4 sun

microsystems

Sun Microsystems

JSR 220: Enterprise JavaBeaffsVersion 3.0

Java Persistence API

EJB 3.0 Expert Group

Specification Lead:
Linda DeMichiel, Sun Microsystems
Michael Keith, Oracle Corporation

Please send comments to: ejb3-pfd-feedback@sun.com

Version 3.0, Proposed Final Draft

December 19, 2005

Enterprise JavaBeans 3.0, Proposed Final Draft Sun Microsystems, Inc.

Specification: JSR-000220 Enterprise JavaBeans(tm) v.3.0 ("Specification”)

Status: Pre-FCS, Proposed Final Draft
Release: December 21, 2005

Copyright 2005 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

NOTICE: The Specification is protected by copyright and the information described therein may be pro-
tected by one or more U.S. patents, foreign patents, or pending applications. Except as provided under
the following license, no part of the Specification may be reproduced in any form by any means without
the prior written authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if any. Any use of the
Specification and the information described therein will be governed by the terms and conditions of this
Agreement.

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-exclusive,
non-transferable, limited license (without the right to sublicense) under Sun's intellectual property rights
to review the Specification only for the purposes of evaluation. This license includes the right to discuss
the Specification (including the right to provide limited excerpts of text to the extent relevant to the
point[s] under discussion) with other licensees (under this or a substantially similar version of this Agree-
ment) of the Specification. Other than this limited license, you acquire no right, title or interest in or to
the Specification or any other Sun intellectual property, and the Specification may only be used in accor-
dance with the license terms set forth herein. This license will expire on the earlier of: (i) two (2) years
from the date of Release listed above; (ii) the date on which the final version of the Specification is pub-
licly released; or (iii) the date on which the Java Specification Request (JSR) to which the Specification
corresponds is withdrawn. In addition, this license will terminate immediately without notice from Sun
if you fail to comply with any provision of this license. Upon termination, you must cease use of or de-
stroy the Specification.

TRADEMARKS: No right, title, or interest in or to any trademarks, service marks, or trade names of Sun,
Sun's licensors, Specification Lead or the Specification Lead's licensors is granted hereunder. Sun, Sun
Microsystems, the Sun logo, Java, J2SE, J2EE, J2ME, Java Compatible, the Java Compatible Logo, and
the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries.

DISCLAIMER OF WARRANTIES: THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPER-
IMENTAL AND MAY CONTAIN DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL

NOT BE CORRECTED BY SUN. SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EI-
THER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT

THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT
ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document
does not represent any commitment to release or implement any portion of the Specification in any prod-
uct.

2 12/19/05

Enterprise JavaBeans 3.0, Proposed Final Draft Sun Microsystems, Inc.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF
ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR

THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such chang-

es in the Specification will be governed by the then-current license for the applicable version of the Spec-
ification.

LIMITATION OF LIABILITY: TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT
WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSE-
QUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARD-
LESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY
FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF
SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

You will hold Sun (and its licensors) harmless from any claims based on your use of the Specification

for any purposes other than the limited right of evaluation as described above, and from any claims that
later versions or releases of any Specification furnished to you are incompatible with the Specification

provided to you under this license.

RESTRICTED RIGHTS LEGEND: If this Software is being acquired by or on behalf of the U.S. Gov-
ernment or by a U.S. Government prime contractor or subcontractor (at any tier), then the Government's
rights in the Specification and accompanying documentation shall be only as set forth in this license; this
is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acqui-
sitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT: You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in con-
nection with your evaluation of the Specification ("Feedback"). To the extent that you provide Sun with
any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confi-
dential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license,
with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use
without limitation the Feedback for any purpose related to the Specification and future versions, imple-
mentations, and test suites thereof.

GENERAL TERMS: Any action related to this Agreement will be governed by California law and con-
trolling U.S. federal law. The U.N. Convention for the International Sale of Goods and the choice of law
rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regula-

tions in other countries. Licensee agrees to comply strictly with all such laws and regulations and ac-
knowledges that it has the responsibility to obtain such licenses to export, re-export or import as may be
required after delivery to Licensee.

Neither party may assign or otherwise transfer any of its rights or obligations under this Agreement, with-
out the prior written consent of the other party, except that Sun may assign this Agreement to an affiliated
company.

3 12/19/05

Enterprise JavaBeans 3.0, Proposed Final Draft Sun Microsystems, Inc.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or
contemporaneous oral or written communications, proposals, conditions, representations and warranties
and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other com-
munication between the parties relating to its subject matter during the term of this Agreement. No mod-

ification to this Agreement will be binding, unless in writing and signed by an authorized representative
of each party.

(Sun.pre-FCS.Spec.license.11.14.2003)

4 12/19/05

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Proposed Final Draft

Table of Contents

Chapter 1 T 1o [0 Tox i o] o 1R PP 13
1.1 EXPEIT GIOUP coeeeeiiiiiitiee ettt e e e e e s ettt e e e e e e s e e et e e e e e e e s e e e e eeeeas 13
1.2 DOCUMENE CONVENTIONSoeiitiieiiiieiiiee sttt et ee sttt et e s e e e snnee e e 13
Chapter 2 ENEIES e+ —— 15
2.1 Requirements on the Entity ClasS.........cccvivieiiiiiiiiie e 15
2.1.1 Persistent Fields and Properties ..o 16
2.1.2 EXAMPIE o 18
2.1.3 Entity InStance Creation...........cccuuvueiiiiiiiiiaaiiiieeeee e 19
2.1.4 Primary Keys and Entity [dentity.............cccoiiiiiiiiiiiiieeeeeeenn 19
2.1.5 Embeddable ClasSes.........ccocieiiiiiiiiiiiiiiie et 20
2.1.6 Mapping Defaults for Non-Relationship Fields or Properties........... 20
2.1.7 Entity RelationShipSccooeiiiiiiiieeiee e 21
2.1.8 Relationship Mapping Defaults.............coooiiiiiiiii e 22
2.1.8.1 Bidirectional OneToOne Relationshipscccccvvieeennn. 22
2.1.8.2 Bidirectional ManyToOneOneToMany Relationships 23
2.1.8.3 Unidirectional Single-Valued Relationships....................... 25
2.1.8.3.1 Unidirectional OneToOne Relationships.............. 25
2.1.8.3.2 Unidirectional ManyToOne Relationships........... 26
2.1.8.4 Bidirectional ManyToMany Relationships......................... 27
2.1.8.5 Unidirectional Multi-Valued Relationships......................... 29
2.1.8.5.1 Unidirectional OneToMany Relationships........... 29
2.1.8.5.2 Unidirectional ManyToMany Relationships 30
2.1.9 INNEIIANCE .. .ciiiiiiiie et 31
2.1.9.1 Abstract Entity ClaSSEScuuuiiiieaiiiiiiiiiiieeeee e 32
2.1.9.2 Mapped SUPEICIASSES.......cccuuiiiiiiiieeae et e e e 33
2.1.9.3 Non-Entity Classes in the Entity Inheritance Hierarchy..... 34
2.1.10 Inheritance Mapping Strategi€S.cccuuiiiriuuriiiiiieiaee e 35
2.1.10.1 Single Table per Class Hierarchy Strategyccceeernee 36
2.1.10.2 Table per Class Strategyccccuruvreierriiieiee e 36
2.1.10.3 Joined Subclass Strategy..........ccoocveerrirrreeiiniieeee e 36
Chapter 3 ENLity OPEIatiONSuveiiieiiiiiiie ettt e e e saba e e e e eaa 37...
TN 01114/ =T T T [P ERRPRPR 37
3.1.1 EntityManager INterface...........ccuuuuiiiiiiiieeii e 38
3.1.2 Example of Use of EntityManager APlcccccoieiiiiiiiiiiiiiiieeeeeen, 42
3.2 Entity InStance’s Life CYCIeoooiiiieieee e 42
3.2.1 Persisting an Entity INSANCEcuvviiiiiiiiiiieii e 43
3.2.2 REMOVAI ...ciiiiiiiiiii e 43
3.2.3 Synchronization to the Database............cocceeiiiiiiie i 44
3.2.4 Detached ENItIEScoovvieieiiiiiiee et 45
3.2.4.1 Merging Detached Entity State..........cccceeeeiviiiieeiniiieee e 45
3.2.5 Managed INSTANCESoiuviiiieiiiiie e 46
3.3 PerSIStENCE CONEXL ...eieiiiiiiiieiiiiiie ettt ettt e e e 47

5 12/19/05

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Proposed Final Draft

3.3.1 Transaction-scoped Persistence Context........cccccuvrrrrreeeereriiiienvennnns 47
3.3.2 Extended Persistence CONteXt........cccvvriiiiiieeeeeiiiiiiiiieereeee e e e eesnieens 47
3.3.3 Transaction COMMIUL.........cceeeiiiiiiieiiiiiie e e e e e e s e e e e e e e e e e seneeeeeees 48
3.3.4 Transaction ROIDACK...........cceviiieiiiiiiiicee e 48
3.3.5 Optimistic Locking and CONCUITENCYcceoviiriieeiiiiiiieeeiiiieee e 48
3.3.5.1 OptimiStiC LOCKINGceeeviiiiiiiiiiiiieeeiiieee e 49
3.3.5.2 Version Attributesc.cevviveiiie 49
3.3.5.3 LOCK MOUESuviiiiiiiiiieee ettt e e e e 50
3.3.5.4 OptimiSticCLOCKEXCEPLIONcocuvveiieiiiiiiiee e 51
3.4 Entity Listeners and Callback Methods..........ccoociiiiiiin e, 51
3.4.1 Lifecycle Callback Methods............cccoocciiiiiiiiiiieie e, 52
3.4.2 Semantics of the Life Cycle Callback Methods for Entities............. 53
3.4.3 EXAMPIE. .. 55
3.4.4 Multiple Lifecycle Callback Methods for an Entity Lifecycle Event55
345 EXAMPIE. .. 57
I I (ot =T o] o] F= S URRUR 58

3.4.7 Specification of Callback Listener Classes and Lifecycle Methods in the
XML Descriptor59

3.4.7.1 Specification of Callback Listenerscccccccceevvvvcvvvvnnnnnn. 59
3.4.7.2 5Sgpecification of the Binding of Entity Listener Classes to Entities
78 TP OO U U U PP PP PP PUTPRRTTPRPIN ry...Que
API59
351 QUEIY INLEIACE.....ciiiiiiiiie e 60
3501 EXAMPIE .oeiiiiiiiiiiiee e 63
3.5.2 Queries and FIUSAMOAEcoocuiiiiiiiiieee e 63
3.5.3 Parameter NamIES. oot 63
3.5.4 NAMEA QUEIIES .. .uuuviiiiiiiieee e e s i e ettt e e e e e e e e e s e e e e e e e s e s snnnnereeeeees 63
3.5.5 PolymorphiC QUETIES.......ccciiiiiiieiiiiiite et 64
3.5.6 SOQL QUEIESuueeiiiiiiiiiie e e e et e s sttt eee e e e e e e e e s s s st ereeeeeeeeesennnnnsanneees 64
Chapter 4 QUETY LANQUAGEcieeiiii ittt et e e e e e e ettt e e e e e e e e s e e st e e e e e e e e e e s e s ennrnresmnnnns 69.....
o R @ 1YY 8V < T T 69
4.2 EJIB QL StatemMent TYPESuuriiiiiiiieeeeiiiiritire ettt e e e e e 71
4.2.1 SeleCt StAtEMENES......ciceeeiei e e e e s e e e e 71
4.2.2 Update and Delete Statements...........ccccvvveeeieeeeee i 71
4.3 Abstract Schema Types and Query DOMAINSc.cceeeveeeeeeeeiiiiiiiiiiieeeeeeeee e 72
o 70t R N =10 11 o [P R PP URRPPPRRN 73
4.3.2 EXAMPI..ciiiiiiiei e 73
4.4 The FROM Clause and Navigational Declarationscccoooeciiiiiiiienneaennn. 74
ot R 1o 1= o | 1T £ P 75
4.4.2 Identification Variables...........ccccccvveee i 75
4.4.3 Range Variable Declarationscccceeiiiiieeiiiiiiieee e 76
A.4.4 Path EXPrESSIONS. ...ccciiiiiiieeiiiiiie ettt e ettt et e st e e e sbbee e e s eeeee 77
TN o] SRR 78
4.4.5.1 Inner Joins (Relationship JOINS).......cccccceviiiiiiiiiiiiiiee e, 78
4.4.5.2 Left OULEI JOINS....ccoiieeiii it e e 79
4.4.5.3 FetCh JOINS ..ccoii i 79
12/19/05 6

Sun Microsystems, Inc.

Chapter 5

Enterprise JavaBeans 3.0, Proposed Final Draft

4.4.6 Collection Member Declarationsc..ccouiiiiieeiniieeeeniiieee e 80
447 EJIB QL AN SOL ..oiiiiiieiiiie ettt 81
4.4.8 POlYMOPRISIM ...coiiiiiiiiiiiieii e 81
4.5 WHERE CIAUSEttiiiiiiiiee e ittt e e e e s e s s ee e e e e e e e s e s anssntanaeeeeaeaeeesenannns 81
4.6 Conditional EXPreSSIONS.....ccoouiiiiiiiiiiiie et 82
4.6.1 LILEIaAlS .oeeeeiiieeeei e 82
4.6.2 Identification Variables ... 82
4.6.3 Path EXPr@SSIONS ..ccceieiiiiiiiiiiieiee ettt e e e eeaaaeeas 83
4.6.4 INPUE Parameters.ccooo oo 83
4.6.4.1 Positional Parameters.........ccoouiiiiiiiiiiiiieieeee e 83
4.6.4.2 Named Parameters ... 83
4.6.5 Conditional Expression COmMPOSItioNccveierriiiiiiiiiiiiieeeeeeeenn. 84
4.6.6 Operators and Operator PreCedencCe..........coevveeeviiiiiiiiiiiiieeiaaeeee s 84
4.6.7 BetWeen EXPreSSIONScciiiiiiiiieeeiiiiieee e it eee ettt e et e e e s ssineeee e 85
4.6.8 N EXPrESSIONS ...ceuitiiiiiiieaaa ettt e e et e e e e e e e e e e e eneeeeeees 85
4.6.9 Like EXPreSSIONS .. .ot 86
4.6.10 Null CompariSON EXPreSSIONS.cciiiiaaaaiiiiiiiiieieeeeaaa e e e eieeeeeeeeeas 86
4.6.11 Empty Collection Comparison EXpressionsccccccceveeviiiveeeennnnnn. 87
4.6.12 Collection Member EXPreSSIiONSeeueieiiaaaaiiiiiiiiiiiiiieeeeaaaeeeee e 87
4.6.13 EXIiStS EXPIreSSIONS.......viiiiiiiiiiiee ettt 88
4.6.14 All Or ANY EXPreSSIONS .cceiiiiiiiiiiiie ittt 88
4.6.15 SUDQUEIIES ...coeiiiiiiie ittt 89
4.6.16 Functional EXPreSSIONSociiiiiiiiiiiiiiieiie e 89
4.6.16.1 String FUNCHONSuuiiiiiiiieiiiiiiiiee it 90
4.6.16.2 Arithmetic FUNCLIONScooooiiiiiiiiiiiee e 90
4.7 GROUP BY, HAVING ...ttt 91
4.8 SELECT ClAUSE.....cuutiiiiiieeiie e ee et e e e e e e e e e e e et s e e s e e eabe s e e s e earannas 92
4.8.1 Result Type of the SELECT ClauSe...........coovviivviiiiieeeeee e 93
4.8.2 Constructor Expressions in the SELECT Clause..........ccccvcveveeeeeennnn. 94
4.8.3 Null Values inthe Query ReSUlt..........cevvveeeiiiiiiiiiiiiieeeee e, 94
4.8.4 Aggregate Functions in the SELECT Clause.......ccccccceeeeiviivvvviennnnn. 94
4.8.4.1 EXAMPIES.....ci oot 95
4.9 ORDER BY ClAUSEcciitiiiiiiiie ittt 96
4.10 RELUIN VAlIUE TYPES .. eiiiiiiiiieie ettt e e ettt e e e e e e e e e s e aeeeeaaaaeas 97
4.10.1 Result types for Finder and Select methods of 2.1 Entity Beans...... 97
4.11 Bulk Update and Delete OPerations...........ocueeeeeiiiieieeiniiiiee e e siiee e 98
.12 NUITVAIUES ..o 100
4.13 Equality and CompariSon SEMANTICS.......c.uuviieiiuiiiier it eieeee e 101
I = LT 1 o1 110 [102
415 EXAMPIES cooeiieeeee ittt a e e e e e rraaaaaaaeaaans 102
4.15.1 SIMPIE QUETIES ...eeiiieiiiiiie ettt 102
4.15.2 Queries with Relationshipsciiiiiiiieee, 102
4.15.3 Queries Using Input Parameters...........oooiiiiiiiiieiiieee e 103
4.16 EJIB QL BNF ..ottt bttt 104
Entity Managers and Persistence CONEXESuuveeeeiieeeeiiiiiiiiiirieeeee e e e e e ssesnrnrneeeee e 109
5.1 PersiStence CONIEXISoiiiiiiiiiiieiee e ettt e anneeeeees 109

