The ObjectWeb Consortium

Specification

Perseus:
The persistence framework

Specification

AUTHORS:
S Chassande-Barrioz (France Telecom R&D)
P Dechamboux (France Telecom R&D)
L Garcia-Banuelos

Released: January 27, 2004
Status: Draft
Version: 1.3

page 1/32

TABLE OF CONTENTS

L INTRODUGCT ION . oot e e e e e e et e e e e e e e eeee e e e aaaaeeeeeeeee e aaaeseeeeeeenn e asseeeeennnnnaaaneeeeeeees 4
L. OVERVIEW. ettt e ee e ettt e e e e e e e e e eeeea e eeaaseeeeeeee s aaasaseeeseeeesanaasseeeeeeeessn e seeeesnesnnasseseesseensnnseeaeseeennsnnnaeens 4
oo = =TT 4
G R 7N aTe TN B =S TTRR TS T 4
I 7o N =TT 4
L. OD OCUMENT CONVENTION . ccttueeeeeeeeeeeeeeeeaaeeeeeeeeaaeeeeeemnaaeeseemnnnasseesemnnsseesennnaaseseeennaaneesennnnaeeeeennnnaneeeeeennns b

P2 O o I = O 1 T 5
2 I @ Y =YY TR 5

S PE R S ST ENT OBUIE C T .. oottt eeaa e e e et ee e aaaaseeeeeeeeeeaaaaseeeaeeeeennaaaseseseennnnaaaseeneeeennnnnnn 6

4 STATEMANAGER. ...ttt ettt ettt e e e et ee e teeee s e s asteesee e teesessaassesseesansessesnnsnnseaernns 7

5WORKINGSET, TRANSACTIONALWORKINGSET & WORKINGSETMANAGER................ 9
D I N ORKING ST . ettt ettt et oottt e e et e ettt e e eeeee e e s e seeeeeee s asseeeesennnnseseese e e s asseeeeennnnseeseeennnnanseeeennsnnnreerenes 9
D 2 T RANSA CTIONALVNY ORKING S T ..ttt ttetttie s e eteett e e eseeee e seee et ee e sees e e s s s seesse s s sssessenssnseeeesessnnseresensnnnnrereenes 10
D BVV ORKINGSETIVIANAGER. . e eet ettt teee e e e eee et eeeeeee et aeeeeeees e seeeesnasseeeesn s eesenannseeeeannseseesnnseeeennnsseeennnnnnss 10
D\ ORKING SET LIFE CY CLE ttuuuutttetetesssusssssesssesssnnsssssssessssssnnsseessessssnsnssesessesssssnnsseseessssssnnsssseeeessssnnnssreeeeeenes 10

O DEPENDENGCY GRAPH. ... ettt e et e e e e e e ae e e e e e e a e e e e e eee e e e e e eennaeeeeeennaaens 11

7 CONNECTIONHOLDER & CONNECTIONHOLDERFACTORY .o oeeiteiieeeeeeeeee et eeeeannn 12

SMEMORYINSTANCEMANAGER.ot ee e e e e e e e eae e e e e e e eneaaeeeeeeeeennnns 13

O STORAGEMANA GER. ...ttt ettt ettt ree ettt ettt aa st tee et e —rtteaete s st reeasesataarstesreessaasreereresraansesesees 14

1O PCONCURRENCYMANAGER. ... oottt e ettt e e e et e e e e e ea e e e e e enaneeeeennnns 15

11 PERSISTENCEMANAGER & TRANSACTIONALPERSISTENCEMANAGER......cccccvevvenn. 16
T2 L AP OVERVIEW. et ieeeeee ettt et e e e e e et e e e e e et e e e e e e e e e eeaeeeeeaaeseee s seee s eseeenseeeenesene s seee s seesansreennnsernnnreees 17

11.1.1The PersstenceManager INTENfACE..........ccuiiiie i 17

11.1.2The Transactional PersistenceManager iNtErface.........coveoiriiiieiine e 19
I e =y TR 20
Jd. 3 REA D NTENTION et eeeet e e e e e e e et e e e e e e e e ettt e eeeeeeeeeeen e e eeeaeeeeennnaaaeeaesennenaneeseeeennnnnanseeesennnnaaseeeeennnnnnnneeneeees 21
YAV = = N = N T T 23
SN U NI d="o L= TR 25
Jd0 PREPARE. ...t et ee ettt e e e ettt e e e e e e e e e e e e ee e e eeeeeeeennneeeeeeeennaeeeeeeannaaaeeeeeennaaaeeeennnnaaeeeeennnaaaaaeeenns 27
d L 7 COMMIT ettt e e e eeeeee e e e e e e e e e et eeaeeeeeeeeeeenaaeeaeaeeennnnaaasseaeennnnnnsaneeesennnnanssseesennnnnasssnesennnnnaasssesennnnnnaaeeneeees 28
dd 8 ROLLBACK e eeeeeee e e e ee e e et e e e e e e e e e e e e e eee e eeeeeeee e eeeeeeee e eeeeeenn e eeeeen i eeeeeennneeeeeeenneeeeennnaeeeeeennnan 30
00 IO T I =3 32

