
DRAFT

Sat4j case studies
Learning Sat4j use and design by example

Daniel Le Berre Anne Parrain

http://www.sat4j.org/

CRIL-CNRS 8188 - Université d’Artois

Last revision: Wednesday 11th May, 2011 at 22:08

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License.

http://www.sat4j.org/
http://www.cril.fr/
http://www.univ-artois.fr/
http://creativecommons.org/licenses/by-nc-nd/3.0/

DRAFT

2

DRAFT
Contents

1 Introduction 1

2 Knapsack 3
2.1 The problem . 3
2.2 Solving the problem in Java . 5

2.2.1 Using the DependencyHelper class . 5
2.2.2 Optimization versus decision problems 6
2.2.3 Some useful methods . 8
2.2.4 Solving some randomly generated knapsack problems 8
2.2.5 Experimenting with Sat4j . 9

2.3 Building a PBO problem file without Sat4j . 10
2.3.1 Building the PBO file from the initial problem 10
2.3.2 Building the OPB file with Sat4j . 11
2.3.3 Exercices . 13

A Solution to exercices 15
A.1 Solutions for chapter 2 . 15

B Frequently Asked Questions 17
B.1 General . 17

B.1.1 How to compile Sat4j from source? . 17
B.2 Sat4j Core . 17
B.3 Sat4j Pseudo . 17
B.4 Sat4j MaxSat . 17

i

DRAFT

ii

DRAFT
1

Introduction

The aim of that document is to allow Java programmers to make the best use of Sat4j by
following on sample test cases how Sat4j designers are using the library.

The reader is expected to have a basic knowledge of Java and object oriented program-
ming (knowing design patterns would certainly help understanding Sat4j architecture) and
propositional logic.

The following examples have been tested with Sat4j 2.3.0 released on March 29, 2011.

The document is a work on progress until we cover the whole set of features of Sat4j.
Comments about that document and ideas to improve it are welcome. Just drop us a line
at casestudies@sat4j.org or even better use our Jira @ OW2 on the case studies compo-
nent.

The source code of the examples given in the document are available as archived Eclipse
projects in http://www.sat4j.org/casestudies/.

1

http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Propositional_calculus
mailto:casestudies@sat4j.org
http://jira.ow2.org/browse/SAT/component/10219
http://jira.ow2.org/browse/SAT/component/10219
http://www.sat4j.org/casestudies/

DRAFT

2 CHAPTER 1. INTRODUCTION

DRAFT
2

Knapsack

Pseudo-Boolean solvers such as Sat4j are probably not the best tools to solve KnapSack prob-
lems, since they contain only inequalities, for which Mixed Integer Linear Programming is
probably best suited. However, that problem is well suited for an introduction to Sat4j since
it allows us to express a simple optimization problem and to highlight the different behavior
of the two classes of Pseudo-Boolean solvers available in the library, namely resolution based
and cutting planes based solvers.

2.1 The problem
One of the very popular problems in operation research that fits well in the pseudo boolean
optimization framework is the knapsack problem. We have a set I of n items, each of them
with a weight wi and a value vi. We also have a container with a capacity K. The problem is
to put in the container the items from I in order to maximize the value of the container while
satisfying the capacity constraint. Think about how to fill a luggage when going in vacation.

Formally, we would like to solve the following optimization problem:

max :

n∑
i=1

vi × xi subject to
n∑

i=1

wi × xi ≤ K

where xi are boolean variables and vi, wi and K are integers.

Sat4j only allows to solve minimization problems, so we need to slightly change the initial
formulation into an equivalent minimization problem:

min :

n∑
i=1

−vi × xi subject to
n∑

i=1

wi × xi ≤ K

Let’s start by creating a new class Item that contains all the required data: the name of
the item, its weight and its value. The complete code of that class is giving in Listing 2.1.

That class is following the usual Java practices: each property has a getter because the
fields are not meant to be modified, the constructor allows to quickly set each property and a
toString() method is implemented to display an item in textual form.

For people used to test driven development, Listing 2.2 provides some test cases in JUnit
4 showing the expected behavior of the KnapSack class that we would like to implement
using Sat4j.

