Enhydra Shark

Copyright © 2006 Together Teamldsungen EDV-Dienstleistungen GmbH

Table of Contents

What 1S ENYAra Shark?oooiiiiii e e e e e 2
LT 1110 TS - (= S 3
Installing a Binary DisStriDULIONuiiiiiiiiiciie e e e e e aaas 3
BUITAING FrOM SOUICESeveiiiii e e e e e e e e e et e eraaaeees 4
ST o0 (=0 o1 10 0 YN 6
(O 0 = 1 gTe RS YA (=1 6
2 = T 1 o1 o T PP 6
PN oo 1oz o g IS = A= = 6
(D 0= L= S S PPT 6
S 110 TS 0 P 7
(0001110 01T 0T S = 8
Setting "eNgiNENaME" PArBMELESuu.iiii et e e e e e e e e e e e e e e e et e eaan s 9
Setting kernel behaviour in the case of unsatisfied split conditions............c.cccoeeviiiiiinennnnn. 10
Setting kernel to evaluate OTHERWISE conditions 1astccooveviiiiiiiiiii e, 10
Setting kernel for assigNmeNnt Creationcc.uiiiiiiiiiie e 10
Setting kernel for default assignmeNt Creationcooevvueiiiiiiiii e 11
Setting kernel for resource handling during assignment Creationcoccceeeeviiieiineeiinenn, 11
Setting kernel behaviour to re-evaluate assignments at engine startupcoeeeevevevinieennnnnnn. 11
Setting kernel for assignment handlingc.oooiiii i, 11
Setting kernel behaviour to fill the caches on Startupcc.oveveieeiiiiin e, 12
Setting kernel behaviour for reevaluating deadline limitS..........coocoiiiiiiiiiin e, 12
Setting kernel and event audit mgr for persisting old event audit data...............ccooceeveeeennnnns 12
Setting kernel for the priority handlingcoooeiiiiiii e 12
Setting properties for browsing LDAP server (only available in professional version) 13
Setting kernel's CallbackUtilities implementation Classcc.oeeviiviiiiiiiiiie e, 15
Setting kernel's ObjectFactory implementation ClasSovvvvuieiiiiciii e 16
Setting kernel's Tool ActivityHandler implementation Classcc.oeevvviiiiieeiiiieiii e, 16
Setting kernel's TxSynchronizationFactory ClasScouuveviiviiiiii e 16
(DY =107z cl oo 01 Te (0= 1 [o] o IS 17
Setting persitence components variable datamodelccooeiiiiii, 17
Setting Assignment manager implementation ClasScc.vveviiieiieciii e, 18
Setting user group IMPIEMENTALIONcoiuiii e e 18
Setting participant map persistence implementationccovvviieeiiieiin e, 19
Setting Caching iMPlEMENEALIONuiiiii i e e e e e e e aaeees 19
Setting instance persistence implemeNntationovvveiiiiiiie e 19
Configuring DODS instance persistence implementation to delete processes when they
1101 SRR 20
Setting logging APl implEMENtationcouiiiiiiiiiie e e 20
Setting repository persistence implementationccoccueeiiiieiiin e 22
Setting scripting manager implemMEeNtationooviiiiiiii i 23
Setting security (authorization) APl implementationccoooviieiiieiin e 23
S 1] g0 oo =T 1= 01 =P 23
Setting application map persistence implementationcoovevieiiiiieiiin e 24
Setting WEXML interoperability implementationccoocviiiiiiiiiii e, 24

Enhydra Shark

Setting DODS Id generator CaChe SIZE(S)vvvueiinieiiii e e e 24
ADOUL data MOELeeeeiiei e et e et e e eea s 25
Dz = 0= s = 0 o]) AP 25
What Needs to be Configured in Order to Use Database Other Then HypersonicSQL 25

What

IS Enhydra Shark?

Enhydra Shark is Java workflow engine completely based on WfMC [http://www.wfmc.org/standards/
docd/if2v20.pdf] and OMG [http://www.omg.org/docs/formal/00-05-02.pdf] specifications.

Shark is using WfMC's XML Process Definition Language [http://www.wfmc.org/standards/docs/TC-
1025 10 xpdl_102502.pdf] (XPDL) asits native workflow definition format.

Shark is a POJO library which provides APIs based on WIMC and OMG spec as well as a lot of
additional Shark specific APIsfor easier and more powerful workflow handling

Since Shark isalibrary, it does not open its own threads, but everything works from client application
thread, which makes shark a kind of workflow state machine - athin layer on top of the database.

Thisenables Shark to be used in many different environments. Basically shark can be used either directly
through its POJO interface by integrating engine within WEB, Swing or pure console application, or
it can be used as CORBA, EJB, RMI or WEB Service by making CORBA/EJB/RMI/WEB Service
wrappers on top of the POJO interface.

Shark project currently provides partial CORBA wrappers, full EJB wrappers and WEB Service
wrappers based on stateless EJB interface and AXIS based WEB Service wrappers deployable on
Tomcat. Therearealso several client applications (including administrative application) in Shark project
which are able to access Shark through POJO interface, as well as through CORBA, EJB and WEB
Service wrapper interfaces.

Shark is very configurable, and all of its"interna” plug-in interfaces, as well as complete kernel could
be replaced by another implementation.

Shark library can be used from many VMs simultaneously (in cluster scenario).

Shark can be configured to use organizational structure defined on LDAP server (through the use of
specific implementation of shark's UserGroup plug-in component)

Shark does not use any XPDL's Extended Attributes for its execution rules.
Shark has full JTA support

Shark uses DODS (OR/M tool from Enhydra), which enables shark to use amost any DB system
for storing information, and it can be easily configured to switch target DB vendor and/or url (it has
predefined scripts, and means to automatically create appropriate tables in those DBs using Octopus
- ETL tool from Enhydra)

Shark hasimplemented Tool Agent concept defined by WM C to executetools of automatic, server-side
activitiesof XPDL definition. Several useful Tool Agentsare coming with Shark, and anybody can create
its own tool agents based on Tool Agent API, which provides enormous capabilities for integration with
other systems.

Shark can use custom Java classes (and even interfaces or abstract classes) as process variables.

http://www.wfmc.org/standards/docs/if2v20.pdf
http://www.wfmc.org/standards/docs/if2v20.pdf
http://www.wfmc.org/standards/docs/if2v20.pdf
http://www.omg.org/docs/formal/00-05-02.pdf
http://www.omg.org/docs/formal/00-05-02.pdf
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf

Enhydra Shark

Getting started

This section describes how to start with Enhydra Shark: where to download it, how to configure it and
how to test it.

Installing a Binary Distribution

Download Binary Distribution

You can download the most recent community version of Shark's binary distribution from OW?2.
[http://forge.objectweb.org/project/showfiles.php?group_id=74] There you can choose between various
distribution types (zip, tar.gz, rpm, exe). Release notes are also available at same location.