7 12/19/05

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Proposed Final Draft

5.1.1 Persistence Context Lifecycle TYPeS.....cccccevviiiiiiiiiiiiiie e 110
5.2 Obtaining an ENtityManager...........cooieieeiiiiiiieeiiieee e 110
5.2.1 Obtaining an Entity Manager in the Java EE Environment............... 111
5.2.2 Obtaining an Application-managed Entity Managerc.cc.c.... 111
5.2.2.1 Control of the Application-Managed EntityManager Lifecycle.112
5.3 Obtaining an Entity Manager FACIOrYcocoeiiiieiiiieeniie e 112
5.3.1 Obtaining an Entity Manager Factory in a Java EE Container 112
5.3.2 Obtaining an Entity Manager Factory in a Java SE Environment..... 113
5.4 The EntityManagerFactory INnterface.........ccccoooiiiiiiiiiiiiiiiieeeeeee e 113
5.5 Controlling TranSACHIONS.ceieiiuiiieeeiiiieee ettt e e ribeeeeesaaes 115
5.5.1 JTA ENttyMaNAQEIS......cccuviiiieiieeiee ettt e e et e e e e e e 116
5.5.2 Resource-local EntityManagerscccooeviiiiiiiiiieeieee e ccininneeeens 116
5.5.2.1 The EntityTransaction Interface..........ccccccccccviviiiinnnnnnnnn.n. 117
5.6 Persistence Context LIfetiMeccveiiiiiiiiiiie e 117
5.6.1 Container-managed Persistence CONEXEScvvveerriiiireeriiiieeennnn 118
5.6.1.1 Container-managed Transaction-scoped Persistence Context118
5.6.1.2 Container-managed Extended Persistence Context............ 118
5.6.2 Application-managed Persistence Contexts...........ccccveeeeeeeeeeeeriiinnns 118
5.6.2.1 Application-managed Transaction-scoped Persistence Context119
5.6.2.2 Application-managed Extended Persistence Context......... 119
5.7 Persistence Context Propagation for Container-managed Entity Managers.... 119
5.7.0.1 Persistence Context Propagation for Transaction-scoped Persis-
tence Contexts120
5.7.0.2 Persistence Context Propagation Rules for Extended Persistence
Contexts120
5.8 EXAMPIES....cco it e e a e e e e e e aeaans 121
5.8.1 Container-managed Transaction-scoped Persistence Context........... 121
5.8.2 Container-managed Extended Persistence Context.............cccveeennee. 122
5.8.3 Application-managed Transaction-scoped Persistence Context (JTA)123
5.8.4 Application-managed Extended Persistence Context(JTA) 124
5.8.5 Application-managed Transaction-scoped Persistence Context (Resource
Transaction)125
5.8.6 Aé%plication—managed Extended Persistence Context (Resource Transaction)
1
5.9 Requirements on the CONLAINETccoiiiiiiiiiiiiiiie e 127
5.9.1 Persistence Context Managementcoccevveieeriinneesee e 127
5.9.2 Container Managed Persistence ConNtextS......cccccceeeeveiviccinviieneeeeeeennn, 127
Chapter 6 ENtity PACKAGING ...ttt a e e e e e e e e 129.
6.1 Persistence UNit.........ccccoiiiiiiiiiiiii 129
6.2 Persistence Unit Packaging........ccccooiiiiiiiiiiiiiiccc e 130
6.2.1 persistence. XMl file........oooiiiii e 131
6.2.1.1 deSCHPON....ccii ittt 132
6.2.1.2 NAIME ...oiiiiiiiieieie it 132
B.2.1.3 PrOVIAEN ...t 132
6.2.1.4 tranSaCON-TYPE ...cceieieiiiiiitiie e 133
6.2.1.5 jta-data-source, non-jta-data-SouUrce.........cc.ccccevveviuvrireennenn. 133
6.2.1.6 mapping-file, jar-file, class, exclude-unlisted-classes......... 133
12/19/05 8

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Proposed Final Draft

B.2.1.7 PrOPEITIES .eeeiieiiiiieie ettt ettt 134
6.2.1.8 EXAMPIES.....ooiiiiiiiiiiiii i 134
6.2.2 Persistence UNIt SCOPE....ccciiiiiiieiiiiiie ettt 136
6.3 persistence.XmMl SCREMA@coiuiiiiiiiii e 138
Chapter 7 Container and Provider Contracts for Deployment and Bootstrappingc.ccccuveee. 143
7.1 Java EE DeplOYMENt.....coiuuiiiiiiiiiiie ettt ettt 143
7.1.1 Responsibilities of the ContaiNer.............cccoeevciiiiiieeeee e, 143
7.1.2 Responsibilities of the Persistence Providerccccccceeevviiiiciiivnnnen. 144
7.1.3 javax.persistence.spi.PersistenceProvider...........cccccvvvveeeeeeeeiieiiicnnns 144
7.1.3.1 Persistence Unit Properties..........cceecvvivieeieeiee e 145
7.1.4 javax.persistence.spi.PersistenceUnitinfo Interface...........cccccceeee.... 147
7.2 Bootstrapping in Java SE ENVIFONMENLSccoooviiiiiiiiiiiieeccee e 150
7.2.1 javax.persistence.Persistence ClasS........ccccoveeriiiiiiiiiiiiiieeie e 152
Chapter 8 Metadata ANNOTALIONSvuiiiii ittt 153......
S A = o1 1) PSP OTPPRR 153
8.2 Callback ANNOLALIONSceuuiiiei it e e et e e e e e e e e e eaaaaeeees 154
8.3 ANNotations fOr QUETIESuuuiiiiiiieeeii s ittt e e e e e e s e er e e e e e e s e e enennraneeees 155
8.3.1 Flush Mode ANNOLALIONeuvvieiiiiiiee it 155
8.3.2 NamedQuery ANNOtAtioNccccvviiieiiieeee e 155
8.3.3 NamedNativeQuery ANNOtatioN.............cooeiiiiiiieiieee e 156
8.3.4 Annotations for SQL Query Result Set Mappings..............ccccvvvvnneen. 156
8.4 References to EntityManager and EntityManagerFactorycccccceveeeeennn. 157
8.4.1 PersistenceContext ANNOLALIONovvivniiiiiieieee e 157
8.4.2 PersistenceUnit ANNOtatioN............couvviiiiiiiiiiii e 158
Chapter 9 Metadata for Object/Relational Mappingceeiiviiieiiiiiiee e 159
9.1 Annotations for Object/Relational Mappingcccccceeeveeiiivvineeereeeeeeseesiiinnns 159
9.1.1 Table ANNOAtIONccciiiiiii e 160
9.1.2 SecondaryTable ANNOTALIONc.uviieiiiiiiie e 160
9.1.3 SecondaryTables ANNOLAtIONc.ocueriieiiiiiiieeiiee e 162
9.1.4 UniqueConstraint ANNOLAtIoNcooiiiiiiiiiiiiiiieee e 162
9.1.5 Column ANNOLALIONuuuiiiiieiee e 163
9.1.6 JoinColumn ANNOLAtIONuuviiiiiiiiiiiiie e e e e e ee e eeee e eeeaeaaaaees 164
9.1.7 JoinColumns ANNOLAtION...........cceviiiiiiiiiiiiiiie e e e e e e e ee e eeeeaaes 167
9.1.8 1d ANNOLALION ..uvveiiiiieci e 167
9.1.9 GeneratedValue AnNNOtation ... 168
9.1.10 AttributeOverride Annotationcccooooiiiiiiiiiiie 169
9.1.11 AttributeOverrides ANNOtation...............cccoeeeiiiiiiiiiiiceea, 170
9.1.12 Embeddedld ANNOtationoooiiiiiiiiiiii e 170
9.1.13 1dClass ANNOLAtION..............ooiiiiiiiiiii e e e e e e e e e e e e e eeeens 171
9.1.14 Transient ANNOALiON...........coooiiiiiiiii e 171
9.1.15 Version ANNOLALIONcccoeiiiiiii i 172
9.1.16 BasiC ANNOLALION........ccceeeii i 172
9.1.17 LOD ANNOLALION ...uvviiiiiiiiiee e 173

9 12/19/05

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Proposed Final Draft

9.1.18 Temporal ANNOLALION.oiuiiiieiiiieie et 174
9.1.19 Enumerated ANNOtAtiON...........cccuviiiiiiiieee e 175
9.1.20 ManyToONne ANNOLALIONeeeeiiiiiiee it 176
9.1.21 ONEeTOoONE ANNOLALIONvvvreeeeieiicciiiiieeee e e e e e e e e s ss e e e e e e e e e e nneees 177
9.1.22 OneToMany ANNOLAtIONceeeiiiiiiee et 178
9.1.23 JoinTable ANNOLALIONuuuiiiiiieeeieiiiciiier e e e 180
9.1.24 ManyToMany ANNOLALIONccoiiuiieeiiiiiiee e 181
9.1.25 MapKey ANNOLALIONueiiiiiiiiiee e 182
9.1.26 OrderBy ANNOLALIONccoiiiiiiieiiiiiie et 184
9.1.27 Inheritance ANNOLALIONueiiiieieeeiie e e e e e 184
9.1.28 DiscriminatorColumn AnNNOtatioN............ccoovvieiiieiieeeee e 185
9.1.29 DiscriminatorValue AnNNOtatioN.............cooccivriiiiiiiiee e 187
9.1.30 PrimaryKeyJoinColumn ANNOLAtIONcueeeeeriiiiieeeeiriiiee e 188
9.1.31 PrimaryKeyJoinColumns ANNOLatioNcocceveeiriieeeeiiniieee e, 189
9.1.32 Embeddable ANNOtationceevveeeeeiiniiiiiiiieiieece e 190
9.1.33 Embedded ANNOLAtiON..........cooieeviiieiiieeee e 191
9.1.34 MappedSuperclass ANNOLALION.........cccuuviiiiiiiiiiee e 191
9.1.35 SequenceGenerator ANNOLALION..........ccoviuuiieeiiiiiee e 191
9.1.36 TableGenerator ANNOALIONocoeciviiiiiiiie e 192
9.2 Examples of the Application of Annotations for Object/Relational Mapping 195
9.2.1 Examples of Simple Mappingscccccoiuiririeeee e e e 195
9.2.2 A More Complex EXamPle........cceveeeeeiiiiiiiiiiieieeeee e 198
Chapter 10 DY [B LT ol] (o SO PPRPRP 203
0T R IS Y] = 3 ¢ - S SSP 204
Chapter 11 Related DOCUMENLESt e e e e e e e e e e ee e e e eean 221.....
Appendix A REVISION HISTOIYiiiiii it e e e e e e e s e 223
AL EArly Draft 1.t 223
A2 EBArlY Draft 2 ... 223
A.3 Changes SIiNCE EDR 2......ueiiiiiiiieii ittt e e rrre e e e 224
A.4 Changes Since PUBDIC Draft..........ccooiiiiiiiiiiie e 227
12/19/05 10

Sun Microsystems, Inc.

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23

Enterprise JavaBeans 3.0, Proposed Final Draft

List of Tables
Definition of the AND OPEIALON...........cccciiiiieeie e e e e e e s e e e e e e e e e e eeaeaeessnnnnnns 100
Definition of the OR OPerator.............uuieiiiiiieaaie e
Definition of the NOT Operator
Table ANNotation EIEMENES ... e et e e e e s nnmmmmane e s
SecondaryTable ANNotation EIEMENTS ... e 161
UniqueConstraint ANNotation EIEMENTS...........coiiiiiiiii e s 162
Column Annotation Elements
JoinColumn ANNOotation EIEMENLSccooiiii i e s s —— 166
GeneratedValue AnNotation EIEMENTSc..vviiiiiiiiiiec e e e 168
AttributeOverride AnNNotation EIEBMENLSccciiiiiiiiiice e mmmmmeneeees 169
Basic ANNOtationN EIEMENTSuiiiiiiiiciii e s smmmmmmmmmmm———— e 173
Temporal ANNOtation EIEMENES.........cooiiiiiiiiiiiiiiie et s oo« LT
Enumerated AnNNotation EIEMENLS..........ccccuiiiiiiiiiic e smmmmmmmmeneees 175
ManyToOne AnNotation EIEMENTScooiiiiiiiiiiiiiiiii e« e L £ ©
ONeToONE ANNOLALION EIBMENTS.t e e e e e e e e e e e eeeeeees 177
OneToMany AnNNotation EIEMENLS..........uuveiiiiieiiiiiiiciieeer e ee e e e e e sl £ D
JoinTable Annotation Elements ..180
Inheritance Annotation Elements185
DiscriminatorColumn Annotation EIEMENTS............oooiiiiiiiiiiiie e 186
DiscriminatorValueAnnotation EIEMENTS.........uuiiiiiiiiii e e e e 187
PrimaryKeyJoinColumn AnNNotation EIEMENTSc..uiiiiiiiiiieiiiee e e 188..
SequenceGenerator ANNotation EIEMENTS............oooiiiiiiiiiiiiee e s 192
TableGenerator ANnotation EIEMENTS ... e eee e e e eeeeees 193

11 12/19/05

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Proposed Final Draft

12/19/05 12

Sun Microsystems, Inc.

Enterprise JavaBeans 3.0, Proposed Final Draft |

amers INtroduction

This document is the specification of the Java API for the management of persistence and object/rela-
tional mapping with Java EE and Java SE. The technical objective of this work is to provide Jan
object/relational mapping facility for the Java application developer using a Java domain model to njan-
age a relational database.

This persistence APl—together with the query language and object/relational mapping metadata
defined in this document—is required to be supported under Enterprise JavaBeans 3.0. It is also tar-
geted at being used stand-alone with Java SE. |

Leading experts throughout the entire Java community have come together to build this Java persistence

standard. This work incorporates contributions from the Hibernate, TopLink, and JDO communities, as
well as from the EJB community.

1.1 Expert Group

This work is being conducted as part of JSR-220 under the Java Community Process Program. This
specification is the result of the collaborative work of the members of the JSR 220 Expert Group. These
include the following present and former expert group members: Apache Software Foundation: Jeremy
Boynes; BEA: Seth White; Borland: Jishnu Mitra; E.piphany: Karthik Kothandaraman; Fujitsu-Sie-
mens: Anton Vorsamer; Google: Cedric Beust; IBM: Jim Knutson, Randy Schnier; IONA: Conrad
O’Dea; Ironflare: Hani Suleiman; JBoss: Gavin King, Bill Burke, Marc Fleury; Macromedia: Hemant
Khandelwal; Nokia: Vic Zaroukian; Novell: YongMin Chen; Oracle: Michael Keith, Debu Panda, Oliv-

ier Caudron; Pramati: Deepak Anupalli; SAP: Steve Winkler, Umit Yalcinalp; SAS Institute: Rob Sac-
coccio; SeeBeyond: Ugo Corda; SolarMetric: Patrick Linskey; Sun Microsystems: Linda DeMichiel,
Mark Reinhold; Sybase: Evan Ireland; Tibco: Shivajee Samdarshi; Tmax Soft: Woo Jin Kim; Versant:
David Tinker; Xcalia: Eric Samson; Reza Behforooz; Emmanuel Bernard; Wes Biggs; David Blevins;
Scott Crawford; Geoff Hendrey; Oliver Ihns; Oliver Kamps; Richard Monson-Haefel; Dirk Reinshagen;
Carl Rosenberger; Suneet Shah.

1.2 Document Conventions

The regular Times font is used for information that is prescriptive by the EJB specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes describ-
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.

13 12/19/05

Sun Microsystems, Inc.

Introduction

Enterprise JavaBeans 3.0, Proposed Final Draft Document Conventions

The Helvetica font is used to specify the BNF of EJB QL.

This document is written in terms of the use of Java language metadata annotations to specify the
semantics of persistent classes and their object/relational mapping. An XML descriptor (as specified in
Chapter 10) may be used as an alternative to annotations. The elements of this descriptor mirror the

annotations and have the same semantics.

12/19/05

14

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Enfties

Chapter 2

2.1

Entities

An entity is a lightweight persistent domain object.

The primary programming artifact is the entity class. An entity class may make use of auxiliary classes
that serve as helper classes or that are used to represent the state of the entity.

Requirements on the Entity Class

The entity class must be annotated with Brgity = annotation or denoted in the XML descriptor as an
entity.

The entity class must have a no-arg constructor. The entity class may have other constructors as well.
The no-arg constructor must be public or protected.

The entity class must be a top-level class.

The entity class must not be final. No methods or persistent instance variables of the entity class may be
final.

If an entity instance is to be passed by value as a detached object (e.g., through a remote interface), the
entity class must implement tiserializable interface. |

15 12/19/05

Sun Microsystems, Inc.

Entities

2.1.1

Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Entities support inheritance, polymorphic associations, and polymorphic queries.

Both abstract and concrete classes can be entities. Entities may extend non-entity classes as well as
entity classes, and non-entity classes may extend entity classes.

The persistent state of an entity is represented by instance variables, which may correspond to Java-
Beans properties. An instance variable may be directly accessed only from within the methods of the

entity by the entity instance itself. Instance variables must not be accessed by clients of the entity. The

state of the entity is available to clients only through the entity’'s accessor methods (getter/setter meth-

ods) or other business methods. Instance variables must be private, protected, or package visibility.

Persistent Fields and Poperties

The persistent state of an entity is accessed by the persistence provider Wreither via JavaBeans

style property accessors or via instance variables. A single access type (field or property access) applies
to an entity hierarchy. When annotations are used, the placement of the mapping annotations on either
the persistent fields or persistent properties of the entity class specifies the access type as being either
field- or property-based access respectively.

* Ifthe entity has field-based access, the persistence provider runtime accesses instance variables
directly. All nondransient instance variables that are not annotated withTiasient
annotation are persistent. When field-based access is used, the object/relational mapping anno-
tations for the entity class annotate the instance variables.

* If the entity has property-based access, the persistence provider runtime accesses persistent
state via the property accessor methods. All properties not annotated willathsient
annotation are persistent. The property accessor methods must be public or protected. When
property-based access is used, the object/relational mapping annotations for the entity class
annotate the getter property accessors.

* Mapping annotations cannot be applied to fields or properties thatsangient or Tran-
sient

* The behavior is unspecified if mapping annotations are applied to both persistent fields and
properties.

It is required that the entity class follow the method conventions for a JavaBean when persistent proper-
ties are used.

In this case, for every persistent propeptppertyof type T of the entity, there is a getter methaykt-
Property and setter methosletProperty For boolean propertiegsPropertyis an alternative name for
the getter method.

For single-valued persistent properties, these method signatures are:

(1]

The term "persistence provider runtime" refers to the runtime environment of the persistence implementation. In Java EE environ-
ments, this may be the Java EE container or a third-party persistence provider implementation integrated with it.

12/19/05

16

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Enfties

* T getProperty()
* void setProperty(T t)
Collection-valued persistent fields and properties must be defined in tefansaaitil. Collec-

tion interfaces regardless of whether the entity class otherwise adheres to the JavaBeans convehtions
noted above and whether field or property-based access ERSE following collection interfaces

are supported: java.util.Collection , java.util.Set , java.util.List
java.util.Map .
For collection-valued persistent properties, tfipmust be one of these Collection interface types in th

method signatures above. Generic variants of these Collection types may also be used (for example,
Set<Order>).

In addition to returning and setting the persistent state of the instance, the property accessor methods
may contain other business logic as well, for example, to perform validation. The persistence provider
runtime executes this logic when property-based access is used.

Caution should be exercised in adding business logic to the accessor methods when prop-
erty-based access is used. The order in which the persistence provider runtime calls these
methods when loading or storing persistent state is not defined. Logic contained in such meth-
ods therefore cannot rely upon a specific invocation order.

back. Exceptions thrown by such methods when used by the persistence runtime to load or store pprsis-

Runtime exceptions thrown by property accessor methods cause the current transaction to be jolled
r‘keEx-

tent state cause the persistence runtime to rollback the current transaction and to throw a Persiste
ception that wraps the application exception.

Entity subclasses may override the property accessor methods. However, portable applications must not
override the object/relational mapping metadata that applies to the persistent fields or properties of
entity superclasses.

The persistent fields or properties of an entity may be of the following types: Java primitive types;

java.lang.String ; other Java serializable types (including wrappers of the primitive types,
java.math.Biginteger , java.math.BigDecimal , java.util.Date ,
java.util.Calendar (4l java.sgl.Date , java.sgl.Time , Jjava.sgl.Timestamp ,
user-defined serializable typdsyte[] , Byte[] , char[] , and Character][]) ; enums; entity

types and/or collections of entity types; and embeddable classes (see section 2.1.5).

Object/relational mapping metadata may be specified to customize the object-relational mapping, and
the loading and storing of the entity state and relationships. See Chapter 9.

(2]
(3]
(4

The implementation type may be used by the application to initialize fields or properties before the entity is madég getsisten
sequent access must be through the interface type once the entity becomes managed (or detached).

