

The publisher service sets the way the services proposed by the BPEL processes will be published. The
default implementation of this service uses the Axis Web Service Container.

Invoker

The invoker service sets the way the BPEL processes will call externa services. The default
implementation of this service uses the SAAJ implementation.

Repository

The repository service sets the way the data will be handled by the engine. Orchestra proposes one
implementation managing data in the database.

Persistence

Persistence is one of key technical services injected into the services container. This service, as well as
other major services in Orchestra, is based on a service interface. That means that multiple persistence
implementations can be plugged on top.

The Persistence service interface is responsible to save and load objects from a relational database. By
default, a persistence implementation based on the Hibernate ORM framework is provided (JPA and JCR
to come).

The Process Virtual Machine core definition and execution el ements (processes, hodes, transitions, events,
actions, variables and executions) as well asthe BPEL extension ones (activities, conditions, variables...)
are persisted through this service. Process Virtual Machine core elements are al so cached by leveraging the
default persistence service implementation (Hibernate based). Processes and instances are stored through
this persistence service. Repository isthe term used in Orchestra to store those entities.

This serviceis only used if the repository serviceis set to database.

13

Configuration and Services

4.3.4.1. Database Access Configuration

The default configuration of Orchestra uses the Database persistence service and the H2 Database.
Orchestra has a so been tested with Oracle, MySQL and Postgres database system. To change to mysq,
postgres or Oracle, you need to install the corresponding JDBC driver (see Chapter 3, Installation guide)
and modify the hi ber nat e. properti es file: uncomment the corresponding lines :

Hi bernate configuration

For using Orchestra with H2

hi bernate. di al ect org. hi bernate. di al ect. H2Di al ect
hi bernat e. connection. driver_cl ass org. h2. Driver

hi ber nat e. connection. url jdbc: h2:file:db_orchestra

hi bernate. connecti on. user nane sa

hi ber nat e. connecti on. password

For using Orchestra with postgreSQ

hi bernat e. di al ect org. hi bernate. di al ect. Post greSQLDi al ect
hi bernat e. connection. driver_cl ass org. postgresql.Driver

hi ber nat e. connection. url j dbc: postgresql ://server: port/db
hi bernate. connecti on. user nane user

hi ber nat e. connecti on. password pass

For using Ochestra with M/SQL

hi bernate. di al ect org. hi bernate. di al ect. MySQL5I nnoDBDi al ect
hi bernat e. connection. driver_cl ass com nysql . jdbc. Dri ver

hi ber nat e. connection. url jdbc: nysql ://server:port/db

hi bernate. connecti on. user nane user

hi ber nat e. connecti on. password pass

hi ber nat e. di al ect org. hi bernate. di al ect. H2Di al ect

hi ber nat e. connection. driver_cl ass org. h2. Driver

hi ber nat e. connecti on. url jdbc: h2:file:db_orchestra

hi ber nat e. connecti on. user name sa

hi ber nat e. connect i on. passwor d

hi ber nat e. hbnddl . aut o updat e

hi ber nat e. cache. use_second_| evel _cache true

hi ber nat e. cache. provi der _cl ass or g. hi bernat e. cache. Hasht abl eCachePr ovi der
hi ber nat e. show_sq|l fal se

hi ber nat e. f or mat _sq|l fal se

hi ber nat e. use_sql _comment s fal se

hi ber nat e. byt ecode. use_refl ecti on_optim zer true

4.3.5. Journal and History

Thismodule concernstheway in which the process datais stored during the process execution and archived
when the execution is completed. Thisisindeed a crucial module in a process solution.

Orchestra unifies journal data et history data as the underlying essence of both is to handle process data.
For that to be done, we created the concept of process record. A record is a minimal set of attributes
describing a process entity execution. That means that each process entity related to the execution hasits
own associated record.

Those records are recorded during the process execution and stored depending on the persistence service
implementation (db, xml...). The Orchestra API will retrieve record data from the records storage and sent
them back to the users (meaning that records also acts as value objectsin Orchestra APISs).

Assoon as aprocessinstance isfinished, atypical scenario would be (by default) to moveinstance related
process data from the production environment to a history one. While the physical device and the data
structure could changed from one process engine deployment to another (XML, Bl database...), theinternal
format could remain the same (records). This is exactly what is happening in Orchestra, when archiving
data the engine just move execution records from the production to the history environment without data
transformation in between.

