

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 1/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Spago

 User Guide

 Authors Luigi Bellio,

Gianfranco Boccalon,

Daniela Butano,

Monica Franceschini,

Luca Fiscato,

Andrea Zoppello

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 2/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Document Goal ... 6

Versions History .. 6

1 Introduction .. 8

1.1 Reference Architecture ..8

1.2 Multiprotocol/Multidevice publishing ..10

2 Services and Components .. 11

2.1 SourceBean ...11

2.1.1 Accented letters ..12

2.1.2 Java bean XML serialization...12

2.2 Configuration..14

2.2.1 Configuration reset...15

2.2.2 Configuration organization ..15

2.3 Tracing ..17

2.3.1 DefaultLogger..18

2.3.2 Log4JLogger ...18

2.3.2.1 Tracing Web Session Id with Log4JLogger...18

2.4 Errors Handling..20

2.4.1 Errors Category ..21

2.4.2 Automatic publisher redirection..21

2.5 Exceptions Handling...23

2.5.1 UNDEFINED Exception handler ..24

2.5.2 Service specific Exception handling ..24

2.5.3 Web specific error handling ..24

2.6 Dispatching ..25

2.6.1 Action..27

2.6.1.1 Action definition..27

2.6.1.2 Implementation...28

2.6.1.3 Initialization ...29

2.6.1.4 Channel Specificity ..30

2.6.2 Modules..31

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 3/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.6.2.1 Modules definition..31

2.6.2.2 Page...31

2.6.2.3 Pages definition ...32

2.6.2.4 Implementation...34

2.6.2.5 Conditions ...35

2.6.2.6 Conditions expressed by rules ..37

2.6.2.7 OR Conditions ..39

2.6.2.8 Module Response..40

2.6.2.9 Consequences ...40

2.6.2.10 Modules cooperation...42

2.6.2.11 Graphs...42

2.6.2.12 Exceptions management..44

2.6.2.13 Consideration ...44

2.7 Events ...45

2.8 Data validation...47

2.8.1 Configuration...47

2.8.1.1 Field Validator’s Configuration...48

2.8.1.2 Configuring Validation Rules for Spago Services...50

2.8.1.3 Default values...52

2.8.1.4 Validation error messages ...53

2.8.2 Java Validation..55

2.8.3 Changing the validation engine..56

2.9 Caching the response of business services ...58

2.10 Suspend/Resume automatism ..60

2.11 Accessible Forms with Spago ...61

2.12 Multipart form handling ...62

2.13 Prevent Resubmit ..63

2.14 Service Catalog..64

2.14.1 EMail service..65

2.14.2 Statistic service..65

2.14.3 Alias service ...66

2.15 Publication ..67

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 4/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.15.1 Configuration..67

2.15.2 Simplified Configuration ...70

2.15.3 User-Agent Dependent Publishing...71

2.15.4 XML/XSLT ..72

2.15.4.1 Changing the XSL transcoder ...72

2.15.5 FOP ...72

2.15.6 Servlet/JSP ..73

2.15.7 JAVA ...73

2.15.8 LOOP ..74

2.15.9 Renderers...75

2.15.10 An example ..75

2.15.10.1 HTTP channel and none publisher ...76

2.15.10.2 HTTP channel and XSL transformation..78

2.15.10.3 HTTP Channel and JSP Publisher ...79

2.15.10.4 WAP Channel and XSL Transformation ..81

2.16 Tag Libraries...83

2.16.1 Visual tags..84

2.17 Multi-Language ..85

2.17.1 Multi-language presentation ..85

2.17.2 Split messages in multiple properties file ..86

2.18 Distribution of the business logic...87

2.19 Data Access..88

2.19.1 Requirements ..88

2.19.2 General Principles of planning ..88

2.19.3 Management of connections and pools...89

2.19.4 Execution of SQL Commands...91

2.19.5 Statements definition ..91

2.19.6 Get the result of a SQL command..92

2.19.7 Transaction management ..93

2.19.7.1 Business logic on Web Container...94

2.19.7.2 Business logic on EJB Container..94

2.19.8 Release of the resources ...94

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 5/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.20 Hibernate...95

2.20.1 Hibernate Integration ..95

2.21 Navigation ...98

2.21.1 Navigation Toolbar..100

2.22 Pagination ...101

2.22.1 One-shot ...101

2.22.2 With - cache ...104

2.23 Automatic Generation of list / detail pages (one - shot) ..107

2.23.1 List ...108

2.23.2 List Commands..112

2.23.3 Detail ...112

2.23.4 Presentation...114

2.24 Automatic Generation of list / detail (with - cache)...117

2.24.1 List ...118

2.24.2 List Commands..120

2.24.3 Detail ...120

2.24.4 Presentation...120

2.25 Profiling..122

2.25.1 Integration with external system ...123

2.25.2 Example implementation using XML files ...124

2.26 Initialization ...126

2.27 Monitoring ...126

3 Deploy on cluster .. 127

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 6/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Document Goal

The document presents the Spago framework functionalities and the guidelines about the project configuration implemented

with Spago.

Versions History

Version/Release n° : 1.0 Version Date/Release : March, 10th 2005

Description: First release (English version)

Version/Release n° : 1.1 Version Date/Release : April, 21th 2005

Description: Some grammatical and linguistic changes

Version/Release n° : 1.5 Version Date/Release : August, 10th 2005

Description: Fixed the Navigator paragraph: removed some unsupported
options (NAVIGATOR_BACK_TO_SERVICE).

Version/Release n° : 1.6 Version Date/Release : October 10, 2005

Description: Added the “splitting option” to the configuration handling.

Added the possibility to substitute the validation engine.

Version/Release n° : 1.7 Version Date/Release : November 30, 2005

Description: Modified the documentation about the validation, and added
the paragraph on the agent dependent publishing(AZ)

Version/Release n° : 1.8 Version Date/Release : December 06, 2005

Description: Added the paragraph “Events” and “Caching the response of
business services” (AZ)

Version/Release n° : 1.9 Version Date/Release : December 12, 2005

Description: Added the paragraph Suspend/Resume automatism and
Accessible Forms with Spago

Version/Release n° : 2.1.1 Version Date/Release : September 29, 2006

Description: Updated the paragraph “Conditions” in the modules section.

Version/Release n° : 2.2.0 Version Date/Release :

Description: Added paragraph “Exceptions Handling” and merged with
“Exception Handler”

Added info on Struts tags integration

Added info on “Multi-Language” paragraph about default
language and country configuration.

Added info about dynamic method dispatching on “Action” and
“Module” paragraph.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 7/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Added info about the Service Catalog component.

Added info on possibility to add new Renderers.

Added info about the new FOP renderer.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 8/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1 Introduction

The framework’s development started in 1999 to meet the requirements of a complex project for enterprise business.

The main goal was to use a software layer abstracting the common requirements for a web application like database

management, caching mechanisms and so on. During these years the software has been expanded and improved as the

result of the development of many enterprise projects. The result of the framework’s reengineering and coding refactoring is

the Spago Framework.

The framework implements the MVC (Model-View-Controller) architectural pattern and can be considered not only a good

product but also a working methodology. By means of Spago designers and developers responsibilities are separated. The

main advantage of using a framework (like Spago) is to gain a higher productivity because in this way you are forced to use

an application structure that enhances code extensibility and maintenance.

Actually Spago is a free open source project and it can grow with new modules to increase functionalities and it can be

improved in order to avoid any limit and to fix bugs.

1.1 Reference Architecture

Spago implements the Model-View-Controller architectural pattern, organized by three tiers:

� Presentation tier : HTTP to Web container, HTTP to Portlet container, WAP, SOAP, EJB, JMS

� Business tier : controls, elaborations

� Integration tier: towards data source or transactional services.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 9/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 10/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1.2 Multiprotocol/Multidevice publishing

Spago supports client interaction via different channels/protocols, using Spago you can easily dispatch your services to

different channels: HTTP, WAP, SOAP, and EJB.

Currently the channels managed from the framework, with specific adapters, are:

� HTTP/WAP: allows sending requests to the framework using the http protocol, which is the default protocol for web

and WAP browser.

� SOAP: allows sending requests to the framework using the SOAP protocol (over http).

� EJB: allows invoking service exposed as EJB (Enterprise Java Bean).

� JMS: allows the framework to receive the service requests through a JMS bus.

The adapters for the following channels are still in development:

� Portlet: will permit to expose the service on Portlet container

Spago developers can add new adapters with a plug-in mechanism.

The adapter takes responsibility for acquiring request data from a specific channel, transforming request parameters into a

format compliant with the Model module, and for choosing the correct view. It also makes the binding of conversational

context in the specific container. For example, on the HTTP channel, the AdapterHTTP receives the HttpSession and

HttpServletRequest, which are the java objects associated to the HTTP protocol, extracts all the information and

encapsulates them into internal request and response object, equals for all channels.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 11/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2 Services and Components

The framework provides various services and components; the next sections will describe them.

2.1 SourceBean

The base of the framework is the XML. All the Spago subsystems communicate between them using XML streams. All these

stream aren’t a simply String object containing the xml but a framework object, called SourceBean, which can be view as a

container for other objects, structured like an xml node. An xml file or string can be parsed in order to construct the

correspondent SourceBean, each xml envelope is transformed in a SourceBean while the attribute are transformed in a

SourceBeanAttribute object that contains the value of the attribute. So, a SourceBean is a hierarchical container of other

SourceBeans and SourceBeanAttributes exactly as an xml node is a hierarchical container for other nodes and attributes. A

SourceBean can be created also as a normal java object but in every moment it can be transformed into an xml document.

The values of the attributes are always string if the SourceBean is constructed from a parsed file, but if it is built from

developers its attributes can contain every object.

The SourceBean object is similar to the standard java object org.w3c.dom.Document because it is constructed as a DOM

object, but it adds simpler navigation and recover services as the punctual notation navigation, for example.

As an example consider the following xml node:

<EVENT_CONDITIONS>

 <CONDITION driver="it.eng.spago.event.condition.impl.DefaultEventConditionDriver">

 <CONFIG

 key="new_doc"

 class="it.eng.spago.event.condition.impl.DefaultEventCondition">

 </CONFIG>

 </CONDITION>

 <CONDITION driver="it.eng.spago.event.condition.impl.DefaultEventConditionDriver">

 <CONFIG

 key="download_doc"

 class="it.eng.spago.event.condition.impl.DefaultEventCondition">

 </CONFIG>

 </CONDITION>

</EVENT_CONDITIONS>

Once read the xml node and constructed the correspondent SourceBean, it is possible to access to all the CONDITION

envelopes with the instruction:

Vector conditions = sourceBean.getAttributeAsVector("CONDITION");

Note that is not necessary to specify the principal envelope EVENT_CONDITIONS because it is the root of the object. The

result of the operation is a vector of SourceBean objects relative to the CONDITION envelopes. Each one of them can be

analyzed and navigated recursively in order to recover information on conditions. From this example can be noticed that a

SourceBean is a multi-value container: it can contain a sequence of elements with the same name.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 12/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

It is possible to serialize a SourceBean into an XML document, but, because the SourceBean attributes can contains

whichever type of object, there’s the need of a mechanism that transforms the objects into their xml representation. Based

on the object contained into the attribute, Spago solves the problem in this way:

1. If the SourceBean attribute object implements the interface it.eng.spago.base.XMLObject and so it implements a

method to transform itself into an XML document, the system calls this method.

2. If the SourceBean attribute object doesn’t implement the interface it.eng.spago.base.XMLObject the system calls

the method toString of the object (every java object has the toString method), in order to recover the string

representation and put it into the xml node of the SourceBean.

It is necessary to implement the interface XMLObject when the contents are used for various channels or better when the

SourceBean information have to be presented in different way for different channels, using XSL stylesheets, for example.

Otherwise, if the presentation is made only for the HTTP channel, for example, it is not necessary to implement the interface

XMLObject because the information of the SourceBean can be recovered using directly the method of the SourceBean,

without the need to transform the object into an xml document. Developers can create objects implementing the XMLObject

interface and define all its five methods, or more simply they can extend the AbstractXMLObject and implement the method

toElement(Document).

2.1.1 Accented letters

An xml stream which has to be published must contains the doc-entity definitions for all the characters not included into the

ASCII 127 standard, as the accented letters for example. The framework has a configuration file xhtml-lat1.ent which

contains all the characters that are not part of the ASCII 127 standard. This file is used in order to produce a doc-entity to put

into the xml document produced by the method toXML of the SourceBean object, but, because this doc-entity is too large,

the system includes it only when the xml document must be passed to a transcoder

This automatism is available into the SourceBean but developers, who wants to create new objects that implement the

XMLObject interface, have to perform the same functionality, in order to create a correct and complete xml document.

2.1.2 Java bean XML serialization

There is the possibility to include in the SourceBean generic Java beans and transform them automatically in XML when

required.

This feature is disabled by default, so if you include some Java bean in a SourceBean, like in the following sample:

SourceBean sampleSB = new SourceBean("DEFAULT_SERIALIZATION");

sampleSB.setAttribute("JAVA_BEAN1", new SimpleBean("ABC", new Date(), new Integer(123), new Double(6.78)));

sampleSB.setAttribute("JAVA_BEAN2", new SimpleBean("DEF", new Date(), new Integer(456), new Double(5.67)));

and invoke the method toXML() you get something similar to:

 <DEFAULT_SERIALIZATION JAVA_BEAN1="it.eng.spago.sample.SimpleBean@b83be0"

JAVA_BEAN2="it.eng.spago.sample.SimpleBean@1631573" />

To enable automatic Java bean XML serialization you have to set the serializer attribute in the SourceBean containing the

Java beans, like in the following sample:

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 13/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

SourceBean sampleSB = new SourceBean("JAVA_BEAN_SERIALIZATION");

sampleSB.setXMLSerializer(new BetwixtXMLSerializer());

sampleSB.setAttribute("JAVA_BEAN1", new SimpleBean("ABC", new Date(), new Integer(123), new Double(6.78)));

sampleSB.setAttribute("JAVA_BEAN2", new SimpleBean("DEF", new Date(), new Integer(456), new Double(5.67)));

The it.eng.spago.base.BetwixtXMLSerializer is the class (based on Betwixt Java-XML mapping framework) that performs

the translation of Java beans to XML.

From now on, calling the toXML() method will produce a XML containing also the Java bean serialized in XML:

<JAVA_BEAN_SERIALIZATION>

 <JAVA_BEAN1>

 <SIMPLEBEAN dabel="6.78" date="Fri Mar 30 11:24:56 CEST 2007" integer="123" string="ABC" />

 </JAVA_BEAN1>

 <JAVA_BEAN2>

 <SIMPLEBEAN dabel="5.67" date="Fri Mar 30 11:24:56 CEST 2007" integer="456" string="DEF" />

 </JAVA_BEAN2>

</JAVA_BEAN_SERIALIZATION>

This feature allows using ORM frameworks like Hibernate, without worrying about XML serialization of the Java beans.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 14/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.2 Configuration

The framework is based on a set of configuration files defined into a fix and well know principal configuration file master.xml.

This file declares all paths of the configuration files that have to be loaded. At start-up time the system analyzes the

master.xml and loads into a SourceBean all the data contained into each file of the list

Below there’s an example of the master.xml file:

<?xml version="1.0" encoding="ISO-8859-1"?>

<MASTER>

<CONFIGURATOR

 path="/WEB-INF/conf/data_access.xml"/>

 <CONFIGURATOR

 path="/WEB-INF/conf/actions.xml"/>

 <CONFIGURATOR

 path="/WEB-INF/conf/modules.xml"/>

 <CONFIGURATOR

 path="/WEB-INF/conf/pages.xml"/>

 <CONFIGURATOR

 path="/WEB-INF/conf/presentation.xml"/>

 <CONFIGURATOR

 path="/WEB-INF/conf/publishers.xml"/>

</MASTER>

The xml structure and data of this file, and all those contained, are loaded into an object ConfigSingleton, which is a

Singleton SourceBean that allows to easily access to all the configuration information of the application. In every point of the

application code it is possible to retrieve configuration data using the navigation services and methods of the SourceBean.

This mechanism allows to split the configuration into different files, for an easier way to find and extend information, but in

the application code this division is transparent because all the elements can be recovered using a single object.

For example if the files actions.xml and modules.xml contains the following xml:

actions.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<ACTIONS>

 <ACTION

 name="LIST_USERS_ACTION"

 class="it.eng.spago.demo.action.ListUsersAction"

 scope="REQUEST">

 <CONFIG>

 </CONFIG>

 </ACTION>

</ACTIONS>

modules.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<MODULES>

 <MODULE

 name="AutomaticListUsers"

class="it.eng.spago.dispatching.module.impl.DefaultListModule"/>

</MODULES>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 15/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Using the unique Configurator object is possible to access to both set of information

 ConfigSingleton config = ConfigSingleton.getInstance();

 String actionClassName = (String) config.getFilteredSourceBeanAttribute("ACTIONS.ACTION","NAME", " LIST_USERS_ACTION");

 String moduleClassName = (String) config.getFilteredSourceBeanAttribute ("MODULES.MODULE", "NAME"," AutomaticListUsers");

In case of the application needs a new configuration file it is necessary to registry it into the file master.xml in order to access

its information with the ConfigSingleton object. The name of the file master.xml is a default name configured into the file

web.xml with the parameter AF_CONFIG_FILE , which defines the path of the master file, relative to the application web

root.

The path of the application web root can be set up using the AF_ROOT_PATH parameter of the web.xml file, but, normally,

this parameter is empty and the system takes the context root.

2.2.1 Configuration reset

It’s possible to force the re-reading of the configuration calling the static method ConfigSingleton.release(). The configuration

will be read at the first access to any configuration information.

2.2.2 Configuration organization

In complex applications you can split the configuration files. In this way the file actions.xml, for example, becomes the folder

actions that contains the files actions1.xml and actions2.xml.

With this feature you can organize the configuration files according the logical areas of your application.

Here you find an example regarding the file actions.xml. The file master.xml is untouched:

 <?xml version="1.0" encoding="ISO-8859-1"?>

 <MASTER>

 <CONFIGURATOR path="/WEB-INF/conf/spago/data_access.xml" />

 <CONFIGURATOR path="/WEB-INF/conf/spago/actions.xml" />

 <CONFIGURATOR path="/WEB-INF/conf/spago/authorizations.xml" />

 </MASTER>

The content of file actions.xml differs from usual syntax: in this case it has the same syntax of master. xml, as you can see in

this example:

 <?xml version="1.0" encoding="ISO-8859-1"?>

 <MASTER>

 <CONFIGURATOR path="/WEB-INF/conf/spago/actions/actions1.xml" />

 <CONFIGURATOR path="/WEB-INF/conf/spago/actions/actions2.xml" />

 </MASTER>

Access to file

actions.xml
Access to file

modules.xml

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 16/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

In the folder actions there are the files actions1.xml and actions2.xml with the classic syntax.

Here you find a sample of actions1.xml:

 <?xml version="1.0" encoding="ISO-8859-1"?>

 <ACTIONS>

 <ACTION name="TEST1" class="it.eng.TestAction" scope="REQUEST">

 <CONFIG param="Sample configuration"></CONFIG>

 </ACTION>

 </ACTIONS>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 17/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.3 Tracing

The framework provides a logging service that can be configured into the file tracing.xml, which has the following structure:

<TRACING>

<LOGGER name="DEFAULT_LOGGER" class="it.eng.spago.tracing.DefaultLogger">

<CONFIG trace_min_log_severity="0" debug="true" trace_path="/demo/log/" trace_name="demo-" append="true"

trace_thread_name="false" />

 </LOGGER>

 < LOGGER name="Framework" class="it.eng.spago.tracing.DefaultLogger">

 <CONFIG trace_min_log_severity="4" debug="false" trace_path="/demo/log/" trace_name="framework-"/>

 </LOGGER>

<LOGGER name="Application" class="it.eng.spago.tracing.Log4JLogger">

 <CONFIG trace_min_log_severity="0" debug="true"/>

 </LOGGER

 </TRACING>

Each <LOGGER> envelope defines a “logger” which is a class that implements the IFaceLogger interface and exposes the

necessary logging services. The attributes of the LOGGER tag are:

� name: logical name of the logger. Developers can specify different logger for different components of the

application in order to distinguish the trace activity of each component. It is possible to registry a default logger

DEFAULT_LOGGER for trace messages of all components for which isn’t defined a logger.

� class: complete name of the class that implements the logger.

The CONFIG envelope defines the configuration of each logger and specifies the following attributes:

� trace_min_log_severity: minimun severity of tracing (values comprise from 0 to 4, extremes included).

� debug: flag to activate the DEBUG level. If set to “true” all the debug information are traced.

� trace_path: define the path of the log files.

� trace_name: define the initial part of the log file (Some logger can add information to this name, like the date for

example) in order to distinguish them from others application log files.

� trace_thread_name (only for the DefaultLogger provided from Spago): flag to activate the tracing of the threads

name. If true the thread name that executes the log instruction is traced with the message.

Developers, in order to trace messages, can use the class TracerSingleton. This object, using the design pattern Factory,

creates an instance for each logger class defined into the configuration file and exposes a static log method. The method

takes in input the logic name of the logger so it can use the appropriate instance of logger class in order to tracing the

messages. Currently the framework provides two different loggers:

• DefaultLogger: traces messages on a log file.

• Log4JLogger: using the libraries of Log4J it is able to trace messages on all the Appender defined into the

log4j.properties (see log4J documentation for major details).

Developers can define their own logger classes.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 18/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

It is important to notice that through the definition of the couple name / class into the configuration file, it is possible to

differentiate the tracing modality and to separate the log messages for each application or component that interact with the

framework. In order to obtain this behavior developer must only define an association name / logger for each component,

which has to be managed separately, and use the name as a parameter for the log method of the TracerSingleton object.

2.3.1 DefaultLogger

The framework provides a default logger for the logging and tracing of information, warnings and errors. The particularity of

this system is that to midnight it performs the switch on a different log file, in order to permits the adoption of some backup

policies and to compress the log files.

An example of use can be:

TracerSingleton.log(“application name”, TracerSingleton.DEBUG, "message");

Obviously the “application name” must be associated (into the configuration file) to the class implementing the default logger.

Every call to the tracer needs to specify the type of message to logging, the different types are:

� INFORMATION: information messages, not errors.

� WARNING: warnings

� MINOR: errors that have little importance

� MAJOR: grave errors not blocking

� CRITICAL: blocking errors.

� DEBUG: debug information

The message will be traced only if the error level of the instruction is major respect to the minimum tracing level defined into

the configuration file. For example, if the minimum level is MINOR the tracer will log only the messages with error levels

MAJOR and CRITICAL. A special case is DEBUG which can be able and disable also with the flag “debug” of the

configuration file.

This tracer is able to trace message strings and XML streams

2.3.2 Log4JLogger

This class performs the logging and tracing activities using the Log4J libraries. The class is only a wrapper over the Log4J

system and allows only configuring the minimum level of tracing and the logging of debug information, defining the relative

parameters into the configuration file, as for the DefaultLogger class. All the operations and other configurations are

delegated to Log4J system, so developers, in order to use it, must configure the Log4J property file log4j.properties (see

Log4J user guide for details).

2.3.2.1 Tracing Web Session Id with Log4JLogger

In Web applications it is useful having the Web Session Id (JSESSIONID) traced in the log files, to identify the activities

performed by different users: using the Log4JLogger it is possible doing this automatically.

In the first step you have to add the following listener in the configuration file events.xml:

<EVENTS-LISTENER listenerClass="it.eng.spago.listeners.SessionIdTracerListener"/>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 19/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Then you have to configure Log4J to trace the session id, which is putted in the Log4J MDC with the identifier SessionID.

This is a sample for log4j.properties configuration file:

log4j.logger.DEFAULT_LOGGER=DEBUG, CA

Appenders

CA - ConsoleAppender.

log4j.appender.CA=org.apache.log4j.ConsoleAppender

log4j.appender.CA.layout=org.apache.log4j.PatternLayout

log4j.appender.CA.layout.ConversionPattern=%d{ISO8601} %-5p [%t][%X{SessionID}] %m%n

In this sample the session id will be traced as follows:

2007-04-10 10:15:33,999 DEBUG [http-8080-Processor24][B38E9CC4C76F5AF0F26FF48C28DD0983] ……

2007-04-10 10:15:33,999 DEBUG [http-8080-Processor24][B38E9CC4C76F5AF0F26FF48C28DD0983] ……

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 20/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.4 Errors Handling

Spago maintains a stack of applicative and non-applicative errors. Every error contains a severity indicator. Different types of

errors are managed:

� Generic errors or exceptions (it.eng.spago.error.EMFInternalError): these errors are produced by components

external to the current development context: for instance, a JDBC SQLException. When an external error occurred

the developers can generate a new EMFInternalError associating it a severity and, eventually, an error message

and the native exception. It is also possible to associate to the error a generic object that represent an

additionalInfo property, which can be used to set additional and context specific data that can be useful, during the

presentation phase, for example. The unique constrain of the object is that it must be serializable because it has to

be passed between the framework subsystems as an xml stream. Typically these errors are not published on the

user interface

� User errors (it.eng.spago.error.EMFUserError): related to business logic and referring to a code segment; a pre-

defined description is related to this code at runtime. The code corresponds to a multilanguage message defined

into the messages files (The mechanism of multilanguage application messages is explained into the section

Language Management. So, in order to build a new EMFUserError developers can use the constructor:

public EMFUserError(String severity, String code)

The error is associated with a message contained into a properties file, so the developers can easily change the

message error of the application, simply modifying the properties file. Each message string can contains some

placeholders which can be replaced by the string value of some parameters. This functionality allows to reuse the

same message in different context or to enrich the error message with specific details. In order to use this

mechanism Spago provides this construct for the error class:

public EMFUserError(String severity, String code, Vector params)

In this constructor params is a vector of parameters containing the values to substitute to the message

placeholders. Into the message the placeholders must be defined with this syntax: %1,%2, ….

� Field errors (it.eng.spago.error.EMFFieldUserError): related to the errors produced by form fields.

� Validation errors (it.eng.spago.error.EMFValidationError): related to validation errors. These errors are usually

produced by validation engine or custom Java validators.

Once generated the error, developers can store it into the errors stack it.eng.spago.error.EMFErrorHandler, which can be

access, into some specific framework contexts, using the method getErrorHandler(). The stack contains all the application

errors registered and it allows retrieving them, in a second time, in order to using them for various scopes, like the

presentation to the user for example.

