.«
eBM-

Websourcing

PEIALS

Using JBI Components for integration — things you
have to know about the component’s concepts.

Adrien LOUIS, EBM WebSourcing
adrien . louis at ebmwebsourcing . com

http://www.ebmwebsourcing.com
10 avenue de 'Europe

31520 Ramonville Saint Agne
FRANCE

Abstract

This article presents the Java Business Integrapacification (JSR 208 [1]), and describes
more specifically the concept of “component” asmid in this specification.

First, we introduce the main goals of JBI, and thewe explain extensively the
communication between components through the JBir@mment, as well as component
installation process.

Using JBI Components for integration

1 JBI, a standard for SOA

Java Business Integration (JSR 208 [1]) specibicatiefines a standard mean to assemble
integration components in order to create integnagolutions to enable the SOA (Service
Oriented Architecture) in an Enterprise Informatigystem.

Components are plugged into a JBI environment aad grovide or consume services
through it, in a loosely-coupled way. The JBI eawment routes the exchanges between
those components, and offers a set of technicaices.

Two kinds of components can be plugged:

- Service Engines provide logic in the environmeunthsas XSL transformation, BPEL
orchestration and so on.

- Binding components are sort of “connectors” to mmdéservices or applications. They
allow communication with various protocols, suctS&AP, JMS, ebXML, ...

JBI is built on top of state of the art SOA stam$arservice definitions are described in
WSDL components exchanges XML messages followiegltbtcument oriented model.

The JBI environment (also called JBI container)vies the glue between JBI components
by acting as a Message Router to:

- Find a service provided by a component,

- Send request to a service-provider,

- Manage the message exchange life cycle (requepbmee, acknowledgements...).
It provides also a set of services (support of mgneontext, transactional context...)

On the other hand, the JBI container manages, ghroai rich management API, the
installation and the life cycle of the componemisd the deployment of artefacts to configure
an installed component (for instance, deploymenX8L stylesheets to a transformation
service engine).

o
eBM

June 6, 2006 Websourcing 2

Using JBI Components for integration

Artifacts

SOAP JMS AS1/AS2 JBI

HTTP EDI

Components

Two types of JBI components:
I Service Engines: provide and consume business logic and transformation services

1 Binding Components: provide connectivity to services external to a JBI installation

Figure1: JBI container

<l
eBM*

June 6, 2006 Websourcing

Using JBI Components for integration

2 JBI Components
JBI Components are the base elements to be compgsbeé JBI container in order to create
an integration solution.

The Components are plug-ins for the container, aredconsidered as “external’. As a J2EE
container hosts EJBs, or a Portal hosts portldie, iBI container hosts Integration
Components. The Components have to be writtenva, 3a can be re-used, in the same way
as you write or use EJBs or portlets.

2.1 Concepts

The notion of “JBI component” comes with severalinmaoncepts represented by the
following SPI (System Programming Interface):

 The Component object, with which the container rantés to retrieve information
about the component (services description...),

» The LifeCycle object, used by the container to ngarae lifecycle of the component,

* The ComponentContext, given by the container tocttraponent, for communication
with the JBI environment.

Additional concepts are:
* The Bootstrap object, which provides all operatimtuired at install/uninstall time,

 The ServiceUnitManager object, used to manage tmoging of artefacts on a
component.

A Component is packaged as an archive (a Zip ofil@ar

This archive contains the classes of the comporikatyequired libraries, and a descriptor
file.

The way to plug a component into a JBI containgo isse the management API provided by
the container. This API allows you to provide te tontainer the location of your Component
package. Then, the container processes the comipardive and installs the Component.

From the Component point of view, two different pbgaare defined:

* The installation phase, in which the JBI-contaiimstalls the component and plug it to
the Bus,

* The execution phase, in which the JBI-containeasratts with the component.

2.2 Installation time

During the installation phase, the component mestopm all extra processes needed for its
execution like the creation of mandatory foldeng, installation of a database...

This installation process is done by the Bootstrhject, which receives amninstall() event
from the container with an associated Installatiomi@&xt object, thus providing to the

o
eBM

June 6, 2006 Websourcing 4

Using JBI Components for integration

Bootstrap some information about the installatioime(path of the installation, a
NamingContext, etc...).

