[image: image6.png]
Spagic

Spagic3 TCP Server TCP Client Configuration Guide
[image: image7.png][image: image8.png]

	
	
	
	

	

	
	
	
	

	
	
	
	

	Spagic 3
TCP/IP Server TCP/IP Client

Configuration Guide

	
	
	
	

	
	
	
	

	
	
	
	

	
	Author:
	Antonietta Miele

	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

31
Introduction

32
Versions

33
Glossary

34
Connector TCP/IP Server

44.1
Connector Configuration

75
Connector TCP/IP Client

75.1
Connector Configuration

1 Introduction
This documents is intented to provide a guide to the configuration and use of Spagic 3 Connectors TCP/IP Server and TCP/IP Client.
2 Versions
	Version/Release n° :
	1.0
	Date
	17/10/2012

	Description
	First Release

3 Glossary

· NM : Normalized Message
· NMR : Normalized Message Router
· SPAGIC_VERSION : 3.3.0 in case of Spagic 3.3, 3.4.0 in case of Spagic 3.4
4 Connector TCP/IP Server
The TCP Server permit to receive a call on socket connection using a simple protocol based on header and trailer.
4.1 Connector Configuration
[image: image1.png]
[image: image2.png]
Configuration fieds mandatory are:
· Connection Pool Size : Number of connection allowed receiving messages. Clients that connect after the connection number is reached will be disconnected
· Local Port: listening port
· Local Address: listening host
· Normalized message output envelope: name of the envelope where TCP message is putted sending the message to other components
· Normalized message input envelope: name of the envelope where other component puts this component input message.
· Base64 encode message: check it if you want tcp content putted in the Normalized Message will be encoded
· Base64 decode message: check it if you want tcp content read from Normalized messages will be decoded.
· MEP: message exchange protocol if in-only or in-out
· Incoming Wrapper: Message wrapping around messages received over the socket connection. Options:

WRAPPER_MINIMAL - HL7 minimal LLP protocol,

WRAPPER_USER - user defined header and/or trailer
· Incoming Header: This property defines the header that identifies the start of a message on the socket connection.

· Incoming Trailer: This property defines the header that identifies the end of a message on the socket connection. 1
· Strip Wrapping: Sets whether or not to strip the wrapping off received messages
· Outgoing Wrapper: Outgoing wrapper used for messages written to the socket connection. Options:

WRAPPER_MINIMAL - HL7 minimal LLP protocol,

WRAPPER_USER - user defined header and/or trailer
· Outgoing Header: This property defines the header that identifies the start of a message on the socket connection.1
· Outgoing Trailer: This property defines the trailer that identifies the end of a message on the socket connection. 1
· Require SSL: check if you want to set the use of communication encryption.
If the last field is checked, you have to field the next 4 mandatory fields

· Using SSL client Authentication : check if require client authentication
· Keystore File : link to keystore file . To add a keystore you have to simply drag and drop the keystore file that have to be stored stored in the folder /Resources/ Keystores
· Keystore Password: password to open the keystore and retrieve certificate

· Keystore Type: choose from the list of supported keystore type
· Listen Backlog: The number of connections that can be waiting for a connection before others are refused. The specified backlog must be greater than 0 (zero).
· Outgoing endianess : Certain codes used in the header and trailer definitions can output binary data. Options:

BIG_ENDIAN (most significant byte first)

LITTLE_ENDIAN (least significant byte first) endian order
· Incoming endianess: Certain codes used in the header and trailer definitions can input binary data. Options:

BIG_ENDIAN (most significant byte first)

LITTLE_ENDIAN (least significant byte first) endian order
· Log Connection: If checked the connections logging will be enabled
· Log Data: If checked the data logging will be enabled
· Log Data in Exadecimal: If checked the data will be logged in hexadecimal format
· Log Extra info: If checked, the timestamps will be logged with each event
If one of the last 4 fileds are checked you can set the absolute path of file logging in the field

· Log file Name

Configuration fieds non mandatory:
· target : the service/process to send the message retrieved by the connector
5 Connector TCP/IP Client
The TCP/IP Client permit to receive a call on socket connection using a simple protocol based on header and trailer.
5.1 Connector Configuration
[image: image3.png]
[image: image4.png]
Configuration fieds mandatory are:

· Base64 Encoded Input : check if the input is Base64 encoded
· Base64 Encode Reply: check if you want to encode in Base64 the reply
· Connection mode : configure connection mode. Optons:
CONNECTION_MODE_MAINTAIN: keep the connection on after sending a message

CONNECTION_MODE_DISCONNECT: after sent the message the connection will be closed.

· SSL Enabled: set is encryption ssl is enabled

· Normalized message input envelope: name of the envelope where other component puts this component input message.
· Remote Port: the port to send the message
· Remote Address: ip address of the host to send the message
· Retry Count : number of retry in case of no response to a sent message
· Retry Delay : Wait time before retrying to establish the connection after a connection error.
· Retry Number : Number of retry done on connection failure.
· Retry Type : specify how the component will retry to open a connection after a connection initialization failure.Options:
RETRY_TYPE_NO_RETRY: no retry will be done

RETRY_TYPE_IMMEDIATE: the retry is done as soon as the failure happen

RETRY_TYPE_LINEAR: the component wait the "Retry delay" time before a retry

RETRY_TYPE_EXPONENTIAL: the component will wait for the "Retry Delay" before attempting to restore the connection the first time, but for each subsequent attempt, this delay is raised to the power of 2.
· Reply Timeout (ms) : the period of time the connector is waiting for a reply, in milliseconds
· Incoming Header: This property defines the header that identifies the start of a message on the socket connection. 1
· Incoming Trailer: This property defines the header that identifies the end of a message on the socket connection. 1
· Incoming endianess: Certain codes used in the header and trailer definitions can input binary data. Options:

BIG_ENDIAN (most significant byte first)

LITTLE_ENDIAN (least significant byte first) endian order
· Outgoing Header: This property defines the header that identifies the start of a message on the socket connection.1
· Outgoing Trailer: This property defines the trailer that identifies the end of a message on the socket connection. 1
· Outgoing endianess : Certain codes used in the header and trailer definitions can output binary data. Options:

BIG_ENDIAN (most significant byte first)

LITTLE_ENDIAN (least significant byte first) endian order
· Strip Wrapping: Sets whether or not to strip the wrapping off received messages
· TCP/IP IO receiver class : Name of a class that will receive the TCP server response. Default is org.spagic3.connectors.tcp.ConsoleTCPReceiver
· Send faults to target: check if you want to send a fault to the target, if something goes wrong.
· before others are refused. The specified backlog must be greater than 0 (zero).
· Log Connection: If checked the connections logging will be enabled
· Log Data: If checked the data logging will be enabled
· Log Data in Exadecimal: If checked the data will be logged in hexadecimal format
· Log Extra info: If checked, the timestamps will be logged with each event
If one of the last 4 fileds are checked you can set the absolute path of file logging in the field

· Log file Name
Configuration fields non mandatory are:

· Normalized message output envelope: name of the envelope where TCP message is putted sending the message to other components
· target : the service/process to send the message retrieved by the connector.
[image: image5.png]
� The header or trailer is identified by sequence of bytes separated by a blank whith each byte in the form 0x##, where ## is the hex rappresentation of the byte (a valid example is: “0x1C 0x0D”)

Pagina 2 di 9
	[image: image6.png]
	Engineering Ingegneria Informatica S.p.A., 2007, 2010. This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/
	[image: image7.png] [image: image8.png]

[image: image9.png][image: image10.png][image: image11.png][image: image12.png]