As an example of presentation errors suppose the application has a JSP page (which shows the results of a service) and

that this JSP inherited from it.eng.spago.dispatching.httpchannel.AbstractHttpJspPage class. In order to retrieve the stack

of errors it is possible to simply write:

<%@ page extends="it.eng.spago.dispatching.httpchannel.AbstractHttpJspPage"%>

<% EMFErrorHandler errorHandler = getErrorHandler(request);

 Collection errors = errorHandler.getErrors();

 // do something %>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 21/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The presentation of the errors can be entirely implemented from the developers but the framework provides a tag in order to

carry out this task. This tag is <spago:error/> and is explained into the section Presentation.

2.4.1 Errors Category

Each error, in addition to the severity, has also the category information.

The following categories are predefined in the class it.eng.spago.error.EMFErrorCategory:

� INTERNAL_ERROR

� USER_ERROR

� VALIDATION_ERROR

The user can define new categories as needed.

In the class EMFErrorHandler there is a method to check for errors with a specified category. The firm of the method is:

 public boolean isOKByCategory(String categoryList);

2.4.2 Automatic publisher redirection

It's possible to have an automatic redirection to the current page, in case of errors.

To activate this feature you have to specify the attribute AUTOMATIC_PUBLISHER_REDIRECTION in the common.xml file,

with the value TRUE:

 <COMMON

 AUTOMATIC_PUBLISHER_REDIRECTION="TRUE">

 </COMMON>

By this configuration, in case of errors (any type of error), the publishing is automatically done on the last page used.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 22/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

To configure what type of errors should be handled with this behavior another configuration attribute called

AUTOMATIC_PUBLISHER_REDIRECTION_ON_ERRORS where you can specify the category of errors (separated by

comma ",") have to be specified.

So the previous configuration is equivalent to:

 <COMMON

 AUTOMATIC_PUBLISHER_REDIRECTION="TRUE"

 AUTOMATIC_PUBLISHER_REDIRECTION_ON_ERRORS="INTERNAL_ERROR,USER_ERROR,

VALIDATION_ERROR">

 </COMMON>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 23/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.5 Exceptions Handling

Spago has a configurable Exception handler that permits to map specific exceptions to a service that can handle a category

of exceptions. The it.eng.spago.exception.EMFExceptionHandler introduce the concept of “trap”, that is a service (ACTION

or PAGE) associated to an exception category. In this way is possible to associate an Exception to a trap and delegate the

trap the Exception processing.

The configuration has to be declared in two files:

1. errors.xml: in this file we declare ERRORs, association between a specific Exception and a TRAP. An ERROR is

defined by:

• the class attribute representing the Exception;

• the trap_name attribute that identify the TRAP;

An ERROR element can have the attribute class valorized with the string UNDEFINED, that indicate all Exceptions

that do not have a specific handler configuration will be handled by the TRAP associated with this ERROR element.

Follows an example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<ERRORS>

 <ERROR class="UNDEFINED" trap_name="serviceError"/>

 <ERROR class="java.sql.SQLException" trap_name="dbError"/>

</ERRORS>

2. traps.xml: in this file we declare TRAPs, association between a trap_name and a Spago service. A TRAP is defined

by:

• the trap_type attribute that can assume the values ACTION or PAGE;

• the trap_name attribute that identify the service name;

• the name attribute is the name of the TRAP (must be univocal);

Follow an example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<TRAPS>

 <TRAP trap_type="ACTION" trap_name="ServiceExceptionAction" name="serviceError"/>

 <TRAP trap_type="ACTION" trap_name="DatabaseExceptionAction" name="dbError"/>

</TRAPS>

The developer can, through the configuration, specify the service that handle an Exception; this mean that the execution flow

change in respect to the normal behavior, because if the configured Exception will occur the trap service will be processed

with the corresponding presentation and not the one associated to the original service (the one that generated the

Exception).

The EMFExceptionHandler will put the Exception in the EMFErrorHandler stack enveloped in an EMFInternalError with

EMFErrorSeverity.ERROR severity. In this way the service trap can obtain it from the execution context.

An exception should occur also processing the service trap (this is not desirable), in this case the EMFExceptionHandler

will put this exception into the EMFErrorHandler with EMFErrorSeverity.BLOCKING.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 24/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.5.1 UNDEFINED Exception handler

Spago has a default exception configuration to handle UNDEFINED exceptions. If the client requests a service and the

relative "action" or "module" throws an exception, the framework will publish in the "SERVICE_ERROR_PUBLISHER"

registered into the publishers.xml file. This configuration is made using the it.eng.spago.dispatching.action.EmptyAction

class that has an empty service method; obviously this action can be replaced with a better or specific exception handling

business.

2.5.2 Service specific Exception handling

The exception handling can be configured also at service level; this mean that a service can be configured to manage

particular trap categories differently than the global configuration present in trap.xml.

To obtain this behavior a trap can be configured in actions.xml and pages.xml; follow an example:

<ACTION name="…" class="…" method="…" scope="…">

 <CONFIG>

 <TRAPS>

 <TRAP trap_type="ACTION" trap_name="SERVICE_EXCEPTION_ACTION" category="navigationError"/>

 </TRAPS>

 </CONFIG>

</ACTION>

The errors.xml configuration is the global one an in service specific configuration is possible to change the association from

the trap category and the service (ACTION or PAGE) that manage the exception.

2.5.3 Web specific error handling

In the situation where the client requests a service but the session is expired the framework throws a

it.eng.spago.error.SessionExpiredException. By default this exception is registered in errors.xml and traps.xml to be

handled by an action registered with the name "SESSION_EXPIRED_ACTION" into the actions.xml file.

Note that if the client requests a service and the JSP throws an "exception" the framework publishes the page declared as

jsp error: "/jsp/spago/jspError.jsp".

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 25/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.6 Dispatching

The framework provides one adapter for each channel, because the information and their formats are different for each

channel. The adapters are objects that listen the service requests and translate them into a common internal format (XML)

before starting the service.

Different adapters can be created in different Virtual Machine:

� The adapters HTTP/WAP, SOAP live into the Web Container: they are servlets (which can be found in spago-

web.jar and spago-axis.jar)

� The adapter EJB lives in the EJB Container (can be found in spago-ejb.jar) and is composed from:

o it.eng.spago.dispatching.ejbchannel.AdapterEJBBean: is a statefull session bean with a remote interface

CMP (container managed persistence) BMT (bean managed transaction).

o it.eng.spago.dispatching.ejbchannel.SessionFacadeEJBBean: is a stateless session bean with a local

interface. Because it is a stateless bean the EJB container can manage it with some pooling mechanisms

for the load balancing, and its state isn’t serialized on a database between different requests.

o it.eng.spago.dispatching.ejbchannel.RemoteSessionFacadeEJBBean: is a stateless session bean with

a remote interface.

� The JMS adapter lives into the EJB Container: it is a queue subscriber of type Message Driven Bean, implemented

by the class it.eng.spago.dispatching.jmschannel.JmsAdapterMDB (spago-ejb.jar).

The framework provides two modes for dispatching the business logic:

� Actions

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 26/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

� Modules

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 27/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.6.1 Action

Actions are business objects which totally carry-out a request of an applicative service. In other words, one service

corresponds to one business object (but the same object can carry out different requests), which must implement the

ActionIFace interface (Starting from this point the document will refer to this object simply using “action”). This mechanism is

the same offered from the popular open source framework struts

2.6.1.1 Action definition

The actions are defined into a configuration file called actions.xml. An example of this file can be:

<?xml version="1.0" encoding="ISO-8859-1"?>

<ACTIONS>

 <ACTION

 name="LIST_USERS_ACTION"

 class="it.eng.spago.demo.action.ListUsersAction"

 method=”businessMethod”

 scope="REQUEST">

 <CONFIG>

 </CONFIG>

 </ACTION>

</ACTIONS>

Each action has the following attributes:

� Logical name: action’s name to identify it. The service request specifies the logical name of the action in order to

invoke it for produce the response.

� Class: name of the class implementing the action.

� Method: name of action method to call dynamically. If omitted the method with name “service” is called statically.

� Scope: the life context of the object. The possible values are:

o REQUEST: a new action is activated for every new request

o SESSION: the same action carries out the service corresponding to all the requests of the same

conversation (session).

o APPLICATION: the same action carries out the service corresponding to all the requests sent to the same

container (JVM). Notice that a business object with this scope is not a real singleton, because there is a

different instance of it for every JVM (at instance, for cluster nodes).

The advised modality is REQUEST: the only contraindications for this modality is when into the constructor of the action are

performed heavy activities. In this case, in fact, each new creation of the class involves the code execution with a

consequent degradation of the performances.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 28/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.6.1.2 Implementation

Developers can implement an action in two ways:

� Create a class that implements the ActionIFace interface.

� Create a class that extends the class AbstractAction or AbstractHTTPAction. (This is the simpler way)

DefaultRequestContext
InitializerIFace

Serializable
AbstractActionAbstractActionAbstractActionAbstractAction

-_config:SourceBean
-_action:String

+AbstractAction
+init:void

 config:SourceBean
 action:String

ServiceIFace
interface

ActionIFaceActionIFaceActionIFaceActionIFace

 action:String

DefaultHttpRequestContext
InitializerIFace

AbstractHttpActionAbstractHttpActionAbstractHttpActionAbstractHttpAction

-_config:SourceBean
-_action:String
-_publisher:String
-_publishingMode:String
-_xmlStructure:String

+AbstractHttpAction
+init:void
+prepareState:void

 config:SourceBean
 action:String
 publisher:String
 publishingMode:String
 XMLStructure:String

In both cases the main method to implement is service (or the one defined with the “method” attribute in the configuration):

 void service(SourceBean serviceRequest, SourceBean serviceResponse) throws Exception;

This method has two input parameters: the request and the response (SourceBean objects). This mechanism allows,

independently from the channel, to access to the request parameters and to valorized the response with an xml stream,

which can be used from the presentation part (if present). In this way, the business logic is independent from the channel.

The service method can access also the specific channel parameters (the HTTP header for example) using an object

RequestContainer.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 29/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 RequestContainer

Service request

Data of the specific channel

Request data

Servlet Config

HTTP response

HTTP request

Channel Type

(HTTP headers for example)

 ResponseContainer

Service response

Data of the response

ErrorHandler

Error stack

The object RequestContainer, accessible from the service method, is a container for all the information about the request. It

contains the object ServiceRequest (the real request data, passed to the method service) and other information relative to

the channel (For example, in case of HTTP channel, it contains the java HTTP request / response and the servlet config).

This object allows also to recover an object SessionContainer which represents the current session, so supposing that in the

session context is stored the identifier of the current user, developers can retrieve it using the following instructions:

public void service(SourceBean request, SourceBean response) {

 RequestContainer requestContainer = getRequestContainer();

 SessionContainer sessionContainer = requestContainer.getSessionContainer();

 String userId = (String)sessionContainer.getAttribute("userId");

}

The object RequestContainer is a container single-value (SourceBean is a container multi-value). The external envelope

contains the channel type, the specific channel information (the HTTP headers for example), the current user attributes, and,

only for the HTTP channel, it contains the HTTP request, the HTTP response and the ServletConfig. The most inner

container is the Service request which is the object passed to the method service containing request's parameters.

The object ResponseContainer is a container single-value, that maintains the response objects produced by services and

the error stack. Because the request container and the response container are container single-value, every time an attribute

is set it will override the previous version of the same attribute. This behavior is different from that one of the SourceBean

object which is a multi-value object (every time an attribute is set it is created independently if it already exists, so the same

attribute can compare more times).

2.6.1.3 Initialization

During the action initialization can be retrieved some configuration information defined into the CONFIG envelope of the

action xml file. This is an example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<ACTIONS>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 30/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <ACTION name="LIST_USERS_ACTION" class="com.engiweb.demo.action.ListUsersAction" scope="REQUEST">

<CONFIG pool="afdemo" title="List Users" rows="2">

 <QUERIES>

 <SELECT_QUERY statement="LIST_USERS"/>

 <DELETE_QUERY statement="DELETE_USER"/>

 </QUERIES>

</CONFIG>

 </ACTION>

</ACTIONS>

These information are passed to the init method, as a SourceBean object, every time the action is created. Developers can

use these information for different scope inside the method.

 public void init(SourceBean config) {
 // ...
 // do something
 // ...
 } // public void init(SourceBean config)

2.6.1.4 Channel Specificity

The framework encapsulates data, coming from different channels, providing the request and the response as a

SourceBean object. In some cases, however, it is necessary to access to the channel native objects using some specific

objects, also if the application becomes not portable to other channels.

 An example is an action that has to upload a file; in this case the action has to access to the original java HTTP request to

extract the information about the multipart form.

The framework provides the possibility to access to HTTP specific channel information extending the class

AbstractHTTPAction instead of the class AbstractAction. This class allows recovering the original java request and response

objects. Using this class, developers must pay attention to not make conflict with the Spago presentation mechanism. To

avoid the conflict, the developers must notify to the framework that the response will be produced by the action, simply

calling the method freezeHttpResponse().

The framework doesn’t provide a similar mechanism to access specific information of different channels from HTTP, so, for

example, it is not possible to get data from the EJB context of the EJB container. However, the only case encountered until

today is the need to upload a file in an HTTP channel.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 31/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.6.2 Modules

Every module is a business object; it can cooperate with other modules to carry out a service request. All modules

cooperating for the same service comprise a logical unit called a page. The service response is the union of all modules

responses. An easy business logic execution workflow describes the order and conditions of execution for all the modules of

one page. At the end of execution of each module, the framework identifies the next modules to execute according to

request parameters.

2.6.2.1 Modules definition

Modules are defined in the modules.xml configuration file. See an example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<MODULES>

 <MODULE

 name="ModuleClient"

 class="it.eng.spago.demo.module.ModuleClient"

 method=”businessMethod”/>

 <MODULE

 name="ModuleSupplier"

 class="it.eng.spago.demo.module.ModulsSupplier"

 method=”businessMethod”/>

</MODULES>

Each module has the following attributes:

� Logic name: module’s name for identify it.

� Class: name of the java class implementing the module.

� Method: name of the module method to call dynamically. If omitted the method with name “service” is called

statically.

It is not possible to specify the module scope; in fact, this is inherited from the page containing it.

2.6.2.2 Page

A page is a logic modules composition; it is a graph that defines the modules and their invocation sequence. An example of

a page graph can be:

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 32/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Page1

Module1

Module3

Module2

Module4

The image shows a simple graph: the starting point is the page. The graph evaluation is recursive and the navigation goes in

depth; the modules are invoked in this order: Module1, Module2, Module3, and Module4. The response is the concatenation

of the four modules responses.

2.6.2.3 Pages definition

The page structure is defined in the pages.xml configuration file. The configuration file, for the example page defined in the

previous section, is:

<?xml version="1.0" encoding="ISO-8859-1"?>

<PAGES>

 <PAGE name="Pagina1" scope="SESSION">

 <MODULES>

 <MODULE name="Module1"/>

 <MODULE name="Module2"/>

 <MODULE name="Module3"/>

 <MODULE name="Module4"/>

 </MODULES>

 <DEPENDENCIES>

 <DEPENDENCE source="Page1" target="Module1">

 <CONDITIONS>

 </CONDITIONS>

 <CONSEQUENCES/>

 </DEPENDENCE>

 <DEPENDENCE source="Page1" target="Module3">

 <CONDITIONS>

 </CONDITIONS>

 <CONSEQUENCES/>

 </DEPENDENCE>

 <DEPENDENCE source="Module1" target="Module2">

 <CONDITIONS>

 </CONDITIONS>

 <CONSEQUENCES/>

 </DEPENDENCE>

Pagina1

Modulo1

Modulo3

Modulo2

Modulo4

Pagina1

Modulo1

Modulo3

Modulo2

Modulo4

Pagina1

Modulo1

Modulo3

Modulo2

Modulo4

Pagina1

Modulo1

Modulo3

Modulo2

Modulo4

Pagina1

Modulo1

Modulo3

Modulo2

Modulo4

Pagina1

Modulo1

Modulo3

Modulo2

Modulo4

Pagina1

Modulo1

Modulo3

Modulo2

Modulo4

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 33/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <DEPENDENCE source="Module3" target="Module4">

 <CONDITIONS>

 </CONDITIONS>

 <CONSEQUENCES/>

 </DEPENDENCE>

 </DEPENDENCIES>

 </PAGE>

</PAGES>

Each arc is a DEPENDENCE envelope that specifies the start node (source attribute) and the final node (target node). A

module can be into different branches of the graph, so, the following graph, where the Module1 is present in two branches is

allowed:

Page1

Module1

Module1

Module2

Module4

In these cases, if the same module is executed more time, only the last module response is stored into the page response.

Normally the module extends the page scope but this behavior can be bypassed adding the keep_instance parameter.

 <MODULES>

 <MODULE name="Module1" keep_instance="true"/>

 <MODULE name="Module2"/>

 <MODULE name="Module3"/>

 <MODULE name="Module4"/>

 </MODULES>

If the parameter exist or if the value is false, the module extends the scope of page that contains it. If the parameter value is

true, the module will have a session scope, independently from the page scope.

Another parameter that could be defined is keep_response: if valorized to true allow re-obtaining the module response

produced during the first invocation of the page, in case of the module won’t be activated during the next page invocations.

The default value is false. The page scope has to be SESSION.

 <MODULES>

 <MODULE name="Module1" keep_response="true"/>

 <MODULE name="Module2"/>

 </MODULES>

Pagina1

Modulo1

Modulo3

Modulo2

Modulo4

Pagina1

Modulo1

Modulo3

Modulo2

Modulo4

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 34/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

If a module is used in more pages, developers can use the method getPage() to retrieve the logical name of the page that is

currently using it and then differentiate the business logic. Furthermore, the same class can be used to implement different

logical modules, so developers have also the possibility to know which logical page is currently executing the class.

2.6.2.4 Implementation

Developers can implement a module in two ways:

� Create a class that implements the ModuleIFace interface.

� Create a class that extends the class AbstractModule or AbstractHttpModule. (this is the simpler way).

ServiceIFace
interface

ModuleIFaceModuleIFaceModuleIFaceModuleIFace

 module:String
 page:String
 sharedData:SourceBean

DefaultHttpRequestContext
InitializerIFace

AbstractHttpModuleAbstractHttpModuleAbstractHttpModuleAbstractHttpModule

-_config:SourceBean
-_message:String
-_dependentsModules:SourceBean
-_page:String
-_module:String

+AbstractHttpModule
+init:void

 config:SourceBean
 message:String
 page:String
 module:String
 sharedData:SourceBean
 dependentsModules:SourceBean
 dependentsModulesForMessage:Vector

DefaultRequestContext
InitializerIFace

Serializable
AbstractModuleAbstractModuleAbstractModuleAbstractModule

-_config:SourceBean
-_module:String
-_page:String
-_sharedData:SourceBean

+AbstractModule
+init:void

 config:SourceBean
 module:String
 page:String
 sharedData:SourceBean

In both cases the service method must be implemented:

 void service(SourceBean serviceRequest, SourceBean serviceResponse) throws Exception;

Also in this case, there’s the possibility to access directly to the HTTP channel information, extending the

AbstractHttpModule module instead of the AbstractModule module.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 35/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.6.2.5 Conditions

The rules to verify that a transition from one module to another exists are called conditions.

In the example above described all the modules are invoked independently from request parameters or from the results of

previous modules.

This is the default behavior and to obtain it, the developers must only leave empty the CONDITIONS envelope of the graph

branch relative to the module.

 <DEPENDENCE source="Page1" target="Module1">

 <CONDITIONS>

 </CONDITIONS>

 <CONSEQUENCES/>

 </DEPENDENCE>

However, the modules invocation must be performed only if some conditions are verified (the presence of some parameters

to the request, the presence of some parameters with some values and so on). All these conditions can be defined into the

CONDITIONS envelope. If all conditions are true, the module is executed. The syntax is:

 <CONDITIONS>

 <PARAMETER

 name="nome parametro"

 scope=" USER | ADAPTER_REQUEST | SERVICE_REQUEST | SESSION | APPLICATION | ADAPTER_RESPONSE |

SERVICE_RESPONSE | ERROR"

 value=" AF_DEFINED | AF_NOT_DEFINED | ..."/>

 </CONDITIONS>

The name attribute contains the name of the parameter to analyze; the scope attribute is the container where it can be

found. The possible scopes are:

� USER: allows verifying the user properties, like the user identifier, for example, recovering them from the

authentication module (which will be explained later).

� ADAPTER_REQUEST: allows verifying the parameters contained into the RequestContainer, like the http headers

for example.

� SERVICE_REQUEST: allows verifying the parameters contained into the service request.

� SESSION: allows verifying the parameters contained into the session container.

� APPLICATION: allows verifying the parameters contained into the application container.

� ADAPTER_RESPONSE : allows verifying the parameters contained into the ResponseContainer. This scope is

reserved for future release because at this moment the framework doesn’t store anything into the Response

Container.

� SERVICE_RESPONSE : allows verifying the parameters contained into the service response, valorized from the

previous modules.

� ERROR : allows verifying the presence of Internal or User error into the Error Handler.

The value attribute indicates if the parameter must be present / or not or the value that it must contain:

� AF_DEFINED: the parameter must be present into the specified scope.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 36/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

� AF_NOT_DEFINED: the parameter must not be present into the specified scope.

� “parameter value”: value (not allowed in case of scope =”ERROR”) of parameter

An example of condition could be the presence, into the request, of the parameter module and the parameter user valorized

with value “Mario Rossi”. The conditions must be specified like this:

 <CONDITIONS>

 <PARAMETER name="module" scope="SERVICE_REQUEST" value="AF _DEFINED"/>

 <PARAMETER name="user" scope="SERVICE_REQUEST" value="Mario Rossi"/>

 </CONDITIONS>

Otherwise, for verify the presence into the response of the sample parameter (which has to be inserted from a previous

module), the condition is:

 <PARAMETER name="Modulo1.sample" scope="SERVICE_RESPONSE" value="AF _DEFINED"/>

A specific case of conditions is the search of some errors into the error stack; in fact, the attribute scope must contain the

“ERROR” constant and the attribute name must contain one of the following values:

� AF_INFORMATION : indicates all errors with “INFORMATION” severity level.

� AF_WARNING : indicates all errors with “WARNING” severity level.

� AF_ERROR : Indicates all errors with “ERROR” severity level.

� AF_BLOCKING : indicates all errors with “BLOCKING” severity level.

� “error code” : indicates all errors of type EMFUserError with the code specified.

� “empty value”: if the name attribute is empty the system considers all EMFUserError or EMFInternalError errors,

with whichever severity. In practice the system controls if there are errors into the stack.

For the ERROR scope the following conditions are valid:

 <PARAMETER name="" scope="ERROR" value="AF_DEFINED" />

 true if the error stack contains at least one error

 <PARAMETER name="" scope="ERROR" value="AF_NOT_DEFINED" />

 true if the error stack doesn’t contain errors

 <PARAMETER name="<severity>" scope="ERROR" value="AF_DEFINED" />

 true if the error stack contains at least one error with severity level equals to <severity>

 which is a value chosen between AF_INFORMATION, AF_WARNING, AF_ERROR, AF_BLOCKING

 <PARAMETER name="<severity>" scope="ERROR" value="AF_NOT_DEFINED" />

 true if the error stack doesn’t contain error with severity level equals to <severity>

 <PARAMETER name="<code>" scope="ERROR" value="AF_DEFINED" />

 true if the error stack contains at least one error of type "EMFUserError" with code equals to <code>

 <PARAMETER name="<code>" scope="ERROR" value="AF_NOT_DEFINED" />

 true if the error stack doesn’t contain errors of type "EMFUserError" with code equals to <code>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 37/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.6.2.6 Conditions expressed by rules

It’s possible to specify the conditions also using rules written in any language.

This feature is allowed by the Spago integration with the Drools rules engine: this engine allows creating complex rules in

different languages, including Java, Groovy, Python, etc.

The Drools integration is implemented by an additional Spago library (spago-rules.jar), some configuration information and

the rules files.

Following there are the detailed guide lines to use this feature.

1. Create a new configuration file called rules.xml, and add to it the references to the application rules files (the files

with the extension .drl) as in the following example:

<?xml version="1.0" encoding="ISO-8859-1"?>
<RULES>
 <RULE name="SAMPLE_RULE" file="drl/sample.java.drl"/>
</RULES>

You have to identify each file with a unique logic name.

2. Add to the master.xml the new configuration file:

<CONFIGURATOR path="/WEB-INF/conf/spago/rules.xml" />

3. Add to the initializer.xml file, the following section:

<INITIALIZER class="it.eng.spago.rules.RulesInitializer" config="" />

This initializer, at the application startup, loads all the rules files to improve the performance.

4. Add spago-rules.jar and all the dependent libraries to the application classpath.

In this paragraph we specify the differences with the standard condition expression mode:

• The page class becomes it.eng.spago.rules.dispatching.RulesPage.

• The section CONDITIONS, inside each DEPENDENCE section, is replaced by the section RULES that contains the

attribute GROUP_NAME containing the rules file identifier to check, with the same logic name used in the rules.xml

file.

Following a sample:

 <PAGE name="TEST_RULES" scope="SESSION"
class="it.eng.spago.rules.dispatching.RulesPage">

 <MODULES>
 <MODULE name="MODULE1" />
 <MODULE name="MODULE2" />

 </MODULES>
 <DEPENDENCIES>
 <DEPENDENCE source="TEST_RULES" target="MODULE1">
 <CONSEQUENCES />
 </DEPENDENCE>
 <DEPENDENCE source="MODULE1" target="MODULE2">
 <RULES GROUP_NAME="SAMPLE_RULE"/>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 38/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <CONSEQUENCES />
 </DEPENDENCE>
 </DEPENDENCIES>
 </PAGE>

In this sample, the rules file (sample.java.drl) is defined as follows:

<?xml version="1.0"?>

<rule-set name="SampleRuleSet"
 xmlns="http://drools.org/rules"
 xmlns:java="http://drools.org/semantics/java"
 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
 xs:schemaLocation="http://drools.org/rules rules.xsd
 http://drools.org/semantics/java java.xsd">

 <import>it.eng.spago.base.RequestContainer</import>
 <import>it.eng.spago.base.ResponseContainer</import>

 <rule name="Check parameter in session">
 <parameter identifier="requestContainer">
 <class>RequestContainer</class>
 </parameter>
 <parameter identifier="responseContainer">
 <class>ResponseContainer</class>
 </parameter>

 <java:condition>requestContainer.getSessionContainer().getAttribute("param1") !=
null</java:condition>
 <java:consequence/>
 </rule>

 <rule name="Check parameter in request">
 <parameter identifier="requestContainer">
 <class>RequestContainer</class>
 </parameter>
 <parameter identifier="responseContainer">
 <class>ResponseContainer</class>
 </parameter>

 <java:condition>requestContainer.getServiceRequest().getAttribute("param2") != null</java:condition>
 <java:consequence/>
 </rule>

</rule-set>

The beginning of the file contains some directives:

 <import>it.eng.spago.base.RequestContainer</import>
 <import>it.eng.spago.base.ResponseContainer</import>

This is important because Spago makes available to the rules the objects RequestContainer and ResponseContainer.