Component onlnstall(), on uninstall()

getinstallPath(), ... |InStaIIation
Bootstrap | Context

SUManage D igﬂf;:gonment
D Component
elements

Figure?2: interactionsduring theinstallation phase

JBI Environment

2.3 Execution time
The Component is started, stopped, and shutdowhebgontainer.

The container initializes the Component by pasgiagComponentContext, which is the entry
point to the JBI environment. While the Componentrunning, it interacts with the JBI
environment through this ComponentContext.

The Component can consume services (exposed dougthby other component) by sending
messages to a service-provider. As a service-peoyvitlcan accept such messages, process
them, and send an answer to the consumer throegButs.

Send or receive messages,

C " ctivate service endpoints, ...|Com ponent
omponen >
P Context

stant(), stop(),

JBl Environment

shutdown()
LifeCycle i
Bootstrap

SUManage D iIBJnE;:gonment
D Component
elements

Figure 3: interactions during the execution phase

o
eBM

June 6, 2006 Websourcing 5

Using JBI Components for integration

3 Components interactions
To illustrate the interactions between a servicesamer and a service provider, let's take a
simple request-response exchange as example.

The corresponding message exchange pattern isn@utl exchange pattern, as defined in
the JBI specification (see the 5.4.2 section ofJBespec.).

JBI supports four WSDL pattern exchanges: In, In@u®ptionalOut, and Robustin. Each
pattern defines a particular exchange sequencan/Axtension, it is possible to support other
MEP (Message Exchange Patterns).

3.1 Service consumer

Once a Component is running, it can find and comstime services that are registered in the
JBI environment. Therefore, the component is inrthe of a service consumer.

3.1.1 Find a service endpoint

An endpoint represents an address where a semog&lpd by a component can be found.

Several components can provide the same serviceth (vaventually different
implementations), but each of those components aawreque endpoint.

To find a service, the consumer asks its ComporamtXt for the list of all endpoints
matching service name, by using tetEndpointsFor Service(serviceName) method.

The consumer can choose the provider that it warsach.

If the consumer already knows the address of tloeiger that it wants to contact, it can
retrieve the provider Endpoint object by usingetEndpoint(serviceName, endpointName)
method.

JB| Environment

consumer: :Component
Component Context

ﬂ getEndpointsForService (serviceName) D

address:

C34dress’
Endpoint

Figure 4 : get endpointsfor a given service

o
eBM

June 6, 2006 Websourcing 6

Using JBI Components for integration

3.1.2 Create a message exchange

To manipulate messages, the ComponentContext @®wadDeliveryChannel object, which
represents a bi-directional communication chaneéliben the Component and the message-
router of the JBI environment (called Normalizeddgi@ge Router).

The DeliveryChannel is in charge of message-exammigstantiation, and is the path through
which the messages are sent to the NMR. Then, thiR NMoutes the message to the
component which provides the requested service.

An exchange between the consumer and the prosdmaterialized by a MessageExchange
object. This object serves during the whole lifehaf exchange.

When the consumer wants to initialize a new exchaitgasks a MessageExchangeFactory
(provided by the DeliveryChannel object) to cremteew MessageExchange.

This MessageExchange contains the actual contetiteomessage and a set of meta-data,
such as the provider-endpoint, the status of tlebaxge (active, done, in error), identification
of the exchange “owner” (the consumer or the prenid. The MessageExchange is shared
by the consumer and the provider during the exchéting request, the response ...).

JBl Environment

consumer: (:Component- :Delivery- ‘MsgExch-]
Component Context Channel Factory |

] 1.getDeliveryChannel() JJ

2.createMsgExchFactory() ’D

3J.createlnOutExchange () D
N msgEx:
" MsgExchange

Figure5: create a message exchange

3.1.3 Send the message

Now that the consumer has instantiated a Messag@iBge, it can set on this object the
message it wants to send to the consumer.

The consumer has to set a NormalizedMessage dmtheessage of the exchange.

The NormalizedMessage is a JBI definition of a rages The consumer asks the
MessageExchange to create a new NormalizedMessage.

Then, the consumer set on this NormalizedMessagecdintent of the message (an XML
payload), and eventually some attachments.

The consumer has to set on the MessageExchandentimoint of the provider (previously
retrieved), and the name of the operation to bopeed.

Note: the consumer can omit to specify the Endpointhe provider, and just specify a
serviceName. In this case, the NMR will searchnaditching Endpoints, and choose one of
them.

o
eBM

June 6, 2006 Websourcing 7

Using JBI Components for integration

Finally, the consumer sends the MessageExchangg the DeliveryChannel.