page 2/32

TABLE OF FIGURES

FIGURE 1: PERSEUS ARCHITECTURE OVERVIEW.......ooiiiieieee e 5
FIGURE 2: ARROUND A PERSISTENT OBJECToiiiiiieiiic e 6
FIGURE 3: NICE COMPOSITION ARROUND A PERSISTENT OBJECT......cccoiiiiiiiiniecieend 6
FIGURE 4: TRANSITION BETWEEN STATUSOF A STATE. ... 8
FIGURE 5: WORKING SET LIFE CYCLE.....coi e 10
FIGURE 6: A CONCURRENCYMANAGER FOR PERISTENT OBJECTS.......cccoiiieieeienienene 15
FIGURE 7: PERSISTENCEMANAGER.EXPORT(WORKINGSET, OBJECT).....cccocviieriireennens 20
FIGURE 8: PERSISTENCEMANAGER.READINTENTION(WORKINGSET, OBJECT)............ 21

FIGURE 9: PERSISTENCEMANAGER.READINTENTION(WORKINGSET, CACHEENTRY)..
22

FIGURE 10: PERSISTENCEMANAGER.WRITEINTENTION(WORKINGSET, OBJECT)......23
FIGURE 11: PERSISTENCEMANAGER.WRITEINTENTION(WORKINGSET,

CACHEENT RY ettt b et b e bt e e e e e e bt e he e e e b e nb e e bt e ae e b e sbe b e e e e e e nbeneeas 24
FIGURE 12: PERSISTENCEMANAGER.UNEXPORT(WORKINGSET, OBJECT).......cccccvuvenee. 25
FIGURE 13: PERSISTENCEMANAGER.UNEXPORT(WORKINGSET, CACHEENTRY)......... 26
FIGURE 14: PERSISTENCEMANAGER.PREPARE(WORKINGSET).....ccccoiiirireeeeieene e 27
FIGURE 15: PERSISTENCEMANAGER.COMMIT(WORKINGSET).....c.cooiiieiieeeiiee e 28
FIGURE 16: PERSISTENCEMANAGER.ROLLBACK(WORKINGSET).....ccccoviriirienierierieseene 30

page 3/32

1 INTRODUCTION

1.1 Overview

1.2 Scope

1.3 Rationale

1.4 Goals

1.5 Document Convention

A Times Roman font is used for the default text.
A courier font is used for code fragnents.

page 4/32

2 ARCHITECTURE

2.1 Overview

This document is the specification of the Perseus framework, originally initiated by Luciano Garcia-
Banuelos. Perseus is a persistence framework which manages several aspects like caching, concurrency
control, pool, logging. The architecture of the framework and the API are presented in this document.

CacheManager

Figure 1: Perseus architecture overview

This figure presents the architucture of the perseus framework. Three inner components are defined. The
next chapters presents the inner components, the interactions and the interfaces of the required external
components.

page 5/32

3 Persistent OBJECT

The perseus framework makes few hypothesis about the persistent object itself. The figure belove
presents the organization arount a persistent object

Persistent
object

@ identifier

Object

State CacheEntry

Figure2: Arround a persistent object

persistent object: The persistent object is ssmple java object (javalang.Object). The framework does
not take care of the 'equals and 'hashcode()' methods.

identifier: Any persistent object must have an identifier. Like the persistent object, the identifier must
be a java object (java.lang.Object). In opposite to the persistent object, the ‘equals and ‘hashcode()’
methods are used to compare identifiers and then persistent objects.

CacheEntry: A cache entry is a java object implementing the CacheEntry interface. The role of the
cache entry is to bind the persistent object to its identifier. Indeed perseus does not want to impose to
have a java reference between the persistent object to itsidentifier. Thisis the role of the cache entry.

State: A State is ajava object implementing the State interface, and containing the values of persistent
fields associated to the persistent object. Several state instances can be associated to a persistent object.
Indeed the use of separated states permits to implement some concurrency management policies
(optimistic for example).
package org. obj ect web. per seus. persi stence. api;
public interface State {

bj ect get CacheEntry();
}

The state, the cache entry and the persistent object can be composed in several manners. The following
figure presents a nice and efficient composittion permiting the implementation of different concurrency
management. In this composition the persistent object is also the cache entry:

Persistent
object identifier
® o -
State CacheEntry Object

Figure 3: Nice composition arround a persistent object

page 6/32

4 StaATEMANAGER

A StateManager is used by the PersistenceManager and the ConcurrencyManager in order to manage the
life cycle of cache entries and their states. This management concerns the java life cycle of the state
instance (create, destroy) and the status (dirty, new, deleted, ...). This interface is implemented by the
Personality using the persistence framework of Perseus.

package org. obj ect web. per seus. persi stence. api ;
public interface StateManager extends CacheEventlLi stener {
State createState(CacheEntry ce);
This method creates a new state for the cache entry. The returned Sate (never null) is linked to the cache
entry.