These directives have to be included ALWAYS in ALL the rules files.

In this first sample, the rule allows to look for an attribute in session:

 <rule name="Check parameter in session">
 <parameter identifier="requestContainer">
 <class>RequestContainer</class>
 </parameter>
 <parameter identifier="responseContainer">
 <class>ResponseContainer</class>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 39/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 </parameter>

 <java:condition>requestContainer.getSessionContainer().getAttribute("param1") != null</java:condition>
 <java:consequence/>
 </rule>

The section referencing the parameters requestContainer and responseContainer is mandatory for the correct behavior of all

the rules.

 <parameter identifier="requestContainer">
 <class>RequestContainer</class>
 </parameter>

 <parameter identifier="responseContainer">
 <class>ResponseContainer</class>
 </parameter>

This second sample, allows checking for an attribute in request:

<java:condition>requestContainer.getServiceRequest().getAttribute("param2") != null</java:condition>

In ALL rules the consequence section should be empty:

<java:consequence/>

This section is mandatory for Drools, but Spago doesn’t require the consequence section because according to Spago, the

consequence is the execution of a module, that is handled by Spago, not by Drools.

The previous sample uses Java rules, but you can use any language supported by Drools.

2.6.2.7 OR Conditions

The dependencies value the conditions using AND logical operator so all the conditions must be verified for continue the

execution. To define OR conditions it is necessary to insert new braches into the graph, one for each combination of the OR

condition. For example, if the condition is that the user parameter must contain the value “Mario” or the value “Rossi” , it is

necessary to define two branches, one for each part of the OR expression.

Page1

Module1

Module1

user=”Mario”

user=”Rossi”

The xml configuration of the page:

 <PAGE name="Page" scope="SESSION">

 <MODULES>

 <MODULE name="Module1"/>

 </MODULES>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 40/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <DEPENDENCIES>

 <DEPENDENCE source="Page" target="Module1">

 <CONDITIONS>

 <PARAMETER name="user" scope="SERVICE_REQUEST" value="ciccio"/>

 </CONDITIONS>

 <CONSEQUENCES/>

 </DEPENDENCE>

 <DEPENDENCE source="Page" target="Module1">

 <CONDITIONS>

 <PARAMETER name="user" scope="SERVICE_REQUEST" value="pelliccio"/>

 </CONDITIONS>

 <CONSEQUENCES/>

 </DEPENDENCE>

 </DEPENDENCIES>

 </PAGE>

2.6.2.8 Module Response

The result produced from a module is inserted into an xml envelope which has the same logical name of the module. All the

xml envelopes produced are inserted into the response of the page service, so, for example, if the system executes a

service page configured like this

 Module1 Module2 Page1

and each module set into its response one attribute as below:

void service(SourceBean serviceRequest, SourceBean serviceResponse) throws Exception {

 serviceResponse.setAttribute(“test”, “ test string”);

}

The final response produced will be:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE RESPONSE (View Source for full doctype...)>

<RESPONSE>

 <SERVICE_RESPONSE>

 <MODULE1 test=” test string”/>

 <MODULE2 test=” test string”/>

 </SERVICE_RESPONSE>

<ERRORS/>

</RESPONSE>

2.6.2.9 Consequences

Once defined the branches of the graph and the conditions associated to each branch, it is possible to specify some

additional parameters to those already present into the request, which have to be passed to the target module, if the

transaction is activated. It is possible to define new parameters with fixed values or with values recovered from different

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 41/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

scope. This activity can be performed configuring opportunely the CONSEQUENCES envelope into the DEPENDENCE xml

node

 < CONSEQUENCES >

 <PARAMETER

 name="parameter name"

 type="ABSOLUTE | RELATIVE"

 scope=" USER | ADAPTER_REQUEST | SERVICE_REQUEST | SESSION | APPLICATION | ADAPTER_RESPONSE |

SERVICE_RESPONSE"

 value="parameter value"/>

 </ CONSEQUENCES >

The name attribute define the name of the parameter, the value attribute contains its value while the scope attribute specify

the container from which retrieve the parameter value (the possible values for this attribute are explained into the conditions

section). The type attribute can assume these values:

� ABSOLUTE: indicates that the parameter has the value of the attribute value (Only in this case the scope

parameter can be omitted). For example, in order to pass the user parameter with a fixed value “Mario Rossi” the

consequence must be defined like this:

 < CONSEQUENCES >

 <PARAMETER name="user" type="ABSOLUTE" value="Mario Rossi"/>

 </ CONSEQUENCES >

� RELATIVE: indicates that the parameter has the value of the variable which has the name defined into the name

attribute and it is contained into the container identified by the scope attribute. For example, in order to pass the

user parameter with the value equals to the session parameter userSession, the consequence must be defined

like this:

 < CONSEQUENCES >

 <PARAMETER name="user" type="RELATIVE" scope="SESSION" value="userSession"/>

 </ CONSEQUENCES >

All parameters defined into the consequences are accessible from the module using the request SourceBean, so to access

a parameter defined like this:

 < CONSEQUENCES >

 <PARAMETER name="user" type="ABSOLUTE" value="Mario Rossi"/>

 </ CONSEQUENCES >

The developers must use this instruction inside the module:

void service(SourceBean serviceRequest, SourceBean serviceResponse) throws Exception {

 String param = serviceRequest.getAttribute(“user”);

}

Into the request are present all the parameters defined by the invocation URL and all the parameters defined by the

consequences.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 42/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.6.2.10 Modules cooperation

Modules are components that can cooperate between them exchanging some information. The main way to exchange data

between modules is the use of consequences. For example, supposing that the system must execute a page configured like

this:

 Module1 Module2 Page1

Supposing also that the Module2 needs to access to the information inserted into the response from the Module1. It is

necessary to introduce a consequences tag into dependencies from Module1 to Modulo2 like this:

 <CONSEQUENCES>

 <PARAMETER name="paramModule1" type="RELATIVE" scope="SERVICE_RESPONSE" value="Module1.example"/>

 </CONSEQUENCES>

In this way if the Module1 inserted into the response a parameter called example with these instructions:

void service(SourceBean serviceRequest, SourceBean serviceResponse) throws Exception {

 serviceResponse.setAttribute(“example”, “example string”);

}

Module2 can access to this parameter in the following way:

void service(SourceBean serviceRequest, SourceBean serviceResponse) throws Exception {

 String param = serviceRequest.getAttribute(“parameterModule1”);

}

If the consequences mechanism is not sufficient for the module cooperation, it is possible to use a memory area, called

shared data, shared from all modules.

 public SourceBean getSharedData();

The shared memory is a SourceBean object that developers can access with the method getSharedData() and it is

recreated every new service request. This is a powerful mechanism but increases the ties between modules, so when

possible it is better to use the consequences for exchanging modules data.

2.6.2.11 Graphs

It is possible to define, into the graphs.xml configuration file, some graphs template associated with the logical unit Pages.

The association between graphs and pages is specified into the pages.xml file. The following xml is an example of graph

configuration:

 <GRAPH id="1" >

 <MODULES>

 <MODULE id="1" keep_instance="TRUE" keep_response="FALSE" />

 <MODULE id="2" keep_instance="TRUE" keep_response="FALSE" />

 </MODULES>

 <DEPENDENCIES>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 43/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <DEPENDENCE id="1" source="" target="{1}">

 <CONDITIONS>

<PARAMETER name="module" scope="SERVICE_REQUEST"

value="AF_NOT_DEFINED" />

 </CONDITIONS>

 <CONSEQUENCES />

 </DEPENDENCE>

 <DEPENDENCE id="2" source="" target="{1}">

 <CONDITIONS>

 <PARAMETER name="module" scope="SERVICE_REQUEST" value="{1}" />

 </CONDITIONS>

 <CONSEQUENCES />

 </DEPENDENCE>

 <DEPENDENCE id="3" source="" target="{2}">

 <CONDITIONS>

 <PARAMETER name="module" scope="SERVICE_REQUEST" value="{2}" />

 </CONDITIONS>

 <CONSEQUENCES />

 </DEPENDENCE>

 </DEPENDENCIES>

 </GRAPH>

Each graph has a unique identifier and defines a set of dependencies between some abstract modules which must be

replaced into the page configuration from real modules. This mechanism allows reusing the same graph logic with different

pages that can associate different modules. In this example the graph has the identifier “1” and it is composed by two

modules and three dependencies. Note that each module has an id attribute, which is the logical name, and that the source

and target attributes references modules using this logical name.

A page configuration that uses this graph becomes:

 <PAGE name="BasicPaginaUtenti" class="it.eng.spago.dispatching.module.ConfigurablePage" scope="SESSION">

 <GRAPH id="1">

 <MODULES>

 <MODULE id="1" name="BasicListUsers" />

 <MODULE id="2" name="DetailUser" />

 </MODULES>

 <DEPENDENCIES>

 <DEPENDENCE id="2" source="{2}" target="{1}">

 <CONDITIONS>

 <PARAMETER name="{2}.result" scope="SERVICE_RESPONSE" value="val2" />

 </CONDITIONS>

 <CONSEQUENCES />

 </DEPENDENCE>

 </DEPENDENCIES>

 </GRAPH>

 </PAGE>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 44/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The configuration defines that the page uses the graph with id equals to “1” (the graph of this example) and associates the

modules classes to the modules logical names. Logical module “1” is associated to the module "BasicListUsers" and logical

module “2” is associated to the module “DetailUser”. Into the page configuration it is also possible to redefine the

dependencies, in this case it has been redefined the dependency “2”. This mechanism recalls the object “overriding” service.

2.6.2.12 Exceptions management

If the execution of the module service method raises an exception; the default behavior is to interrupt page evaluation so the

next modules are not executed. Developers can change this behavior simply catching all the possible exceptions inside the

service method and eventually transform them into EMFUserError or EMFInternalError, which can be added to the

ErrorHandler (errors stack). In this way, the page evaluation ends and the errors are stored to be showed in the

presentation phase. The system can show to the user the result obtained and the errors occurred.

2.6.2.13 Consideration

The modules dispatching is more complex than the actions dispatching, but it is also more flexible and powerful. A best

practice is to use the modules dispatching when it is possible to identify some components that can be reused by more

services; in this way, once write the necessary components the developers have only to compose them into a page graphs.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 45/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.7 Events

When Spago execute a business service, some events related to the execution of the service are automatically raised. It’s

possible (but not mandatory) to configure Spago applications to handle this events configuring events listener.

In particular in Spago the event handling is based on the following points:

1. Events are classes that must implement the it.eng.spago.events.ISpagoEvent interface, that has only one method

public Object getSource() used to obtain information about the services that caused the event.

2. Once they’re created the events are notified to the application listener by an object that is responsible to notify the

events. This object is called EventNotifier and it must implement the it.eng.spago.events.IEventNotifier interface

that needs to be implemented:

public void notifyEvent(ISpagoEvent event, RequestContainer requestContainer, ResponseContainer

responseContainer);

3. Events are handled by Listeners or Event Listeners that are java classes that must implements the

it.eng.spago.listeners.ISpagoListener interface. This interface has one method that need to be implemented:

public void onEvent(ISpagoEvent event, RequestContainer requestContainer, ResponseContainer

responseContainer);

Currently Spago raise the following events:

� ActionStartEvent(it.eng.spago.event.ActionStartEvent): This event occurs, when, the execution of a service of

type ACTION begins.

� ActionEndEvent(it.eng.spago.event.ActionEndEvent): This event occurs when, the execution of a service of

type ACTION ends successfully.

� ActionExceptionEvent(it.eng.spago.event.ActionExceptionEvent): This event occurs when, the execution of a

service of type ACTION produce errors or exception.

� PageStartEvent(it.eng.spago.event.PageStartEvent): This event occurs, when, the execution of a service of type

PAGE begins.

� PageEndEvent(it.eng.spago.event.PageEndEvent): This event occurs when, the execution of a service of type

PAGE ends successfully.

� PageExceptionEvent(it.eng.spago.event.PageExceptionEvent This event occurs when, the execution of a

service of type PAGE produce errors or exception.

� ModuleStartEvent(it.eng.spago.event.ModuleStartEvent): This event occurs, when, the execution of a service

of type MODULE begins.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 46/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

� ModuleEndEvent(it.eng.spago.event.ModuleEndEvent): This event occurs when, the execution of a service of

type MODULE ends successfully.

� ModuleExceptionEvent(it.eng.spago.event.ModuleExceptionEvent This event occurs when, the execution of a

service of type MODULE produce errors or exception.

The configuration for event handling is based on the content of the EVENTS envelope usually contained in events.xml. For
Example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<EVENTS>

 <EVENTS-NOTIFICATION-ENABLED>true</EVENTS-NOTIFICATION-ENABLED>

 <EVENTS-NOTIFIER notifierClass="it.eng.spago.event.SynchronousEventNotifier"/>

 <EVENTS-LISTENER listenerClass="it.eng.spago.sample.SimpleActionListener"/>

</EVENTS>

The EVENTS envelope contains:

� An element called EVENTS-NOTIFICATION-ENABLED that must be valorized with true or false to enable or

disable the event notifications.

If the EVENTS envelope is not present or for same reason this attribute can’t be read the event notification is

disabled by default.

� The EVENTS-NOTIFIER that contain in the notifierClass attribute the name of a class that is responsible to notify

the application listeners.

� A list of elements EVENTS-LISTENER that will register the listeners to be notified when an error occurs. The name

of the class that implements the listener is the listenerClass attribute.

To resume, implements an application listener in Spago is very simple, we must create a Java class that implements the

ISpagoListener interface. A simple Listener can be implemented like following:

package it.eng.spago.sample;

import it.eng.spago.base.RequestContainer;

import it.eng.spago.base.ResponseContainer;

import it.eng.spago.dispatching.action.ActionIFace;

import it.eng.spago.event.ActionEndEvent;

import it.eng.spago.event.ActionEvent;

import it.eng.spago.event.ActionExceptionEvent;

import it.eng.spago.event.ActionStartEvent;

import it.eng.spago.event.IExceptionEvent;

import it.eng.spago.event.ISpagoEvent;

import it.eng.spago.listeners.ISpagoListener;

public class SimpleActionListener implements ISpagoListener{

public void onEvent(ISpagoEvent event,

 RequestContainer requestContainer, ResponseContainer responseContainer) {

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 47/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 if (event instanceof ActionEvent) {

 handleActionEvent(event,requestContainer, responseContainer);

 }else{

 System.out.println("The event raised is not an Action event");

 }

 }

 public void handleActionEvent(ISpagoEvent event,

RequestContainer requestContainer,

 ResponseContainer responseContainer){

 if (event instanceof ActionStartEvent) {

 System.out.println("**************** Action "

+ ((ActionIFace)event.getSource()).getActionName() +

" EXECUTION STARTED");

 }if (event instanceof ActionEndEvent) {

 System.out.println("**************** Action "

+ ((ActionIFace)event.getSource()).getActionName() + " EXECUTION FINISHED");

 }if (event instanceof ActionExceptionEvent) {

 System.out.println("**************** Action "

+ ((ActionIFace)event.getSource()).getActionName()

+ " EXCEPTION OCCURED DURING EXECUTION OF");

 System.out.println("**************** Exception is *************"

+ ((IExceptionEvent)event).getException());

 }

 }

}

2.8 Data validation

The validation of data introduced by the users is a common problem for a web application. To facilitate this operation, Spago

implements a service that allows to partially automating the validation process. The use of this component is optional and

configurable, it is possible to have some pages using the validation and other that don’t use it. The validation can be

blocking or not blocking, so, in the first case the execution is stopped, otherwise the execution continues. The component

executes a validation server side; at the moment if developers won’t apply the validation client side, reducing the

communication with the server, they must write ad hoc javascript functions.

The component provides two types of validation:

1. Automatic validation of the common data types.

2. Validation performed from some java class written for this scope.

2.8.1 Configuration

In Spago to configure the validation two configuration files must be created:

� The field-validators.xml file to configure Basic Field Validator.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 48/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

� The validation.xml file to configure the validation rules for Spago services.

2.8.1.1 Field Validator’s Configuration

A Field Validator is a Java class with the following responsibility:

o To make syntax validation for service request fields.

o Optionally make a type conversion of the value if the validation succeeds.

o To save in a child of the original service request (TYPED_SERVICE_REQUEST) the value (original or type

converted) with an alias.

The Field Validators are bound to fields by the value of TYPE attribute in FIELD section of the validation.xml (see next

paragraph).

To define a new Field Validator is necessary that a Java Class inherit from the

it.eng.spago.validation.fieldvalidators.AbstractFieldValidator, and associate this class with a type in the

fieldvalidators.xml configuration file.

By default Spago provide a set of standard Field Validator that are associated to the type that can be specified in the TYPE

attribute of the validation.xml file.

The fieldvalidators.xml file for the standard Spago Field Validator looks like:

<FIELD-VALIDATORS>

<FIELD-VALIDATOR fieldType="GENERIC"

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.GenericFieldValidator"/>

<FIELD-VALIDATOR fieldType="FISCALCODE"

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.FiscalCodeValidator"/>

<FIELD-VALIDATOR fieldType="EMAIL"

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.EMailValidator"/>

<FIELD-VALIDATOR fieldType="URL"

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.UrlValidator"/>

<FIELD-VALIDATOR fieldType="DATE"

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.DateValidator">

 <CONFIG>

 <DATE-FORMAT dateFormat="dd/MM/yyyy"/>

 </CONFIG>

 </FIELD-VALIDATOR>

 <FIELD-VALIDATOR fieldType="NUMERIC"

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.NumericValidator">

 <CONFIG>

 <LANGUAGE language="it"/>

 <COUNTRY country="IT"/>

 </CONFIG>

 </FIELD-VALIDATOR>

<FIELD-VALIDATOR fieldType="ALFANUMERIC"

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.AlphaNumericValidator"/>

<FIELD-VALIDATOR fieldType="LETTERSTRING"

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.LetterStringValidator"/>

<FIELD-VALIDATOR fieldType="REGEXP"

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 49/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.RegExpValidator"/>

<FIELD-VALIDATOR fieldType="RE"

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.RegExpValidator"/>

<FIELD-VALIDATOR fieldType="IMPORTO"

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.DecimalValidator">

 <CONFIG>

 <LANGUAGE language="it"/>

 <COUNTRY country="IT"/>

 </CONFIG>

 </FIELD-VALIDATOR>

<FIELD-VALIDATOR fieldType="DECIMAL"

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.DecimalValidator">

 <CONFIG>

 <LANGUAGE language="it"/>

 <COUNTRY country="IT"/>

 </CONFIG>

 </FIELD-VALIDATOR>

<FIELD-VALIDATOR fieldType="NAME"

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.NameValidator"/>

</FIELD-VALIDATORS>

Each FIELD-VALIDATOR can have a CONFIG section and from Java code you can get by calling the method:

public SourceBean FieldValidatorIFace.getConfig().

The standard types and associated Field Validators defined by Spago are:

� 1 or GENERIC (it.eng.spago.validation.fieldvalidators.GenericFieldValidator)

This validator doesn’t make syntax control and doesn’t apply type conversion; eventually it will save the field with an

alias. This validator can be applied for example to do only length control on fields.

� 2 or FISCALCODE: (it.eng.spago.validation.fieldvalidators.FiscalCodeValidator)

This validator checks if a field is a valid Italian Fiscal Code or Partita IVA. It doesn’t apply any type conversion. The

field will be put in the TYPED_SERVICE_REQUEST, eventually with an alias.

� 3 or EMAIL: email (it.eng.spago.validation.fieldvalidators.EMailValidator)

This validator checks if a field is a valid email address. It doesn’t apply any type conversion. The field will be put in

the TYPED_SERVICE_REQUEST, eventually with an alias.

� 4 or URL: Internet Address (it.eng.spago.validation.fieldvalidators.URLValidator)

This validator checks if a field is a valid URL. If validation succeed the field will be converted to a java.net.URL and

then it will be put in the TYPED_SERVICE_REQUEST, eventually with an alias.

� 5 or DATE: date (it.eng.spago.validation.fieldvalidators.DateValidator)

This validator checks if a field is a valid Date according to the date format specified in DATEFORMAT.dateFormat

on the CONFIG section. If the CONFIG section is not found the Italian format dd/MM/yyyy will be used. If

validation succeeds the field will be converted to a java.util.Date and then it will be put in the

TYPED_SERVICE_REQUEST, eventually with an alias.

� 6 or NUMERIC: Numeric Field (it.eng.spago.validation.fieldvalidators.NumericValidator)

This validator checks if a field is a valid Number according to the locale for the country and language specified in

COUNTRY.country and LANGUAGE.language attributes on the CONFIG section. If the CONFIG section is not

found the Italian locale will be used . If validation succeed the field will be converted to a java.lang.Double and then

it will be put in the TYPED_SERVICE_REQUEST, eventually with an alias.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 50/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

� 7 or ALFANUMERIC: Alphanumeric String (it.eng.spago.validation.fieldvalidators.AlphaNumericValidator)

This validator checks if a field is composed of letters and numbers. It doesn’t apply any type conversion. The field

will be put in the TYPED_SERVICE_REQUEST, eventually with an alias.

� 8 or LETTERSTRING: LetterString (it.eng.spago.validation.fieldvalidators.LetterStringValidator)

This validator checks if a field is composed of letters. It doesn’t apply any type conversion. The field will be put in

the TYPED_SERVICE_REQUEST, eventually with an alias.

� 10 or REGEXP: regular-expression (it.eng.spago.validation.fieldvalidators.RegExpValidator)

This validator checks if a field match the regular expression specified in the "REGEXP" attribute on the FIELD

section. . It doesn’t apply any type conversion. The field will be put in the TYPED_SERVICE_REQUEST, eventually

with an alias.

� 11 or DECIMAL (it.eng.spago.validation.fieldvalidators.DecimalValidator)

This validator checks if a field is a valid Number according to the locale for the country and language specified in

COUNTRY.country and LANGUAGE.language attributes on the CONFIG section. Then it is checked that the

number of decimal digit is equal to the number specified on the DECIMALS attribute. If validation succeeds the

field will be converted to a java.lang.Double and then it will be put in the TYPED_SERVICE_REQUEST, eventually

with an alias.

It’s important to remark that the definition of FieldValidator as Java class and the association to field type by a configuration

files make the Spago Validation Architecture powerful and flexible. With this architecture is possible:

o Define new Validators and types , implementing simple Java class

o Change the implementation of the Standard Spago Field Validators.

o Changing the validator associated to a field can be changed only editing a configuration file.

2.8.1.2 Configuring Validation Rules for Spago Services

To activate the data validation of the page, developers must create a new configuration xml envelope into the file

validation.xml. The new envelope defines the information to validate:

<VALIDATIONS>
 <SERVICE name="insertEmployee" type="ACTION">
 <VALIDATION blocking="true" validators="">
 <CONDITIONS>
 <PARAMETER name="age" scope="SERVICE_REQUEST" value="1" />
 </CONDITIONS>
 <FIELDS>
 <FIELD name="name" maxLength="10" mandatory="true" type="8" "

 aliasAfterValidation=”Firstname” />
 <FIELD name="age" maxLength="5" mandatory="false" type="6" />
 <FIELD name="department" maxLength="20" mandatory="false" type="7"

 aliasAfterValidation= “Department”/>
 </FIELDS>
 </VALIDATION>

 </SERVICE>

</VALIDATIONS>

The SERVICE envelope has the following attributes:

� NAME: logical name of the action or page to which apply the validation.

� TYPE: can have two values: ACTION or PAGE, based on the service modality.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 51/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Inside the SERVICE envelope, the VALIDATION envelope has the following attributes:

� VALIDATORS: list of the logical name of the java validators to apply to the page. This param is optional. The java

validators will be explained in the next paragraph.

� BLOCKING: flag for blocking the execution after a validation error. If true the execution is stopped, if false the

execution continues.

The CONDITION envelope defines the conditions that must be satisfy for execute the validation, the FIELDS envelope

defines all the fields to check.

Each FIELD envelope contains the following attributes:

� NAME: name of form field contained into the HTML page.

� TRIM: "true” | “false", if the value is set to true, Spago delete the starting and ending spaces of the field value.

� TOUPPERCASE: "true | false", if the value is set to true, Spago transforms the value of the field to the

correspondent uppercase value.

� TYPE: type of the field. The value of this attribute is used to search a FIELD-VALIDATOR element in the FIELD-

VALIDATORS envelope that has the attribute fieldType equals to the specified value. If not specified the default

value is “GENERIC”.

� MANDATORY: "true” | “false” if the value is set to true, the field is mandatory. The validation engine checks for the

value of the field, only if it's present in request.

� STRICTMANDATORY: "true” | “false” if the value is set to true, the field is mandatory. The validation engine checks

for the value of the field also if it isn’t in request.

� MAXLENGTH: indicates the maximum chars number for the field value (the value must be an integer).

� REGEXP: regular expression.

� For DECIMAL type fields:

o DECIMALS: number of decimals (the value must be an integer).

� For NUMERIC, DECIMAL and DATE type fields:

o MIN_VALUE: minimum value of the field. It should be expressed according to the language format

expected by validator.

o MAX_VALUE: maximum value of the field. It should be expressed according to the language format

expected by validator.

� ALIASAFTERVALIDATION: This is the name used to save the field in the (eventually after a type conversion)

TYPED_SERVICE_REQUEST envelope.

The validation attributes can be specified also on the configuration of the field validator (fieldvalidators.xml), enabling the

developer to create new “sub-types” based on the base types, like in the following sample:

 <FIELD-VALIDATOR fieldType="DATE" fieldValidatorClass="it.eng.spago.validation.fieldvalidators.DateValidator">

 <CONFIG maxLength="30">

 <DATE-FORMAT dateFormat="dd/MM/yyyy"/>

 </CONFIG>

 </FIELD-VALIDATOR>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 52/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

As you can see, the maxLength attribute is specified directly in the field validator configuration, so you can omit it in the field

configuration, like in the following sample:

 <SERVICE name="TEST_VALIDATION" type="ACTION">

 <VALIDATION blocking="true" validators="">

 <FIELDS>

 <FIELD name="DATESAMPLE" type="DATE"/>

 </FIELDS>

 </VALIDATION>

 </SERVICE>

You can still define the attributes in the field configuration, like in the following sample:

 <SERVICE name="TEST_VALIDATION" type="ACTION">

 <VALIDATION blocking="true" validators="">

 <FIELDS>

 <FIELD name="DATESAMPLE" maxLength="30" type="DATE"/>

 </FIELDS>

 </VALIDATION>

 </SERVICE>

If a field don’t satisfy the validation, Spago inserts a it.eng.spago.validation.EMFValidationError object in the error handler

and you can use the EMFValidationError.getFieldName() method to get the name of the field that has produced the error.

