
(CC) EBM WebSourcing - This work is licensed under the Creative
Commons Attribution-NonCommercial-ShareAlike License. To view a copy

of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

PEtALS-SE-EIP

This document explain how to install, configure and use the petals-se-eip JBI component.

PEtALS Team
Adrien LOUIS <adrien.louis@ebmwebsourcing.com>

Roland NAUDIN <roland.naudin@ebmwebsourcing.com>
Frederic GARDES <frederic.gardes@ebmwebsourcing.com>

- Mars 2009 -

PEtALS-SE-EIP

PEtALS-SE-EIP 2

Table of Contents
PEtALS-SE-EIP .. 4
1. Features ... 5
2. Component Configuration ... 6
3. Service Configuration ... 9

3.1. Processing a pattern .. 9
3.1.1. Aggregator Pattern .. 9
3.1.2. ScatterGather Pattern ... 9
3.1.3. Router Pattern .. 10
3.1.4. Dynamic Router Pattern ... 10
3.1.5. Dispatcher Pattern ... 11
3.1.6. Routing-slip Pattern ... 11
3.1.7. Wire-tap Pattern ... 12
3.1.8. Bridge Pattern .. 12
3.1.9. Splitter Pattern ... 13
3.1.10. SplitterGather Pattern ... 14
3.1.11. Service Unit descriptor example ... 14
3.1.12. Usage .. 16

3.2. Call services during the pattern process ... 16
3.2.1. Service Unit descriptor example .. 16
3.2.2. Usage ... 18

PEtALS-SE-EIP

PEtALS-SE-EIP 3

List of Tables
2.1. Configuration of the component (CDK) .. 7
2.2. Configuration of the component (EIP) .. 8
3.1. Configuration of a Service Unit to provide a service (JBI) .. 15
3.2. Configuration of a Service Unit to provide a service (CDK) .. 15
3.3. Configuration of a Service Unit to provide a service (EIP) .. 16
3.4. Configuration of a Service Unit to consume a service (JBI) ... 17
3.5. Configuration of a Service Unit to consume a service (CDK) .. 18

PEtALS-SE-EIP

PEtALS-SE-EIP 4

PEtALS-SE-EIP
This component implements the main Enterprise Integration Patterns, as described in http://
www.enterpriseintegrationpatterns.com.

It is based on the PEtALS CDK.

http://www.enterpriseintegrationpatterns.com
http://www.enterpriseintegrationpatterns.com

Features

PEtALS-SE-EIP 5

Chapter 1. Features
The provided integration patterns are:

• Aggregator

• Bridge

• Dispatcher

• Router

• DynamicRouter

• RoutingSlip

• ScatterGather

• WireTap

• Splitter

• SplitterGather

The EIP component can be easily extended to provide more patterns.

Component Configuration

PEtALS-SE-EIP 6

Chapter 2. Component Configuration
The component can be extended to provide more integration patterns.

To add a new pattern, provide a Java class implementing org.ow2.petals.se.eip.patterns.Pattern

package org.ow2.petals.se.eip.patterns;

import org.ow2.petals.component.framework.util.Exchange;
import org.ow2.petals.se.eip.ExchangeContext;

public interface Pattern {

 public void processPattern(Exchange exchange, ExchangeContext context);
 public void init();
}

or extending the abstract class org.ow2.petals.se.eip.patterns.AbstractPattern

package org.ow2.petals.se.eip.patterns;

...

public abstract class AbstractPattern implements Pattern {
 ...
 public abstract void process(Exchange exchange, ExchangeContext context) throws
 MessagingException;
 protected abstract boolean validateMEP(URI mep);
 protected abstract String getPatternName();
 ...
}