Portable applications should not expect the order of lists to be maintained across persistence contextsQnies3ytheon-
struct is used and the modifications to the list observe the specified ordering. The order is not otherwise persistent.

Note that an instance of Calendar must be fully initialized for the type that it is mapped to.

17 12/19/05

Sun Microsystems, Inc.

| Entities

Enterprise JavaBeans 3.0, Proposed Final Draft

2.1.2 Example

@Entity
public class Customer implements Serializable {

private Long id;

private String name;

private Address address;

private Collection<Order> orders = new HashSet();
private Set<PhoneNumber> phones = new HashSet();

/I No-arg constructor
public Customer() {}

@Id /I property access is used
public Long getld() {
return id;

}

public void setld(Long id) {
this.id = id;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public Address getAddress() {
return address;

}

public void setAddress(Address address) {
this.address = address;

}

@OneToMany
public Collection<Order> getOrders() {
return orders;

}

public void setOrders(Collection<Order> orders) {
this.orders = orders;

}

@ManyToMany
public Set<PhoneNumber> getPhones() {
return phones;

public void setPhones(Set<PhoneNumber> phones) {
this.phones = phones;

Requirements on the Entity Class

12/19/05

18

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Enfties

2.13

/I Business method to add a phone number to the customer
public void addPhone(PhoneNumber phone) {
this.getPhones().add(phone);

/I Update the phone entity instance to refer to this customer |

phone.setCustomer(this);

Entity Instance Creation

214

Entity instances are created by means ofriees operation. An entity instance, when first created by
new is not yet persistent. An instance becomes persistent by meanskrftihgManager API. The
lifecycle of entity instances is described in Section 3.2.

Primary K eys and Entity Identity

Every entity must have a primary key.

The primary key must be defined on the entity that is the root of the entity hierarchy or on a mapped

superclass of the entity hierarchy. The primary key must be defined exactly once in an entity hieral

A simple (i.e., non-composite) primary key must correspond to a single persistent field or propert
the entity class. Thiel annotation is used to denote a simple primary key. See section 9.1.8.

A composite primary key must correspond to either a single persistent field or property or to a se

chy.

of

t of

such fields or properties as described below. A primary key class must be defined to represent a compos-
ite primary key. Composite primary keys typically arise when mapping from legacy databases when the

database key is comprised of several columns.Himbeddedld andldClass annotations are used
to denote composite primary keys. See sections 9.1.12 and 9.1.13.

The primary key (or field or property of a composite primary key) should be one of the following typ4
any Java primitive type; any primitive wrapper tygayva.lang.String ; java.util.Date ;

S

java.sgl.Date . In general, however, approximate numeric types (e.qg., floating point types) should

never be used in primary keys. Entities whose primary keys use types other than these will not be pl
ble. If generated primary keys are used, only integers will be portakjedfutil. Date is used as
a primary key field or property, the temporal type should be specified B8

The access type (field- or property-based access) of a primary key class is determined by the acceg
of the entity for which it is the primary key.

Drta-

S type

The following rules apply for composite primary keys.

* The primary key class must be public and must have a public no-arg constructor.

* If property-based access is used, the properties of the primary key class must be public or Joro-

tected.

* The primary key class must be serializable.

19 12/19/05

Sun Microsystems, Inc.

Entities

2.1.5

Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

* The primary key class must defieguals andhashCode methods. The semantics of value
equality for these methods must be consistent with the database equality for the database types
to which the key is mapped.

* A composite primary key must either be represented and mapped as an embeddable class (see
Section 9.1.12, “EmbeddedIld Annotation”) or must be represented and mapped to multiple
fields or properties of the entity class (see Section 9.1.13, “IdClass Annotation”).

* Ifthe composite primary key class is mapped to multiple fields or properties of the entity class,
the names of primary key fields or properties in the primary key class and those of the entity
class must correspond and their types must be the same.

The application must not change the value of the primar)l5i<e7he behavior is undefined if this

occurst®!

Embeddable Classes

2.1.6

An entity may use other fine-grained classes to represent entity state. Instances of these classes, unlike
entity instances themselves, do not have persistent identity. Instead, they exist only as embedded objects
of the entity to which they belong. Such embedded objects belong strictly to their owning entity, and are
not sharable across persistent entities. Attempting to share an embedded object across entities has unde-
fined semantics. Because these objects have no persistent identity, they are typically mapped together
with the entity instance to which they beldy.

Embeddable classes must adhere to the requirements specified in Section 2.1 for entities with the excep-
tion that embeddable classes are not annotatéthtiyy . The access type for an embedded object is
determined by the access type of the entity in which it is embedded. Support for only one level of
embedding is required by this specification.

Additional requirements on embeddable classes are described in section 9.1.32.

Mapping Defaults for Non-Relationship Fields or Poperties

If a persistent field or property other than a relationship property is not annotated with one of the map-
ping annotations defined in Chapter 9 (or equivalent mapping information is not specified in the XML
descriptor), the following default mapping rules are applied in order:

* If the type is a class that is annotated with Bmbeddable annotation, it is mapped in the
same way as if the field or property were annotated withBhdedded annotation. See Sec-
tions 9.1.32 and 9.1.33.

* If the type of the field or property is one of the following, it is mapped in the same way as it
would if it were annotated aBasic : Java primitive types, wrappers of the primitive types,
java.lang.String , java.math.BigInteger , Jjava.math.BigDecimal ,

(5]
(6]
(7]

This includes not changing the value of a mutable type that is primary key or element of a composite primary key.
The implementation may, but is not required to, throw an exception.

Support for collections of embedded objects and for the polymorphism and inheritance of embeddable classes will be required in
a future release of this specification.

12/19/05

20

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Enfties
java.util.Date , java.util.Calendar , java.sql.Date , java.sql.Time ,
java.sql.Timestamp , byte[] ,Byte[] ,char[] , Character[] , enums, any other
type that implements Serializable. See Sections 9.1.16 through 9.1.19. |

2.1.7

It is an error if no annotation is present and none of the above rules apply.

Entity Relationships

Relationships among entities may be one-to-one, one-to-many, many-to-one, or many-to-many. Rela-
tionships are polymorphic.

If there is an association between two entities, one of the following relationship modeling annotations
must be applied to the corresponding persistent property or instance variable of the referencing entity:
OneToOne, OneToMany, ManyToOne, ManyToMany. For associations that do not specify the tar-

get type (e.g., where Java generic types are not used for collections), it is necessary to specify the entity
that is the target of the relationship.

These annotations mirror common practice in relational database schema modeling. The use of the
relationship modeling annotations allows the object/relationship mapping of associations to the rela-

tional database schema to be fully defaulted, to provide an ease-of-development facility. This is
described in Section 2.1.8, “Relationship Mapping Defaults”.

Relationships may be bidirectional or unidirectional. A bidirectional relationship has both an owning
side and an inverse side. A unidirectional relationship has only an owning side. The owning side of a
relationship determines the updates to the relationship in the database, as described in section 3.2.3.

The following rules apply to bidirectional relationships:

* The inverse side of a bidirectional relationship must refer to its owning side by use of the
mappedBy element of theOneToOne, OneToMany, or ManyToMany annotation. The
mappedBy element designates the property or field in the entity that is the owner of the rela-
tionship.

* The many side of one-to-many / many-to-one bidirectional relationships must be the owning
side, hence thmappedBy element cannot be specified on ii@nyToOne annotation.

* For one-to-one bidirectional relationships, the owning side corresponds to the side that con-
tains the corresponding foreign key.

* For many-to-many bidirectional relationships either side may be the owning side.

The relationship modeling annotation constrains the use ofakeade=REMOVEspecification. The
cascade=REMOVE specification should only be applied to associations that are specifi€hes
ToOne or OneToMany. Applications that applgascade=REMOVEto other associations are not por-
table.

21 12/19/05

Sun Microsystems, Inc.

Entities

2.1.8

Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Additional mapping annotations (e.g., column and table mapping annotations) may be specified to over-
ride or further refine the default mappings described in Section 2.1.8. For example, a foreign key map-
ping may be used for a unidirectional one-to-many mapping. Such schema-level mapping annotations
must be specified on the owning side of the relationship. Any such overriding must be consistent with
the relationship modeling annotation that is specified. For example, if a many-to-one relationship map-
ping is specified, it is not permitted to specify a unique key constraint on the foreign key for the relation-
ship.

The persistence provider handles the object-relational mapping of the relationships, including their
loading and storing to the database as specified in the metadata of the entity class, and the referential
integrity of the relationships as specified in the database (e.g., by foreign key constraints).

Note that it is the application that bears responsibility for maintaining the consistency of runt-
ime relationships—for example, for insuring that the “one” and the “many” sides of a bidirec-
tional relationship are consistent with one another when the application updates the
relationship at runtime.

If there are no associated entities for a multi-valued relationship, the persistence provider is responsible
for returning an empty collection as the value of the relationship.

Relationship Mapping Defaults

This section defines the mapping defaults that apply to the use oDttledoOne, OneToMany,
ManyToOne, andManyToMany relationship modeling annotations. The same mapping defaults apply
when the XML descriptor is used to denote the relationship cardinalities.

2.1.8.1 Bidirectional OneToOne Relationships

Assuming that:

Entity A references a single instance of Entity B.
Entity B references a single instance of Entity A.
Entity A is specified as the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namigd

TableA contains a foreign key to tabB The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A;the
name of the primary key column in tabB2 The foreign key column has the same type as the
primary key of tabld3 and there is a unique key constraint on it.

12/19/05

22

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Enfties

Example:

@Entity
public class Employee {
private Cubicle assignedCubicle;

@0OneToOne
public Cubicle getAssignedCubicle() {
return assignedCubicle;

}
public void setAssignedCubicle(Cubicle cubicle) {
this.assignedCubicle = cubicle;

@Entity
public class Cubicle {
private Employee residentEmployee;

@OneToOne(mappedBy="assignedCubicle")
public Employee getResidentEmployee() {
return residentEmployee;

public void setResidentEmployee(Employee employee) {
this.residentEmployee = employee;

}
=

In this example:

Entity Employee references a single instance of EnGybicle
Entity Cubicle references a single instance of EnEtyployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table nameEMPLOYEE
Entity Cubicle is mapped to a table nametUBICLE

TableEMPLOYEEontains a foreign key to tabeUBICLE. The foreign key column is named
ASSIGNEDCUBICLE<PK of CUBICLE>, where <PK of CUBICLE> denotes the name of
the primary key column of tablEUBICLE. The foreign key column has the same type as the
primary key of CUBICLE, and there is a unique key constraint on it.

2.1.8.2 Bidirectional ManyToOne / OneToMany Relationships
Assuming that:

Entity A references a single instance of Entity B.
Entity B references a collection of Entity A.

Entity A must be the owner of the relationship.

23 12/19/05

Sun Microsystems, Inc.

Entities Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

TableA contains a foreign key to tabR The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A;the
name of the primary key column in tabB The foreign key column has the same type as the
primary key of tables.

Example:

@Entity
public class Employee {
private Department department;

@ManyToOne
public Department getDepartment() {
return department;

public void setDepartment(Department department) {
this.department = department;

@Entity
public class Department {
private Collection<Employee> employees = new HashSet();

@OneToMany(mappedBy="department")

public Collection<Employee> getEmployees() {
return employees;

public void setEmployees(Collection<Employee> employees) {
this.employees = employees;

In this example:

Entity Employee references a single instance of Enbigpartment .
Entity Department references a collection of Entimployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namENMPLOYEE
Entity Department is mapped to a table namB&PARTMENT

12/19/05 24

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Enfties

Table EMPLOYEEontains a foreign key to tablBEPARTMENTT he foreign key column is
namedDEPARTMENTKPK of DEPARTMENT>, where <PK of DEPARTMENT> denotes
the name of the primary key column of taid=EPARTMENT he foreign key column has the
same type as the primary keyEPARTMENT

2.1.8.3 Unidirectional Single-Valued Relationships
Assuming that:

Entity A references a single instance of Entity B.
Entity B does not reference Entity A.

A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional single-valued relationship modeling case can be specified as either a unidirectional
OneToOneor as a unidirectiondanyToOne relationship.

2.1.8.3.1 Unidirectional OneToOne Relationships
The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

TableA contains a foreign key to tab® The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A;the
name of the primary key column in tabB The foreign key column has the same type as the
primary key of tabld3 and there is a unique key constraint on it.

Example:

@Entity
public class Employee {
private TravelProfile profile;

@OneToOne
public TravelProfile getProfile() {
return profile;

public void setProfile(TravelProfile profile) {
this.profile = profile;

@Entity
public class TravelProfile {

-

In this example:

Entity Employee references a single instance of EnfitavelProfile

25 12/19/05

Sun Microsystems, Inc.

| Entities

Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Entity TravelProfile does not reference Entimployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table nameEMPLOYEE
Entity TravelProfile is mapped to a table naméRAVELPROFILE

TableEMPLOYEEontains a foreign key to tablERAVELPROFILE The foreign key column
is named PROFILE_<PK of TRAVELPROFILE>, where <PK of TRAVELPROFILE>
denotes the name of the primary key column of taliRAVELPROFILE The foreign key col-
umn has the same type as the primary keyfBAVELPROFILE and there is a unique key
constraint on it.

2.1.8.3.2 Unidirectional ManyToOne Relationships

The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

TableA contains a foreign key to tabE The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A;the
name of the primary key column in tabBe The foreign key column has the same type as the
primary key of tables.

Example:

@Entity

public class Employee {
private Address address;

@ManyToOne

public

Address getAddress() {

return address;

Yo
public

void setAddress(Address address) {

this.address = address;

}
|
@Entity

public class Address {

}

In this example:

Entity Employee references a single instance of Enfigdress .
Entity Address does not reference EntiBmployee .
Entity Employee is the owner of the relationship.

12/19/05

26

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Enfties

The following mapping defaults apply:

Entity Employee is mapped to a table namEMPLOYEE
Entity Address is mapped to a table nama@®DRESS

TableEMPLOYE[Eontains a foreign key to tabl®DDRESSThe foreign key column is named
ADDRESS<PK of ADDRESS>, where <PK of ADDRESS> denotes the name of the primary
key column of tableADDRESSThe foreign key column has the same type as the primary key
of ADDRESS

2.1.8.4 Bidirectional ManyToMany Relationships
Assuming that:

Entity A references a collection of Entity B.
Entity B references a collection of Entity A.
Entity A is the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

There is a join table that is naméd B (owner name first). This join table has two foreign key
columns. One foreign key column refers to taBland has the same type as the primary key of
tableA. The name of this foreign key column is formed as the concatenation of the following:
the name of the relationship property or field of entity BY;"the name of the primary key col-
umn in tableA. The other foreign key column refers to taBl@and has the same type as the pri-
mary key of tableB. The name of this foreign key column is formed as the concatenation of the
following: the name of the relationship property or field of entity A';"the name of the pri-
mary key column in tablB.

27 12/19/05

Sun Microsystems, Inc.

Entities Enterprise JavaBeans 3.0, Proposed Final Draft

Example:

@Entity
public class Project {
private Collection<Employee> employees;

@ManyToMany
public Collection<Employee> getEmployees() {
return employees;

public void setEmployees(Collection<Employee> employees) {
this.employees = employees;

}

@Entity

public class Employee {
private Collection<Project> projects;
@ManyToMany(mappedBy="employees")

public Collection<Project> getProjects() {
return projects;

public void setProjects(Collection<Project> projects) {
this.projects = projects;

In this example:

Entity Project references a collection of EntiBmployee .

Entity Employee references a collection of EntiBroject
Entity Project is the owner of the relationship.

The following mapping defaults apply:

Entity Project is mapped to a table namB&OJECT
Entity Employee is mapped to a table nameEMPLOYEE

Requirements on the Entity Class

There is a join table that is nam&ROJECT_EMPLOYEHKowner name first). This join table
has two foreign key columns. One foreign key column refers to tBRR®JECTand has the
same type as the primary key #fROJECT The name of this foreign key column is
PROJECTS<PK of PROJECT>, where <PK of PROJECT> denotes the name of the primary
key column of tabld®PROJECT The other foreign key column refers to tali®PLOYERnd

has the same type as the primary keyebiPLOYEEThe name of this foreign key column is
EMPLOYEESPK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the

primary key column of tablEMPLOYEE

12/19/05 28

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft

2.1.85

2.1.851

Unidirectional Multi-Valued Relationships
Assuming that:

Entity A references a collection of Entity B.
Entity B does not reference Entity A.

Enfties

A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional multi-valued relationship modeling case can be specified as either a unidirectional

OneToMany or as a unidirectiondlanyToMany relationship.
Unidirectional OneToMany Relationships
The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namid

There is a join table that is naméd B (owner name first). This join table has two foreign key
columns. One foreign key column refers to taBland has the same type as the primary key of
tableA. The name of this foreign key column is formed as the concatenation of the following:
the name of entity A; ""; the name of the primary key column in tab% The other foreign

key column refers to tablB and has the same type as the primary key of t8dad there is a
unique key constraint on it. The name of this foreign key column is formed as the concatena-
tion of the following: the name of the relationship property or field of entity A};'the name

of the primary key column in tabk
Example:

@Entity
public class Employee {
private Collection<AnnualReview> annualReviews;

@OneToMany
public Collection<AnnualReview> getAnnualReviews() {
return annualReviews;

}

public void setAnnualReviews(Collection<AnnualReview> annualRe-
views) {

this.annualReviews = annualReviews;

}
}
@Entity
public class AnnualReview {
}

In this example:

29

12/19/05

Sun Microsystems, Inc.

Entities

Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Entity Employee references a collection of EntijnnualReview .
Entity AnnualReview does not reference EntiBmployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table namEMPLOYEE
Entity AnnualReview is mapped to a table namAdINUALREVIEW

There is a join table that is nam&MPLOYEE_ANNUALREVIEbwner name first). This
join table has two foreign key columns. One foreign key column refers to &lBLOYEE
and has the same type as the primary ke BfPLOYEEThis foreign key column is named
EMPLOYEE<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the pri-
mary key column of tablEMPLOYEEThe other foreign key column refers to taBlBINUAL-
REVIEWand has the same type as the primary keYADBMNUALREVIEWThis foreign key
column is namedANNUALREVIEWSPK of ANNUALREVIEW>, where <PK of ANNU-
ALREVIEW> denotes the name of the primary key column of tadMNUALREVIEWT here

is a unique key constraint on the foreign key that refers to A@iNMJALREVIEW

2.1.8.5.2 Unidirectional ManyToMany Relationships

The following mapping defaults apply:

Entity A is mapped to a table namad
Entity B is mapped to a table namBd

There is a join table that is naméd B (owner name first). This join table has two foreign key
columns. One foreign key column refers to taBland has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following:
the name of entityy; " _"; the name of the primary key column in tabe The other foreign

key column refers to tablB and has the same type as the primary key of t&8blehe name of

this foreign key column is formed as the concatenation of the following: the name of the rela-

tionship property or field of entit); "_"; the name of the primary key column in taBle

12/19/05

30

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Enfties

Example:

@Entity
public class Employee {
private Collection<Patent> patents;

@ManyToMany
public Collection<Patent> getPatents() {
return patents;

public void setPatents(Collection<Patent> patents) {
this.patents = patents;

@Entity
public class Patent {

}

In this example:

Entity Employee references a collection of EntilBatent .
Entity Patent does not reference Entigmployee .
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table nameEMPLOYEE
Entity Patent is mapped to a table namEATENT

There is a join table that is nam&MPLOYEE_PATENTowner name first). This join table
has two foreign key columns. One foreign key column refers to taM®LOYERNd has the
same type as the primary key d&EMPLOYEE This foreign key column is named
EMPLOYEE<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the pri-
mary key column of tabl&EMPLOYEEThe other foreign key column refers to tatHATENT
and has the same type as the primary keyPATENT This foreign key column is named
PATENTS <PK of PATENT>, where <PK of PATENT> denotes the name of the primary key
column of tablePATENT

2.1.9 Inheritance

An entity may inherit from another entity class. Entities support inheritance, polymorphic associations,
and polymorphic queries.

