

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 1/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Spagic Studio Components

 Author: Andrea Zoppello

Nicola Buso

Gianfranco Boccalon

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 2/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Document Goal.. 5

Version History .. 5

1 Introduction... 6

1.1 JBI Concepts ...6

1.2 Spagic and Spagic Studio ...7

1.3 Spagic and Business Process Management and Monitoring ..9

1.4 Installation ...10

1.4.1 JUDDI installation..10

1.5 Spagic Preference Page ...13

1.6 Creating a Spagic Project..14

1.7 Creating an Integration Process (Spagic File) ...16

1.8 Available Operations on Integration Processes...19

1.9 Business Registries, Publishing and classification of processes...20

1.10 Configure Rules for Relevant Data Extraction...22

1.11 Working with Datasources...24

1.12 Iter Types and Iters ...25

1.13 XPath and Namespace configuration ..27

1.14 Catalogs Configuration for Console...29

2 Components ... 31

2.1 Binding Components ...31

2.1.1 HTTP Component ...31

2.1.1.1 Configuration ...31

2.1.1.2 SSL configuration ..32

2.1.1.3 SOAP with attachments...32

2.1.1.4 Synchronous component interaction ...32

2.1.1.5 Webservice client generation ..32

2.1.1.6 Configuration examples...33

2.1.1.6.1 Sample SOAP ..33

2.1.1.6.2 Https example...33

2.1.2 TCP-IP...34

2.1.2.1 Common config ...34

2.1.2.2 Client mode configuration...36

2.1.2.3 Server mode configuration ..36

2.1.2.4 Configuration example...37

2.1.3 JDBC Poller...38

2.1.3.1 Database Configuration...38

2.1.3.2 Statements Configuration ..39

2.1.3.3 XML Generation ..39

2.1.3.4 Configuration Example ..40

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 3/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.1.3.5 XML Message Format ...41

2.1.4 StreamWriter (Screen)...43

2.1.4.1 Configuration Example ..43

2.1.5 File ..43

2.1.5.1 Configuration Parameters when used as Input BC..44

2.1.5.1.1 Configuration Example ...44

2.1.5.2 Parameters Configuration for Output File BC..44

2.1.5.2.1 Configuration Example ...44

2.1.6 Mail..44

2.1.6.1 Configuration Parameters..45

2.1.6.2 Configuration Example ..45

2.1.7 JMS Binding Component...46

2.1.8 FTP Binding Component ...46

2.1.9 RSS Binding Component...46

2.1.10 Timer (Quartz) Binding Component..46

2.2 Service Engines ..47

2.2.1 JDBC Query Component (Simple) ..47

2.2.1.1 Configuration Example ..47

2.2.2 JDBC Advanced Query & Stored Procedure Component ...47

2.2.2.1 Configuration Properties..48

2.2.2.2 Query Parameter configuration ...48

2.2.2.3 Store Procedure parameter configuration..48

2.2.2.4 Configuration Example ..49

2.2.2.4.1 Query example ...49

2.2.2.4.2 Store procedure example: ..49

2.2.3 Synchronizer ...50

2.2.4 Syntax Validator ..51

2.2.4.1 Configuration Parameters..51

2.2.4.2 Configuration Example ..52

2.2.4.3 Notes on XSD..52

2.2.5 Semantic Validator ..53

2.2.5.1 Configuration Parameters..53

2.2.5.2 Configuration Example ..53

2.2.5.3 Writing rules file...54

2.2.5.4 Example of rulebase resource...55

2.2.6 Groovy Scripting Component ..56

2.2.6.1 Configuration Parameters..56

2.2.6.2 Configuration Example ..56

2.2.6.3 Notes on Groovy ...56

2.2.6.4 Example of groovy script ...57

2.2.7 Talend Job Caller ..57

2.2.7.1 Configuration Parameters..57

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 4/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.2.7.2 Configuration Example ..57

2.2.7.3 Current Limitations ..58

2.2.8 Transformer (XSLT Mapper) Component ..58

2.2.8.1 Configuration Parameters..58

2.2.8.2 Configuration Example ..58

2.2.8.3 Tools For Developing XSLT Transformation ...59

2.2.9 WS Pipeline...59

2.2.10 TCP-IP Pipeline...59

2.2.11 Router..60

2.2.11.1 Configuration Parameters..60

2.2.11.2 Routing Rules..60

2.2.11.3 Configuration Example ..61

2.2.12 XPath Splitter ..62

2.2.12.1 Configuration Parameters..62

2.2.12.2 Configuration Example ..63

2.2.13 SplitAggregator..63

2.2.13.1 Configuration Parameters..63

2.2.13.2 Configuration Example ..63

2.2.14 Message Filter...64

2.2.15 Wire Trap component (Tracer) ..64

2.2.15.1 Configuration Parameters..64

2.2.15.2 Configuration Example ..64

3 Roadmap and evolutions .. 64

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 5/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Document Goal

In this document we will focus on how to use the Spagic Studio IDE to deliver SOA solutions based on Spagic solution.

After a brief introduction we will list all available components and we’ll show how to use in process designed with Spagic

Studio.

Version History

Version/Release n° : 1.0 Date June 02, 2007

Description/Modifications: First Release (English version)

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 6/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1 Introduction

1.1 JBI Concepts

Java Business Integration is a standard specified in JSR 208 that defines a way to develop applications in term of services

with a high degree of decoupling. This document doesn’t contain the JBI specifications, but it contains some important

concepts that must be explained before introducing Spagic Studio IDE.

In a very simple way we can say that in the JBI model an Application is composed by a set of Services, and by a set of

rules that defines the flow between services. Services are exposed by what we call Components. To be clearer making a

comparison with the Object Oriented world we can think to the Component similar to Classes and services to Objects.

An important think to know is that in JBI model each service communicates with others not directly, but passing by a

distributed message bus called Normalized Message Router and with a fixed specified message format called Normalized

Message. Without enter in the details of JBI spec, a normalized message is composed of three parts:

1. A set of properties called Message Headers

2. The content of the message called Payload or simply Message Content

3. A set of attachments

This means that in an application we can have more services belonging to the same components. In a JBI application all

services of a particular component are grouped in deployment structures called Service Units.

The JBI specification classifies the components in:

• Binding Components. These are the components that constitute the entry and exit point for JBI application, often

called protocol adapters, because their main function is to handle communication and to perform conversion from

specific protocols to Normalize Message when they’re input components or from Normalized Message to specific

protocols when they’re output components.

• Service Engines. These are the components that implements business features, inside a JBI application.

The JBI applications are often called Composite Applications or Service Assemblies because we’ve a set of services

related to each other by a flow that defines a complex application. Usually JBI applications are used to solve enterprise

integration problems; for this reason a Service Assembly can also be called Integration Process. In this document the term

Integration Process is preferred over Service Assembly or JBI Application, because it’s easier to understand, but the

meaning is the same.

Service assemblies or JBI applications are deployed on JBI compliant enterprise service bus (ESB).

Finally we can say that a JBI Application or Service Assembly is composed of a set of Service Units where each one

of these specifies one or more services belonging to a particular component.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 7/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1.2 Spagic and Spagic Studio

As seen in the previous chapter, JBI specifications provide a way to compose applications in term of services, which can be

deployed in a JBI compliant ESB.

However there are some important points about enterprise integration that the JBI specification doesn’t address:

� Business Process Management: At the moment the ESB and JBI are good solution to address integrations

problems scenario, but today to have a complete solution we need to address also business problems scenario

where the relevant concept are (business) processes, processes instance, and relevant data associated to

them.

In the next topic we’re going in the details about BPM.

� Business Monitoring Capabilities: Like for the previous point JBI specification at the moment address only the

problem of System monitoring exposing data with JMX interface, the problem is that this is centred on system

resources, like memory usage, JMS queues, etc. Business monitoring instead is focused on processes instance (

for both business and integration processes) and relevant data associated to it. Typical business monitoring tool

provide features like:

o View of all processes (business and integration processes) deployed.

o View of all processes instances, with information about execution status (terminated with success,

failure)

o View of relevant data related to a particular process instance

o Querying and Reporting capabilities to obtain high level view of the system

� Reporting and Dash boarding: It’s very important in some organizations to have reports and dashboards on

what’s happening to integration processes.

� Availability of Visual Graphical Tools: It’s very important to have a graphical tool to visually compose integration

processes and generate deployable artefacts for ESB.

Spagic project aims to solve these problems:

� Providing a Relational Model to support Business Monitoring: The database model is where data about

monitoring are organized and stored.

� Adding extensions to JBI Server and components: Spagic provide extension to the JBI server to provide the

concepts of process instance and relevant data.

� Providing an Enterprise Business Monitoring Solution: Providing one console for all levels of monitoring, from

system monitoring to business monitoring and dash boarding.

� Providing a Graphical Tool (Spagic Studio): designer of integration processes can easily model process without

worrying about technical details. As we’ve seen Integration Process can have very complex structure, and defining

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 8/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

manually files that defines the deployment artefact for applications can be a very complex task.

Spagic Studio provides:

• A way to visually design Integration processes in term of services and flow between them

• A generator to get the deployment artefact without writing code and configuration files manually.

• Wizards to publish the service assembly in a relational database to enable monitoring and production of

statistic information.

• Tools to configure rules for relevant data extraction after that process have been published in the database.

• Wizard to publish the Service Assemblies in a UDDI registry.

This document covers all Spagic Studio features and the available components.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 9/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1.3 Spagic and Business Process Management and Monitoring

ESB solutions and JBI are very good solutions to define integrations scenario processes between applications and services.

So they're perfect if we look at them from a technology point of view. The problem is that in most cases target users of

software solutions are interested to business process management scenario.

In other terms they want to have a view in terms of:

1. Business Process (or logical use case)

A business process simply describes a scenario as a set of a logical tasks:

a. Business processes are not necessary related to technology concepts.

b. Some of these tasks could be described with technologic details, but this is not mandatory.

c. A particular business process instances is identified by a set of relevant data.

2. Integration Processes

An integration process describes flows and interaction between technology related services.

3. Relevant Data.

Set of data that will be extracted using rules during process execution. Relevant data are referred to both Business

and Integration Process.

Using relevant data we’re able to correlate two or more integration process instances to a particular business

process instance.

So there could be business processes without having anything related to technology. Obviously JBI and ESB are related to

technology so in Spagic we're interested in Business Processes that has some tasks mapped directly to integration flow.