3

http://en.wikipedia.org/wiki/Knapsack_problem
http://www.junit.org/
http://www.junit.org/

DRAFT

4 CHAPTER 2. KNAPSACK

1 public class Item {
2
3 private final int weight;
4 private final int value;
5 private final String name;
6
7 public Item(String name, int weight, int cost) {
8 this.name = name;
9 this.weight = weight;

10 this.value = cost;
11 }
12
13 public int getWeight() {
14 return weight;
15 }
16
17 public int getValue() {
18 return value;
19 }
20
21 public String getName() {
22 return name;
23 }
24
25 @Override
26 public String toString() {
27 return name+"("+weight+"kg,"+value+")";
28 }
29 }

Listing 2.1: A simple class representing an item

1 public class KnapSackTest {
2
3 private KnapSack ks;
4 private Item laptop, clothes, books, presents;
5 List<Item> items;
6
7 @Before
8 public void setUp() {
9 laptop = new Item("macbook", 2, 1500);

10 clothes = new Item("clothes", 15, 2000);
11 books = new Item("books", 5, 200);
12 presents = new Item("presents", 4, 1000);
13 Item[] itemsArray = { laptop, clothes, books, presents };
14 items = Arrays.asList(itemsArray);
15 ks = new KnapSack(SolverFactory.newDefault(), 10);
16 }
17
18 @Test
19 public void testWithACapacityOf10Kg() {
20 List<Item> result = ks.solve(items, 10);
21 assertEquals(2, result.size());
22 assertTrue(result.contains(presents));
23 assertTrue(result.contains(laptop));
24 assertTrue(result.contains(presents));
25 assertEquals(2500, ks.bestValue());
26 }
27
28 @Test
29 public void testWithACapacityOf15Kg() {
30 List<Item> result = ks.solve(items, 15);
31 assertEquals(3, result.size());
32 assertTrue(result.contains(laptop));

DRAFT

2.2. SOLVING THE PROBLEM IN JAVA 5

33 assertTrue(result.contains(presents));
34 assertTrue(result.contains(books));
35 assertEquals(2700, ks.bestValue());
36 }
37
38 @Test
39 public void testWithACapacityOf20Kg() {
40 List<Item> result = ks.solve(items, 20);
41 assertEquals(2, result.size());
42 assertTrue(result.contains(laptop));
43 assertTrue(result.contains(clothes));
44 assertEquals(3500, ks.bestValue());
45 }
46 }

Listing 2.2: Some test cases showing the expected behavior of the KnapSack class

2.2 Solving the problem in Java
One of the easiest way to solve such a problem with Sat4j is to directly encode everything in
Java.

2.2.1 Using the DependencyHelper class
We need to provide two information to Sat4j: the objective function and the capacity con-
straint. Since we are working directly on Java objects, we can use the DependencyHelper
class for that purpose. That class aims at expressing the constraints and the objective func-
tions directly on Java objects. The capacity constraints is an “At Most” constraint, with
weighted literals. The DependencyHelper class relies on the WeightedObject class to
provide weighted literals to both the capacity constraint and the objective function. Let’s
build a new class KnapSack with a method solve() that solves a knapsack problem for a
given list of items and a specific capacity. That class contains a DependencyHelper field as
shown in Listing 2.5 that will be detailed later. The complete listing of the method solve()
is given in Listing 2.3.

The first step is to create an array of WeightedObject for both the constraint and the
objective function. The DependencyHelper class is generic, i.e. you are required to param-
eter it with the type of the elements you want to put in the constraints. As a consequence,
the WeightedObject class is also generic. A limitation of Java prevents the use of generic
type in arrays, as such it is needed to silent some warnings using the @SuppressWarnings
annotation (lines 2–5).

Those arrays are filled in with WeightedObject objects associating respectively an item
to its weight and to its value. The newWO() method is a convenience factory method from
WeightedObject class to be used with the import static of Java 5.

The capacity constraint is created using the DependencyHelper.atMost()method (line
14). The objective function is set line 15.