If you want to see advantages of professional version, the demo version is available at Together site
[http://www .together.at/together/prod/tws/twsdemo/index.html] . Y ou can see about additional features of
professional version here. [http://www.together.at/together/prod/tws/twsfeatures/index.htmi]

Installing Shark from a Binary Distribution

If you areinstalling exe or rpmdistribution just follow the usual installation procedure. If you areinstalling
tar.gz or zip distribution, after unpacking it to a convinient location on your disk that we will refer to as
SHARK_HOME, you should do the following steps:

« open configure.properties file from SHARK _HOME with your favorite text editor

« find the following section:
Hypersoni cSQL
hsqgl _JdbcDri ver =or g. hsql db. j dbcDri ver
hsqgl _Connecti on_Ur | =j dbc: hsql db: C: / sasaboy/ t np/ Shar k/ out put / t ws/ db/ hsql / hsql
hsqgl _user=sa
hsql _passwd=

* replace the value of hsgl_Connection_Url property with the location to the example hsgl database that
will be created, to correspond to the location of your shark installation. E.g. in the example above, you
should replace the part:

C:/sasaboy/tmp/Shar k/output/tws

with SHARK_HOME. If your SHARK HOME is e.g. D:/tws-community-2.0-3 you will have
hsgl_Connection_Ur| property defined as follows:

hsqgl _Connecti on_Ur| =j dbc: hsql db: D: / t ws- conmruni t y- 2. 0- 3/ db/ hsql / hsql
NOTE: be sure to use slashe characters when specifying this location.
* execute configure script from SHARK _HOME (configure.sh for unix or configure.bat for windows)

Now you will have the following directory structure:

http://forge.objectweb.org/project/showfiles.php?group_id=74
http://forge.objectweb.org/project/showfiles.php?group_id=74
http://www.together.at/together/prod/tws/twsdemo/index.html
http://www.together.at/together/prod/tws/twsdemo/index.html
http://www.together.at/together/prod/tws/twsfeatures/index.html
http://www.together.at/together/prod/tws/twsfeatures/index.html

Enhydra Shark

Table 1. Shark directory structure

Directory Description

SHARK_HOME The root directory, referred as SHARK_HOME

..... dist d

..... bin Executable scripts

..... conf Configuration directory

.......... dods DODS configuration for various database vendors

.......... sql SQL scripts for creating shark database table
structure for various database vendors

..... db Directory for sample HSQL database

..... doc Documentation

..... EJB Contains EAR file for deployment in specific EJB
container

..... JSPClient Contains WAR file with sample JSP
worklisthandler application

..... lib Runtime libraries and third party dependencies

.......... client Client application libraries

.......... clientcontrib Third party libraries used in client applications

.......... contrib Third party libraries for engine

.......... engine Enginelibraries

.......... wrapper CORBA and WfXML wrapper libraries

..... Licenses Third party library's licenses

..... logs Directory for execution logs

..... repository XPDL Repository

.......... external Holds sample XPDL files

..... SharkWebClient Contains WAR file (and zip file) with Shark WEB
Client application for Tomcat

..... twe XPDL Editor (Together Workflow Editor/JaWE)

..... WS-Plain Contains WAR file for Shark Plain Web Service
deployment

Building from Sources

To build Shark you need to use anonymous CV'S to synchronize with the OW2 source repository at
:pserver:anonymous@cvs.forge.objectweb.org:/cvsroot/shark.

Synchronizing with CVS

Follow these instructions [http://forge.objectweb.org/scm/?group_id=74] for using the Shark OW2
anonymous CV S repository.

http://forge.objectweb.org/scm/?group_id=74
http://forge.objectweb.org/scm/?group_id=74

Enhydra Shark

If you didn't specify 'Shark’ for the modulename, you should get both Shark and SharkWebClient sources.

Configuring Build Environment

Open console window and go to the root folder of Shark's CV S sources.

To configure build environment execute configure script (configure.sh on unix and configure.bat on
windows) from Shark sources root folder. This will create build.properties files in the root folder and in
the util/dods folder containing information neccessary to build shark.

The most important property there is jdk_dir which specifies which Java compiler will be used. If you
want to change Javato be the different than the one registered with your system, you can execute configure
script with additional options specified:

configure -jdkhome %JAVA_HOME%
where JAVA_HOME isthe path to your Javainstallation.
Y ou can al'so manually edit two files specified above to change jdk_dir property.

If you leave default settings, shark will be built without Web service support (which is much faster). If you
need to build classes necessary to deploy shark as web service, you should either manually set the value
of build_ejb_ws property from build.properties file to on, or execute:

configure -buildgjbws on

This will enable you to generate EARSs for different application servers which will have the ability to
expose EJBs as web services as well as to access these web services through client applications coming
with shark.

Compiling sources

Open console window and go to the root folder of Shark's CV S sources.

To compile sources, execute make script without any parameters. If you don't want documentation to be
generated in the output use make buildNoDaoc. Building without documentation is much faster procedure.

When make process finishes, you will get shark binaries in output/tws folder which will have the same
structure as described for the binary distribution.

Note

After you build Shark, and if you want to "move" your binaries to the new location you need
to execute:

configure -instdir %INST_DIR%
where INST_DIR is the place where you want to put shark binaries, and then execute;
make install

In the route of the project, there are eclipse project files that can help you to configure Shark project in
eclipse.

Enhydra Shark

Note

Not all the source files are included in Shark project. This is because some of them are being
generated during "make" procedure (e.g. WfXML stubs, CORBA stubs, DODS layer objects, ...).

That's the reason why you should execute configure/make commands before being able to make
valid project in eclipse or some other IDE.

Supported platforms

Operating systems

Shark can theoretically run on any operating system that supports Java 2, although it only comes with
launch scripts for Windows and Unix/Linux. Shark is known to work with the following:

* Windows 2000, XP
e Linux

* AIX

J2SE Platform

Shark istested to work with JDK 1.4 and later.

Note

Actually, core engine could probably be easily set up to work even with JDK1.3.1

Application Servers

The Shark can be adapted to run on any J2EE application server. It is currently known to work with the
following application servers:

e Tomcat 5.5.x

e JBoss4.x

JONnAS Tomcat (4.5.2 and 4.7.5)
e Geronimo Tomcat 1.1.1

» WebLogic 8.x

Databases

When using DODS as implementation of persistence APIs, shark can work with different databases -
practically, any database supported by DODS can be used.

Enhydra Shark

Shark is known to work with the following databases:
 DB2

» Hypersonic

« MSQL

« MySQL

* Oracle

* PostgreSQL

The default database coming with Shark distribution is Hypersonic.

Starting Shark

Shark can be started from aclient application by configuring it first (which can be donein several different
manners), and then by getting an instance of it. This is the most common way to use shark from an
application:

String confFil ePat h="c:/ Shark. conf";
Shar k. conf i gure(conf Fi | ePat h) ;
Shar k shar k=Shar k. get | nst ance() ;

Everything el se can be done through the Shark interface.

Before configuring shark, it must be ensured there is a Data source and TransactionManager accessible
to Shark through JNDI.

Shark 2.0 is JTA oriented, and thus when shark works outside container which provides JTA
TransactionManager, we have to start one by our own. Also, in shark 2.0 for defining database we work
with, we use DataSource which should be registered in INDI, and thus when working outside container we
also need to take care about registering data source in JINDI. For the purpose of stand-al one shark usage we
made L ocal ContextFactory which isimplementation of Initial ContextFactory interface, and which purpose
isto: 1. start TransactionManager 2. provideaJNDI context - register TransactionManager in JNDI context
(so we can afterwards obtain TransactionM anager and UserTransaction from JNDI) - register DataSource
in INDI context So, when using shark outside container before configuring it with Shark.conf, you need
to execute the following command:

Local Cont ext Fact ory. set up("shar kdb");

where there must be "sharkdb.properties” file in the class path, and this file should hold your datasource
definition, i.e. something like:

j dbc. wr apper =or g. enhydr a. j dbc. st andar d. St andar dXADat aSour ce
j dbc. m nconpool =12

j dbc. maxconpool =180

j dbc. connnaxage=30

j dbc. conncheckl evel =1

dat asour ce. descri pti on=Shark W Engi ne Dat aSour ce

j dbc. connt est st nt =SELECT 1

dat asour ce. name=shar kdb

dat asour ce. cl assnane=or g. hsql db. j dbcDri ver
dat asour ce. url =j dbc: hsqgl db: C: / sasaboy/ pr ozonecvs/ Shar k/ out put / t ws/ db/ hsql / hsql
dat asour ce. user nane=sa