In Spagic we provide:

� A way to describe a business process as a set of integration processes.

In Spagic a business process is called Iter

� A way to define rules to extract data from running integration processes.

� A way to define the set of data that univocally identify a business process instance, chosen by the set of data of

integration processes composing the iter.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 10/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1.4 Installation

To install Spagic Studio on a client machine execute the following steps:

1. Get and install a Java Virtual Machine version 1.5.x

2. Get graphviz installation package from http://www.graphviz.org/ and install it. If you’re using Windows, simply run

graphviz executable file and follow the wizards. During the installation steps please remember the location where

the executable dot program is located.

In Windows (Italian language), default installation graphviz will install the dot program in

C:\Programmi\ATT\Graphviz\bin\dot.exe

3. Spagic Studio is distributed as an Eclipse plugin. Get it from Spagic distribution and install it on a clean eclipse with

the complete WebTools distribution. This can be found here: http://download.eclipse.org/WebTools/downloads/.

This release is certified for Eclipse 3.2 and WTP 1.5.

4. Spagic Studio needs to connect to Spagic metadabase. In this section we assume that Spagic metadabase is

already installed and configured.

5. A Tomcat installation for JUDDI if you want to publish your services in UDDI Registry. To install JUDDI please refer

to the section below.

To start you need to launch eclipse.exe in SPAGIC_STUDIO_HOME.

1.4.1 JUDDI installation

Here you find a summary of the JUDDI installation. The project is published on the site: http://ws.apache.org/juddi/; refer to

the provided documentation for further info.

Follow the installation steps:

1. Download the release at http://ws.apache.org/juddi/releases.html

2. Extract downloaded archive. Assuming (JUDDI_RELEASE) the folder where the archive is expanded

3. Create the database where to store juddi data. The next steps assume the oracle installation will be done.

4. Execute the script on (JUDDI_RELEASE)/sql/oracle/create_database.sql on the created database.

5. Execute the script on (JUDDI_RELEASE)/sql/oracle/insert_publisher.sql

6. Copy (JUDDI_REALEASE)/webapp/juddi on (TOMCAT_HOME)/webapps/

7. Edit (TOMCAT_HOME)/webapps/juddi/WEB-INF/juddi.properties and change properties as you need.

i.e.: juddi.operatorName, juddi.discoveryURL

8. Add the following lines at the ${CATALINA_HOME}/conf/Catalina/localhost/juddi.xml file (create it if does not exist):

Correct parameters based on the juddi database created.

IMPORTANT: note that different version of tomcat have different ways to configure datasources.

Check tomcat docs for further infos. (provided config example is for tomcat 5.0.5)

<?xml version='1.0' encoding='utf-8'?>

<Context displayName="jUDDI" docBase="/juddi" path="/juddi"

workDir="work/Catalina/localhost/juddi">

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 11/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <Resource auth="Container" description="jUDDI DataSource" name="jdbc/juddiDB"

type="javax.sql.DataSource"/>

 <ResourceParams name="jdbc/juddiDB">

 <parameter>

 <name>factory</name>

 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

 </parameter>

 <!-- Maximum number of dB connections in pool. Make sure you

 configure your mysqld max_connections large enough to handle

 all of your db connections. Set to 0 for no limit.

 -->

 <parameter>

 <name>maxActive</name>

 <value>100</value>

 </parameter>

 <!-- Maximum number of idle dB connections to retain in pool.

 Set to -1 for no limit. See also the DBCP documentation on this

 and the minEvictableIdleTimeMillis configuration parameter.

 -->

 <parameter>

 <name>maxIdle</name>

 <value>30</value>

 </parameter>

 <!-- Maximum time to wait for a dB connection to become available

 in ms, in this example 10 seconds. An Exception is thrown if

 this timeout is exceeded. Set to -1 to wait indefinitely.

 -->

 <parameter>

 <name>maxWait</name>

 <value>10000</value>

 </parameter>

 <!-- MySQL dB username and password for dB connections -->

 <parameter>

 <name>username</name>

 <value>juddi</value>

 </parameter>

 <parameter>

 <name>password</name>

 <value>juddi</value>

 </parameter>

 <!-- Class name for the old mm.mysql JDBC driver - uncomment this entry and comment next

 if you want to use this driver - we recommend using Connector/J though

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 12/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <parameter>

 <name>driverClassName</name>

 <value>org.gjt.mm.mysql.Driver</value>

 </parameter>

 -->

 <!-- Class name for the official Oracle driver -->

 <parameter>

 <name>driverClassName</name>

 <value>oracle.jdbc.driver.OracleDriver</value>

 </parameter>

 <!-- The JDBC connection url for connecting to your MySQL dB.

 The autoReconnect=true argument to the url makes sure that the

 mm.mysql JDBC Driver will automatically reconnect if mysqld closed the

 connection. mysqld by default closes idle connections after 8 hours.

 -->

 <parameter>

 <name>url</name>

 <value>jdbc:oracle:thin:@localhost:1521:thebit01</value>

 </parameter>

 </ResourceParams>

</Context>

9. Check the correct jdbc driver library is present in the tomcat classpath. I.e.: ${CATALINA_HOME}/common/lib

10. Start tomcat.

11. Open a browser on http://<tomcat-host>/juddi/happyjuddi.jsp

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 13/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1.5 Spagic Preference Page

The first step to do when you open Spagic Studio is to configure preference page.

The Spagic Preference Page is integrated in Eclipse preference dialog (Window\Preference) as shown in the following

image:

Some parameters relate to connection with Audit Database and service registry, and others are related to the connection

with ServiceMix and graphviz.

� Audit DB URL: the jdbc url of the database created in the previous section

� Audit DB Driver: the full jdbc driver class name

� Audit DB User: username for accessing the audit DB.

� Audit DB Password: password for accessing the audit DB.

� Audit DB Dialect: the name of the hibernate class for the database used

(org.hibernate.dialect.MySQLInnoDBDialect for mysql)

� Show SQL: Check this only for debug purpose

� Service Registry Inquiry URL: the url of inquiry service exposed by juddi

� Service Registry Publish URL: : the url of publish service exposed by juddi

� Service Registry User: the user that Spagic Studio use to connect to juddi

� Service Registry Password: the password that Spagic Studio use to connect to juddi

� Default Organization: the default organization where to publish the services

� Graphviz Dot Program Location: The path to graphviz dot program

� Graphviz Temp folder: The path that graphviz will use as temporary folder

� SMX Get Resources Services: The url of the services that Spagic Studio uses to get resources information from a

running ServiceMix.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 14/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1.6 Creating a Spagic Project

In Spagic Studio the work is organized in Spagic Projects. The better way to understand how a project is organized is to

create a new one and to see its structure.

To create a new Spagic Project the Spagic Studio plugin provide a specific wizard in File\New\Project eclipse menu. So if

the tool is installed correctly the new Spagic Project Wizard should be located in the Spagic category:

If you click the next button a dialog require to insert the project name and location:

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 15/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Insert the name (for example “Sample”) of the project and click Finish.

In the workspace the Sample Project have just been created with the standard project structure:

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 16/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

As you can see from the image a Spagic Project is composed of the following folders:

� Integration Process: This folder is the most important and contains all Spagic file describing the service assembly

in terms of endpoints and flow between them.

� Mappings: This folder contains resources that are used by the mapping component. Almost of this resource will be

XSLT file.

� Scripts: This folder contains resources that are used by Scripting Components. Actually groovy is the language for

the scripting, so this folder will contain groovy file.

� SemanticRules: This folder contains resources that are used by Semantic Validator Component. Rules are

expressed in Drools 3.0 syntax.

� SyntaxRules: This folder contains resources that are used by the Syntax Validator Component. The validation of

normalized messages is performed by xsd files.

� WsdlFiles: This folder contains resources that are automatically generated by Spagic Studio if your process

contains entry endpoint relative to HTTP Component configured to be a SOAP Provider. Automatic WSDL

generation is provided by Spagic Studio for two important reasons:

o Client applications of your service assembly needs WSDL to automatically generate clients stub (for

example with axis)

o Once you’ve generated a WSDL for a particular service assembly some type checking and restrictions can

be made in the input of the application changing manually the WSDL generated. If you change the WSDL

manually the versions manually modified will be deployed in service assembly structure.

The most important folder of this structure is the IntegrationProcess folder because it’s the container of the Spagic file that

defines Service Assemblies. Other folders are just container of resources organized in standard structure.

1.7 Creating an Integration Process (Spagic File)

After the creation of the Spagic Project, the next step is to create a new Integration Process.

In this section a very simple example will be created to show the tool usage.

To create the process point the mouse on the IntegrationProcess folder of the “Sample” Spagic project and open the context

menu, from here select File\New\Other and choose Spagic File Wizard:

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 17/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

If you click the next button the dialog for creating a new empty project Spagic file will be opened:

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 18/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Only the container for the processes (preconfigured with the label IntegrationProcess) and the file name are required to

create the new process.

The file name must have the .Spagic extension.

At the end of the wizard the Spagic file has been created in the project and the visual Spagic editor will be opened.

As you can see the Spagic File Editor is a typical “GEF Editor” where you find:

� The Components Palette: It’s located at the left of the editor, when you drag a component from the palette to the

editing area, a service relative to the component selected is created in the Service Assembly. Components are

classified in the palette.

� The Editing Area: When an endpoint is created by a drag and drop from the palette, it’s visible on the editing area.

When you click on a particular endpoint, the properties view is populated with the property associated to the

endpoint. The editing area is used to connect endpoints using the connection tool of the palette. From the editing

area with the context menu it’s also possible to configure rules for relevant data extraction within the endpoint.

� The Properties View: In the properties view you can change the properties of the endpoint currently selected in the

editing area.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 19/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1.8 Available Operations on Integration Processes

After the creation of a Spagic file, when the composition of the process is finished, the following features are available:

� Generation of the deployable artefact (Generate JBI Package): This feature generates the deployable package

for the process composed in the visual editor. The file generated is packaged as a zip file that you must copy in the

deploy folder of ServiceMix ESB, the default ESB in Spagic architecture.

� Publishing of the Process in the database (Publish in Database): This feature stores the structure of your

integration process in a relational database. This information will be used by the auditing listener for monitoring the

processes.