The range code reserved, into the messages file, for these errors types is from 10100 to 20000.

2.8.1.3 Default values

It's possible to define a default value for the fields, if the user doesn’t specify a value.

The default value is specified with the DEFAULT_VALUE attribute that has to be expressed with the syntax expected by the

validator.

Following a sample configuration:

<FIELD name="DATEBIRTH" maxLength="10" type="DATE" DEFAULT_VALUE="18/08/2006"/>

The default values can be defined also on the field validator configuration, like in the following sample:

<FIELD-VALIDATOR fieldType="DATE" fieldValidatorClass="it.eng.spago.validation.fieldvalidators.DateValidator">

 <CONFIG DEFAULT_VALUE="30/12/1968">

 <DATE-FORMAT dateFormat="dd/MM/yyyy"/>

 </CONFIG>

</FIELD-VALIDATOR>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 53/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.8.1.4 Validation error messages

Spago provides default validation error messages for the built-in validators. These messages are customizable in two

different ways:

1. The simplest way is to change the properties file containing the messages.

2. A more flexible way is to define a new message code for the message to change.

 For example, in the decimal validator the following error codes can be changed:

 ERROR_CODE, ERROR_CODE_MAXVALUE, ERROR_CODE_MINVALUE, ERROR_CODE_MAX_DECIMALS,

 ERROR_CODE_REQUIRED_DECIMALS. Following a sample configuration:

 <FIELD NAME="NUMERIC" maxLength="30" type="NUMERIC"

 MIN_VALUE="5" MAX_VALUE="30"

ERROR_CODE_MAXVALUE="CUSTOM_ERROR_CODE"/>

The following table summarizes the error codes used by built-in validators and the shortcuts available in this messages (the

used shortcut are in bold).

Validator Error identifier Code Shortcut

ALFANUMERIC ERROR_CODE 10107 %0 = field name

%1 = field label

DATE ERROR_CODE 10105 %0 = field name

%1 = field label

DECIMAL ERROR_CODE 10106 %0 = field name

%1 = field label

 ERROR_CODE_MAXVALUE 10118 %0 = field name

%1 = field label

%2 = max value

 ERROR_CODE_MINVALUE 10119 %0 = field name

%1 = field label

%2 = min value

 ERROR_CODE_MAX_DECIMALS 10114 %0 = field name

%1 = field label

%2 = decimal number

 ERROR_CODE_REQUIRED_DECIMALS 10111 %0 = field name

%1 = field label

%2 = right number of decimals

 ERROR_CODE_MIN_MAXVALUE 10120 %0 = field name

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 54/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

%1 = field label

%2 = min value

%3 = max value

EMAIL ERROR_CODE 10103 %0 = field name

%1 = field label

FISCALCODE ERROR_CF_CODE 10101

 ERROR_PI_CODE 10102

%0 = field name

%1 = field label

GENERIC No validation performed.

IMPORTO See DECIMAL

LETTERSTRING ERROR_CODE 10108 %0 = field name

%1 = field label

NAME ERROR_CODE 10113 %0 = field name

%1 = field label

%2 = expected chars

NUMERIC ERROR_CODE 10106 %0 = field name

%1 = field label

 ERROR_CODE_MAXVALUE 10118 %0 = field name

%1 = field label

%2 = max value

 ERROR_CODE_MINVALUE 10119 %0 = field name

%1 = field label

%2 = min value

REGEXP ERROR_CODE 10110 %0 = field name

%1 = field label

%2 = regular expression

RE See REGEXP

URL ERROR_CODE 10104 %0 = field name

%1 = field label

The error code can be customized both on fieldvalidators.xml and validation.xml files (with different behavior). Following a

sample of both configurations:

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 55/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

[fieldvalidators.xml]

 <FIELD-VALIDATOR fieldType="FISCALCODE"

fieldValidatorClass="it.eng.spago.validation.fieldvalidators.FiscalCodeValidator">

 <CONFIG ERROR_CF_CODE="50001"/>

 </FIELD-VALIDATOR>

[validation.xml]

<SERVICE name="TEST_VALIDATION" type="ACTION">

 <VALIDATION blocking="true" validators="">

 <FIELDS>

 ……

 <FIELD name="FISCALCODE" maxLength="30" type="FISCALCODE"

 ERROR_CF_CODE="50000" />

 ……

 </FIELDS>

 </VALIDATION>

</SERVICE>

2.8.1.4.1 Fields labels

When a validation error is produced related to a field named, for example "TEST_FIELD", the message is something like

"The field TEST_FIELD has the wrong format".

To produce an error more specific, for example like "The field Customer Name has the wrong format" there are several

ways:

1. In one of the properties file of the application you can define a label with the syntax

ACTION/PAGE.<SERVICE_NAME>.<FIELD_NAME>=<LABEL>

For example, if the service being called is an action called TEST_VALIDATION and the field name is TEST_FIELD,

in the properties file messages.properties you can define a label in this way:

 ACTION.TEST_VALIDATION.TEST_FIELD=Customer Name

2. The labels can be defined also in properties files specific for each service. These files don’t need to be defined in

the file messages.xml.

In the previous example, the same result can be obtained with a properties file called

action/test_validation.properties (where "action" is the folder containing the file) and a property defined as follows:

 TEST_FIELD=Customer Name

2.8.2 Java Validation

If the mechanism of automatic validation is not sufficient, because it is necessary to perform cross controls on various

information, or because the control is complex, it is possible to associate to the pages some specific validation classes.

A class for a validation function, called “validator”, is a class that extends it.eng.spago.validation.AbstractValidator or

implements the interface it.eng.spago.validation.ValidatorIFace defining the following methods:

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 56/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

• public void init(final SourceBean config): stores the optional configuration of the validator. The configuration is

composed of the “CONFIG” section in the definition of the validator, like in the following sample:

 <VALIDATOR name="FIRST_VALIDATOR" class="validators.FirstValidator">

 <CONFIG>

 <PUT SOME INFORMATIONS HERE.....>

 </CONFIG>

 </VALIDATOR>

• public boolean check(SourceBean request, EMFErrorHandler errorHandler): perform the formal controls on

form data. Normally this method implements the controls for the syntax validity of the fields. If the method

return true, the validation process continues with others validators.

• public boolean validate(SourceBean request, EMFErrorHandler errorHandler): perform the domain controls on

the data fields. Normally this method implements the controls for cross validation with data of the others fields.

This method is invoked only if the formal controls have not produced errors. If the method return true, the

validation process continues with others validators.

A page can have more validators so the system performs a chain of validation operations following this rules:

1. First, all the check methods of all the page validators are called. If one method return false, the validation chain is

interrupted.

2. If no check method return false, Spago call the validate methods of all the page validators. If one method return

false, the validation chain is interrupted.

3. At the end of the validation process, into the error stack are present the errors that occurred during the validation

process.

The validators are defined into a file validators.xml with the following syntax:

<VALIDATORS>
 <VALIDATOR name="EMISSIONE_BIGLIETTO" class="spago.eng.it.validation.TestValidator"/>
</VALIDATORS>

Each VALIDATOR envelope has two attributes:

� NAME: logical name of the validator that will be referenced into the file validation.xml.

� CLASS: complete name of the class that perform the validation operations.

It is possible to use a validator for more pages or to define a complex validation job using more elementary validators.

2.8.3 Changing the validation engine

It's possible to configure the validation engine used by Spago. In the file validators.xml there is an attribute called ENGINE

that contains the class name of the class that implements the validation. This class implements the interface

it.eng.spago.validation.ValidationEngineIFace. This is a sample of the validators.xml file:

 <VALIDATORS>
 <ENGINE class="it.eng.spago.validation.impl.ValidationImpl"/>

 <VALIDATOR name="<some validator>" class="<some class>"/>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 57/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 </VALIDATORS>

If this parameter is missing the validation is not applied.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 58/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.9 Caching the response of business services

For some types of applications, it can be useful to provide, an automatic mechanism to cache the responses of business

services, so that these can be retrieved in the case that the next service produce execution errors.

A typical use case of this situation is described well by the diagram below:

1. The service A executed with success and produced the response “Response(A)”. This response is cached and

rendered on the publisher “Publisher A”.

2. Then the service B is executed. We must consider two different possibility:

2.1. The service B produced some errors during its execution.

2.2. In that case the response of service A is retrieved from the cache and rendered on the publisher A, with the

errors and the service request that produce that have caused the exceptional situation

2.3. The service B is executed with success. In that case the response of A is removed from the cache and the

execution can continue normally.

To handle this type of situation in Spago we need to:

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 59/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1) Configure the CacheResponseInitializer to record responses in cache if needed. The configuration is on initializers.xml

file:

<INITIALIZERS>

 …

 <INITIALIZER class="it.eng.spago.cache.CacheResponseInitializer" />

 …

</INITIALIZERS>

2) Configure the attribute “automatic_publisher_redirection_on_errors” in common.xml file. This attribute is used,

also on this response cache functionality, to consider only errors with the configured categories. If this attribute is not

setted all errors are considered.

3) Configure for which business services is necessary to cache the response. This can be made adding a REACH-

SERVICES element to the ACTION or PAGE envelope. The REACH-SERVICES contains all the services that are

reachable by the current service within the next request. For our example use case we have a configuration like to:

<ACTION name="SERVICE_A"

class="it.eng.spago.sample.cacheresponse.ServiceA"

scope="SESSION">

 <CONFIG></CONFIG>

 <REACH-SERVICES>

 <TARGET-SERVICE>SERVICE_B</TARGET-SERVICE>

 </REACH-SERVICES>

</ACTION>

…

<ACTION name="SERVICE_B"

class="it.eng.spago.sample.cacheresponse.ServiceB"

scope="SESSION">

 <CONFIG></CONFIG>

</ACTION>

4) To provide a mechanism that retrieves the previous service response when a service produces errors. Spago provides

two different alternative mechanism, equivalent in the functionality, but with different configurations:

a) Add the following listener to the file events.xml:

<EVENTS-LISTENER listenerClass="it.eng.spago.listeners.CacheResponseListener"/>

To check if a response is coming from the cache you can evaluate if it contains the attribute

AF_CACHED_RESPONSE (CacheResponseHandler.CACHED_RESPONSE_ATTRIBUTE) with the value “TRUE".

b) Use the Java publisher it.eng.spago.cache.DynamicCacheResponsePublisher. Mapping this publisher to the

service that can produce errors allow to activate the caching functionality.

This publisher is conceived to render the response on the publisher configured in the TARGET-PUBLISHER

element of its configuration if the service execute with success, and to retrieve the previous service response by the

cache and render on previous publisher if the service produce some errors.

For our example use case we have the following configuration on the PUBLISHER.XML envelope:

<PUBLISHER name="ServiceB_Java_Publisher">

 <RENDERING channel="HTTP" type="JAVA" mode="">

 <RESOURCES>

 <ITEM prog="0" resource="it.eng.spago.cache.DynamicCacheResponsePublisher">

 <CONFIG>

 <TARGET_PUBLISHER>ServiceBJSPPublisher</TARGET_PUBLISHER>

 </CONFIG>

 </ITEM>

 </RESOURCES>

 </RENDERING>

</PUBLISHER>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 60/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

<PUBLISHER name="ServiceBJSPPublisher">

 <RENDERING channel="HTTP" type="JSP" mode="FORWARD">

 <RESOURCES>

 <ITEM prog="0" resource="/pageServiceB.jsp" />

 </RESOURCES>

 </RENDERING>

</PUBLISHER>

and the association of the service with the Java publisher in the PRESENTATION element:

<MAPPING business_type="ACTION"

business_name="SERVICE_B"

publisher_name="ServiceB_Java_Publisher"/>

2.10 Suspend/Resume automatism

For certain types of application, it can be useful during the navigation to make a global save, begin another independent

navigation and then return to the saved point and make a merge between the data produced by this “parallel navigation” and

the data saved before.

Typical situations are the services in the applications that must select values from lookup list, and that must be accessible by

people that are less able than normal. In that type of application, law doesn’t allow using popup windows, so to select a

value from a lookup list we must, save the current situation, start the navigation on the lookup list, and then return to the

original page with data selected from the lookup and the data previously entered.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 61/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

For this type of requirements, Spago provides a Suspend/Resume mechanism. This cannot be totally automatic because to

obtain a complete situation to save before start to navigate in the “parallel navigation” if for example we’re in the publisher A

we must:

• Save the incoming response of the publisher A (This is the response of the service that render on A).

• Save the outgoing request from publisher A (you can think a form with twenty fields where there are two

lookup fields, if the user compile some fields and then start the navigation to select the value for lookup fields it

want to save the fields already compiled).

In Spago the Suspend/Resume automatism is bound to the publisher concept, the following steps are needed:

1. On the publisher that is source and destination of an independent navigation (ex. the page that contains the

lookup field) we must obtain a suspend resume identifier using the utility class:

it.eng.spago.tags.SuspendResumeIdGenerator calling the static method:

public static String getSuspendResumeId(RequestContainer requestContainer).

2. On the publisher we must use the custom tag <spago:suspendResume id=”idSupendResume”/> and pass as

input the identifier generated at point 1. This tag verify if exist a saved situation with the identifier passed as input.

If there are savings with the identifier passed, the content of resumed Service Request, and Service Response are

added to the current Service Request and response. Then the merged one or the original service response is

saved with the identifier passed.

3. In the publisher is necessary that the entire request source (links of, form) that begin a parallel navigation contains

in the request, the parameter SUSPEND_RESUME_ID=”idSuspendResume”, that make Spago able to save the

outcoming service request.

4. To remove a saved situation with it is necessary to pass to Spago the request parameter

DELETE_SUSPEND_RESUME_ID=”idSuspendResume” with the value of the identifier to remove.

2.11 Accessible Forms with Spago

The development of a web application with constraints regarding people that are less able than normal could be very

problematic and difficult, especially in the development of the web pages, because it’s not possible to use the Javascript

technology. This limits a lot the development of applications and page with complex navigation and logic.

One of the biggest problem is the development of a web page with a form that has more than one submit button and each

one of these require to execute different business logic (in Spago this mean call different actions, or page/module). Another

typical problem is when you want to have a common set of attribute for all buttons, and some mutual exclusive parameter for

a particular button (business service). In normal web development this is done with Javascript events handler bound to the

buttons.

The following diagram describes a common situation:

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 62/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

In Spago this type of problem have been resolved in the following way:

1. The form buttons must be declared with type submit (<input type=”submit”/>)

2. The name attribute of the submit button can contains a special syntax string that is interpreted by Spago as a query

string. The syntax is like follow:

<input type=”submit” value=”Execute Service 1”

 name=”QUERY_STRING{ACTION_NAME=SER1_ACTION&ATTR4=VAL4&ATTR5=VAL5}”/>

 <input type=”submit” value=”Execute Service 2”

 name=”QUERY_STRING{ACTION_NAME=SER2_ACTION&ATTR6=VAL6&ATTR7=VAL7}”/>

In that case in the http request only the name of the pressed button is present. Then in the AdapterHTTP if an

attribute has a name with QUERY_STRING{ ATTR=VAL,…} syntax is then treated as a query string.

This is a Spago automatism that makes it possible the development of medium/high complexity form without javascript.

2.12 Multipart form handling

Spago uses the library commons-fileupload to handle the multipart forms. The configuration file upload.xml contains the list

of the file-upload handlers, so you can choose the implementation that best suits the needs of your application.

The attribute UPLOAD-MANAGER contains the name of the implementation to use.

Here is the structure of the file upload.xml:

 <UPLOAD>

 <UPLOAD_METHODS>

 <UPLOAD_METHOD name="SAVE_FILE_AS_ATTRIBUTE"

class="it.eng.spago.dispatching.httpchannel.upload.SaveAsAttributeUploader"/>

 <UPLOAD_METHOD name="SAVE_FILE_ON_DISK"

class="it.eng.spago.dispatching.httpchannel.upload.SaveOnDiskUploader">

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 63/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <CONFIG PATH="C:\" />

 </UPLOAD_METHOD>

 </UPLOAD_METHODS>

 <UPLOAD-MANAGER name="SAVE_FILE_ON_DISK"/>

 </UPLOAD>

The existing handlers are:

• SAVE_FILE_AS_ATTRIBUTE: saves the file of the form, as an attribute in the service request. For each file,

two attributes are created, with the following names:

o <INPUT_FIELD_NAME>_FILENAME: contains the file name. <INPUT_FIELD_NAME> is the field

name as defined in the form.

o < INPUT_FIELD_NAME >_FILEDATA: it’s a byte array (byte[]) where Spago stores the content of the

file.

• SAVE_FILE_ON_DISK: saves the file of the form, on disk, in a directory configured on the attribute PATH of

the envelope CONFIG in the configuration file. For each file, in addition to saving it on disk, Spago creates an

attribute with the name:

o <INPUT_FIELD_NAME>_FILENAME: contains the original file name. < INPUT_FIELD_NAME > is the

field name as defined in the form.

o < INPUT_FIELD_NAME >_SAVEDFILENAME: contains the saved file name. The saved file name is

different from the original file name because it contains also a unique identifier to avoid the file

overwriting if multiple users upload files with the same name simultaneously.

The default handler is the disk saving one.

It’s possible to implement a custom handler, implementing the interface

it.eng.spago.dispatching.httpchannel.upload.IUploadHandler defined as follows:

public interface IUploadHandler {

 public void upload(FileItem fileItem) throws Exception;

}

FileItem is the object created by commons-fileupload. The handler has to be configured in upload.xml and defined as main

handler referencing it in the attribute UPLOAD-MANAGER.

2.13 Prevent Resubmit

Spago provides an implementation of the pattern PreventResubmit to prevent the multiple submissions to server of the same

form data. To every request, the Coordinator generates a new id and puts it into the PermanentContainer. The tag

GenerateToken (specified inside a JSP page) generates, into the html form, the hidden field SPAGO_TOKEN that contains

the id produced. After the form submits operation, the request service logic can control if the form id field value is equal to

that stored into the PermanentContainer. If the two values are different the system generates a EMFInternalError containing

the message “Navigation not permitted”.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 64/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

It is possible to disable this mechanism at run-time, simply setting the SPAGO_GENERATETOKEN=FALSE attribute into

the request URL The Framework uses automatically this mechanism, like for example for the automatic creation of list /

detail pages (see Automatic Generation of list / detail pages (one - shot) section), to prevent the resubmission of the data

submitted on click of button declared in the<DELETE_CAPTION> (list) and <SUBMIT_BUTTON > (detail).

2.14 Service Catalog

The Service Catalog is a Spago component that manage common services. The catalog permit each service not to worry

about the life cycle management; services are configured in the services.xml file, where is possible to define different

scopes:

� REQUEST: the services will be instantiated for each request of a service instance. Use this scope to implement

stateless services.

� SESSION: the services will be instantiated only once for each user. This means that the services can be statefull:

they can keep some information within the instance because for the same user it will be used the same instance.

These services should be Serializable to allow the Session replication between Application Server cluster nodes.

� APPLICATION: the services will be instantiated only once for each application in a Java Virtual Machine (in a

cluster of N nodes, the services will be instantiated N times). Also these services can be statefull but they should

not keep users related information, because there is only an instance for all users (they are equivalent to a

Singleton).

In case of services in scope SESSION or APPLICATION, the service itself has to manage concurrency issue.

Service Catalog can be initialized using the ServiceCatalogInitializer, this mean that services that can be instantiated at

application startup are initialized and configured (these services are the one with APPLICATION scope).

ServiceCatalog is a singleton object and the use of it to retrieve services is simple:

// Service retrieval

FOPService fopS = (FOPService)ServiceCatalog.getInstance().getService(requestContext, "FOP");

// use the service

In the preceding example the usual getInstance() method is used to retrive the ServiceCatalog instance and a specific

service is retrieved using a name used to identify it. The retrieval is done using information provided in services.xml

configuration, follow an example:

<SERVICES>

 <SERVICE NAME="fop" CLASS="it.eng.spago.services.fop.FOPService" SCOPE="SESSION" />

</SERVICES>

Note the service name is not case sensitive and in this case the service has a SESSION scope.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 65/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.14.1 EMail service

The send email service is able to send an email using a preconfigured server and sender. The service is implemented using

Javamail API, some mail attributes can be setted through the service configuration. The configuration is similar to the

following:

<SERVICE NAME="sendMail"

 CLASS="it.eng.spago.services.mail.SendMailService"

 SCOPE="REQUEST">

 <CONFIG

 mail_smtp_host="XXX.eng.it"

 mail_from="nicola.buso@eng.it"

 mail_reply_to="nicola.buso@eng.it" >

 <MAIL_HEADERS

 X_mailer="TestMailer" />

 </CONFIG>

</SERVICE>

2.14.2 Statistic service

Spago provides a J2EE listener that implements the interface javax.servlet.ServletContextListener: this listener asks to the

Java Monitor API integrated in Spago (JaMON) some information about the services invoked. The information are:

� Number of hits

� Average execution time

� Min execution time

� Max execution time

� Concurrent Active invocations

� First access time

� Last access time

These information will be logged with the Spago tracing service (based on Log4J), allowing saving these data on a database

(for later use), or on some text files.

The implementation uses a Servlet listener and when the application shutdown, the listener log the information collected by

JaMON.

For a better integration with the logging framework a Log4j Appender was implemented. The new appender logs on

database using a Spago configured connection data source. Some scripts to create the correct table on the database are

provided: the scripts are in the package it.eng.spago.statistic.

There are the scripts for HSQL DB (create_table-hsql.sql) and for Postgresql (create_table.sql).

The implementation consists of two components:

� The Servlet context listener: on application shutdown it collect statistics information from JaMON and serialize

these statistics on a string to be logged using a configured logger;

� The Log4j JDBC Appender: it deserializes statistics received from the log framework and collects them into

database.

The configuration involves Spago and Log4j configuration; on Spago the file tracer.xml must contain the following lines:

 <LOGGER name="MONITOR_LOGGER" class="it.eng.spago.tracing.Log4JLogger">

 <CONFIG trace_min_log_severity="0" debug="false"/>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 66/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 </LOGGER>

A Log4j configuration should be as follow:

log4j.logger.MONITOR_LOGGER=DEBUG,CA,JamonJDBCAppender

CA - ConsoleAppender.

log4j.appender.CA=org.apache.log4j.ConsoleAppender

log4j.appender.CA.layout=org.apache.log4j.PatternLayout

log4j.appender.CA.layout.ConversionPattern=%d{ISO8601} %-5p [%t] %m%n

RFA - RollingFileAppender

log4j.appender.ApplicationRFA=org.apache.log4j.RollingFileAppender

log4j.appender.ApplicationRFA.File=${catalina.home}/logs/application.log

log4j.appender.ApplicationRFA.MaxFileSize=1000KB

log4j.appender.ApplicationRFA.MaxBackupIndex=0

log4j.appender.ApplicationRFA.layout=org.apache.log4j.PatternLayout

log4j.appender.ApplicationRFA.layout.ConversionPattern=%d{ISO8601} %-5p [%t] %m%n

JamonJDBCAppender – log on configured datasource

log4j.appender.JamonJDBCAppender=it.eng.spago.statistic.JamonStatsJDBCAppender

log4j.appender.JamonJDBCAppender.jndiName=java:comp/env/jdbc/hsql-spagodemo

In this configuration the datasource with the name jdbc/hsql-spagodemo has to be configured properly.

Finally, the web.xml has to be changed, adding a servlet-context listener, as in the following sample:

 <listener>
 <listener-class>it.eng.spago.monitor.MonitorServletListener</listener-class>
 </listener>

Prerequisite to have this listener working properly is that the application should be stopped in the proper way, by the proper

commands of the application server: the application server shouldn’t be killed by operating system commands.

2.14.3 Alias service

This service is related to the decoupling of the URLs between different Web applications: for example it’s possible in a JSP

to produce a link to another Web Application using a tag; an alias name is provided to the tag, and through a XML mapping

configuration file this alias is translated in the real URL.

Spago provides a tag (alias) to render hyperlinks based on aliases: the “link” tag accepts also aliases names, in addition to

standard URL.

Aliases are configured in Spago with the aliases.xml configuration file, with content similar to this sample:

<ALIASES>

 <ALIAS NAME="ENGINEERING" VALUE="http://www.eng.it"/>

 <ALIAS NAME="VALIDATIONTEST" VALUE="http://localhost:8080/ValidationTest/"/>

 <ALIAS NAME="SPAGOIMAGE" VALUE="/ValidationTest/img/spago/home_logo_spago.gif"/>

 <ALIAS NAME="SLASH" VALUE="/"/>

</ALIASES>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 67/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The following code is a usage sample of the service:

AliasService aliasService = (AliasService)ServiceCatalog.getInstance()

 .getService(getRequestContext(pageContext), "ALIAS");

String configAlias = aliasService.getAlias(“sampleAlias”);

… Use configAlias

On JSP some tags can be implemented to reuse aliases configuration, like on this example:

<html:img alias="SPAGOIMAGE"

 alt="Spago logo" title="Spago logo retrieved with alias" />

2.15 Publication

Spago redirects the output data of business logic to the View module. It carries out publishing according to the request.

When no publisher is configured for a specific channel request, the framework's response to the client is in XML format. In

this way, it is possible to test the correct execution of business logic in the development phase before the View module is

available. You can use one or more stylesheets for XML data description for all available channels:

� XML/XSLT : it is possible to transform the XML response stream using an XSLT stylesheet or a XSLT stylesheets

cascade.

� JSP: the presentation is delegated to a JSP page. The page can access to the response envelope and to the

possible errors.

� Servlet: the presentation is delegated to a Servlet that usually retrieves the information to show from the session

(information setted from the actions and the modules previously executed).

� JAVA: a java class is called to determine the presentation modality to use. This choice is not properly a

presentation but a switch for other real publication services, based on the conditions.

� LOOP (only for http channel): the service result is not really published but the AdapterHTTP invokes a new service

using data contained into the service result.