Sat4j can compute if a solution to that problem exists using the hasSolution() method
(line 16). The method is expected to return a subset of the input list of items. Sat4j has
its own classes to manage lists, that are more efficient than the one that ships with Java
because the order of the elements on those lists are not preserved across operations. We will
have to move the content of the result from Sat4j into a classical java.util.List: this is

DRAFT

6 CHAPTER 2. KNAPSACK

1 public List<Item> solve(List<Item> items, long capacity) {
2 @SuppressWarnings("unchecked")
3 WeightedObject<Item>[] weightedObjects = new WeightedObject[items
4 .size()];
5 @SuppressWarnings("unchecked")
6 WeightedObject<Item>[] objective = new WeightedObject[items.size()];
7 int index = 0;
8 for (Item item : items) {
9 weightedObjects[index] = newWO(item, item.getWeight());

10 objective[index] = newWO(item, -item.getValue());
11 index++;
12 }
13 try {
14 List<Item> result = new ArrayList<Item>();
15 helper.atMost("Capacity", BigInteger.valueOf(capacity),
16 weightedObjects);
17 helper.setObjectiveFunction(objective);
18 if (helper.hasASolution()) {
19 IVec<Item> sol = helper.getSolution();
20 for (Iterator<Item> it = sol.iterator(); it.hasNext();) {
21 result.add(it.next());
22 }
23 }
24 return result;
25 } catch (ContradictionException e) {
26 return Collections.emptyList();
27 } catch (TimeoutException e) {
28 return Collections.emptyList();
29 }
30 }

Listing 2.3: Solving the knapsack problem using a DependencyHelper object

the purpose of lines 17–20.

There are two possible cases that will prevent the code to execute normally:

• If the constraint added to the helper is trivially unsatisfiable, i.e. there is no way to
satisfy it, then a ContradictionException is launched. It should not occur in our
case.

• If the solver reaches a timeout before finding a solution, then a TimeoutException is
launched.

Note that it would be nice to reset the dependency helper at the beginning of the method
solve() in order to be able to reuse several times that method on different lists of items or
different capacity. However, there is no easy way to do it in Sat4j 2.3.0. A reset() method
will be available in the DependencyHelper class in release 2.3.1.

2.2.2 Optimization versus decision problems
By default, the engines used in Sat4j are solving decision problems, not optimization prob-
lems. A decision problem, implementing the IProblem interface in Sat4j, means that the
expected answer to the problem is yes/no (the answer to IProblem.isSatisfiable() or
DependencyHelper.hasASolution()). In general, the answer yes is usually completed by
an assignment, a model, used as a certificate of satisfiability. Here, the certificate is the set of
items to put in the container. Solving a decision problem for the knapsack problem is simply
choosing a set of items that satisfies the capacity constraint. To find the optimal set of items,
the one that maximizes the value of the container, one need to solve an optimization problem.

DRAFT

2.2. SOLVING THE PROBLEM IN JAVA 7

1 boolean isSatisfiable = false;
2 IOptimizationProblem optproblem = ..
3 try {
4 // while i t i s poss ib l e to find a b e t t e r so lut ion
5 while (optproblem.admitABetterSolution()) {
6 if (!isSatisfiable) {
7 isSatisfiable = true;
8 // can now s tar t optimization
9 }

10 // make sure to prevent equivalent so lut ions to be found again
11 optproblem.discardCurrentSolution();
12 }
13 if (isSatisfiable) {
14 return OPTIMUM_FOUND;
15 } else {
16 return UNSATISFIABLE;
17 }
18 } catch (ContradictionException ex) {
19 assert isSatisfiable;
20 // discarding a solut ion may launch a ContradictionException .
21 return OPTIMUM_FOUND;
22 } catch (TimeoutException ex) {
23 if (isSatisfiable)
24 return UPPER_BOUND;
25 return UNKNOWN;
26 }

Listing 2.4: finding an optimal solution in Sat4j

Optimization problems, implementing the IOptimizationProblem interface in Sat4j, con-
tain two additional methods: admitABetterSolution() and discardCurrentSolution().
The idea is to solve optimization problems by iterating over candidate solutions until no bet-
ter solution can be found. A pseudo-code explaining how optimization works in Sat4j is given
in Listing 2.4.