14

Configuration and Services

Journal and history data are persisted in different database. Change hibernate.properties [hibernate-
history.properties] filein conf directory to modify the journal [history] database

4.3.6. Querier

The querier isan API tool for getting process records corresponding to different criteria. It can get records
from journal, from history or both. This possibility is defined in the environment. Several parameters
will allow us to obtain this information by various criteria: their state (running or after delivery) or ID.
Depending on the circumstances this request will return arecord, a set of records or an empty table.

4.3.7. Asynchronous Executions (Jobs)

To optimize the execution, Orchestra splits the execution in small steps. A job represents a step of an
execution. It can be executed in parallel with other jobs. Jobs are grouped in two sets: messages, which
can be executed immediately, and timers, whose executions are scheduled at a precise date.

Timers are used for the BPEL statements "wait" and "onAlarm".
Messages are used for the BPEL statements "receive”, "onEvent", "onMessage" and "invoke".

Orchestra uses the PVYM Job executor framework to handle jobs. Jobs are created using either the timer
session service or the message session service. The job executor then fetches the job from the database
and perform the instructions contained in the job.

4.3.7.1. Timer session

A timer session service is required to schedule timers in the PVM. Its definition in the environment is
the following :

|<ti ner-session/> |

4.3.7.2. Message session

A message session serviceis required to schedule messagesin the PV M. Its definition in the environment
isthefollowing :

|<rressage- session retries="5"/> |

The message session retries (optional) attribute can be used to define how many times the job will be
retried before it becomes dead (see Section 4.3.7.4, “Dead jobs”).

4.3.7.3. Job Executor

The job executor fetches the jobs to execute from he database, and then executes the job.
Default implementations of the job executor uses a thread pool to execute jobsin parallel.
There are two default implementations of the job executor:

» animplementation using athread pool with afixed size. This serviceis defined in the environment file
with the following line :

|<j ob-executor threads="10" auto-start='false' /> |

The number of thread is defined by the threads attribute. This implementation is the default
implementation.

15

Configuration and Services

e an implementation wusing a thread pool with a variable size (based on
java.util.concurrent.ExecutorService). This serviceis defined in the environment file with the following
line:

|<j ob- executor type='jdk' auto-start='false' /> |

Optional attributes can be defined in the environment to configure the job executor service:

» command-service: name of the command service to use to execute jobs. Only necesssary if more than
one command service exists.

* dead-job-handler: name of the command service to use to handle dead jobs. Only necesssary if more
than one dead job handler exists.

« idle: polling interval of the job database (in milliseconds). Note that the job executor is notified of job
added by message and timer session services. Polling isjust to check no notification has been missed.

* lock: before a job is executed by a job executor thread, the thread locks the job to be sure no other
threads executes the same job. The lock attribute specifies the duration of the lock (in milliseconds).
When the lock expires, a new thread can execute the job again (can happen if a job executor thread
dies unexpectedly).

4.3.7.4. Dead jobs

If an exception occurs during ajob execution, the job executor will decrement the retry counter of the job.
While the retry counter is positive, the job executor will pick the job and try to execute it again.

When the job retry counter is zero, the job executor will not execute the job again. The job becomes a
dead job.

If adead job handler exists in the environment, it will be executed.

The default retry counter value for ajob can be set in the message session configuration.

4.3.7.4.1. Dead Job Handler (DJH)

DJH are executed after ajob retry counter has reached zero. Orchestra providesfollowing implementations
in the package org.ow2.orchestra.services.handlers.impl :

» ExitlnstanceDeadJobHandler : exits the BPEL instance which has faulted.

By default, thisDJH is enabled.

4.3.7.4.2. Interacting with dead jobs

4.3.8.

The management API provides methods to find dead jobs and to reset the retry counter of a job to a
specified value.

If you want to manage the dead jobs manualy, you need to disable the Dead Job Handler.

Refer to Section 6.1, “Orchestra APIS’ for more information on how to use the APIs.

Finished instance handler (FIH)

FIH are executed after the instance finished. Orchestra provides following implementationsin the package
org.ow2.orchestra.services.handlers.impl :

16

Configuration and Services

4.3.9.

NoOpFinishedlnstanceHandler : do nothing

CleanJournal FinishedlnstanceHandler : remove instance data from journal

ArchiveFinishedinstanceHandler : remove instance data from journal and put it in history

DeleteFinishedinstanceHandler : delete instance data from orchestra repository

Undeployed process handler (UPH)

UPH are executed after the process is undeployed. Orchestra provides following implementations in the
package org.ow?2.orchestra.services.handlers.impl :

» NoOpUndeployedProcessHandler : do nothing
 CleanJournalUndepl oyedProcessHandler : remove process data from journal

» ArchiveUndeployedProcessHandler : remove process data from journal and put it in history

4.3.10. Clustering configuration

Orchestra can run in a clustered environment.
In aclustered environment, all Orchestra nodes share the same database.