JBl Environment

consumer: msgContent: msgEx: :Delivery-
Component Source MsgExch Channel

m 1.m=createMessage() m:Normalized-
’I I *| Message
2 .setContent(msgContent) D
3.setinMessage(m) ‘D
4 send{msgEx)
1 {]

Figure6: send a message

3.2 Service provider

Once a Component is running, it can also proviaeices. This component acts as a service
provider.

3.2.1 Activate an endpoint

The provider has to publish the services that mt&ao offer.

The publication of a service is done by teivateEndpoint(serviceName, endpointName)
method of the ComponentContext. This method rettinesgenerated Endpoint object that
references the new service in the JBI environment.

That done, other components can access the adisategices, by finding the corresponding
Endpoint with thdindEndpointFor Service() method of their ComponentContext.

JBI Environment

:Component provider:
Context Component
D activate Endpoint(srvName,epName)D
Service
descrpt

address: i
Endpoint

Figure7: activate a service - endpoint

3.2.2 Receive a message

Now that the provider has published some servidtesan receive messages from other
components (consumers).

When a consumer sends a message to a providengbsage (MessageExchange) is pushed
in the message queue of the provider's Delivery@khn

o
eBM

June 6, 2006 Websourcing 8

Using JBI Components for integration

The provider retrieves the received messages fhremmtessage queue with by dosagept()
on its DeliveryChannel.

Once the provider obtains a MessageExchange, picaress it.

The provider gets the “in” message (the Normalizedd&ge set by the consumer), the name
of the operation to perform, the payload of the sags...

JBl Environment

:Delivery- receivedContent: :Normalized1 msgEx: provider:
Channel Source Message MsgExch Component

D‘ 1.msgEx = accept())

D‘ 2.m = getinMessage()

: 3. receivedC = getContent()

4 .processOperation 0[{1

Figure 8 : receive a message

3.2.3 Send the response

If the operation requires an answer, the providan set an “out” message on the
MessageExchange, and send it again to the NMRtsvizeliveryChannel.

The NMR routes the MessageExchange to the consuhar previously initiated this
MessageExchange.

JBI Environment

:Delivery- m2:Nomalized- msgEx:
Channel Message MsgExch

D‘ 1.m2 = createMessage()

response: provider:
Source Component

=

D‘ 2 setContent{response)

D‘ 3. setOutMessage(m?2)
4. send{MsgEx)

Figure9: send theresponse

3.3 Close the exchange
After the provider sent its response, the exchamgearly complete.

The NMR routes the answer to the consumer, whiceives it with anaccept() on its
DeliveryChannel.

The consumer process the “out” content of the Mg=lSachange, and has to close the
exchange. To do this, the consumer set the stdttiseoMessageExchange to DONE, and
send it again to the NMR via tisend() method of its DeliveryChannel.

o
eBM

June 6, 2006 Websourcing 9

Using JBI Components for integration

The exchange is terminated, and the provider isfiedtof this status by receiving the
MessageExchange.

The following schema describes the whole exchangeess:

Consumer: W . Provider: ‘
‘ Component =20 E e G { Component
O <0> init msgEx
1.send{msgEx{in})
i [

[2. msgEx{in) =accept()
3. out =process(in

4. send({msgEx(out))

5. accept{imsgEx{out)) [l

6. process{out)

7.send(msgEx(DONE)) []

0 8.msgEx{DONE) =accept()

X <9> msgEx terminated

Figure 10 : the whole in-out exchange

o
eBM

June 6, 2006 Websourcing 10

Using JBI Components for integration

4 HelloWorldService component
As seen before, a JBI component is a set of objgas have to implement some JBI
interfaces. Additionally, a descriptor file hada® provided with this component.

In this section, we show most of the code to belemented to create a simple Helloworld
ServiceEngine.

As a few lines of codes are necessary to implemgr® Component and the
ComponentLifeCycle interfaces, a single objectioapliement these two interfaces.

To process requests, there is no “listener” medmamroposed by the JBI specification. The
way to receive a message is to block om@ept() method.

A good pattern is to create a separate object wiichxecuted in another thread. This
“listener” makes a loop on theecept() method, avoiding the Component to be blocked.

