

S p a g o O v e r v i e w

Spago Overview ver. 1.0, date 12/9/2004 – pag. 1 di 13

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Spago Overview

 Author Luigi Bellio

Gabriele Ruffatti (translation)

S p a g o O v e r v i e w

Spago Overview ver. 1.0, date 12/9/2004 – pag. 2 di 13

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

Index

VERSIONS HISTORY .. 3

DOCUMENT GOAL.. 3

REFERENCES ... 3

1 SPAGO FEATURES .. 4

2 J2EE FRAMEWORK .. 5

3 MODEL VIEW CONTROLLER.. 6

4 SPAGO ARCHITECTURE ... 7

5 REQUEST DISPATCHING .. 10

5.1 ACTION DISPATCHING.. 10
5.2 MODULE DISPATCHING .. 10

6 PRESENTATION LOGIC... 11

7 CROSS SERVICES .. 11

8 FACILITIES ... 12

S p a g o O v e r v i e w

Spago Overview ver. 1.0, date 12/9/2004 – pag. 3 di 13

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

 V V V Versionersionersionersions Historys Historys Historys History

Version/Release n° : 1.0 Data Version/Release : December, 9th 2004

Description: First release (english version)

DDDDocumentocumentocumentocument Goal Goal Goal Goal

The goal of this document is to provide you an overview of Spago’s main features, with best

regards about its architectural and functional principles. This framework is J2EE guidelines

compliant and implement the main architectural and design patterns; so it is very suitable for the

development of a Java web application.

RRRReferenceseferenceseferenceseferences

[1] Sun ONE Application Framework, Sun Microsystems (2002)

[2] http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/web-

tier/web-tier5.html

[3] Inderjeet Singh, Beth Stearns, Mark Johnson, Designing Enterprise Applications with

the J2EE Platform, Addison-Wesley (2002)

[4] G. Flurry, W. Vicknair, The IBM Application Framework for e-business, International

Business Machines Corporation (2001)

[5] Struts Application Framework, Apache Software Foundation

[6] M. E. Fayad, D. C. Schmidt, R. E. Johnson, Building Application Frameworks: Object-

Oriented Foundations of Framework Design, John Wiley & Sons, Inc., New York

(1999)

[7] Mohamed Fayad, Douglas C. Schmidt, Object-oriented Application Frameworks, The

Communications of ACM (1997)

[8] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns:

Elements of Reusable Software Architecture, Addison-Wesley (1995)

[9] Wolfgang Pree, Design Patterns for Object-Oriented Software Development, Addison-

Wesley, Reading, MA (1994)

[10] G. Booch, Object-Oriented Analysis and Design with Applications, Addison-Wesley

Longman, Reading, MA (1993)

[11] J. Rumbaugh, M. Blaha, W. Premerloni, F. Eddy, W. Lorensen, Object-Oriented

Modeling and Design, Prentice-Hall, Upper Saddle River, NJ (1991)

You can find more informations about Spago framework in the following documents at:

http://spago.eng.it/docs_en/documentation/index.html

S p a g o O v e r v i e w

Spago Overview ver. 1.0, date 12/9/2004 – pag. 4 di 13

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

1111 SpagoSpagoSpagoSpago Features Features Features Features

Spago is a J2EE Framework: a reusable, semi-complete infrastructure that can be specialized

to produce custom applications. A J2EE framework doesn't include user functionalities, but is a

platform for developing distributed multi-tier applications, based on modular components. It uses

several technologies and extends their functionality with Enterprise Java Beans, Java Servlets,

Java Server Pages and XML technologies. This allows the developer to create an Enterprise

Application that is portable between platforms and scalable, while integrating with several

legacy technologies.

Spago was developed by an architects and developers community everyone with its/her own

knowledge and experience: the result is a framework providing multichannel services and

integration services towards external infrastructures. With Spago you can write an application

integrating existing infrastructures (like: security, document management, workflow) and

publishing services on different channels.

Spago implement Model-View-Controller architectural pattern, organized by three tiers:

• Presentation tier : HTTP to web container, SOAP, WAP, EJB (soon: HTTP to

portlet container, TCP/IP)

• Business tier : controls, elaborations

• Integration tier towards data source or transactional services.

Spago's design divide publishing layers from any specific channel component using XML for

communications (for instance: application logic is independent from HttpRequest and

HttpSession component, these two HTTP channel specifics).