� None: some services don’t need the presentation phase: a SOAP service could insert directly into the response the

XML stream produced, for example. This modality is also very useful during the application debug.

Not all modalities are right to publish in all channels: the Servlet/JSP modality can’t be used for SOAP or EJB channel, for

example.

2.15.1 Configuration

The first activity to publish a service response is associate the service action or page to the correspondent publication

object. This mapping is defined into the presentation.xml file, as the following example shows:

<?xml version="1.0" encoding="ISO-8859-1"?>

<PRESENTATION>

 <MAPPING

 business_name="LIST_USERS_ACTION"

 business_type="ACTION"

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 68/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 publisher_name="ListUsersAction"/>

 <MAPPING

 business_name="AutomaticPageUsers"

 business_type="PAGE"

 publisher_name="AutomaticPageUsers"/>

</PRESENTATION>

Each action or page has a publisher object associated; in this way a single publisher can be used by more actions or pages.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 69/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The publisher objects are defined into the publishers.xml file.

<PUBLISHERS>

 <PUBLISHER name="ListUsersAction">

 <RENDERING channel="HTTP" type="XSL" mode="">

 <RESOURCES>

 <ITEM prog="0" resource="/WEB-INF/xsl/HTTPListUsersAction.xsl"/>

 </RESOURCES>

 </RENDERING>

 <RENDERING channel="WAP" type="XSL" mode="">

 <RESOURCES>

 <ITEM prog="0" resource="/WEB-INF/xsl/WAPListUsersAction.xsl"/>

 </RESOURCES>

 </RENDERING>

 </PUBLISHER>

 <PUBLISHER name="AutomaticPageUsers">

 <RENDERING channel="HTTP" type="JSP" mode="FORWARD">

 <RESOURCES>

 <ITEM prog="0" resource="/jsp/demo/listdetail/PageUsers.jsp"/>

 </RESOURCES>

 </RENDERING>

 </PUBLISHER>

</PUBLISHERS>

For each publisher, the file defines a PUBLISHER envelope that, with the attribute name, assigns it a logical name:

 <PUBLISHER name="publisher logical name">

The presentation subsystem needs to know the channel where the response will be published, a RENDERING envelope will

be defined for every channel used.

 <RENDERING channel="HTTP" type="XSL" mode="">

The channels are:

� HTTP

� WAP

� SOAP

� EJB

Once established the channel, the presentation modality must be specified. The possible values (explained in the

section2.14.3) are:

� NOTHING

� SERVLET

� JSP

� XSL

� JAVA

� LOOP

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 70/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Not all the modalities are valid for all the channels, the servlet modality have not meaning in the EJB channel, for example.

The following table shows the possible combinations:

Channel type Mode prog resource

HTTP NOTHING 0

 SERVLET FORWARD 0 Servlet name

 SENDREDIRECT 0 Servlet name

 JSP FORWARD 0 JSP page name

 SENDREDIRECT 0 JSP page name

 XSL "0, 1, 2, …" XSL stylesheets name

 LOOP 0 Parameters of the new

request

 FOP 0 XSL stylesheets name

WAP NOTHING 0

 SERVLET FORWARD 0 Servlet name

 SENDREDIRECT 0 Servlet name

 JSP FORWARD 0 JSP page name

 SENDREDIRECT 0 JSP page name

 XSL "0, 1, 2, …" XSL stylesheets name

SOAP NOTHING 0

 XSL "0, 1, 2, …" XSL stylesheets name

 LOOP 0 Parameters of the new

request

EJB NOTHING 0

 XSL "0, 1, 2, …" XSL stylesheets name

JMS NOTHING 0

 XSL "0, 1, 2, …" XSL stylesheets name

2.15.2 Simplified Configuration

To simplify the configuration activity, a simplified mechanism to associate the services (actions/pages) to the correspondent

publishers is available.

In the standard mode (described in previous paragraph), Spago needs to use the information of the file presentation.xml: this

allow to a cleaner separation between business logic and presentation.

In the simplified configuration you can put the publisher information directly in the actions.xml or pages.xml configuration

files: the new attribute PUBLISHER_NAME (case insensitive) is searched for the publisher name. If this attribute is not

found, the standard mechanism is used.

Following a configuration sample for an action:

 <ACTION name="TEST_SERVLET_PUBLISHING" class="it.eng.spago.sample.TestValidation"

 scope="SESSION"

 PUBLISHER_NAME="SERVLET_PUB">

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 71/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <CONFIG></CONFIG>

 </ACTION>

The page syntax is the same:

<PAGE name="PAGE_TEST_PUBLISHER" scope="SESSION"

 PUBLISHER_NAME ="AGENT_DEPENDENT_PUBLISHER">

2.15.3 User-Agent Dependent Publishing

Some applications need to publish on different resources (jsp, xsl ect..) depending on the user-agent of the request call.

To handle these problems in Spago is possible to have more than one RENDERING section child of PUBLISHER elements

for the same channel, each one different only for the value of the optional user-agent attribute.

The value of user-agent attribute identify a logic user-agents inside Spago. A Mapping between strings that arrives in

request and logical user agent is made creating a USER-AGENT element on the useragents.xml configuration file.

For example the following section defines two logical user agents user agents called IE6 and Firefox.

<USER-AGENTS>

 <USER-AGENT logicalName="IE6"

identifierString="Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR

1.1.4322)"/>

 <USER-AGENT logicalName="Firefox"

identifierString="Mozilla/5.0 (Windows; U; Windows NT 5.1; it-IT; rv:1.7.10)

Gecko/20050717 Firefox/1.0.6"/>

</USER-AGENTS>

that can be used for agent dependent publishing in the publisher.xml configuration file:

<PUBLISHER name="AGENT_DEPENDENT_PUBLISHER">

<RENDERING channel="HTTP" type="JSP" mode="FORWARD" user-agent="IE6">

 <RESOURCES>

 <ITEM prog="0" resource="/testAgentIE.jsp"/>

 </RESOURCES>

 </RENDERING>

<RENDERING channel="HTTP" type="JSP" mode="FORWARD" user-agent="Firefox">

 <RESOURCES>

 <ITEM prog="0" resource="/testAgentFirefox.jsp" />

 </RESOURCES>

 </RENDERING>

</PUBLISHER>

In that case, the service (ACTION, o PAGE) that is associated to AGENT_DEPENDENT_PUBLISHER in presentation.xml

file, will result in the rendering of /testAgentIE.jsp in the case that the request come from Internet Explorer or

/testAgentFirefox.jsp in the case we’re using firefox.

If the request string that identify user-agent doesn’t identify a logical user agent in Spago or the matching logical user-agent

doesn’t have a specific RENDERING section, the first RENDERING section available for the channel will be used.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 72/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.15.4 XML/XSLT

This modality allows transforming the xml response using XSLT stylesheets. It is possible to associate more than one

stylesheet for every service. The XML/XSL transformation is an onerous task if the XSLT stylesheet is compiled every time,

so the framework compiles the stylesheets at start-up time and put them in cache. If a change occurs to a stylesheet, the

framework recompiles it automatically without reload the application. The transformation result stream cannot be only HTML

but also any other set of semantic tags or instructions.

Spago developers performed some test whit Crystal Clear and Jreport Engines to produce a PDF output. The tests with FOP

(Formatting Objects Processor) demonstrated that is a complex mechanism to manage.

Spago use Xalan libraries as transcoder system.

2.15.4.1 Changing the XSL transcoder

A factory is responsible to instantiate the XSL transcoder. It's possible to define the transcoder class to use changing the

transcoder.xml file:

<TRANSCODERS>

 <TRANSCODER class="it.eng.spago.transcoding.Transcoder"/>

</TRANSCODERS>

The transcoder must implement the interface it.eng.spago.transcoding.TranscoderIFace which defines the following

method:

void perform(SourceBean toRender, Templates xslTemplate, Result out) throws EMFInternalError;

2.15.5 FOP

In this modality is possible to use FOP (Formattin Object Processor) as output of a service. FOP starts from a formatting

object (XSL-FO) and is able to renders it in various formats (Output formats). The input for this publisher type, the XSL-FO

document, is usually obtained as a XSL tranformation of an XML document containing the content to render.

The configuration for this publisher type is as follow:

 <PUBLISHER name="FOP_GLOSSARY_EXAMPLE_XSL">

 <RENDERING channel="HTTP" type="FOP" mode="FORWARD"

 xml_fop_path="XML_FOP.GLOSSARY"

 content_type="application/pdf">

 <RESOURCES>

 <ITEM prog="0" resource="/WEB-INF/xsl/glossary.xsl" />

 </RESOURCES>

 </RENDERING>

 </PUBLISHER>

The input to the rendering phase are:

� xml_fop_path: the path into the service response where to find the XML content;

� content_type: the content type identifing the output format; accepted values are:

o application/pdf

o application/X-fop-awt-preview,

o application/mif

o text/xml

o application/X-fop-print

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 73/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

o application/x-pcl

o application/postscript

o text/plain

o image/svg+xml

� the XSL stylesheet to use to obtain the XSL-FO document from the XML.

As for the 2.15.4 publisher type stylesheet are preloaded in the initialization phase to increase performances.

2.15.6 Servlet/JSP

The service result can be showed by a JSP page or by a Servlet that can produce the entire HTML stream.

 To build a new JSP it is possible to extend the class it.eng.spago.dispatching.httpchannel.AbstractHttpJspPage. In this way

it is possible to access to the objects requestContainer, responseContainer, errorHandler:

o public RequestContainer getRequestContainer(HttpServletRequest request);

o public SourceBean getServiceRequest(HttpServletRequest request);

o public ResponseContainer getResponseContainer(HttpServletRequest request);

o public SourceBean getServiceResponse(HttpServletRequest request);

o public EMFErrorHandler getErrorHandler(HttpServletRequest request);

2.15.7 JAVA

The JAVA modality allows executing a java class that, at run time, can redirect the presentation to different publishers.

Developers can declare their own classes or extend the framework class AbstractPublisherDispatcher that implements

services for recover the publisher configuration. The configuration is defined into the CONFIG envelope as show below:

<PUBLISHER name="DefaultPublisherDispatcher">

 <RENDERING channel="HTTP" type="JAVA" mode="">

 <RESOURCES>

 <ITEM prog="0" resource="it.eng.spago.presentation.DefaultPublisherDispatcher">

 <CONFIG>

 ...

 </CONFIG>

 </ITEM>

 </RESOURCES>

 </RENDERING>

 </PUBLISHER>

The java class can retrieve from response the information to decide the publisher to use. A typical example of this

mechanism, it is to check if into the stack errors are stored some error for publishing the JSP error page or the JSP page

associated with the service.

Spago defines a default java publisher for simple publisher selection, configurable into the configuration file. The publisher

class (extends the class AbstractPublisherDispatcher) to registry is:

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 74/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 it.eng.spago.presentation.DefaultPublisherDispatcher

The structure should look like this:

 <CHECKS>

 <CHECK target="DefaultJavaPublisher1">

 <CONDITIONS>

 <PARAMETER name="param1" scope="SERVICE_REQUEST" value="0" />

 <PARAMETER name="param2" scope="SESSION" value="AF_DEFINED" />

 </CONDITIONS>

 </CHECK>

 <CHECK target="DefaultJavaPublisher2">

 <CONDITIONS>

 <PARAMETER name="param1" scope="SERVICE_REQUEST" value="1" />

 </CONDITIONS>

 </CHECK>

 </CHECKS>

The CHECKS envelope must contain all controls that the class has to perform to establish the publisher to use. For every

different logical publisher target there’s a CHECK envelope which defines the conditions that satisfy it. The class will call the

publisher that verifies all conditions.

The name attribute defines the name of the attribute to search inside the containers; the scope attribute identifies the

container where search the attribute and its possible values are:

 - USER

 - ADAPTER_REQUEST

 - SERVICE_REQUEST

 - SESSION

 - APPLICATION

 - ADAPTER_RESPONSE

 - SERVICE_RESPONSE

The value attribute can define two constants to specify the presence / absence into the container or the value:

 - AF_DEFINED

 - AF_NOT_DEFINED

 - param_value

2.15.8 LOOP

The LOOP modality is available only in HTTP and SOAP channels, with forward mode, and allows executing a loop_back

operation. The scenery is:

� The browser invokes a service calling the AdapterHTTP

� The business logic is executed

� The presentation is delegated to the AdapterHTTP that invokes a new service

� The business logic of the new service is executed

� The presentation is delegated to the publisher associated to the new service

� The response of the service returns to the browser

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 75/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The parameters of the new serviceRequest are defined into the <PARAMETER> envelopes with the usual grammar used for

the dynamic parameters declaration:

<PUBLISHER name="LoopBasicListUsersAction">
 <RENDERING channel="HTTP" type="LOOP" mode="">
 <RESOURCES>
 <PARAMETER name="PAGE" type="ABSOLUTE" value="SmartPageUsers" scope="" />
 </RESOURCES>
 </RENDERING>
</PUBLISHER>

It is also possible to generate the second request at run-time as in the following example:

 <PUBLISHER name="NewLoopPublisher">
 <RENDERING channel="HTTP" type="LOOP" mode="">
 <RESOURCES>

 <PARAMETER name="" type="RELATIVE" value="MODULE_RESPONSE.SERVICE_REQUEST"
scope="SERVICE_RESPONSE" />

 </RESOURCES>
 </RENDERING>
</PUBLISHER>

2.15.9 Renderers

The concept of renderer is introduced in Spago to isolate, through the configuration, specific rendering behavior in the

publishing phase. Different publishing types are encapsulated in different rendering classes. All publishing types presented

in previous paragraphs are classes that implement the interface it.eng.spago.presentation.rendering.RendererIFace.

New renderers can be added to the configuration provided in renderers.xml file:

<?xml version="1.0" encoding="ISO-8859-1"?>

<RENDERERS>

...

 <RENDERER name="JSP_RENDERER" type="JSP" class="it.eng.spago.presentation.rendering.JSPRenderer">

 <CONFIG/>

 </RENDERER>

…

</RENDERERS>

To implement a new renderer it is possible extending existing default implementations that actually are:

� it.eng.spago.presentation.rendering.AbstractServletModelRendererAbstractServletModelRendererAbstractServletModelRendererAbstractServletModelRenderer: this class manages the rendering phase based
on servlet model;

� it.eng.spago.presentation.rendering.AbstractTransformationRendererAbstractTransformationRendererAbstractTransformationRendererAbstractTransformationRenderer: produce the output applying XML
transformations to the response.

Actually the renderers are used in adapters AdapterHTTP, AdapterSOAP and AdapterAxis.

2.15.10 An example

This paragraph describes, with an example, the possibility to associate different publishers to actions according to the

channels. The following action performs a query to retrieve a users list.

public class ListaUtentiAction extends AbstractAction {
 public ListaUtentiAction() {
 } // public ListaUtentiAction()

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 76/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 public void service(SourceBean request, SourceBean response) {
 DataConnection dataConnection = null;
 SQLCommand sqlCommand = null;
 DataResult dataResult = null;
 try {
 DataConnectionManager dataConnectionManager = DataConnectionManager.getInstance();
 dataConnection = dataConnectionManager.getConnection("spagodemo");
 String statement = SQLStatements.getStatement("LISTA_UTENTI");
 sqlCommand = dataConnection.createSelectCommand(statement);
 dataResult = sqlCommand.execute();
 ScrollableDataResult scrollableDataResult = (ScrollableDataResult)dataResult.getDataObject();
 response.setAttribute(scrollableDataResult.getSourceBean());
 } // try
 catch (Exception ex) {
 TracerSingleton.log(Constants.NOME_MODULO, TracerSingleton.CRITICAL, "QueryExecutor::executeQuery:", ex);
 } // catch (Exception ex) try
 finally {
 Utils.releaseResources(dataConnection, sqlCommand, dataResult);
 } // finally try
 } // public void service(SourceBean request, SourceBean response)
} // public class ListaUtentiAction extends AbstractAction

We not analyze the action code but the response produced by the action:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE RESPONSE (View Source for full doctype...)>

<RESPONSE>

 <SERVICE_RESPONSE>

 <ROWS>

 <ROW COGNOME="Bellio" EMAIL="luigi.bellio@eng.it" ID_USER="10" NOME="Luigi" />

 <ROW COGNOME="Ferrari" EMAIL="andrea.ferrari@eng.it" ID_USER="254" NOME="Andrea" />

 <ROW COGNOME="Butano" EMAIL="daniela.butano@eng.it" ID_USER="250" NOME="Daniela" />

 </ROWS>

 </SERVICE_RESPONSE>

<ERRORS/>

</RESPONSE>

In the next paragraphs, the following type of publisher will be used to render the response.

� None

� XSL

� JSP

2.15.10.1 HTTP channel and none publisher

If the action doesn’t have any publisher, the XML stream produced is sent to the browser without any modify. The actual

browsers are able to show an xml document inside their editor. To obtain this result you should NOT indicate a publisher

associated to the action into the presentation.xml file. You have to comment the association envelope:

 <MAPPING

 business_name="LISTA_UTENTI_ACTION"

 business_type="ACTION"

 publisher_name="ListaUtentiAction"/>

The result of the actions invocation, with an Internet Explorer browser, is the following:

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 77/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 78/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.15.10.2 HTTP channel and XSL transformation

This paragraph describes how configure an XSL type publisher. It is necessary associate a publisher to the action

ListaUtentiAction (remove comments into the xml mapping showed in the previous paragraph). By invoking the following

URL:

http://localhost:8080/AFDemoWeb/servlet/AdapterHTTP?ACTION_NAME=LIST_USERS_ACTION

The framework retrieves the logical publisher name associated to the action and looks into the publishers configuration to

perform the presentation. The publisher is configured into the publishers.xml file as below:

<PUBLISHERS>

 <PUBLISHER name="ListaUtentiAction">

 <RENDERING channel="HTTP" type="XSL" mode="">

 <RESOURCES>

 <ITEM prog="0" resource="/WEB-INF/xsl/HTTPListaUtentiAction.xsl"/>

 </RESOURCES>

 </RENDERING>

 </PUBLISHER>

</PUBLISHERS>

The configuration specifies that the publisher is an XSL transformation and will use the HTTPListaUtentiAction.xsl

stylesheet. It is possible to define more than one stylesheets to apply, each one distinguished by a progressive number

(prog attribute) that determines the order.

For the HTTP channel, the service produces the HTML page showed below, using the ListaUtentiAction response and the

XSL transformation stylesheet HTTPListaUtentiAction.xsl.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 79/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The XSL transcoding file should look like as:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="RESPONSE/SERVICE_RESPONSE">
<html>
 <head>
 <link rel="stylesheet" type="text/css" href="../css/spago/listdetail.css"/>
 <title>Lista Utenti</title>
 </head>
 <body>
 <h2>Lista Utenti</h2>
 <table class="LISTA" border="0" cellpadding="0" cellspacing="2">
 <tr class="LISTA">
 <th class="LISTA">User ID</th>
 <th class="LISTA">Nome</th>
 <th class="LISTA">Cognome</th>
 <th class="LISTA">Mail</th>
 </tr>
 <xsl:apply-templates/>
 </table>
 </body>
</html>
</xsl:template>

<xsl:template match="RESPONSE/SERVICE_RESPONSE/ROWS/ROW">
 <tr class="LISTA">
 <td class="LISTA"><xsl:value-of select="@ID_USER"/></td>
 <td class="LISTA"><xsl:value-of select="@NOME"/></td>
 <td class="LISTA"><xsl:value-of select="@COGNOME"/></td>
 <td class="LISTA"><xsl:value-of select="@EMAIL"/></td>
 </tr>
</xsl:template>

</xsl:stylesheet>

The stylesheet simply produces a table row for every database rows contained in the response.

2.15.10.3 HTTP Channel and JSP Publisher

The same result can be obtained using a JSP page. It is not necessary to modify the mapping between the action and the

logical publisher into the file presentation.xml but only to change the publisher configuration, into the file publishers.xml, to

declare that the publisher is a JSP page.

<PUBLISHERS>

 <PUBLISHER name="ListaUtentiAction">

 <RENDERING channel="HTTP" type="JSP" mode="FORWARD">

 <RESOURCES>

 <ITEM prog="0" resource="/jsp/demo/listdetail/ListaUtenti.jsp"/>

 </RESOURCES>

 </RENDERING>

 </PUBLISHER>

</PUBLISHERS>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 80/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The JSP produces an HTML page like this (the same obtained with XSL transformation):

The JSP code is the following:

<%@ page import="it.eng.spago.base.*, it.eng.spago.configuration.ConfigSingleton,

 it.eng.spago.tracing.TracerSingleton, java.lang.*, java.text.*, java.util.*"%>

<%@ taglib uri="spagotags" prefix="spago"%>

<%

 ResponseContainer responseContainer = ResponseContainerAccess.getResponseContainer(request);

 SourceBean serviceResponse = responseContainer.getServiceResponse();

%>

<html>

 <head>

 <link rel="stylesheet" type="text/css" href="../css/spago/listdetail.css"/>

 <title>Lista Utenti</title>

 </head>

 <body>

 <h2>Lista Utenti</h2>

 <table class="LISTA" border="0" cellpadding="0" cellspacing="2">

 <tr class="LISTA">

 <th class="LISTA">User ID</th>

 <th class="LISTA">Nome</th>

 <th class="LISTA">Cognome</th>

 <th class="LISTA">Mail</th>

 </tr>

<% Vector rows = serviceResponse.getAttributeAsVector("ROWS.ROW");

 for (Enumeration enum = rows.elements(); enum.hasMoreElements();)

 {

 SourceBean row = (SourceBean)enum.nextElement(); %>

 <tr class="LISTA">

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 81/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <td class="LISTA"><%= row.getAttribute("ID_USER") %></td>

 <td class="LISTA"><%= row.getAttribute("NOME") %></td>

 <td class="LISTA"><%= row.getAttribute("COGNOME") %></td>

 <td class="LISTA"><%= row.getAttribute("EMAIL") %></td>

 </tr>

<% } %>

 </table>

 </body>

</html>

The JSP can access to the object responseContainer and serviceResponse to retrieve users attribute to show.

2.15.10.4 WAP Channel and XSL Transformation

The publication system has to know the channel used for the presentation because, with various channels, the information to

show can be different or can be visualized in different way. This example show how the same action, used in previous

paragraphs with HTTP channel, can be activated from a WAP browser. The result will be constructed transforming the xml

service stream response with a transcoding XSL stylesheet, obviously different from which one used in http example. Into

the publishers.xml file it is necessary to add a new RENDERING envelope for manage the WAP channel.

 <PUBLISHER name="ListaUtentiAction">

 <RENDERING channel="HTTP" type="JSP" mode="FORWARD">

 <RESOURCES>

 <ITEM prog="0" resource="/jsp/demo/listdetail/ListaUtenti.jsp"/>

 </RESOURCES>

 </RENDERING>

 <RENDERING channel="WAP" type="XSL" mode="">

 <RESOURCES>

 <ITEM prog="0" resource="/WEB-INF/xsl/WAPListaUtentiAction.xsl"/>

 </RESOURCES>

 </RENDERING>

 </PUBLISHER>

To try this presentation modality it has been used a WAP emulator, not a really WAP browser, so the request doesn’t pass

through a WAP gateway. In this way the framework can’t establish that the request comes from a WAP channel. To provide

this information to the framework it has been necessary to add a new parameter CHANNEL_TYPE=WAP into the URL request.

So the URL called in order to try the action is:

http://localhost:8080/AFDemoWeb/servlet/AdapterHTTP?ACTION_NAME=LISTA_UTENTI_ACTION&CHANNEL_TYPE=WAP

Invoking the request from a WAP emulator we obtain the result showed in the following image:

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 82/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The XSL used has the same structure of that one used for the HTTP channel, but it does the rendering of less information.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" doctype-public="-//WAPFORUM//DTD WML 1.1//EN" doctype-
system="http://www.wapforum.org/DTD/wml_1.1.xml"/>

<xsl:template match="RESPONSE/SERVICE_RESPONSE">
<wml>
 <card id="ListaUtenti" title="Lista Utenti">
 <p>
 <table columns="2" align="LCC">
 <tr>
 <td>User ID</td>
 <td>Mail</td>
 </tr>
 <xsl:apply-templates/>
 </table>
 </p>
 </card>
</wml>
</xsl:template>

<xsl:template match="RESPONSE/SERVICE_RESPONSE/ROWS/ROW">
 <tr>
 <td><xsl:value-of select="@ID_USER"/></td>
 <td><xsl:value-of select="@EMAIL"/></td>
 </tr>
</xsl:template>

</xsl:stylesheet>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 83/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.16 Tag Libraries

Spago provides the following tag libraries:

� list: used for the automatic generation of list pages. The tag retrieves the layout information from the xml envelope

<CONFIG>, relative to the module or action that produces the list data, defined into the configuration xml node (into

the actions.xml or modules.xml). It recovers the list data from the serviceResponse produced by the action or

module.

� detail: used for the automatic generation of a detail page. The tag retrieves the layout information from the xml

envelope <CONFIG>, relative to the module or action that produces the list data, defined into the configuration xml

node (into the actions.xml or modules.xml). It recovers the detail data from the serviceResponse produced by the

action or module.

� error: the tag implements the javascript function checkError() that shows, using a pop-up, the error stack contained

into the ErrorHandler.

� lookup and lookupClient: Spago implements the lookup functionality through two tags. The JSP page that

contains the lookup field must contain the lookupClient tag. The “onClick()” event handler, defined in the lookup

field, has to call the function lookup_valueidLookup(). The javascript function, defined from the tag, will open a

new window showing the lookup list. The second JSP page, visualized into the new window, must use the lookup

tag for the creation of the lookup list. The tags Lookup and lookupClient use the configuration parameters defined

into the file lookup.xml.

<LOOKUPS>

 <LOOKUP idlookup="ListUsers">
<PARAMETERS pageName="ListUsersLookupPage" moduleName="ListUsersLookupModule"
formName="StartLookup">

 <FIELDS>
 <FIELD lookupTableField="userid" formField="userid" likeField="true" />
 </FIELDS>
 </PARAMETERS>
 </LOOKUP>

</LOOKUPS>

The lookupClient tag uses the <PARAMETERS> envelope to invoke the module that executes the list rendering; the

<FIELD> envelopes are useful to associate the form fields with the list fields.

� navigationToolbar: this tag shows a navigation toolbar to select one of the services already executed during the

user / application interaction. For more details see Navigation Toolbar.

� comboNavigationToolbar: this tag shows a navigation combo field to select one of the services already executed

during the user / application interaction. For more details see Navigation Toolbar.