Use the ExchangeContext to help you processing your orchestration :

package org.ow2.petals.se.eip;

import java.util.List;
import java.util.logging.Logger;

import javax.jbi.messaging.MessagingException;
import javax.jbi.servicedesc.ServiceEndpoint;

import org.ow2.petals.component.framework.Constants.MEPConstants;
import org.ow2.petals.component.framework.api.configuration.ConfigurationExtensions;
import org.ow2.petals.component.framework.api.exception.PEtALSCDKException;
import org.ow2.petals.component.framework.api.message.Exchange;
import org.ow2.petals.component.framework.jbidescriptor.generated.Consumes;

public interface ExchangeContext {
 public Logger getLogger();
 public List<Consumes> getSUConsumes(ServiceEndpoint endpoint);
 public boolean sendSync(final Exchange exchange) throws MessagingException;
 public void sendAsync(final Exchange exchange) throws MessagingException;
 public Exchange accept(Exchange exchange) throws InterruptedException, PEtALSCDKException;
 public void send(final Exchange exchange) throws MessagingException;
 public Exchange createConsumeExchange(Consumes consumes) throws MessagingException;
 public Exchange createConsumeExchange(Consumes consumes, MEPConstants mep) throws
 MessagingException;
 public ConfigurationExtensions getExtensions();
}

Extends the JBI.xml file of the component to reference your pattern :

<?xml version="1.0" encoding="UTF-8"?>
<jbi:jbi xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
...

Component Configuration

PEtALS-SE-EIP 7

 <eip:aggregator>org.ow2.petals.se.eip.patterns.Aggregator</eip:aggregator>
 <eip:router>org.ow2.petals.se.eip.patterns.Router</eip:router>
 <eip:dynamic-router>org.ow2.petals.se.eip.patterns.DynamicRouter</eip:dynamic-router>
 <eip:dispatcher>org.ow2.petals.se.eip.patterns.Dispatcher</eip:dispatcher>
 <eip:routing-slip>org.ow2.petals.se.eip.patterns.RoutingSlip</eip:routing-slip>
 <eip:bridge>org.ow2.petals.se.eip.patterns.Bridge</eip:bridge>
 <eip:wire-tap>org.ow2.petals.se.eip.patterns.WireTap</eip:wire-tap>
 <eip:scatter-gather>org.ow2.petals.se.eip.patterns.ScatterGather</eip:scatter-gather>
 <eip:splitter>org.ow2.petals.se.eip.patterns.Splitter</eip:splitter>
...
</jbi:jbi>

Table 2.1. Configuration of the component (CDK)

Parameter Description Default Required Scope

acceptor-pool-size The size of the thread pool used to accept Message Exchange from
the NMR. Once a message is accepted, its processing is delegated
to the processor pool thread.

5 Yes Runtime

processor-pool-size The size of the thread pool used to process Message Exchanges.
Once a message is accepted, its processing is delegated to one of
the thread of this pool.

10 Yes Runtime

performance-
notifications

Enable the performance notifications in the component. The CDK
proposes to a performance notification feature to the component
implementor. If you enable this feature, you must use the related
method accessible in the AbstractComponent class.

- No Runtime

performance-step When the performance notification feature is enabled, it is
possible to define a step on the notifications. When there is an
heavy message traffic, it is recommanded to increase this step to
avoid performance disturbance.

- No Runtime

properties-file Name of the file containing properties used as reference by
other parameters. Parameters reference the property name in
the following pattern ${myPropertyName}. At runtime, the
expression is replaced by the value of the property.

The value of this parameter is :

• an URL

• a file relative to the PEtALS installation path

• an empty value to stipulate a non-using file

- No Installation

ignored-status When the component receives an acknowledgement message
exchange, it can skip the processing of these message according
to the type of the acknowledgment. If you decide to not ignore
some acknowledgement, the component listeners must take care
of them.

Accepted values : DONE_AND_ERROR_IGNORED, DONE_IGNORED,
ERROR_IGNORED or NOTHING_IGNORED

DONE_AND_ERROR_IGNOREDYes Component

jbi-listener-
class-name

Qualified name of the class extending AbstractJBIListener - Yes Component

external-listener-
class-name

Qualified name of the class extending
AbstractExternalListener

- No Component

Definition of CDK parameter scope :

• Component : The parameter has been defined during the development of the component. A user of the component can
not change its value.