Main Spago features are:

• Multichannel : using Spago you can easily dispatch your services to different

channels: HTTP, WAP, SOAP and EJB

• Modules dispatching : more complex than action dispatching, you can use it for high

code reuse. It's a very adaptable way of coding

• Publishing : you can configure different way for information publishing, according

to the channel you choose

• Business logic distribution : you can configure service elaboration on web container

or EJB container: it's relevant for transaction process. Spago include a session facade

for services elaboration in different way, whit no impact on coding. You can choose

the elaboration way you like at deploy time

• Navigation Handler : it is a specific service which simplifies navigation. At the

same time, session memory increase

• Pagination : an easy pagination using some modules providing forms and lists

• XML Data : an object for an efficient data flow XML (create/read/query of attributes

or data)

S p a g o O v e r v i e w

Spago Overview ver. 1.0, date 12/9/2004 – pag. 5 di 13

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

• Validation : you can validate form-data server side using a specific component. This

configurable module works with "usual" data; you can extend it using java validation

classes.

2222 J2EEJ2EEJ2EEJ2EE Framework Framework Framework Framework

A J2EE Framework is a reusable, semi-complete infrastructure that can be specialized to

produce custom applications. It doesn't include user functionalities, but is a platform for

developing distributed multi-tier applications, based on modular components. The framework

provides: an architectural model, a functional model and a development model. It provides some

services for generic user applications (user-interface interaction, data store, parameters

configuration, transactional processes, multichannel publishing), but it also provides

development guidelines, standards, methodologies and tools for development and maintenance.

Main benefits of using a framework are:

• Modularity - stable interfaces hide code implementation. Design or development

changes cause alterations in well defined software components; this improves

software quality and reduces any effort for code acknowledgment and maintenance.

• Reuse - a framework includes stable interfaces that aid to build generic components

reusable in different applications. So you avoid to design, realize and test different

components for similar and recurrent solutions to applicative requirements. Reuse

improves development productivity, software quality, performance, and software

reliability and interoperability.

• Extensibility - a framework's stable interfaces can be extended by applications using

"hook" methods. These methods uncouple stable interfaces and applicative

behaviours from the particular operations of an user application. Framework

extensibility is crucial to assure software services and applicative features

customization.

• Inversion of Control - one of the framework's architectural features is the inversion

of control. You can customize some elaborative steps using specific managers

invoked by the framework's dispatcher. When a particular event occurs, the

framework's dispatcher invokes registered manager's "hook" methods to elaborate

the specific application's request. The inversion of control means that it is the

framework (and not your application) which establishes which specific applicative

methods are to be invoked to respond to external events.

You can also categorize a framework according to how it provides extensibility:

• Whitebox Framework – extensibility is granted by a great use of object-oriented

techniques like inheritance and dynamic binding. You can extend and reuse existing

functionalities by inheritance of the framework’s basic classes and overwriting

predefined “hook” methods using a patterns-like Template Method.

• Blackbox Framework –provides extensibility using specific interfaces for

components which you can insert in the framework through object composition and

proxy components. You reuse existing functionalities by defining new components

S p a g o O v e r v i e w

Spago Overview ver. 1.0, date 12/9/2004 – pag. 6 di 13

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

to comply with a specific interface and integrating these components in the

framework using patterns like Strategy and Functor.

3333 Model View Controller Model View Controller Model View Controller Model View Controller

Model-View-Controller (MVC) is the BluePrints recommended (by Sun Microsystems)

architectural design pattern for interactive applications. MVC organizes an interactive

application into three separate modules:

one, the second, and the third.

• Model – for the application model with its data representation and business logic

• View – for views that provide data presentation and user input

• Controller – for a controller to dispatch requests and control flow.

The Model-View-Controller pattern
(from: http://java.sun.com/blueprints/patterns/MVC-detailed.html)

MVC separates design concerns (data persistence and behavior, presentation, and control),

decreasing code duplication, centralizing control, and making the application more easily

modifiable. MVC also helps developers with different skill sets to focus on their core skills and

collaborate through clearly defined interfaces (for example: development of custom tags, views,

application logic, database functionality, and networking). An MVC design can centralize

control of such application facilities as security, logging, and screen flow.

S p a g o O v e r v i e w

Spago Overview ver. 1.0, date 12/9/2004 – pag. 7 di 13

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

The web tier serves HTTP requests; at the highest level, the web tier does four basic things in

a specific order: interprets client requests, dispatches those requests to business logic, selects the

next view for display, and generates and delivers the next view.

A typical web application framework according to J2EE MVC pattern implements the Model

2 architecture, where a servlet takes the responsibility of Front Controller and Mediator and

manages client communication and business logic execution, while presentation resides mainly

in JSP pages. A Model 1 architecture consists of a client directly accessing web-tier JSP pages,

whit no controller.

According Model 2 architecture a Controller servlet centralizes the logic for dispatching

requests to the next view based on the request URL, input parameters, and application state. The

controller also handles view selection, which decouples JSP pages and servlets from one another.