� generateToken: this tag generates the hidden field SPAGO_TOKEN holding the last id, produced by the server,

for the prevent resubmit mechanism.

� message: this tag shows the message, associated to the code attribute, hold into the properties file

message_languagecode_countrycode.properties.

� reloadField: retrieves from the serviceRequest the value of the reloadField attribute. It is used to show, in case of

error, the inserted values.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 84/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

� writeString: this tag shows the string passed in input or the optional nullValue attribute (default value is blank) if

the parameter is null.

2.16.1 Visual tags

Some of the Struts tags have been integrated in Spago: most tags of the html and logic groups are available on this

framework. The documentation is provided in html tag library documentation format.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 85/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.17 Multi-Language

Spago implements a mechanism that permits to change the application messages handling different languages.

The errors Multilanguage catalogue is stored into the properties files placed into the application classpath, following the java

standard mechanism. The files have a structure that should look like this:

10001 = The list doesn’t contain lines

10002 = Cancellation executed correctly

10003 = Error during the cancellation

Every message has a code used for retrieve it. The code is used to instance the EMFUserError object:

 public EMFUserError(String severity, String code)

The files holding the messages in different languages, are placed in the application classpath and they are called

message_languagecode_countrycode.properties, where languagecode and countrycode are the codes assigned to the

language and country (constants defined into the java class java.util.Locale). For example, the file for the american language

must be called messages_en_US.properties while the one for the Italian language must be call messages_it_IT.properties.

To use a specific language, the developers must define, into the permanent container, two strings containing the language

and country code, as showed:

SessionContainer permanentContainer = requestContainer.getSessionContainer().getPermanentContainer();

permanentContainer.setAttribute("AF_LANGUAGE", "it");

permanentContainer.setAttribute("AF_COUNTRY", "IT");

 The language will be the default for the session. Normally these values are set during the login phase based on the users

preferences.

The developer can also configure a default language and default country in common.xml. In this case if no language is

specified in session the configured one is select. Follow a configuration example:

<COMMON

 …

 default_user_language="en"

 default_user_country="US"

 >

</COMMON>

2.17.1 Multi-language presentation

The framework allows managing the application messages in a multilanguage modality using a property file for each

language. The framework can retrieve the message, using the object MessageBundle:

public static String getMessage(String code)

This mechanism permits to handle messages multi-language and the display items too. See the message tag for more

details.

For the SOAP and EJB channel the language problem is not important because the services should provide only data,

without presentation logic.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 86/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.17.2 Split messages in multiple properties file

To split the messages in multiple properties files you have to define the files to use in the messages.xml file. Following a

sample:

 <MESSAGES>

 <BUNDLE name="properties.messages"/>

 <BUNDLE name="properties.validation_messages"/>

 </MESSAGES>

To put the properties files in a folder, you have to use the dot-notation. In the previous example the properties files are inside

a folder called "properties".

Also, in the initializer.xml you have to add the following initializer:

 <INITIALIZER class="it.eng.spago.message.MessageBundleInitializer" />

The implementation of MessageBundle will look for the message in all bundles defined in messages.xml, except if the

developer gives the name of the bundle to search in.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 87/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.18 Distribution of the business logic

An important Spago feature is the possibility to choice the execution of the business logic (actions and modules) on a web

container or on an EJB container, using a local or remote interface. It is possible simply changing some parameters

contained into the distribution.xml files. The main differences are relative to the database management, see the Transaction

management for more details.

The distribution of services execution is set into the configuration file distribution.xml as show in the following sample:

<?xml version="1.0" encoding="ISO-8859-1"?>

<DISTRIBUTIONS>

 <DISTRIBUTION business_type="ACTION" business_name="LIST_USERS_ACTION"

distribute_coordinator_class="it.eng.spago.dispatching.distribute.DistributeCoordinator" />

 <DISTRIBUTION business_type="PAGE" business_name="AutomaticPageUsers"

distribute_coordinator_class="it.eng.spago.dispatching.distribute.DistributeCoordinator" />

 <DISTRIBUTION business_type="PAGE" business_name="BasicListUsers"

distribute_coordinator_class="it.eng.spago.dispatching.distribute.RemoteDistributeCoordinator" />

</DISTRIBUTIONS>

This file defines all the actions and pages that must be executed on an EJB container. All the modules of a page, associated

to an EJB container, are executed in this environment. It is not possible to have a hybrid page which has some modules

executed on web container and other on EJB container. Using the local interfaces (the DistributeCoordinator) the

performances don’t decrease too much. If an operation fails, during the generation of a page, the system makes a rollback of

all the page modules, because the transaction is associated to the page and not to the single modules.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 88/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.19 Data Access

The Spago Data Abstract Layer is a module, implemented over JDBC, which virtualizes the data access, providing only one

interface for access data in different databases. The benefit of this architecture is a unique model to access data and an

easy way to import an application from one database to another. The module, furthermore, implements a set of new

functionalities, like the management of connection pool or a scrollable result set.

It is also possible using native types of different database vendors (like Oracle CLOB type for example) but this choice make

more difficult, or in some case impossible, the application porting.

Developers can use it inside Spago actions or modules and all data result are stored inside a SourceBean object that can be

easily transform into XML.

2.19.1 Requirements

The Data Access Layer has been implemented for satisfy the follow requirements:

1. Meet the SQL ’92 standard that defines the commons sql commands like SELECT, INSERT, UPDATE, DELETE.

2. Possibility to use different database in the same application and to execute sql commands on each one of them.

3. Independence from the database vendor and lack of database specific code.

4. Independence from the JDBC driver used.

5. Manage “native connection pool” (created at application start – up using configuration parameters define in a

configuration file) and “managed connection pool” (created from an application server and retrieve using a JNDI

context)

6. Manage JDBC transactions, considering that all sql operations external to one transaction will be executed with

autocommit modality.

7. The execution result of queries or operations must be of one type self-describing (different operations will return

different result objects that implement an unique interface which defines a method for identify the type of result)

8. String format of Date or Timestamp JDBC object must be unique and comply with the one defined in the data

access layer configuration file. These requirements arise because with different database the string format of

Timestamp or Date can be different, so the application can’t be portable. This mechanism allows using an only

format to set and retrieve information of Date and Timestamp type.

9. All module operations must throw exception of type “EngInternalError” if an error occurs during the execution.

2.19.2 General Principles of planning

The planning of the data access module needed to use some best practices and specific Design Pattern, like:

� The object DataConnectionManager , that manages all the application connection pools, has been implemented

like a Singleton.

� Use of AbstractFactory and FactoryMethod patterns for the creation of all objects that have different

implementation but are compliant to one interface.

� The objects of type DataField, ScrollableDataResult, SQLCommand are examples of objects created by an

AbstractFactory or a FactoryMethod.

� The objects of type SQLCommand are compliant to the Command pattern.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 89/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

� The objects that implement the ConnectionPoolInterface are created using introspection methods in order to

avoid the inclusion of all vendor libraries during the code compilation phase.

2.19.3 Management of connections and pools

The fundamental object of data access module is DataConnectionManager that implements the following functionalities:

1. Create and configure connection pool objects compliant to the interface ConnectionPoolInterface.

2. Provide connection for all the managed databases.

The connection pools are defined by an xml file (data_access.xml) that contains all the necessary parameters to instantiate

and to initialize them. The most important parameter is the complete name of the java class that takes care to build a

connection pool for a specific database.

This object increases the performance of the application and allows the developers to not worry about the creation of JDBC

connections. The developers, who want to get a connection to a database, must simply write:

Code Example 2-1: get a database connection

DataConnection dcDefault = DataConnectionManager.getInstance().getConnection();

DataConnection dcOracle = DataConnectionManager.getInstance().getConnection(“oracle”);

DataConnection dcDB2 = DataConnectionManager.getInstance().getConnection(“DB2”);

//do something

dcDefault.close();

dcOracle.close();

dcDB2.close();

An example of the connection pool configuration file (data_access.xml) can be:

Code Example 2-2: data_access.xml

<DATA-ACCESS>

 <DATE-FORMAT format="DD-MM-YYYY"/>

 <TIMESTAMP-FORMAT format="DD-MM-YYYY hh:mm:ss"/>

 <CONNECTION-POOL connectionPoolName="demo"

 connectionPoolFactoryClass="it.eng.spago.dbaccess.factory.

 OracleConnectionPoolDataSourceFactory">

 <CONNECTION-POOL-PARAMETER parameterName="connectionString"

 parameterValue="jdbc:oracle:thin:@xxx.xxx.xxx.xxx:xxxx:XXX"

 parameterType=""/>

 <CONNECTION-POOL-PARAMETER parameterName="jdbcDriver"

 parameterValue="oracle.jdbc.OracleDriver" parameterType=""/>

 <CONNECTION-POOL-PARAMETER parameterName="driverVersion" parameterValue="2.1"/>

 <CONNECTION-POOL-PARAMETER parameterName="user" parameterValue="PIPPO"/>

 <CONNECTION-POOL-PARAMETER parameterName="userPassword" parameterValue="PIPPO"/>

 <CONNECTION-POOL-PARAMETER parameterName="poolMinLimit" parameterValue="0"/>

 <CONNECTION-POOL-PARAMETER parameterName="poolMaxLimit" parameterValue="0"/>

 <CONNECTION-POOL-PARAMETER parameterName="cacheScheme"

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 90/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 parameterValue="DYNAMIC_SCHEME" />

 <CONNECTION-POOL-PARAMETER parameterName="sqlMapperClass"

 parameterValue="it.eng.spago.dbaccess.sql.mappers.OracleSQLMapper"/>

 </CONNECTION-POOL>

 <CONNECTION-MANAGER>

 <REGISTER-POOL registeredPoolName="demo"/>

 </CONNECTION-MANAGER>

</DATA-ACCESS>

Each pool is defined by an envelope CONNECTION-POOL with the following attributes:

� connectionPoolName: name of the pool. This name is used from DataConnectionManager.getConnection

because this method needs to know which pool to use (If no name is specified the method access the first pool

of the list).

� connectionPoolFactoryClass: factory that instantiates the connection pool object. The framework provides this

implementations:

o it.eng.spago.dbaccess.factory.AppServerManagedConnectionPoolFactory that instantiates an

object it.eng.spago.dbaccess.pool.AppServerManagedConnectionPool that access, using JNDI

name and context, to a connection pool managed by the application server. In this case most of the

configuration parameters aren’t mandatory because often they are already defined in the configuration

file of the application server.

o it.eng.spago.dbaccess.factory. OracleConnectionPoolDataSourceFactory that instantiates a native

Oracle connection pool compliant to JDBC 2.0 specification.

� connectionString: the string connection to the database in the format defined by JDBC specification (only for

native pool).

� JNDIName: the JNDI name of the pool managed from the application server (only for managed pool).

� jdbcDriver: driver JDBC uses for access to the database (only for native pool).

� driverVersion: version of the driver (only for native pool).

� user: user name used to open a connection.

� userPassword: password used to open a connection.

� poolMinLimit: the minimal number of open connections to maintain.

� poolMaxLimit: the maximum number of open connections to maintain.

� sqlMapperClass: java class for the conversion of a Timestamp / Date value to or from the respective string

format. The string value of Date / Timestamp objects has different format if recovered from different databases

and this difference make the application not completely portable. Map can erase this problem because they

transform the different string value format to the one define in the configuration file. This mechanism allows to

solve the porting problem simply changing the mapper class. The framework provides the following mapper:

o it.eng.spago.dbaccess.sql.mappers.DB2SQLMapper: mapper for DB2.

o it.eng.spago.dbaccess.sql.mappers.MySQLMapper: mapper for MySQL.

o it.eng.spago.dbaccess.sql.mappers.OracleSQLMapper: mapper for Oracle.

It is possible to add new mappers implementing the SQLMapper interface.

Some specific parameters have been introduced for the Oracle native connection pool:

� cacheTimeToLiveTimeout (optional)

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 91/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

� cacheInactivityTimeout (optional)

� cacheScheme:

The meaning of these parameters can be found looking at the Oracle documentation.

The Oracle native connection pool provides also the possibility to encipher the user passwords stored inside the

configuration file. This functionality renders necessary a mechanism for decipher the passwords so Spago contains a

PasswordProvider class that implement the decipher service. Developers must include, into the cofiguration xml envelope a

new parameter:

� Name: algorithm

� Value: it.eng.spago.dbaccess.encript.PasswordProvider

The cipher / decipher algorithm used is a DES/ECB/PKCS5Padding specified by SUN JCE. The used key is stored inside

the jar file of the framework.

In order to generate new keys and new passwords Spago includes a simple graphical interface which is possible to launch

using the command “java it.eng.spago.dbaccess.encript.gui.CriptGui” from a shell of an operating system.

The algorithm used from this tool in part of JDK1.4 so for use it with JDK 1.3/1.2 it is necessary to insert into the classpath

the jar: “jce1_2_2.jar” included with the framework distribution.

2.19.4 Execution of SQL Commands

The DataConnection class is a wrapper of the well know object java.sql.Connection and it has the important job to create

command objects, which are use to execute SQL statements. Because of the support for JDBC 1.0 and JDBC 2.0 the

command object for the two specifications are different, so the DataConnection expose the factory methods for create the

right commands for the JDBC specification used.

Code Example 2-3: execution of sql commands

//

// You’ve already obtained the DataConnection dc Object

//

String strSelect = “SELECT * FROM TAB_PROVA WHERE A=?, B=?”;

SQLCommand cmdSelect = dc.createSelectCommand(str)

List inputParameter = new ArrayList(2);

DataResult dr = cmdSelect.execute(inputParameters);

2.19.5 Statements definition

Spago gives the possibility to store all the SQL statements used by the application in one xml configuration file. Each

statement is represented by an xml envelope with two attributes:

� Name: name of the query that permits to identify and retrieve it.

� Value: the sql query expression

The configuration file that contains the statements is statements.xml and an example part of this file is showed below:

<?xml version="1.0" encoding="ISO-8859-1"?>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 92/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

<STATEMENTS>

 <STATEMENT

 name="LISTA_UTENTI"

 query="SELECT userid,nome,cognome,mail,telefono,indirizzo FROM utenti ORDER BY userid"/>

</STATEMENTS>

Developers can retrieve the query string simply calling the SQLStatements.getStatement method, passing the query name:

String statement = SQLStatements.getStatement("LISTA_UTENTI");

2.19.6 Get the result of a SQL command

One of the requirements for the data access module was that the execution of all different SQL command had to return the

same object result type. To satisfy this requirement Spago implements an object DataResult that is a container for one of the

SQL command result objects, which are different objects but compliant to the same interface DataResultInterface. After the

execution of a SQL command a specific result object is created and it is put inside the DataResult, which know in every

moment the specific type of the contained object.

The example below show that the execution of a query return a DataResult type and that this object contains scrollable

result set, which is the specific result object for a SELECT command.

Code Example 2-4: result of a sql command

//

// You’ve already obtained the DataConnection dc Object

//

String strSelect = “SELECT * FROM TAB_PROVA WHERE A=?, B=?”;

SQLCommand cmdSelect = dc.createSelectCommand(str)

List inputParameter = new ArrayList(2);

DataResult dr = cmdSelect.execute(inputParameters);

if (dr.getDataResultType().equals(DataResultInterface.SCROLLABLE_DATA_RESULT)){

 ScrollableDataResult sdr = (ScrollableDataResult)dr.getDataObject();

}

The different result objects compliant to the interface DataResultInterface are four:

1. ScrollableDataResult: this object is a wrapper for java.sql.ResultSet so probably is the most used. The service

provides are those of the JDBC result set and services of direct / inverse navigation and absolute positioning. For

compatibility reasons with JDBC 1.0 the object doesn’t support direct update of result set data.

2. InformationDataResult: this object is created after the execution of an insert/update/delete command and it

contains information that tell if the statement was executed correctly and how much rows have been interested.

3. PunctualDataresult: this object is a container for a SQL type (different from ResulSet) that can be returned from a

store procedure.

4. CompositeDataResult: this object is a container for other result object and it is necessary because the execution

of store procedures can produce multiple return values of different type. For example, if a store procedure returns

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 93/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

an int value and a resultSet the CompositeDataResult will contain one PunctualDataResult and one

ScrollableDataResult.

Code Example 2-5: composite dataResult

// Open the connection and build the object for

// the invocation of the PL/SQL procedure

DataConnection conn = DataConnectionManager.getConnection();

String storeProcedureString = “{ call " + getPackageName() + ".get_all(?,?,?,?) }”;

SQLCommand command = conn.createStoredProcedureCommand(storeProcedureString);

int paramIndex = 0;

// create an array of null parameters

ArrayList parameters = new ArrayList(4);

parameters.add(conn.createDataField("NumPerPage",java.sql.Types.INTEGER, null));

((SroredProcedureCommand)command).setAsInputParameters(paramIndex++);

parameters.add(conn.createDataField("Page",java.sql.Types.INTEGER, null));

((SroredProcedureCommand)command).setAsInputParameters(paramIndex++);

// create the param for store the number of read records

parameters.add(conn.createDataField("RecordCount",java.sql.Types.INTEGER, null));

((SroredProcedureCommand)command).setAsOutputParameters(paramIndex++);

parameters.add(conn.createDataField("ObjRecordset",java.sql.Types.CLOB, null));

((SroredProcedureCommand)command).setAsOutputParameters(paramIndex++);

// call the store procedure

DataResult result = command.execute(parameters);

// Retrieve the CLOB of the result

if ((result.getDataResultType()).equals(DataResultInterface.COMPOSITE_DATA_RESULT))

CompositeDataResult resultInterface =(CompositeDataResult)result.getDataObject();

List outputParams = resultInterface.getContainedDataResult();

PunctualDataResult pdr =(PunctualDataResult)outputParams.get(1);

DataField df = pdr.getPunctualDatafield();

Clob resultClob = (Clob)df.getObjectValue();

xmlString = resultClob.getSubString(1L,(int)resultClob.length());

}

2.19.7 Transaction management

The transaction management is implemented in a different way if the business logic is executed on a web container or on an

EJB container.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 94/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.19.7.1 Business logic on Web Container

In the Web Container environment all the database operations, that are not part of one transaction, are considered with

autocommit enabled, respecting the default modality defined by JDBC 2.0. Developers who want to insert database

operations into a transaction must use methods initTransaction, commitTransaction e rollBackTransaction declared by

the it.eng.spago.dbaccess.sql.DataConnection class. This mechanism not cover distributed transactions so the operations

are part of the same transaction only if they use the same JDBC connection. In case of an error occurs during the execution

of one operation the Spago Framework won’t perform no one commit or rollback commands because this job is delegated to

the developers.

2.19.7.2 Business logic on EJB Container

In the EJB Container environment the transactions are managed from the Transaction Manager of the EJB Container. The

methods initTransaction, commitTransaction and rollBackTransaction of the DataConnection object have no utility because

the correspondent operations are executed by the Framework with appropriate calls to the EJB Container.

Spago for each service request start a new distributed transaction, so all the service used for reply to the request are part of

the same transaction event if they use different connection. The commit operation is executed automatically at the end of the

request elaboration if no errors are occurred, otherwise the framework call a rollback instruction. Considering that the

transaction is distributed the commit and rollback instructions have effect on all connections.

This mechanism is based on EJB Containers that implement the distributed transaction protocol “two phase commit” using

objects compliant to the JTA XA interface.

2.19.8 Release of the resources

The policy for release resources is the same of that one define by JDBC: release resources in inverse order of allocation.

For example, after a SELECT operation, the JDBC objects used must be release in this order: Cursor, Statement and finally

the Connection. In order to simply the release process Spago implements a method that perform this task automatically with

the correct order.

Utils.releaseResources(dataConnection, sqlCommand, dataResult);

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 95/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.20 Hibernate

Spago can be integrated with Hibernate and using it like a module for object/relational persistence. Hibernate allows to

abstract a database like an objects model. Every table of the relational schema is represented by an object which is built

starting from specific mapping configuration files. Hibernate can abstract different databases only changing some

parameters inside its configuration, so the application become portable and developers have only to interact with Hibernate

API.

Write the mapping files can be a long activity so developers can use some open source tools that create the mapping files

and the relative java class starting from the database definition. The explanation of hibernate or the various tool is not an

objective of this documents, readers who wants other information can look at the Hibernate Site http://www.hibernate.org/.

The major problem to solve during the integration process was:

� Integrate Hibernate with the Spago connection pool logic.

� Integrate Hibernate with the Spago transaction management

2.20.1 Hibernate Integration

The Hibernate base object is Session, which represent a connection to the repository managed, so, in order to integrate it,

Spago needs a mechanism to get an hibernate Session from a connection pool defined in the configuration file

data_access.xml. This mechanism is implemented by a set of classes with this architecture:

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 96/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Spago builds an hibernate session factory at the application start – up time, so inside the configuration file must be present

an xml envelop that load the class it.eng.spago.dbaccess.hibernate.HibernateInitializer. This class initialize a Hibernate

configuration object and set it inside an object it.eng.spago.dbaccess.hibernate.HibernateSessionFactory that represent a

session factory for the hibernate module. HibernateSessionFactory implements a method public static Session

openSession(String connectionPoolName) that, starting from the name of one connection pool defined in data_access.xml,

returns an HibernateSession object. HibernateSession is a class of Spago that contains a native hibernate Session and

implements all the methods necessary to interact with a hibernate repository.

The following UML sequence diagram shows the interaction between Spago objects and Hibernate objects

(SessionFactory and Session) for open and close sessions.

Hibernate has a proprietary JTA transactions manager but this mechanism can’t be used with distributed transactions that

involves more than one hibernate session. To solve the problem it has been necessary to implement two decorator, one for

the object hibernate Session and the other for the object hibernate Transaction. These objects intercept all the request

beginTransaction, commit and rollback and, if the transaction is not distributed, they redirect them to the native hibernate

Transaction, or otherwise they ignore the request because the transaction management is perform from the framework and

must be transparent to the user. The second case happens when the application is executed in an EJB container

environment with transactions management because in this scenery the transactions are distributed and always managed by

the framework.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 97/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 98/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.21 Navigation

The navigator is one of the various transversal services, supplied from Spago, which allows to store the application requests

in a stack and to submit them again in every moment. Using this functionality it is possible to construct a navigation service

more powerful that the classic browser navigation, because this one reestablish automatically all the request parameters and

also the server session.

Suppose, for example, to build an application that shows a list of elements and that each one of them can be selected for

view details. With Spago this simple program can be implemented using an action that retrieves all the elements of the list,

and a JSP that shows the list. Each element is a link that allows calling a new action for retrieve details to show in a new

page.

The First actions needs some parameters passed with the request. When a user needs to return back from the detail page

to the list, the action has to be executed again with the same parameters. Spago permits to do this operation simply adding

a NAVIGATION_BACK_TO_MARK=1 parameter.

The action, that builds the list, asks to the navigator to store the current request and session using the method signAction.

After, when a user needs to return to the list page from the detail page, the application ask to the navigator (using a

NAVIGATOR_BACK_TO_MARK=1 parameter) to execute again the action with the request and session stored in the stack.

The navigator can be activated setting in the request URL some variable “NAVIGATOR_XXX” where the “XXX” string is the

name of the command to exec:

� NAVIGATOR_RELOAD: execute again the last service, the same page is reloaded.

� NAVIGATOR_BACK=?:return back of a number of pages (and relative services) equals to the value of the

parameter.

Navigator.signActionsignActionsignActionsignAction(getRequestContainer());

AdapterHTTP?NAVIGATOR_BACK_TO_MARKNAVIGATOR_BACK_TO_MARKNAVIGATOR_BACK_TO_MARKNAVIGATOR_BACK_TO_MARK=1

Navigator.signActionsignActionsignActionsignAction(getRequestContainer());

AdapterHTTP?NAVIGATOR_BACK_TO_MARKNAVIGATOR_BACK_TO_MARKNAVIGATOR_BACK_TO_MARKNAVIGATOR_BACK_TO_MARK=1

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 99/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

� NAVIGATOR_FORCEBACK=?: returns back of a number of pages (and relative services) equals to the value of the

parameter, considering also the pages (or better the relative services) not stored in the navigation history (see

navigator_disabled below).

� NAVIGATOR_BACK_TO=?: returns back to the service (page or action) with the name equals to the parameter

value returning back to the first called service.

� NAVIGATOR_BACK_TO_MARK=?: returns back of a number of services (and relative pages) equals to the value

of the parameter, counting only the services marked. Each request can be mark using Navigator class method

 public static void signService(RequestContainer request).

� NAVIGATOR_RESET: reset the navigation history. This command when executed erases all the data stored inside

session and, in some case, this is an unwanted behavior. To solve this issue the framework implements a

container, call permanent container, accessible from the session container, which is not affect by this problem and

isn’t erased after a navigation reset:

public synchronized SessionContainer getPermanentContainer();

� NAVIGATOR_DISABLED=TRUE: the service call is not stored in the navigation history. This command is useful for

select which services (and relative pages) are part of the navigation chain. A typical example of use is with a

multiframe site that can refresh more than one frame at the same time. In this case the server has to create a

number of threads equal to the number of requests that can be executed in a “casual” order, so the navigation

history can be different from which expected by developers

� NAVIGATOR_BACK_TO_SERVICE=? : returns back to the service (and the relative page) identified by the label

specified. Developers can assign a label to a request using the Navigator class method:

public static void signService(RequestContainer request, String serviceLabel)

� NAVIGATOR_FREEZE="TRUE": permits to register the request without create a new item in the stack but

replacing the previous.

� NAVIGATOR_BACK_TO_SERVICE_LABEL="LABEL": returns back to the service (and the relative page) identified

by the label specified. Developers can assign a label to a request using the Navigator class method:

public static void signService(RequestContainer request, String serviceLabel)

It is possible to manage errors caused by the navigation system recording a new Action with a fixed name

NAVIGATION_ERROR_ACTION. This action is configured as default action as a trap in the EMFExceptionHandler (2.5).

The exception thrown in this case is a it.eng.spago.navigation.NavigationException.

The use of the navigator has a collateral effect: the request and session stack maintenance is a heavy activity. All the data

contained in the session is serialized and stored like XML nodes inside HTTP session, for the http channel, or like an

attribute value for the classes AdapterSoap/AdapterAxis and AdapterEJB, for the SOAP and EJB channel. The serialized

data can be useful also for mechanisms of load balancing and failure recovery on a cluster server.

For the IBM philosophy the session hasn’t to contain more than 4kbyte to serialize/deserialize, it has to contain only the

name of the objects to retrieve. Developers can follow this advise turning off the navigation system simply setting to false the

attribute navigator_enabled of the configuration file common.xml.