Component Configuration

PEtALS-SE-EIP 8

• Installation: The parameter can be set during the installation of the component, by using the installation MBean (see
JBI specifications for details about the installation sequence). If the parameter is optional and has not been defined
during the development of the component, it is not available at installation time.

• Runtime : The paramater can be set during the installation of the component and during runtime. The runtime
configuration can be changed using the CDK custom MBean named RuntimeConfiguration. If the parameter is
optional and has not been defined during the development of the component, it is not available at installation and
runtime times.

Table 2.2. Configuration of the component (EIP)

Parameter Description Default Required

your-pattern-name java class implementing your pattern. The name of the pattern at runtime
will be the one you give as parameter name

- No

Service Configuration

PEtALS-SE-EIP 9

Chapter 3. Service Configuration
3.1. Processing a pattern

PROVIDE SERVICE : Process several services invocations and orchestrate the results

A Service Unit contains one and only one provides section, which describes the pattern that will be processed when a
message is received.

The Service Unit contains also one or more consumes sections, which reference services to call during the pattern
execution. The order of the consumes sections is important, as it is the one which is used by the pattern during its execution.

The number of consumes sections depends on the pattern implemented.

If the MEP InOut or InOptOut are supported by an implemented EIP, the component returns to the consumer an OUT
response built according to the pattern feature.

If an invoked service returns a Fault or an Error status, the process ends or no, and the Fault or Error is sent back to
the consumer or no, according to the pattern feature.

If an operation is specified in a consumes sections, this operation is used to invoke the bound service, otherwise the
operation of the incoming message is relayed.

3.1.1. Aggregator Pattern
The EIP Component receives incoming messages and identifies the messages that are correlated to a SU deployed.

The correlation can be either retrieved from an XPath expression specified in the SU parameter aggregator-correlation
or by a property from the incoming exchange with the name 'aggregator-correlation'.

Once a message received matches the XPath expression specified in the SU parameter aggregator-complete, the pattern
collects information from each previously correlated message and sends a single, aggregated message to the service
referenced in the consumes section.

The result of the invoked service is reported to the sender of the 'complete' message.

Caution

consumes sections cardinality is [1-1].

Caution

message exchange pattern of the incoming exchange is InOnly or RobustInOnly.

Caution

messages order is kept from the incoming sequence to the outgoing message.

The aggregated message looks like :

<result xmlns="http://petals.ow2.org/components/eip">
 <incoming message 1.../>
 ...
 <incoming message N/>
</result>

3.1.2. ScatterGather Pattern
The EIP Component forwards the incoming IN message of the Exchange to all the services referenced in the consumes
sections (these services has to be InOut). The pattern waits for all the responses from the services, and aggregates them.

Service Configuration

PEtALS-SE-EIP 10

The aggregation is returned to the original consumer, as the OUT message of its original Exchange.

If a services called reponds with a Fault, the fault is reported to the original Exchange, and all the others responses are
ignored. The fault is them returned to the original consumer.

Caution

consumes sections cardinality is [1-n].

Caution

message exchange pattern of the incoming exchange and of the consumed services is InOut.

The response looks like :

<result xmlns="http://petals.ow2.org/components/eip">
 <response from the 1st service referenced in the Service Unit.../>
 <response from the 2nd service referenced in the Service Unit.../>
 <response from the 3rd service referenced in the Service Unit.../>
 ...
</result>

3.1.3. Router Pattern
Also known as Content-Based Router pattern.

The EIP Component evaluates expressions on the incoming IN message of the Exchange. Conditions can be multiple and
are defined into the SU parameters test elements.

Conditions are elavuated against the message until a true result. Then the exchange is forwarded to the service referenced
in the consumes section matching the position of the condition.

E.g, the second condition is evaluated, and results to be true, the exchange is forwarded to the service referenced in the
second consumes section.

If none of the conditions are true, the exchange is forwarded to the service referenced in the last consumes section (default).

