
1

Enhydra Shark
Copyright © 2006 Together Teamlösungen EDV-Dienstleistungen GmbH

Table of Contents
What is Enhydra Shark? ......................................................................................................  2
Getting started ...................................................................................................................  3

Installing a Binary Distribution .....................................................................................  3
Building from Sources ................................................................................................. 4

Supported platforms ............................................................................................................  6
Operating systems ......................................................................................................  6
J2SE Platform ............................................................................................................  6
Application Servers .....................................................................................................  6
Databases ..................................................................................................................  6

Starting Shark ....................................................................................................................  7
Configuring Shark ..............................................................................................................  8

Setting "enginename" parameter ....................................................................................  9
Setting kernel behaviour in the case of unsatisfied split conditions .....................................  10
Setting kernel to evaluate OTHERWISE conditions last ...................................................  10
Setting kernel for assignment creation ..........................................................................  10
Setting kernel for default assignment creation ................................................................  11
Setting kernel for resource handling during assignment creation ........................................  11
Setting kernel behaviour to re-evaluate assignments at engine startup ..................................  11
Setting kernel for assignment handling .........................................................................  11
Setting kernel behaviour to fill the caches on startup .......................................................  12
Setting kernel behaviour for reevaluating deadline limits ..................................................  12
Setting kernel and event audit mgr for persisting old event audit data .................................. 12
Setting kernel for the priority handling .........................................................................  12
Setting properties for browsing LDAP server (only available in professional version) .............  13
Setting kernel's CallbackUtilities implementation class ....................................................  15
Setting kernel's ObjectFactory implementation class ........................................................  16
Setting kernel's ToolActivityHandler implementation class ...............................................  16
Setting kernel's TxSynchronizationFactory class .............................................................  16
Database configuration ............................................................................................... 17
Setting persitence components variable data model .........................................................  17
Setting Assignment manager implementation class ..........................................................  18
Setting user group implementation ...............................................................................  18
Setting participant map persistence implementation .........................................................  19
Setting Caching implementation ..................................................................................  19
Setting instance persistence implementation ...................................................................  19
Configuring DODS instance persistence implementation to delete processes when they
finish ......................................................................................................................  20
Setting logging API implementation .............................................................................  20
Setting repository persistence implementation ................................................................  22
Setting scripting manager implementation .....................................................................  23
Setting security (authorization) API implementation ........................................................  23
Setting tool agents ....................................................................................................  23
Setting application map persistence implementation ........................................................  24
Setting WfXML interoperability implementation ............................................................  24



Enhydra Shark

2

Setting DODS Id generator cache size(s) ....................................................................... 24
About data model .............................................................................................................  25

Database support ......................................................................................................  25
What Needs to be Configured in Order to Use Database Other Then HypersonicSQL .............  25

What is Enhydra Shark?
Enhydra Shark is Java workflow engine completely based on WfMC [http://www.wfmc.org/standards/
docs/if2v20.pdf] and OMG [http://www.omg.org/docs/formal/00-05-02.pdf] specifications.

• Shark is using WfMC's XML Process Definition Language [http://www.wfmc.org/standards/docs/TC-
1025_10_xpdl_102502.pdf] (XPDL) as its native workflow definition format.

• Shark is a POJO library which provides APIs based on WfMC and OMG spec as well as a lot of
additional Shark specific APIs for easier and more powerful workflow handling

Since Shark is a library, it does not open its own threads, but everything works from client application
thread, which makes shark a kind of workflow state machine - a thin layer on top of the database.

This enables Shark to be used in many different environments. Basically shark can be used either directly
through its POJO interface by integrating engine within WEB, Swing or pure console application, or
it can be used as CORBA, EJB, RMI or WEB Service by making CORBA/EJB/RMI/WEB Service
wrappers on top of the POJO interface.

Shark project currently provides partial CORBA wrappers, full EJB wrappers and WEB Service
wrappers based on stateless EJB interface and AXIS based WEB Service wrappers deployable on
Tomcat. There are also several client applications (including administrative application) in Shark project
which are able to access Shark through POJO interface, as well as through CORBA, EJB and WEB
Service wrapper interfaces.

• Shark is very configurable, and all of its "internal" plug-in interfaces, as well as complete kernel could
be replaced by another implementation.

• Shark library can be used from many VMs simultaneously (in cluster scenario).

• Shark can be configured to use organizational structure defined on LDAP server (through the use of
specific implementation of shark's UserGroup plug-in component)

• Shark does not use any XPDL's Extended Attributes for its execution rules.

• Shark has full JTA support

• Shark uses DODS (OR/M tool from Enhydra), which enables shark to use almost any DB system
for storing information, and it can be easily configured to switch target DB vendor and/or url (it has
predefined scripts, and means to automatically create appropriate tables in those DBs using Octopus
- ETL tool from Enhydra)

• Shark has implemented ToolAgent concept defined by WfMC to execute tools of automatic, server-side
activities of XPDL definition. Several useful ToolAgents are coming with Shark, and anybody can create
its own tool agents based on ToolAgent API, which provides enormous capabilities for integration with
other systems.

• Shark can use custom Java classes (and even interfaces or abstract classes) as process variables.

http://www.wfmc.org/standards/docs/if2v20.pdf
http://www.wfmc.org/standards/docs/if2v20.pdf
http://www.wfmc.org/standards/docs/if2v20.pdf
http://www.omg.org/docs/formal/00-05-02.pdf
http://www.omg.org/docs/formal/00-05-02.pdf
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf


Enhydra Shark

3

Getting started
This section describes how to start with Enhydra Shark: where to download it, how to configure it and
how to test it.

Installing a Binary Distribution

Download Binary Distribution

You can download the most recent community version of Shark's binary distribution from OW2.
[http://forge.objectweb.org/project/showfiles.php?group_id=74] There you can choose between various
distribution types (zip, tar.gz, rpm, exe). Release notes are also available at same location.

If you want to see advantages of professional version, the demo version is available at Together site
[http://www.together.at/together/prod/tws/twsdemo/index.html] . You can see about additional features of
professional version here. [http://www.together.at/together/prod/tws/twsfeatures/index.html]

Installing Shark from a Binary Distribution

If you are installing exe or rpm distribution just follow the usual installation procedure. If you are installing
tar.gz or zip distribution, after unpacking it to a convinient location on your disk that we will refer to as
SHARK_HOME, you should do the following steps:

• open configure.properties file from SHARK_HOME with your favorite text editor

• find the following section:

# HypersonicSQL
hsql_JdbcDriver=org.hsqldb.jdbcDriver
hsql_Connection_Url=jdbc:hsqldb:C:/sasaboy/tmp/Shark/output/tws/db/hsql/hsql
hsql_user=sa
hsql_passwd=

• replace the value of hsql_Connection_Url property with the location to the example hsql database that
will be created, to correspond to the location of your shark installation. E.g. in the example above, you
should replace the part:

C:/sasaboy/tmp/Shark/output/tws

with SHARK_HOME. If your SHARK_HOME is e.g. D:/tws-community-2.0-3 you will have
hsql_Connection_Url property defined as follows:

hsql_Connection_Url=jdbc:hsqldb:D:/tws-community-2.0-3/db/hsql/hsql

NOTE: be sure to use slashe characters when specifying this location.