State createState(State s);
This method creates a new state whith the same values than an existing state.

State get ReferenceState(CacheEntry ce);
voi d set Ref erenceSt ate(CacheEntry ce, State state);

These methods permits to assign/fetch the reference state of a cache entry. Depending of the concurrency
policy a particular state is named 'reference state’. This state represents the current value of the persistent
object out side of any working set/transaction.

voi d destroyState(State state);

This method is a sort of listener permiting to the StateManager to be informed about the end of the state
use.

voi d makeUnexported(State state);
bool ean i sUnexported(State state);

These methods manage the unexported status of a state. When a persistent object (through its state) is
marked as unexported, it will be removed after the working set commit step at |east.

voi d makeExported(State state);
bool ean i sExported(State state);

These methods manage the exported status of a state. When a persistent object (through its state) is
marked as exported, it will be created after the working set commit step at |east.

void mekeDirty(State state);
bool ean isDirty(State state);
voi d makeC ean(State state);

These methods manage the dirty status of a state. A state is marked as dirty when one or several persistent
fields are modified. At the commit time of aworking set, dirty states are flushed into the data support and
their status must be marked as clean.

page 7/32

voi d makeFl ushed(State state);
bool ean i sFlushed(State state);

These methods manage the flushed status of a state. A dirty state can be flushed before the end of the
working set for some reasons, but the entry stays dirty. The interest of the flushed falg is to avoid another
I/O if the state is no more modified.

voi d makeUnbound(CacheEntry ce);
bool ean i sBound(CacheEntry ce);

These methods manage the persistent status of a cache entry. An object is persistent when it is bound to
an identifier.

The following table defines the transitions between the different status of a state:

Figure4: Transition between status of a state

writeField readField bind unbind export unexport flush
unbound unbound = unbound clean unbound = exported error error
clean dirty clean clean unbound error unexported clean
exported exported exported error error error unexported ex_flushed
unexported error error error error dirty unexported un_flushed
flushed dirty flushed error error error unexported flushed
ex_flushed ex flushed ex flushed error error error unexported ex_flushed
un_flushed error error error error exported error un_flushed
dirty dirty dirty error error error unexported flushed

page 8/32

5 WOoRrkINGSET, TRANSACTIONALWORKINGSET & WORKINGSETM ANAGER

5.1 WorkingSet

A working set is a set of State used together in the same context (eg, a transaction, a thread, ..). A
working set has a status and can be used to represent elements involved by a transaction. Only one state
matches an identifier into aworking set.

A transaction is aworking set of which the modifications can be rolled back.
Here is the defintion of the WorkingSet interface:

package org. obj ect web. per seus. persi stence. api ;
public interface WrkingSet {

byte CTX ACTI VE = 1,

byte CTX CLOSED = 32;

byte get Status();

voi d set Status(byte status);

These methods manage the status of the working set.

State | ookup(Object oid);

void bind(State state, Object oid);
bool ean unbi nd(Qbj ect oid);

void clear();

Set entries();

Set oids();

These methods manage the enlistement of persistent object (identifier + state) into the working set.

Ohj ect get User Obj ect ();
It retrieves the user object which can be associated to the working set at the creation time.

Connect i onHol der get Connecti onHol der () ;
It retrieves the ConnectionHolder associated to the working set at the creation time.

bool ean get WERet ai nVal ues() ;
voi d set WBRet ai nVal ues(bool ean val);

The retainV alues boolean property indicates if after the validation of a working set the state must be kept
in the cache.

bool ean get WSRest or eVal ues();
voi d set WBRest or eVal ues(bool ean val);

The restoreValues boolean property indicates if after the abort of a working set the dirty persistent object
must be reload immediatly or not.

}

page 9/32

5.2 TransactionalWorkingSet

The framework defines an extension of the WorkingSet definition in order to specify the possible status
corresponding to the transaction life cycle.

public interface Transacti onal Wr ki ngSet extends Wbr ki ngSet {
byt e CTX_ACTI VE_TRANSACTI ONAL = 2;
byt e CTX PREPARED = 4;
byt e CTX PREPARED K = 5;
byt e CTX PREPARED FAIL =
byte CTX COWM TTED = 8;
byt e CTX ABORTED = 16;

6;

5.3 WorkingSetM anager

The WorkingSetManager is in charge of the working set creation/initialization.

public interface WrkingSet Manager {
Wor ki ngSet creat eW5(Obj ect user (bj ect)
t hrows Persi stenceException;
Wor ki ngSet creat eW5(Cbj ect user Cbj ect, Obj ect worki ngSet Type)
t hrows Persi st enceExcepti on;

The createWS methods create new instances of a working set whith a userObject. The workingSetType
optional parameter could permit to choose the working type or to initializeit.

voi d cl oseWs(Wor ki ngSet ws) ;
The closeWS method permits to release a working set instance.