� Automatic generation of WSDL file (Generate WSDL): It’s not mandatory, but for processes that have HTTP

endpoints as input it’s possible to get a generic WSDL associated. This feature generates a generic WSDL file that

can be manually modified. The WSDL file is deployed within the process when the generation of the package is

requested.

� Configuration of the process in a business registry: If the process can be published in a UDDI registry, with this

feature it’s possible to publish the service in a UDDI server and classify it. Service classification is based on the

concept of taxonomy as a predefined set of values. Classifying a service means to assign it one or more values on

one or more taxonomy. Before publishing and classifying a service you must publish it in the database.

� Delete a Process from business registry: The process can be removed by UDDI registry using this feature.

All this operations are available on Spagic file opening the context menu on the navigator view

Or opening the context menu on the editing area:

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 20/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

All operations use the parameters defined in Spagic Preference Page, except for the configuration in business registry

described in the next paragraph.

1.9 Business Registries, Publishing and classification of processes

As described from the previous section one of the operation available on integration processes is the publication on a

business registry. From a high level point of view we can say that a business registry is a repository where we can

publish services with their definitions, and provide a classification of these based on taxonomies.

The important concepts about business registry are:

• Organizations: A service published within a business registry must be associated to an organization that is the

provider of the service.

• Taxonomies are finite set of values definining “domains”, and classifying a service by a taxonomy means to

choose one or more value from the taxonomies and assign to service. Important concepts are:

1. A service can be classified one or more time within the same taxonomy

2. A service can be classified one or more time in different taxonomies

• The main feature of a business registry is to provide search features based on organizations and classifications.

Typical query for a business registries are:

1. Search all services provided by “organization X”

2. Search all services classified as “payments” by the business taxonomy

3. Search all services provided by “organization X” classified as

Organization and taxonomies need to be defined at the beginning of project and often are stable in time, so in Spagic Studio

we offer two utilities to preload organizations and taxomonies text files.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 21/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

To “Load organizations” in Business registry use the following button:

Spagic Studio will ask you for a “.org” file. It’s a simple text file like the example:

#OrganizationName;OrganizationDescription

Engineering;Engineering Ing. Informatica

Bank XYZ;Description for Bank

Institute ABC;Description for Institute ABC

To “Load taxonomies” in Business registry use the following button:

Spagic Studio will ask you for a “.tax” file. It’s a simple text file like the example:

#TechnologyTaxonomy

->Java Services

->Web Services

->CICS Services

->Cobol Serivices

After you’ve loadedthe data in the registry, you can publish your services in the business registry with the context menu
entry available on Spagic files:

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 22/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1.10 Configure Rules for Relevant Data Extraction

As explained in section 1.2 the concepts of process, process instance and of relevant data of a particular process instances

are central for Spagic.

Support of process and process instances concepts in Spagic requires only the publication of the process in metadatabase.

Extracting relevant data require the configuration of rules inside Spagic Studio.

The important things to keep in mind about rules for extracting relevant data:

1. Rules are used to extract relevant data relative to an Attribute.

2. Relevant data is the value that an Attribute has in a particular process instance.

3. Rule must be an XPath Expression. This because the payload of normalized message must be XML.

4. Rules can be applied only if a precondition has been verified. Precondition for rules are expressed with Boolean

XPath Expression. If the precondition is configured the rule is always evaluated.

5. Rules are configured on endpoints. It’s possible to choose to apply only to incoming message, only to

outcoming message from the endpoint or both.

6. The same rule can be reused in different endpoints.

7. In two different processes the same attribute can be produced by different rules.

To configure rules for endpoint the publication of the process in database is required.

Then it’s possible to select and endpoint in the editing area, and select “Configure Rules for Endpoint” entry in the context

menu. The following dialog will be opened:

Here the rules already associated with this endpoint are shown.

It’s possible to:

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 23/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

� Create a new rule and automatically link to this endpoint with “Create New” button. The New Rule Creation

Dialog will be opened:

Particular attention must be made to the field “Dest. Attribute”:

1. If you want that this rule should produce a new attribute you need only to define the attribute name in the text field.

2. If you want that this rule should produce relevant data for an existing attribute you can choose it with “Choose

Existing Attribute” button.

� Associate an existing rule to this endpoint with “Associate Existing” button. The following dialog will be open

Here you must select an existing rule with a double click.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 24/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1.11 Working with Datasources

Some components that can be used during the modelling of an integration process are related to database activity and they

need to be configured with datasources to work correctly.

Typically the datasources are defined in the ESB by its own configuration file.

To avoid “missing datasource problems” during the deployment phase we need a way to provide bidirectional

synchronization between datasource defined in Spagic Studio and datasources defined in the ESB.

In Spagic Studio a database configuration utilities is provided in the toolbar by the following button:

If you click on it a dialog like this will open:

Here you can see the datasource defined in Spagic Studio environment. From here you can:

1. Add a new datasource to Spagic Studio with “Add Spagic datasource button”. Pay attention that this feature will

add a datasource to Spagic Studio environment not to ServiceMix, so if you want to have the configuration for

ServiceMix you need to generate with the “Generate xml for jndi.xml” button.

2. Import datasource definition from a running ServiceMix, this will concat the services “Get Resources” at the url

defined in the preference page

3. Import in Spagic Studio datasources selecting directly the configuration file (SMX_HOME\conf\jndi.xml) if

ServiceMix is not running.

4. Generate the configuration for ServiceMix for the datasources defined in Spagic Studio with the button “Generate

xml for jndi.xml”, this service will generate the xml configuration part that you only need to copy to jndi.xml file.

If during import operations, a conflict is detected (for example we can have different configuration in Spagic Studio and

ServiceMix for the same datasource), Spagic Studio will ask you to decide what you want to do.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 25/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1.12 Iter Types and Iters

Spagic support the concept of Iter Types and Iter. The link between the concept of Iter Type and the concept of Iter is the

same that there’s between Process and Process Instance.

Iter type is at a higher level of abstraction than the concept of Process. With Iter Type we can logically correlate two or more

Process that share a set of common attributes. This is the reason why the same attribute can be produced by different rules.

To define an iter type we need to:

� Define the Processes that are part of the Iter. The order of the processes is important to allow Spagic creating

new Iter instances when the processes are executed.

� Define a rule for Iter Type determination. Because a process can be part of more Iter Types, we need a rule to

know how to determine in which Iter to correlate the running process. A new iter instance is created when an

instance of the process, that is the first in an iter type definition, verify the rule for iter type determination.

Rules for iter type determination are Boolean XPath expressions.

� Define the set of attribute of the Iter. The correlation of process instances to iter instances is done matching the

relevant data of process instances. If two process instances share the same set of relevant data, and their

process definitions are in the same Iter Type definition, then they’re part of the same Iter Instance.

In Spagic Studio it’s possible to define Iter Types, using the process already published in the database using the button

showed in the following image:

If you press the button the following dialog will be opened:

The dialog show all the iter defined in database. It’s possible to delete (canc/del button) an iter type, modify an existing iter

or create a new one:

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 26/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 27/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1.13 XPath and Namespace configuration

All the messages exchanged in ESB are Normalized Message, where the most important part (the payload) is XML content.

In this context XML and related technologies are very important. One of the most important is the XPath technology. A lot of

components and concept in Spagic are related to XPath.

To work correctly in Spagic you need an XPath skill. This document doesn’t cover XPath.

XPath is a quite simple technology to learn but some problems could arise when we’re using XPath expression against xml

content with namespaces.

It’s very important to know that if we want to write an XPath expression using a namespace prefix, the XPath engine must

know the namespace value associated to this prefix. Briefly the XPath engine must be aware of all namespace prefix used

in XPath expressions. If XPath engine is not configured properly we can have wrong evaluation of expressions.

Spagic components that use XPath allow declaring in their configuration all the namespaces used. To avoid specifying this

information for each endpoint, in Spagic Studio the following strategies are defined:

� All Namespaces are declared globally. Using the button showed by the image:

A typical master detail dialog will be opened:

Where it’s possible to see, add, and delete namespaces.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 28/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

� The namespace configuration will be automatically generated for each component that requires it, freeing

the process developer to do that manually.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 29/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1.14 Catalogs Configuration for Console

Once rules have been configured for a process, a set of attributes is defined in database.

To better organize presentation in the console, attributes can be grouped in logical catalogs.

Within a catalog it’s possible:

1. Define a presentation orders for attributes

2. Make an attribute visible or hidden.

To open the catalogs dialog hit the buttons highlighted in the image from the Spagic global buttons group:

A two tables dialog will be opened:

The master table list catalogs in the database, and if we make a selection on it, the table below will be refreshed with the

attributes linked to catalog. To create a new catalog just hit the button “New Catalog”:

With the other button we can link an attribute to a selected catalog; the new attribute will be positioned as the last attribute.

The attributes table has a context menu where after selecting an attribute it’s possible to:

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 30/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1. Move up or down in presentation order

2. Hide or make visible an attribute within the catalog

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 31/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2 Components

2.1 Binding Components

2.1.1 HTTP Component

HTTP Binding Component

Component family Standard, Binding Component

Palette Group Binding Components

Function The Http component permits to communicate on socket
connection using HTTP/SOAP protocol.

2.1.1.1 Configuration

Configuration properties

Component Name Name of the component

Location URI The http url where this proxy endpoint will be exposed or

the url of the target service.

soap message If set, the component will parse the soap request and send

the content into the NMR

soap version Version of soap to use, options:

� 1.1

� 1.2

soap action Soap action that will be putted int the header (note the

SOAPAction is not available on SOAP v. 1.2 and is

discouraged for interoperability reasons)

MEP Message exchange type used by the component when

has to create the exchange.

enable https(ssl) Set the use of communication encryption.

Client Authentication The component will accept only connection where also the

client is authenticated with a "Digital Certificate".

Keystore Name of the keystore containing server certificates. The

name is a path into the ESB classpath

Keystore Password Keystore password.

Keystore type Type of the keystore, options:

� JKS

� PKCS12

Trust Store Name of the truststore containing server certificates. The

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 32/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

name is a path into the ESB classpath

Trust Password Truststore password.

Truststore type Type of the truststore, options:

� JKS

� PKCS12

2.1.1.2 SSL configuration

The component can be configured to encrypt the communication using SSL. The encryption implies the use of digital

certificates; using the configuration properties is possible to configure both the server either the client authentication. This

imply the component need a keystore, where the key needed to encrypt will be searched, and a truststore used to trust the

certificate of the other side of the connection.