The complete sources of this example can be dowathan the Wiki page of thBetals
project [3].
4.1 Component — ComponentLifeCycle

The object that implements the Component and thewg@oentLifeCycle interfaces just
registers the “HelloWorldService” in the JBI enviroent, then creates and starts the
HelloWorldListener thread, which is in charge obgessing the incoming messages.

import javax.jbi.component.*;
public class Helloworld implements Component, Compo nentLifeCycle {
private ComponentContext context;

private HelloworldListener listener;

public void init(ComponentContext context) throws JBIEXception{
/I keep a reference to the given ComponentContext
this.context = context;

}

public void start() throws JBIException {

/ create our Listener and start it.

listener = new
HelloworldListener(context.getDeliveryChannel());

(new Thread(listener)).start();

/I register our service in the JBI environment
context.activateEndpoint(QName(“http://helloWorldSe rvice.com”) ,
“HWendpoint”);
}

o
eBM

June 6, 2006 Websourcing 11

Using JBI Components for integration

public void stop() throws JBIException {
/l'just break the loop of our listener; the threa d will stop
listener.running= false;
}
public void shutDown() throws JBIException {
/I nothing
}
public ComponentLifeCycle getLifeCycle() {
/I this object acts as the LifeCycle, so it retur ns itself

return this;

}

4.2 HelloWorld listener
This object processes the MessageExchanges tisathpaagh the NMR.
The received messages are retrieved from the DgN&nnel object.

This listener checks that the specified operatiame is “hello” and that the type of the
exchange is an InOut exchange.

The listener retrieves the “in” content, procegbesmessage (even if in this example there is
no specific processing), and sets an “out” resptmslee MessageExchange.

Then, it sends the MessageExchange back to the NM&response is then conveyed to the
consumer through the NMR.

import javax.jbi.messaging.*;

public class HelloworldListener implements Runnable {

private DeliveryChannel channel;

public boolean running;

public HelloworldListener(DeliveryChannel channel) {

this.channel = channel;

}

[k
* the main part of the listener
*/

public void run()

{

running= true;

o
eBM

June 6, 2006 Websourcing 12

Using JBI Components for integration

while(running) {
// block on the accept() method
MessageExchange messageExchange = channel.accept 0;
/l a MessageExchange is received, so process it

process(messageExchange);

}
/**
* process the received messages
*/
private void process(MessageExchange msg)

{

if(new QName("hello").equals(msg.getOperation()) && msg
instanceof InOut)

{

/I we received a InOut exchange, with the “hello
operation

InOut inOut = (INOut)msg;

/l Read the IN message

NormalizedMessage in = inOut.getinMessage();
Source content = in.getContent();

Il ... process the in-content (omitted)

/I Write the response

NormalizedMessage out = inOut.createMessage();
/I ... Set out content (omitted)

InOut.setOut(out);

/I Send the response

channel.send();

4.3 Bootstrap

No special operation is required during the inatadh of this HelloWworld component, so the
class that implements the Bootstrap interface b#simg to do.

o
eBM

June 6, 2006 Websourcing 13

Using JBI Components for integration

4.4 Package the component

Let assume that the 3 component classes (compdiséeher and bootstrap) are archived in a
“helloComponent.jar” file.

A descriptor has to be provided to help the JBltamer during the installation phase.
This descriptor file (jbi.xml) looks like this:

<jbi version="1.0" xmIns="http://java.sun.com/xml/n sljbi’
xmins:xsi='http://www.w3.0rg/2001/XMLSchema-instan ce'™>
<component type="service-engine">
<identification>

<name>HelloworldComponent</name>

<description>A Helloworld Component</descriptio n>
</identification>
<component-class-name=>hello.Helloworld</componen t-class-name>

<component-class-path>

<path-element>helloComponent.jar</path-element>
</component-class-path>
<bootstrap-class-name>hello.Bootstrap</bootstrap -class-name>
<bootstrap-class-path>

<path-element>helloComponent.jar</path-element>
</bootstrap-class-path>

</component>

</jbi>

The packaging of the component is a simple arctdye file or Jar file) with the following
structure:

- helloComponent.jar
- <META-INF>
o jbi.xml

45 Use the Helloworld service

A component that wants to access the service pedvin this HelloWorld component can
use the following code:

/l Find the endpoint
ServiceEndpoint ep =

context.getEndpoint(new QName(“ http://helloWorldService.com ",
“HWendpoint”);

/I Create the exchange

MessageExchangeFactory factory =
deliveryChannel().createExchangeFactory();

o
eBM

June 6, 2006 Websourcing 14

Using JBI Components for integration

MessageExchange msgEx = factory.createInOutExchange 0;
msgEx.setOperation(new QName(“hello™));

msgEx.setEndpoint(ep);

/I Create the message

NormalizedMessage nm = msgEXx.createMessage();
/I set the ‘in’ content - omitted
nm.setContent(source);

msgEx.setinMessage(nm);

deliveryChannel.send(msgEXx);

When the HelloWorld service answers this requést, MessageExchange is sent back to the
consumer. So, the listener of the consumer waithemccept().