}

54 Working set lifecycle
The following diagram shows the life cycle of aworking set:
TIVE_TRANSACTION

begi n

PREPARED_FAI

rol | back

ABORTED

PREPARED_OR
It

cl ose

Figure5: Working Set life cycle

page 10/32

6 DerenpeNcY GRAPH

In order to avoid dead lock during resource allocations, Perseus provides a dependency manager . A
vertex represents a dependency between two tasks. A particular kind of task can be a working set.

Here is the definition of the DependencyGraph interface:

public interface DependencyG aph {
bool ean addVertex (Object src, bject dst);

The addVertex method creates a vertex (dependency) between two tasks if the new vertex does not create
a cycle. The method returns a boolean indicating if the vertex has been create (ie if it does not create a
cycle).

voi d renoveVertex (Object src, Object dst);
The removeV ertex method removes a vertex between two tasks.

}

page 11/32

7 ConnecTioNHoLDER & ConNEcTiIONHOLDERFACTORY

The aim of a ConnectionHolder is to provide a way to find a connection to the data support. For example
a previous used connection can be encapsulted in a ConnectionHolder in order to be reused it. The second
interest of a connection holder is to abstract the transaction management. Then the perseus framework
does not depend on the connection type and then it does not depend on the data source type too. Finally
the transaction management can be delegate to a transaction manager (XA transaction) or implemented
directly over aphysical connection.

The definition of the ConnectionHolder interface is the following:

package org. obj ect web. per seus. persi stence. api ;
public interface ConnectionHol der {

hj ect get CHConnect i onFor Read() throws PersistenceException;
Retrieves a connection to access data on the support for awrite action.

(bj ect get CHConnecti onForWite() throws PersistenceException;
Retrieves a connection to access data on the support for aread action.

voi d begin() throws PersistenceException;
Demarcates the begin of atransaction.

void commtCH() throws PersistenceException;
Committes the transaction.

void rol |l backCH() throws PersistenceException;
Rolles back the transaction.

voi d rel easeCHConnection() throws PersistenceException;
Indicates that the use of the connection is finished for instance.

voi d cl oseCHConnecti on() throws PersistenceException;
Indicates that the connection is no more used definitively.

voi d bi ndWor ki ngSet (Wbr ki ngSet ws) ;
Wor ki ngSet get Wor ki ngSet () ;

M anages the association between the ConnectionHolder and aworking set.

}

Perseus defines also a factory of ConnectionHolder instance:

public interface ConnectionHol derFactory {
Connecti onHol der creat eConnecti onHol der ()
t hrows Persi stenceException;

page 12/32

8 MEmoRrYINSTANCEM ANAGER

The memory instance manager is able to create memory instances from an identifier.

public interface Menoryl nstanceManager {

bj ect newl nstance(Obj ect oid, ConnectionHol der context)
t hrows Persi stenceException;

page 13/32

9 SrorAGEM ANAGER

A StorageManager is able to make action on the data support in order to allocate identifier, to load or to
store data. The main methods of the interface StorageM anager are:
package org. obj ect web. per seus. persi st ence. api ;
public interface StorageManager {
(bj ect export (Connecti onHol der context, Object obj)
t hrows Persi stenceExcepti on;
oj ect export (Connecti onHol der context, Object obj, Object hints)
t hr ows Persi st enceExcepti on;

The export methods make persistent an object and to build a new identifier for this object. The optional
hints parameter can help the identifier creation.

voi d unexport (Connecti onHol der context, Cbject oid)
t hr ows Persi st enceExcepti on;

voi d unexport (Connecti onHol der context, Object oid, Object hints)
t hrows Persi stenceExcepti on;

The unexport methods mark as removed a persistent object.

voi d read(Connecti onHol der context, Object oid, State state)
t hrows Persi stenceExcepti on;

voi d read(Worki ngSet context, Cbject oid, State state)
t hr ows Persi st enceExcepti on;

The read methods load a persistent object from the data support into a memory instance(State).

void wite(ConnectionHol der context, (Cbject oid, State state)
t hrows Persi stenceExcepti on;

The write methods flush into the data support, the persistent fields of a memory instance (State) identified
by an oid.

}

Writing a persistent object can mean a creation of the persistent image, an update of the values or the
deletion of the persistent image on the data support.

The use of this interface matches the use of JORM framework (http://jorm.objectweb.org). Thereforeit is
easy to implement a StorageM anager based on JORM:

e Theobject identifier isaPName
« The state implements the Paccessor interface

* The state must permit to reach the PBinding. For example the PBinding can be the persistent
object, the cache entry or another instance.

page 14/32

10 PCoNcurRRENCYM ANAGER

This section describes the extension of a generic concurrency manager in order to manage accesses to
persistent objects managed with a PersistenceManager. The figure below shows the Concurrency
Manager component used for the persistent object management:

StateMlanager
Concurrencyhlanager DependencyGraph

Storageld anager

Figure 6: A ConcurrencyManager for peristent objects

Asshown on the figure the concurrency manager has two additional requirements:
- The StateManager permits to manage the State of persistent objects (life cycle and status),
- The StorageManager permits to load data from the support into State intances.