Enhydra Shark

dat asour ce. passwor d=
dat asource. i sol ati onl evel =0

In the example above, you can see that datasource name is "sharkdb", so on the other side, shark must
get the information for DODS how to search the datasource in JNDI, and there is a DODS property for
this purpose that is called:

DatabaseManager .DB.shar kdb.Connection.DataSourceName and the default value for this property is

"indi:java: comp/datasour ce/sharkdb" Thisvalueis appropriate for DODS to search for data source which
name is "sharkdb" when we use Local ContextFactory, so we do not need to re-define it in Shark.conf in
this case. During shark execution, both Shark kernel and DODS need accessto TransactionManager which
they are looking for through JNDI. There are also two default properties for Shark kernel and for DODS
which are defining the lookup namesfor TransactionManager, and the default values are set to be adequate
for Shark usage in a stand-alone application using L ocal ContextFactory. These properties are respectively:

SharkTxSynchronizationFactory. XATransactionManager LookupName
and

DatabaseManager .defaults. XATransactionManager LookupName and they both have the same default
value:

javax.transaction.TransactionManager (NOTE: when we use Shark in some container like Tomcat or
JBoss, we need to change the properties mentioned above according to container specification). Finaly, the
client application must know how to obtain UserTransaction from JNDI so it can perform begin/commit/
rollback of the transaction. When using shark outside any container and with Local ContextFactory as
described above, the UserTransaction lookup nameis:

java:comp/User Transaction So, the right procedure for starting stand-alone shark application could be:

Local Cont ext Fact ory. set up("sharkdb") ;
User Transaction ut = null;

try {
ut = (UserTransaction) new | nitial Context().lookup("java:conp/UserTransaction");
ut. set Transacti onTi neout (15 * 60);
ut . begin();

String confFil ePat h="c:/ Shark. conf";
Shar k. conf i gur e(conf Fi | ePat h) ;
Shar k shar k=Shar k. get | nst ance() ;
ut.commt();
} catch (Throwabl e ex) {
throw new Error("Sonething really bad happened", ex);

}

Configuring Shark

There are five different ways to configure shark:
1. use configure () method without parameters:

then shark is configured only from config file that is placed in its jar file. Shark that is configured
in this way works with default settings, and without many internal APl implementations (Caching,
EventAudit, Logging, ...).

Enhydra Shark

NOTE: thisway of default configuration is possible only when shark database is not HSQL, and only
when datasource lookup name equal sto "jndi:java:comp/datasource/sharkdb" and TransactionM anager
lookup name equals to "javax.transaction. TransactionM anager"

2. use configure (String filePath) method:

it creates File object out of the path given in the filePath string, and callsthe configure (File configFile)
described next.

3. use configure (File configFile) method:

shark first does basic configuration based on properties given in its jar file, and then does additional
configuration from the file specified. If the configuration File defines same properties as in default
configuration file from the jar, these property's values will override the default ones, plusall additional
properties from File/Properties will be added to shark configuration. The configuration files you are
passing as a parameter actually does not need to define whole configuration, but they could just
redefine some default configuration parameters (i.e. how to handle otherwise transition, to re-evaluate
deadlines or not, to create default assignment, ...) and add some additional configuration parameters
(i.e. AssignmentManagerClassName).

4. use configure (Properties props) method:

it does basically the same as previous method (in fact, the previous method converts the file content
into Properties object), but it offers the possibility for client applications to use Java Properties object
to configure shark.

5. use configure (Config config) method:

this configuration through EAF's Config object makes possible to configure shark with properties
defined in web.xml of your WEB application.

Y ou can use many shark instances configured differently (you just need to specify different config files/
paths, or define different Property object). If you want to use several shark instances (from more than one
VM) on the same DB, you should ALWAY S set the values for DODS cache sizes (must set it to zero),
and CacheM anagerClassName property should not exist).

As already mentioned, shark is very configurable engine, and all of its components, including kernel, can
be replaced by a custom implementation.

The most common way for configuring shark is defining custom Shark.conf file, and herewe will describe
how you can configure shark, by briefly explaining the meaning of entries in standard Shark.conf file
coming with shark distribution:

NOTE: Since Shark is singleton, it is currently not possible to use more then one shark instance in the
same class |oader.

Setting "enginename" parameter

You can set the name of shark instance by editing enginename property. Here is a part of configuration
file for setting this property:

the name of shark instance
engi nenane=Shar k

Enhydra Shark

Can be used to identify shark instance (NOTE: in shark versions before 2.0 this parameter had also other
meaning, and it was required to have different name for each shark instance).

Setting kernel behaviour in the case of unsatisfied split
conditions

You can set the way how the standard shark kernel will react when the process has nowhere to go after
an activity isfinished, and all activity's outgoing transitions are unsatisfied (evaluated to false). Of course,
this parameter has meaning only for the activities that have at |east one outgoing transition.

Hereisapart of configuration file for setting this property:

KERNEL SETTI NG for UNSATI SFI ED SPLI T CONDI TI ONS

There can be a cases when sone activity that has outgoing transitions other

than to itself (other then circular one), has nowhere to go based on

cal cul ation of these conditions (all of the conditions are evaluated to false)
In that case, the process could hang (it will not go anywhere, and it will

also not finish), finish (if there is no other active activities), or

the last transaction that finishes the activity will be rolled back.
#
#
#
#
#
#

This settings apply to the block activity's activities also, but the difference
is that if you set paraneter to FIN SH | F_POSSIBLE, shark will actually
finish block activity if possible.
The possible values for the entry are | GNORE, FIN SH_ | F_POSSI BLE and ROLLBACK,
and default kernel behaviour is FIN SH | F_POSSI BLE

Shar kKer nel . Unsati sfi edSpl it Conditi onsHandl i ng=FI Nl SH_ | F_PCSSI| BLE

So, there are three possible solutions as described, and the default one is to finish the process if possible.

Setting kernel to evaluate OTHERWISE conditions last

XPDL spec does not say that OTHERWISE transition should be executed only if no other transition
condition is evaluated to true (in the case of XOR split). So, if you i.e. put OTHERWI SE transition to be
the first outgoing transition of some activity, other transition's condition won't be even considered.

Y ou can configure shark to deviate from the spec, so that OTHERW SE transition iseval uated and executed
only if no other transition condition is evaluated to true. To do that, you should set the following property
to true.

Shar kKer nel . handl et herwi seTransi ti onLast =f al se

This parameter could be saving lot of headaches to XPDL designers, by removing the extra care on
OTHERWI SE transition positioning.

Setting kernel for assignment creation

Determinesif kernel will create assignments- default istrue. There are situationswhen assignment creation
is not necessary, and this is the case when al the processes are such that the whole process belongs to a
user which created it.

Shar kKer nel . cr eat eAssi gnnent s=tr ue

Since this setting affects the complete engine, you should carefully consider if thisis your use case. In
this case users won't have anything in their worklists, and client application should provide away to bind
user with its process.

10

Enhydra Shark

Setting kernel for default assignment creation

Determines if kernel will create default assignment for the process creator if assignment manager return
zero assignments.

NOTE: if this property is set to true, there can be side-effect with Tool activities with Manual Start and
Finish mode.

Shar kKer nel . cr eat eDef aul t Assi gnnent =t r ue

Default kernel valueistrue.

Setting kernel for resource handling during assignment
creation

Defines the limit number for loading all WfResources from DB before creating assignments.

When kernel determines that more assignments than the number specified by the limit should be created
it will make a call to retrieve all WfResources from DB.