That approach is convenient from a solver designer point of view because that way, the
solver is often able to compute an upper bound of the optimal solution when it is not able
to find the optimal solution. Sat4j uses a lot the decorator design pattern. The pattern is
used in the PseudoOptDecorator class to transform any pseudo boolean satisfaction solver
into a pseudo boolean optimizer. However, from a user point of view, it is not really nice
to have to handle the optimization loop in the client code, so we also provide a utility class
OptToPBSatAdapter based on the adapter design pattern to allow the end user to compute
an optimal solution by a simple call to the isSatisfiable() method in the IProblem in-
terface.

1 private OptToPBSATAdapter optimizer;
2 private DependencyHelper<Item, String> helper;
3
4 public KnapSack(IPBSolver solver, int timeout) {
5 optimizer = new OptToPBSATAdapter(new PseudoOptDecorator(solver));
6 optimizer.setTimeout(timeout);
7 optimizer.setVerbose(true);
8 helper = new DependencyHelper<Item, String>(optimizer, false);
9 }

Listing 2.5: Setting up the solver and the DependencyHelper object

Let go back to our Knapsack problem. The Listing 2.5 details the fields and constructor of
the KnapSack class. It needs two fields: one for the optimizer, that will work with its own in-
ternal representation of the problem, and a DependencyHelper object to allow us to express

http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Adapter_pattern

DRAFT

8 CHAPTER 2. KNAPSACK

the constraints on Java objects. Line 5 defines the optimizer from a pseudo boolean satisfac-
tion solver (IPBSolver) decorated by a PseudoOptDecorator and a OptToPBSatAdapter.

The aim of the DependencyHelper class is to provide a convenient way for the Java
programmer to feed an IPBSolver with constraints on Java objects. Line 8 connects the
optimizer and the DependencyHelper. As a consequence, a solution computed by the
DependencyHelper object will be an optimal solution.

2.2.3 Some useful methods
We need to define a few other methods to complete our Knapsack class. They are detailed
in Listing 2.6. The first one computes the value of the container. Since we minimized the
negation of the value, we need to negate the value of the solution found by the solver (Line 2).

1 public long bestValue() {
2 return -helper.getSolutionCost().longValue();
3 }
4
5 public boolean isOptimal() {
6 return optimizer.isOptimal();
7 }
8
9 public void printStats() {

10 System.out.println(optimizer.toString(""));
11 optimizer.printStat(new PrintWriter(System.out, true), "");
12 }

Listing 2.6: Some useful utility methods

Since the helper class timeouts silently, we need to check is the solution found is optimal
or if it is only an upper bound of the optimal solution. The optimizer can provide us that
answer (Line 6). Finally, we can ask the solver to display some details about its configuration
(Line 10) and some statistics about the search (Line 11).

2.2.4 Solving some randomly generated knapsack problems
It is now quite easy to solve some knapsack problems using our KnapSack class. The List-
ing 2.7 provides a simple example program to solve random knapsack problems. The first
step is to create a list of items to put in a container. We can randomly generate ours
to check that it works fine (Line 7). The main decision we have to take is which pseudo
boolean solver we would like to use. Two families of solvers are available in Sat4j: res-
olution based ones and cutting planes based ones. The former usually perform well on
problems containing a lot of clauses and few pseudo boolean constraints, while the latter
performs better on problems containing only pseudo boolean constraints. Those solvers are
available from the org.sat4j.pb.SolverFactory class using the newResolution() and
newCuttingPlanes() static methods. Here we decided to choose a cutting planes based
solver. The timeout is fixed to 500 seconds. We solve our knapsack problem with a capacity
of 100 kg. We display the solution found and whether or not that solution is optimal. Then
we display some information about the solver used and some statistics about the search.