When a process is deployed in Orchestra, the process web services are deployed on each node of the
cluster. An instance of the process can execute on any node of the cluster.

I mportant

In aclustered environment, reply activities are not supported. The web services exported by
Orchestra are only one-way web services.

In this version, Orchestra cluster configuration is done by declaring the cluster nodes in the
environment.xml file.

To declare a cluster, add these lines to the environment-factory part of the configuration file:

<static-cluster>
<j nx-server serviceUl="..." objectName="..." />
<j nx-server serviceUrl="..." objectName="..." />

</static-cluster>

Each jmx-server element describes an Orchestra node. The serviceUr| and objectName attributes are the
parameters to use to connect to the IMX interface of the node. These values are configured for each node
in the orchestra.propertiesfile.

17

Chapter 5. User guide
5.1. Start and Stop Orchestra

Orchestrais awebapp that can be deployed on Tomcat. So starting Orchestrain fact starts Tomcat with the
correct environment. This can be performed from the installation directory with the following command
line:

>cd orchestra-tonctat-4.4.0
>ant start

Starting Orchestrawill not be done in background. This means that the console starting Orchestrawill be
dedicated to the traces from Orchestra. To perform further actions, new consoles need to be opened.

To stop Orchestra, type the following command line :

>cd orchestra-tontat-4.4.0
>ant stop

5.2. Deploying / undeploying a process

Once Orchestrais started, it is then possible to deploy a new process on the engine :

|>ant depl oy - Dbpel =<process>. bpel -Dwsdl =<process>. wsdl - Dextwsdl =<wsdl| 1, wsdl 2> |

Orchestra also provides the possibility to use an archive to deploy a process. This archive should be azip
file with the extension .bar. Here is the command line to deploy such an archive :

[>ant depl oy - Dbar =<pr ocess>. bar |

Warning : The archive should be azip file structured as described bellow :

/ <pr ocess>. bpel
/ <process>. wsdl
/ <files>. wsdl

To undeploy a process, use the following command line :

|>ant undepl oy - Dprocess=<process_nane> |

Warning : the process name should be fully qualified. This means that it needs to contain to namespace.
For instance:

|{ http://orchestra. ow2. or g/ weat her } weat her |

5.3. Other commands

Orchestra provides a set of other commands that can be usefull

» A command to check the status of Orchestra. This command tellsif the engineis started and if so, gives
the names of processes deployed on the engine :

[>ant status |

* A command to simulate a Web Service call. This command will ssimulate a WS call to interact with a
deployed process :

18

User guide

|>ant cal | -Dendpoi nt=<service_url> -Dacti on=<SOAP_acti on> - Dmessage=<nessage>

For example:

>ant call -Dendpoint=http://]ocal host:8080/orchestra
-Daction=http://orchestra. ow2. org/ weat her Artifacts/process/weat her PT
- Dmessage="<weat her Request xm ns="http://orchestra. ow2. or g/ weat her' >
<i nput >G enobl e, France</i nput >
</ weat her Request >"

5.4. Running the examples

The Orchestra package contains examples of BPEL processes:

 loanApproval: invokes two local web services. This example is taken from the BPEL 2.0 standard.
Thisis an example from the BPEL 2.0 standards
« weather: invokes a remote Web Service and returns the current weather.
This example shows how to call areal world Web Service.
* echo
This example shows a basic synchronous bpel process.
* orderingService
This example shows how to use pick instruction and correlations.
* producerConsumer
This example shows how executions can be saved and restarted after a crash.

A build.xml fileis provided for each of those samples. Those ant scripts provide the sametargetsto deploy,
launch and undeploy the sample. Go to the desired example and use the command lines :

>ant depl oy
>ant | aunch
>ant undepl oy

5.5. Running the tests

Orchestrais delivered with a test suite to check if your installation is correct. There are 3 differents tests
available:

» Coretest suite. This suite tests the core functionnalities of the engine (e.g. BPEL activities, variables,
etc...). To run this test suite, the server should not be started.This test suite can be launched with the
following command :

[>ant test |

» Remote test suite. This suite gives the possibility to test the Web Service stack deploying and launching
real processes. Thistest suite can be launched with the following command (server should be started) :

[>ant test-remote |

» Sress test suite. This suite will launch a small stress test. This test suite can be launched with the
following command line :

19

User guide

[>ant test-stress

A command is also provided to launch those 3 test suites at once:

[>ant test-al

Theresults of the tests are available under the directory t est r esul t s.