Both abstract and concrete classes can be entities. Both abstract and concrete classes can be anjotated
with theEntity — annotation, mapped as entities, and queried for as entities.

Entities can extend non-entity classes and non-entity classes can extend entity classes. |

31 12/19/05

Sun Microsystems, Inc.

| Entities

Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

These concepts are described further in the following sections.

2.1.9.1 Abstract Entity Classes

An abstract class can be specified as an entity. An abstract entity differs from a concrete entity only in
that it cannot be directly instantiated. An abstract entity is mapped as an entity and can be the target of
queries (which will operate over and/or retrieve instances of its concrete subclasses).

An abstract entity class is annotated with fatity annotation or denoted in the XML descriptor as
an entity.

The following example shows the use of an abstract entity class in the entity inheritance hierarchy.
Example: Abstract class as an Entity

@Entity
@Table(name="EMP")
@Inheritance(strategy=JOINED)
public abstract class Employee {
@Id protected Integer empld;
@Version protected Integer version;
@ManyToOne protected Address address;

@Entity

@Table(name="FT_EMP")
@DiscriminatorValue("FT")
@PrimaryKeyJoinColumn(name="FT_EMPID")
public class FullTimeEmployee extends Employee {

Il Inherit empld, but mapped in this class to FT_EMP.FT_EMPID
I Inherit version mapped to EMP.VERSION
/I Inherit address mapped to EMP.ADDRESS fk

protected Integer salary;
// Defaults to FT_EMP.SALARY
public Integer getSalary() { return salary; }

@Entity
@Table(name="PT_EMP")
@DiscriminatorValue("PT")
/I PK field is PT_EMP.EMPID due to PrimaryKeyJoinColumn default
public class PartTimeEmployee extends Employee {
protected Float hourlyWage;

12/19/05

32

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Enfties
2.1.9.2 Mapped Superclasses 'I
An entity may inherit from a superclass that provides persistent entity state and mapping informaton,

but which is not itself an entity. Typically, the purpose of such a mapped superclass is to define {tate
and mapping information that is common to multiple entity classes.

A mapped superclass, unlike an entity, is not queryable and cannot be passed as an argument to Entity—
Manager or Query operations. A mapped superclass cannot be the target of a persistent relationsHip.

Both abstract and concrete classes may be specified as mapped superclassdsppdtSuper-
class annotation (ormapped-superclass XML descriptor element) is used to designate a
mapped superclass.

A class designated &appedSuperclass has no separate table defined for it. Its mapping informal
tion is applied to the entities that inherit from it.

A class designated ddappedSuperclass can be mapped in the same way as an entity except thht
the mappings will apply only to its subclasses since no table exists for the mapped superclass ifself.
When applied to the subclasses, the inherited mappings will apply in the context of the subclass taples.
Mapping information can be overridden in such subclasses by usitfileuteOverride anno-

tation orattribute-override XML element.

All other entity mapping defaults apply equally to a class designatdamsedSuperclass

The following example illustrates the definition of a concrete class as a mapped superclass.

33 12/19/05

Sun Microsystems, Inc.

Entities

Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Example: Concrete class as a mapped superclass

@MappedSuperclass
public class Employee {

@Id protected Integer empld;

@Version protected Integer version;
@ManyToOne @JoinColumn(name="ADDR")
protected Address address;

public Integer getEmpld() { ... }

public void setEmpld(Integer id) { ... }
public Address getAddress() { ... }

public void setAddress(Address addr) { ... }

}

/I Default table is FTEMPLOYEE table
@Entity
public class FTEmployee extends Employee {

Il Inherited empld field mapped to FTEMPLOYEE.EMPID

Il Inherited version field mapped to FTEMPLOYEE.VERSION

/I Inherited address field mapped to FTEMPLOYEE.ADDR fk
protected Integer salary;

// Defaults to FTEMPLOYEE.SALARY
public FTEmployee() {}

public Integer getSalary() { ... }
public void setSalary(Integer salary) { ... }

@Entity @Table(name="PT_EMP")
@AttributeOverride(name="address", column=@Column(name="ADDR_ID"))
public class PartTimeEmployee extends Employee {

/I Inherited empld field mapped to PT_EMP.EMPID

/I Inherited version field mapped to PT_EMP.VERSION

// address field mapping overridden to PT_EMP.ADDR_ID fk
@Column(hame="WAGE")

protected Float hourlyWage;

public PartTimeEmployee() {}

public Float getHourlyWage() { ... }
public void setHourlyWage(Float wage) { ... }

}

2.1.9.3 Non-Entity Classes in the Entity Inheritance Hierarchy

An entity can have a non-entity superclass, which may be either a concrete or abstract class.

The non-entity superclass serves for inheritance of behavior only. The state of a non-entity superclass is
not persistent. Any state inherited from non-entity superclasses is non-persistent in an inheriting entity
class. This non-persistent state is not managed by the EntityManager, nor it is required to be retained
across transactions. Any annotations on such superclasses are ignored.

12/19/05

34

Sun Microsystems, Inc.

Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Enfties

Non-entity classes cannot be passed as arguments to methods of the EntityManager or Query inteffaces
and cannot bear mapping information.

The following example illustrates the use of a non-entity class as a superclass of an entity.
Example: Non-entity superclass

public class Cart {

/I This state is transient
Integer operationCount;

public Cart() { operationCount = 0; }
public Integer getOperationCount() { return operationCount; }
public void incrementOperationCount() { operationCount++; }

}

@Entity
public class ShoppingCart extends Cart {

Collection<Item> items = new Vector<ltem>();

public ShoppingCart() { super(); }

@OneToMany
public Collection<Item> getltems() { return items; }
public void addltem(ltem item) {
items.add(item);
incrementOperationCount();
}
}

2.1.10 Inheritance Mapping Strategies

The mapping of class hierarchies is specified through metadata.

There are three basic strategies that are used when mapping a class or class hierarchy to a relational
database schema:

* asingle table per class hierarchy
* asingle table per concrete entity class

* astrategy in which fields that are specific to a subclass are mapped to a separate table than the
fields that are common to the parent class, and a join is performed to instantiate the subclass.

An implementation is required to support the single table per class hierarchy inheritance mapping strat-
egy and the joined subclass strategy.

Support for the table per class inheritance mapping strategy is optional in this release.

35 12/19/05

Sun Microsystems, Inc.

Entities Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Support for the combination of inheritance strategies within a single entity inheritance hierar-
chy is not required by this specification.

2.1.10.1 Single Table per Class Hierarchy Strategy
In this strategy, all the classes in a hierarchy are mapped to a single table. The table has a column that
serves as a “discriminator column”, that is, a column whose value identifies the specific subclass to
which the instance that is represented by the row belongs.

This mapping strategy provides good support for polymorphic relationships between entities and for
gueries that range over the class hierarchy.

It has the drawback, however, that it requires that the columns that correspond to state specific to the
subclasses be nullable.

2.1.10.2 Table per Class Strategy
In this mapping strategy, each class is mapped to a separate table. All properties of the class, including
inherited properties, are mapped to columns of the table for the class.

This strategy has the following drawbacks:
* |t provides poor support for polymorphic relationships.

e Ittypically requires that SQL UNION queries (or a separate SQL query per subclass) be issued
for queries that are intended to range over the class hierarchy.

2.1.10.3 Joined Subclass Strategy
In the joined subclass strategy, the root of the class hierarchy is represented by a single table. Each sub-
class is represented by a separate table that contains those fields that are specific to the subclass (not
inherited from its superclass), as well as the column(s) that represent its primary key. The primary key
column(s) of the subclass table serves as a foreign key to the primary key of the superclass table.

This strategy provides support for polymorphic relationships between entities.
It has the drawback that it requires that one or more join operations be performed to instantiate instances

of a subclass. In deep class hierarchies, this may lead to unacceptable performance. Queries that range
over the class hierarchy likewise require joins.

12/19/05 36

Sun Microsystems, Inc.

EntityManager

Chapter 3

3.1

Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operatigns

Entity Operations

This chapter describes the use of BtityManager API to manage the entity instance lifecycle and
the use of thQuery API to retrieve and query entities and their persistent state.

EntityManager

An EntityManager instance is associated with a persistence context. A persistence context is a set of
entity instances in which for any persistent entity identity there is a unique entity instance. Within the
persistence context, the entity instances and their lifecycle are manageinfitydlanager inter- |
face defines the methods that are used to interact with the persistence contexmtityidanager

APl is used to create and remove persistent entity instances, to find entities by their primary key, arjd to
guery over entities.

The set of entities that can be managed by a given EntityManager instance is defined by a persistence
unit. A persistence unit defines the set of all classes that are related or grouped by the application, and
which must be colocated in their mapping to a single database.

Section 3.1 defines thentityManager interface. The entity instance lifecycle is described in Sec-
tion 3.2. The relationships between entity managers and persistence contexts are described in spction
3.3 and in further detail in Chapter 5. Section 3.4 describes entity listeners and lifecycle callback mgth-
ods for entities. Th@uery interface is described in section 3.5.

37 12/19/05

Sun Microsystems, Inc.

| Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft EntityManager

3.1.1 EntityManager Interface

package javax.persistence;

/**
* Interface used to interact with the persistence context.
*/
public interface EntityManager {
/**
* Make an instance managed and persistent.
* @param entity
* @throws lllegalArgumentException if not an entity

or entity is detached
* @throws TransactionRequiredException if there is

* no transaction and the persistence context is
* of type PersistenceContextType. TRANSACTION
*

public void persist(Object entity);

/**

* Merge the state of the given entity into the
* current persistence context.
* @param entity
* @return the instance that the state was merged to
* @throws lllegalArgumentException if instance is not an
entity or is a removed entity
* @throws TransactionRequiredException if there is
no transaction and the persistence context is

* of type PersistenceContextType. TRANSACTION
*

/
public <T> T merge(T entity);

/**
| * Remove the entity instance.
* @param entity
* @throws IllegalArgumentException if not an entity
or if a detached entity
* @throws TransactionRequiredException if there is

* no transaction and the persistence context is
* of type PersistenceContextType. TRANSACTION
*

public void remove(Object entity);

/**
* Find by primary key.
* @param entityClass
* @param primaryKey
* @return the found entity instance or null
| if the entity does not exist
* @throws lllegalArgumentException if the first argument does
not denote an entity type or the second

* argument is not a valid type for that
* entity’s primary key
*/

public <T> T find(Class<T> entityClass, Object primaryKey);

/**

12/19/05 38

Sun Microsystems, Inc.

EntityManager Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operatigns
* Get an instance, whose state may be lazily fetched.
* If the requested instance does not exist in the database,
* throws EntityNotFoundException when the instance state is
* first accessed. (The persistence provider runtime is
* permitted to throw the EntityNotFoundException when
* getReference is called.)
* The application should not expect that the instance state will
* be available upon detachment, unless it was accessed by the
* application while the entity manager was open.
* @param entityClass
* @param primaryKey
* @return the found entity instance
* @throws lllegalArgumentException if the first argument does
* not denote an entity type or the second
* argument is not a valid type for that
* entity’s primary key
* @throws EntityNotFoundException if the entity state
cannot be accessed
*/
public <T> T getReference(Class<T> entityClass, Object prima-
ryKey);
/**
* Synchronize the persistence context to the
* underlying database.
* @throws TransactionRequiredException if there is
no transaction

* @throws PersistenceException if the flush fails
*
public void flush();
/**
* Set the flush mode that applies to all objects contained
* in the persistence context.
* @param flushMode
*/
public void setFlushMode(FlushModeType flushMode);
/**
* Get the flush mode that applies to all objects contained
* in the persistence context.
* @return flushMode
*/
public FlushModeType getFlushMode();
/**
* Set the lock mode for an entity object contained
* in the persistence context.
* @param entity
* @param lockMode
* @throws PersistenceException if an unsupported lock call

is made
* @throws lllegalArgumentException if the instance is not

an entity or is a detached entity
* @throws TransactionRequiredException if there is no

transaction
*/
public void lock(Object entity, LockModeType lockMode);

39 12/19/05

Sun Microsystems, Inc.

| Entity Operations

Enterprise JavaBeans 3.0, Proposed Final Draft

/**

* Refresh the state of the instance from the database,

* gverwriting changes made to the entity, if any.

* @param entity

* @throws lllegalArgumentException if not an entity

or entity is not managed
* @throws TransactionRequiredException if there is
no transaction and the persistence context is

* of type PersistenceContextType. TRANSACTION

* @throws EntityNotFoundException if the entity no longer
exists in the database

*

/
public void refresh(Object entity);

/**

* Clear the persistence context, causing all managed

* entities to become detached. Changes made to entities that
* have not been flushed to the database will not be

* persisted.

*

public void clear();

/**
* Check if the instance belongs to the current persistence
* context.
* @param entity
* @return
* @throws lllegalArgumentException if not an entity
*
/
public boolean contains(Object entity);

/**
* Create an instance of Query for executing an
* EJB QL statement.
* @param ejbqlString an EJB QL query string
* @return the new query instance
* @throws lllegalArgumentException if query string is not valid
*
/
public Query createQuery(String ejbqlString);

/**
* Create an instance of Query for executing a
* named query (in EJB QL or native SQL).
* @param name the name of a query defined in metadata
* @return the new query instance
* @throws lllegalArgumentException if a query has not been
* defined with the given name
*
/
public Query createNamedQuery(String name);

/**

* Create an instance of Query for executing

* a native SQL statement, e.g., for update or delete.
* @param sqlString a native SQL query string

* @return the new query instance

*

public Query createNativeQuery(String sqlString);

/**

EntityManager

12/19/05

40

Sun Microsystems, Inc.

EntityManager

Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operatigns

* Create an instance of Query for executing
* a native SQL query.
* @param sqlString a native SQL query string

* @return the new query instance

*/

public Query createNativeQuery(String sqlString, Class result-
Class);

/**

* Create an instance of Query for executing

* a native SQL query.

* @param sqlString a native SQL query string

* @param resultSetMapping the name of the result set mapping

* @param resultClass the class of the resulting instance(s) |

* @return the new query instance |
*/

public Query createNativeQuery(String sqlString, String result-
SetMapping);

/**

* Close an application-managed EntityManager. |

* After an EntityManager has been closed, all methods on the
* EntityManager instance will throw the lllegalStateException
* except for isOpen, which will return false.

* is not associated with an active transaction.

* This method can only be called when the EntityManager |

* @throws lllegalStateException if the EntityManager is
* associated with an active transaction or if the
* EntityManager is container-managed.

*/

public void close();

/**

* Determine whether the EntityManager is open. |

* @return true until the EntityManager has been closed.
*

/
public boolean isOpen();

/**

* Return the resource-level transaction object. |

* The EntityTransaction instance may be used serially to
* begin and commit multiple transactions.
* @return EntityTransaction instance
* @throws lllegalStateException if invoked on a JTA
* EntityManager or an EntityManager that has been closed.
*
/
public EntityTransaction getTransaction();

}

Thepersist , merge, remove , flush , andrefresh methods must be invoked within a transac-
tion context when a transaction-scoped persistence context is used . If there is no transaction co
thejavax.persistence.TransactionRequiredException is thrown.

Thefind andgetReference methods are not required to be invoked within a transaction context.
an entity manager with transaction-scoped persistence context is in use, the resulting entities w

detached; if an entity manager with an extended persistence context is used, they will be managed.

htext,

| be
See

sections 5.6.1 and 5.6.2 for entity manager use outside a transaction.

41 12/19/05

Sun Microsystems, Inc.

| Entity Operations

3.1.2

Enterprise JavaBeans 3.0, Proposed Final Draft Entity Instance’s Life Cycle

TheQuery andEntityTransaction objects obtained from an entity manager are valid while that
entity manager is open.

If the argument to thereateQuery method is not a valid EJB QL query string, the lllegalArgumen-
tException may be thrown or the query execution will fail. If a native query is not a valid query for the
database in use or if the result set specification is incompatible with the result of the query, the query
execution will fail and a PersistenceException will be thrown when the query is executed. The Persis-
tenceException should wrap the underlying database exception when possible.

Runtime exceptions thrown by the methods of BrgityManager interface will cause the current
transaction to be rolled back.

The methodstlose , isOpen , and getTransaction are used to manage application-managed

entity managers and their lifecycle. See Section 5.2.2, “Obtaining an Application-managed Entity Man-
ager”.

Example of Use of EntityManager API

3.2

@Stateless public class OrderEntryBean implements OrderEntry {
@PersistenceContext EntityManager em;

public void enterOrder(int custID, Order newOrder) {
Customer cust = em.find(Customer.class, custID);
cust.getOrders().add(newOrder);
newOrder.setCustomer(cust);

}
}

Entity Instance’s Life Cycle

This section describes tlitityManager operations for managing an entity instance’s lifecycle. An
entity instance may be characterized as being new, managed, detached, or removed.

* A new entity instance has no persistent identity, and is not yet associated with a persistence
context.

* A managed entity instance is an instance with a persistent identity that is currently associated
with a persistence context.

* A detached entity instance is an instance with a persistent identity that is not (or no longer)
associated with a persistence context.

* A removed entity instance is an instance with a persistent identity, associated with a persis-
tence context, that is scheduled for removal from the database.

12/19/05

42

Sun Microsystems, Inc.

Entity Instance’s Life Cycle Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operatipns

The following subsections describe the effect of lifecycle operations upon entities. Usecabttzale
annotation element may be used to propagate the effect of an operation to associated entities. The cas-
cade functionality is most typically used in parent-child relationships.

3.2.1 Persisting an Entity Instance

A new entity instance becomes both managed and persistent by invokipgrdist method on it or
by cascading the persist operation.

The semantics of the persist operation, applied to an ehétg as follows:

* If Xis a new entity, it becomes managed. The entity X will be entered into the database at or
before transaction commit or as a result of the flush operation.

* If X is a preexisting managed entity, it is ignored by the persist operation. However, the persist
operation is cascaded to entities referenced by X, if the relationships from X to these other
entities is annotated with theascade=PERSIST or cascade=ALL annotation element
value or specified with the equivalent XML descriptor element.