The Listing 2.8 provides a sample output for that program. The randomly generated
items appear first. The solver being in verbose mode, some information about upper bounds
found are also displayed on the console. Here the solver required three main steps to com-
pute the optimal solution. Note that the information from the solver provides a negative
value for the objective function, while the value of the container is positive later on. The
content of the container is displayed. The solver reports that the solution is optimal. The

DRAFT

2.2. SOLVING THE PROBLEM IN JAVA 9

1 public class Main {
2 public static final int N = 10;
3 public static void main(String[] args) {
4 Random rand = new Random();
5 List<Item> items = new ArrayList<Item>(N);
6 for (int i=1;i<=N;i++) {
7 items.add(new Item("i"+i,rand.nextInt(50)+1,rand.nextInt(1000)+1));
8 }
9 System.out.println(items);

10 KnapSack ks = new KnapSack(SolverFactory.newCuttingPlanes(),500);
11 List<Item> sol = ks.solve(items,100);
12 System.out.println(sol);
13 System.out.println("Value: "+ks.bestValue());
14 System.out.println("Size: "+sol.size());
15 System.out.println("Optimal? "+ks.isOptimal());
16 ks.printStats();
17 }
18 }

Listing 2.7: Using our knapsack solving class in Java

1 [i1(8kg,479), i2(34kg,767), i3(1kg,846), i4(1kg,614), i5(9kg,760), i6(41kg,785), i7(5kg
,987), i8(18kg,778), i9(47kg,740), i10(23kg,874)]

2 c Current objective function value: -5644(0.0080s)
3 c Current objective function value: -6105(0.015s)
4 [i1(8kg,479), i2(34kg,767), i3(1kg,846), i4(1kg,614), i5(9kg,760), i7(5kg,987), i8(18kg

,778), i10(23kg,874)]
5 Value: 6105
6 Size: 8
7 Optimal? true
8 Optimization to Pseudo Boolean adapter
9 Pseudo Boolean Optimization

10 Cutting planes based inference (org.sat4j.pb.core.PBSolverCP)
11 --- Begin Solver configuration ---
12 ...

Listing 2.8: Output given by our knapsack solver for 10 randomly generated items

remaining information provides the detailed setup on the engine used. Note that the fact
that our optimizer is using an adapter and an optimization decorator appears in the solver
description.

2.2.5 Experimenting with Sat4j
From that simple example, there are several experiments that can be done to understand
the notion of NP-completeness.

1. Modify the code in Listing 2.7 to provide both the number of items and the timeout (in
seconds) on the command line.

2. Run the program with different number of items (ranging from 50 to 1000 for exam-
ple) and various timeout (from 5 to 500 seconds for instance). Pay attention that the
capacity of the container might be either proportional to the number of initial items or
randomly generated to provide more interesting results with larger set of items. Check
that the solver sometimes answers optimally and sometimes not. Furthermore, when
the set of items becomes bigger, the number of non optimal solutions found by the solver
should also increase.

3. Sat4j allows to create a solver using the SolverFactory.getSolverByName() me-
thod. Modify again the main program to be able to define the solver to use on the

DRAFT

10 CHAPTER 2. KNAPSACK

command line (as third parameter). The solver will be given by name, e.g. Resolution,
CuttingPlanes or Both.

4. Try the solvers Resolution, CuttingPlanes or Both with various combination of
number of items and timeout. You should note that cutting planes based solvers are
more efficient on that specific problem. Both means that both a resolution and a cutting
planes based solver are running in parallel. Depending of the problems, that solution
may outperform the use of a specific kind of solver.

2.3 Building a PBO problem file without Sat4j
The other option is to translate our knapsack problem into a pseudo boolean optimization
problem using the standard input format defined for the pseudo boolean evaluation. The
main advantage of such approach is to be able to reuse a wide range of pseudo boolean opti-
mization solvers. The main drawback is that you have to take care of the mapping between
the opb file and the java objects.

2.3.1 Building the PBO file from the initial problem
A complete and precise description of the OPB format is available from the PB evaluation
web site. The main features are summarized below:

• The number of variables and constraints should be given on the first line of the file.
This is not an issue in our case since the number of variables equals the number of
items and we have only one constraint.

• The objective function must be a minimization function. We already saw in the previous
section that we simply have to negate the item values to change our maximization
function into a minimization function.

• The variable names must be of the form xDDD where DDD is a number between 1 and
the number of declared variables.

• Constraints must be either equalities or “at least” constraints. So, similarly to the
objective function, we need to negate our “at most” constraint to obtain an “at least”
one.