The configuration of the “Client Authentication” permit to ensure the mutual authentication of both sides of the connection.

Keystore and truststore have to be provided to the ESB putting them on its classpath; for example (using ServiceMix) put a

generated keystore in a jar with the name “conf/serverKeystore.jks” and copy it into the lib folder, than valorize the

“Keystore” property with “conf/serverKeystore.jks” to indicate the keystore to be used.

2.1.1.3 SOAP with attachments

The HTTP component can manage also SOAP calls with attachments: the attachments are stored within the message

exchange. The message exchange is composed of the following three sections:

� Header

� Payload

� Attachments

The components invoked after the HTTP BC can then elaborate the attachments using the JBI API to retrieve them.

2.1.1.4 Synchronous component interaction

Interesting is the use of this binding component in conjunction with the Synchronizer component; in this way is possible to

obtaining a synchronous behaviour and permit to use the same binding component (HTTP) as entry and exit point of the

process.

2.1.1.5 Webservice client generation

To call a process where the entry point is an HTTP binding component is possible to generate a Java client using an Eclipse

wizard. After the creation of the process is possible to generate the WSDL files describing the exposed webservice; this

operation can be achieved using the right mouse button on a Spagic process and selecting “Generate WSDL”. The

webservice “Generate Client” function can be activated with a mouse right click on the generated WSDL file.

When the wizard terminate the stub generation is possible to invoke them with a simple Java application that invokes the

generated proxy class. Follow an example of Java code that invokes the proxy:

…

public static void main(String[] args) throws Exception {

 MyWebServiceadvQueryTestProxy proxy = new MyWebServiceadvQueryTestProxy();

 StringBuffer request = new StringBuffer()

 .append("<jforum><userletter>%nonymou%</userletter>”

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 33/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

+”<userpassword>%o%</userpassword></jforum>");

 SOAPElement envelope = createSOAPMessageFromString(request.toString());

 proxy.run(envelope);

}

…

Spagic is released with an utility library (soapclientutils.jar) that can be used to easly generate soap messages like in the

createSOAPMessageFromString(request.toString()) call of the preceding java code.

2.1.1.6 Configuration examples

2.1.1.6.1 Sample SOAP

<http:endpoint

 defaultMep="http://www.w3.org/2004/08/WSDL/in-only"

 service="foo:myScreenOutputhttp-course"

 endpoint="myWebServicehttp-course"

 role="consumer"

 locationURI="http://0.0.0.0:8000/TestHttp/"

soap="true"

 soapVersion="1.2"

 soapAction="">

</http:endpoint>

2.1.1.6.2 Https example

<http:endpoint

 defaultMep="http://www.w3.org/2004/08/WSDL/in-only"

service="foo:myScreenOutputhttps-course"

 endpoint="myWebServicehttps-course"

 role="consumer"

 locationURI="https://0.0.0.0:8888/httpsCourse/"

 soap="true”

 wsdlResource="classpath:https-coursemyWebServicehttps-course.WSDL">

<http:ssl>

 <http:sslParameters

 keyStore="classpath:engks/andrea.p12"

 keyStorePassword="andrea"

 keyStoreType="PKCS12"

 wantClientAuth="false"

 needClientAuth="false" />

</http:ssl>

</http:endpoint>

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 34/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.1.2 TCP-IP

TCP-IP Binding Component

Component family Standard, Binding Component

Palette Group Binding Components

Function The TCP component permit to communicate on socket
connection using a simple protocol based on header and
trailer.

2.1.2.1 Common config

Common Configuration properties

Component Name Name of the component

Connection Point type permit the componect to act as a server

(POINT_TYPE_SERVER) or a client

(POINT_TYPE_CLIENT)

Connection Point mode configure how the connection point communicate:

� OPERATION_MODE_BIDIRECTIONAL: receive

or send messages simultaneous (not

implemented as client type the component

always wait for a response):

� OPERATION_MODE_IN: only receive messages

� OPERATION_MODE_IN_OUT: When a

message is received, the system will refuse to

accept further messages until a response has

been sent

� OPERATION_MODE_OUT: only send messages

� OPERATION_MODE_OUT_IN: When a

message is sent, the system waits for a response

before sending the next message.

Normalize message output envelope name of the envelope where TCP message is putted

sending the message to other components

Normalize message intput envelope name of the envelope where other component puts this

component input message.

Base64 encode outgoing message If TRUE tcp content putted in the Normalized Message will

be encoded

Base64 decode incoming message If TRUE content read from Normalized messages will be

decoded.

MEP message exchange type used by the component when

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 35/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

has to create the exchange.

Use SSL Set the use of communication encryption.

Use SSL client mode The component will accept only connection where also the

client is authenticated with a "Digital Certificate".

Keystore filename Name of the keystore containing server certificates. The

name is a path into the ESB classpath

Keystore password Keystore password.

Truststore filename Name of the truststore containing server certificates. The

name is a path into the ESB classpath

Trusstore password Truststore password.

Log connections If TRUE the connections logging will be enabled

Log data If TRUE the data logging will be enabled

Log data in hexadecimal If TRUE the data will be logged in hexadecimal format

Log filename Name of the file where the log will be putted

Log extra info Options:

� None

� Log Time

If set to Log Time, the timestamps will be logged with each

event

Incoming wrapper Message wrapping around messages received over the

socket connection. Options:

� Minimal - HL7 minimal LLP protocol,

� User - user defined header and/or trailer

Strip wrapping Sets whether or not to strip the wrapping off received

messages

Incoming header This property defines the header that identifies the start of

a message on the socket connection.
1

Incoming trailer This property defines the trailer that identifies the end of a

message on the socket connection.
1

Incoming endianness Certain codes used in the header and trailer definitions

can output binary data.

Options:

� BIG_ENDIAN (most significant byte first)

� LITTLE_ENDIAN (least significant byte first)

endian order

Outgoing wrapper Outgoing wrapper used for messages written to the socket

connection.

1
 The header or trailer is identified by sequence of bytes separated by a blank whith each byte in the form 0x##, where ## is the hex

rappresentation of the byte (a valid example is: “0x1C 0x0D”)

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 36/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Outgoing header This property defines the header that identifies the start of

a message on the socket connection.
1

Outgoing trailer This property defines the trailer that identifies the end of a

message on the socket connection.
1

Outgoing endianness Certain codes used in the header and trailer definitions

can output binary data.

Options:

� BIG_ENDIAN (most significant byte first)

� LITTLE_ENDIAN (least significant byte first)

endian order

2.1.2.2 Client mode configuration

Client mode Configuration properties

Response timeout indicate how long the component wait for a response

before restart to send messages

Retry count number of retry in case of no response to a sent message

Fail action (Not implemented. Need queue management)

Retry number Number of retry done on connection failure.

Retry type specify how the component will retry to open a connection

after a connection initialization failure

� RETRY_TYPE_NO_RETRY: no retry will be

done

� RETRY_TYPE_IMMEDIATE: the retry is done as

soon as the failure happen

� RETRY_TYPE_LINEAR: the component wait the

"Retry delay" time before a retry

� RETRY_TYPE_EXPONENTIAL: the component

will wait for the "Retry Delay" before attempting to

restore the connection the first time, but for each

subsequent attempt, this delay is raised to the

power of 2.

Retry Delay Wait time before retring to establish the connection after a

connection error.

Tcp out-in receiver classname Name of a class that will receive the TCP server response

(deprecated)

2.1.2.3 Server mode configuration

Server mode Configuration properties

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 37/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Connection number Number of connection allowed receiving messages.

Clients that connect after the connection number is riched

will be disconnected.

Local port listening port

Local address listening host

Listen backlog The number of connections that can be waiting for a

connection before others are refused. The specified

backlog must be greater than 0 (zero).

2.1.2.4 Configuration example

<tcp:consumer

 service="foo:TCPBCtcp-consumer-sync" endpoint="TCPBCtcp-consumer-sync"

 targetService="foo:mySynctcp-consumer-sync" >

 <tcp:config>

 <tcp:tcpBCConfig

 localPort="10300"

 localAddress="192.168.20.110"

 connectionMode="CONN_MODE_MAINTAIN"

 remotePort="10222"

 remoteHost=""

 incomingWrapper="WRAPPER_USER"

 incomingHeader="0x0B"

 incomingTrailer="0x1C 0x0D"

 stripWrapping="TRUE"

 logConnections="FALSE"

 logData="FALSE"

 logDataAsHex="FALSE"

 connectionLogFileName=""

 extraInformation="FALSE"

 connNumber="-1"

 useSSL="FALSE"

 useSSLClientMode="FALSE"

 keyStoreFileName="classpath:engks/andrea.ks"

 keyStorePassword="andrea"

 trustStoreFileName="classpath:engks/andrea.ks"

 trustStorePassword="andrea"

 outgoingWrapper="WRAPPER_USER"

 outgoingHeader="0x0B"

 outgoingTrailer="0x1C 0x0D"

 pointName="null"

 pointType="POINT_TYPE_CLIENT"

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 38/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 pointMode="OPERATION_MODE_BIDIRECTIONAL"

 responseTimeout="10000"

 retryCount="1"

 failAction="FAIL_ACTION_CLOSE_CONN"

 retryNumber="0"

 retryType="RETRY_TYPE_IMMEDIATE"

 retryDelay="0"

 outNmEnvelope="tcp-message"

 inNmEnvelope="tcp-message"

 base64encode="TRUE"

 base64decode="TRUE"

 defaultMep="http://www.w3.org/2004/08/WSDL/in-out"

 tcpOutInReceiverClassName="it.eng.spagosoa.smx.components.tcp.ConsoleTCPReceiver">

 </tcp:tcpBCConfig>

 </tcp:config>

</tcp:consumer>

2.1.3 JDBC Poller

JDBC Poller

Component family Standard, Binding Component

Palette Group

Function The JDBC poller allows information to be accessed from a
database.

2.1.3.1 Database Configuration

The configuration must include the four standard JDBC configuration properties:

Database Configuration properties

Connection URL Fully qualified name of a JDBC driver class

Connection Driver JDBC URL of the database to connect to

Connection Username The username for database access

Connection Password The password for database access

Database type The type of database with which this poller will be

connecting. Database types:

• Microsoft SQL Server

• MySQL

• Oracle

• Sybase

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 39/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

• DB2

• Postgre_SQL

• Microsoft Access

• JDBC, for other database types

2.1.3.2 Statements Configuration

The configuration include the main statement and the childs SQL elements:

Statements

SQL This is the root SQL statement.
The statement element contains one SQL element that will
be executed and a number of other statement elements
that will each be executed for every row returned by the
SQL statement.