• execute configure script from SHARK_HOME (configure.sh for unix or configure.bat for windows)

Now you will have the following directory structure:

http://forge.objectweb.org/project/showfiles.php?group_id=74
http://forge.objectweb.org/project/showfiles.php?group_id=74
http://www.together.at/together/prod/tws/twsdemo/index.html
http://www.together.at/together/prod/tws/twsdemo/index.html
http://www.together.at/together/prod/tws/twsfeatures/index.html
http://www.together.at/together/prod/tws/twsfeatures/index.html


Enhydra Shark

4

Table 1. Shark directory structure

Directory Description

SHARK_HOME The root directory, referred as SHARK_HOME

..... .dist d

..... bin Executable scripts

..... conf Configuration directory

.......... dods DODS configuration for various database vendors

.......... sql SQL scripts for creating shark database table
structure for various database vendors

..... db Directory for sample HSQL database

..... doc Documentation

..... EJB Contains EAR file for deployment in specific EJB
container

..... JSPClient Contains WAR file with sample JSP
worklisthandler application

..... lib Runtime libraries and third party dependencies

.......... client Client application libraries

.......... clientcontrib Third party libraries used in client applications

.......... contrib Third party libraries for engine

.......... engine Engine libraries

.......... wrapper CORBA and WfXML wrapper libraries

..... Licenses Third party library's licenses

..... logs Directory for execution logs

..... repository XPDL Repository

.......... external Holds sample XPDL files

..... SharkWebClient Contains WAR file (and zip file) with Shark WEB
Client application for Tomcat

..... twe XPDL Editor (Together Workflow Editor/JaWE)

..... WS-Plain Contains WAR file for Shark Plain Web Service
deployment

Building from Sources

To build Shark you need to use anonymous CVS to synchronize with the OW2 source repository at
:pserver:anonymous@cvs.forge.objectweb.org:/cvsroot/shark.

Synchronizing with CVS

Follow these instructions [http://forge.objectweb.org/scm/?group_id=74] for using the Shark OW2
anonymous CVS repository.

http://forge.objectweb.org/scm/?group_id=74
http://forge.objectweb.org/scm/?group_id=74


Enhydra Shark

5

If you didn't specify 'Shark' for the modulename, you should get both Shark and SharkWebClient sources.

Configuring Build Environment

Open console window and go to the root folder of Shark's CVS sources.

To configure build environment execute configure script (configure.sh on unix and configure.bat on
windows) from Shark sources root folder. This will create build.properties files in the root folder and in
the util/dods folder containing information neccessary to build shark.

The most important property there is jdk_dir which specifies which Java compiler will be used. If you
want to change Java to be the different than the one registered with your system, you can execute configure
script with additional options specified:

configure -jdkhome %JAVA_HOME%

where JAVA_HOME is the path to your Java installation.

You can also manually edit two files specified above to change jdk_dir property.

If you leave default settings, shark will be built without Web service support (which is much faster). If you
need to build classes necessary to deploy shark as web service, you should either manually set the value
of build_ejb_ws property from build.properties file to on, or execute:

configure -buildejbws on

This will enable you to generate EARs for different application servers which will have the ability to
expose EJBs as web services as well as to access these web services through client applications coming
with shark.

Compiling sources

Open console window and go to the root folder of Shark's CVS sources.

To compile sources, execute make script without any parameters. If you don't want documentation to be
generated in the output use make buildNoDoc. Building without documentation is much faster procedure.

When make process finishes, you will get shark binaries in output/tws folder which will have the same
structure as described for the binary distribution.

Note

After you build Shark, and if you want to "move" your binaries to the new location you need
to execute:

configure -instdir %INST_DIR%

where INST_DIR is the place where you want to put shark binaries, and then execute:

make install

In the route of the project, there are eclipse project files that can help you to configure Shark project in
eclipse.



Enhydra Shark

6

Note

Not all the source files are included in Shark project. This is because some of them are being
generated during "make" procedure (e.g. WfXML stubs, CORBA stubs, DODS layer objects, ...).

That's the reason why you should execute configure/make commands before being able to make
valid project in eclipse or some other IDE.

Supported platforms

Operating systems

Shark can theoretically run on any operating system that supports Java 2, although it only comes with
launch scripts for Windows and Unix/Linux. Shark is known to work with the following:

• Windows 2000, XP

• Linux

• AIX

J2SE Platform

Shark is tested to work with JDK 1.4 and later.

Note

Actually, core engine could probably be easily set up to work even with JDK1.3.1

Application Servers

The Shark can be adapted to run on any J2EE application server. It is currently known to work with the
following application servers:

• Tomcat 5.5.x

• JBoss 4.x

• JOnAS Tomcat (4.5.2 and 4.7.5)

• Geronimo Tomcat 1.1.1

• WebLogic 8.x

Databases

When using DODS as implementation of persistence APIs, shark can work with different databases -
practically, any database supported by DODS can be used.



Enhydra Shark

7

Shark is known to work with the following databases:

• DB2

• Hypersonic

• MSQL

• MySQL

• Oracle

• PostgreSQL

The default database coming with Shark distribution is Hypersonic.

Starting Shark
Shark can be started from a client application by configuring it first (which can be done in several different
manners), and then by getting an instance of it. This is the most common way to use shark from an
application:

String confFilePath="c:/Shark.conf";
Shark.configure(confFilePath);
Shark shark=Shark.getInstance();

Everything else can be done through the Shark interface.

Before configuring shark, it must be ensured there is a Data source and TransactionManager accessible
to Shark through JNDI.

Shark 2.0 is JTA oriented, and thus when shark works outside container which provides JTA
TransactionManager, we have to start one by our own. Also, in shark 2.0 for defining database we work
with, we use DataSource which should be registered in JNDI, and thus when working outside container we
also need to take care about registering data source in JNDI. For the purpose of stand-alone shark usage we
made LocalContextFactory which is implementation of InitialContextFactory interface, and which purpose
is to: 1. start TransactionManager 2. provide a JNDI context - register TransactionManager in JNDI context
(so we can afterwards obtain TransactionManager and UserTransaction from JNDI) - register DataSource
in JNDI context So, when using shark outside container before configuring it with Shark.conf, you need
to execute the following command:

LocalContextFactory.setup("sharkdb");

where there must be "sharkdb.properties" file in the class path, and this file should hold your datasource
definition, i.e. something like:

jdbc.wrapper=org.enhydra.jdbc.standard.StandardXADataSource
jdbc.minconpool=12
jdbc.maxconpool=180
jdbc.connmaxage=30
jdbc.connchecklevel=1
datasource.description=Shark WfEngine DataSource
jdbc.connteststmt=SELECT 1
datasource.name=sharkdb

datasource.classname=org.hsqldb.jdbcDriver
datasource.url=jdbc:hsqldb:C:/sasaboy/prozonecvs/Shark/output/tws/db/hsql/hsql
datasource.username=sa