<?xml version="1.0" encoding="ISO-8859-1"?>

<COMMON

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 100/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 file_uri_prefix="file:"

 xhtml_lat1_ent="/WEB-INF/conf/xhtml-lat1.ent"

 xsl_reload="TRUE"

 navigator_enabled="TRUE | FALSE">

</COMMON>

Into the AdapterHTTP class it has been added the possibility to calculate the dimension of the session data and write it in

the log file. This operation verify at the same time if some objects contained are not serializable and in this case an

exception is raised. The functionality can be able / disable simply setting to TRUE / FALSE the value of the attribute

serialize_session present in the configuration file common.xml:

 <COMMON

 serialize_session="TRUE" >

 </COMMON>

The default value is FALSE. The functionality can be very useful to control if all the session objects are serializable (before

storing them in a database, for example), but It is advised to disable it when the application is not used for test or debug

because the serialization of the session is a heavy operation.

2.21.1 Navigation Toolbar

Using the system navigation, and specially his stack of service requests, it has been possible to implement a navigation

toolbar that allows to show the navigation path follow and to return back to one of the step visualized.

The two custom tags:

� it.eng.spago.tags.DefaultNavigationToolbarTag

� it.eng.spago.tags.ComboNavigationToolbarTag

can be used for rendering (with to different modalities) the navigation toolbar. The first tag shows a path of links composed

by the service names, while the second show the same service names inside an html combo element. The only services

rendering are those mark with the call to the method:

� public static void signService(RequestContainer request, String serviceLabel)

of the Navigator class, where “serviceLabel” is the label showed in the navigation toolbar.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 101/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.22 Pagination

The pagination functionality is a service that permits to split a list of elements in blocks of a fixed dimension ad to show each

block in a chain of pages. One page rendering all the elements of a block with a table and allows the user to select one item

to view its detail page. This mechanism needs a Paginator object that permits to get the block of elements correspondent to

one page.

The framework allows defining the logic for manage list / detail pages simply configuring and using a specific module. Using

this option developers haven’t to worry about the Paginator and how the data is retrieve, but, in some case, this automation

is impossible, for example if the data is stored in an LDAP server. In this case developers must write the code to recover the

data and put it inside the Paginator object.

The Paginator is a container for a collection of objects that acts like a buffer between the retrieve and presentation

operations. It implements methods to add data dynamically so developers can perform different operations to recover

information and put all the results inside it. The presentation logic will get information from the Paginator and will show them

in the appropriate way. The Paginator object has two implementations:

� One-shot: the simpler implementation that require less work for the programmer. The entire collection of elements

to present is recover only one time, the pagination of the data is perform during the rendering of the list not during

the retrieve operation. This solution is easy but can suffer two types of problem: the initial time to retrieve all the

elements (that can be considerable if the list is long) and the memory occupation (all the data is retrieves one time

and maintained in memory).

� With-cache: with this modality the pagination is perform during the retrieve operation, managing a “window” on the

result data to show. The elements are not recovered all in a unique operation but each request of a new page of the

list involves a new operation for recover only the elements to show in the new page. This solution reduces the

problem of execution time and memory allocation but is more complex to use.

2.22.1 One-shot

The pagination subsystem is composed from some base interfaces and default implementations:

� it.eng.spago.paginator.basic.PaginatorIFace: interface that defines all functionalities of one paginator. Declares all

service necessary to manage the contents of a paginated list.

o void addRow(Object row): add a new row to the list of objects managed from the paginator (obviously a

new row is a new object).

o int getPageSize(): returns the dimension of the page which is the number of elements visualized in a

single page.

o void setPageSize(int size): set the dimension of the page.

o int rows(): returns the total number of the paginator rows (the number of objects contained).

o int pages() : returns the number of pages necessary to show all the paginator elements.

o SourceBean getPage(int page) : returns all the elements (serialized in a SourceBean) correspondent to

the page index specified.

o SourceBean getAll(): returns all the elements of the paginator (serialized in a SourceBean).

The framework class it.eng.spago.paginator.basic.impl.GenericPaginator is an implementation of this interface.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 102/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

� it.eng.spago.paginator.basic.ListIFace: interface that defines the necessary methods to navigate the list of pages,

to retrieve elements of one page and to dynamically add data during the presentation phase.

o Int getCurrentPage(): returns the index of the current page.

o void setCurrentPage(int page): set the index of the current page.

o int getPrevPage(): returns the index of the previous page.

o int getNextPage(): returns the index of the next page.

o int pages(): returns the total number of pages.

o SourceBean getPagedList(int i): returns the elements (serialized in a sourceBean object) correspondents

to a page index.

o void addDynamicData(SourceBean data):

o void clearDynamicData():

o void addStaticData(SourceBean data): insert static information

The framework class it.eng.spago.paginator.basic.impl.GenericList is an implementation of this interface. This

object uses an instance of the GenericPaginator for manage the pagination.

� it.eng.spago.dispatching.service.list.basic.IFaceBasicListService: interface that defines a module services for the

management of a paginated list:

o public ListIFace getList(): retrieves a ListIFace object that can be used for rendering the elements blocks

and navigate the chain of pages.

o public void callback(SourceBean request, ListIFace list, int page): this method is call every time the

pagination service is invoked during the navigation of the presentation pages, so every time a user

changes page. In this method is possible to add some information useful for the rendering activity.

o public void delete(SourceBean request): delete an element from the list.

The framework classes it.eng.spago.dispatching.module.list.basic.AbstractBasicListModule and

it.eng.spago.dispatching.module.AbstractHttpListModule are implementation of this interface. The class

AbstractHttpListModule is a variant of AbstractListModule for access to the HTTP context. However these classes

are abstract and implement only, with an empty method, the two services callback and delete. The remaining

service getList() must be implemented by the developers.

The getList() service is called only one time (or all the times that is necessary a list refresh which is request with an

explicit command) and the data recovered can’t be modified. Every time a user changes page the getList() is not

recalled, otherwise the callback service is called.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 103/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

interface
...paginator.PaginatorIFace...paginator.PaginatorIFace...paginator.PaginatorIFace...paginator.PaginatorIFace

+addRow:void
+rows:int
+pages:int
+getPage:SourceBean

 pageSize:int
 all:SourceBean

interface
...paginator.ListIFace...paginator.ListIFace...paginator.ListIFace...paginator.ListIFace

+addStaticData:void
+clearDynamicData:void
+addDynamicData:void
+getPagedList:SourceBean
+pages:int

 paginator:PaginatorIFace
 columnNames:Vector
 currentPage:int
 prevPage:int
 nextPage:int

Serializable
...paginator.GenericPaginator...paginator.GenericPaginator...paginator.GenericPaginator...paginator.GenericPaginator

+GenericPaginator
+addRow:void
+rows:int
+pages:int
+getPage:SourceBean

 pageSize:int
 all:SourceBean

Serializable
...paginator.GenericList...paginator.GenericList...paginator.GenericList...paginator.GenericList

+GenericList
+addStaticData:void
+clearDynamicData:void
+addDynamicData:void
+getPagedList:SourceBean
+pages:int

 paginator:PaginatorIFace
 columnNames:Vector
 currentPage:int
 prevPage:int
 nextPage:int

AbstractHttpModule
HttpServiceIFace

AbstractHttpListModuleAbstractHttpListModuleAbstractHttpListModuleAbstractHttpListModule

+AbstractHttpListModule
+init:void
+service:void
+getList:ListIFace
+callback:void
+delete:void

 list:ListIFace

AbstractModule
AbstractListModuleAbstractListModuleAbstractListModuleAbstractListModule

+AbstractListModule
+init:void
+service:void
+getList:ListIFace
+callback:void
+delete:void

 list:ListIFace

ModuleIFace
interface

ListModuleIFaceListModuleIFaceListModuleIFaceListModuleIFace

+getList:ListIFace
+callback:void
+delete:void

 list:ListIFace

Developers have two possibilities to use the pagination subsystem:

1. The simpler possibility is to use the framework functionalities for automatic generation of list and detail pages,

recovering data from a database. This mechanism is explained in the paragraph Automatic Generation of list/detail

pages.

2. The other modality is to create a new module that extends the abstract class AbstractListModule or

AbstractHttpListModule. This module has to implement the method public ListIFace getList(SourceBean request) which

has to instantiate a GenericPaginator, for add new element to the list, and a GenericList to which associate the

Paginator. The module it.eng.spago.dispatching.module.list.basic.impl.DefaultBasicListModule implements an

example of this activity for the automatic generation of list / detail pages. A part of this module is showed in the

Code Example 2-6. The module will be used by a JSP containing all the necessary logic for rendering the elements

of the list. The framework provides some tags, to use inside the JSP, for perform automatically the rendering

operation, but they are explained in details in the paragraph Automatic Generation of list / detail pages.

Code Example 2-6: creating a new list (DefaultBasicListModule)

 // creation of the paginator

 PaginatorIFace paginator = new GenericPaginator();

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 104/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 paginator.setPageSize(<number of rows for each page>);

 // Add all rows to the paginator

 for (int i = 0; i < <number of rows>; i++)

 paginator.addRow(<i - row>);

 // creation of the list

 ListIFace list = new GenericList();

 // Association list-paginator

 list.setPaginator(paginator);

 list.setColumnNames(<vector containing the columns name>);

 return list;

2.22.2 With - cache

The one shot paginator is easy to use but has an important limit: it retrieves the entire list of elements and put it in memory,

with evident problems of time execution (if the list is too long) and memory allocation. To solve this problem, and trying to

implement a mechanism for retrieve data from any datasource, the framework provide a new paginator. The necessity is to

recover data from database, LDAP server or others data sources, simply modifying some configuration parameters. The

pagination subsystem is composed from some interfaces that define the methods for the pagination functionalities:

� IFaceRowProvider: defines the method for retrieve a row of the list (getRow).

� IFacePageProvider: defines all services for page management. A page is a “window” or a subset of the entire

collection of elements. It uses the interface IFaceRowProvider for recover rows of the list. Objects that implement

this interface have to define caching algorithms more efficient than the total cache.

� IFaceListProvider: defines all services for list management. Methods exposed allow to retrieve “pages” of data and

reply to the callback (send when users change page), with the possibility to add dynamic and static data useful for

the rendering phase, like the column labels, for example.

The difference regarding the one-shot paginator is that this system performs a data page split operation during the data

recover phase. The paginator never retrieves all the list elements, but only those that have to be show in the list page

selected by the user. Implementation, every time a page change is requested, executes the necessary operation to retrieve

all the elements of the list from the datasource (so, for example, if the datasource is a database, the system executes the

SELECT query to recover all data), but, after, executes a filter operation to extract only the items necessary to the page

requested.

This mechanism doesn’t reduce the time to recover data from the datasource, but considerably diminishes the transfer time

to the client and the memory allocation, because it maintains only a subset of the items.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 105/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

interface
IFaceRowProviderIFaceRowProviderIFaceRowProviderIFaceRowProvider

+BEFORE_FIRST:int

+init:void
+reload:void
+open:void
+absolute:void
+getRow:Object
+close:void
+rows:int

 columnNames:String[]
 nextRow:Object

interface
IFacePageProviderIFacePageProviderIFacePageProviderIFacePageProvider

+init:void
+reload:void
+pages:int
+getPage:Vector

 rowProvider:IFaceRowProvider
 columnNames:String[]
 pageSize:int

interface
IFaceListProviderIFaceListProviderIFaceListProviderIFaceListProvider

+init:void
+reload:void
+getListPage:Object
+addStaticData:void
+clearDynamicData:void
+addDynamicData:void
+pages:int

 pageProvider:IFacePageProvider
 columnNames:String[]
 currentPage:int
 prevPage:int
 nextPage:int

DefaultRequestContext
AbstractListProviderAbstractListProviderAbstractListProviderAbstractListProvider

+AbstractListProvider
+init:void
+reload:void
+addStaticData:void
+clearDynamicData:void
+addDynamicData:void
+getListPage:Object
+pages:int

 pageProvider:IFacePageProvider
 columnNames:String[]
 staticData:Vector
 dynamicData:Vector
 currentPage:int
 prevPage:int
 nextPage:int

DefaultRequestContext
AbstractPageProviderAbstractPageProviderAbstractPageProviderAbstractPageProvider

-_rowProvider:IFaceRowProvider
-_size:int

+AbstractPageProvider
+init:void
+reload:void
+pages:int
+getPage:Vector

 columnNames:String[]
 rowProvider:IFaceRowProvider
 pageSize:int

DefaultRequestContext
AbstractRowProviderAbstractRowProviderAbstractRowProviderAbstractRowProvider

+AbstractRowProvider
+init:void
+reload:void
+open:void
+absolute:void
+getRow:Object
+close:void
+rows:int

 nextRow:Object

The principal limit of this mechanism is that currently it is able to retrieve data only from a database, so the implementations

provided by the framework not cover all the initial requirements. The framework implementation classes are:

� DBRowProvider: allows recovering data from the database using the configuration into the <ROW_PROVIDER>

envelope of the file actions.xml, which define how to retrieve the SQL statements to execute in order to extract

information. Two modalities exist for recover the statement:

• From the file statements.xml, using the logical name defined by the attribute “statement” of the

<*_QUERY> envelopes contained inside the tag <CONFIG>, as the following example shows:

<ROW_PROVIDER class="it.eng.spago.paginator.smart.impl.DBRowHandler">

 <CONFIG pool="afdemo">

 <LIST_QUERY statement="LIST_USERS" ></LIST_QUERY>

 <DELETE_QUERY statement="DELETE_USER">

 <PARAMETER type="RELATIVE" value="userid" scope="SERVICE_REQUEST" />

 </DELETE_QUERY>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 106/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 </CONFIG>

</ROW_PROVIDER>

• Delegating the task to a specific class, which implements the IfaceQueryProvider interface, the dynamic

construction of the statement. The name of the class is defined by the attribute “class” of the <*_QUERY>

tags, as the following example shows:

 <ROW_PROVIDER class="it.eng.spago.paginator.smart.impl.DBRowHandler">

 <CONFIG pool="afdemo">

<LIST_QUERY statement=""

class="it.eng.spago.query.UtentiQueryProvider">

</LIST_QUERY>

 <DELETE_QUERY statement="DELETE_UTENTE">

<PARAMETER type="RELATIVE" value="userid"

scope="SERVICE_REQUEST" />

 </DELETE_QUERY>

 </CONFIG>

</ROW_PROVIDER>

Obviously the statement attribute mustn’t be valorized.

� CacheablePageProvider: implements the paginator functionalities and maintains in memory the data of some

“lateral” pages of the current one, assuming that the user will navigate in the next and previous pages (it is a simple

predictive mechanism). It is possible to configure the number of lateral pages to maintain in memory.

Currently the page loading is contextual to the user click on the navigation buttons or elements, so if the user

navigates to a page already contained into the paginator, this will return it, otherwise the paginator retrieves the

data of page and its lateral from the database. We are working for implements an asynchronous load mechanism,

retrieving data of the lateral page when the system notices that the navigation is going out of the “window” memory.

� DefaultListPRovider: implements the list functionalities in order to slide pages and to add static or dynamic

information to the page data. This class has an own configuration file where it reads the necessary instructions for

build the column labels.

An example of this default implementation can be found into the section Automatic Generation of list / detail (with - cache).

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 107/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.23 Automatic Generation of list / detail pages (one - shot)

A common application requirement is to manage a set of elements with a paginated list. Developers want to retrieve data

from a database and rendering fixed blocks of items with a table. Each row is correspondent to an element and allows the

user to access the detail page associated or to cancel the self item. Different blocks of elements are rendered in different

pages, and each one of these allows users to navigate to the previous or next. The last important function for a list page is to

insert a new element.

Spago framework implements an automatically mechanism to build a paginated list, developers have only to configure the

necessary parameters, like the items retrieve query, the number of rows for page and others, inside xml configuration files.

The rendering operation can be delegated to some implemented tags that have only to be declared inside a JSP, but

developers can easily write new tags in order to personalize the data visualization.

The framework can build a paginated list using modules or indifferently actions modality, but this paragraph describes an

example of paged list build with one-shot paginator, using only Spago Modules and tag libraries. Readers have to know that

the same task can be executed in a similar way using actions (see Spago example).

This example uses the modules it.eng.spago.dispatching.module.list.basic.impl.DefaultBasicListModule, for the list

generation, and it.eng.spago.dispatching.module.detail.impl.DefaultDetailModule for the detail generation. These classes

implement the functionalities of the one – shot paginator. With some configuration parameters these modules and the

rendering tag libraries implemented, can retrieve items from a database and show them in a paged list like this:

Like the image shows, the page renders the elements with a table, each rows correspond to one items. The page has some

buttons that permit to move to next / previous / last / first page and to insert a new element. Each row has a button, drawn

like a lens, which redirect to the correspondent item detail page, showed below.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 108/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

For the following example it is used an only page to visualize the list and the detail. It is configured as:

AutomaticDetailUser

MODULE

PAGE

MODULE

AutomaticPage User

AutomaticListUser
MODULE

PAGE

MODULE

Invoked if in request is
not present the module
parameter

Invoked only if in
request is present a
module parameter
with the value equal
to AutomaticDetail
User

2.23.1 List

For this example suppose to retrieve data from a database table structured like this:

Developers have to configure the module for the list construction in the file modules.xml:

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 109/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <MODULE

 name="AutomaticListaUtenti"

 class="it.eng.spago.dispatching.module.list.basic.impl.DefaultListModule">

 <CONFIG pool="afdemo" title="Lista Utenti" rows="2">

 <QUERIES>

 <SELECT_QUERY statement="LIST_USER"/>

 <DELETE_QUERY statement="DELETE_USER">

 <PARAMETER type="RELATIVE" value="id_user" scope="SERVICE_REQUEST"/>

 </DELETE_QUERY>

 </QUERIES>

 <COLUMNS>

 <COLUMN name="id_user" label="User ID"/>

 <COLUMN name="nome" label="Nome"/>

 <COLUMN name="cognome" label="Cognome"/>

 <COLUMN name="email" label="Mail"/>

 </COLUMNS>

 <CAPTIONS>

 <SELECT_CAPTION image="" label="Detail User" confirm="FALSE">

 <PARAMETER name="PAGE" type="ABSOLUTE" value="AutomaticPageUser" scope=""/>

 <PARAMETER name="MODULE" type="ABSOLUTE" value="AutomaticDetailUser" scope=""/>

 <PARAMETER name="id_user" type="RELATIVE" value="id_user" scope="LOCAL"/>

 </SELECT_CAPTION>

 <DELETE_CAPTION image="" label="Erase User" confirm="TRUE">

 <PARAMETER name="id_user" type="RELATIVE" value="id_user" scope="LOCAL"/>

 </DELETE_CAPTION>

 </CAPTIONS>

 <BUTTONS>

 <INSERT_BUTTON image="" label="Insert User" confirm="FALSE">

 <PARAMETER name="PAGE" type="ABSOLUTE" value="AutomaticPageUser" scope=""/>

 <PARAMETER name="MODULE" type="ABSOLUTE" value="AutomaticDetailUser" scope=""/>

 </INSERT_BUTTON>

 </BUTTONS>

 </CONFIG>

 </MODULE>

The module configuration contains a CONFIG session that defines the following attributes:

� pool: the name of the connection pool to use for retrieve the connection to the database. For an explanation of how

configure the connection pool take a look to the Data Access paragraph.

� title: title of the list

� rows: number of rows for each page.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 110/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The CONFIG session contains also the following xml envelops:

� QUERIES: contains the names of the statements (defined in the file statements.xml) for the recover of the entire set

of elements (SELECT_QUERY), and for the deletion of one list item (DELETE_QUERY).

 <QUERIES>

 <SELECT_QUERY statement="LIST_USER"/>

 <DELETE_QUERY statement="DELETE_USER">

 <PARAMETER type="RELATIVE" value="id_user" scope="SERVICE_REQUEST"/>

 </DELETE_QUERY>

 </QUERIES>

In this case, in the file statements.xml, the queries are defined like:

<STATEMENT name="LISTA_UTENTI"

query="SELECT id_user,nome,cognome,email FROM UTENTE ORDER BY id_user"/>

<STATEMENT name="DELETE_UTENTE"

query="DELETE FROM UTENTE WHERE id_user = ?"/>

In case of the queries need some placeholder, like for example the deletion query, it is possible to retrieve the

parameters from the request, the session or the application scope, with the same grammar used for define the

module conditions (see Conditions paragraph). The queries are used from the select and delete captions defined in

the CAPTIONS envelop (explain below).

� COLUMNS: contains the list columns definition. For each column is defined the name of the database table column

(name) and the correspondent label to show in the page (label).

 <COLUMNS>

 <COLUMN name="id_user" label="User ID"/>

 <COLUMN name="nome" label="Nome"/>

 <COLUMN name="cognome" label="Cognome"/>

 <COLUMN name="email" label="Mail"/>

 </COLUMNS>

The query that retrieves database data can return a resultSet with more database columns than those showed in

the page. These hide information can be used for different scope like unique identifier for each elements or

condition control.

� CAPTIONS: contains the configuration for the buttons that allow to cancel an element of the list

(DELETE_CAPTION) or to access to an item detail page (SELECT_CAPTION).

 <CAPTIONS>

 <SELECT_CAPTION image="" label="Dettaglio Utente" confirm="FALSE">

 <PARAMETER name="PAGE" type="ABSOLUTE" value="AutomaticPageUser" scope=""/>

 <PARAMETER name="MODULE" type="ABSOLUTE" value="AutomaticDetailUser" scope=""/>

 <PARAMETER name="id_user" type="RELATIVE" value="id_user" scope="LOCAL"/>

 </SELECT_CAPTION>

 <DELETE_CAPTION image="" label="Erase User" confirm="TRUE">

 <PARAMETER name="id_user" type="RELATIVE" value="id_user" scope="LOCAL"/>

 </DELETE_CAPTION>

 </CAPTIONS>

The default possible captions are:

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 111/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

o SELECT_CAPTION: button used to access the detail page of one element. The PAGE parameter defines

the page that executes all the operations for recover and redirect to the JSP the detail information. The

MODULE parameter defines which module of the page has to be executed. All the parameters necessary

to the detail page can be specified inside new parameter envelope (like id_user for example).

o DELETE_CAPTION: button used to delete a row of the table or better an element of the list. The operation

recalls the self-module performing the DELETE_QUERY defined in the QUERY envelop. It is necessary to

specify all parameters to replace the query’s placeholders. The value for this parameter can be recovered

from columns (also hidden columns) of the table list. For this button is applied the prevent resubmit for

default but it is possible to change this behavior setting the attribute prevent_resubmit to ”FALSE”

It is possible to add a specific caption using the follow syntax (obviously inside the CAPTIONS envelop):

 <CAPTION image="URL IMAGE" label="LABEL" confirm="TRUE | FALSE">

 <PARAMETER name="PAGE" type="ABSOLUTE" value="PAGE NAME " scope=""/>

 <PARAMETER name="MODULE" type="ABSOLUTE" value=" MODULE NAME" scope=""/>

 PARAMS LIST

 </CAPTION>

The external envelope has tree attributes:

� image: the URL of the image to show in place of the classical button.

� label: the label of the caption. (the button label)

� confirm: contains TRUE or FALSE value, if true the system ask to the user to confirm the

operation execution with a javascript confirm, if false the operation is executed directly.

Inside it is possible to define some parameters, like the name of the page that implement the business logic

associated to the caption, the name of the module to execute (a page can contain more than one module so it is

necessary to specify which to use), and all other parameters useful for the caption functionality execution.

� BUTTONS: contains the configuration of the buttons to show under the list.

 <BUTTONS>

 <INSERT_BUTTON image="" label="Insert User" confirm="FALSE">

 <PARAMETER name="PAGE" type="ABSOLUTE" value="AutomaticPageUser" scope=""/>

 <PARAMETER name="MODULE" type="ABSOLUTE" value="AutomaticDetailUser" scope=""/>

 </INSERT_BUTTON>

 </BUTTONS>

The possible buttons are:

o INSERT_BUTTON: button for insert a new row or better a new element into the list.

It is possible to add new specific button using the follow syntax (obviously inside the BUTTONS envelope) :

 < BUTTON image="URL IMAGE" label="LABEL" confirm="TRUE | FALSE">

 <PARAMETER name="PAGE" type="ABSOLUTE" value="PAGE NAME" scope=""/>

 <PARAMETER name="MODULE" type="ABSOLUTE" value="MODULE NAME" scope=""/>

 LIST PARAMETERS

 </BUTTON>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 112/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The external envelop has tree attributes:

� image: the URL of the image to show in place of the classical button.

� label: the label of the caption. (the button label)

� confirm: contains TRUE or FALSE value, if true the system ask to the user to confirm the

operation execution with a javascript confirm, if false the operation is executed directly.

Inside it is possible to define some parameters, like the name of the page that implement the business logic

associated to the button, the name of the module to execute (a page can contain more than one module so it is

necessary to specify which to use), and all other parameters useful for the execution of the button functionality.

2.23.2 List Commands

It is possible to send some messages to the module list inserting some parameters into the request:

� Previous page: in the request must be inserted the parameter MESSAGE=LIST_PREV.

� Next page: in the request must be inserted the parameter MESSAGE=LIST_NEXT.

� First page: in the request must be inserted the parameter MESSAGE=LIST_FIRST.

� Last page: in the request must be inserted the parameter MESSAGE=LIST_LAST.

� Page with index i: in the request must be inserted the parameter MESSAGE=LIST_PAGE&LIST_PAGE=i , the i

value is the index of the page to show.

� Reload the list: in the request must be inserted the parameter LIST_NOCACHE=TRUE. A typical case that requires

this message can be when the list is a search result dependent from some search parameters. Every time the user

changes the search parameters also the list change so it must be refreshed, but the request hasn’t to be register as

a new element in the navigation history.

The first four messages are used for the default navigation toolbar, the fifth can be used to implement“go to page”

functionality and the last is used to refresh the list.

2.23.3 Detail

This paragraph analyzes the configuration of the detail module AutomaticDetailUser contained into the modules.xml file.