In this particular use, we can advice the following implementation rules:

- acontext isaaworking set,

- theresource identifier isatheidentifier of a cache entry (cacheEntry.getCeldentifier()),
- theresource states match State instances

— in order to permit to the ConcurrencyManager to allocate State for a persistent object, the CacheEntry
can be passed as hints of the readlntention and writel ntention methods.

page 15/32

11 PersisTeENCEM ANAGER & T RANSACTIONAL PERSISTENCEM ANAGER

The persistence manager is in charge of managing the life cycle of persistent objects. It permits to create,
remove and inform about intentional operations on persistent objects. The persistence manager
component has 7 required interfaces as shown by the figure belove:

Transaction al Pevsi stencellanager

Cacheldanager

Repl scementian ager

Statellanager

Concurrencylanager

— 3torageld anager

— Memorylnstancellanager

— WorkingSethlanager

CacheManager: It permits to lookup an entry, to bind a new entry or to un/fix an entry.
ReplacementManager: It permits to unbind entries from the cache
StateManager: It permits to manage the state

ConcurrencyManager: It permits to obtain right access to a persistent object and to fetch the state to
use into aworking set.

StorageManager: It permits to manage identifier (export/unexport) and to load or to store state into the
data support.

MemorylnstanceManager: It permits to create new instance of persistent objects
WorkingSetManager: It permits to manage the working set life cycle.

This chapter presents the APl concerning a persistence manager and object interaction diagrams in order
to better understand the role of important methods.

page 16/32

11.1 API overview

11.1.1 The PersistenceM anager interface

package org. obj ect web. per seus. persi stence. api ;
public interface PersistenceManager {

St ate export (Worki ngSet context, Object obj)
t hrows Persi stenceExcepti on;

St ate export (Worki ngSet context, bject obj,
bj ect hints) throws PersistenceException;

The export methods permit to make persistent an object. The additional hints parameter can help the
storage manager to allocate the identifier of the persistent object. For example if the identifier is based on
a field of the persistent class, the hint could be the value of the field. The State of the new persistent
object and bound to the working set is returned.

voi d unexport (Wor ki ngSet context, Object oid)
t hrows Persi st enceExcepti on;

voi d unexport (Wor ki ngSet context, CacheEntry ce)
t hrows Persi stenceExcepti on;

The unexport methods markes as removed a persistent object.

CacheEntry readl ntenti on(WrkingSet context, Cbject oid)
t hrows Persi stenceExcepti on;

CacheEntry readl ntenti on(WrkingSet context, CacheEntry ce)
t hrows Persi stenceExcepti on;

The readintention methods are used in order to ask the read access to a persistent object. The use of these
methods can occur the dataloading if the persistent object with avalid state is not present in the cache.

CacheEntry writelntention(WrkingSet context, Object oid)
t hrows Persi stenceExcepti on;

CacheEntry writel ntention(WrkingSet context, CacheEntry ce)
t hrows Persi st enceExcepti on;

The writelntention methods are used in order to ask the write access to a persistent object. The use of
these methods can occur the data loading if the persistent object with a valid state is not present in the
cache.

CacheEntry accessConpl eti on(Wr ki ngSet context, State s)
t hrows Persi stenceExcepti on;

This method informes the persistent manager that a persistent object is no more used in a working set.
The use of this method is optional.

page 17/32

voi d flush(WrkingSet context, StateFilter statefilter)
t hrows Persi stenceExcepti on;

The flush method flushes on the data support (through the storage manager) the dirty states. The statefilter
parameter permits to the perseus user the filtering of the dirty statesto treat.

bool ean evi ct (Wrki ngSet context, Cbject oid, boolean force)
t hrows Persi stenceException;

bool ean evi ct (Wrki ngSet context, CacheEntry ce, bool ean force)
t hrows Persi stenceExcepti on;

int evictAll (WrkingSet context, bool ean force)
t hrows Persi stenceExcepti on;

The evict methods try to evict persistent object from cache and to dissociate it from the working set. To
be sure that no value stays in memory the reference state is removed. However if the persistent object is
use by several working sets, then the persistent object cannot be evicted. A dirty object used inside a
transaction cannot be evicted too. In this last error case a PersistenceExcpetion is thrown. However the
Implementation may support the eviction of adirty object used out of a transaction.

voi d unbi nd(Wor ki ngSet ws, bject oid)
t hrows Persi stenceExcepti on;

voi d unbi nd(Wor ki ngSet ws, CacheEntry ce)
t hrows Persi stenceException;

The unbind methods unbind a persistent object from the persistent image into the data support. In other
word the java instances is no more managed by perseus, and persistent data are not modified. Then the
persistent object will be not availlable in the cache, and no identifier will be bound to it. A dirty object
used inside a transaction cannot be unbound. In this last error case a PersistenceExcpetion is thrown.
However the implementation may support adirty object used out of a transaction.