Enhydra Shark

8

datasource.password=

datasource.isolationlevel=0

In the example above, you can see that datasource name is "sharkdb", so on the other side, shark must
get the information for DODS how to search the datasource in JNDI, and there is a DODS property for
this purpose that is called:

DatabaseManager.DB.sharkdb.Connection.DataSourceName and the default value for this property is

"jndi:java:comp/datasource/sharkdb" This value is appropriate for DODS to search for data source which
name is "sharkdb" when we use LocalContextFactory, so we do not need to re-define it in Shark.conf in
this case. During shark execution, both Shark kernel and DODS need access to TransactionManager which
they are looking for through JNDI. There are also two default properties for Shark kernel and for DODS
which are defining the lookup names for TransactionManager, and the default values are set to be adequate
for Shark usage in a stand-alone application using LocalContextFactory. These properties are respectively:

SharkTxSynchronizationFactory.XATransactionManagerLookupName

and

DatabaseManager.defaults.XATransactionManagerLookupName and they both have the same default
value:

javax.transaction.TransactionManager (NOTE: when we use Shark in some container like Tomcat or
JBoss, we need to change the properties mentioned above according to container specification). Finally, the
client application must know how to obtain UserTransaction from JNDI so it can perform begin/commit/
rollback of the transaction. When using shark outside any container and with LocalContextFactory as
described above, the UserTransaction lookup name is:

java:comp/UserTransaction So, the right procedure for starting stand-alone shark application could be:

     LocalContextFactory.setup("sharkdb");
     UserTransaction ut = null;
     try {
        ut = (UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");
        ut.setTransactionTimeout(15 * 60);
        ut.begin();

        String confFilePath="c:/Shark.conf";
        Shark.configure(confFilePath);
        Shark shark=Shark.getInstance();

        ut.commit();

     } catch (Throwable ex) {
         throw new Error("Something really bad happened",ex);
     }

Configuring Shark
There are five different ways to configure shark:

1. use configure () method without parameters:

then shark is configured only from config file that is placed in its jar file. Shark that is configured
in this way works with default settings, and without many internal API implementations (Caching,
EventAudit, Logging, ...).



Enhydra Shark

9

NOTE: this way of default configuration is possible only when shark database is not HSQL, and only
when data source lookup name equals to "jndi:java:comp/datasource/sharkdb" and TransactionManager
lookup name equals to "javax.transaction.TransactionManager"

2. use configure (String filePath) method:

it creates File object out of the path given in the filePath string, and calls the configure (File configFile)
described next.

3. use configure (File configFile) method:

shark first does basic configuration based on properties given in its jar file, and then does additional
configuration from the file specified. If the configuration File defines same properties as in default
configuration file from the jar, these property's values will override the default ones, plus all additional
properties from File/Properties will be added to shark configuration. The configuration files you are
passing as a parameter actually does not need to define whole configuration, but they could just
redefine some default configuration parameters (i.e. how to handle otherwise transition, to re-evaluate
deadlines or not, to create default assignment, ...) and add some additional configuration parameters
(i.e. AssignmentManagerClassName).

4. use configure (Properties props) method:

it does basically the same as previous method (in fact, the previous method converts the file content
into Properties object), but it offers the possibility for client applications to use Java Properties object
to configure shark.

5. use configure (Config config) method:

this configuration through EAF's Config object makes possible to configure shark with properties
defined in web.xml of your WEB application.

You can use many shark instances configured differently (you just need to specify different config files/
paths, or define different Property object). If you want to use several shark instances (from more than one
VM) on the same DB, you should ALWAYS set the values for DODS cache sizes (must set it to zero),
and CacheManagerClassName property should not exist).

As already mentioned, shark is very configurable engine, and all of its components, including kernel, can
be replaced by a custom implementation.

The most common way for configuring shark is defining custom Shark.conf file, and here we will describe
how you can configure shark, by briefly explaining the meaning of entries in standard Shark.conf file
coming with shark distribution:

NOTE: Since Shark is singleton, it is currently not possible to use more then one shark instance in the
same class loader.

Setting "enginename" parameter

You can set the name of shark instance by editing enginename property. Here is a part of configuration
file for setting this property:

######################### NAME
# the name of shark instance
enginename=Shark



Enhydra Shark

10

Can be used to identify shark instance (NOTE: in shark versions before 2.0 this parameter had also other
meaning, and it was required to have different name for each shark instance).

Setting kernel behaviour in the case of unsatisfied split
conditions

You can set the way how the standard shark kernel will react when the process has nowhere to go after
an activity is finished, and all activity's outgoing transitions are unsatisfied (evaluated to false). Of course,
this parameter has meaning only for the activities that have at least one outgoing transition.

Here is a part of configuration file for setting this property:

######################### KERNEL SETTING for UNSATISFIED SPLIT CONDITIONS
# There can be a cases when some activity that has outgoing transitions other
# than to itself (other then circular one), has nowhere to go based on
# calculation of these conditions (all of the conditions are evaluated to false)
# In that case, the process could hang (it will not go anywhere, and it will
# also not finish), finish (if there is no other active activities), or
# the last transaction that finishes the activity will be rolled back.
# This settings apply to the block activity's activities also, but the difference
# is that if you set parameter to FINISH_IF_POSSIBLE, shark will actually
# finish block activity if possible.
# The possible values for the entry are IGNORE, FINISH_IF_POSSIBLE and ROLLBACK,
# and default kernel behaviour is FINISH_IF_POSSIBLE
#SharkKernel.UnsatisfiedSplitConditionsHandling=FINISH_IF_POSSIBLE

So, there are three possible solutions as described, and the default one is to finish the process if possible.

Setting kernel to evaluate OTHERWISE conditions last

XPDL spec does not say that OTHERWISE transition should be executed only if no other transition
condition is evaluated to true (in the case of XOR split). So, if you i.e. put OTHERWISE transition to be
the first outgoing transition of some activity, other transition's condition won't be even considered.

You can configure shark to deviate from the spec, so that OTHERWISE transition is evaluated and executed
only if no other transition condition is evaluated to true. To do that, you should set the following property
to true.

SharkKernel.handleOtherwiseTransitionLast=false
  

This parameter could be saving lot of headaches to XPDL designers, by removing the extra care on
OTHERWISE transition positioning.

Setting kernel for assignment creation

Determines if kernel will create assignments - default is true. There are situations when assignment creation
is not necessary, and this is the case when all the processes are such that the whole process belongs to a
user which created it.

SharkKernel.createAssignments=true

Since this setting affects the complete engine, you should carefully consider if this is your use case. In
this case users won't have anything in their worklists, and client application should provide a way to bind
user with its process.



Enhydra Shark

11

Setting kernel for default assignment creation

Determines if kernel will create default assignment for the process creator if assignment manager return
zero assignments.

NOTE: if this property is set to true, there can be side-effect with Tool activities with Manual Start and
Finish mode.

SharkKernel.createDefaultAssignment=true

Default kernel value is true.

Setting kernel for resource handling during assignment
creation

Defines the limit number for loading all WfResources from DB before creating assignments.