When DODS is used as a persistence layer, it can improve the performance if there are not too many
WfResource objects in the system:

Shar kKer nel . Li m t For Retri evi ngAl | Resour cesWhenCr eat i ngAssi gnnent s=5

Default kernel valueis5.

Setting kernel behaviour to re-evaluate assignments at engine
startup

It is possible to force kernel to re-evaluate assignments during shark initialization. This can be done by
changing the following property:

#Assi gnnments. I ni ti al Reeval uati on=f al se

If you set this property to true, all not-accepted assignments are going to be re-evaluated (old oneswill be
deleted, and new oneswill be created based on current mappings, current state of User/Group information
and current implementation of AssignmentManager class).

Default kernel setting is not to re-evaluate assignments.

Setting kernel for assignment handling

Determines if kernel will delete other assignments from DB everytime when someone accepts/rejects
assignment, and will re-evaluate assignments each time this happens. If it is set to true, the side-effect
is that if there was reassignment, and the user that got this reassigned assignment rejects it, he will not
get it afterwards.

Shar kKer nel . del et et her Assi gnnment s=t r ue

11

Enhydra Shark

The shark kernel default istrue.

Setting kernel behaviour to fill the caches on startup

If you want shark to fill its Process and Resource caches at startup, you should edit the following entries
from configuration file:

#Cache. | ni t ProcessCacheStri ng=*
#Cache. | ni t Resour ceCacheStri ng=*

If you uncomment these lines, all processes and resources will be created based on DB data, and will be
filled into cache (actually, this number is restricted by the cache size).

The value of these properties can be set as a comma separated list of the process/resource ids that need to
be put into cache on engine start, e.g.: Cache.lnitProcessCacheString=1 test js basic, 5 test js Game

Shark kernel default is not to initialize caches.

Setting kernel behaviour for reevaluating deadline limits

If youwant shark not to reeval uate deadlines each time external deadline management checksfor deadlines,
you should set following entry to false (default kernel setting istrue)

#Deadl i nes. r eeval uat eDeadl i nes=true

Determinesif processor activity context will be used when re-eval uating deadlines Default kernel setting
is activity context.

Deadl i nes. usePr ocessCont ext =f al se

Determines if asynchronous deadline should be raised only once, or every time when deadline check is
performed. Default kernel setting is true (to raise deadline only once).

Deadl i nes. rai seAsyncDeadl i neOnl yOnce=t r ue

Setting kernel and event audit mgr for persisting old event
audit data

Determinesif old event audit datashould be persisted or not. Default isto persist. The value of this property
must be respected by both, the kernel, and event audit manager.

PERSI ST_OLD_EVENT_AUDI T_DATA=t r ue

Default kernel setting is true.

Setting kernel for the priority handling

Determinesif it isallowed to set the priority of the WfProcess’'WfAdctivity out of therange[1-5] asdefined
by OMG spec:

12

Enhydra Shark

#Shar kKer nel . al | owOut Of RangePri ori t y=f al se

Default kernel setting isfalse.

Setting properties for browsing LDAP server (only available in
professional version)

If you are using a LDAP server to hold your organization structure, you can configure shark to use our
LDAP implementation of UserGroup and Authentication interface (it will be explained later in the text
how to set it up), and then you MUST define some LDAP properties.

At the moment, shark implementations of UserGroup interfaces support two types of LDAP structures.
Thefirst structureismarked astype 0, and the second ismarked astype 1. The LDAP structures are detailly
explained in the document LDAP structures in Shark (html [../ldap_structure/LDAP_structure.html], pdf
[../Idap_structure/LDAP_structure.pdf])

Y ou can set this properties based on your LDAP server configuration, by changing the following part of
configuration file:

Shark can use LDAP inpl ementation of UserGoup interfaces,
and these are settings required by this inplenentati ons to access and
browse the LDAP server

H* H

possible values for LDAPStructureType paraneter are 0,1 and 2

0 is sinple structure, the possibility that one group or user belongs to nore
than one group is not supported

1 is nore conplex structure that supports the possibility that one group or

user belongs to nore than one group

2 Active Directory server (default) structure

LDAPSt ruct ur eType=2

LDAPHost =| ocal host
LDAPPor t =389

LDAPSear chBase=cn=User s, dc=pr ozone, dc=co, dc=yu
LDAPG oupOhj ect Cl asses=gr oup
LDAPUser Obj ect Cl asses=per son

LDAPG oupUni queAt t ri but eName=sAMAccount Nare
LDAPUser Uni queAt t ri but eNane=sAMAccount Nane

LDAPG oupDescri pti onAttri but eName=descri pti on

LDAPUser Passwor dAt t ri but eNane=user Passwor d
LDAPUser Real NaneAt t ri but eNane=di spl ayNane
LDAPUser Fi r st NaneAt t ri but eNane=gi venNane
LDAPUser Last NaneAt t ri but eName=sn

LDAPUser Emai | At t ri but eName=mai |

LDAPUser =sasaboy @r ozone. co. yu
LDAPPasswor d=

Specifies the size of LRU cache for holding user attributes (for shark performance reason)
LDAPC i ent . user Attri but esCacheSi ze=100

Specifies the size of LRU cache for holding group attributes (for shark performance reason)
LDAPC i ent . gr oupAt tri but esCacheSi ze=100

Active Directory specifics (when LDAPStructureType is set to 2)

holds information about the menber that belongs to (group) entry

13

../ldap_structure/LDAP_structure.html
../ldap_structure/LDAP_structure.html

Enhydra Shark

LDAPMenber At t ri but eNane=nenber

hol ds informati on about the menbership of entity
LDAPMenber OF At t ri but eName=nenber Of

Uni que representati on of entry
LDAPDI sti ngui shedNaneAt t ri but eName=di st i ngui shedName

specifics for LDAPStructureType=1

LDAPRel at i onObj ect O asses=gr oupOf Nanes
LDAPRel ati onUni queAttri but eNanme=cn

LDAPRel ati onMenber At t ri but eNane=nenber
LDAPG oupG oupsName=G oups

LDAPG oupUser sNanme=User s

LDAPG oupG oupRel ati onsNane=G oupRel ati ons
LDAPG oupUser Rel at i onsNane=User Rel ati ons

LDAPHost - the address of the machine where LDAP server is running
LDAPPort - the port through which LDAP server can be accessed

LDAPStructureType - if set to 0, the simple structure is used in which the possibility that one group or
user belongs to more than one group is not supported, if set to 1, the more complex structure is used
which supports the possibility that one group or user belongs to more than one group is not supported.
If set to 2, it is configured to access standard ActiveDirectory structure.

LDAPSearchBase - the name of the context or object to search (this is the root LDAP node where all
querieswill start at).

LDAPGroupObjectClasses - the comma separated list of LDAP object classes representing Group of
users. It isimportant that these classes must have a mandatory attribute whose value uniquely identifies
each entry throughout the LDAP tree.

LDAPUserObjectClasses - the comma separated list of LDAP object classes representing shark users.
It isimportant that these classes must have a mandatory attribute whose value uniquely identifies each
entry throughout the LDAP tree.

LDAPGroupUniqueAttributeName - the name of attribute that is mandatory for each LDAP object class
representing Group of users. The value of thisattribute MUST be unique for each LDAP entry for these
object classes throught the LDAP tree.

LDAPGroupDescriptionAttributeName - the name of attribute of LDAP object classes representing
Group of users that represents the Group description.

LDAPUserUniqueAttributeName - the name of attribute that is mandatory for each LDAP object
class representing User. The value of this attribute MUST be unique for each LDAP entry for these
object classes throughout the LDAP tree. When shark uses LDAP for authentication and user group
management, this attribute represents the username for logging into shark.