SubQuery Sql The SQL element contains a SQL statement to execute.
This statement can contain @columnName,
@messageFieldName or $propertyName variables.

2.1.3.3 XML Generation

The JDBC binding component essentially watches one main table. Every time new rows are inserted into this table, the

JDBC binding component will retrieve these rows and return the information contained in them as an XML message.

Retrieval of these rows is the responsibility of the root SQL statement. The user must define a “key” column for the main

table, which is used by the root statement to order and restrict the rows returned from the main table.

XML generation

Period in millisecond

How often to run the SQL statements that generate the
messages.

Key The name of the “key” column. It should be returned from
the root statement, and the value of which is used to
update the value of stored key. For further explanation
refer to next section.

Initial Key Value The initial value for the stored key. This value is only used
once to initialise the key.

Comm Point ID A unique ID for this JDBC binding component (unique
from other JDBC binding components). It is used to
uniquely identify the key that is stored inside Spagic.

Rows for each message (leave blank for all) The number of rows to be used to generate an outgoing
message out of the root statement result set. Typically, the
value 1 is used to
generate an XML message per each row. In this case, the
tranction of the root SELECT SQL statement is executed
when all the rows previously returned are processed.

Row Name as Attribute If this property exists and the name property is defined for
a statement element then the output messages will have
that name as an attribute instead of as an element name.

Column Name as Attribute If this property exists then the output messages will have
the column name as an attribute instead of as an element
name.

Value as Attribute If this property exists then the output messages will have
the column result value as an attribute instead of as a
CDATA section.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 40/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The root SQL statement must always have the following general form:

SELECT col_1, col_2, …
FROM the_main_table
WHERE some_other_conditions
AND key_column > ?
ORDER BY key_column ASC

Or
SELECT col_1, col_2, …
FROM the_main_table
WHERE some_other_conditions
AND key_column < ?
ORDER BY key_column DESC

The set of columns returned (col_1, col_2, …) must contain the “key” column so that it can be stored and used for the next

query. The current value of the key column after each successful query is stored in Spagic's own database using the given

“Comm Point ID” as a unique id to store it with. This means the value is saved and if Spagic is restarted, the JDBC binding

component will pick up where it left off.

The first time the JDBC binding component is run, no value will exist in the Spagic database for the key value. In this case

the initialKeyValue property must be used to set an initial value for the property.

If a value exists in the Spagic database for the key, the InitialKeyValue property is ignored. The SQL for the root statement

must return a column with the name of the key column and should have appropriate where and order by clauses referring to

the key column to prevent the same row being returned more than once.

2.1.3.4 Configuration Example

The following listing is a sample XML configuration file for a JDBC poller.

This configuration is generated by Spagic Studio when you configure the component, but can be useful as a configuration

sample.

<jdbc:poller service="foo:myJdbcBC 1" endpoint="myJdbcBC 1"
 targetService="foo:myScreenOutputsimpleJDBC"
 databaseType="MySQL"
 driver="com.mysql.jdbc.Driver"
 URL="jdbc:mysql://athos:3306/smx"
 userName="smx"
 password="smx"
 period="60000"
 key="id_attribute"
 initialKeyValue="0"
 rowsInMessage="1"
 commPointID="attribute"
 rowNameAsAttribute="true"
 columnNameAsAttribute="true"
 valueAsAttribute="true">
 <rootStatement>
 <bean class="it.eng.spagosoa.smx.components.jdbc.StatementElement">
 <property name="name" value="main" />
 <property name="sql" value="SELECT id_attribute,id_catalog,name
 FROM `attribute` where id_attribute > ? order by id_attribute asc" />
 <property name="subQueries">
 <list>
 <bean class="it.eng.spagosoa.smx.components.jdbc.StatementElement">
 <property name="name" value="sub1" />
 <property name="sql" value="SELECT id_relevant_data,value
 FROM `relevant_data` where id_attribute = @id_attribute" />
 </bean>
 <bean class="it.eng.spagosoa.smx.components.jdbc.StatementElement">
 <property name="name" value="sub2" />
 <property name="sql" value="SELECT id_rule,expr
 FROM `rule` where id_attribute < @id_attribute" />
 </bean>
 </list>
 </property>
 </bean>
 </rootStatement>
</jdbc:poller>

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 41/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.1.3.5 XML Message Format

The general form of the XML message is as follows:

<message>
<rowname1>
<columnName1>column value</columnName1>
<columnName2>column value</columnName2>
<columnName3>column value</columnName3>
…
</rowname1>
<rowname2>
<columnName1>column value</columnName1>
<columnName2>column value</columnName2>
<columnName3>column value</columnName3>
…
</rowname2>
<rowname3>
<columnName1>column value</columnName1>
<columnName2>column value</columnName2>
<columnName3column value</columnName3>
…
</rowname3>
</message>

Essentially for each statement, starting at the root statement, you have...

<rowName>
<columnName>column value</columnName>
<columnName>column value</columnName>
<columnName>column value</columnName>
</rowName>

...groups of elements for each row returned by the SQL statement from the database. The “row” group contains exactly one

“column” element for each column in the row returned and then contains “row” groups for every child statement.

The following listing is a sample XML configuration for the root statement and some child statements.

 <rootStatement>
 <bean class="it.eng.spagosoa.smx.components.jdbc.StatementElement">
 <property name="name" value="main" />
 <property name="sql" value="SELECT id, date FROM main_table

WHERE date > ? ORDER BY date ASC" />
 <property name="subQueries">
 <list>
 <bean class="it.eng.spagosoa.smx.components.jdbc.StatementElement">
 <property name="name" value="names" />
 <property name="sql" value="SELECT firstName, secondName

FROM names_table WHERE id = @id" />
 </bean>
 <bean class="it.eng.spagosoa.smx.components.jdbc.StatementElement">
 <property name="name" value="address" />
 <property name="sql" value="SELECT address, country_code

FROM address_table WHERE id = @id" />
 </bean>
 </list>
 </property>
 </bean>
 </rootStatement>

Assume the database tables used in this example have the data from the tables below.

id date

97320 2002-1-1 12:12:34
23409 2002-1-1 12:14:56
20234 2002-1-2 10:32:25

Data for main_table

id firstName secondName

97320 bob brown

23409 doug green

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 42/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

20234 mary johns
Data for names_table

id address country_code

97320 12 Nowhere St US

23409 43 Higher Ave NZ

20234 123 Long Rd UK

20234 321 Short St US
Data for address_table

Then the XML produced would be:

<message>
<main>
<id>97320</id>
<date>2002-1-1 12:12:34</date>
<names>
<firstName>bob</firstName>
<secondName>brown</secondName>
</names>
<address>
<address>12 Nowhere St</address>
<country_code>US</country_code>
</address>
</main>
<main>
<id>23409</id>
<date>2002-1-1 12:14:56</date>
<names>
<firstName>doug</firstName>
<secondName>green</secondName>
</names>
<address>
<address>43 Higher Ave</address>
<country_code>NZ</country_code>
</address>
</main>
<main>
<id>20234</id>
<date>2002-1-2 10:32:25</date>
<names>
<firstName>mary</firstName>
<secondName>johns</secondName>
</names>
<address>
<address>123 Long Rd</address>
<country_code>UK<country_code>
</address>
<address>
<address>321 Short St</address>
<country_code>US</country_code>
</address>
</main>
</message>

The output XML can be changed by using the columnNameAsAttribute, rowNameAsAttribute and valueAsAttribute config

properties. If columnNameAsAttribute is specified, the columnName, instead of being used as the element name in the XML,

is included as the value of a “name” attribute and the element is called “column” instead.

Similarly the row name can be included as an attribute instead of as an element name. If valueAsAttribute is specified, the

column result, instead of being the element CDATA in the XML, is included as the value of a “value” attribute.

So if both columnNameAsAttribute, rowNameAsAttribute and valueAsAttribute exist in the config file, the above XML would

become:

<message>
<row name="main">
<column name="id" value="97320"/>
<column name="date" value="2002-1-1 12:12:34"/>
<row name="names">
<column name="firstName" value="bob"/>
<column name="secondName" value="brown"/>

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 43/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

</row>
<row name="address">
<column name="address" value="12 Nowhere St"/>
<column name="country_code" value="US"/>
</row>
</row>
<row name="main">
<column name="id" value="23409"/>
…
</message>

2.1.4 StreamWriter (Screen)

Screen

Component family Lightweight, Binding Component

Palette Group Binding Components

Function This component can be used only as an output binding
component to end an integration process with a log in
standard out. It’s useful for debugging purpose or for
integration processes that doesn’t need to end to a
particular channel adapter.

This component doesn’t’ have configuration parameters.

2.1.4.1 Configuration Example

Screen (StreamWriter component) is a ServiceMix lightweight component so the configuration will be produced in lw

service unit, in the ServiceMix.xml file, the fragment below is a sample of xml produced:

<!-- ####################### crmScreenOutput ######################## -->

 <sm:activationSpec componentName="crmScreenOutput " service="foo:crmScreenOutput ">

 <sm:component>

 <bean xmlns="http://xbean.org/schemas/spring/1.0"

 class="org.apache.ServiceMix.components.util.StreamWriterComponent">

 </bean>

 </sm:component>

 </sm:activationSpec>

2.1.5 File

File

Component family Standard, Binding Component

Palette Group Data Integration

Function This component can be used as input binding components
or as output binding components.
When used as input it acts as a poller on a particular
directory; Each file found in that folder will began a
process instance.
When used as output binding component the messages of

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 44/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

last service engine in flow will produce files in a specified
path.

2.1.5.1 Configuration Parameters when used as Input BC

File(*) The name of the directory to poll.
In future releases of Spagic Studio we’ll support other parameters as period, recursive, and filters on name files. At the

moment this parameter are configured with default values.