When kernel determines that more assignments than the number specified by the limit should be created
it will make a call to retrieve all WfResources from DB.

When DODS is used as a persistence layer, it can improve the performance if there are not too many
WfResource objects in the system:

SharkKernel.LimitForRetrievingAllResourcesWhenCreatingAssignments=5

Default kernel value is 5.

Setting kernel behaviour to re-evaluate assignments at engine
startup

It is possible to force kernel to re-evaluate assignments during shark initialization. This can be done by
changing the following property:

#Assignments.InitialReevaluation=false

If you set this property to true, all not-accepted assignments are going to be re-evaluated (old ones will be
deleted, and new ones will be created based on current mappings, current state of User/Group information
and current implementation of AssignmentManager class).

Default kernel setting is not to re-evaluate assignments.

Setting kernel for assignment handling

Determines if kernel will delete other assignments from DB everytime when someone accepts/rejects
assignment, and will re-evaluate assignments each time this happens. If it is set to true, the side-effect
is that if there was reassignment, and the user that got this reassigned assignment rejects it, he will not
get it afterwards.

SharkKernel.deleteOtherAssignments=true



Enhydra Shark

12

The shark kernel default is true.

Setting kernel behaviour to fill the caches on startup

If you want shark to fill its Process and Resource caches at startup, you should edit the following entries
from configuration file:

#Cache.InitProcessCacheString=*
#Cache.InitResourceCacheString=*

If you uncomment these lines, all processes and resources will be created based on DB data, and will be
filled into cache (actually, this number is restricted by the cache size).

The value of these properties can be set as a comma separated list of the process/resource ids that need to
be put into cache on engine start, e.g.: Cache.InitProcessCacheString=1_test_js_basic, 5_test_js_Game

Shark kernel default is not to initialize caches.

Setting kernel behaviour for reevaluating deadline limits

If you want shark not to reevaluate deadlines each time external deadline management checks for deadlines,
you should set following entry to false (default kernel setting is true)

#Deadlines.reevaluateDeadlines=true

Determines if process or activity context will be used when re-evaluating deadlines Default kernel setting
is activity context.

Deadlines.useProcessContext=false

Determines if asynchronous deadline should be raised only once, or every time when deadline check is
performed. Default kernel setting is true (to raise deadline only once).

Deadlines.raiseAsyncDeadlineOnlyOnce=true

Setting kernel and event audit mgr for persisting old event
audit data

Determines if old event audit data should be persisted or not. Default is to persist. The value of this property
must be respected by both, the kernel, and event audit manager.

PERSIST_OLD_EVENT_AUDIT_DATA=true
  

Default kernel setting is true.

Setting kernel for the priority handling

Determines if it is allowed to set the priority of the WfProcess/WfActivity out of the range [1-5] as defined
by OMG spec:



Enhydra Shark

13

#SharkKernel.allowOutOfRangePriority=false
  

Default kernel setting is false.

Setting properties for browsing LDAP server (only available in
professional version)

If you are using a LDAP server to hold your organization structure, you can configure shark to use our
LDAP implementation of UserGroup and Authentication interface (it will be explained later in the text
how to set it up), and then you MUST define some LDAP properties.

At the moment, shark implementations of UserGroup interfaces support two types of LDAP structures.
The first structure is marked as type 0, and the second is marked as type 1. The LDAP structures are detailly
explained in the document LDAP structures in Shark (html [../ldap_structure/LDAP_structure.html], pdf
[../ldap_structure/LDAP_structure.pdf])

You can set this properties based on your LDAP server configuration, by changing the following part of
configuration file:

# Shark can use LDAP implementation of UserGroup interfaces,
# and these are settings required by this implementations to access and
# browse the LDAP server

# possible values for LDAPStructureType parameter are 0,1 and 2
# 0 is simple structure, the possibility that one group or user belongs to more
# than one group is not supported
# 1 is more complex structure that supports the possibility that one group or
# user belongs to more than one group
# 2 Active Directory server (default) structure
LDAPStructureType=2

LDAPHost=localhost
LDAPPort=389

LDAPSearchBase=cn=Users,dc=prozone,dc=co,dc=yu
LDAPGroupObjectClasses=group
LDAPUserObjectClasses=person

LDAPGroupUniqueAttributeName=sAMAccountName
LDAPUserUniqueAttributeName=sAMAccountName

LDAPGroupDescriptionAttributeName=description

LDAPUserPasswordAttributeName=userPassword
LDAPUserRealNameAttributeName=displayName
LDAPUserFirstNameAttributeName=givenName
LDAPUserLastNameAttributeName=sn
LDAPUserEmailAttributeName=mail

LDAPUser=sasaboy@prozone.co.yu
LDAPPassword=

# Specifies the size of LRU cache for holding user attributes (for shark performance reason)
LDAPClient.userAttributesCacheSize=100

# Specifies the size of LRU cache for holding group attributes (for shark performance reason)
LDAPClient.groupAttributesCacheSize=100

# Active Directory specifics (when LDAPStructureType is set to 2)
-----------------------------------------------------------------
# holds information about the member that belongs to (group) entry 

../ldap_structure/LDAP_structure.html
../ldap_structure/LDAP_structure.html


Enhydra Shark

14

LDAPMemberAttributeName=member

# holds information about the membership of entity
LDAPMemberOfAttributeName=memberOf

# Unique representation of entry
LDAPDistinguishedNameAttributeName=distinguishedName

# specifics for LDAPStructureType=1
-----------------------------------
LDAPRelationObjectClasses=groupOfNames
LDAPRelationUniqueAttributeName=cn
LDAPRelationMemberAttributeName=member
LDAPGroupGroupsName=Groups
LDAPGroupUsersName=Users
LDAPGroupGroupRelationsName=GroupRelations
LDAPGroupUserRelationsName=UserRelations

• LDAPHost - the address of the machine where LDAP server is running

• LDAPPort - the port through which LDAP server can be accessed

• LDAPStructureType - if set to 0, the simple structure is used in which the possibility that one group or
user belongs to more than one group is not supported, if set to 1, the more complex structure is used
which supports the possibility that one group or user belongs to more than one group is not supported.
If set to 2, it is configured to access standard ActiveDirectory structure.

• LDAPSearchBase - the name of the context or object to search (this is the root LDAP node where all
queries will start at).

• LDAPGroupObjectClasses - the comma separated list of LDAP object classes representing Group of
users. It is important that these classes must have a mandatory attribute whose value uniquely identifies
each entry throughout the LDAP tree.

• LDAPUserObjectClasses - the comma separated list of LDAP object classes representing shark users.
It is important that these classes must have a mandatory attribute whose value uniquely identifies each
entry throughout the LDAP tree.

• LDAPGroupUniqueAttributeName - the name of attribute that is mandatory for each LDAP object class
representing Group of users. The value of this attribute MUST be unique for each LDAP entry for these
object classes throught the LDAP tree.

• LDAPGroupDescriptionAttributeName - the name of attribute of LDAP object classes representing
Group of users that represents the Group description.