Some example of conditions :

• sum(/items/item/value) > 100 : the sum of all the values of the 'item' elements is greater than 100

• name(/*)='helloworldRequest' : the name of the root element is 'helloworldRequest'

Caution

consumes sections cardinality is the number of conditions plus 1 (the last one is the default service).

Caution

The last consumes section is the default service to invoke if no condition has been fullfilled.

Caution

message exchange pattern of the incoming exchange and of the consumed services is InOnly, RobustInOnly or
InOut.

3.1.4. Dynamic Router Pattern
Inspired from the EIP Dynamic Router pattern.

Service Configuration

PEtALS-SE-EIP 11

This pattern is routing the incoming IN message toward a matching service, as for the router pattern. The difference is
on the source of evaluation. Instead of evaluating the incoming message directly, this pattern invokes a first service which
returns the message to evaluate. Conditions are defined into the SU parameters test elements.

The first consumes section is invoked to get the message to evaluate.

Conditions are elavuated against the message until a true result. Then the exchange is forwarded to the service referenced
in the consumes section matching the position of the condition.

E.g, the second condition is evaluated, and results to be true, the exchange is forwarded to the service referenced in the
second consumes section.

If none of the conditions are true, the exchange is forwarded to the service referenced in the last consumes section (default).

Some example of conditions :

• sum(/items/item/value) > 100 : the sum of all the values of the 'item' elements is greater than 100

• name(/*)='helloworldRequest' : the name of the root element is 'helloworldRequest'

Caution

consumes sections cardinality is the number of conditions plus 2.

Caution

The first consumes section is the service to invoke to get the message to evaluate. Its pattern is InOut.

Caution

The last consumes section is the default service to invoke if no condition has been fullfilled.

Caution

message exchange pattern of the incoming exchange and of the consumed services is InOnly, RobustInOnly or
InOut.

3.1.5. Dispatcher Pattern

The EIP Component dispatches the incoming IN message toward the configured service in consumes sections. No response
message is returned.

Caution

consumes sections cardinality is [1-n].

Caution

message exchange pattern of the incoming exchange and the consumed services is InOnly.

3.1.6. Routing-slip Pattern

The EIP Component chains invocation of the referenced services in the consumes sections, in the order that they are
declared.

The IN message of the incoming exchange is sent to the first service; the OUT response of this service is sent to the second
service as an IN message, and so on.

Service Configuration

PEtALS-SE-EIP 12

The incoming exchange can be any Message Exchange Pattern.

If a fault is returned by an invoked service, the fault is reported to the original exchange if it doesn't use the InOnlyMessage
Exchange Pattern, and the process is terminated.

Otherwise, the result of the last service is returned to the original exchange unless it use the InOnlyMessage Exchange
Pattern.

Caution

consumes sections cardinality is [1-n].

Caution

message exchange pattern of the last service is the one of the incoming exchange. All other services are InOut.

3.1.7. Wire-tap Pattern
The EIP Component copy the IN or OUT/Fault message of the exchange between the consumer and the provider of the
functional service to a 'monitoring' service.

The SU parameter wiretap-way determines which way of the invocation is relayed to the 'monitoring' service. At each
way correspond a message of the exchange to copy.

Values are :

• request (copy the IN message)

• response (copy the OUT / Fault message)

• request-response (copy IN and OUT/Fault message)

• request-on-response (copy IN after OUT is received; not copied if Fault or Error)

The copied message is sent to the 'monitoring' service as an IN message using the InOnly exchange pattern.

The first consumes section references the provider, the second one references the 'monitoring' service.

Caution

consumes sections cardinality is 2.

Caution

message exchange pattern of the 'monitoring' service is InOnly. Message exchange pattern of the provider is
InOnly, RobustInOnly or InOut.

3.1.8. Bridge Pattern
The EIP Component acts as an exchange pattern bridge, and allows you, for instance, to transform an InOnly invocation
pattern into an InOut one, to be able to invoke service in a best effort way.

Define in a consumes section the service you want to call, and the EIP component will match the incoming and outgoing
exchange pattern the best possible.