The Listing 2.9 provides the complete code for expressing our problem using the OPB
format. It is a class method since it’s code does not depend of instance members of the
KnapSack class. We simple create a file whose name is given as a parameter and feed it
using a PrintStream object. We first declare the number of variables and constraints in
the header of the file. Then we declare the minimization function. Finally, we express the
capacity cosntraint.

The Listing 2.10 provides a sample OPB file for the problem displayed in listing 2.8. One
can check the value and the weight of the various items. There are all negated because of
the rewriting of the problem. It is thus possible to solve that pseudo-boolean optimization
problem with any compatible solver.

1 * #variable= 10 #constraint= 1
2 min: -479 x1 -767 x2 -846 x3 -614 x4 -760 x5 -785 x6 -987 x7 -778 x8 -740 x9

-874 x10 ;
3 -8 x1 -34 x2 -1 x3 -1 x4 -9 x5 -41 x6 -5 x7 -18 x8 -47 x9 -23 x10 >= -100 ;

Listing 2.10: A knapsack problem in OPB format

http://www.cril.fr/PB11
http://www.cril.fr/PB11/format.pdf

DRAFT

2.3. BUILDING A PBO PROBLEM FILE WITHOUT SAT4J 11

1 public static void generateOpbFile(List<Item> items, long capacity,
2 String filename) throws FileNotFoundException {
3 int nbvars = items.size();
4 int nbconstrs = 1;
5 PrintStream out = new PrintStream(new File(filename));
6 out.printf("* #variable= %d #constraint= %d\n", nbvars, nbconstrs);
7 // need to trans la te a maximization into a minimization
8 out.print("min: ");
9 int index = 1;

10 for (Item item : items) {
11 out.printf(" -%d x%d ", item.getValue(), index++);
12 }
13 out.println(";");
14 // need to trans la te an at most into an at l e a s t
15 index = 1;
16 for (Item item : items) {
17 out.printf(" -%d x%d ", item.getWeight(), index++);
18 }
19 out.printf(" >= -%d ;", capacity);
20 }

Listing 2.9: Generating an OPB file by hand

1 public class GenerateOPB {
2 public static final int N = 10;
3 public static void main(String[] args) {
4 Random rand = new Random();
5 List<Item> items = new ArrayList<Item>(N);
6 for (int i=0;i<N;i++) {
7 items.add(new Item("i"+i,rand.nextInt(50)+1,rand.nextInt(1000)+1));
8 }
9 System.out.println(items);

10 try {
11 KnapSack.generateOpbFile(items, 100, "ks.opb");
12 } catch (FileNotFoundException e) {
13 System.err.println("Cannot create file: "+e.getMessage());
14 }
15 }
16 }

Listing 2.11: Using the OPB generation feature

Listing 2.12 provides the command line and the output of Sat4j default SAT engine (Res-
olution) on that problem. Note that the optimal solution is found (Line 68), and that the
optimal solution value is identical (Line 70). The “value line” (starting with a v, line 69)
provides a solution. Only the items associated with positive literals in the solution (the one
not prefixed by a -) should be added to the container. One can check that such solution is the
same than the one found with the pure Java solution.

2.3.2 Building the OPB file with Sat4j
In many occasion, we need to convert problems expressed in Java into a more standard input
format such as the one used in the various solver competitions. As such, Sat4j has a built in
mechanism to encode problems described in Java in OPB files. This is the responsibility of
class OPBStringSolver. The idea is to use that specific solver instead of a regular solver
in our code. It is important that such solver receives both the various calls to addXxxx() to
create the constraints and the call to isSatisfiable() to properly generate the OPB file.
The latter will throw a TimeoutException since it cannot solve the problem. The user is
expected to call the toString() method on that solver to retrieve the OPB file. The Listing

DRAFT

12 CHAPTER 2. KNAPSACK

1 $ java -jar lib/org.sat4j.pb.jar ks.opb
2 c SAT4J: a SATisfiability library for Java (c) 2004-2010 Daniel Le Berre
3 c This is free software under the dual EPL/GNU LGPL licenses.
4 c See www.sat4j.org for details.
5 c version 2.3.0.v20110329
6 c java.runtime.name Java(TM) SE Runtime Environment
7 c java.vm.name Java HotSpot(TM) 64-Bit Server VM
8 c java.vm.version 19.1-b02-334
9 c java.vm.vendor Apple Inc.