• LDAPUserUniqueAttributeName - the name of attribute that is mandatory for each LDAP object
class representing User. The value of this attribute MUST be unique for each LDAP entry for these
object classes throughout the LDAP tree. When shark uses LDAP for authentication and user group
management, this attribute represents the username for logging into shark.

• LDAPUserPasswordAttributeName - the name of attribute that is mandatory for each LDAP object class
representing User. When shark uses LDAP for authentication and user group management, this attribute
represents the password needed for logging into shark.

• LDAPUserRealNameAttributeName - the name of the attribute of LDAP object classes representing
User, that represents the real name of the shark user.

• LDAPUserFirstNameAttributeName - the name of the attribute of LDAP object classes representing
User, that represents the first name of the shark user.



Enhydra Shark

15

• LDAPUserLastNameAttributeName - the name of the attribute of LDAP object classes representing
User, that represents the last name of the shark user.

• LDAPUserEmailAttributeName - the name of the attribute of LDAP object classes representing User,
that represents user's email address.

• LDAPUser - when LDAP server requires credentials for reading, this is the username that will be used
when connecting LDAP server

• LDAPPassword - when LDAP server requires credentials for reading, this is the password that will be
used when connecting LDAP server

• LDAPMemberAttributeName - only used in structure type 2 (Active Directory). Holds information
about the member that belongs to (group) entry.

• LDAPMemberOfAttributeName - only used in structure type 2 (Active Directory). Holds information
about the membership of entity.

• LDAPDistinguishedNameAttributeName - only used in structure type 2 (Active Directory). Unique
representation of entry.

• LDAPRelationObjectClasses - only used in structure type 1, the comma separated list of LDAP object
classes representing relations between shark users and group or between shark groups. It is important
that these classes must have a mandatory attribute whose value uniquely identifies each entry throughout
the LDAP tree.

• LDAPRelationUniqueAttributeName - only used in structure type 1, the name of attribute that is
mandatory for each LDAP object class representing Relation of groups or group and users. The value
of this attribute MUST be unique for each LDAP entry for these object classes throught the LDAP tree

• LDAPRelationMemberAttributeName - only used in structure type 1,the name of attribute of LDAP
object classes (representing Relation of groups or group and users) that represents member that is
included (user or group) in the relation.

• LDAPGroupGroupsName - only used in structure type 1, the name of the specific group that must be
created and which will contain all groups

• LDAPGroupUsersName - only used in structure type 1, the name of the specific group that must be
created and which will contain all users

• LDAPGroupGroupRelationsName - only used in structure type 1, the name of the specific group that
must be created and which will contain all relations between groups

• LDAPGroupUserRelationsName - only used in structure type 1, the name of the specific group that
must be created and which will contain all relations between groups and users

Setting kernel's CallbackUtilities implementation class

If one wants to give its own implementation of CallbackUtilities interface, he can do it by changing the
following attribute:

######################### CALLBACK UTILITIES
# used for logging, and getting the shark properties
# the default kernel setting is as follows
#CallbackUtilitiesClassName=org.enhydra.shark.CallbackUtil
CallbackUtil.TimeProfiler.default=120



Enhydra Shark

16

CallbackUtil.TimeProfiler.level=info

The name of the class that is used by default is commented.

This interface implementation is passed to all internal interface implementations, and is used by those
implementations to read shark property values, to log events and to utilize profiling options.

Property CallbackUtil.TimeProfiler.default specifes the value in milliseconds for profiling log. If some
shark API method takes more time to execute than the value specified, it will be logged. If property
CallbackUtil.TimeProfiler.level is set to debug the whole stack-trace is logged, otherwise the normal
information about which method took too long is logged.

Setting kernel's ObjectFactory implementation class

If one wants to replace some parts of kernel with its own implementation (i.e. to replace
WfActivityInternal, WfProcessInternal, ... implementations), he should create its own class based on this
interface, and configure shark to use it.

This can be done by changing the following part of configuration file:

######################### OBJECT FACTORY
# the class name of the factory used to creating kernel objects
# the default kernel setting is as follows
#ObjectFactoryClassName=org.enhydra.shark.SharkObjectFactory

The name of the class that is used by default is commented.

Setting kernel's ToolActivityHandler implementation class

If one wants to set its own ToolActivityHandler implementation, that will communicate with tool agents
in a different way than the standard implementation does, he can configure the following:

######################### TOOL ACTIVITY HANDLER
# the class name of the manager used to execute tool agents
# the default kernel setting is as follows
#ToolActivityHandlerClassName=org.enhydra.shark.StandardToolActivityHandler

The name of the class that is used by default is commented.

Setting kernel's TxSynchronizationFactory class

Implementation of TxSynchronizationFactory interface is responsible to support shark to work in JTA
environment.

######################### Tx SYNCHRONIZATION FACTORY
#TxSynchronizationFactoryClassName=org.enhydra.shark.SharkTxSynchronizationFactory
#SharkTxSynchronizationFactory.XATransactionManagerLookupName=javax.transaction.TransactionManager
#SharkTxSynchronizationFactory.debug=false

Default factory is org.enhydra.shark.SharkTxSynchronizationFactory.

It is important to configure the parameter
SharkTxSynchronizationFactory.XATransactionManagerLookupName to specify JNDI lookup name of
the TransactionManager.



Enhydra Shark

17

Database configuration

This section of configuration file is related to DODS implementation of persisting APIs.

In shark distribution, we provide SQL scripts for creating tables for the most DBs supported by DODS,
and appropriate LoaderJob files that can be used by Octopus to create DB tables if providing appropriate
drivers. This files can be found in conf/sql folder.

#
# Turn on/off debugging for transactions or queries. Valid values
# are "true" or "false".
#
DatabaseManager.Debug="false"

# Special settings for Postgresql DB
#DatabaseManager.ObjectIdColumnName=ObjectId
#DatabaseManager.VersionColumnName=ObjectVersion

#
# Maximum amount of time that a thread will wait for
# a connection from the connection pool before an
# exception is thrown.  This will prevent possible dead
# locks.  The time out is in milliseconds.  If the
# time out is <= zero, the allocation of connections
# will wait indefinitely.
#
#DatabaseManager.DB.sharkdb.Connection.AllocationTimeout=10000

#
# Required for HSQL: column name NEXT must be used
# with table name prefix
# NOTE: When working with other DBs, you should comment these two properties
#
DatabaseManager.DB.sharkdb.ObjectId.NextWithPrefix = true
DatabaseManager.DB.sharkdb.Connection.ShutDownString = SHUTDOWN

#
# Used to log database (SQL) activity.
#
DatabaseManager.DB.sharkdb.Connection.Logging=false

There is another important DODS configuration aspect - the cache sizes:

#
# Default cache configuration
#
DatabaseManager.defaults.cache.maxCacheSize=100
DatabaseManager.defaults.cache.maxSimpleCacheSize=50
DatabaseManager.defaults.cache.maxComplexCacheSize=25

If you know that several instances of shark will be used in several VMs, using the same DB, you should
set all this cache sizes to zero. Along with this, cache manager implementation (explained later in the text)
should not be used.