Caution

consumes sections cardinality is 1

Service Configuration

PEtALS-SE-EIP 13

Caution

OUT response is lost if the incoming exchange is InOnly or RobustInOnly.

Caution

Fault response is set as an Error if the incoming exchange is InOnly.

Caution

When there is no response, a standard message is set on the OUT of the incoming exchange if it is InOut :

<result xmlns="http://petals.ow2.org/components/eip"/>

3.1.9. Splitter Pattern
The EIP Component acts as an exchange pattern splitter, and allows you to split your message into multiple elements,
each of these elements are sent to a specified service.

Define in a consumes section the service you want to receive each splitted element of your original message

Caution

consumes sections cardinality is 1..1

Caution

All the Message Exchange Patterns are allowed. The same exchange pattern is apply to call the targeted service.

Caution

If the Message Exchange Pattern is InOut or InOptionalOut, the Out content of the original exchange contains
the concatenation of all the Out contents of the targeted exchanges.

Caution

By default, the process stops when a target exchange returns a Fault, and return a new fault. You can be robust
to a fault using the "fault-robust" parameter of the Service Unit. If true, a fault thrown by a target exchange don't
stop the process and don't change the original exchange status to FAULT. The fault is added to the Out content
of the original exchange.

Caution

By default, the process stops when a target exchange returns an Exception, and returns the exception. You can
be robust to a fault using the "exception-robust" parameter of the Service Unit. If true, an exception received from
a target exchange don't stop the process and don't change the original exchange status to ERROR. The exception
message is added to the Out content of the original exchange.

Caution

By default, the process splits the in message. You can concat and split the content of the attachments using the
"attachment-mode" parameter of the Service Unit. If true,the in message is ignored and the pattern works on each
file into the list of attachments into the original exchange.

Caution

The IN message of the original exchange is splitted with the Xpath expression specified with the "path" parameter
of the Service Unit

Service Configuration

PEtALS-SE-EIP 14

3.1.10. SplitterGather Pattern

The EIP Component acts in the same way as the Splitter pattern, but it aggregates each result received.

Define in a consumes section the service you want to receive each splitted element of your original message

Caution

consumes sections cardinality is 1..1

Caution

original exchange pattern is InOut. InOut pattern is used to call the targeted service.

Caution

The process stops when a service call returns a Fault, and returns the fault

Caution

The IN message of the original exchange is splitted with the Xpath expression specified with the path parameter
of the Service Unit

The response looks like :

<result xmlns="http://petals.ow2.org/components/eip">
 <response from the 1st call .../>
 <response from the 2nd call.../>
 ...
</result>

3.1.11. Service Unit descriptor example
<?xml version="1.0" encoding="UTF-8"?>
<jbi:jbi version="1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jbi="http://java.sun.com/xml/ns/jbi"
 xmlns:petalsCDK="http://petals.ow2.org/components/extensions/version-4.0"
 xmlns:eip="http://petals.ow2.org/components/eip/version-2.2"
 xmlns:generatedNs="http://petals.ow2.org/EIP/dynamic-router">

 <jbi:services binding-component="false">

 <jbi:provides
 interface-name="generatedNs:dynamic-router1"
 service-name="generatedNs:dynamic-router1Service"
 endpoint-name="dynamic-router1Endpoint">

 <petalsCDK:wsdl xsi:nil="true" />

 <eip:eip>dynamic-router</eip:eip>
 <eip:test>sum(/items/item/value) = 100</eip:test>
 <eip:test>name(/*)='helloworld'</eip:test>
 </jbi:provides>

 <!-- TestService called to perform a test on the incoming message -->
 <jbi:consumes interface-name="generatedNs:dynamic-routerExpression"
 service-name="generatedNs:dynamic-routerExpressionService"
 endpoint-name="routerExpressionEndpoint">
 <petalsCDK:mep xsi:nil="true" />
 </jbi:consumes>

 <!-- Service called if the first test is OK with the TestService response -->
 <jbi:consumes interface-name="generatedNs:dynamic-routerProvider1"