2.1.5.1.1 Configuration Example

<?xml version="1.0"?>

<beans xmlns:sm="http://ServiceMix.apache.org/config/1.0"

 xmlns:file="http://ServiceMix.apache.org/file/1.0"

 xmlns:foo="http://ServiceMix.org/cheese"

 >

<file:poller service="foo:fileStore"

 endpoint="fileStore"

 targetService="foo:store"

 file="file:/temp/file"

 deleteFile="true">

</file:poller>

</beans>

2.1.5.2 Parameters Configuration for Output File BC

Directory(*) The name of the directory where the files will be written

In future releases of Spagic Studio we’ll support other parameters for example marshallers.

2.1.5.2.1 Configuration Example

<beans xmlns:sm="http://ServiceMix.apache.org/config/1.0"

 xmlns:file="http://ServiceMix.apache.org/file/1.0"

 xmlns:foo="http://ServiceMix.org/cheese"

 >

<file:sender service="foo:fileOrder"

 endpoint="fileOrder"

 directory="file:/temp/file">

</file:sender>

</beans>

2.1.6 Mail

Mail

Component family Lightweight, Binding Component

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 45/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Palette Group Binding Components

Function This component is used as output binding component to
send an email message as the end of an integration
process.

2.1.6.1 Configuration Parameters

Hostname(*)

The mail server host name or ip address

Communication Port(*) The port used to send email (usually 25 smtp)

Mail To(*) The address destination where to send mail

Mail From Optional, if you want to set sender in the email that will be
send

Subject Optional, if you want to set the subject of the email that will
be sent

Body Optional, If you leave blank the message content will be
the body of the email sent.

2.1.6.2 Configuration Example

 <!-- ####################### myMailServerProcess1 ######################## -->

 <sm:activationSpec componentName="myMailServerProcess1" service="foo:myMailServerProcess1">

 <sm:component>

 <bean class="org.apache.ServiceMix.components.email.MimeMailSender">

 <property name="marshaler">

 <bean class="org.apache.ServiceMix.components.email.MimeMailMarshaler">

 <property name="from">

 <bean class="org.apache.ServiceMix.expression.ConstantExpression">

 <constructor-arg value="SMX" />

 </bean>

 </property>

<property name="to">

 <bean class="org.apache.ServiceMix.expression.ConstantExpression">

 <constructor-arg value="zoppello@eng.it" />

 </bean>

 </property>

 <property name="subject">

 <bean class="org.apache.ServiceMix.expression.ConstantExpression">

 <constructor-arg value="Automatic mail from SMX" />

 </bean>

 </property>

 </bean>

 </property>

 <property name="sender">

 <bean class="org.springframework.mail.javamail.JavaMailSenderImpl">

<property name="host" value="mail.eng.it" />

 <property name="port" value="25" />

</bean>

 </property>

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 46/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 </bean>

 </sm:component>

 </sm:activationSpec>

2.1.7 JMS Binding Component

JMS Binding Component

Component family Standard, Binding Component

Palette Group Binding Component

Function A Standard binding component that handle input or output
of the flows from and to JMS queues.

2.1.8 FTP Binding Component

FTP Binding Component

Component family Lightweight, Binding Component

Palette Group Binding Component

Function A Lightweight, Binding component that handle input or
output from and to a JMS server.

See ServiceMix documentation. In future release of the documentation we’ll explain this component configuration better.

2.1.9 RSS Binding Component

RSS Binding Component

Component family Lightweight, Binding Component

Palette Group Binding Component

Function A Lightweigth binding component that handle input or
output of the flows from and to rss feeds

See ServiceMix documentation. In future release of the documentation we’ll explain this component configuration better.

2.1.10 Timer (Quartz) Binding Component

Timer (Quartz) Binding Component

Component family Lightweight, Binding Component

Palette Group Binding Component

Function A Lightweigth binding component that allow to start
process at predefined interval of time. It use quartz

See ServiceMix documentation. In future release of the documentation we’ll explain this component configuration better.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 47/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.2 Service Engines

2.2.1 JDBC Query Component (Simple)

JDBC Query Component

Component family Lightweight, Service Engine

Palette Group Data Integration

Function This component expect a message with content:

<sql>

<!--sql query->

</sql>

the query will be executed and return an xml in the format
of :

<ResultSet>

<rows>

<row colName=”value” colName2=”value2” …>

</rows>

</ ResultSet >

This component doesn’t have configuration parameters.

2.2.1.1 Configuration Example

<!— This is the Spring configuration of a datasource defined in SERVICE_MIX_HOME/conf/jndi.xml ->

<bean id="mySql" class="org.springframework.jndi.JndiObjectFactoryBean">

 <property name="jndiName" value="java:comp/env/jdbc/servicemixDB"/>

</bean>

…….

<!—Note that JDBC Endpoint declare a property ref to the dataSource defined by the bean above ->

<!-- ####################### myJDBCdbAndrea ######################## -->

 <sm:activationSpec componentName="myJDBCdbAndrea" service="foo:myJDBCdbAndrea"

 destinationService="foo:myScreenOutputdbAndrea">

 <sm:component>

 <bean class="org.apache.ServiceMix.components.jdbc.JdbcComponent">

 <property name="dataSource" ref="mySql"/> </bean>

 </sm:component>

 </sm:activationSpec>

2.2.2 JDBC Advanced Query & Stored Procedure Component

JDBC Advanced Query Component

Component family Lightweight, Service Engine

Palette Group Data Integration

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 48/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Function Component able to use information from incoming NM to
execute querys or stored procedures throught JDBC.

2.2.2.1 Configuration Properties

Use configured datasources If TRUE the connection will be obtained using
datasources, otherwise all configuration parameters can
be passed.

DataSource Name of the datasource

Jdbc driver class Name of the JDBCdriver class

Jdbc connection url Connection url in JDBC format.

Database user name Name of the user that connect to the db.

Database user password Password for the connecting user.

Database vendor Name of the database vendor used for some specific
configuration.

Is stored procedure call If TRUE the component has to execute a stored
procedure.

Query Query or stored procedure call to execute (depend on “Is
stored procedure call” property).

Enrich input message If TRUE the component will try to enrich the input
message instead of create a new one

Xml envelop Envelope in the incoming message where to put execution
output

Rows Xml envelop Name of the output envelope collecting all row results.

Row Xml envelop Name of the output envelope use to collect data of a
single row

Fault management Type of fault management, options:
� FAULT_JBI: a fault will be managed by the

container than the process will have an error
status.

� FAULT_FLOW: the fault will be enveloped in the
output message giving the other component in
the flow the possibility to manage the error.

Based on the “Query” parameter will be presented a list of parameter configurations. These configurations change if the

component has to execute a query or a stored procedure call.

2.2.2.2 Query Parameter configuration

Parameter type Type of the parameter value

Parameter XPath expression XPath expression used to retrieve parameter value from
incoming NM.

2.2.2.3 Stored Procedure parameter configuration

Is output parameter Says if the parameter is an output one or not.

Parameter type Type of the parameter value.

Parameter XPath expression XPath expression used to retrieve parameter value from
incoming NM. Present only if the parameter is an input
one.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 49/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.2.2.4 Configuration Example

2.2.2.4.1 Query example

<!-- ####################### myJdbcQueryadvJdbcDatasource2 ######################## -->

<sm:activationSpec componentName="myJdbcQueryadvJdbcDatasource2"

service="foo:myJdbcQueryadvJdbcDatasource2"

destinationService="foo:myScreenOutputadvJdbcDatasource2">

sm:component>

 <bean class="it.eng.spagosoa.smx.components.jdbcquery.JDBCAdvancedQueryComponent">

 <property name="connConfig">

<bean class="it.eng.spagosoa.smx.components.jdbcquery.JDBCConnectionConfig">

 <property name="datasource" ref="jforum"/>

 </bean>

</property>

<property name="queryConfig">

<bean class="it.eng.spagosoa.smx.components.jdbcquery.JDBCQueryConfig">

<property name="query" value="SELECT * FROM jforum_users where username like $name and user_password

like $password" />

 <property name="enrichMessage" value="TRUE" />

 <property name="xmlEnvelope" value="Customer" />

 <property name="queryParams">

 <list>

 <bean

class="it.eng.spagosoa.smx.components.jdbcquery.QueryParameterConfig" >

 <property name="placeHolder" value="name" />

 <property name="outputParam" value="FALSE" />

 <property name="XPath" value="/jforum/userletter" />

 <property name="paramType" value="java.lang.String" />

 </bean>

 <bean

class="it.eng.spagosoa.smx.components.jdbcquery.QueryParameterConfig" >

 <property name="placeHolder" value="password" />

 <property name="outputParam" value="FALSE" />

 <property name="XPath" value="/jforum/userpassword" />

 <property name="paramType" value="java.lang.String" />

 </bean>

 </list>

 </property>

 </bean>

 </property>

 </bean>

 </sm:component>

 </sm:activationSpec>

2.2.2.4.2 Stored procedure example:

<!-- ####################### myJdbcQuery 1 ######################## -->

<sm:activationSpec componentName="myJdbcQuery 1" service="foo:myJdbcQuery 1"

destinationService="foo:myScreenOutputStoreProcedureTest">

 <sm:component>

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 50/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <bean

class="it.eng.spagosoa.smx.components.jdbcstore.JDBCStoreProcedureComponent">

 <property name="connConfig">

 <bean class="it.eng.spagosoa.smx.components.jdbcquery.JDBCConnectionConfig">

<property name="databaseVendor" value="Oracle" />

<property name="datasource" ref="engiprj"/>

</bean>

 </property>

 <property name="queryConfig">

 <bean

class="it.eng.spagosoa.smx.components.jdbcquery.JDBCQueryConfig">

 <property name="query" value="{call

pkg_prova.get_resultset($rSet)}" /> <property name="enrichMessage" value="FALSE" />

 <property name="xmlEnvelope" value="store-results" />

 <property name="queryParams">

 <list>

 <bean

class="it.eng.spagosoa.smx.components.jdbcquery.QueryParameterConfig" >

<property name="placeHolder" value="rSet" />

<property name="outputParam" value="TRUE" />

<property name="XPath" value="null" />

<property name="paramType" value="-10" />

</bean>

 list>

 </property>

 </bean>

 </property>

 </bean>

 </sm:component>

 </sm:activationSpec>

2.2.3 Synchronizer

Synchronizer

Component family Lightweight, Service Engine

Palette Group Extended

Function This component allows using In-Only components to
create an In-Out ServiceAssembly.

Prerequisites All the components used in the Service Assembly should
propagate (or create) the correlation id.

Suppose that you need to create a Service Assembly using a binding component that supports synchronous

request/response pattern, like for example the TCP binding component (or HTTP binding component).