L DAPUserPasswordAttributeName - the name of attribute that ismandatory for each LDAP object class
representing User. When shark uses L DAP for authentication and user group management, this attribute
represents the password needed for logging into shark.

LDAPUserRealNameAttributeName - the name of the attribute of LDAP abject classes representing
User, that represents the real name of the shark user.

LDAPUserFirstNameAttributeName - the name of the attribute of LDAP object classes representing
User, that represents the first name of the shark user.

14

Enhydra Shark

e LDAPUserLastNameAttributeName - the name of the attribute of LDAP object classes representing
User, that represents the last name of the shark user.

» LDAPUserEmail AttributeName - the name of the attribute of LDAP object classes representing User,
that represents user's email address.

» LDAPUser - when LDAP server requires credentials for reading, thisis the username that will be used
when connecting LDAP server

» LDAPPassword - when LDAP server requires credentials for reading, thisis the password that will be
used when connecting LDAP server

* LDAPMemberAttributeName - only used in structure type 2 (Active Directory). Holds information
about the member that belongs to (group) entry.

» LDAPMemberOfAttributeName - only used in structure type 2 (Active Directory). Holds information
about the membership of entity.

» LDAPDistinguishedNameAttributeName - only used in structure type 2 (Active Directory). Unique
representation of entry.

» LDAPREelationObjectClasses - only used in structure type 1, the comma separated list of LDAP object
classes representing relations between shark users and group or between shark groups. It is important
that these classes must have amandatory attribute whose val ue uniquely identifies each entry throughout
the LDAP tree.

» LDAPRelationUniqueAttributeName - only used in structure type 1, the name of attribute that is
mandatory for each LDAP object class representing Relation of groups or group and users. The value
of this attribute MUST be unique for each LDAP entry for these object classes throught the LDAP tree

» LDAPRelationMemberAttributeName - only used in structure type 1,the name of attribute of LDAP
object classes (representing Relation of groups or group and users) that represents member that is
included (user or group) in the relation.

» LDAPGroupGroupsName - only used in structure type 1, the name of the specific group that must be
created and which will contain all groups

» LDAPGroupUsersName - only used in structure type 1, the name of the specific group that must be
created and which will contain al users

» LDAPGroupGroupRelationsName - only used in structure type 1, the name of the specific group that
must be created and which will contain all relations between groups

» LDAPGroupUserRelationsName - only used in structure type 1, the name of the specific group that
must be created and which will contain al relations between groups and users

Setting kernel's CallbackUtilities implementation class

If one wants to give its own implementation of CallbackUstilities interface, he can do it by changing the
following attribute:

HitHHH T A CALLBACK UTI LI TI ES

used for logging, and getting the shark properties

the default kernel setting is as follows

#Cal | backUtilitiesC assNane=or g. enhydra. shark. Cal | backUti |
Cal | backW il . Ti neProfiler.defaul t=120

15

Enhydra Shark

Cal | backW il . TineProfiler.level =info
The name of the classthat is used by default is commented.

This interface implementation is passed to all internal interface implementations, and is used by those
implementations to read shark property values, to log events and to utilize profiling options.

Property CallbackUtil. TimeProfiler.default specifes the value in milliseconds for profiling log. If some
shark APl method takes more time to execute than the value specified, it will be logged. If property
CallbackUtil.TimeProfiler.level is set to debug the whole stack-trace is logged, otherwise the normal
information about which method took too long is logged.

Setting kernel's ObjectFactory implementation class

If one wants to replace some parts of kernel with its own implementation (i.e. to replace
WrfActivitylnternal, WfProcesslnternal, ... implementations), he should create its own class based on this
interface, and configure shark to use it.

This can be done by changing the following part of configuration file:

the class nane of the factory used to creating kernel objects
the default kernel setting is as follows
#Obj ect Fact or yd assNanme=or g. enhydr a. shar k. Shar kQbj ect Fact ory

The name of the classthat is used by default is commented.

Setting kernel's ToolActivityHandler implementation class

If one wants to set its own Tool ActivityHandler implementation, that will communicate with tool agents
in adifferent way than the standard implementation does, he can configure the following:

HHHHEHHEHHR R TOOL ACTI VI TY HANDLER

the class nanme of the nanager used to execute tool agents

the default kernel setting is as follows
#Tool Acti vi t yHandl er Cl assNanme=or g. enhydr a. shar k. St andar dTool Act i vi t yHandl er

The name of the classthat is used by default is commented.

Setting kernel's TxSynchronizationFactory class

Implementation of TxSynchronizationFactory interface is responsible to support shark to work in JTA
environment.

HHHHHHEHHEEHHH A TX SYNCHRONI ZATI ON' FACTORY

#TxSynchroni zat i onFact or yCl assNane=or g. enhydr a. shar k. Shar kTxSynchr oni zat i onFact ory

#Shar kTxSynchr oni zat i onFact ory. XATr ansact i onManager LookupNanme=j avax. t ransacti on. Transact i onManager
#Shar kTxSynchr oni zat i onFact ory. debug=f al se

Default factory is org.enhydra.shark.Shark TxSynchronizationFactory.

It is important to configure the parameter
SharkTxSynchronizationFactory. XATransactionManager LookupName to specify JNDI lookup name of
the TransactionM anager.

16

Enhydra Shark

Database configuration

This section of configuration file isrelated to DODS implementation of persisting APIs.

In shark distribution, we provide SQL scripts for creating tables for the most DBs supported by DODS,
and appropriate L oaderJob files that can be used by Octopusto create DB tablesif providing appropriate
drivers. Thisfiles can be found in conf/sgl folder.

#

Turn on/off debugging for transactions or queries. Valid val ues
are "true" or "fal se".

#

Dat abaseManager . Debug="f al se"

Special settings for Postgresql DB
#Dat abaseManager . Obj ect | dCol utmNane=Cbj ect | d
#Dat abaseManager . Ver si onCol unmNanme=Cbj ect Ver si on

#

Maxi mum anmount of tinme that a thread will wait for

a connection fromthe connection pool before an

exception is thrown. This will prevent possible dead
locks. The time out is in mlliseconds. |If the

time out is <= zero, the allocation of connections
#wll wait indefinitely.

#
#

Dat abaseManager . DB. shar kdb. Connecti on. Al | ocati onTi meout =10000

#

Required for HSQ.: col um name NEXT nust be used

with table name prefix

NOTE: Wen working with other DBs, you should comment these two properties
#

Dat abaseManager . DB. shar kdb. Obj ect | d. Next Wt hPrefi x = true

Dat abaseManager . DB. shar kdb. Connect i on. Shut DownSt ri ng = SHUTDOWN

#

Used to | og database (SQL) activity.

#

Dat abaseManager . DB. shar kdb. Connecti on. Loggi ng=f al se

There is another important DODS configuration aspect - the cache sizes:

#

Default cache configuration

#

Dat abaseManager . def aul t s. cache. naxCacheSi ze=100

Dat abaseManager . def aul t s. cache. naxSi npl eCacheSi ze=50
Dat abaseManager . def aul t s. cache. maxConpl exCacheSi ze=25

If you know that several instances of shark will be used in several VMs, using the same DB, you should
set all this cache sizesto zero. Along with this, cache manager implementation (explained later in the text)
should not be used.

Setting persitence components variable data model

Following options are described together, although they affect different components, because option's
intention and the effect produced are the same.