Setting persitence components variable data model

Following options are described together, although they affect different components, because option's
intention and the effect produced are the same.

Determines the maximum size of String that will be stored in VARCHAR field. String which size is greater
than specified value will be stored as a BLOB. The maximumum size that can be set is 4000 (the default
one)



Enhydra Shark

18

DODSPersistentManager.maxVARCHARSize=4000
DODSEventAuditManager.maxVARCHARSize=4000
  

Determines which data model will be used for storing process and activity variables. There are two options:

1. using standard data model, where all data types are in one table (including BLOB data type for persisting
custom Java objects and large Strings

2. using optional data model, where one table contains all data types except BLOB, and there is another
table that references previous table, and is used only for storing BLOB information (for persisting
custom Java objects and large Strings)

Default is to use standard data model, but using optional data model can improve performance in use cases
where there are not so many custom Java objects and large String objects, and when shark and DODS
caches are not used, and this is especially better choice if using Oracle DB.

DODSPersistentManager.useStandardVariableDataModel=true
DODSEventAuditManager.useStandardVariableDataModel=true
  

Setting Assignment manager implementation class

If one would like to create its own Assignment manager, which would decide which assignments are to
be created for an activity, he can implement its own Assignment manager, based on AssignmentManager
interface, and configure shark to use it by changing the following setting:

AssignmentManagerClassName=org.enhydra.shark.assignment.StandardAssignmentManager

Shark comes with three different implementations of this manager:

• Standard - just returns the list of users passed as a parameter, or if there are no users in the list, it returns
the user that created corresponding process.

• History Related - if there are some special "Extended attributes" defined in XPDL for some activity
definition, this implementation checks the assignment history (who has already executed activity with
such definition, ...) to make a decission about assignments that should be created.

• XPDL Straight Participant Mapping - it makes assignments for the user that has the same Id as XPDL
performer of activity.

• Workload Related (only professional version) - it makes assignments by taking into account user
workload

NOTE: if you do not set any implementation (you simply comment line above), shark will use the default
procedure. Actually, standard implementation of assignment API is not very useful, it basically just returns
the first valid options.

Setting user group implementation

Shark's standard and history related assignment managers can be configured to use some implementation
of UserGroup API when determining which user(s) should get the assignment.

Shark comes with DB based implementation of this API and professional version also brings LDAP
implementation of this API . DB based implementation uses DB for retrieving information about



Enhydra Shark

19

organizational structure, and LDAP based implementation uses LDAP server for getting organizational
information.

Here is a part of configuration file for setting UserGroup manager implementation for standard assignment
manager:

StandardAssignmentManager.UserGroupManagerClassName=org.enhydra.shark.usergroup.DODSUserGroupManager

NOTE: shark can work without implementation of this API - if you do not want to use any implementation,
simply comment line above.

Setting participant map persistence implementation

Shark's standard and history related assignment managers can be configured to use some implementation
of ParticipantMapping API when determining which user(s) should get the assignment.

This API is to retrieve mapping information between XPDL participants and shark users. Shark application
comes with DODS based participant map persistence implementation.

You can provide your own implementation of participant map persistence API.

Here is a part of configuration file for setting ParticipantMapping manager implementation for standard
assignment manager:

StandardAssignmentManager.ParticipantMapPersistenceManagerClassName=org.enhydra.shark.partmappersistence.DODSParticipantMappingMgr

NOTE: if you comment the lines above, shark will work without participant map persistence API
implementation.

Setting Caching implementation

Shark comes with LRU based cache implementation for holding Process and Resource objects. By default,
shark is configured to use this cache implementation, which can speed-up its use by the clients.

This is the section of configuration file that defines cache implementation, and its sizes:

#=============================================================================
# Default cache is LRU
#
#-----------------------------------------------------------------------------
# Cache defaults
#
CacheManagerClassName=org.enhydra.shark.caching.LRUCacheMgr

# Default LRU cache sizes (LRU implementation default is 100 for each cache)
#LRUProcessCache.Size=100
#LRUResourceCache.Size=100

NOTE: if you do not set any implementation (you simply comment line above), shark will not perform
any caching.

Setting instance persistence implementation

The implementation of this API is used to store information about shark's processes, activities, ...
into DB. Shark comes with DODS based instance persistence implementation. One can write its own



Enhydra Shark

20

implementation of this interface (maybe using Hibernate or EJB), and to configure shark to work with this
implementation, he needs to edit the following section of configuration file:

#
# DODS instance persistent manager defaults
#
InstancePersistenceManagerClassName=org.enhydra.shark.instancepersistence.DODSPersistentManager

Shark can't work without instance persistence implementation.

NOTE: If one would like to implement other instance persistence implementation, he should also give its
own implementation of SharkTransaction API.

Configuring DODS instance persistence implementation to
delete processes when they finish

By default, DODS implementation of instance persistence interface does not delete finished processes, but
they are left in DB. This behaviour can be changed by setting the following parameter to true:

# Determines if finished processes should be deleted from DB (DODS persistence
# manager default is false)
#DODSPersistentManager.deleteFinishedProcesses=false

Setting logging API implementation

Shark comes with a default logger implementation, implemented by the use of log4j. You can write your
own implementation of Logging API, and set it by editing configuration file, and probably adding some
additional entries in configuration file that will be read by your logger implementation. Here is a complete
logger configuration for shark standard logger:

#
# Standard logging manager defaults
#
LoggingManagerClassName=org.enhydra.shark.logging.StandardLoggingManager

# Standard Logging manager is using log4j, and here is log4j configuration
#
log4j.rootLogger=info, SharkExecution

log4j.appender.Database=org.apache.log4j.RollingFileAppender
log4j.appender.Database.File=@WD_PATH@/logs/SharkPersistence.log
log4j.appender.Database.MaxFileSize=10MB
log4j.appender.Database.MaxBackupIndex=2
log4j.appender.Database.layout=org.apache.log4j.PatternLayout
log4j.appender.Database.layout.ConversionPattern=%d{ISO8601}: %m%n

log4j.appender.XMLOutFormatForPersistence=org.apache.log4j.FileAppender
log4j.appender.XMLOutFormatForPersistence.File=@WD_PATH@/logs/chainsaw-persistence.log
log4j.appender.XMLOutFormatForPersistence.append=false
log4j.appender.XMLOutFormatForPersistence.layout=org.apache.log4j.xml.XMLLayout

log4j.appender.PackageEvents=org.apache.log4j.RollingFileAppender
log4j.appender.PackageEvents.File=@WD_PATH@/logs/SharkPackageHandlingEvents.log
log4j.appender.PackageEvents.MaxFileSize=10MB
log4j.appender.PackageEvents.MaxBackupIndex=2
log4j.appender.PackageEvents.layout=org.apache.log4j.PatternLayout
log4j.appender.PackageEvents.layout.ConversionPattern=%d{ISO8601}: %m%n

log4j.appender.DatabaseManager=org.apache.log4j.RollingFileAppender
log4j.appender.DatabaseManager.File=@WD_PATH@/logs/dods.log