10 c sun.arch.data.model 64
11 c java.version 1.6.0_24
12 c os.name Mac OS X
13 c os.version 10.6.7
14 c os.arch x86_64
15 c Free memory 82872800
16 c Max memory 129957888
17 c Total memory 85000192
18 c Number of processors 2
19 c Pseudo Boolean Optimization
20 c --- Begin Solver configuration ---
21 c org.sat4j.pb.constraints.

CompetResolutionPBLongMixedWLClauseCardConstrDataStructure@299209ea
22 c Learn all clauses as in MiniSAT
23 c claDecay=0.999 varDecay=0.95 conflictBoundIncFactor=1.5 initConflictBound=100
24 c VSIDS like heuristics from MiniSAT using a heap lightweight component caching from

RSAT taking into account the objective function
25 c Expensive reason simplification
26 c Armin Biere (Picosat) restarts strategy
27 c Glucose learned constraints deletion strategy
28 c timeout=2147483s
29 c DB Simplification allowed=false
30 c --- End Solver configuration ---
31 c solving ks.opb
32 c reading problem ...
33 c ... done. Wall clock time 0.015s.
34 c #vars 10
35 c #constraints 1
36 c constraints type
37 c org.sat4j.pb.constraints.pb.MaxWatchPbLong => 1
38 c SATISFIABLE
39 c OPTIMIZING...
40 c Got one! Elapsed wall clock time (in seconds):0.018
41 o -5644
42 c Got one! Elapsed wall clock time (in seconds):0.036
43 o -6105
44 c starts : 3
45 c conflicts : 5
46 c decisions : 16
47 c propagations : 51
48 c inspects : 58
49 c shortcuts : 0
50 c learnt literals : 1
51 c learnt binary clauses : 1
52 c learnt ternary clauses : 1
53 c learnt constraints : 3
54 c ignored constraints : 0
55 c root simplifications : 0
56 c removed literals (reason simplification) : 0
57 c reason swapping (by a shorter reason) : 0
58 c Calls to reduceDB : 0
59 c number of reductions to clauses (during analyze) : 0
60 c number of learned constraints concerned by reduction : 0
61 c number of learning phase by resolution : 0
62 c number of learning phase by cutting planes : 0
63 c speed (assignments/second) : 5666.666666666667
64 c non guided choices 0
65 c learnt constraints type
66 c constraints type
67 c org.sat4j.pb.constraints.pb.MaxWatchPbLong => 1
68 s OPTIMUM FOUND
69 v x1 x2 x3 x4 x5 -x6 x7 x8 -x9 x10
70 c objective function=-6105
71 c Total wall clock time (in seconds): 0.046

Listing 2.12: Solving the OPB file using Sat4j on the command line

DRAFT

2.3. BUILDING A PBO PROBLEM FILE WITHOUT SAT4J 13

1 public static void generateOpbFileBis(List<Item> items, long capacity,
2 String filename) throws FileNotFoundException {
3 IPBSolver solver = new OPBStringSolver();
4 KnapSack ks = new KnapSack(solver, 500);
5 // crea t es the constraints in the so lver
6 List<Item> result = ks.solve(items, 100);
7 // a TimeoutException has been launched by the solver ,
8 // so the l i s t should be empty
9 assert result.isEmpty();

10 PrintStream out = new PrintStream(new File(filename));
11 out.println(solver.toString());
12 out.close();
13 }

Listing 2.13: Generating an OPB file using OPBStringSolver

2.13 provides the alternate code for generating an OPB file, using the solve() method this
time. Note that we need to keep track of the solver (Line 3) to be able to use the toString()
method later (Line 11). Note that such approach works fine here because we silently return
an empty list when the solver throws a TimeoutException.

We believe that such approach is the best way to deal with regular standard format with
Sat4j:

• No need to learn the various output formats ;

• The built in input/output formats are regularly updated to allow us to participate to
the competitions ;

• Some built-in helper tools such as DependencyHelper provide you a basic translation
of logical gates into CNF.