The controller servlet also provides a single point of control for security and logging, and often

encapsulates incoming data into a form usable by the Model component. For View component

JSP pages are best used for generating text-based content, often HTML or XML, while servlets

are most appropriate for generating binary content (RTF, PDF) or content with variable structure.

Model component both represents business data and implements business logic. You can

implement it as Enterprise JavaBean, which offer scalability, concurrency, load balancing,

automatic resource management and access to shared business logic and data. Otherwise, you

can implement it as JavaBean standard for a simpler and quick access to data.

Separating business logic from presentation has several important benefits:

• Minimizes impact of change – Business rules can be changed in their own layer,

with little or no modification to the presentation layer. Application presentation or

workflow can change without affecting code in the business layer

• Increase maintainability – Business logic expressed in a separate component and

accessed referentially can be modified in one place in the source code, producing

behavior changes everywhere the component is used. Similar benefits are achieved

by reusing presentation logic with server-side includes, custom tags, and stylesheets

• Provides client independence and code reuse - Business logic that is available

referentially as simple method calls on business objects can be used by multiple

client types.

• Separates developer roles - Separating business logic and presentation allows

developers to concentrate on their area of expertise (data presentation, request

processing, and business rules).

4444 SpagoSpagoSpagoSpago Architecture Architecture Architecture Architecture

Spago implements a Model-View-Controller architectural pattern, and supports client

interaction via different channels/protocols.

Front Controllers act with the following collaborative objects:

• Adapter - takes responsibility for acquiring request data from a specific channel,

transforming request parameters into a format compliant with the Model module, and

for choosing the correct view. It also makes the binding of conversational context in

the specific container.

S p a g o O v e r v i e w

Spago Overview ver. 1.0, date 12/9/2004 – pag. 8 di 13

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

• Dispatcher - takes responsibility for identifying one of the supported ways to carry

out business logic, and for locating the right coordinator.

• Coordinator - takes responsibility for coordinating business logic execution.

• Business Factory - takes responsibility for retrieving rights references to business

objects cooperating in the request execution.

Available (or soon to be available) adapters are:

• AdapterHTTP (HTML/HTTP) - a servlet to manage client HTTP requests, arising

from a browser or a WAP device

• AdapterSOAP (XML/HTTP) - it is a component, stored as SOAP end-point, to

manage requests arising from a SOAP client

• AdapterEJB (XML/IOOP) - it is a statefull session bean to manage requests arising

from IIOP client

• AdapterJMS (XML/JMS) - it is a message driven bean to manage requests sent as

JMS messages

• AdapterTCPIP (XML/TCPIP) - it is a component, that is waiting on a TCP/IP

socket, to manage requests arising from TCP/IP client.

You can configure the desired view in the framework according to the channel, the request

parameters and the application state. Spago can manage views containing information for

publishing via JSP and servlet (as usual for web channels), but it can also to apply XML/XSLT

S p a g o O v e r v i e w

Spago Overview ver. 1.0, date 12/9/2004 – pag. 9 di 13

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

transformations of business logic data - which is the only method of publishing that works for all

channels.

Dispatchers are stored in Spago with a plug-in and are one of the framework's main

customizing elements. The default dispatchers are:

• ActionDispatcher: - which verifies that business logic acts via actions: every

business object corresponds to a request. The service coordinator is

ActionCoordinator, which obtains action references from the ActionFactory.

• ModuleDispatcher: - which verifies that business logic acts via modules: more

cooperating business objects correspond to a request. The service coordinator is

ModuleCoordinator which obtains module references from the ModuleFactory. A

workflow describe the module's cooperation logic.

An Event Manager permits assessment of state conditions of the execution state

corresponding to a request and starts the corresponding manager. It offers another chance to

customize the framework. For instance, you can configure accounting managers and notifying

managers when specific conditions relative to request or response data of invoked service occur.

You can configure the Security Manager in the Controller module to verify execution grants

of the application logic of a business object. Grant checking is available for all business

objects or only for some of them.

S p a g o O v e r v i e w

Spago Overview ver. 1.0, date 12/9/2004 – pag. 10 di 13

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

5555 Request Request Request Request DispatchingDispatchingDispatchingDispatching

Spago's steps to dispatch a request are as follows:

• Request adapting - the structure containing the request's parameters is translated

from the native format of the channel to the internal multichannel format.

• Session binding - conversational state of the current request is achieved.

• Request context building - the request context is build: it contains input parameters,

the conversational context, an errors manager and other channel specific parameters.

• Dispatcher detecting - the dispatcher corresponding to the right way of business

logic execution is found.

• Business logic forwarding - the dispatcher retrieves the coordinator which carries

out the business logic. The coordinator delegates one or more business objects to the

service implementation, according to the configured method chosen for the current

request. You can use two methods: action or module. You can write and configure

new methods in the framework to adapt it to your own specific requirements.