5.6. Configuring Logger

Itis possibleto activate thelogs. To do so, thefilel oggi ng. pr oper ti es under thedirectory conf /
can be edited. Here is the content of that file:

handl ers= java. util .| oggi ng. Consol eHandl er

.l evel = SEVERE

j ava. util .l oggi ng. Consol eHandl er. | evel = FI NEST

j ava. util .l oggi ng. Consol eHandl er.formatter = org.ow2.orchestra.util.JbpnFormatter

For exanple, set the comxyz.foo |ogger to only | og SEVERE nessages
com xyz. foo. |l evel = SEVERE

#or g. ow2. or chestra. pvm | evel =I NFO

#or g. ow2. or chestra. | evel =FI NEST

#or g. ow2. or chest ra. pvm Execut i on. | evel =FI NEST
#or g. ow2. or chestra. wi re. | evel =FI NEST

Uncomment the last lines to activate the logs.

5.7. Using Apache Camel with Orchestra

5.7.1.

When using Orchestra with CXF Web Service framework, Orchestra can use Apache Camel as transport
for web services interactions.

Orchestra-Camel integration allows processes to produce/consume messages on the Camel context. It
allows a process to use for example JIMS, mail, file connectors to connect to remote services.

For more information about Apache Camel features, please read Camel documentation [http:/
camel .apache.org/user-guide.html]

How to create a Camel context for a process ?

Orchestrauses Camel Spring [http://camel .apache.org/spring.html] language to describe routes. To define
the Camel routes deployed with a process, add a camel-context.xml file in your BAR archive. Orchestra
will deploy and start the routes with the process. If your camel-context.xml uses external Java classes, you
can add them too to the BAR archive.

Example of camel-context.xml file:

<beans xm ns="http://ww. spri ngfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="
http://ww. springfranmework. or g/ schema/ beans
htt p: // ww. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans-2. 5. xsd
http://canel . apache. or g/ schema/ spri ng
http://canel . apache. or g/ schema/ spri ng/ canel - spri ng. xsd" >
<canel Cont ext xm ns="http://canel . apache. org/ schema/ spring" autoStartup="fal se">
<r out e>
<fromuri="file:///inputDir" />
<to uri="direct:hello"/>
</route>
</ canel Cont ext >

20

http://camel.apache.org/user-guide.html
http://camel.apache.org/user-guide.html
http://camel.apache.org/user-guide.html
http://camel.apache.org/spring.html
http://camel.apache.org/spring.html

User guide

|</ beans> |

5.7.2. How to use camel context instead of HTTP for Web
Service interactions ?

Inthe WSDL file of the service you want to invoke or expose in the camel context,
« changeto transport defined in the SOAP binding element to http://cxf.apache.org/transports/camel

 change the location of the service defined in the SOAP address element to camel://camel_endpoint
(where camel_endpoint is the endpoint you want to expose/invoke in the camel context)

Example of WSDL Service configured to use Camel:

<wsdl : bi ndi ng nanme="hel | owor | dPTSOAPBi ndi ng" type="tns: hel | owor| dPT" >
<soap: bi ndi ng styl e="docunment” transport="http://cxf.apache.org/transports/canel"/>
<wsdl : operati on name="submit">
<soap: operati on soapActi on="http://orchestra.ow2.org/helloworl d/submt"/>
<wsdl : i nput >
<soap: body use="literal" />
</wsdl : i nput >
<wsdl : out put >
<soap: body use="literal"/>
</ wsdl : out put >
</ wsdl : operati on>
</ wsdl : bi ndi ng>

<wsdl : servi ce name="hel | owor| dServi ce">
<wsdl : port name="hel | owor| dPort" bi ndi ng="tns: hel | owor | dPTSQAPBi ndi ng" >
<soap: address | ocation="canel ://direct: hello"/>
</ wsdl : port>
</ wsdl : servi ce>

21

Chapter 6. Developer's guide

This chapter describes how to start playing with Orchestra:

» How to develop asimple application by leveraging Orchestra APIs

6.1. Orchestra APIs
6.1.1. Getting started with Orchestra APIs

Actualy, four different APIs are available in Orchestra :

* QueryRuntimeAPI that gives runtime information about instances of process and activities.

* QueryDefinitionAPI that givesinformation of process definition.

» ManagementAPI that gives the possibility to manage Orchestra (deploy / undeploy processes, etc...)