/I wait for response
MessageExchange msgEx = deliveryChannel.accept();
/I process the response from helloWorldService
if(msgEx.getEndpoint=ep && msg instanceof InOut)
{
InOut inOut = (INOut)msg;
/l Read the OUT message
Source content = inOut.getOutMessage().getContent 0;
/I ... process the out-content (omitted)
/I close the exchange
msgEx.setStatus(ExchangeStatus.DONE);
deliveryChannel.send(msgEx);
}

Note: Each MessageExchange created has a uniqueI|be sure to process the response of
a particular exchange, the consumer can keep thef ilDe sent exchange, and compare it
with the ID of the received message.

o
eBM

June 6, 2006 Websourcing 15

Using JBI Components for integration

5 Install and start a JBI component

A JBI container offers administrative tools to mgaacomponents, through JMX MBean
objects [4].

5.1 Install a component

The MBean that manage the installation of compaenthe InstallationServiceMBean. This
service creates, for each component to installthemdviBean object, an InstallerMBean.

The method to use I®adNewlnstaller(<archiveURL>). This method explodes and analyses
the archive that pathname is specified as a paeamend returns the name of the
InstallerMBean created.

@ PG

|| Hotmail | | Personnaliser les liens | | ‘Windows Media | | Windows

~ - =
b’;_[| OH http:Jflocalhost: 8082/ mbean?obiectname=FC%2FPetals IMx % 2Fibi%2Finstalation-impl=: 401 544b22d %380t F % 30service B o '|C_:|,

p eta I S MX43/Http Adaptor N4><+J
_ &, @ IMX Management Console
Coge

Server view Petals view MBeanview Monitors About

MBean FC/PetalsJMX/jbi/installation-impl@1844b22d:itf=service
Description org.objectweb.fractal.julia.generated.Cfa3eed8b_0

Figure 11 : InstallationService ::loadNewlnstaller

Attributes
Name Description Type Value New Value
Set all
Operations
MName Return type Description
installSharedLibrary java.lang.String instalSharedLibrary
Parameters id Name Description Class -

0 pl java.lang.String Invoke
InadhewInstaller Javax.management.ObjectMame [cadilewinstaler -
Parameters id Name Description Class : __

0 pi java.lang.String ffile:mCz\TesT\oomp.Zip Invoke
lnadInstaller javax.management, ObjectName loadInstaller ' -
Parameters id Name Description Class -

0 pl Java.lang String Imvoke
uninstallisharedLibrary boolean uninstalSharedLibrary)
Parameters id Name Description Class -

0 pl java.lang.String Irvake
unloadinstaller boalean unioadinstaller R
Parameters id Name Description Class

0 pl jawa.lang.String

1 p2 boolean Otre Ofake |IMvoke

The InstallerMBean performs the install/uninstakkahanism, withinstall() and uninstall()

methods.

A call to install() instantiates the Bootstrap object of the compgnastdescribed in the
jbi.xml descriptor file. Then, thimit() andoninstall() methods are called on the Bootstrap.

Finally, the Component object is created, and aesponding ComponentLifeCycleMBean
object is also created. Thastall() method returns the name of this MBean.

June 6, 2006

o
eBM

Websourcing

16

Using JBI Components for integration

pe-ta |S | L, Mx43/Htep Adaptor MX+ |

< IMX Management Console
- 9

Server view Petals view MBean view Monitors About

MBean org.objectweb.petals:type=installer,name=SampleClientComponent
Description Information on the management interface of the MBean

Operations
Name Return type Description
uninstall viid Operation exposed for management
install javax.management. ObjectMame Operation exposed for management

Figure12: Installer::install

" IJMX Management Console

p eta | ; X . MX4)/Http Adaptor MX4 |
“ogeS

|O

Server view Petals view MBean wiew Monitors About
MBean operation: invoke method on MBean
org.objectweb.petals:type=installer,name=SampleClientComponent
Invocation successful
Result value: org.objectweb.petals:type=engine,name=SampleClientComponent

Return to MBean view

Figure 13: Installer::install - result
At this point, the component is installed, in atslown state.