Service Configuration

PEtALS-SE-EIP 15

 service-name="generatedNs:dynamic-routerProvider1Service"
 endpoint-name="routerProvider1Endpoint">
 <petalsCDK:mep xsi:nil="true" />
 </jbi:consumes>

 <!-- Service called if the second test is OK with the TestService response -->
 <jbi:consumes interface-name="generatedNs:dynamic-routerProvider2"
 service-name="generatedNs:dynamic-routerProvider2Service"
 endpoint-name="dynamic-routerProvider2Endpoint">
 <petalsCDK:mep xsi:nil="true" />
 </jbi:consumes>

 <!-- Service called by default -->
 <jbi:consumes interface-name="generatedNs:dynamic-routerProvider3"
 service-name="generatedNs:dynamic-routerProvider3Service"
 endpoint-name="dynamic-routerProvider3Endpoint">
 <petalsCDK:mep xsi:nil="true" />
 </jbi:consumes>

 </jbi:services>
</jbi:jbi>

Table 3.1. Configuration of a Service Unit to provide a service (JBI)

Parameter Description Default Required

provides Describe the JBI service that will be exposed into the JBI bus. Interface
(qname), service (qname) and endpoint (string) attributes are required.

- Yes

Table 3.2. Configuration of a Service Unit to provide a service (CDK)

Parameter Description Default Required

wsdl-imports-
download

If false, the external imports declared in the service WSDL won't be
downloaded, so they won't be replaced by their content.

True No

wsdl Path to the WSDL document describing services and operations exposed
by the provided JBI endpoints defined in the SU.

The value of this parameter is :

• an URL

• a file relative to the root of the SU package

If not specified, a basic WSDL description is automaticaly provided by
the CDK.

- No

timeout Timeout in milliseconds of a synchronous send. this parameter can be
used in conjunction with the sendSync(Exchange exchange) method of
the Listeners. Set 0 for an infinite timeout.

- No

org.ow2.petals.messaging.provider.noackCheck PEtALS container document for further details.

This propety activates the bypass of acknowledgment messages
destinated to this SU.

- No

Service Configuration

PEtALS-SE-EIP 16

Table 3.3. Configuration of a Service Unit to provide a service (EIP)

Parameter Description Default Required
by

pattern

eip The name of the pattern to execute.

Pattern provided are : aggregator, router, dynamic-

router,dispatcher, routing-slip, wire-tap, bridge, splitter,

splitter-gather,scatter-gather.

If you provide other patterns, set the name of your pattern to use

- All

test XPath condition applied on the message -Router, DynamicRouter

path XPath splitter applied on the incoming message -Splitter, SplitterGather

wiretap-way Exchange way on which the message should be copied and sent to the
monitoring service.

Values are request (copy IN), response (copy OUT/Fault), request-
response (copy IN and OUT/Fault), request-on-response (copy IN
after OUT is received; not copied if Fault or Error)

- Wiretap

aggregator-complete XPath condition applied to complete the sequence and trigger the
invocation of the targeted service of the pattern with the aggregate
message

- Aggregator

aggregator-correlation XPath condition that is applied on the incoming message to correlate
them together. If absent, the condition is searched into the properties of
the exchange

- Aggregator

fault-robust If true, a fault thrown by a target exchange don't stop the process and
don't change the original exchange status to FAULT

false Splitter

exception-robust If true, an exception thrown by a target exchange don't stop the process
and don't change the original exchange status to ERROR

false Splitter

attachment-mode If true,the in message content is ignored and the pattern works on each
file into the list of attachments into the original exchange

false Splitter

3.1.12. Usage

When deploying a service unit like in the previous code snippet, the JBI messages received will be processed by the
Pattern and some calls to the services described in the other consumes sections will be called, depending on the pattern.

3.2. Call services during the pattern process
CONSUME SERVICE : Call a JBI service

In the same Service Unit than the provides section is defined, you can set all the services that will take a part of the pattern
processing. These services are referenced in consumes sections.

The order of the consumes is important.