* If X is a removed entity, it becomes managed.

* If Xis a detached object, an lllegalArgumentException will be thrown by the persist operation
(or the transaction commit will fail).

* For all entities Y referenced by a relationship from X, if the relationship to Y has been anno-

tated with thecascade element valueascade=PERSIST or cascade=ALL , the persist
operation is applied to .

3.2.2 Removal

A managed entity instance becomes removed by invokingaimeve method on it or by cascading the
remove operation.

The semantics of the remove operation, applied to an entity X are as follows:

e If Xis a new entity, it is ignored by the remove operation. However, the remove operation is
cascaded to entities referenced by X, if the relationships from X to these other entities is anno-
tated with thecascade=REMOVEor cascade=ALL annotation element value.

* If Xis a managed entity, the remove operation causes it to become removed. The remove oper-
ation is cascaded to entities referenced by X, if the relationships from X to these other entities

is annotated with theascade=REMOVEor cascade=ALL annotation element value.

* If Xis a detached entity, an lllegalArgumentException will be thrown by the remove operation
(or the transaction commit will fail).

e If Xis a removed entity, it is ignored by the remove operation.

43 12/19/05

Sun Microsystems, Inc.

Entity Operations

3.2.3

Enterprise JavaBeans 3.0, Proposed Final Draft Entity Instance’s Life Cycle

* Aremoved entity X will be removed from the database at or before transaction commit or as a
result of the flush operation.

After an entity has been removed, its state (except for generated state) will be that of the entity at the
point at which the remove operation was called.

Synchronization to the Database

The state of persistent entities is synchronized to the database at transaction commit. This synchroniza-
tion involving writing to the database any updates to persistent entities and their relationships as speci-
fied above.

An update to the state of an entity includes both the assignment of a new value to a persistent property
or field of the entity as well as the modification of a mutable value of a persistent property or field.

Synchronization to the database does not involve a refresh of any managed entities uméfessine
operation is explicitly invoked on those entities.

Bidirectional relationships between managed entities will be persisted based on references held by the
owning side of the relationship. It is the developer’s responsibility to keep the in-memory references
held on the owning side and those held on the inverse side consistent with each other when they change.
In the case of unidirectional one-to-one and one-to-many relationships, it is the developer’s responsibil-
ity to insure that the semantics of the relationships are adhelfd to.

It is particularly important to ensure that changes to the inverse side of a relationship result in
appropriate updates on the owning side, so as to ensure the changes are not lost when they are
synchronized to the database. Developers may choose whether or not to update references
held by the inverse side when the owning side changes, depending on whether the application
can handle out-of-date references on the inverse side until the next database refresh occurs.

The persistence provider runtime is permitted to perform synchronization to the database at other times
as well when a transaction is active—for example, before query execution—as defined in section 3.5.2.
Theflush method can be used to force synchronization. It applies to entities associated with the per-
sistence context. THiElushMode annotation can be used to further control synchronization semantics.

If there is no transaction active, the persistence provider must not flush to the database.

The semantics of the flush operation, applied to an extie as follows:

* If X is a managed entity, it is synchronized to the database.

* For all entities Y referenced by a relationship from X, if the relationship to Y has been
annotated with thecascade element valuecascade=PERSIST or cas-
cade=ALL , the persist operation is applied to Y.

* For any entity Y referenced by a relationship from X, where the relationship to Y has
not been annotated with tltascade element valueascade=PERSIST or cas-
cade=ALL :

(8]

This might be an issue if unique constraints (such as those described for the default mappings in sections 2.1.883.8nd 2.1
were not applied in the definition of the object/relational mapping.

12/19/05

44

Sun Microsystems, Inc.

Entity Instance’s Life Cycle Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operatipns

* If Y is new or removed, an lllegalStateException will be thrown by the flush
operation (and the transaction rolled back) or the transaction commit will
fail.

e If Y is detached, the semantics depend upon the ownership of the relation-
ship. If X owns the relationship, any changes to the relationship are synchro-
nized with the database; otherwise, if Y owns the relationships, the behavior
is undefined.

* If Xis a removed entity, it is removed from the database. No cascade options are relevant.

3.2.4 Detached Entities

A detached entity may result from transaction commit (see section 3.3.3), from transaction rollback [see
section 3.3.4), from serializing an entity or otherwise passing an entity by value—e.g., to a sepgrate
application tier, through a remote interface, etc.

Detached entity instances continue to live outside of the persistence context in which they were [per-
sisted or retrieved, and their state is no longer guaranteed to be synchronized with the database sjate.

The application may access the available state of available detached entity instances after the persis-
tence context ends. The available state includes:

* Any persistent field or property not markietich=LAZY
* Any persistent field or property that was accessed by the application

If the persistent field or property is an association, the available state of an associated instance mayj only
be safely accessed if the associated instance is available. The available instances include:

* Any entity instance retrieved usifigd() . |
* Any entity instances retrieved using a query or explicitly requested in a FETCH JOIN clause.

* Any entity instance for which an instance variable holding non-primary-key persistent state
was accessed by the application. |

* Any entity instance that may be reached from another available instance by navigating associa-
tions markedetch=EAGER .

3.2.4.1 Merging Detached Entity State

The merge operation allows for the propagation of state from detached entities onto persistent entities
managed by the EntityManager.

The semantics of the merge operation applied to an entity X are as follows:

* If Xis a detached entity, the state of X is copied onto a pre-existing managed entity instanc¢ X'
of the same identity or a new managed copy X' of X is created.

45 12/19/05

Sun Microsystems, Inc.

| Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Entity Instance’s Life Cycle

* If Xis a new entity instance, a new managed entity instance X' is created and the state of X is
copiedinto the new managed entity instance X'.

* If X is a removed entity instance, an lllegalArgumentException will be thrown by the merge
operation (or the transaction commit will fail).

* If Xis a managed entity, it is ignored by the merge operation, however, the merge operation is
cascaded to entities referenced by relationships from X if these relationships have been anno-
tated with thecascade element valueascade=MERGE or cascade=ALL annotation.

* For all entities Y referenced by relationships from X having tascade element value
cascade=MERGE or cascade=ALL , Y is merged recursively as Y'. For all such Y refer-
enced by X, X' is set to reference Y'. (Note that if X is managed then X is the same object as
X")

e If X'is an entity merged to X', with a reference to another entity Y, whemrecade=MERGE
or cascade=ALL is not specified, then navigation of the same association from X' yields a
reference to a managed object Y' with the same persistent identity as Y.

during the merge operation and/or at flush or commit time. In the abseMarsibn columns there is

Any Version columns used by the entity must be checked by the persistence runtime implementation
no additional version checking done by the persistence provider runtime during the merge operation.

3.2.5 Managed Instances
‘ It is the responsibility of the application to insure that an instance is managed in only a single persis-

tence context. The behavior is undefined if the same Java instance is made managed in more than one
persistence context.

The contains() method can be used to determine whether an entity instance is managed in the cur-
rent persistence context.

Thecontains method returns true:
* If the entity has been retrieved from the database, and has not been removed or detached.

* Ifthe entity instance is new, and tpersist method has been called on the entity or the per-
sist operation has been cascaded to it.

Thecontains method returns false:
¢ |f the instance is detached.

* If the remove method has been called on the entity, or the remove operation has been cas-
caded to it.

* Ifthe instance is new, and tipersist method has not been called on the entity or the persist
operation has not been cascaded to it.

12/19/05 46

Sun Microsystems, Inc.

Persistence Context Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operatjons

3.3

Note that the effect of the cascading of persist or remove is immediately visible totitains
method, whereas the actual insertion or deletion of the database representation for the entity may be
deferred until the end of the transaction.

Persistence Context

33.1

A persistence context lifetime may either be scoped to a transaction (transaction-scoped persisfence
context), or have a lifetime scope that extends beyond that of a single transaction (extended persigtence
context). The enurRersistenceContextType is used to define the persistence context lifetime
scope:

public enum PersistenceContextType {
TRANSACTION,
EXTENDED

}

By default, a persistence context's lifecycle corresponds to the scope of a transaction (i.e., it is of type
PersistenceContextType. TRANSACTION).

The PersistenceContextType is that defined when the EntityManager instance is created
(whether explicitly, or in conjunction with injection or INDI lookup). See Section 5.6.

Transaction-scoped Brsistence Context

3.3.2

A transaction-scoped persistence context begins when the entity manager is invoked in the scopg¢ of a
transaction, as described in section 5.6. The persistence context ends when the transaction ends [either
by commit or rollback).

Extended Rersistence Context

A persistence context may be maintained across multiple transactions by specifying the persistence con-
text as an extended persistence context.

When an extended persistence context is used, the extended persistence context exists from the time the
EntityManager instance is created until it is closed. This persistence context might span multiple trans-
actions and non-transactional invocations of the EntityManager. The extended persistence contgxt is
enlisted in the current transaction when the EntityManager is invoked in the scope of that transactign or
when the stateful session bean to which the extended persistence context is bound is invoked ih the
scope of that transaction.

47 12/19/05

Sun Microsystems, Inc.

| Entity Operations

3.3.3

Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Context

An EntityManager with an extended persistence context maintains its references to the entity objects
after a transaction has committed. Those objects remain managed by the EntityManager, and they may
be updated as managed objects between transa@doNavigation from a managed object in an
extended persistence context results in one or more other managed objects regardless of whether a trans-
action is active. The persist, remove, merge, and refresh operations may be called regardless of whether
a transaction is active.

Extended persistence contexts are described futher in Section 5.6.

Transaction Commit

3.34

The managed entities of a transaction-scoped persistence context become detached when the transaction
commits; the managed entities of an extended persistence context remain managed.

Transaction Rollback

3.3.5

For both transaction-scoped and extended persistence contexts, transaction rollback qagsexzist

ing managed instances and removed instdhde® become detached. The instances’ state will be the

state of the instances at the point at which the transaction was rolled back. Transaction rollback typi-
cally causes the persistence context to be in an inconsistent state at the point of rollback. In particular,
the state of version attributes and generated state (e.g., generated primary keys) may be inconsistent.
Instances that were formerly managed by the persistence context (including new instances that were
made persistent in that transaction) may therefore not be reusable in the same manner as other detached
objects—for example, they may fail when passed to the merge opé’ré]tion.

Optimistic Locking and Concurrency

This specification assumes the use of "optimistic locking". It assumes that the databases to which per-
sistence units are mapped will be accessed by implementations using read-committed isolation (or a
vendor equivalent in which long-term read locks are not held), and that writes to the database typically
occur only when thélush method has been invoked—whether explicitly by the application, or by the
persistence provider runtime in accordance withEheshMode settings. If a transaction is active, a
compliant implementation of this specification is permitted to write to the database immediately (i.e.,
whenever a managed entity is updated, created, and/or removed), however, the configuration of an
implementation to require such non-deferred database writes is outside the scope of this specification.
The configuration of the setting of optimistic lock modes is described in section 3.3.5.3. Applications
that prefer the use of pessimistic locking may require that database isolation levels higher than
read-committed be in effect. The configuration of the setting of such database isolation levels, however,
is outside the scope of this specification.

&)

Note that when a new transaction is begun, the managed objects in an extended persistence cootestaaeed from the data-
base.

[10] These are instances that were persistent in the database at the start of the transaction.

[11]

It is unspecified as to whether instances that were not persistent in the database behave as new instances or deteghed insta
after rollback. This may be implementation-dependent.

12/19/05

48

Sun Microsystems, Inc.

Persistence Context Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operatjons

3.35.1

3.3.5.2

Optimistic Locking

Optimistic locking is a technique that is used to insure that updates to the database data correspo
to the state of an entity are made only when no intervening transaction has updated that data fd
entity state since the entity state was read. This insures that updates or deletes to that data are con
with the current state of the database and that intervening updates are not lost. Transactions that
cause this constraint to be violated result in@ptimisticLockException being thrown and
transaction rollback.

Portable applications that wish to enable optimistic locking for entities must sp¥®eifgion
attributes for those entities—i.e., persistent properties or fields annotated witkitsien annotation

nding
r the
sistent
vould

or specified in the XML descriptor as version attributes. Applications are strongly encouraged to enfble

optimistic locking for all entities that may be concurrently accessed or merged from a disconne
state. Failure to use optimistic locking may lead to inconsistent entity state, lost updates and othe
irregularities. If optimistic locking is not defined as part of the entity state, the application must bear
burden of maintaining data consistency.

Version Attributes

TheVersion field or property is used by the persistence provider to perform optimistic locking. It
accessed and/or set by the persistence provider in the course of performing lifecycle operations o
entity instance. An entity is automatically enabled for optimistic locking if it has a property or fie
mapped with &ersion mapping.

An entity may access the state of its version field or property or export a method for use by the app
tion to access the version, but must not modify the version V&lueOnly the persistence provider is
permitted to set or update the value of the version attribute in the object.

The version attribute is updated by the persistence provider runtime when the object is written tg
database. All non-relationship fields and properties and all relationships owned by the entity
included in version checks.

ted
state
the

n the

ica-

the
are

The persistence provider's implementation of the merge operation must examine the version attrjbute

when an entity is being merged and throw@ptimisticLockException if it is discovered that
the object being merged is a stale copy of the entity—i.e. that the entity has been updated sinc
entity became detached. Depending on the implementation strategy used, it is possible that this e
tion may not be thrown untilush is called or commit time, whichever happens first.

e the
cep-

The persistence provider runtime is only required to use the version attribute when performing optitis-

tic lock checking. Persistence provider implementations may provide additional mechanisms be
version attributes to enable optimistic lock checking. However, support for such mechanisms is
required of an implementation of this specificaﬁjd%r]l.

side
not

If only some entities contain version attributes, the persistence provider runtime is required to check

those entities for which version attributes have been specified. The consistency of the object graph
guaranteed, but the absence of version attributes on some of the entities will not stop operations
completing.

5 not
from

[12] EJB QL bulk update statements, however, are permitted to set the value of version attributes. See section 4.11
[13] Such additional mechanisms may be standardized by a future release of this specification

49 12/19/05

Sun Microsystems, Inc.

Entity Operations

3.35.3

Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Context

Lock Modes

In addition to the semantics described above, lock modes may be further specified by means of the
EntityManager lock method.

Two lock mode types are defineREADandWRITE

public enum LockMode

READ,
WRITE

The semantics of requesting locks of tyjpeckMode.READ andLockMode . WRITE are the follow-
ing.

If transaction T1 call$ock(entity, LockMode.READ) on a versioned object, the entity manager
must ensure that neither of the following phenomena can occur:

e P1 (Dirty read): Transaction T1 modifies a row. Another transaction T2 then reads that row and
obtains the modified value, before T1 has committed or rolled back. Transaction T2 eventually
commits successfully; it does not matter whether T1 commits or rolls back and whether it does
so before or after T2 commits.

* P2 (Non-repeatable read): Transaction T1 reads a row. Another transaction T2 then modifies or
deletes that row, before T1 has committed. Both transactions eventually commit successfully.

This will generally be achieved by the entity manager acquiring a lock on the underlying database row.
Any such lock may be obtained immediately (so long as it is retained until commit completes), or the
lock may be deferred until commit time (although even then it must be retained until the commit com-
pletes). Any implementation that supports repeatable reads in a way that prevents the above phenomena
is permissible.

The persistence implementation is not required to support callogk(entity, Lock-
Mode.READ) on a non-versioned object. When it cannot support such a lock call, it must throw the
PersistenceException. When supported, whether for versioned or non-versioned dbje&ts,
Mode.READ must always prevent the phenomena P1 and P2. Applications th&aglntity,
LockMode.READ) on non-versioned objects will not be portable.

If transaction T1 callsock(entity, LockMode.WRITE) on a versioned object, the entity man-

ager must avoid the phenomena P1 and P2 (aslwitkMode.READ) and must also force an update
(increment) to the entity's version column. A forced version update may be performed immediately, or
may be deferred until a flush or commit. If an entity is removed before a deferred version update was to
have been applied, the forced version update is omitted, since the underlying database row no longer
exists.

The persistence implementation is not required to support callogk(entity, Lock-
Mode.WRITE) on a non-versioned object. When it cannot support a such lock call, it must throw the
PersistenceException. When supported, whether for versioned or non-versioned diyjekts,
Mode.WRITE must always prevent the phenomena P1 and P2. For non-versioned objects, whether or
not LockMode.WRITE has any additional behaviour is vendor-specific. Applications that call
lock(entity, LockMode.WRITE) on non-versioned objects will not be portable.

12/19/05

50

Sun Microsystems, Inc.

Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operafions

3.3.54

3.4

For versioned objects, it is permissible for an implementation to LeszkMode WRITE where
LockMode.READ was requested, but not vice versa.

If a versioned object is otherwise updated or removed, then the implementation must ensure tha
requirements ofockMode . WRITE are met, even if no explicit call tBntityManager.lock was
made.

For portability, an application should not depend on vendor-specific hints or configuration to ens
repeatable read for objects that are not updated or removed via any mechanism ottientittyan
Manager.lock . However, it should be noted that if an implementation has acquired up-front pes
mistic locks on some database rows, then it is free to igfaole(entity, LockMode.READ)

calls on the entity objects representing those rows.

OptimisticLockException
Provider implementations may defer writing to the database until the end of the transaction, when
sistent with thé=lushMode setting in effect. In this case, the optimistic lock check may not occur unt

t the

ure

con-
I

commit time, and OptimisticLockExceptions may be thrown in the "before completion” phase of the

commit. If OptimisticLockExceptions must be caught or handled by the applicatiofiutte method
should be used by the application to force the database writes to occur. This will allow the applicatio
catch and handle optimistic lock exceptions.

The OptimisticLockException provides an API to return the object that caused the exception to

n to

be

thrown. The object reference is not guaranteed to be present every time the exception is thrown but

should be provided whenever the persistence provider can supply it. Applications cannot rely upon
object being available.

In some cases an OptimisticLockException will be thrown and wrapped by another exception, such
RemoteException, when VM boundaries are crossed. Entities that may be referenced in wrapped e
tions should be Serializable so that marshalling will not fail.

OptimisticLockExceptions always cause the transaction to roll back.

Refreshing objects or reloading objects in a new transaction context and then retrying the transacti
a potential response to an OptimisticLockException.

Entity Listeners and Callback Methods

A method may be designated as a lifecycle callback method to receive notification of entity lifecy
events.

A lifecycle callback method may be defined on an entity class or on an entity listener class assoc

this

as a
cep-

DN is

cle

ated

with the entity. An entity listener class is a class—distinct from the entity class itself—whose methgds

are invoked in response to lifecycle events on the entity. Any number of entity listener classes ma
defined for an entity class.

Default entity listeners—entity listeners that apply to all entities in the persistence unit—can be sp

be

BCi-

fied by means of the XML descriptor.

51 12/19/05

Sun Microsystems, Inc.

Entity Operations

3.4.1

Enterprise JavaBeans 3.0, Proposed Final Draft Entity Listeners and Callback Methods

Lifecycle callback methods and entity listener classes are defined for an entity by means of metadata
annotations or the XML descriptor. When annotations are used, one or more entity listener classes are
denoted using th&ntityListeners annotation on the entity class. If multiple entity listeners are
defined, the order in which they are invoked is determined by the order in which they are specified in the
EntityListeners annotation. The XML descriptor may be used as an alternative to specify the
invocation order of entity listeners or to override the order specified in metadata annotations.