Wor ki ngSet creat eWs(Cbj ect user Obj ect)
t hrows Persi stenceExcepti on;

Wor ki ngSet creat eWs(Cbj ect user Cbj ect, Object worki ngSet Type)
t hrows Persi stenceExcepti on;

The createWS methods permit to create new working sets. In fact the real creation is delegated to the
WorkingSetManager. The userObject is an object which can be associated to the new working set. The
optional workingSetType parameter might help the WorkingSetManager to create or initialize the
working set.

voi d cl ose(Wirki ngSet context) throws PersistenceException;

The close method permits to close a working set. The dirty object are flushed and the working set is
rel eased.

}

page 18/32

11.1.2 The TransactionalPersistenceM anager interface

The Transactional PersistenceManager is a PersistenceM anager taking in account transactional aspects.

package org. obj ect web. per seus. persi st ence. api ;
public interface Transacti onal Persi st enceManager
ext ends Persi st enceManager ({

voi d begi n(Transacti onal Wor ki ngSet cont ext)
t hrows Persi stenceExcepti on;

The begin method demarcates the begining of atransaction. The working set becomes a transaction.

bool ean prepare(Transacti onal Wr ki ngSet ws)
t hrows Persi stenceExcepti on;
The prepare method demarcates the end of a transaction. The returned boolean value indicates if the
transactional persistence manager allows the commit of the transaction. During this prepare step, the dirty
object are flushed.

void comm t (Transacti onal Wr ki ngSet ws)
t hrows Persi stenceExcepti on;

The commit method validates a transaction. This method can be call after the prepare method or directly
for a one pahse commit.

voi d rol | back(Transacti onal Wr ki ngSet ws)
t hrows Persi stenceExcepti on;

The rollback method aborts a transaction. This method can be call after the prepare method or directly at
any time in the transaction.

}

page 19/32

11.2 Export

TPM StoM Cache TPM StaM
export(ws, obj) |

export(obj)

oid @)

)

4_ _________ _——

3)

state)
- |

TPM: TransactionPersistenceManager Cache: CacheM anager
StoM: StorageM anager StaM: StateManager

Get an identifier from the storage manager,

Put the object in the cache and fetch a CacheEntry,
Call the writelntention,

Mark the object as exported with the StateM anager.

Figure7: PersistenceM anager .export(WorkingSet, Object)

page 20/32

11.3 Readlntention

The PersistenceManager interface provides two readl ntention methods permiting to obtain read access to
a persistent object.. The first has an Object parameter which represents the identifier of the persistent
object to read whereas the second has the cache entry parameter of the persistent object to read.

Here is the object interaction diagram of the readl ntention(\WorkingSet,Object) method:

StaM TPM
readIntention(ws, oid TIl)M Cache MIM a
lookup(oid)
ce (D
D
— newlInstance(oid)
> 2
€ @
bind(oid, obj)
if (ce ==null) < ce 3)
setReferenceState(ce, null)
(4)
B nAaREeCTEEEEE BESEREE SR
readIntention(ws,|ce)
5
s“ Swe | o L®
SEe j_f
(1) Lookup in the cache, TPM: TransactionPersistenceManager
if (ce == null) { StaM: StateManager
(2) Instanciate a new persistent object, MIM: Memory Instance Manager

(3) Add the persistent object in the cache,
(4) Remove the reference state in order to force the
loading,

}
(5) Call the readIntention method on the TPM

Figure 8: PersistenceM anager .readl ntention(Wor kingSet, Object)

page 21/32

Here is the object interaction diagram of the readl ntention(WorkingSet, CacheEntry) method:

readIntention(ws, ce) TITM M WS Cache
readIntention(ws,ce
S L
oid = ce.getCeldentifier()
— lookup(oid)
ce (2)
fix(ce)
if (ce_ == null) 3 < L 3)
bind(state, oid‘
state “)
tat A
state
¢ |

if (ce_ ==null) {
(3) Fix the cache entry,
}

(1) Ask the read access to the ConcurrencyManager,
(2) Search the entry into the WorkingSet

(4) Bind the state to the oid into the WorkingSet

TPM: TransactionPersistenceManager
CM: ConcurrencyManager
WS: WorkingSet

Figure 9: PersistenceM anager .readl ntention(WorkingSet, CacheEntry)

Note: If the ConcurrencyManager throws an exception and if there is an active transaction, the Perseus
user must roll back this transaction by calling the rollback method. In addition, the exception means that
the current user (identified by the working set) did not modify the resource because the read intention has
been refused. Therefore, to avoid synchronization, it is advised tounbi nd the entry from the working set
and then to unf i x the element from the cache. This optimization makes the hypothesis that, when a
resource is acquired in a read mode one time, a next request in read mode is always accepted. Thisis a

constraint on the ConcurrencyManager implementation.

page 22/32

11.4 Writel ntention

The PersistenceManager interface provides two writelntention methods permiting to obtain write access
to a persistent object.. The first has an Object parameter which represents the identifier of the persistent
object to modify whereas the second has the cache entry parameter of the persistent object to modify.