Suppose also that the components that you need to use support only the In-Only MEP, which means that they accepts In-

Only exchanges and forward In-Only exchanges.

This sample case is shown in the following diagram, where the TCP binding component is used together two transform

components.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 51/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

With the Synchronizer component it is possible to manage this case: the component should be inserted after the binding

component that supports the In-Out MEP and before the components that support the In-Only MEP.

The result of the last component (the second transformer component) should be provided to the Synchronizer component,

that recognizes that this exchange is related to the request sent by the binding component, and provides the Transformer In-

Only message as the response to the binding component.

2.2.4 Syntax Validator

Syntax Validator Component

Component family Lightweight, Service Engine

Palette Group Extended

Function This component is used to validate the message content
againt xsd file

2.2.4.1 Configuration Parameters

Schema Resource(*) The path of the xsd file used to validate the message
content.

The format is:

<path_to_xsd_relative_to_syntax_rules_folder>

For example if under the Syntax Rule folder the xsd file
sample.xsd under xsd folder the path will be:

xsd/sample.xsd

The xsd file must be put in Syntax Rules folder of the
Spagic Process. This file will not be included when the
service assembly will be generated.

Error Handling(*) With this parameter it’s possible to choose if handle syntax
validation errors as

1. JBI Fault. In that case the error will be handled by
by listener and restart mechanism provided with
Spagic.

2. Generate a “correct JBI message” with a “fault
content” that will be routed to the next
component that can inspect the message content
and handle the fault within the flow.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 52/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.2.4.2 Configuration Example

<bean id="messageAggregatingErrorHandlerFactory"

 class="org.apache.ServiceMix.components.validation.MessageAggregatingErrorHandlerFactory">

 <property name="rootPath" value="Fault/messages"/>

 <property name="includeStackTraces" value="false"/>

</bean>

<sm:serviceunit id="JBI">

 <sm:activationSpecs>

 <!-- ####################### mySyntaxValidatorTestSyntaxVal ######################## -->

 <sm:activationSpec componentName="mySyntaxValidatorTestSyntaxVal"

 service="foo:mySyntaxValidatorTestSyntaxVal"

 destinationService="foo:myRouterTestSyntaxVal">

 <sm:component>

 <bean class="org.apache.ServiceMix.components.validation.ValidateComponent">

 <property name="schemaResource" value="classpath:xsd/ContattiRichiestaServiziIn.xsd" />

 <property name="handlingErrorMethod" value="APP" />

 <property name="errorHandlerFactory" ref="messageAggregatingErrorHandlerFactory"/>

 </bean>

 </sm:component>

 </sm:activationSpec>

2.2.4.3 Notes on XSD

Unlike other resources xsd files used by Syntax Validator component will not been included in service assembly but we must

deploy it manually on separate jars on classpath. Schema files are accessed as spring classpath resource so the preferred

way to work with xsd is:

1. Organize Syntax Rules Folder in subfolder.

2. Create a jar of xsd resources for each subfolder, and deploy each jar on a service mix directory loaded by

classpath. The best place to do that is to put in the <ServiceMix_home>/lib directory.

3. In the Syntax Validator endpoints set in the schema resources properties with the syntax:

<subfolder_name>/<xsd_file_name>.xsd

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 53/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

If you’ve xsd that need to import other XSD make sure to use only relative imports. (In the xsd file should not appear

absolute path). The following image show a correct import declaration:

2.2.5 Semantic Validator

Semantic Validator Component

Component family Standard, Service Engine

Palette Group Extended

Function This component use a rule file expressed in drools syntax
where it’spossible to write a set of rules that defines when
the semantic validation will fails.
If none of this rules will be verified the semantic validation
succeed an the process continues

2.2.5.1 Configuration Parameters

Rule Base Resource File Path(*) The path of the drools file (drl) where the ruleset are
defined.
The rule base resource path must be in the form:

project:SemanticRules/<file_name>.drl

This means that the drools file must be in the
SemanticRules folder of the Spagic Project that contains
the integration process file using this component.

This file will be included when the service assembly will be
generated.

2.2.5.2 Configuration Example

<beans xmlns:sm="http://ServiceMix.apache.org/config/1.0"

 xmlns:drools="http://ServiceMix.apache.org/drools/1.0"

 xmlns:foo="http://ServiceMix.org/cheese">

 <drools:endpoint service="foo:mySemValidatorTestDroolsValidator"

 endpoint="mySemValidatorTestDroolsValidator"

 ruleBaseResource="classpath:rulesetcondb.drl"

 namespaceContext="#nsContext"

 defaultTargetService="foo:myRouterTestDroolsValidator"/>

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 54/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.2.5.3 Writing rules file

Rules are expressed in drools syntax. Basically a rule has the general form:

In the semantic validator rulebase resource we must write rules that if verified will cause a validation error.

To help to write rules, the rule engine is populated with a set of objects that help us:

� Asserted Objects. This object populates the working memory and they can be used in the precondition part of the

rule. The asserted object automatically available are:

o me:It’s basically a wrapper on message exchange where we can for example evaluate XPath expression

By using this object you can access in message and evaluate a boolean XPath expression on it.

o db:It’s an object that expose a very easy api to express in the rule precondition some constraint against a

database.

public boolean exist(String value, String valueType, String tableName, String

fieldName,String dsName)

public boolean existOne(String value, String valueType, String tableName, String

fieldName,String dsName)

o The first method execute the following task:

• Get a connection from the datasource defined in jndi as java:comp/env/jdbc/ <dsName> where

dsname is the last parameter passed

• Execute the sql query:

"SELECT T."+fieldName+" FROM "+tableName+" T WHERE T."+fieldName+" = ? ";

where the parameter value will be the value parameter

• Return true if this query return one or more row.

o The second method execute the same tasks as the first the only difference is that it returns true if and only

if the number of rows returned is one.

� Helper Objects. These objects help us to write the “action” part of the rule. The helpers object automatically

available are:

o JBI: It’s the object used to generate an application or JBI fault.

Method exposed are:

public void fault(String content) throws Exception

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 55/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

public void faultToDefaultTarget(String faultInFlowContent) throws MessagingException

o The first method is used when we want the semantic validator will fails with a JBI Fault and the error will

be handled by listener and restart mechanism provided with Spagic

o The second method is for project that need to handle the error in flow. In that case a “correct JBI

message” with a “fault content” will be generated and be routed to the next component that can inspect

the message content and handle the fault within the flow.

A Spagic convention is to generate this type of messages in the following form:

<Fault>

 <!-- Fault content can be other xml

 The mportant thing is that root elemet is called Fault

 so we can handle with a XPath Router

 -->

</Fault>

o So you can used in method for example as:

JBI.faultToDefaultTarget("<Fault> ACTION STATUS IS NOT VALID </Fault>");

2.2.5.4 Example of rulebase resource

package org.apache.ServiceMix.drools

import org.apache.ServiceMix.drools.model.Exchange;

import org.apache.ServiceMix.drools.model.DbHelper;

global org.apache.ServiceMix.drools.model.JbiHelper JBI;

 rule "Rule1"

 when

 me : Exchange(status == Exchange.ACTIVE, in : in != null)

 eval(in.XPath("/ACTION/@status = 'NOT_VALID'"))

 then

 JBI.faultToDefaultTarget("<Fault> ACTION STATUS IS NOT VALID </Fault>");

 end

 rule "Rule1"

 when

 me : Exchange(status == Exchange.ACTIVE, in : in != null);

 db : DbHelper ();

 eval(db.exist(in.valueOf("/ACTION/@nome"), "STRING", "attributes", "name", "metadb"));

 then

 JBI.fault("<ERROR> The value is already present in db </ERROR>");

 end

 rule "Rule3"

 when

 me : Exchange(status == Exchange.ACTIVE, in : in != null)

 eval(in.XPath("/ACTION/@status = 'NOT_VALID'"))

 then

 JBI.fault("<ERROR> The status is not valid </ERROR>");

 end

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 56/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.2.6 Groovy Scripting Component

Groovy Scripting Component

Component family Lightweight, Service Engine

Palette Group Extended

Function This component enables the use of scripting code within
an Integration Process. Scripts are expressed in groovy
language.

2.2.6.1 Configuration Parameters

Groovy File Path(*) The path of the groovy file (.groovy) that contains the
script code.

The groovy file path must be expressed as:

project:Scripts/<file_name>.groovy

This means that groovy file must be in the Scripts folder of
the Spagic Project that contains the integration process
file using this component.

This file will be included when the service assembly will be
generated.

2.2.6.2 Configuration Example

 <!-- ####################### myGenericGroovymioGroovy ######################## -->

 <sm:activationSpec componentName="myGenericGroovymioGroovy" service="foo:myGenericGroovymioGroovy"

 destinationService="foo:myScreenOutputmioGroovy">

 <sm:component>

 <bean class="org.apache.ServiceMix.components.groovy.GroovyComponent">

 <property name="script" value="classpath:testsmx.groovy" />

 </bean>

 </sm:component>

 </sm:activationSpec>

2.2.6.3 Notes on Groovy

In this document we don’t cover Groovy Scripting Language; you can find very good documentation here:

http://groovy.codehaus.org/.

While inside the script you have access to the some useful objects that you can use inside groovy script.

Variable Description

inMessage The in message

outMessage The out message

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 57/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

context The JBI ComponentContext

deliveryChannel The DeliveryChannel

exchange The JBI MessageExchange

bindings
A Map which is maintained across invocations for the component which allows you to share state

across requests. This state is not persistent, but will last for the duration of the JVM

Most important are the inMessage and outMessage objects, that give the ability to manipulate the messages contents and

headers.

2.2.6.4 Example of groovy script

2.2.7 Talend Job Caller

Talend Job Caller

Component family Lightweight, Service Engine

Palette Group Data Integration

Function This component enables to call a job designed with Talend
Open Studio, to be called in an integration process.

This is needed where process need to do database
intensive job for whch the already available jdbc
components are not enough.

At the moment we support the jobs designed with Talend
v2.0.0

2.2.7.1 Configuration Parameters

Talend Job Full Class Name(*) The complete name of the class implementing the talend
job.

This class must be in ServiceMix classptah. In Spagic we
provide a folder usually:

<SERVICE_MIX_HOME>/lib/talend

where we put all jars needed by talend jobs.