5.15.15.15.1 AAAACTIONCTIONCTIONCTION DISPATCHING DISPATCHING DISPATCHING DISPATCHING

Actions are business objects which totally carry-out a request of an applicative service. In

other words, one service corresponds to one business object (but the same object can carry out

different requests). Every action has a scope, that is the life context of the object, as:

• Request - a new action is activated for every new request.

• Session - the same action carries out the service corresponding to all the requests of

the same conversation (session).

• Application - the same action carries out the service corresponding to all the requests

sent to the same container (JVM). Notice that a business object with this scope is not

a real singleton, because there is a different instance of it for every JVM (at instance,

for cluster nodes).

5.25.25.25.2 MMMMODULEODULEODULEODULE DISPATCHING DISPATCHING DISPATCHING DISPATCHING

Every module is a business object; it can cooperate with other modules to carry out a service

request. All modules cooperating for the same service comprise a logical unit called a page. The

service response is the union of all modules responses. An easy business logic execution

workflow describes the order and conditions of execution for all the modules of one page. At the

end of execution of each module, the framework identifies the next modules to execute according

to request parameters.

The rules to verify that a transition from one module to another exists are called conditions;

the rules to define request parameters of one module are called consequences. Dependence is the

S p a g o O v e r v i e w

Spago Overview ver. 1.0, date 12/9/2004 – pag. 11 di 13

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

relation that, at the end of the execution of a source module, verifies a set of conditions and

invokes a receiver module using some parameters corresponding to a consequence set.

If you carry out business logic in this way you have to acquire a lot of data. Otherwise, you

can assign to every object specific responsibilities and you can reuse it for different services.

6666 PresentatPresentatPresentatPresentationionionion Logic Logic Logic Logic

Spago redirects the output data of business logic to the View module. It carries out publishing

according to the request. When no publisher is configured for a specific channel request, the

framework's response to the client is in XML format. In this way, you can test the correct

execution of business logic in the development phase before the View module is available. You

can use one or more stylesheets for XML data description for all available channels. For web and

WAP channels you can publish using JSP or servlets.

The framework provides you some custom-tags for rendering specific data like objects

forming a paging list, a detail of one of these objects, or a user messaging display.

7777 Cross ServicesCross ServicesCross ServicesCross Services

Services that operate across the framework are:

• Tracer - stores applicative auditing messages in a file (or in a repository supported

by Log4j). Every message contains a severity indicator to determine if the trace

message should be stored according to the configured tracing level.

• Error Handler - maintains a stack of applicative and non-applicative errors. Every

error contains a severity indicator. Two different type of errors are managed:

o User Errors - related to business logic and referring to a code segment; a pre-

defined description is related to this code at runtime

o Internal Errors - these errors are produced by components external to the

current development context: for instance, a JDBC SQLException

• Request Container - maintains data related to a service specific request (in the HTTP

channel it has the same life cycle of the HttpServletRequest object)

• Session Container - maintains data on the conversational context from device to the

application (in the HTTP channel it has the same life cycle of the HttpSession object)

• Application Container - maintains data on the application context. This component

crosses device conversations and acts as a cache (you can define the expiration time

of its objects).

• Configuration - maintains the configuration data of the application in a XML file

• InitializerManager - manages initialization activities at bootstrap of the application

• Navigator - maintains a request's stack of expired services and allows to re-execute a

previous service in the same Request Container and Session Container conditions.

S p a g o O v e r v i e w

Spago Overview ver. 1.0, date 12/9/2004 – pag. 12 di 13

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

For instance, it allows to handle a "browser refresh" or "browser back" in a more

complex way.

8888 FacilitiesFacilitiesFacilitiesFacilities

Spago provide you some components you can use to develop functionalities useful for a

generic web application.

• Paging – you can split up into pages an object collection you retrieved from a

database, from a directory server or in your application. You can configure the page

caching according to the compromise between resource allocation (like the memory

the application need to store the collection) and response time you need for page

rendering (number of data-source queries).

The pager keep in cache a window of some pages (2 * side pages + 1). It reloads data

for rendering a page that is not in the window; the new window will hit the centre of

the number-i requested page.

• List and detail automatic generation – you can configure in the framework the data

the framework need for rendering a rows collection from a table (view, stored-

procedure or a resultset) and to describe the publish characteristics of a page list.

S p a g o O v e r v i e w

Spago Overview ver. 1.0, date 12/9/2004 – pag. 13 di 13

Engineering Ingegneria Informatica S.p.A., 2004, 2007. This work is
licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.0/

In the same way you can describe the business logic and the presentation logic for

publishing the detail of a list’s component.