Here is the object interaction diagram of the writel ntention(\WorkingSet,Object) method:

StaM TPM
writeIntention(ws, oid TIl)M Cache MIM a
lookup(oid)
ce (D
D
— newlInstance(oid)
> 2
€ @
bind(oid, obj)
if (ce ==null) < ce (3)
setReferenceState(ce, null)
(4)
B nAaREeCTEEEEE BESEREE SR
writeIntention(ws/ ce)
5
s“ Swe | o L®
SEe j_f
(1) Lookup in the cache, TPM: TransactionPersistenceManager
if (ce == null) { StaM: StateManager
(2) Instanciate a new persistent object, MIM: Memory Instance Manager

(3) Add the persistent object in the cache,
(4) Remove the reference state in order to force the
loading,

}
(5) Call the writeIntention method on the TPM

Figure 10: PersistenceM anager .writel ntention(WorkingSet, Object)

page 23/32

Here is the object interaction diagram of the writel ntention(WorkingSet, CacheEntry) method:

writelntention(ws, ce TITM M WS Cache
writeIntention(ws,c%)
S L
oid = ce.getCeldentifier()
— lookup(oid)
ce. | (2)
fix(ce)
if (ce_ == null) i < ce 1 3)
bind(state, oid‘
state “)
tat A
state
¢ |

if (ce_ ==null) {
(3) Fix the cache entry,
}

(1) Ask the read access to the ConcurrencyManager,
(2) Search the entry into the WorkingSet

(4) Bind the state to the oid into the WorkingSet

TPM: TransactionPersistenceManager
CM: ConcurrencyManager
WS: WorkingSet

Figure 11: PersistenceM anager .writel ntention(WorkingSet, CacheEntry)

Note: If the ConcurrencyManager throws an exception and if there is an active transaction, the Perseus
user must rollback this transaction by calling the rollback method. In addition, the exception means that
the current user (identified by the working set) did not modify the resource because the write intention has
been refused. Therefore, to avoid synchronization, it is advised tounbi nd the entry from the working set
and then to unf i x the element from the cache. This optimization makes the hypothesis that, when a
resource is acquired in a write mode one time, a next request in read mode is aways accepted. Thisis a

constraint on the ConcurrencyManager implementation.

page 24/32

11.5 Unexport

The aim of the unexport methods is to mark an instance as removed. The image in the data support can
be removed immediatly or at commit time.

Here is the object interaction diagram of the unexport(\WorkingSet, Object) method:

: M
unexport(ws, oid) TITM Cache MIM St TPM
lookup(oid)
€« (1)
_ newlInstance(oid)
€ @)
bind(oid, obj) >
if (ce ==null) ce 3)
setReferenceState(ce, null)
“4)
unexport(ws, ce)
5
St_at_e _________________ - ©®)
L g
(1) Lookup in the cache, TPM: TransactionPersistenceManager
if (ce ==null) { StaM: StateManager
(2) Instanciate a new persistent object, MIM: Memory Instance Manager

(3) Add the persistent object in the cache,
(4) Remove the reference state in order to force the
loading,

}
(5) Call the unexport method on the TPM

Figure 12: PersistenceM anager .unexpor t(WorkingSet, Object)

page 25/32

Here is the object interaction diagram of the unexport(WorkingSet, CacheEntry) method:

TPM TPM StoM StaM
unexport(ws, ce |
writel ntention(ws, e
state (1)
ch = ws.getConnectionHolder() €------ o
oid = ce.getCeldentifier() unexport(ch, oid) >
(2
4_ _________ - — =
makeUnexported(date)
(3
state DI E o
“-----
(1) Call the writelntention(ws,ce) in order to acquire the TPM: TransactionPersistenceM anager
rite access and the state to use. StoM: StorageM anager

(2) Ask to the StorageManager to unexport the identifier StaM: StateManager
(3) Mark the state as removed

Figure 13: PersistenceM anager .unexpor t(WorkingSet, CacheEntry)

page 26/32

11.6 Prepare

TPM CM StaM StoM WS
prepare(ws) |
| setStatus(...) > o
<_ ___________________ - — =
validate(ws)
[valid "T]@
4_ ________
T isDirty(stete)
If (valid) iy | 3)
FOREACH state write(ch, oid, state)
IN ws.entries() if' (isDirty) [4
““““ setStatus(...)
____________________ S
State
4¢----- T
(1) Assign the new status to working set (PREPARE) TPM: TransactionPersi stenceM anager
(2) Ask to the CM if the transaction can be validated CM: ConcurrencyManager
if (valid) { StoM: StorageManager
foreach state in ws.entries { StaM: StateM anager
if (staM.isdirty(state)) {(3) WS: WorkingSet
(4) Ask to the StorageM anager to write the state
}
}
}
(5) Assign the new status to working set (PREPARE_OK)