 InstanceManagementAPI that gives the possibility to manage instances of process (suspend / resume /
exit processinstance)

You can find detailled information about APIsin the javadocs. APIs are included in aMaven module. To
include this module you have to add following Maven dependency :

<dependency>
<groupl d>or g. ow2. or chest r a</ gr oupl d>
<artifactld>orchestra-api </artifactld>
<versi on>4. 4. 0</ ver si on>

</ dependency>

If you do not want / can't use Maven, you can create a Maven module which depends only on this
dependency and create an assembly. Then copy created jar to your project.

* QueryRuntimeAPI: to get recorded/runtime informations for instances and activities. It allows also to
get activities per state. Then operationsin this APl applies to process instances and activity instances.

Hereafter youwill find an example on how to accessto the QueryRuntimeAP! from your client application:

org. ow2. orchestra. facade. Queri er Runti meAPl querier Runti meAPl =
org.ow2. orchestra. facade. Accessor Uti | . get QueryRunti neAPI (String, String);

The method getQueryRuntimeAP! takes two arguments of type String. The first argument is the URL of
the IMX service. The second is the name of the object IMX. In case we use the default configuration, two
constants can be used which are: AccessorUtil.SERVICE_URL and AccessorUtil.OBJECT _NAME.

For adetailed insight on OrchestraAPIs, pleasetake alook to the Orchestrajavadoc APIs (available under /
javadoc directory)

Similar methods exists to access to the QueryDefinitionAPl, ManagementAPlI and
I nstanceM anagementAPI.

6.2. Orchestra Client jar

If youwant to call OrchestraAPlsfrom aremote application you can usethe Orchestraclient jar. It contains
all the needed classesfor you to build you application. Just download thejar and includeit in your classpath.

22

Developer's guide

6.3. Adding new Orchestra services
Implementations

Orchestra uses OSGi services to find extensions. To find services implementations, Orchestra use
org.ow2.orchestra.osgi.OrchestraExtensionService services. These services simply return the classes to
usein orchestra.

To use your own implementation of a service, you need to package it in an OSGi bundle. The bundle
should export a org.ow2.orchestra.osgi.OrchestraExtensionService service. The implementation of the
method getExtension(className) should return the extension class when the className is the name of
the extension, null otherwise.

org.ow2.orchestra.osgi.ExtensionActivator class provides a base for registering extensions. See javadoc
for more details on how to use this class.

23

	Orchestra User Guide
	Table of Contents
	Introduction
	Chapter 1. General information
	1.1. Orchestra Overview
	1.2. Features list
	1.3. Restrictions
	1.4. Tooling

	Chapter 2. Prerequisites
	2.1. Hardware
	2.2. Software

	Chapter 3. Installation guide
	3.1. Web Service Frameworks
	3.1.1. Apache Axis
	3.1.2. Apache CXF

	3.2. Orchestra Tomcat distribution
	3.2.1. Installation
	3.2.1.1. Basic installation
	3.2.1.2. Advanced installation: Using another tomcat distribution.
	3.2.1.3. Advanced installation: into JOnAS
	3.2.1.3.1. JOnAS 4

	3.2.2. Database Management
	3.2.3. Orchestra directory structure

	3.3. Orchestra OSGI Felix distribution
	3.3.1. Installation
	3.3.2. Database Management
	3.3.3. Orchestra directory structure

	Chapter 4. Configuration and Services
	4.1. Simple configuration
	4.2. Services Container
	4.2.1. Environment.xml file

	4.3. Services
	4.3.1. Publisher
	4.3.2. Invoker
	4.3.3. Repository
	4.3.4. Persistence
	4.3.4.1. Database Access Configuration

	4.3.5. Journal and History
	4.3.6. Querier
	4.3.7. Asynchronous Executions (Jobs)
	4.3.7.1. Timer session
	4.3.7.2. Message session
	4.3.7.3. Job Executor
	4.3.7.4. Dead jobs
	4.3.7.4.1. Dead Job Handler (DJH)
	4.3.7.4.2. Interacting with dead jobs

	4.3.8. Finished instance handler (FIH)
	4.3.9. Undeployed process handler (UPH)
	4.3.10. Clustering configuration

	Chapter 5. User guide
	5.1. Start and Stop Orchestra
	5.2. Deploying / undeploying a process
	5.3. Other commands
	5.4. Running the examples
	5.5. Running the tests
	5.6. Configuring Logger
	5.7. Using Apache Camel with Orchestra
	5.7.1. How to create a Camel context for a process ?
	5.7.2. How to use camel context instead of HTTP for Web Service interactions ?

	Chapter 6. Developer's guide
	6.1. Orchestra APIs
	6.1.1. Getting started with Orchestra APIs

	6.2. Orchestra Client jar
	6.3. Adding new Orchestra services implementations