2.3.3 Exercices
1. Modify the Listing 2.11 to generate opb files using a various number of items and vari-

ous capacities. Generate various benchmarks, especially some very large ones (several
thousands items).

2. Try several engine from Sat4j pseudo on those benchmarks.

3. Try several other PBO solvers on large instances (at least 1000 items):

• bsolo (branch and bound, Linux binary)
• SCIP (Mixed Integer Linear Programming, Branch and Cut)
• ...

http://www.cril.univ-artois.fr/PB10/solver/bsolo_pb10.gz
http://scip.zib.de/download.shtml

DRAFT

14 CHAPTER 2. KNAPSACK

DRAFT
A

Solution to exercices

A.1 Solutions for chapter 2

1 public class MainImproved {
2 public static void main(String[] args) {
3 if (args.length!=3) {
4 System.out.println("Usage: nbitems timeout enginename");
5 return;
6 }
7 int n = Integer.valueOf(args[0]);
8 int timeout = Integer.valueOf(args[1]);
9 IPBSolver solver = SolverFactory.instance().createSolverByName(args[2]);

10 Random rand = new Random();
11 List<Item> items = new ArrayList<Item>(n);
12 for (int i=0;i<n;i++) {
13 items.add(new Item("i"+i,rand.nextInt(50)+1,rand.nextInt(1000)+1));
14 }
15 System.out.println(items);
16 KnapSack ks = new KnapSack(solver,timeout);
17 List<Item> sol = ks.solve(items,n*10);
18 System.out.println(sol);
19 System.out.println("Value: "+ks.bestValue());
20 System.out.println("Size: "+sol.size());
21 System.out.println("Optimal? "+ks.isOptimal());
22 ks.printStats();
23 }
24 }

Listing A.1: An improved main class for the knapsack problem

15

DRAFT

16 APPENDIX A. SOLUTION TO EXERCICES

DRAFT
B

Frequently Asked Questions

B.1 General
B.1.1 How to compile Sat4j from source?
Sat4j is using Maven 3 as main build system. As such, the easiest way to build Sat4j from
source is to use Maven 3. The source code of the project is available from OW2 forge using a
subversion repository. We expect the reader to be familiar with those tools. Getting started
guide and tutorials are available from those tools web sites.

The first step is thus to grab the source code from OW2 forge and then to build the library
using maven. This is exactly what does the command line below:

1 svn checkout svn://svn.forge.objectweb.org/svnroot/sat4j/maven/trunk SAT4J
2 cd SAT4J
3 mvn clean package

After running that command, the various jar files are available in the subprojects target
directories.

It is also possible to build Sat4j using ant.

1 svn checkout svn://svn.forge.objectweb.org/svnroot/sat4j/maven/trunk SAT4J
2 cd SAT4J
3 ant

In that case, the script builds the core and pseudo packages and make them available in
dist/CUSTOM directory.

B.2 Sat4j Core

B.3 Sat4j Pseudo

B.4 Sat4j MaxSat

17

http://maven.apache.org/
http://maven.apache.org/
http://sat4j.ow2.org
http://subversion.apache.org
http://ant.apache.org/

DRAFT

18 APPENDIX B. FREQUENTLY ASKED QUESTIONS

DRAFT

DRAFT

Sat4j is an open source software in JavaTM developed by Daniel Le Berre and Anne Par-
rain, researchers in the Centre de Recherche en Informatique de Lens, at Artois University,
Lens, France. Sat4j is distributed under both the Eclipse Public License and the GNU Lesser
General Public License. For more information about Sat4j, visit www.sat4j.org.

	Introduction
	Knapsack
	The problem
	Solving the problem in Java
	Using the DependencyHelper class
	Optimization versus decision problems
	Some useful methods
	Solving some randomly generated knapsack problems
	Experimenting with Sat4j

	Building a PBO problem file without Sat4j
	Building the PBO file from the initial problem
	Building the OPB file with Sat4j
	Exercices

	Solution to exercices
	Solutions for chapter 2

	Frequently Asked Questions
	General
	How to compile Sat4j from source?

	Sat4j Core
	Sat4j Pseudo
	Sat4j MaxSat