Figure 14. PersistenceM anager .pr epar e(Wor kingSet)

page 27/32

11.7 Commit
The commit method permits to valid a set of actions grouped in aworking set.

. TPM CM StaM Cache WS CH
commit(ws) |
ch = ws.getConnectionHol der() | commit(...) (1)
4_ ___________________ - ===
unfix(ce)
| 2
4_ ______________ -
FOREACH state makeCIean(State)
IN ws.entries() (3)
ce = state.getCacheEntry()| [7 1 T
setReferenceState(ce, stat @
4_ __________ l — —
closeConnection()
(®)
finalize()
6
clear
!)
sStatus(.) | | -
) P

«-----5

(1) Commit the transaction into the data support
foreach state in ws.entries {

ce = state.getCacheEntry()

(2) unfix the cache entry

(3) initialize the status of the state

(4) replace the reference state by the current

TPM: TransactionPersi stenceM anager
CM: ConcurrencyManager

CH: ConnectionHolder

StaM: StateManager

\ WS: WorkingSet

(5) close the connection

(6) free the lock

(7) empty the working set

(8) change the status of the working set

Figure 15: PersistenceM anager .commit(Wor kingSet)

page 28/32

In order to simplify the OID, the case of the persistent object deletion (unexport) is not taken in account.
Then the (3) & (4) actions should be replaced by the following actions:

i f (stateManager.isUnexported(state)) {
/1 unbind the renoved entry fromthe cache
r epl acenent Manager . unbi nd((Fi xabl eCacheEntry) ce, true);
/1 unbind the renoved entry fromthe persistence system
st at eManager . mrakeUnbound(ce) ;
} else {
if (tx.getWsRetainValues()) {
st at eManager . nrakeC ean(state);
st at eManager . set Ref erenceSt ate(ce, state);
} else if (stateManager. get ReferenceState(ce) == state) {
//the current and reference state is renoved
st at eManager . set Ref erenceState(ce, null);
} else {
/1l renmove the current state
st at eManager . destroySt at e(state);

page 29/32

11.8 Rollback
The rollback method permits to cancel a set of actions grouped in atransaction (particular working set).

TPM CM StaM Cache WS CH
rollback(ws) |
ch = ws.getConnectionHol der() | rollback(...) »——(1)
<_ ___________________ _—— |- — =
setStatus(...) > @
unfix(ce)
©)
FOREACH state D T
IN ws.entries() isDirty(state) >
ce = state.getCacheEntry() isDirty | ___ (4)
destroyState(state)
If (isDirty))
4_ ______________
closeConnection()
(6)
4_ ____________________ —_———_ = =
abort()
(7)
4_ ________
clear()
)
4¢----"---"-——"q---—-t---- T
4_ _____
(2) rollback the transaction into the data support TPM: TransactionPersi stenceManager
(2) change the status of the working set CM: ConcurrencyManager
foreach state in ws.entries { CH: ConnectionHolder
ce = state.getCacheEntry() StaM: StateM anager
(3) unfix the cache entry WS: WorkingSet

if (isDirty) {(4)
(5) destroy the state
}
}

(6) close the connection
(7) free the lock
(8) empty the working set

Figure 16: PersistenceM anager .r ollback (W or kingSet)

page 30/32

In order to simplify the OID, the case of the persistent object creation (export) is not taken in account.
Then the (4) & (5) actions should be replaced by the following actions:

i f (stateManager.isExported(state)) {
[/ Created persistent object nust be renoved fromthe cache
r epl acenent Manager . unbi nd((Fi xabl eCacheEntry) ce, true);
}
if (stateManager.isDirty(state)) {
/1 The used state is dirty
if (state == stateManager. getReferenceState(ce)) {
/1 The used state is the reference state
if (tx.getWsRestoreValues()) {
/| Restore value fromthe data support (| oading)
st orage. read(t x. get Connect i onHol der (),
ce.getCeldentifier(), state);
} else {
/1At the next use it will be | oaded
st at eManager . set Ref erenceSt ate(ce, null);
st at eManager . destroySt at e(state);

} else { //the used state is not the reference state
[/ destroy the used state
st at eManager . destroyState(state);

} else if (state != stateManager. get ReferenceState(ce)) {
/1 As the used state is not the reference state then destroy it
st at eManager . destroyStat e(state);

} //else reference state is already clean

There are several reasons to call this rollback method:
* The Perseus user wants to cancel the transaction,
+ Thevalidation of atransaction failed,

* The ConcurrencyManager decided to rollback a transaction, due to a dead lock problem for
example.

page 31/32

11.9 Close

Closing a working set depends on the type of working set. If the working set is a transaction, the close
operation does nothing that is of interest to Perseus. Otherwise it means that the modification on
persistent objects has been done outside a transaction. Then it could be interesting to flush the
modification into the data support like this following exemple:

i f (prepare(ws)) {
comm t (ws);
} else {
rol | back(ws);
}

wor ki ngSet Manager . cl ose(ws) ;

page 32/32