Enhydra Shark

21

log4j.appender.DatabaseManager.MaxFileSize=10MB
log4j.appender.DatabaseManager.MaxBackupIndex=2
log4j.appender.DatabaseManager.layout=org.apache.log4j.PatternLayout
log4j.appender.DatabaseManager.layout.ConversionPattern=%d{ISO8601}: %m%n

log4j.appender.XMLOutFormatForPackageEvents=org.apache.log4j.FileAppender
log4j.appender.XMLOutFormatForPackageEvents.File=@WD_PATH@/logs/chainsaw-packageevents.log
log4j.appender.XMLOutFormatForPackageEvents.append=false
log4j.appender.XMLOutFormatForPackageEvents.layout=org.apache.log4j.xml.XMLLayout

log4j.appender.SharkExecution=org.apache.log4j.RollingFileAppender
log4j.appender.SharkExecution.File=@WD_PATH@/logs/SharkExecutionFlow.log
log4j.appender.SharkExecution.MaxFileSize=10MB
log4j.appender.SharkExecution.MaxBackupIndex=2
log4j.appender.SharkExecution.layout=org.apache.log4j.PatternLayout
log4j.appender.SharkExecution.layout.ConversionPattern=%d{ISO8601}: %m%n

log4j.appender.XMLOutFormatForExecution=org.apache.log4j.FileAppender
log4j.appender.XMLOutFormatForExecution.File=@WD_PATH@/logs/chainsaw-execution.log
log4j.appender.XMLOutFormatForExecution.append=false
log4j.appender.XMLOutFormatForExecution.layout=org.apache.log4j.xml.XMLLayout

log4j.appender.NTEventLog=org.apache.log4j.nt.NTEventLogAppender
log4j.appender.NTEventLog.source=SharkCORBA-Service
log4j.appender.NTEventLog.layout=org.apache.log4j.PatternLayout
log4j.appender.NTEventLog.layout.ConversionPattern="%d{ISO8601}: [%t], %p, %c: %m%n"

log4j.appender.TP=org.apache.log4j.RollingFileAppender
log4j.appender.TP.File=@WD_PATH@/logs/tp.log
log4j.appender.TP.MaxFileSize=10MB
log4j.appender.TP.MaxBackupIndex=2
log4j.appender.TP.layout=org.apache.log4j.PatternLayout
log4j.appender.TP.layout.ConversionPattern=%d{ISO8601}: [%t], %p, %c: %m%n

log4j.appender.TP-IP=org.apache.log4j.RollingFileAppender
log4j.appender.TP-IP.File=@WD_PATH@/logs/tp-ip.log
log4j.appender.TP-IP.MaxFileSize=10MB
log4j.appender.TP-IP.MaxBackupIndex=2
log4j.appender.TP-IP.layout=org.apache.log4j.PatternLayout
log4j.appender.TP-IP.layout.ConversionPattern=%d{ISO8601}: [%t], %p, %c: %m%n

log4j.appender.Console=org.apache.log4j.ConsoleAppender
log4j.appender.Console.layout=org.apache.log4j.PatternLayout
log4j.appender.Console.layout.ConversionPattern=%d{ISO8601}: %m%n

log4j.logger.Persistence=INFO,Database
#log4j.logger.Persistence=INFO,Database,XMLOutFormatForPersistence

log4j.logger.PackageEventLogger=INFO,PackageEvents
#log4j.logger.PackageEventLogger=INFO,PackageEvents,XMLOutFormatForPackageEvents

log4j.logger.TimeProfiler=INFO,Console,TP
log4j.logger.TimeProfiler-InstancePersistence=INFO,Console,TP-IP

log4j.logger.Shark=INFO,@MAIN_LOG_CHANNEL@,SharkExecution
#log4j.logger.Shark=INFO,Console,SharkExecution,XMLOutFormatForExecution

log4j.logger.Scripting=INFO,Console,SharkExecution
#log4j.logger.Scripting=INFO,SharkExecution,XMLOutFormatForExecution

log4j.logger.DatabaseManager=INFO,DatabaseManager

The standard logger implementation is written in a way that it could log even if there are no log4j settings
defined in configuration file (so the implementation can't configure log4j), but log4j is configured from
client application using shark.

The following log outputs are generated by default:

• Server execution flow log - logs every significant shark operation like package loading, process
instantiation, activity completion, .... These logs are also displayed in the console during shark execution.



Enhydra Shark

22

• Package Handling Events - logs every operation performed with Package definition files (XPDL files).
These operations are:

• loading of the package from external repository into shark's memory

• unloading of the package from the shark

• updating of the package that is already in the shark's memory

• Server persistence log - logs every operation related to communication among DODS instance
persistence implementation, and underlying database.

You have the possibility to force Shark to make log files that can be viewed using log4j's chainsaw viewer.
To do so, for each type of logger, you have to comment first and uncomment the second line that refers
to the logger at the bottom of logger configuration.

Then, the output logs will be also generated into XML log files (chainsaw-execution.log, chainsaw-
packageevents.log and chainsaw-persistence.log) that can be read by chainsaw.

The chainsaw can be started by using proper "chainsaw" script from the root of the project. When it is
started, you have to open wanted log file by using its "File->Load file..." menu item, and it will present
you the proper logs.

NOTE: If you do not want any logging, comment LoggingManagerClassName line above, and shark will
not log anywhere.

Setting repository persistence implementation

This API is used to store information about XPDL definitions and versions. Shark comes with two
implementations of this API: FileSystem based, and DODS based.

You can provide your own implementation of this API, and replace the current implementation. The default
implementation is DODS implementation.

# Default repository persistent manager is DODS
#

#RepositoryPersistenceManagerClassName=org.enhydra.shark.repositorypersistence.FileSystemRepositoryPersistenceManager

# The location of xpdl repository.
# If you want to specify it by relative path, you must know that this path must
# be relative to the Shark.conf file (in conf folder)
FileSystemRepositoryPersistenceManager.XPDL_REPOSITORY=repository/internal

# The location of xpdl history repository.
# If you want to specify it by relative path, you must know that this path must
# be relative to the Shark.conf file (in conf folder)
FileSystemRepositoryPersistenceManager.XPDL_HISTORY_REPOSITORY=repository/internal/history

RepositoryPersistenceManagerClassName=org.enhydra.shark.repositorypersistence.DODSRepositoryPersistenceManager

# The database used for Repository persistence when using DODS implementaion
#DODSRepositoryPersistenceManager.DatabaseName=sharkdb

# If set to true, the debug information on repository transaction will be
# written to console
#DODSRepositoryPersistenceManager.debug=false

NOTE: Shark can't work without implementation of this API.



Enhydra Shark

23

Setting scripting manager implementation

Shark comes with standard scripting manager implementation. This is a factory for returning appropriate
script evaluator, and standard implementation offers three different script evaluators: Python, Java script
and Bean shell.

#=============================================================================
# Default Scripting manager is Standard
#
#-----------------------------------------------------------------------------
#
ScriptingManagerClassName=org.enhydra.shark.scripting.StandardScriptingManager

Shark can't work without Scripting API implementation.