Any subset or combination of annotations appropriate to the entity may be specified on an entity class or
listener class. A single entity class or listener class may not have more than one lifecycle callback
method for the same lifecycle event. The same method may be used for multiple callback events.

Multiple entity classes in an inheritance hierarchy may define listener classes and/or lifecycle callback
methods directly on the entity class. Section 3.4.4 describes the rules that apply to method invocation
order in this case.

The entity listener class must have a public no-arg constructor.
Entity listeners are stateless. The lifecycle of an entity listener is unspecified.
The following rules apply to lifecycle callbacks:
» Lifecycle callback methods may throw unchecked/runtime exceptions. A runtime exception
thrown by a callback method that executes within a transaction causes that transaction to be
rolled back.

* Lifecycle callbacks can invoke JNDI, JDBC, JMS, and enterprise beans.

* Portable applications must not invokatityManager or Query operations or access other
entity instances in a lifecycle callback mettibH.
When invoked from within a Java EE environment, the callback listeners for an entity share the enter-
prise haming context of the invoking component, and the entity callback methods are invoked in the
transaction and security contexts of the calling component at the time at which the callback method is
invoked.°]

Lifecycle Callback Methods

Entity lifecycle callback methods can be defined on an entity listener class and/or directly on the entity
class.

Lifecycle callback methods are annotated with annotations designating the callback events for which
they are invoked or are mapped to the callback event using the XML descriptor.

The annotations used for callback methods on the entity class and for callback methods on the entity lis-
tener class are the same. The signatures of individual methods, however, differ.

[14]
[15]

The semantics of such operations may be standardized in a future release of this specification.

For example, if a transaction commit occurs as a result of the normal termination of a session bean business methsaicwith tr
tion attributeRequiresNew , thePostPersist ~ andPostRemove callbacks are executed in the naming context, the transac-
tion context, and the security context of that component.

12/19/05

52

Sun Microsystems, Inc.

Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operafions

3.4.2

Callback methods defined on an entity class have the following signature:
void <METHOD>()
Callback methods defined on an entity listener class have the following signature:

void <METHOD>(Object)

The Object argument is the entity instance for which the callback method is invoked. It may e

declared as the actual entity type.

The callback methods can have public, private, protected, or package level access, but must n
static orfinal

The following annotations are defined to designate lifecycle event callback methods of the corresp
ing types.

* PrePersist

* PostPersist

* PreRemove
* PostRemove
* PreUpdate

* PostUpdate

e PostLoad

Semantics of the Life Cycle Callback Methodsdr Entities

ThePrePersist andPreRemove callback methods are invoked for a given entity before the respe
tive EntityManager persist and remove operations for that entity are executed. For entities to which
merge operation has been applied and causes the creation of newly managed instaRceRgethe
sist callback methods will be invoked for the managed instance after the entity state has been cd
to it. ThesePrePersist and PreRemove callbacks will also be invoked on all entities to which
these operations are cascaded. PnePersist andPreRemove methods will always be invoked
as part of the synchronous persist, merge, and remove operations.

ThePostPersist andPostRemove callback methods are invoked for an entity after the entity ha

Dt be

bnd-

the

pied

b

been made persistent or removed. These callbacks will also be invoked on all entities to which these

operations are cascaded. TRestPersist and PostRemove methods will be invoked after the
database insert and delete operations respectively. These database operations may occur directl

y after
bper-

the persist, merge, or remove operations have been invoked or they may occur directly after a flush

ation has occurred (which may be at the end of the transaction). Generated primary key values are rvail—

able in thePostPersist method.

53 12/19/05

Sun Microsystems, Inc.

| Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Entity Listeners and Callback Methods

ThePreUpdate andPostUpdate callbacks occur before and after the database update operations to
entity data respectively. These database operations may occur at the time the entity state is updated or
they may occur at the time state is flushed to the database (which may be at the end of the transaction).

Note that it is implementation-dependent as to wheBretJpdate andPostUpdate call-

backs occur when an entity is persisted and subsequently modified in a single transaction or
when an entity is modified and subsequently removed within a single transaction. Portable
applications should not rely on such behavior.

ThePostLoad method for an entity is invoked after the entity has been loaded into the current persis-
tence context from the database or after the refresh operation has been applied toRbsilead
method is invoked before a query result is returned or accessed or before an association is traversed.

It is implementation-dependent as to whether callback methods are invoked before or after the cascad-
ing of the lifecycle events to related entities. Applications should not depend on this ordering.

12/19/05 54

Sun Microsystems, Inc.

Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operafions

3.4.3

Example

3.4.4

@Entity
@EntityListeners(com.acme.AlertMonitor.class)
public class Account {

Long accountld;
Integer balance;
boolean preferred;

@lId
public Long getAccountld() { ... }
public Integer getBalance() { ... }

@T'r'émsient /I because status depends upon non-persistent context
public boolean isPreferred() { ... }

public void deposit(Integer amount) { ... }
public Integer withdraw(Integer amount) throws NSFException {... }

@PrePersist
protected void validateCreate() {
if (getBalance() < MIN_REQUIRED_BALANCE)
throw new AccountException("Insufficient balance to open an
account");

@PostLoad
protected void adjustPreferredStatus() {
preferred =
(getBalance() >= AccountManager.getPreferredStatu-
sLevel());
}

}
public class AlertMonitor {
@PostPersist
public void newAccountAlert(Account acct) {

Alerts.sendMarketingInfo(acct.getAccountld(), acct.getBal-
ance());

Multiple Lifecycle Callback Methods for an Entity Lifecycle Event

If multiple callback methods are defined for an entity lifecycle event, the ordering of the invocation
these methods is as follows.

Jof

Default listeners, if any, are invoked first, in the order specified in the XML descriptor. Default listengrs

apply to all entities in the persistence unit, unless explicitly excluded by means BithaedeDe-
faultListeners annotation oexclude-default-listeners XML element.

The lifecycle callback methods defined on the entity listener classes for an entity class are invoked i
same order as the specification of the entity listener classeskntihd isteners annotation.

55 12/19/05

T the

Sun Microsystems, Inc.

Entity Operations

Enterprise JavaBeans 3.0, Proposed Final Draft Entity Listeners and Callback Methods

If multiple entity classes in an inheritance hierarchy define entity listeners, the listeners defined for a
superclass are invoked before the listeners defined for its subclasses in this ordexcitiieSu-
perclassListeners annotation orexclude-superclass-listeners XML element may

be applied to an entity class to exclude the invocation of the listeners defined by the entity listener
classes for the superclasses of the entity. The excluded listeners are excluded from the entity class to

which theExcludeSuperclassListeners annotation or element has been specified and its sub-
classe$t® The ExcludeSuperclassListeners annotation (or exclude-super-
class-listeners XML element) does not cause default entity listeners to be excluded from
invocation.

If a lifecycle callback method for the same lifecycle event is also specified on the entity class and/or one
or more of its entity superclasses, the callback methods on the entity class and/or entity superclasses are
invoked after the other lifecycle callback methods, most general superclass first. A class is permitted to
override an inherited callback method of the same callback type, and in this case, the overridden method
is not invoked.

Callback methods are invoked by the persistence provider runtime in the order specified. If the callback
method execution terminates normally, the persistence provider runtime then invokes the next callback
method, if any.

The XML descriptor may be used to override the lifecycle callback method invocation order specified in
annotations.

[16]

Excluded listeners may be reintroduced on an entity class by listing them explicitlyEntitytisteners annotation or
XML entity-listeners element.

12/19/05

56

Sun Microsystems, Inc.

Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operafions

3.4.5 Example
There are several entity classes and listeners for animals:

@Entity
public class Animal {

@'PostPersist
protected void postPersistAnimal() {

}
}

@Entity
@EntityListeners(PetListener.class)
public class Pet extends Animal {

}

@Entity
@EntityListeners({CatListener.class, CatListener2.class})
public class Cat extends Pet {

}

public class PetListener {
@PostPersist
protected void postPersistPetListenerMethod(Object pet) {

}
}

public class CatListener {
@PostPersist
protected void postPersistCatListenerMethod(Object cat) {

}
}

public class CatListener2 {
@PostPersist
protected void postPersistCatListener2Method(Object cat) {

}
}

If a PostPersist event occurs on an instanceGHt , the following methods are called in order:

postPersistPetListenerMethod
postPersistCatListenerMethod
postPersistCatListener2Method
postPersistAnimal

57 12/19/05

Sun Microsystems, Inc.

| Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Entity Listeners and Callback Methods

Assume thaSiameseCat is defined as a subclass@t :

@EntityListeners(SiameseCatListener.class)
@Entity
public class SiameseCat extends Cat {

@PostPersist
protected void postSiameseCat() {
}
}
public class SiameseCatListener {
@PostPersist
protected void postPersistSiameseCatListenerMethod(Object cat) {
}
}
If a PostPersist event occurs on an instance®iimeseCat , the following methods are called in
order:

postPersistPetListenerMethod
postPersistCatlListenerMethod
postPersistCatListener2Method
postPersistSiameseCatListenerMethod
postPersistAnimal
postPersistSiameseCat

Assume the definition ddiameseCat were instead:

@EntityListeners(SiameseCatListener.class)
@Entity
public class SiameseCat extends Cat {

@PostPersist
protected void postPersistAnimal() {

}
}

In this case, the following methods would be called in order, wipergtPersistAnimal is the
PostPersist method defined in thBiameseCat class:

postPersistPetListenerMethod
postPersistCatListenerMethod
postPersistCatListener2Method
postPersistSiameseCatListenerMethod
postPersistAnimal

3.4.6 Exceptions

Lifecycle callback methods may throw runtime exceptions. A runtime exception thrown by a callback
method that executes within a transaction causes that transaction to be rolled back. No further lifecycle
callback methods will be invoked after a runtime exception is thrown.

12/19/05 58

Sun Microsystems, Inc.

Query API

3.4.7

Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operatiofs

Specification of Callback Listener Classes and Lifecycle Methods in the XML

3.4.7.1

3.4.7.2

3.5

Descriptor

The XML descriptor can be used as an alternative to metadata annotations to specify entity list
classes and their binding to entities or to override the invocation order of lifecycle callback method
specified in annotations.

Specification of Callback Listeners

Theentity-listener XML descriptor element is used to specify the lifecycle listener methods ¢
an entity listener class. The lifecycle listener methods are specified by usingrakgersist ,
post-persist , pre-remove , post-remove , pre-update , post-update , and/or

post-load elements.

method, pre-remove method, post-remove method, pre-update method, post-update method,
post-load method, regardless of whether the XML descriptor is used to define entity listeners or wh
some combination of annotations and XML descriptor elements is used.

At most one method of an entity listener class can be designated as a pre-persist method, post-aersist

Specification of the Binding of Entity Listener Classes to Entities

The default-entity-listeners element is used to specify the default entity listeners for thg

persistence unit.

The entity-listeners element is used to specify the entity listener classes for an entity and
subclasses. Thentity-listeners element is a subelement of thtity element.

The subelements of themtity-listeners element are as follows:

ener
5 as

nd/or
ther

ts

* The listener-class elements specifies the entity listener classes defined on the entjty

class, in the order in which they are to be invoked.

* The exclude-superclass-listeners element specifies that the listener methods for

an entity’s superclasses are not to be invoked for an entity class and its subclasses.

The binding of entity listeners to entity classes is additive. The entity listener classes bound tg
entity’s superclasses are applied to it as well.

The exclude-superclass-listeners element disables superclass listeners for the entity fo
which it is specified and its subclasses. Explicitly listing an excluded superclass listener for a gi
entity class causes it to be applied to that entity and its subclasses.

In the case of multiple callback methods for a single lifecycle event, the invocation order rules descr
in section 3.4.4 apply.

an

-

en

bed

Query API

The Query API is used for both static queries (i.e., named queries) and dynamic queries. The Query

API also supports named parameter binding and pagination control.

59 12/19/05

Sun Microsystems, Inc.

Entity Operations

Enterprise JavaBeans 3.0, Proposed Final Draft Query API

3.5.1 Query Interface

package javax.persistence;
import java.util.Calendar;

import java.util.Date;
import java.util.List;

* Interface used to control query execution.

public interface Query {

/**
* Execute a SELECT query and return the query results
* as a List.
* @return a list of the results
* @throws lllegalStateException if called for an EJB QL
UPDATE or DELETE statement
*
/
public List getResultList();

/**
* Execute a SELECT query that returns a single result.
* @return the result
* @throws NoResultException if there is no result
* @throws NonUniqueResultException if more than one result
* @throws lllegalStateException if called for an EJB QL
UPDATE or DELETE statement
*
/
public Object getSingleResult();

/**
* Execute an update or delete statement.
* @return the number of entities updated or deleted
* @throws lllegalStateException if called for an EJB QL
SELECT statement
* @throws TransactionRequiredException if there is
no transaction
*/
public int executeUpdate();
/**
* Set the maximum number of results to retrieve.
* @param maxResult
* @return the same query instance
* @throws lllegalArgumentException if argument is negative
*
public Query setMaxResults(int maxResult);

/**

* Set the position of the first result to retrieve.

* @param start position of the first result, numbered from 0
* @return the same query instance

* @throws lllegalArgumentException if argument is negative
*/

public Query setFirstResult(int startPosition);

/**

12/19/05

60

Sun Microsystems, Inc.

Query API Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operatiofs

* Set an implementation-specific hint.
* If the hint name is not recognized, it is silently ignored.
* @param hintName
* @param value
* @return the same query instance
* @throws lllegalArgumentException if the second argument is not
* valid for the implementation |
*
/
public Query setHint(String hintName, Object value);

/**
* Bind an argument to a named parameter.
* @param name the parameter name
* @param value
* @return the same query instance
* @throws lllegalArgumentException if parameter name does not
correspond to parameter in query string
* or argument is of incorrect type
*
/
public Query setParameter(String name, Object value);

/**
* Bind an instance of java.util. Date to a named parameter.
* @param name
* @param value
* @param temporalType
* @return the same query instance
* @throws lllegalArgumentException if parameter name does not
correspond to parameter in query string
*
/
public Query setParameter(String name, Date value, TemporalType
temporalType);

/**
* Bind an instance of java.util. Calendar to a named parameter.
* @param name
* @param value
* @param temporalType
* @return the same query instance
* @throws lllegalArgumentException if parameter name does not
correspond to parameter in query string
*
/
public Query setParameter(String name, Calendar value, Temporal-
Type temporalType);

/**
* Bind an argument to a positional parameter.
* @param position
* @param value
* @return the same query instance
* @throws lllegalArgumentException if position does not
correspond to positional parameter of query
* or argument is of incorrect type
*
/
public Query setParameter(int position, Object value);

/**

* Bind an instance of java.util.Date to a positional parameter.

61 12/19/05

Sun Microsystems, Inc.

Entity Operations

Enterprise JavaBeans 3.0, Proposed Final Draft Query API

* @param position

* @param value

* @param temporalType

* @return the same query instance

* @throws lllegalArgumentException if position does not
correspond to positional parameter of query

*/

public Query setParameter(int position, Date value, TemporalType
temporalType);

/**

* Bind an instance of java.util.Calendar to a positional param-
eter.

* @param position

* @param value

* @param temporalType

* @return the same query instance

* @throws lllegalArgumentException if position does not

correspond to positional parameter of query

*/

public Query setParameter(int position, Calendar value, Temporal-
Type temporalType);

/**

* Set the flush mode type to be used for the query execution.

* @param flushMode

*/

public Query setFlushMode(FlushModeType flushMode);

The elements of a query result whose SELECT clause consists of more than one value are of type
Object(]

An lllegalArgumentException is thrown if a parameter name is specified that does not corre-
spond to a named parameter in the query string, if a positional value is specified that does not corre-
spond to a positional parameter in the query string, or if the type of the parameter is not valid for the
query. This exception may be thrown when the parameter is bound, or the execution of the query may
fail.

Query methods other than te&ecuteUpdate method are not required to be invoked within a trans-
action context. In particular, thgetResultList and getSingleResult methods are not
required to be invoked within a transaction context. If an entity manager with transaction-scoped persis-
tence context is in use, the resulting entities will be detached; if an entity manager with an extended per-
sistence context is used, they will be managed. See sections 5.6.1 and 5.6.2 for entity manager use
outside a transaction.

Runtime exceptions other than tiNmResultException and NonUnigueResultException
thrown by the methods of ti@uery interface cause the current transaction to be rolled back.

12/19/05

62

Sun Microsystems, Inc.

Query API

3.5.1.1 Example

3.5.2

Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operatiofs

public List findWithName(String name) {
return em.createQuery(
"SELECT ¢ FROM Customer ¢ WHERE c.name LIKE :custName")
.setParameter("custName", name)
.setMaxResults(10)
.getResultList();

Queries and FlushMode

3.5.3

The flush mode setting affects the result of a query as follows.

When queries are executed within a transactioRjushMode.AUTO is set on the Query object, or if
the flush mode setting for the persistence conteAlid O(the default) and a flush mode setting has not
been specified for the Query object, the persistence provider is responsible for ensuring that all upflates
to the state of all entities in the persistence context which could potentially affect the result of the query
are visible to the processing of the query. The persistence provider implementation may achieve th|s by
flushing those entities to the database or by some other means. In the absence of such flush mode set-
tings, the effect of updates made to entities in the persistence context upon queries is unspecified

If there is no transaction active, the persistence provider must not flush to the database.

Parameter Names

3.54

A named parameter is an identifier that is prefixed by the ":" symbol. It follows the rules for identifiers
defined in Section 4.4.1. The use of named parameters applies to EJB QL, and is not defined for native
gueries. Only positional parameter binding may be portably used for native queries.

Named Queries

Named queries are static queries expressed in metadata. Named queries can be defined in EJB QL or in
SQL. Query names are scoped to the persistence unit. |

The following is an example of the definition of an EJB QL named query:

@NamedQuery(
name="findAllCustomersWithName",
query="SELECT ¢ FROM Customer c WHERE c.name LIKE :custName" |

The following is an example of the use of a named query:

@PersistenceContext
public EntityManager em;

customers = em.createNamedQuery("findAllCustomersWithName")
.setParameter("custName", "Smith")
.getResultList();

63 12/19/05

Sun Microsystems, Inc.

Entity Operations

3.55

Enterprise JavaBeans 3.0, Proposed Final Draft Query API

Polymorphic Queries

3.5.6

By default, all queries are polymorphic. That is, the FROM clause of a query designates not only
instances of the specific entity class(es) to which it explicitly refers, but subclasses as well. The
instances returned by a query include instances of the subclasses that satisfy the query Ehditions.
For example, the query

select avg(e.salary) from Employee e where e.salary > 80000

returns the average salary of all employees, including subtypEmpfoyee , such asManager and

Exempt.

SOQL Queries

Queries may be expressed in native SQL. The result of a native SQL query may consist of entities, sca-
lar values, or a combination of the two. The entities returned by a query may be of different entity

types.