3.2.1. Service Unit descriptor example
<?xml version="1.0" encoding="UTF-8"?>
<jbi:jbi version="1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jbi="http://java.sun.com/xml/ns/jbi"
 xmlns:petalsCDK="http://petals.ow2.org/components/extensions/version-4.0"
 xmlns:eip="http://petals.ow2.org/components/eip/version-2.2"

Service Configuration

PEtALS-SE-EIP 17

 xmlns:generatedNs="http://petals.ow2.org/EIP/bridge">

 <jbi:services binding-component="false">

 <jbi:provides
 interface-name="generatedNs:bridge1"
 service-name="generatedNs:bridge1Service"
 endpoint-name="bridge1Endpoint">

 <petalsCDK:wsdl xsi:nil="true" />

 <eip:eip>bridge</eip:eip>
 </jbi:provides>

 <jbi:consumes interface-name="generatedNs:bridgeProvider"
 service-name="generatedNs:bridgeProviderService"
 endpoint-name="bridgeProviderEndpoint">
 <petalsCDK:mep">InOut</petalsCDK:mep>
 </jbi:consumes>

 </jbi:services>
</jbi:jbi>

Table 3.4. Configuration of a Service Unit to consume a service (JBI)

Parameter Description Default Required

consumes Name of the JBI service to invoke into the JBI bus. You can define only
the interface (qname) to let the NMR choose a matching service, or the pair
service(qname) and endpoint (string) to consume the localized service.

- Yes

Service Configuration

PEtALS-SE-EIP 18

Table 3.5. Configuration of a Service Unit to consume a service (CDK)

Parameter Description Default Required

mep Message exchange pattern abbreviation. This parameter can be
user in conjunction with the method of the CDK Listeners :
createMessageExchange(Extensions extensions). This method
returns a CDK Exchange corresponding to the type of the specified
pattern.

Admitted values are : InOnly, RobustInOnly, InOptionalOut et InOut

- No

operation Operation to call on a service. This parameter can be used in conjunction
with the sending methods of the Listeners. If no operation is specified
in the Message Exchange to send, this parameter will be used.

- No

timeout Timeout in milliseconds of a synchronous send. this parameter can be
used in conjunction with the sendSync(Exchange exchange) method of
the Listeners. Set 0 for an infinite timeout.

- No

org.ow2.petals.messaging.consumer.noackCheck PEtALS container document for further details.

This propety activates the bypass of acknowledgment messages
destinated to this SU.

- No

org.ow2.petals.routing.strategyTo be used only in platform (distributed) PEtALS
distribution.Check PEtALS platform documentation for further details.
Override the default routing strategy for Message Exchanges sent by
this SU

- No

org.ow2.petals.transport.compressTo be used only in platform (distributed) PEtALS
distribution.Check PEtALS platform documentation for further details.

This property activates the compression of the messages payload when
set to true.

- No

org.ow2.petals.transport.qosTo be used only in platform (distributed) PEtALS distribution.
Check PEtALS platform documentation for further details.

This property overrides the default policy of the Quality of Service
supported by PEtALS Transporter for Message Exchange sent by this
SU.

- No

3.2.2. Usage
Each consumes section defined in the descriptor will take a part of the process, according to the pattern in used.

	PEtALS-SE-EIP
	Table of Contents
	PEtALS-SE-EIP
	Chapter 1. Features
	Chapter 2. Component Configuration
	Chapter 3. Service Configuration
	3.1. Processing a pattern
	3.1.1. Aggregator Pattern
	3.1.2. ScatterGather Pattern
	3.1.3. Router Pattern
	3.1.4. Dynamic Router Pattern
	3.1.5. Dispatcher Pattern
	3.1.6. Routing-slip Pattern
	3.1.7. Wire-tap Pattern
	3.1.8. Bridge Pattern
	3.1.9. Splitter Pattern
	3.1.10. SplitterGather Pattern
	3.1.11. Service Unit descriptor example
	3.1.12. Usage

	3.2. Call services during the pattern process
	3.2.1. Service Unit descriptor example
	3.2.2. Usage