Setting security (authorization) API implementation

This API contains methods to authorize shark usage on the level of particular methods (i.e. user is
authorized to create, abort, terminate or suspend some process, ...).

#=============================================================================
# Default Security manager is Standard
#
#-----------------------------------------------------------------------------
#
SecurityManagerClassName=org.enhydra.shark.security.StandardSecurityManager

NOTE: If you don't want any authorization, you just need to comment line above - shark can work without
this API implementation.

Setting tool agents

Shark comes with standard ToolAgentFactory implementation, and with several example tool agents
(JavaScript, BeanShell, RuntimeApplication, SOAP, Mail and JavaClass tool agent), and with default tool
agent implementation.

To learn more about tool agent, you should look at ToolAgent documentation.

These are configuration settings for tool agents:

#=============================================================================
# Default Tool agent settings
#
#-----------------------------------------------------------------------------
#
ToolAgentManagerClassName=org.enhydra.shark.toolagent.StandardToolAgentManager

# The list of tool agents
ToolAgent.JavaClassToolAgent=org.enhydra.shark.toolagent.JavaClassToolAgent
ToolAgent.JavaScriptToolAgent=org.enhydra.shark.toolagent.JavaScriptToolAgent
ToolAgent.BshToolAgent=org.enhydra.shark.toolagent.BshToolAgent
ToolAgent.RuntimeApplicationToolAgent=org.enhydra.shark.toolagent.RuntimeApplicationToolAgent
ToolAgent.MailToolAgent=org.enhydra.shark.toolagent.MailToolAgent
ToolAgent.SOAPToolAgent=org.enhydra.shark.toolagent.SOAPToolAgent
ToolAgent.SchedulerToolAgent=org.enhydra.shark.toolagent.SchedulerToolAgent

# Pool size for Scheduler Tool Agent
SchedulerToolAgent.threadPoolSize=3

# Default tool agent is used when there is no mappings for some



Enhydra Shark

24

# XPDL application definition
DefaultToolAgent=org.enhydra.shark.toolagent.DefaultToolAgent

# Specifies the size of cache for holding ext. attributes (for shark performance reason)
# Default -1 means unlimited
#AbstractToolAgent.extAttribsCacheSize=-1

NOTE: shark can work without tool agent API implementation, but then it can only execute processes
that do not contain any "Tool" activity.

Setting application map persistence implementation

This API is used to retrieve mapping information between XPDL applications and tool agent applications.
Shark comes with DODS based application map persistence implementation.

For a standard tool agent manager, you can specify which implementation of application map persistence
API you want to use.

# Application map details for StandardToolAgentManager
StandardToolAgentManager.ApplicationMapPersistenceManagerClassName=org.enhydra.shark.appmappersistence.DODSApplicationMappingMgr

NOTE: shark can work without application map persistence API implementation.

Setting WfXML interoperability implementation

This API is used to communicate with other engines via WfXML protocol (spec defined by WfMC).

#=============================================================================
# WfEngineInterpoerability manager
#
#-----------------------------------------------------------------------------
#
#WfEngineInteroperabilityManagerClassName=org.enhydra.shark.interoperability.WfXMLInteroperabilityImpl
#Interoperability.Host=localhost
#Interoperability.Port=8080
#Interoperability.ObserverPath=/axis/services/asapObserverBinding
#Interoperability.IgnoreTerminateAndAbortRemoteExceptions=false

NOTE: shark can work without implementation of this API.

Setting DODS Id generator cache size(s)

You can specify cache sizes for object Ids (activity and process Ids). When some process or activity is
created, shark asks its data layer (default DODS layer) for unique Id. This Id generation is synchronized
on DB, so that shark can be used from different VMs at a time. To tell shark not to go to the DB so often,
you can specify an Id cache for objects:

#=============================================================================
# DODS Settings for Id Generator
#-----------------------------------------------------------------------------
# default cache size for Ids (if cache size for particular object Id is not
# specified, then this size is used, and if this cache size also isn't
# specified, program default is used)
DODS.defaults.IdGenerator.CacheSize=100

# cache size for process instance Ids
#DODS.IdGenerator._process_.CacheSize=100



Enhydra Shark

25

# cache size for activity instance Ids
#DODS.IdGenerator._activity_.CacheSize=100

About data model
You can find here DODS generated documentation of various data models used in default shark
configuration:

Instance persistence data model - (html [../SharkInstancePersistence-DODS.html], pdf [../
SharkInstancePersistence-DODS.pdf])

Event audit data model - (html [../SharkEventAudit-DODS.html], pdf [../SharkEventAudit-DODS.pdf])

Repository persistence data model - (html [../SharkRepositoryPersistence-DODS.html], pdf [../
SharkRepositoryPersistence-DODS.pdf])

Participant map persistence data model - (html [../SharkParticipantMapPersistence-DODS.html], pdf [../
SharkParticipantMapPersistence-DODS.pdf])

UserGroup persistence data model - (html [../SharkUserGroup-DODS.html], pdf [../SharkUserGroup-
DODS.pdf])

Application map persistence data model - (html [../SharkApplicationMapPersistence-DODS.html], pdf
[../SharkApplicationMapPersistence-DODS.pdf])

Id Counter data model - (html [../SharkUtilities-DODS.html],pdf [../SharkUtilities-DODS.pdf])

Database support

What Needs to be Configured in Order to Use Database Other
Then HypersonicSQL

The scripts for creating tables for various databases (by using Octopus) are distributed with Shark. If you
want to use different database then the one originally configured to work with Shark (HypersonicSQL
database), you should do the following:

• first you'll need to stop any Shark instance that may be running.

• Edit the configure.properties file and set values for:

db_loader_job name of the directory containing Octopus loader job, options are:
db2, hsql, informix, msql, mysql, oracle, postgresql, sybase

db_user username for database authentication

db_passwd password for database authentication

db_ext_dirs directory containing jar file(s) with JDBC driver, if
you need more then one directory specified here - use
${path.separator} to concatenate them

../SharkInstancePersistence-DODS.html
../SharkInstancePersistence-DODS.html
../SharkEventAudit-DODS.html
../SharkEventAudit-DODS.html
../SharkRepositoryPersistence-DODS.html
../SharkRepositoryPersistence-DODS.html
../SharkParticipantMapPersistence-DODS.html
../SharkParticipantMapPersistence-DODS.html
../SharkUserGroup-DODS.html
../SharkUserGroup-DODS.html
../SharkApplicationMapPersistence-DODS.html
../SharkApplicationMapPersistence-DODS.html
../SharkUtilities-DODS.html
../SharkUtilities-DODS.html


Enhydra Shark

26

${db_loader_job}_JdbcDriverclassname of the JDBC driver you want to use

These entries are already filled with default values.

${db_loader_job}_Connection_Urlfull database URL

These entries are already filled with default values, too.

• run the configure.[bat|sh]

Note

When loading newly created database, Octopus will complain about not being able to drop indices
and tables, but theses warnings should be ignored.

At this time, sharkdb.properties file(that is placed in lib/client folder) and Shark.conf are adjusted to use
selected database.