Determinesthe maximum size of String that will be storedin VARCHAR field. String which sizeisgreater
than specified value will be stored as a BLOB. The maximumum size that can be set is 4000 (the default
one)

17

Enhydra Shark

DODSPer si st ent Manager . max VARCHARSI ze=4000
DODSEvent Audi t Manager . max VARCHARSI ze=4000

Determineswhich datamodel will be used for storing process and activity variables. There aretwo options:

1. using standard datamodel, whereall datatypesarein onetable (including BLOB datatypefor persisting
custom Java objects and large Strings

2. using optional data model, where one table contains all data types except BLOB, and there is another
table that references previous table, and is used only for storing BLOB information (for persisting
custom Java objects and large Strings)

Default isto use standard datamodel, but using optional datamodel canimprove performancein use cases
where there are not so many custom Java objects and large String objects, and when shark and DODS
caches are not used, and thisis especialy better choice if using Oracle DB.

DODSPer si st ent Manager . useSt andar dVar i abl eDat avbdel =t r ue
DODSEvent Audi t Manager . useSt andar dVar i abl eDat aMbdel =t r ue

Setting Assignment manager implementation class

If one would like to create its own Assignment manager, which would decide which assignments are to
be created for an activity, he can implement its own Assignment manager, based on AssignmentM anager
interface, and configure shark to use it by changing the following setting:

Assi gnnment Manager Cl assNane=or g. enhydr a. shar k. assi gnnent . St andar dAssi gnnment Manager
Shark comes with three different implementations of this manager:

» Standard - just returnsthe list of users passed as a parameter, or if there are no usersin thelist, it returns
the user that created corresponding process.

» History Related - if there are some special "Extended attributes* defined in XPDL for some activity
definition, this implementation checks the assignment history (who has already executed activity with
such definition, ...) to make a decission about assignments that should be created.

» XPDL Straight Participant Mapping - it makes assignments for the user that has the same Id as XPDL
performer of activity.

» Workload Related (only professional version) - it makes assignments by taking into account user
workload

NOTE: if you do not set any implementation (you simply comment line above), shark will use the default
procedure. Actually, standard implementation of assignment APl isnot very useful, it basically just returns
the first valid options.

Setting user group implementation

Shark's standard and history related assignment managers can be configured to use some implementation
of UserGroup APl when determining which user(s) should get the assignment.

Shark comes with DB based implementation of this APl and professional version also brings LDAP
implementation of this APl . DB based implementation uses DB for retrieving information about

18

Enhydra Shark

organizational structure, and LDAP based implementation uses LDAP server for getting organizational
information.

Hereisapart of configuration filefor setting UserGroup manager implementation for standard assignment
manager:

St andar dAssi gnnent Manager . User G oupManager G assNane=or g. enhydr a. shar k. user gr oup. DODSUser G oupManager

NOTE: shark can work without implementation of thisAPI - if you do not want to use any implementation,
simply comment line above.

Setting participant map persistence implementation

Shark's standard and history related assignment managers can be configured to use some implementation
of ParticipantMapping APl when determining which user(s) should get the assignment.

ThisAPI isto retrieve mapping information between X PDL participants and shark users. Shark application
comes with DODS based participant map persistence implementation.

Y ou can provide your own implementation of participant map persistence API.

Hereis a part of configuration file for setting ParticipantMapping manager implementation for standard
assignment manager:

St andar dAssi gnnment Manager . Par ti ci pant MapPer si st enceManager C assName=or g. enhydr a. shar k. par t mapper si st ence. DODS|

NOTE: if you comment the lines above, shark will work without participant map persistence API
implementation.

Setting Caching implementation

Shark comeswith LRU based cache implementation for holding Process and Resource objects. By defaullt,
shark is configured to use this cache implementation, which can speed-up its use by the clients.

Thisis the section of configuration file that defines cache implementation, and its sizes:

Default cache is LRU

Cache defaults
#
CacheManager Cl assNanme=or g. enhydr a. shar k. cachi ng. LRUCacheMyr

Default LRU cache sizes (LRU inplenentation default is 100 for each cache)

#LRUPr ocessCache. Si ze=100
#LRUResour ceCache. Si ze=100

NOTE: if you do not set any implementation (you simply comment line above), shark will not perform
any caching.

Setting instance persistence implementation

The implementation of this API is used to store information about shark's processes, activities, ...
into DB. Shark comes with DODS based instance persistence implementation. One can write its own

19

Enhydra Shark

implementation of thisinterface (maybe using Hibernate or EJB), and to configure shark to work with this
implementation, he needs to edit the following section of configuration file:

#

DODS instance persistent nmanager defaults

#

I nst ancePer si st enceManager C assNane=or g. enhydr a. shar k. i nst anceper si st ence. DODSPer si st ent Manager

Shark can't work without instance persistence implementation.

NOTE: If onewould like to implement other instance persistence implementation, he should also giveits
own implementation of SharkTransaction API.

Configuring DODS instance persistence implementation to
delete processes when they finish

By default, DODS implementation of instance persistence interface does not del ete finished processes, but
they areleft in DB. This behaviour can be changed by setting the following parameter to true:

Determines if finished processes should be deleted from DB (DODS persi stence
manager default is false)
#DODSPer si st ent Manager . del et eFi ni shedProcesses=f al se

Setting logging APl implementation

Shark comes with a default logger implementation, implemented by the use of log4j. Y ou can write your
own implementation of Logging API, and set it by editing configuration file, and probably adding some
additional entriesin configuration file that will be read by your logger implementation. Hereisacomplete
logger configuration for shark standard logger:

#

Standard | oggi ng manager defaults

#

Loggi ngManager C assName=or g. enhydr a. shar k. | oggi ng. St andar dLoggi ngManager

Standard Loggi ng nmanager is using log4j, and here is |og4j configuration
#
| og4j . r oot Logger =i nf o, Shar kExecuti on

| og4j . appender . Dat abase=or g. apache. | og4j . Rol | i ngFi | eAppender

| og4j . appender . Dat abase. Fi | e=@\D_PATH@ | ogs/ Shar kPer si st ence. | og

| og4j . appender . Dat abase. MaxFi | eSi ze=10MB

| 0og4j . appender . Dat abase. MaxBackupl ndex=2

| og4j . appender . Dat abase. | ayout =or g. apache. | og4j . Pat t er nLayout

| 0og4j . appender . Dat abase. | ayout . Conver si onPat t er n=%d{ | SO8601}: %¥n

| 0og4j . appender . XM_Qut For mat For Per si st ence=or g. apache. | og4j . Fi | eAppender

| og4j . appender . XMLQut For mat For Per si st ence. Fi | e=@\D_PATH@ | ogs/ chai nsaw- per si st ence. | og
| 0og4j . appender . XM_Qut For mat For Per si st ence. append=f al se

| og4j . appender . XMLQut For mat For Per si st ence. | ayout =or g. apache. | og4j . xnl . XM_Layout

| og4j . appender . PackageEvent s=or g. apache. | og4j . Rol | i ngFi | eAppender

| og4j . appender . PackageEvent s. Fi | e=@\D_PATH@ | ogs/ Shar kPackageHand! i ngEvent s. | og
| og4j . appender . PackageEvent s. MaxFi | eSi ze=10MB

| 0og4j . appender . PackageEvent s. MaxBackupl ndex=2

| og4j . appender . PackageEvent s. | ayout =or g. apache. | og4j . Pat t er nLayout

| og4j . appender . PackageEvent s. | ayout . Conver si onPat t er n=%a@{ | SC8601} : %?m

| 0og4j . appender . Dat abaseManager =or g. apache. | og4j . Rol | i ngFi | eAppender
| og4j . appender . Dat abaseManager . Fi | e=@\D_PATH@ | ogs/ dods. | og