2.2.7.2 Configuration Example

<!-- ####################### myTalendTalendTest ######################## -->

 <sm:activationSpec componentName="myTalendTalendTest" service="foo:myTalendTalendTest"

 destinationService="foo:myScreenOutputTalendTest">

 <sm:component>

 <bean class="it.eng.spagosoa.smx.components.talend.TalendCaller">

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 58/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <property name="talendJobClassName" value="corso_talend.talendprova.TalendProva" />

 </bean>

 </sm:component>

 </sm:activationSpec>

2.2.7.3 Current Limitations

At the moment, from Spagic it’s not possible to pass parameters to Talend Job classes.

In Talend v2.00 it’s possible to pass parameters to job using context files.

Instead we need:

• To pass parameters dynamically using getters and setters methods.

• To get a list of parameters that a job needs.

• To configure endpoints with a set of XPath rules to popultate talend job parameters with values extracted from

message content.

2.2.8 Transformer (XSLT Mapper) Component

Transformer XSLT Mapper Component

Component family Lightweight, Service Engine

Palette Group Service Engines

Function The component main feature is to transform the message
content using a xslt stylesheet.

If you remember all message content inside the ESB must
have xml content, so this component is important.

2.2.8.1 Configuration Parameters

XSLT File(*) The path of the xslt file (.xslt) used for the transformation.

The xslt file path must be expressed as:

project:Mappings/<file_name>.xsl(t)

This means that xslt file must be placed in the Mapping
folder of the Spagic Project that contains the integration
process file using this component.

This file will be included when the service assembly will be
generated.

2.2.8.2 Configuration Example

<!-- ####################### myTransformerInOut ######################## -->

 <sm:activationSpec componentName="myTransformerInOut" service="foo:myTransformerInOut"

 destinationService="foo:myScreenOutputTestCaseHTTPWithMap">

 <sm:component>

 <bean class="org.apache.ServiceMix.components.xslt.XsltComponent">

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 59/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <property name="xsltResource" value="classpath:ActionToPages.xslt" />

 </bean>

 </sm:component>

 </sm:activationSpec>

2.2.8.3 Tools For Developing XSLT Transformation

As we’ve just seen the Transformer xslt mapper component allow us to insert xslt transformation inside the integration

process flow. That componet expect an xslt file just ready to use. XSLT is a quite complex language and write manually an

xslt file can be quite complex so we need a tools where we can visually design the transformation and the generate the xslt

code.

Actually we found two solutions:

• Altova MapForce. It’s a commercial solution, but at the moment is probably the best solution in the market.

and if you need only XSLT Transformation the price is quite good for the feature that this tool provide.

http://www.altova.com/products/mapforce/data_mapping.html

• Jamper. It’s an alternative open source solution. You can find here:http://jamper.sourceforge.net

2.2.9 WS Pipeline

The Pipeline components permit to contact an external Web Service.

WS Pipeline

Component family Standard, Service Engine

Palette Group Service Engines

Function Pipeline on WS socket connection

The configuration is similar to the HTTP component configured as provider.

2.2.10 TCP-IP Pipeline

TCP-IP Pipeline

Component family Standard, Service Engine

Palette Group Service Engines

Function Pipeline on TCP socket connection

The configuration for this component is similar to the TCP-IP component configured as a client (or provider in JBI

terminology).

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 60/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.2.11 Router

Router

Component family Standard, Service Engine

Palette Group Service Engines

Function A Router is used to route each message to the correct
destination based on message content or headers. In
particular a router evaluates a set of rules to take
decisions.

2.2.11.1 Configuration Parameters

Number of rules(*) The number of rules to be evaluate

Rule[1..n] A set of (n) rules where n is the value above.

Routing rule can be of two types:

• Routing rule based on message content
• Routing rule based on message header

See the following section.

2.2.11.2 Routing Rules

As we seen at the beginning of this document normalized message are made of message headers, message content or

payload and attachments.

Message content and headers can be used to express routing rule. In particular:

� Rule based on Message Content are expressed in the form:

� Rule based on Message Header are expressed in form:

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 61/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.2.11.3 Configuration Example

When the SA will be generated routing rules will be expressed in the drools syntax, and in the deployable artefacts a router

will be a drools endpoint where the drools file has being automatically and included in the service unit by Spagic Studio.

For example for the the following router configuration that has two rules based on message content:

We have a configuration of a drools endpoint in drools service unit:

<beans xmlns:sm="http://ServiceMix.apache.org/config/1.0"

 xmlns:drools="http://ServiceMix.apache.org/drools/1.0"

 xmlns:foo="http://ServiceMix.org/cheese"

 >

 <drools:endpoint

 service="foo:router1"

 endpoint="router1"

 ruleBaseResource="classpath:router1.drl"

 namespaceContext="#nsContext"/>

 <drools:namespace-context id="nsContext">

 <drools:namespaces>

<drools:namespace prefix="restart">

urn:it:eng:Spagic:restart

</drools:namespace>

<drools:namespace prefix="Spagic">

urn:it:eng:Spagic

</drools:namespace>

 </drools:namespaces>

 </drools:namespace-context>

</beans>

The router1.drl file has been automatically generated and included in the service unit by Spagic Studio:

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 62/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

package org.apache.ServiceMix.drools

import org.apache.ServiceMix.drools.model.Exchange;

global org.apache.ServiceMix.drools.model.JbiHelper JBI;

 rule "RuleNum1"

 when

 me : Exchange(status == Exchange.ACTIVE, in : in != null)

 eval(in.XPath("/DATI/@name='andrea'"))

 then

 JBI.route("service:http://ServiceMix.org/cheese/myGenericGroovyRouter1");

 end

 rule "RuleNum2"

 when

 me : Exchange(status == Exchange.ACTIVE, in : in != null)

 eval(in.XPath("/DATI/@name!='andrea'"))

 then

 JBI.route("service:http://ServiceMix.org/cheese/myGenericGroovyRouter2");

 end

2.2.12 XPath Splitter

Splitter (or XPath Splitter)

Component family Standard, Service Engine

Palette Group Service Engines

Function
The best definition can be found here:

http://www.enterpriseintegrationpatterns.com

A Splitter can be used to break an incoming message into
a series of individual smaller messages, each containing
data related to one item.

use a Splitter that consumes one message containing a
list of repeating elements, each of which can be processed
individually. The Splitter publishes a one message for
each single element (or a subset of elements) from the
original message.

2.2.12.1 Configuration Parameters

XPath Expression(*) An XPath expression that select a list of nodes from
original input message.

When the original message is splitted, the list of resulting
message will be processed in parallel way by the next
component.

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 63/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.2.12.2 Configuration Example

<beans xmlns:sm="http://ServiceMix.apache.org/config/1.0"

 xmlns:eip="http://ServiceMix.apache.org/eip/1.0"

 xmlns:foo="http://ServiceMix.org/cheese">

 <eip:XPath-splitter

service="foo:mySplitterProcess1" endpoint="mySplitterProcess1"

 XPath="//spago:PAGES/spago:PAGE" namespaceContext="#nsContext">

 <eip:target>

 <eip:exchange-target service="drools:myRouterProcess1"/>

 </eip:target>

 </eip:XPath-splitter>

 <eip:namespace-context id="nsContext">

 <eip:namespaces>

 <eip:namespace prefix="spago">http://it.eng.spago</eip:namespace>

 </eip:namespaces>

 </eip:namespace-context>

</beans>

2.2.13 SplitAggregator

SplitAggregator

Component family Standard, Service Engine

Palette Group Service Engines

Function
The best definition can be found here:

http://incubator.apache.org/ServiceMix/ServiceMix-
eip.html#ServiceMix-eip-SplitAggregator

The SplitAggregator is an aggregator mainly usefull to
collect messages that have been created using a splitter.
It relies on several properties that should be set on the
exchanges (count, index, correlationId).

2.2.13.1 Configuration Parameters

Aggregate Envelope Name

Message Envelope Name

2.2.13.2 Configuration Example

<eip:split-aggregator service="foo:myAggregatoraggregator"

endpoint="myAggregatoraggregator"

 aggregateElementName="MY-ACTIONS"

messageElementName="">

 <eip:target>

 <eip:exchange-target service="foo:myScreenOutputaggregator"/>

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 64/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 </eip:target>

</eip:split-aggregator>

2.2.14 Message Filter

2.2.15 Wire Trap component (Tracer)

WireTrap (Tracer)

Component family Standard, Service Engine

Palette Group Service Engines

Function A WireTap component can be used to forward a copy of
the input message to a listener in a proxy fashion.

2.2.15.1 Configuration Parameters

Destination copy(*) The service to wich a copy of the incoming message will
be forwarded.

2.2.15.2 Configuration Example

<eip:wire-tap service="foo:myTracertestWireTrap" endpoint="myTracertestWireTrap">

 <eip:target>

 <eip:exchange-target service="foo:myFileBC 1"/>

 </eip:target>

 <eip:inListener>

 <eip:exchange-target service="foo:myScreenOutputtestWireTrap"/>

 </eip:inListener>

</eip:wire-tap>

3 Roadmap and evolutions

In next release of Spagic Studio we’re going to support the following features:

• Export and Import from xml format. The current Spagic Studio use java serialization to persist the process model

in Spagic file. This produce compatibility problems if, for example, we add some properties to the existing

components.

• Wizard to create Lightweight ServiceMix component and publish them on Spagic Studio Palette. This

feature will allow creating new “business logic components” and using them in the Spagic platform.

• Separate the modelling tool from code generation: The idea is to evolve the modelling and generation part in

separate plugin. In this way it will be possible:

S p a g i c S t u d i o C o m p o n e n t s

Spagic Studio Components ver. 1.0 - 06/07/2007 - pag. 65/65

Engineering Ingegneria Informatica S.p.A., 2007. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike

License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

o To use Spagic Studio as a generic modelling environment, and to have different generation

plugins. (The modelling plugin could define for example an extension point)

o To use the code generation plugin with a different tool than Spagic Studio (for example eclipse stp

BPMN modeller)

• Support other ESB runtimes: At the moment Spagic Studio supports the generation of deployable artefacts for

ServiceMix 3.1.

• How to prepare your Spagic environment: actually we provide a customized release of ServiceMix 3.1

containing all Spagic components and patched ServiceMix components. We’ll provide the detailed instructions

containing the steps necessary to start from a “clean” ServiceMix installation and transforming it in a Spagic

environment.