<MODULE

 name="AutomaticDetailUser"

 class="it.eng.spago.dispatching.module.detail.impl.DefaultDetailModule">

 <CONFIG pool="afdemo" title="Detail User">

 <QUERIES>

 <INSERT_QUERY statement="INSERT_USER">

 <PARAMETER type="RELATIVE" value="id_user" scope="SERVICE_REQUEST"/>

 <PARAMETER type="RELATIVE" value="nome" scope="SERVICE_REQUEST"/>

 <PARAMETER type="RELATIVE" value="cognome" scope="SERVICE_REQUEST"/>

 <PARAMETER type="RELATIVE" value="email" scope="SERVICE_REQUEST"/>

 </INSERT_QUERY>

 <SELECT_QUERY statement="SELECT_USER">

 <PARAMETER type="RELATIVE" value="id_user" scope="SERVICE_REQUEST"/>

 </SELECT_QUERY>

 <UPDATE_QUERY statement="UPDATE_USER">

 <PARAMETER type="RELATIVE" value="nome" scope="SERVICE_REQUEST"/>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 113/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 <PARAMETER type="RELATIVE" value="cognome" scope="SERVICE_REQUEST"/>

 <PARAMETER type="RELATIVE" value="email" scope="SERVICE_REQUEST"/>

 <PARAMETER type="RELATIVE" value="id_user" scope="SERVICE_REQUEST"/>

 </UPDATE_QUERY>

 </QUERIES>

 <FIELDS>

 <FIELD name="id_user" label="User ID" widget="" size="60">

 <INSERT default_type="" default_value="" default_scope=""

 is_readonly="FALSE" is_mandatory="TRUE" is_visible="TRUE"/>

 <UPDATE is_readonly="TRUE" is_mandatory="TRUE" is_visible="TRUE"/>

 </FIELD>

 <FIELD name="nome" label="Nome" widget="" size="60">

 <INSERT default_type="" default_value="" default_scope=""

 is_readonly="FALSE" is_mandatory="TRUE" is_visible="TRUE"/>

 <UPDATE is_readonly="FALSE" is_mandatory="TRUE" is_visible="TRUE"/>

 </FIELD>

 </FIELDS>

 <BUTTONS>

 <SUBMIT_BUTTON image="" label="Salva Utente" confirm="TRUE"/>

 </BUTTONS>

 </CONFIG>

</MODULE>

As for the list module the xml envelop CONFIG has the following attributes:

� pool: contains the name of the connection pool to use for effect the connection to the database. For major

information on connection pool configuration see Data Access section.

� title: title of the detail (can be visualized into the JSP as a title).

Inside it contains other xml configuration envelopes:

� QUERIES: contains the references to the statements (defined into the files statements.xml) used for insert / read /

update a single row into the database:

o INSERT_QUERY

o SELECT_QUERY

o UPDATE_QUERY

� FIELDS: contains the definition of all the fields visualized in the JSP detail page, which are used to show the detail

information and to allow the user to change them. For each filed must be specified a envelop FIELD with the

following attributes:

o name: name of the database column associated to the field

o label: label of the field.

o widget: widget to use for the representation. Currently the only widget allowed is the html text field, so this

parameter has an empty value, but in the future releases Spago will support other widgets.

o size: dimension of the field.

o is_readonly: flag that signal if the field value can be only read .

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 114/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

o is_mandatory: flag that signal if the field is mandatory. The obligatory fields are represented with bold label

and the system generates for them a javascript code which controls if the field is empty when the form is

submitted.

o is_visible: flag that signal if the field is visible or not.

� BUTTONS: contains the configuration of the buttons showed under the list. The possible default buttons are:

o SUBMIT_BUTTON: button used for submit the insert / update form. Developers can configure the image

to show in place of the classical html button, the label of the button and a confirm flag that if set to TRUE

force the system to show a javascript confirm operation pop-up when the button is selected.

For this button is applied the prevent resubmit mechanism but this default behavior can be disable setting

the prevent_resubmit attribute to false.

As for the list page is possible to add new specific buttons simply adding the correspondent BUTTON envelopes.

(see the List section for better information).

2.23.4 Presentation

In the previous paragraphs it has been explained the list / detail module configuration, in this one is explain the presentation

of the data. In the example it has been used an only framework page for the visualization of the list and the detail,

distinguishing the two situations based on the presence of the parameter module in the session. For the presentation will be

used a JSP page, configuring the file presentation.xml as below:

<?xml version="1.0" encoding="ISO-8859-1"?>

<PRESENTATION>

 <MAPPING

 business_name="AutomaticPageUser"

 business_type="PAGE"

 publisher_name="AutomaticPageUser"/>

</PRESENTATION>

This configuration maps the Spago page to a homonym Spago publisher which, into the file publishers.xml, is configured as

below:

<?xml version="1.0" encoding="ISO-8859-1"?>

<PUBLISHERS>

 <PUBLISHER name="AutomaticPageUser">

 <RENDERING channel="HTTP" type="JSP" mode="FORWARD">

 <RESOURCES>

 <ITEM prog="0" resource="/jsp/demo/listdetail/PageUsers.jsp"/>

 </RESOURCES>

 </RENDERING>

 </PUBLISHER>

</PUBLISHERS>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 115/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

This configuration force the system to show the execution result of the page AutomaticPageUser into a JSP called

PageUsers.jsp.

The JSP uses a framework tag library to perform the rendering operation:

<%@ taglib uri="spagotags" prefix="spago"%>

this library defines the following tags:

� <spago:error/>: access to the error stack (EMFErrorHandler) and, using the errors contained, it generates a

javascript function call checkError(). This function must be call after the JSP page load event, using this instruction:

<body onload="checkError();">

into the html body. The function, if there’s errors into the stack, produces a javascript alert pop-up that shows the

list of errors. An example of the produced code and the relative alert pop-up can be:

<SCRIPT language="Javascript" type="text/javascript">

<!--

function checkError() {

alert("\nLa lista non contiene righe");

}

// -->

</SCRIPT>

in this case the list retrieved is empty so the module ha inserted a new error into the EMFErrorHandler and

consequently the error tag produce a function that shows an alert pop-up with the error message.

� <spago:list moduleName="module name" />: performs the rendering of the list.

� <spago:detail moduleName="nome del modulo"/>: performs the rendering of the detail page.

The list and detail modules can be configured to force the system to show a javascript confirm pop-up before executing

some operations, like the delete function for example. In this case the last two tags generate a javascript function

goConfirm(url,alertFlag) that is called when an operation to confirm is request. The function, before send the request to the

server, shows a javascript confirm pop-up and send the request only if the user answer positively to the confirm question. An

example of the produced code and the relative confirm pop-up can be:

<SCRIPT language="Javascript" type="text/javascript">

 function goConfirm(url, alertFlag) {

 var _url = "AdapterHTTP?";

 _url = _url + url;

 if (alertFlag == 'TRUE') {

 if (confirm('Confermi operazione'))

 window.location = _url;

 }

 else

 window.location = _url;

 }

</SCRIPT>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 116/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Obviously the JSP, which is the rendering target for the list and detail module, needs a mechanism to decide if use the list or

detail tag. This control can be easily performed looking at the presence into the request of a param module.

The entire JSP code is showed below.

<%@ page import="it.eng.spago.base.*,java.lang.*,java.text.*,java.util.*"%>

<%@ taglib uri="spagotags" prefix="spago"%>

<%

 ResponseContainer responseContainer = ResponseContainerAccess.getResponseContainer(request);

 SourceBean serviceResponse = responseContainer.getServiceResponse();

%>

<html>

<HEAD>

<LINK rel="stylesheet" type="text/css" href="../css/spago/listdetail.css" />

</HEAD>

<body onload="checkError();">

<spago:error/>

<% if (serviceResponse.getAttribute("module") == null) { %>

 <spago:list moduleName="AutomaticListUser" />

<% } else { %>

 <spago:detail moduleName="AutomaticDetailUser" />

 <hr width="80%" size="2">

 <table>

 <tr><td>

 <input class="ListButtonChangePage" type="button" value="RETURN"

 onclick="window.location='AdapterHTTP?NAVIGATOR_BACK=1&LIST_NOCACHE=TRUE'" />

 </tr></td>

 </table>

<% } %>

</body>

</html>

To change the page layout developers have to modify the tags of the library or to produce new tags.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 117/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.24 Automatic Generation of list / detail (with - cache)

In the previous session it has been described an example of a paginated list build using Spago modules, tag library and a

one-shot paginator, in this one, instead, the same example will be constructed using a Paginator with-cache. (See the

section Pagination for more information about the different type of framework paginators, and the section Automatic

Generation of list / detail pages (one - shot) for an introduction on the paginated list and the specific example)

This example uses the modules it.eng.spago.dispatching.module.list.smart.impl.DefaultSmartListModule, for the list

generation, and it.eng.spago.dispatching.module.impl.DefaultDetailModule for the detail generation (which is the same

module used in the on-shot paginator example). The class DefaultSmartListModule uses the paginator with-cache

functionalities and for this reason it extends the abstract module AbstractSmartListModule (see section With - cache).

With some configuration parameters, these modules, and the rendering tag libraries implemented, can retrieve items from a

database and show them in a paged list like this:

Like the image shows, the page renders the elements with a table, each rows correspond to one items. The page shows the

index of the entire list page, users can easily jump from one page to another simply selecting the page index. Each row has

a button, drawn like a lens, which redirect to the correspondent item detail page showed below.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 118/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.24.1 List

For this example suppose to extract data from a database table structured like this:

Developers must configure the module for the list construction in the file modules.xml:

 <MODULE name="SmartListUsers" class="it.eng.spago.dispatching.module.list.smart.impl.DefaultSmartListModule">
 <CONFIG title="Smart List Users Module">
 <ROW_PROVIDER class="it.eng.spago.paginator.smart.impl.DBRowHandler">
 <CONFIG pool="afdemo">
 <LIST_QUERY statement="LIST_USERS"></LIST_QUERY>
 <DELETE_QUERY statement="DELETE_USER">

<PARAMETER type="RELATIVE" value="userid"
scope="SERVICE_REQUEST" />

 </DELETE_QUERY>
 </CONFIG>
 </ROW_PROVIDER>
 <PAGE_PROVIDER class="it.eng.spago.paginator.smart.impl.CacheablePageProvider">
 <CONFIG page_size="10" side_pages="2" />
 </PAGE_PROVIDER>
 <LIST_PROVIDER class="it.eng.spago.paginator.smart.impl.DefaultListProvider">
 <CONFIG />
 </LIST_PROVIDER>
 <COLUMNS>
 <COLUMN name="userid" label="User ID" />
 <COLUMN name="nome" label="Nome" />
 <COLUMN name="cognome" label="Cognome" />
 <COLUMN name="mail" label="Mail" />

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 119/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 </COLUMNS>
 <CAPTIONS>
 <SELECT_CAPTION image="" label="Detail User" confirm="FALSE">

<PARAMETER name="PAGE" type="ABSOLUTE" value="SmartPageUseri" scope="" />
<PARAMETER name="MODULE" type="ABSOLUTE" value="DetailUser" scope="" />

 <PARAMETER name="userid" type="RELATIVE" value="userid" scope="LOCAL" />
 </SELECT_CAPTION>
 <DELETE_CAPTION image="" label="Elimina Utente" confirm="TRUE">
 <PARAMETER name="userid" type="RELATIVE" value="userid" scope="LOCAL" />
 </DELETE_CAPTION>
 </CAPTIONS>
 <BUTTONS>
 <INSERT_BUTTON image="" label="Inserimento Utente" confirm="FALSE">

<PARAMETER name="PAGE" type="ABSOLUTE" value="SmartPageUser" scope="" />
<PARAMETER name="MODULE" type="ABSOLUTE" value="DetailUser" scope="" />

 </INSERT_BUTTON>
 </BUTTONS>
 </CONFIG>
 </MODULE>

 <MODULE

 name="BookListModule"

 class="it.eng.spago.dispatching.module.DefaultListModule">

 <CONFIG rowHandler="DBRowHandler" pageProvider="CacheablePageProvider" listProvider="DefaultListProvider"/>

 </MODULE>

The module contains a configuration session CONFIG in which the following xml envelopes are defined:

� ROW_PROVIDER: defines the class that implements the interface IFaceRowProvider, which acts like a row handler,

and the queries necessary to manage the list. Contains an envelope CONFIG that declare, with the attribute pool,

the name of the connection pool from which get a connection to the database, and the logical name of the queries

for return the list elements (LIST_QUERY) and for delete a list item (DELETE_QUERY) . These queries must be

defined into the file statements.xml like this example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<STATEMENTS>

 <STATEMENT name="LIST_USERS"

 query="SELECT id_user,nome,cognome,email FROM UTENTE ORDER BY id_user"/>

 <STATEMENT name="DELETE_USER"

 query="DELETE FROM UTENTE WHERE id_user = ?"/>

</STATEMENTS>

� PAGE_PROVIDER: defines the class that implement the interface IFacePageProvider, which acts like a page

handler and the page configuration parameters. The contained CONFIG envelope defines the number of rows for

each page (page_size) and the number of pages to maintain in cache (side_pages).

� LIST_PROVIDER: defines the class that implements the interface IFaceListProvider, which acts like a list handler.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 120/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.24.2 List Commands

It is possible to send some messages to the module list inserting some parameters into the request. These messages are

the same used for the one-shot paginator, so readers can look at the section List Commands for a complete messages

description.

2.24.3 Detail

The detail module is configured exactly like the correspondent one of the one-shot paginator example.

2.24.4 Presentation

This example uses a Spago page in order to implement the logic that builds the list and the detail. The system uses an only

JSP page for the visualization of the two operations result. The configuration of the page, into the file pages.xml, looks as:

The graph declared is configured into the graphs.xml file as showed below:

 <GRAPH id="2" >
 <MODULES>
 <MODULE id="1" keep_instance="TRUE" keep_response="FALSE" />
 <MODULE id="2" keep_instance="TRUE" keep_response="FALSE" />
 </MODULES>
 <DEPENDENCIES>
 <DEPENDENCE id="1" source="" target="{1}">
 <CONDITIONS>
 <PARAMETER name="module" scope="SERVICE_REQUEST" value="AF_NOT_DEFINED" />
 </CONDITIONS>
 <CONSEQUENCES />
 </DEPENDENCE>
 <DEPENDENCE id="2" source="" target="{1}">
 <CONDITIONS>
 <PARAMETER name="module" scope="SERVICE_REQUEST" value="{1}" />
 </CONDITIONS>
 <CONSEQUENCES />
 </DEPENDENCE>
 <DEPENDENCE id="3" source="" target="{2}">
 <CONDITIONS>
 <PARAMETER name="module" scope="SERVICE_REQUEST" value="{2}" />
 </CONDITIONS>
 <CONSEQUENCES />
 </DEPENDENCE>
 </DEPENDENCIES>
 </GRAPH>

<PAGE name="SmartPageUsers" class="it.eng.spago.dispatching.module.ConfigurablePage" scope="SESSION">
 <GRAPH id="2">
 <MODULES>
 <MODULE id="1" name="SmartListUsers" />
 <MODULE id="2" name="DetailUser" />
 </MODULES>
 </GRAPH>
</PAGE>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 121/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The page, into the presentation.xml, is associated to the correspondent publisher:

<MAPPING business_type="PAGE" business_name="SmartPageUsers" publisher_name="SmartPageUsersAction" />

the publisher is defined inside the file publishers.xml:

 <PUBLISHER name="SmartListUSersAction">
 <RENDERING channel="HTTP" type="JSP" mode="FORWARD">
 <RESOURCES>
 <ITEM prog="0" resource="/jsp/demo/action/SmartListUUsers.jsp" />
 </RESOURCES>
 </RENDERING>
 </ PUBLISHER >

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 122/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.25 Profiling

The security subsystem is composed only from interfaces: different authentication and authorization systems can be

integrated with specific wrapper. Spago developers have made this choice because it was impossible to build a security

system for cover all different requirements. In this way it is possible to define an own specific service follow some guide lines

dictated from Spago.

The framework interface to implement for profiling management is it.eng.spago.security.IengUserProfile, which defines

methods for:

� Get the unique identifier of the user

� Get an attribute value associated to a user

� Get the names of the attributes available for the user

� Get the collection of user rules

� Verify if a user has a rule

� Get user functionalities collection. A functionality is a logic operation performed by a user. So, a functionality is the

name of a module or an action (both are user services demands), but it is also a generic application.

� Control if a user can exec a module

� Control if a user can exec an action

Spago provides the abstract class it.eng.spago.security.AbstractEngUserProfile that implements the interface

IEngUserProfile, and also the interface DefaultRequestContext, allowing accessing the request context (request, response)

in the methods isAbleToExecuteXXX.

If you decide to implement the interface IEngUserProfile without extending AbstractEngUserProfile, remember to implement

the interface DefaultRequestContext if you need to access the request context.

Applications developers, during the login phase, have to insert an object that implements the IEngUserProfile interface or

extends the AbstractEngUserProfile, into the permanent container (so that it is not erased after a NAVIGATOR_RESET) with

the attribute name IEngUserProfile.ENG_USER_PROFILE:

IEngUserProfile userProfile = new ...;

getRequestContainer().getSessionContainer().getPermanentContainer().setAttribute(IEngUserProfile.ENG_USER_PROFILE,

userProfile);

The system, for each service request (indifferently if executed from a module or from an action), verify the user permission to

execute the request, and only if he has it the service is executed. In case of the user has no permission:

� If the service is executed with actions modality an it.eng.spago.security.SecurityException raises. This exception is

by default configured to be managed by the EMFExceptionHandler (2.5) and than is redirect to a

“SECURITY_ERROR_PUBLISHER”, which must be defined inside the file publisher.xml, and can be used to show

a JSP error page for example.

� If the service is executed with modules modality the module isn’t executed but no one exception is raised and the

the execution continues. This mechanism allows performing correctly the page task executing only the modules

allowed to the user.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 123/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

All the logic and configuration files that defines the user identifier, rules and functionalities associated, and in general all

profile information, are not part of Spago because this information and activities are delegated to an external system.

2.25.1 Integration with external system

The easier way for integrate Spago with external profiling system is to implement the interface IEngUserProfile but another

one exists and allows to split the authentication and authorization functionalities.

This new integration system is based on two interfaces:

� Authentication: it.eng.spago.security.IAuthenticationHandler. Defines a service for authenticate the user with the

method public Object authenticate(SourceBean request, SourceBean response) throws EMFInternalError. This method

recovers the user information from the request and build a generic object that contains the authentication

information.

� Authorization: it.eng.spago.security.IAuthorizationHandler. Defines a service for create an put, in the application

context (the permanent session container), the current user profiling information, represented by the object that

implements IengUserProfile interface. The method for perform this operation is:

public void putAuhtorizationProfile(Object userIdentifier,RequestContainer requestConatiner)
 throws EMFInternalError;

To create a login service developers must build two classes for implement these interfaces and use the framework class

GenericLoginHandler. This class defines an only method service(RequestContainer,SourceBean,SourceBean) that must be

called after all the authentication information have been stored in request. The method instances the authentication object,

calls the object service for authenticate user with the information in request, instances the authorization object (if the user is

correctly authenticate) and puts it in the permanent session. After the method execution, in the permanent session there’s an

object of type IEngUserProfile.

The GenericLoginHandler class must be configured (specifying the name of the class that implements the authentication and

authorization interfaces) using the file security.xml. All the parameters necessary to the class methods can be defined in this

file. An example configuration is show below:

<?xml version="1.0" encoding="ISO-8859-1"?>

<SECURITY>

 <AUTHENTICATION_HANDLER>

 it.eng.spago.security.profilemanager.EngiwebProfileManagerAuthenticationHandler

 </AUTHENTICATION_HANDLER>

 <AUTHORIZATION_HANDLER>

 it.eng.spago.security.profilemanager.EngiwebProfileManagerAuthorizationHandler

 </AUTHORIZATION_HANDLER>

 <ENGIWEBPM

 urlProvider="iiop://172.20.100.109:900"

 ctxInitialFactory="com.ibm.websphere.naming.WsnInitialContextFactory"

 realm="PADOVA TEST"/>

</SECURITY>

The framework contains an example implementation of this mechanism which retrieves the user information from an xml file.

The classes that implement the authentication and authorization interfaces are:

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 124/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

� it.eng.spago.security.xmlauthorizations.XMLAuthenticationHandler

� it.eng.spago.security.xmlauthorizations.XMLAuthorizationHandler

This example can be found into the spago-profile.jar.file.

2.25.2 Example implementation using XML files

The framework contains an example implementation of an authentication/authorization system based on XML files. The

example classes are part of the package it.eng.spago.security.xmlauthorizations contained into the spago-profile.jar file. The

classes that implement the authentication and authorization interfaces are:

� it.eng.spago.security.xmlauthorizations.XMLAuthenticationHandler

� it.eng.spago.security.xmlauthorizations.XMLAuthorizationHandler

In order to use this implementation the security.xml file must be configured like follows:

<?xml version="1.0" encoding="ISO-8859-1"?>

<SECURITY>

 <AUTHENTICATION_HANDLER>

 it.eng.spago.security.xmlauthorizations.XMLAuthenticationHandler

 </AUTHENTICATION_HANDLER>

 <AUTHORIZATION_HANDLER>

 it.eng.spago.security.xmlauthorizations.XMLAuthorizationHandler

 </AUTHORIZATION_HANDLER>

 <XMLPM authorizationFileLocation="C:\Progetti\ServiziSportivi\sviluppo\web\WEB-INF\conf\authorizations.xml"/>

</SECURITY>

This implementation requires an xml configuration envelope call XMLPM which contains the absolute path of the file

containing the users information. An example of this authorizations.xml file can be:

<?xml version="1.0" encoding="UTF-8"?>

<AUTHORIZATIONS>

 <ENTITIES>

 <USERS>

 <USER userID="sduca" password="7fLbNfT7Y5q6KPu4OJZVaACnvIM="

 nome="sonia" cognome="duca" quartiere="2"/>

 <USER userID="azoppello" password="7oMUvcvVv0jjZFbGJHs9i/uDU3A="

 nome="andrea" cognome="zoppello" quartiere="2"/>

 </USERS>

 <ROLES>

 <ROLE roleName="RuoloBase" description="RuoloBase"/>

 </ROLES>

 <FUNCTIONALITIES>

 <FUNCTIONALITY functionalityName="InserimentoDomanda" description="InserimentoDomanda"/>

 <FUNCTIONALITY functionalityName="AssegnazioneDomanda" description="AssegnazioneDomanda"/>

 <FUNCTIONALITY functionalityName="GestioneDecodifica" description="GestioneDecodifica"/>

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 125/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 </FUNCTIONALITIES>

 </ENTITIES>

 <RELATIONS>

 <BEHAVIOURS>

 <BEHAVIOUR userID="sduca" roleName="RuoloBase"/>

 <BEHAVIOUR userID="azoppello" roleName="RuoloBase"/>

 </BEHAVIOURS>

 <PRIVILEDGES>

 <PRIVILEDGE roleName="RuoloBase" functionalityName="InserimentoDomanda"/>

 <PRIVILEDGE roleName="RuoloBase" functionalityName="AssegnazioneDomanda"/>

 </PRIVILEDGES>

 </RELATIONS>

</AUTHORIZATIONS>

The file contains the following xml envelopes:

� ENTITIES: define all users, rules and functionalities into the respective envelope USERS, ROLES and

FUNCTIONALITIES.

� RELATIONS: define the association between rules and users into the BEHAVIOURS envelope, and the

association between functionalities and rules into the PRIVILEDGES envelope.

The user password are codify using a one-way hash (sh1) algorithm that performs an encrypt operation on a digest

calculated from the original password. All the password have a fixed length and it is almost impossible to decrypt them in a

reasonable time.

In this case the functionalities defined correspond to the application use-cases so the example use the business_map.xml

file to manage the mapping between the functionalities and the correspondent Spago services (actions or pages).

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 126/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

2.26 Initialization

The framework provides a service for load, at application start-up time, some modules or applicative objects. The

configuration of the initialization process is defined into the initializers.xml file. An example of this file can be:

<?xml version="1.0" encoding="ISO-8859-1"?>

<INITIALIZERS>

 <INITIALIZER class="it.eng.spago.event.condition.EventConditionInitializer" config="EVENT_CONDITIONS"/>

 <INITIALIZER class="it.eng.spago.event.handler.EventHandlerInitializer" config="EVENT_HANDLERS"/>

</INITIALIZERS>

Each class defined by the class attribute must implement the interface it.eng.spago.init.InitializerIFace which defines the

method void init(SourceBean config). This method is called during the application start – up phase and contains the logic for

initialise the module.

The init method receives in input a SourceBean object containing the specific module configuration parameters. In the

configuration file is possible to specify the name of an xml envelope containing the module configuration, which must be

defined in one file census by the master.xml . Spago automatically recovers this envelope and builds the correspondent

SourceBean in order to pass it to the init method.

In this example to the object EventConditionInitializer is passed a configuration xml envelope EVENT_CONDITIONS while to

the object EventHandlerInitializer is passed the EVENT_HANDLERS envelope.

2.27 Monitoring

The JAMon product, available at site http://www.jamonapi.com/, has been integrated inside Spago for monitor the

application business activities, data access, and presentation services, in order to determine performance bottlenecks,

user/application interactions, and application scalability.

The use of JAMon can be able / disable changing to true / false the monitor_enabled attribute contained into the

common.xml file. The administration interface can be found inside the folder “web/root/jamon” of the distribution.

S p a g o U s e r G u i d e

 Spago User Guide ver. 2.2.0, April 10, 2007 - pag. 127/127

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

3 Deploy on cluster

This paragraph reports some consideration about Spago’s developing applications that will be executed on cluster systems.

In this context it is necessary to note that the application’s processes can be execute on different Virtual Machine and

potentially on different server hosts; it depends from how the application is deployed. This scenery can cause some

problems to the Spago Containers:

� Application Container: it is an application container shared from all actions and modules. Technically is

implemented like a singleton: this means that this object lives inside the class loader from which is invoked,

therefore if there’s more than one application server (like in cluster system) more than one application container will

be created. In a classical configuration there could be one into the Web Container and one into the EJB Container,

for example.

For this reason, in these context, the container can be only used like a repository for read only information. It is not

possible to use it for pass information between business objects (actions e modules).

If the application needs a real singleton container also in a cluster system, the SUN guide lines advise to use an

entity bean or a remote service, like a CORBA SERVER, for example. The CORBA solution has a problem because

the remote server would not be considered during the fail over mechanism of the application server, so the entity

bean is the best solution.

� Session Container: it is a container associated to the current user. A critical element of this object is the dimension.

The IBM philosophy identifies in 4K the optimal maximum dimension for the http session because, with a

mechanism of session management enable, all the data contained is serialized and de-serialized. With a lot of

objects contained this process can be a performance issue. IBM guide lines advise to store into the session only

the name of the object to retrieve. Spago implements some mechanism that makes an intensive use of the session,

like the navigator, for example. We are working for update the framework in order to allow users to configure

parameters for control how much data can be put in the session.