20

Enhydra Shark

| 0og4j . appender . Dat abaseManager . MaxFi | eSi ze=10MB

| og4j . appender . Dat abaseManager . MaxBackupl ndex=2

| 0og4j . appender . Dat abaseManager . | ayout =or g. apache. | 0g4j . Pat t er nLayout

| og4j . appender . Dat abaseManager . | ayout . Conver si onPat t er n=%d{ | SC8601}: %n¥n

| og4j . appender . XMLQut For mat For PackageEvent s=or g. apache. | og4j . Fi | eAppender

| 0og4j . appender . XMLQut For mat For PackageEvent s. Fi | e=@\D_PATH@ | ogs/ chai nsaw packageevents. | og
| og4j . appender . XMLQut For mat For PackageEvent s. append=f al se

| 0og4j . appender . XM_Qut For mat For PackageEvent s. | ayout =or g. apache. | og4j . xm . XM_Layout

| 0og4j . appender . Shar kExecut i on=or g. apache. | og4j . Rol | i ngFi | eAppender

| og4j . appender . Shar kExecuti on. Fi | e=@\D_PATH@ | ogs/ Shar kExecut i onFl ow. | og
| 0og4j . appender . Shar kExecuti on. MaxFi | eSi ze=10MB

| og4j . appender . Shar kExecut i on. MaxBackupl ndex=2

| 0og4j . appender . Shar kExecuti on. | ayout =or g. apache. | og4j . Pat t er nLayout

| og4j . appender . Shar kExecuti on. | ayout . Conver si onPatt er n=%l{ | SO8601}: %?m

| og4j . appender . XMLQut For mat For Execut i on=or g. apache. | og4j . Fi | eAppender

| 0g4j . appender . XM_Qut For mat For Execut i on. Fi | e=@\D_PATH@ | ogs/ chai nsaw- executi on. | og
| og4j . appender . XMLQut For mat For Execut i on. append=f al se

| 0og4j . appender . XM_Qut For mat For Execut i on. | ayout =or g. apache. | og4j . xm . XM_Layout

| 0og4j . appender . NTEvent Log=or g. apache. | 0g4j . nt. NTEvent LogAppender

| og4j . appender . NTEvent Log. sour ce=Shar kCORBA- Ser vi ce

| 0og4j . appender . NTEvent Log. | ayout =or g. apache. | og4j . Patt er nLayout

| og4j . appender . NTEvent Log. | ayout . Conver si onPattern="%l{|1 SO8601}: [%], %, %: %?n"

| og4j . appender . TP=or g. apache. | og4j . Rol | i ngFi | eAppender

| og4j . appender. TP. Fi | e=@\D_PATH@ | ogs/tp. | og

| 0g4j . appender. TP. MaxFi | eSi ze=10MB

| 0og4j . appender . TP. MaxBackupl ndex=2

| og4j . appender . TP. | ayout =or g. apache. | og4j . Pat t er nLayout

| og4j . appender. TP. | ayout . Conver si onPatt er n=%a{| SC8601}: [%], %, %: %H

| 0g4j . appender . TP-| P=or g. apache. | og4j . Rol | i ngFi | eAppender

| og4j . appender . TP-1 P. Fi | e=@\D_PATH@ | ogs/t p-i p. | og

| 0og4j . appender. TP-1 P. MaxFi | eSi ze=10MB

| og4j . appender . TP- | P. MaxBackupl ndex=2

| 0og4j . appender. TP-1 P. | ayout =or g. apache. | og4j . Pat t er nLayout

| og4j . appender. TP-1 P. | ayout . Conver si onPat t er n=%l{ | SC8601}: [%], Y%, %: %%

| og4j . appender . Consol e=or g. apache. | og4j . Consol eAppender
| 0og4j . appender . Consol e. | ayout =or g. apache. | og4j . Pat t er nLayout
| og4j . appender . Consol e. | ayout . Conver si onPat t er n=%@d{| SC8601}: %

| og4j . | ogger . Per si st ence=l NFO, Dat abase
#l og4j . | ogger . Per si st ence=I NFO, Dat abase, XM_Qut For nat For Per si st ence

| og4j . | ogger. PackageEvent Logger =I NFO, PackageEvent s
#l 0g4j . | ogger . PackageEvent Logger =I NFO, PackageEvent s, XM_LQut For mat For PackageEvent s

| og4j . | ogger. Ti neProfi | er =l NFO, Consol e, TP
| og4j . | ogger. Ti neProfil er-1nstancePersi st ence=I NFO Consol e, TP-| P

| 0g4j . | ogger. Shar k=I NFO, @I N_LOG_CHANNEL @ Shar kExecut i on
#1 0g4j . | ogger . Shar k=I NFO, Consol e, Shar kExecut i on, XM_Qut For mat For Execut i on

| og4j . | ogger. Scri pti ng=l NFO, Consol e, Shar kExecuti on
#l og4j . | ogger . Scri pti ng=I NFO, Shar kExecut i on, XM_Qut For mat For Execut i on

| 0og4j . | ogger . Dat abaseManager =I NFO, Dat abaseManager

The standard logger implementation iswritten in away that it could log even if there are no log4j settings
defined in configuration file (so the implementation can't configure log4j), but log4j is configured from
client application using shark.

The following log outputs are generated by default:

e Server execution flow log - logs every significant shark operation like package loading, process
instantiation, activity completion, Theselogs are al so displayed in the consol e during shark execution.

21

Enhydra Shark

 Package Handling Events - logs every operation performed with Package definition files (XPDL files).
These operations are;

* loading of the package from external repository into shark's memory
« unloading of the package from the shark
 updating of the package that is already in the shark's memory

» Server persistence log - logs every operation related to communication among DODS instance
persistence implementation, and underlying database.

Y ou have the possibility to force Shark to makelog filesthat can be viewed using log4j's chainsaw viewer.
To do so, for each type of logger, you have to comment first and uncomment the second line that refers
to the logger at the bottom of logger configuration.

Then, the output logs will be also generated into XML log files (chainsaw-execution.log, chainsaw-
packageevents.log and chainsaw-persistence.log) that can be read by chainsaw.

The chainsaw can be started by using proper "chainsaw" script from the root of the project. When it is
started, you have to open wanted log file by using its "File->Load file..." menu item, and it will present
you the proper logs.

NOTE: If you do not want any logging, comment L oggingM anagerClassName line above, and shark will
not log anywhere.

Setting repository persistence implementation

This API is used to store information about XPDL definitions and versions. Shark comes with two
implementations of this API: FileSystem based, and DODS based.

Y ou can provide your own implementation of thisAPI, and replace the current implementation. The default
implementation is DODS implementation.

Default repository persistent manager i s DODS
#

#Reposi t or yPer si st enceManager C assNane=or g. enhydr a. shar k. reposi t or yper si st ence. Fi | eSyst enReposi t or yPer si st ence

The |l ocation of xpdl repository.

If you want to specify it by relative path, you nust know that this path nust
be relative to the Shark.conf file (in conf folder)

Fi | eSyst enReposi t or yPer si st enceManager . XPDL_REPGCSI TORY=r eposi t ory/ i nt er nal

The | ocation of xpdl history repository.

|If you want to specify it by relative path, you nust know that this path nust

be relative to the Shark.conf file (in conf folder)

Fi | eSyst enReposi t or yPer si st enceManager . XPDL_HI STORY_REPQCSI TORY=r eposi tory/i nt ernal / hi story

Reposi t or yPer si st enceManager Cl assNane=or g. enhydr a. shar k. reposi t or yper si st ence. DODSReposi t or yPer si st enceManage!

The dat abase used for Repository persistence when usi ng DODS i npl enent ai on
#DODSReposi t or yPer si st enceManager . Dat abaseNane=shar kdb

|If set to true, the debug information on repository transaction will be

witten to consol e
#DODSReposi t or yPer si st enceManager . debug=f al se

NOTE: Shark can't work without implementation of this API.