JMX Server -JBI Env.

user

& a B
zipArchive J :Installatlon-] [:Installer] [;ComponentLife-

(jbixim,classes) | |ServiceMBean) | MBean CycleMBean | {ZBootstrap]Componen

——_——

1. loadNewlnstaller(zipURI) |

=1 1. explode 1.2. create

1.2.1. create (load cIasle

2. install) q

2.1. onlnstall() R
2.2. create G

| ! 2.2.1. greate (load class)
>0

Figure 14 : install a component with JM X management

<M
eBM*

June 6, 2006 Websourcing 17

Using JBI Components for integration

5.2 Start a component

The ComponentLifeCycleMBean manages the life cgtline component.

The main methods astart(), stop() andshutdown().

A call to thestart() method of this MBean causestart() on the corresponding component.

I,
<:Z| < |_L,' < @ @ |0N http:fflocalhost: 8082 mbean?objectname=org. objectweb, petals% 3atypess 3Dengine %2 name % 305ampleClier V| @ OF “Q, |

|| Hotmail | | Personnaliser les liens | | Windows Media | | Windows

eta I S .. MX4J/Http Adaptor ‘
p - = .~ IMXManagement Console M)\‘}*J

]

Server view Petals view MBeanwview Monitors About

MBean org.objectweb.petals:type=engine,name=SampleClientComponent
Description Information on the management interface of the MBean

Attributes
Name Description Type Value New Value
CurrentState fnt:r:iggésmﬁtmsed for java.lang.String Shutdown Read-only attribute
ExtensionMBeanhame ﬁgﬁ?g&sﬂgﬁ?osm for javax.management. ObjectMame null Read-only attribute
Operations
Name Return type Description
shiutDown wiid Operation exposed for management
start il Operation exposed for management
stop woid COperation exposed for management

Figure15: LifeCycle::start

If the component is started for the first time,ifd() method is called before the real start.

JMX Server -JBI Env.

:ComponentLife- O
CycleMBean)Componen] [.LWeCycIe’

1. start()

1.1. getlLifeCycle()

0

1.2. start() . D

Figure 16 : start a component with JM X management

o
eBM

June 6, 2006 Websourcing 18

Using JBI Components for integration

6 Conclusion

From a component point of view, using JBI and comitating with the environment is quite
simple.

The use of WSDL for service description, XML foetpayload of the messages and the JBI
specification itself promotes the standardizatibmtegration state of the art.

There are a lot of functionalities provided by & environment that has not been discussed
here, such as the WSDL definition of the provideds/ges, synchronized or asynchronized
exchanges, deployment of artefacts, use of Bindamgponents to access external services...

The success of JBI will depend on the plethora mippsed components, either service
engines that apply some integration logic to thesages, or binding components that open
the JBI bus to specific protocols.

Providers of JBI containers have to propose a rmmti set of components with their
container. Fortunately, as long as the componessgect the JBI specification, they can be
used on any JBI implementation.

7 Bibliography

[1] Java Business Integration specificatidtp://www.jcp.org/en/jsr/detail ?id=208

[2] Petals siténttp://petals.objectweb.org
[3] Petals gettingStartdutps://wiki.objectweb.org/petals/Wiki.jsp?page=tBejStarted
[4] Java Managemethittp://java.sun.com/products/JavaManagement

o
eBM

June 6, 2006 Websourcing 19

Using JBI Components for integration

This document is under Creative Commons AttributdmonCommercial-ShareAlike 2.5
License http://creativecommons.org/licenses/by-nc-saj2.5/

You arefree

+ to copy, distribute, display, and perform the work
« to make derivative works

Under the following conditions:
@ Attribution. You must attribute the work in the manner
specified by the author or licensor.

Noncommercial. You may not use this work for commercial
purposes.

ShareAlike. If you alter, transform, or build upon this wogiqu
may distribute the resulting work only under atlise identical
to this one.

« For any reuse or distribution, you must make deanthers the license terms of this
work.

« Any of these conditions can be waived if you getpssion from the copyright
holder.

o
eBM

June 6, 2006 Websourcing 20