The SQL query facility is intended to provide support for those cases where it is necessary to
use the native SQL of the target database in use (and/or where EJB QL cannot be used). Native
SQL queries are not expected to be portable across databases.

When multiple entities are returned by a SQL query, the entities must be specified and mapped to the
column results of the SQL statement irsgIResultSetMapping metadata definition. This result

set mapping metadata can then be used by the persistence provider runtime to map the JDBC results
into the expected objects. See Section 8.3.4 for the definition GdleesultSetMapping meta-

data annotation and related annotations.

If the results of the query are limited to entities of a single entity class, a simpler form may be used and
SqlResultSetMapping metadata is not required.

This is illustrated in the following example in which a native SQL query is created dynamically using
thecreateNativeQuery method and the entity class that specifies the type of the result is passed in
as an argument.

Query g = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Itemi" +
"WHERE (o.item = i.id) AND (i.name = ‘widget’)",
com.acme.Order.class);

[17]

Constructs to restrict query polymorphism will be considered in a future release.

12/19/05

64

Sun Microsystems, Inc.

Query API Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operatiofs

When executed, this query will return a Collection of all Order entities for items named "widget". The
same results could also be obtained uSigtiResultSetMapping

Query g = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Itemi" +
"WHERE (o.item = i.id) AND (i.name = ‘widget’)",
"WidgetOrderResults");
In this case, the metadata for the query result type might be specified as follows:

@SqlResultSetMapping(name="WidgetOrderResults",
entities=@EntityResult(entityClass=com.acme.Order.class))

The following query andSglResultSetMapping metadata illustrates the return of multiple entity
types and assumes default metadata and column name defaults.

Query g = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item, i.id, i.name, i.description "+
"FROM Order o, Iltem i " +
"WHERE (o.quantity > 25) AND (o.item = i.id)",
"OrderltemResults");

@SglResultSetMapping(name="OrderltemResults",
entities={
@EntityResult(entityClass=com.acme.Order.class),
@EntityResult(entityClass=com.acme.ltem.class)

)

When an entity is being returned, the SQL statement should select all of the columns that are mapped to
the entity object. This should include foreign key columns to related entities. The results obtained
when insufficient data is available are undefined. A SQL result set mapping must not be used to fnap
results to the non-persistent state of an entity.

The column names that are used in the SQL result set mapping annotations refer to the names of the col-
umns in the SQL SELECT clause. Note that column aliases must be used in the SQL SELECT clause
where the SQL result would otherwise contain multiple columns of the same name.

65 12/19/05

Sun Microsystems, Inc.

Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Query API

An example of combining multiple entity types and that includes aliases in the SQL statement requires
that the column names be explicitly mapped to the entity fields FidldResult annotation is used
for this purpose.

Query g = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"o.quantity AS order_quantity, " +
"o.item AS order_item, " +
"i.id, i.name, i.description " +
"FROM Order o, Itemi" +
"WHERE (order_qguantity > 25) AND (order_item = i.id)",
"OrderltemResults");

@SglResultSetMapping(name="OrderltemResults",
entities={

@EntityResult(entityClass=com.acme.Order.class, fields={
@FieldResult(name="id", column="order_id"),
@FieldResult(name="quantity", column="order_quantity"),
@FieldResult(name="item", column="order_item")}),

@EntityResult(entityClass=com.acme.ltem.class)

)

Scalar result types can be included in the query result by specifyingdhennResult annotation in
the metadata.

Query g = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"o.quantity AS order_quantity, " +
"o.item AS order_item, " +
"i.name AS item_name, " +
"FROM Order o, Item i " +
"WHERE (order_quantity > 25) AND (order_item = i.id)",
"OrderResults");

@SglResultSetMapping(name="0OrderResults",
entities={

@EntityResult(entityClass=com.acme.Order.class, fields={
@FieldResult(name="id", column="order_id"),
@FieldResult(name="quantity", column="order_quantity"),
@FieldResult(name="item", column="order_item™")})},

columns={

@ColumnResult(name="item_name")}
)

When the returned entity type is the owner of a single-valued relationship and the foreign key is a com-
posite foreign key (composed of multiple columnskiaeldColumn element should be used for each

of the foreign key columns. ThHeieldColumn element must use a dot (*) notation form to indicate

which column maps to each property or field of the target entity primary key. The dot-notation form
described below is not required to be supported for any usage other than for composite foreign keys.

If the target entity has a primary key of typ#Class , this specification takes the form of the name of
the field or property for the relationship, followed by a dat'{); followed by the name of the field or

property of the primary key in the target entity. The latter will be annotatedIdithas specified in sec-
tion 9.1.13.

12/19/05

66

Sun Microsystems, Inc.

Query API Enterprise JavaBeans 3.0, Proposed Final Draft

Example:

Query g = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"o.quantity AS order_quantity, " +
"o.item_id AS order_item_id, " +
"o.item_name AS order_item_name, " +
"i.id, i.name, i.description " +
"FROM Order o, Itemi" +
"WHERE (order_quantity > 25) AND (order_item_id = i.id) AND
(order_item_name = i.name)",
"OrderltemResults");

@SqlResultSetMapping(name="OrderltemResults",
entities={

@EntityResult(entityClass=com.acme.Order.class, fields={
@FieldResult(name="id", column="order_id"),
@FieldResult(name="quantity", column="order_quantity"),
@FieldResult(name="item.id", column="order_item_id")}),
@FieldResult(hame="item.name",

column="order_item_name")}),
@EntityResult(entityClass=com.acme.ltem.class)

)

If the target entity has a primary key of typgnbeddedId , this specification is composed of the name
of the field or property for the relationship, followed by a dot'fj; followed by the name or the field or
property of the primary key (i.e., the name of the field or property annotatéardeddedld), fol-
lowed by the name of the corresponding field or property of the embedded primary key class.

Example:

Query g = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"o.quantity AS order_quantity, " +
"o.item_id AS order_item_id, " +
"o.item_name AS order_item_name, " +
"i.id, i.name, i.description " +
"FROM Order o, Itemi" +
"WHERE (order_quantity > 25) AND (order_item_id = i.id) AND
(order_item_name = i.name)",
"OrderltemResults");

@SqlResultSetMapping(name="OrderltemResults",
entities={

@EntityResult(entityClass=com.acme.Order.class, fields={
@FieldResult(name="id", column="order_id"),
@FieldResult(name="quantity", column="order_quantity"),
@FieldResult(name="item.itemPk.id",

column="order_item_id"}),
@FieldResult(name="item.itemPk.name",
column="order_item_name")}),

@EntityResult(entityClass=com.acme.ltem.class)

)

Entity Operatiofs

67

12/19/05

Sun Microsystems, Inc.

| Entity Operations

Enterprise JavaBeans 3.0, Proposed Final Draft Query API

The FieldResult elements for the composite foreign key are combined to form the primary key
Embeddedld class for the target entity. This may then be used to subsequently retrieve the entity if
the relationship is to be eagerly loaded.

The use of named parameters is not defined for native queries. Only positional parameter binding for
SQL queries may be used by portable applications.

Support for joins is currently limited to single-valued relationships.

12/19/05

68

Sun Microsystems, Inc.

Overview Enterprise JavaBeans 3.0, Proposed Final Draft Query Languape

aaers QUErNY Language

The Enterprise JavaBeans query language, EJB QL, is used to define queries over entities and their per-
sistent state. EJB QL enables the application developer to specify the semantics of queries in a portable
way, independent of the particular database in use in an enterprise environment.

This specification release augments the previous version of EJB QL defined in [5] with additional oper-
ations, including bulk update and delete, JOIN operations, GROUP BY, HAVING, projection, and sub-
queries. It also provides for the use of EJB QL in dynamic queries.

The full range of EJB QL may be used in both static and dynamic queries. Both static and dynamic que-
ries may be parameterized. Named parameters as well as positional parameters are supported. Named
parameters, which are new to this specification release, are described in Section 4.6.4.2.

This chapter provides the full definition of the language.

4.1 Overview

EJB QL is a query specification language for dynamic queries and for static queries expressed through
metadata. It applies both to the persistent entities defined by this specification, as well as to the earlier
EJB 2.1 entity beans with container-managed persistence (and their finder and select methods) as
defined in [1][18]

69 12/19/05

Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Proposed Final Draft Overview

EJB QL can be compiled to a target language, such as SQL, of a database or other persistent store. This
allows the execution of queries to be shifted to the native language facilities provided by the database,
instead of requiring queries to be executed on the runtime representation of the entity state. As a result,
guery methods can be optimizable as well as portable.

The Enterprise JavaBeans query language uses the abstract persistence schemas of entities, including
their relationships, for its data model, and it defines operators and expressions based on this data model.
EJB QL uses a SQL-like syntax to select objects or values based on entity abstract schema types and
relationships among them. It is possible to parse and validate EJB QL queries before entities are
deployed because EJB QL is based on abstract schema types.

The term abstract persistence schema refers to the persistent schema abstraction (persistent
entities, their state, and their relationships) over which EJB QL queries operate. EJB QL
translates queries over this persistent schema abstraction into queries that are executed over
the database schema to which entities are mapped. See Section 4.3.

The developer uses EJB QL to write queries based on the abstract persistence schemas and the relation-
ships defined in the metadata annotations or XML descriptor. The abstract schema types of a set of enti-
ties can be used in a query if the entities are defined in the same persistence unit as the query. The path
expressions of EJB QL allow for navigation over relationships defined in the persistence unit.

A persistence unit defines the set of all classes that are related or grouped by the application
and which must be colocated in their mapping to a single database.

Compatibility Note: For EJB 2.1 and earlier entity beans, the scope of the persistence unit is
defined by the ejb-jar file. It is assumed that a single deployment descriptor in an ejb-jar file
constitutes a nondecomposable unit for the container responsible for implementing the
abstract persistence schemas of the entity beans and the relationships defined in the deploy-
ment descriptor and the ejb-jar file. Queries can be written by utilizing navigation over the
cmr-fields of related beans supplied in the same ejb-jar file.

EJB QL queries can be used in several different ways:

* as queries for selecting entity objects or values through use of methods Qutry API
(Section 3.5.1), where the queries are expressed either in metadata or dynamically.

* as queries for selecting entity objects through finder methods defined in the home interface of
EJB 2.1 container-managed entity bean components using the EJB 2.1 API.

* as queries for selecting entity objects or other values derived from an entity bean’s abstract
schema type through select methods defined on the entity bean class of EJB 2.1 container-man-
aged entity bean components using the EJB 2.1 API.

A compliant implementation of this specification is only required to support that subset of EJB QL
defined in the Enterprise JavaBeans 2.1 specification for use with finder and select methods of entity
beans with container managed persistence [1].

[18] We use the term “entity” in this chapter to refer both to entities as defined by this specification document as weleastio th

beans with container-managed persistence defined by [1]. Where it is important to distinguish the latter, we refer to them as “EJB
2.1 entity beans.”

12/19/05

70

Sun Microsystems, Inc.

EJB QL Statement Types Enterprise JavaBeans 3.0, Proposed Final Draft Query Langjiage

4.2 EJB QL Statement Types

An EJB QL statement may be either a select statement, an update statement, or a delete statement.

This chapter refers to all such statements as “queries”. Where it is important to distinguish
among statement types, the specific statement type is referenced.

In BNF syntax, an EJB QL statement is defined as:
EJB QL :: = select_statement | update_statement | delete _statement

Any EJB QL statement may be constructed dynamically or may be statically defined in a metadata
annotation or XML descriptor element.

All EJB QL statement types may have parameters.

4.2.1 Select Statements

An EJB QL select statement is a string which consists of the following clauses:
* a SELECT clause, which determines the type of the objects or values to be selected.

* a FROM clause, which provides declarations that designate the domain to which the expres-
sions specified in the other clauses of the query apply.

* an optional WHERE clause, which may be used to restrict the results that are returned by the
query.

* an optional GROUP BY clause, which allows query results to be aggregated in terms of
groups.

* an optional HAVING clause, which allows filtering over aggregated groups.

* anoptional ORDER BY clause, which may be used to order the results that are returned by the
query.

In BNF syntax, an EJB QL select statement is defined as:

select_statement :: = select_clause from_clause [where_clause] [groupby _clause]
[having_clause] [orderby clause]

A select statement must always have a SELECT and a FROM clause. The square brackets [] indicate
that the other clauses are optional.

4.2.2 Update and Delete Statements
Update and delete statements provide bulk operations over sets of entities.

71 12/19/05

Sun Microsystems, Inc.

Query Language

4.3

Enterprise JavaBeans 3.0, Proposed Final Draft Abstract Schema Types and Query

In BNF syntax, these operations are defined as:
update_statement :: = update_clause [where _clause]
delete_statement :: = delete_clause [where_clause]

The update and delete clauses determine the type of the entities to be updated or deleted. The WHERE
clause may be used to restrict the scope of the update or delete operation.

Update and delete statements are described further in Section 4.11.

Compatibility Note: Update and delete statements are not supported for EJB 2.1 entity beans with con-
tainer-managed persistence.

Abstract Schema Types and Query Domains

EJB QL is a typed language, and every expression in EJB QL has a type. The type of an expression is
derived from the structure of the expression, the abstract schema types of the identification variable dec-
larations, the types to which the persistent fields and relationships evaluate, and the types of literals.

The abstract schema type of an entity is derived from the entity class and the metadata information pro-
vided by Java language annotations or in the XML descriptor.

Informally, the abstract schema type of an entity can be characterized as follows:

* For every persistent field or get accessor method (for a persistent property) of the entity class,
there is a field (“state-field”) whose abstract schema type corresponds to that of the field or the
result type of the accessor methbd.

* For every persistent relationship field or get accessor method (for a persistent relationship
property) of the entity class, there is a field (“association-field”) whose type is the abstract
schema type of the related entity (or, if the relationship is a one-to-many or many-to-many, a
collection of suchi?]

Abstract schema types are specific to the EJB QL data model. The persistence provider is not required
to implement or otherwise materialize an abstract schema type.

The domain of an EJB QL query consists of the abstract schema types of all entities that are defined in
the same persistence unit.

[19]

[20]

For EJB 2.1 entity beans with container-managed persistence, these correspond to the cmp-field elements of the deployment
descriptor.
For EJB 2.1 entity beans with container-managed persistence, these correspond to the cmr-field elements of the deployment
descriptor.

12/19/05

12

Sun Microsystems, Inc.

Abstract Schema Types and Query DomainsEnterprise JavaBeans 3.0, Proposed Final Draft Query Larjguage

The domain of a query may be restricted by tiaigability of the relationships of the entity on which it

is based. The association-fields of an entity’s abstract schema type determine navigability. Using the
association-fields and their values, a query can select related entities and use their abstract schema types
in the query.

4.3.1 Naming

Entities are designated in EJB QL query strings by their abstract schema names. The developer assigns
unique abstract schema names to entities as part of the development process so that they can be used
within queries. These unique names are scoped within the persistence unit.

The abstract schema name is defined by mtiaee element of theEntity annotation (or the
entity-name XML descriptor element), and defaults to the unqualified name of the entity class.

Compatibility Note: For EJB 2.1 entities, abstract schema names are specified by the

abstract-schema-name elements in the deployment descriptor, and there is a one-to-one
mapping between entity bean abstract schema types and entity bean homes.

4.3.2 Example

This example assumes that the application developer provides several entity classes, representing
orders, products, line items, shipping addresses, and billing addresses. The abstract schema types for
these entities ar®©rder , Product , Lineltem , ShippingAddress , and BillingAddress

respectively. These entities are logically in the same persistence unit, as shown in Figure 1.

Figure 1 Several Entities with Abstract Persistence Schemas Defined in the Same Persistence Unit.

The entitiesShippingAddress andBillingAddress each have one-to-many relationships with
Order . There is also a one-to-many relationship betwemler and Lineitem . The entity
Lineltem is related tdProduct in a many-to-one relationship.

73 12/19/05

Sun Microsystems, Inc.

Query Language Enterprise JavaBeans 3.0, Proposed Final DraftThe FROM Clause and Navigational Decla-

Queries to select orders can be defined by navigating over the association-fields and state-fields defined
by Order andLineltem . A query to find all orders with pending line items might be written as fol-
lows:

SELECT DISTINCT o
FROM Order AS o JOIN o.lineltems AS |
WHERE l.shipped = FALSE

This query navigates over the association-flelditems of the abstract schema ty@der to find
line items, and uses the state-fishipped of Lineltem to select those orders that have at least one
line item that has not yet shipped. (Note that this query does not select orders that have no line items.)

Although predefined reserved identifiers, such as DISTINCT, FROM, AS, JOIN, WHERE, and FALSE
appear in upper case in this example, predefined reserved identifiers are case insensitive.

The SELECT clause of this example designates the return type of this query to beCuigpe

Because the same persistence unit defines the abstract persistence schemas of the related entities, the
developer can also specify a query over orders that utilizes the abstract schema type for products, and
hence the state-fields and association-fields of both the abstract schem®tgpesand Product .

For example, if the abstract schema typ®duct has a state-field nameuoductType , a query

over orders can be specified using this state-field. Such a query might be to find all orders for products
with product type office supplies. An EJB QL query string for this might be as follows.

SELECT DISTINCT o
FROM Order o JOIN o.lineltems | JOIN l.product p
WHERE p.productType = ‘office_supplies’

Becaus@rder is related tdProduct by means of the relationships betwe@rder andLineltem

and betweerLineltem and Product , navigation using the association-fieltiseltems and
product is used to express the query. This query is specified by using the abstract schema name
Order , which designates the abstract schema type over which the query ranges. The basis for the navi-
gation is provided by the association-field®eltems andproduct of the abstract schema types
Order andLineltem respectively.

4.4 The FROM Clause and Navigational Declarations

The FROM clause of an EJB QL query defines the domain of the query by declaring identification vari-
ables. An identification variable is an identifier declared in the FROM clause of a query. The domain of
the query may be constrained by path expressions.

Identification variables designate instances of a particular entity abstract schema type. The FROM
clause can contain multiple identification variable declarations separated by a gomma (

from_clause ::=
FROM identification_variable declaration
{, {identification_variable declaration | collection_member_declaration}}*
identification_variable declaration ::= range_variable declaration { join | fetch_join }*

12/19/05 74

Sun Microsystems, Inc.

The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Proposed Final Draft Query Lanpuage

44.1

range_variable _declaration :.:= abstract schema_name [AS] identification_variable
Join ::= join_spec join_association_path_expression [AS] identification_variable
fetch _join ::= join_spec FETCH join_association_path _expression
Join_association_path _expression ::= join_collection_valued path_expression |
Join_single valued association _path_expression
join_spec::= [LEFT [OUTER][INNER] JOIN
collection_member_declaration ::=
IN (collection_valued path_expression) [AS] identification_variable

The following subsections discuss the constructs used in the FROM clause.