22

Enhydra Shark

Setting scripting manager implementation

Shark comes with standard scripting manager implementation. This is afactory for returning appropriate
script evaluator, and standard implementation offers three different script evaluators: Python, Java script
and Bean shell.

Default Scripting manager is Standard

Scri pti ngManager G assNane=or g. enhydr a. shark. scri pti ng. St andardScri pti ngManager

Shark can't work without Scripting APl implementation.

Setting security (authorization) APl implementation

This API contains methods to authorize shark usage on the level of particular methods (i.e. user is
authorized to create, abort, terminate or suspend some process, ...).

Default Security manager is Standard

Securi t yManager G assNane=or g. enhydr a. shar k. security. St andar dSecuri t yManager

NOTE: If you don't want any authorization, you just need to comment line above - shark can work without
this APl implementation.

Setting tool agents

Shark comes with standard Tool AgentFactory implementation, and with several example tool agents
(JavaScript, BeanShell, RuntimeA pplication, SOAP, Mail and JavaClasstool agent), and with default tool
agent implementation.

To learn more about tool agent, you should look at Tool Agent documentation.

These are configuration settings for tool agents:

Default Tool agent settings

Tool Agent Manager O assNane=or g. enhydr a. shar k. t ool agent . St andar dTool Agent Manager

The list of tool agents

Tool Agent . JavaCl assTool Agent =or g. enhydr a. shar k. t ool agent . JavaC assTool Agent

Tool Agent . JavaScri pt Tool Agent =or g. enhydr a. shar k. t ool agent . JavaScr i pt Tool Agent

Tool Agent . BshTool Agent =or g. enhydr a. shar k. t ool agent . BshTool Agent

Tool Agent . Runt i neAppl i cati onTool Agent =or g. enhydr a. shar k. t ool agent . Runti neAppl i cati onTool Agent
Tool Agent . Mai | Tool Agent =or g. enhydr a. shar k. t ool agent . Mai | Tool Agent

Tool Agent . SOAPTool Agent =or g. enhydr a. shar k. t ool agent . SOAPTool Agent

Tool Agent . Schedul er Tool Agent =or g. enhydr a. shar k. t ool agent . Schedul er Tool Agent

Pool size for Schedul er Tool Agent
Schedul er Tool Agent . t hr eadPool Si ze=3

Default tool agent is used when there is no mappings for sone

23

Enhydra Shark

XPDL application definition
Def aul t Tool Agent =or g. enhydr a. shar k. t ool agent . Def aul t Tool Agent

Specifies the size of cache for holding ext. attributes (for shark perfornmance reason)

Default -1 nmeans unlimted
#Abst ract Tool Agent . ext Attri bsCacheSi ze=-1

NOTE: shark can work without tool agent APl implementation, but then it can only execute processes
that do not contain any "Tool" activity.

Setting application map persistence implementation

This APl isused to retrieve mapping information between X PDL applications and tool agent applications.
Shark comes with DODS based application map persistence implementation.

For a standard tool agent manager, you can specify which implementation of application map persistence
APl you want to use.

Application map details for StandardTool Agent Manager
St andar dTool Agent Manager . Appl i cati onMapPer si st enceManager C assNane=or g. enhydr a. shar k. appnmapper si st ence. DODSAp]

NOTE: shark can work without application map persistence APl implementation.

Setting WfXML interoperability implementation

This API is used to communicate with other engines viaWfXML protocol (spec defined by WEMC).

W Engi nel nt er poerabi l ity manager

#W Engi nel nt er oper abi | i t yManager Cl assNane=or g. enhydr a. shark. i nt eroperabi | i ty. W XM.I nt er oper abi | i tyl npl
#l nt er oper abi | i ty. Host =I ocal host

#l nt er operabi lity. Port=8080

#l nt er oper abi l i ty. Observer Pat h=/ axi s/ servi ces/ asapObser ver Bi ndi ng

#l nteroperability.|gnoreTermn nat eAndAbort Renot eExcepti ons=f al se

NOTE: shark can work without implementation of this API.

Setting DODS Id generator cache size(s)

You can specify cache sizes for object Ids (activity and process Ids). When some process or activity is
created, shark asks its data layer (default DODS layer) for unique Id. This Id generation is synchronized
on DB, so that shark can be used from different VMs at atime. To tell shark not to go to the DB so often,
you can specify an Id cache for objects:

DODS Settings for Id Generator

default cache size for Ids (if cache size for particular object Id is not
specified, then this size is used, and if this cache size also isn't

specified, programdefault is used)

DODS. def aul t s. | dGener at or . CacheSi ze=100

cache size for process instance |ds
#DODS. | dGener at or . _process_. CacheSi ze=100

24

Enhydra Shark

cache size for activity instance |lds
#DODS. | dGenerator. _activity_. CacheSi ze=100

About data model

You can find here DODS generated documentation of various data models used in default shark
configuration:

Instance persistence data model - (html [./SharkinstancePersistence-DODS.html], pdf [../
SharklnstancePersistence-DODS.pdf])

Event audit data model - (html [../SharkEventAudit-DODS.html], pdf [../SharkEventAudit-DODS.pdf])

Repository persistence data model - (html [../SharkRepositoryPersistence-DODS.html], pdf [../
SharkRepositoryPersistence-DODS.pdf])

Participant map persistence data model - (html [../SharkParticipantM apPersistence-DODS.html], pdf [../
SharkParti cipantM apPersi stence-DOD S.pdf])

UserGroup persistence data model - (html [../SharkUserGroup-DODS.html], pdf [../SharkUserGroup-
DODS.pdf])

Application map persistence data model - (html [../SharkApplicationM apPersistence-DODS.html], pdf
[../SharkA pplicationM apPersistence-DODS.pdf])

Id Counter datamodel - (html [../SharkUtilities-DODS.html],pdf [../SharkUtilities-DODS.pdf])

Database support

What Needs to be Configured in Order to Use Database Other
Then HypersonicSQL

The scripts for creating tables for various databases (by using Octopus) are distributed with Shark. If you
want to use different database then the one originally configured to work with Shark (HypersonicSQL
database), you should do the following:

« first you'll need to stop any Shark instance that may be running.

» Edittheconfigure. properti es fileand set valuesfor:

db_| oader _j ob name of the directory containing Octopus|oader job, optionsare:
db2, hsgl, informix, msql, mysqgl, oracle, postgresgl, sybase

db_user username for database authentication

db_passwd password for database authentication

db_ext _dirs directory containing jar file(s) with JDBC driver, if

you need more then one directory specified here - use
${ pat h. separ at or } to concatenate them

25

../SharkInstancePersistence-DODS.html
../SharkInstancePersistence-DODS.html
../SharkEventAudit-DODS.html
../SharkEventAudit-DODS.html
../SharkRepositoryPersistence-DODS.html
../SharkRepositoryPersistence-DODS.html
../SharkParticipantMapPersistence-DODS.html
../SharkParticipantMapPersistence-DODS.html
../SharkUserGroup-DODS.html
../SharkUserGroup-DODS.html
../SharkApplicationMapPersistence-DODS.html
../SharkApplicationMapPersistence-DODS.html
../SharkUtilities-DODS.html
../SharkUtilities-DODS.html

Enhydra Shark

${db_I| oader _j ob} _JdbcDri veaassname of the JDBC driver you want to use

These entries are already filled with default values.
${db_I oader _j ob} _Connect i dill database URL

These entries are already filled with default values, too.

* runtheconfi gure.[bat| sh]

Note

When loading newly created database, Octopuswill complain about not being ableto drop indices
and tables, but theses warnings should be ignored.

At thistime, sharkdb.properties file(that is placed in lib/client folder) and Shark.conf are adjusted to use
selected database.

26