Identifiers

4.4.2

An identifier is a character sequence of unlimited length. The character sequence must begin with a Java
identifier start character, and all other characters must be Java identifier part characters. An identifier
start character is any character for which the metlidbdiracter.isJavaldentifierStart

returns true. This includes the underscorg ¢haracter and the dollar sigf)(character. An identifier

part character is any character for which the meti@thracter.isJavaldentifierPart

returns true. The question mafX Character is reserved for use by EJB QL.

The following are the reserved identifiers in EJB BELECTFROM WHERE, UPDATE, DELETE,
JOIN, OUTER, INNER, LEFT, GROUP, BY, HAVING, FETCH, DISTINGBJECT, NULL. TRUE
FALSE NOT, AND, OR, BETWEENLIKE, IN, AS UNKNOWN?Y, EMPTY, MEMBER, OF, IS, AVG,
MAX, MIN, SUM, COUNT, ORDER, BY, ASC, DESC, MOD, UPPER, LOWER, TRIM, POSITION,
CHARACTER_LENGTH, CHAR_LENGTH, BIT_LENGTH, CURRENT_TIME, CURRENT_ DATE,
CURRENT_TIMESTAMP, NEW, EXISTS, ALL, ANY, SOME

Reserved identifiers are case insensitive. Reserved identifiers must not be used as identification vari-
ables.

It is recommended that other SQL reserved words also not be as identification variables in EJB

QL queries because they may be used as EJB QL reserved identifiers in future releases of this
specification.

Identification Variables

An identification variable is a valid identifier declared in the FROM clause of an EJB QL query.

All identification variables must be declared in the FROM clause. ldentification variables cannot be
declared in other clauses.

An identification variable must not be a reserved identifier or have the same name as any of the follow-
ing in the same persistence unit:

[21] Not currently used in EJB QL; reserved for future use.

75 12/19/05

Sun Microsystems, Inc.

Query Language

4.4.3

Enterprise JavaBeans 3.0, Proposed Final DraftThe FROM Clause and Navigational Decla-

* entity name (as defined by thentity annotation orentity-name XML descriptor ele-
ment)

* abstract-schema-name (as defined byatbstract-schema-name deployment descriptor
element for EJB 2.1 entity beans)

* ejb-name (as defined by thggb-name deployment descriptor element for EJB 2.1 entity
beans)

Identification variables are case insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the vari-
able. For example, consider the previous query:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems | JOIN l.product p
WHERE p.productType = ‘office_supplies’

In the FROM clause declaratioo.lineltems | , the identification variabld evaluates to any
Lineltem value directly reachable fro®@rder . The association-fieldneltems s a collection of
instances of the abstract schema tijpeeltem and the identification variable refers to an element
of this collection. The type df is the abstract schema typeLafeltem

An identification variable ranges over the abstract schema type of an entity. An identification variable
designates an instance of an entity abstract schema type or an element of a collection of entity abstract
schema type instances. Identification variables are existentially quantified in an EJB QL query.

An identification variable always designates a reference to a single value. It is declared in one of three
ways: in a range variable declaration, in a join clause, or in a collection member declaration. The identi-
fication variable declarations are evaluated from left to right in the FROM clause, and an identification

variable declaration can use the result of a preceding identification variable declaration of the query
string.

Range \ariable Declarations

The EJB QL syntax for declaring an identification variable as a range variable is similar to that of SQL;
optionally, it uses the AS keyword.

range_variable _declaration ::= abstract_schema_name [AS] identification_variable

Range variable declarations allow the developer to designate a “root” for objects which may not be
reachable by navigation.

In order to select values by comparing more than one instance of an entity abstract schema type, more
than one identification variable ranging over the abstract schema type is needed in the FROM clause.

12/19/05

76

Sun Microsystems, Inc.

The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Proposed Final Draft Query Lanpuage

4.4.4

The following query returns orders whose quantity is greater than the order quantity for John Smith.
This example illustrates the use of two different identification variables in the FROM clause, both of the
abstract schema typerder . The SELECT clause of this query determines that it is the orders with
guantities larger than John Smith’s that are returned.

SELECT DISTINCT ol

FROM Order o1, Order 02

WHERE o1l.quantity > 02.quantity AND
02.customer.lastname = ‘Smith’ AND
02.customer.firstname= ‘John’

Path Expressions

An identification variable followed by the navigation operatoy &nd a state-field or association-field is
a path expression. The type of the path expression is the type computed as the result of navigation; that
is, the type of the state-field or association-field to which the expression navigates.

Depending on navigability, a path expression that leads to a association-field may be further composed.
Path expressions can be composed from other path expressions if the original path expression evaluates
to a single-valued type (not a collection) corresponding to a association-field. Note that a state field may
correspond to an embedded class. A path expression that endsimple state-field, rather than an
embedded class, is terminal and cannot be further composed.

Path expression navigability is composed using “inner join” semantics. That is, if the value of a non-ter-
minal association-field in the path expression is null, the path is considered to have no value, and does
not participate in the determination of the result.

The syntax for single-valued path expressions and collection valued path expressions is as follows:

single_valued_path_expression ::=

state_field _path_expression [single _valued _association_path _expression
state_field _path_expression ::=

{identification _variable | single_valued_association_path expression}.state_field
single_valued_association_path _expression ::=
identification_variable.{single_valued_association_field.}*single_valued_association_field
collection_valued_path_expression ::=
identification_variable.{single _valued association_field.}*collection_valued_association_field
state_field ::= {embedded _class state field.}*simple_state field

A single_valued_association_field is designated by the name of an association-field in a one-to-one or
many-to-one relationship. The type of asingle valued association field and thus a
single_valued_association_path_expression is the abstract schema type of the related entity.

A collection_valued_association_field is designated by the name of an association-field in a
one-to-many or a many-to-many relationship. The type afiection_valued_association_field is a col-
lection of values of the abstract schema type of the related entity.

Navigation to a related entity results in a value of the related entity’s abstract schema type.

77 12/19/05

Sun Microsystems, Inc.

Query Language

I

Enterprise JavaBeans 3.0, Proposed Final DraftThe FROM Clause and Navigational Decla-

The evaluation of a path expression terminating in a state-field results in the abstract schema type corre-
sponding to the Java type designated by the state-field.

It is syntactically illegal to compose a path expression from a path expression that evaluates to a collec-
tion. For example, ifo designate©rder , the path expressioo.lineltems.product is illegal

since navigation ttineltems results in a collection. This case should produce an error when the EJB
QL query string is verified. To handle such a navigation, an identification variable must be declared in
the FROM clause to range over the elements oflitheltems collection. Another path expression

must be used to navigate over each such element in the WHERE clause of the query, as in the following:

SELECT DISTINCT l.product
FROM Order AS o, IN(o.lineltems) |

Joins

An inner join may be implicitly specified by the use of a cartesian product in the FROM clause and a
join condition in the WHERE clause. In the absence of a join condition, this reduces to the cartesian
product.

The main use case for this generalized style of join is when a join condition does not involve a foreign
key relationship that is mapped to an entity relationship.

Example:

select ¢ from Customer ¢, Employee e where c.hatsize = e.shoesize

In general, use of this style of inner join (also referred to as theta-join) is less typical than explicitly
defined joins over entity relationships.

The syntax for explicit join operations is as follows:

Join ::= join_spec join_association_path_expression [AS] identification_variable

fetch_join ::= join_spec FETCH join_association_path_expression

Join_association_path _expression ::= join_collection_valued _path_expression |
Join_single _valued_association_path_expression

join_spec::= [LEFT [OUTER] [INNER] JOIN

The following inner and outer join operation types are supported.

4.4.5.1 Inner Joins (Relationship Joins)

A join over an entity relationship is a typical use case for EJB QL. The IN operator in the FROM clause,
described in Section 4.4.6, was introduced by EJB 2.0 for this purpose. This release adds explicit use of
the JOIN operator to provide a more natural SQL-like syntax and to allow a wider range of operations.
The syntax for the inner join operation is

[INNER] JOIN join_association _path_expression [AS] identification variable

12/19/05

78

Sun Microsystems, Inc.

The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Proposed Final Draft Query Lanpuage

4.45.2

4453

For example, the query below joins over the relationship between customers and orders. This type of
join typically equates to a join over a foreign key relationship in the database.

SELECT ¢ FROM Customer ¢ JOIN c.orders o WHERE c.status = 1

The keyword INNER may optionally be used:

SELECT ¢ FROM Customer ¢ INNER JOIN c.orders o WHERE c.status = 1

This is equivalent to the following query using the earlier IN construct, defined in [5]. It selects those
customers of status 1 for which at least one order exists:

SELECT OBJECT(c) FROM Customer c, IN(c.orders) o WHERE c.status = 1
Left Outer Joins
LEFT JOIN and LEFT OUTER JOIN are synonymous. They enable the retrieval of a set of entities
where matching values in the join condition may be absent.
The syntax for a left outer join is
LEFT [OUTER] JOIN join_association_path_expression [AS] identification_variable |

For example:

SELECT ¢ FROM Customer ¢ LEFT JOIN c.orders o WHERE c.status = 1

The keyword OUTER may optionally be used:
SELECT ¢ FROM Customer ¢ LEFT OUTER JOIN c.orders o WHERE c.status = 1
Fetch Joins

An important use case for LEFT JOIN is in enabling the prefetching of related data items as a side effect
of a query. This is accomplished by specifying the LEFT JOIN as a FETCH JOIN.

A FETCH JOIN enables the fetching of an association as a side effect of the execution of a query. A
FETCH JOIN is specified over an entity and its related entities.

The syntax for a fetch join is

fetch_join ::= [LEFT [OUTER] [INNER] JOIN FETCH join_association_path_expression |
The association referenced by the right side of the FETCH JOIN clause must be an association that
belongs to an entity that is returned as a result of the query. It is not permitted to specify an identifica-

tion variable for the entities referenced by the right side of the FETCH JOIN clause, and hence refer-
ences to the implicitly fetched entities cannot appear elsewhere in the query.

79 12/19/05

Sun Microsystems, Inc.

Query Language

4.4.6

Enterprise JavaBeans 3.0, Proposed Final DraftThe FROM Clause and Navigational Decla-

The following query returns a set of departments. As a side effect, the associated employees for those
departments are also retrieved, even though they are not part of the explicit query result. The persistent
fields or properties of the employees that are eagerly fetched are fully initialized. The initialization of
the relationship properties of the employees that are retrieved is determined by the metadata for the
Employee entity class.

SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno =1

A fetch join has the same join semantics as a left outer join, except that the related objects specified on
the right-hand side of the join operation are not returned in the query result or otherwise referenced in
the query. Hence, for example, if department 1 has five employees, the above query returns five refer-
ences to the department 1 entity.

Collection Member Declarations

An identification variable declared byaollection_member_declaration ranges over values of a col-

lection obtained by navigation using a path expression. Such a path expression represents a navigation
involving the association-fields of an entity abstract schema type. Because a path expression can be
based on another path expression, the navigation can use the association-fields of related entities.

An identification variable of a collection member declaration is declared using a special operator, the

reserved identifier IN. The argument to the IN operator is a collection-valued path expression. The path

expression evaluates to a collection type specified as a result of navigation to a collection-valued associ-
ation-field of an entity abstract schema type.

The syntax for declaring a collection member identification variable is as follows:

collection_member_declaration ::=
IN (collection_valued _path_expression) [AS] identification_variable

For example, the query

SELECT DISTINCT o
FROM Order o JOIN o.lineltems | JOIN l.product p
WHERE p.productType = ‘office_supplies’

may equivalently be expressed as follows, using the IN operator:

SELECT DISTINCT o
FROM Order o, IN(0.lineltems) |
WHERE l.product.productType = ‘office_supplies’

In this example lineltems is the name of an association-field whose value is a collection of
instances of the abstract schema tipeeltem . The identification variable designates a member of
this collection, asingleLineltem abstract schema type instance. In this examplés an identifica-
tion variable of the abstract schema t{jreler .

12/19/05

80

Sun Microsystems, Inc.

WHERE Clause

Enterprise JavaBeans 3.0, Proposed Final Draft Query Langujge

4.4.7 EJB QL and SOL
EJB QL treats the FROM clause similarly to SQL in that the declared identification variables affect the
results of the query even if they are not used in the WHERE clause. Application developers should use
caution in defining identification variables because the domain of the query can depend on whether
there are any values of the declared type.
For example, the FROM clause below defines a query over all orders that have line items and existing
products. If there are nBroduct instances in the database, the domain of the query is empty and no
order is selected.
SELECT o
FROM Order AS o, IN(o.lineltems) |, Product p
4.4.8 Polymorphism
EJB QL queries are automatically polymorphic. The FROM clause of a query designates not only
instances of the specific entity class(es) to which explicitly refers but of subclasses as well. The
instances returned by a query include instances of the subclasses that satisfy the queﬁ?;?]criteria.
4.5 WHERE Clause
The WHERE clause of a query consists of a conditional expression used to select objects or values that
satisfy the expression. The WHERE clause restricts the result of a select statement or the scope of an
update or delete operation.
A WHERE clause is defined as follows:
where_clause ::= WHERE conditional_expression
The GROUP BY construct enables the aggregation of values according to the properties of an entity
class. The HAVING construct enables conditions to be specified that further restrict the query result as
restrictions upon the groups.
The syntax of the HAVING clause is as follows:
having_clause ::= HAVING conditional _expression
The GROUP BY and HAVING constructs are further discussed in Section 4.7.
[22] Such query polymorphism does not apply to EJB 2.1 entity beans, since they do not support inheritance. |

81 12/19/05

Sun Microsystems, Inc.

Query Language

4.6

Enterprise JavaBeans 3.0, Proposed Final Draft Conditional Expressions

Conditional Expressions

4.6.1

The following sections describe the language constructs that can be used in a conditional expression of
the WHERE clause or HAVING clause.

Note that state-fields that are mapped in serialized form or as lobs may not be portably used in
conditional expressioﬁ@].

Literals

4.6.2

A string literal is enclosed in single quotes—for example: ‘literal’. A string literal that includes a single
guote is represented by two single quotes—for example: ‘literal’s’. EJB QL string literals, like Java
String literals, use unicode character encoding. The use of Java escape notation is not supported in
EJB QL string literals

Exact numeric literals support the use of Java integer literal syntax as well as SQL exact numeric literal
syntax.

Approximate literals support the use Java floating point literal syntax as well as SQL approximate
numeric literal syntax.

Appropriate suffixes may be used to indicate the specific type of a numeric literal in accordance with the
Java Language Specification. Support for the use of hexadecimal and octal numeric literals is not
required by this specification.

The boolean literals afERUEandFALSE

Although predefined reserved literals appear in upper case, they are case insensitive.

Identification Variables

All identification variables used in the WHERE or HAVING clause of an EJB QL SELECT or DELETE
statement must be declared in the FROM clause, as described in Section 4.4.2. The identification vari-
ables used in the WHERE clause of an UPDATE statement must be declared in the UPDATE clause.

Identification variables are existentially quantified in the WHERE and HAVING clause. This means that
an identification variable represents a member of a collection or an instance of an entity’s abstract
schema type. An identification variable never designates a collection in its entirety.

[23] The implementation is not expected to perform such query operations involving such fields in memory rather than in the database.

12/19/05

82

Sun Microsystems, Inc.

Conditional Expressions Enterprise JavaBeans 3.0, Proposed Final Draft Query Langage

4.6.3 Path Expressions

Itis illegal to use aollection valued_path_expression within a WHERE or HAVING clause as part of a
conditional expression except in anempty collection_comparison_expression, in a
collection_member_expression, or as an argument to the SIZE operator.

4.6.4 Input Parameters

Either positional or named parameters may be used. Positional and named parameters may not be mixed
in a single query.

Input parameters can only be used in the WHERE clause or HAVING clause of a query.

Note that if an input parameter value is null, comparison operations or arithmetic operations
involving the input parameter will return an unknown value. See Section 4.12.

4.6.4.1 Positional Parameters
The following rules apply to positional parameters.

* Input parameters are designated by the question n¥grkrefix followed by an integer. For
example?1.

* Input parameters are numbered starting from 1.

Note that the same parameter can be used more than once in the query string and thatj the
ordering of the use of parameters within the query string need not conform to the order of the
positional parameters.

* If the query is associated with a finder or select method, the number of distinct input parame-
ters must not exceed the number of input parameters for the finder or select method. It is not
required that the EJB QL query use all of the input parameters for the finder or select method.
An input parameter evaluates to the abstract schema type of the corresponding parameter
defined in the signature of the finder or select method with which the query is associated. It is
the responsibility of the persistence provider to map the input parameter to the approprjate
abstract schema type value.

4.6.4.2 Named Parameters
A named parameter is an identifier that is prefixed by the ":" symbol. It follows the rules for identifiers
defined in Section 4.4.1.

Example:

SELECT ¢
FROM Customer ¢
WHERE c.status = :stat

Section 3.5.1 describes the API for the binding of named query parameters.

Named parameters are not supported for EJB 2.1 finder and select methods.

83 12/19/05

Sun Microsystems, Inc.

| Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Conditional Expressions

4.6.5 Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations, logical
operations, path expressions that evaluate to boolean values, boolean literals, and boolean input param-
eters.

Arithmetic expressions can be used in comparison expressions. Arithmetic expressions are composed of
other arithmetic expressions, arithmetic operations, path expressions that evaluate to numeric values,
| numeric literals, and numeric input parameters.

Arithmetic operations use numeric promotion.
Standard bracketing for ordering expression evaluation is supported.
Conditional expressions are defined as follows:

conditional_expression ::= conditional_term [conditional_expression OR conditional_term
conditional_term ::= conditional _factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression [(conditional_expression)
simple_cond_expression ;=

comparison_expression |

between_expression |

like_expression |

in_expression |

null_comparison_expression |

empty_collection_comparison_expression |

collection_member_expression |

exists_expression

Aggregate functions can only be used in conditional expressions in a HAVING clause. See section 4.7.

4.6.6 Operators and Operator Precedence

The operators are listed below in order of decreasing precedence.
* Navigation operator. ()

* Arithmetic operators:
+, - unary
*, [multiplication and division
+, - addition and subtraction

* Comparison operators=, >, >=, <, <=, <> (not equal),[NOT] BETWEEN [NOT] LIKE ,
[NOT]IN ,IS[NOT] NULL , IS [NOT] EMPTY, [NOT] MEMBER [OF]

* Logical operators:

12/19/05 84

Sun Microsystems, Inc.

Conditional Expressions Enterprise JavaBeans 3.0, Proposed Final Draft Query Langage

4.6.7

NOT
AND
OR

The following sections describe other operators used in specific expressions.

BetweenExpressions

4.6.8

The syntax for the use of the comparison operator [NOT] BETWEEN in a conditional expression is as
follows:

arithmetic_expression [NOT] BETWEEN arithmetic-expression AND arithmetic-expression |
string_expression [NOT] BETWEEN string-expression AND string-expression |
datetime_expression [NOT] BETWEEN datetime-expression AND datetime-expression

The BETWEEN expression

x BETWEEN Yy AND z

is semantically equivalent to:

y<=XAND x <=z

The rules for unknown and NULL values in comparison operations apply. See Section 4.12.
Examples are:

p.age BETWEEN 15 and 19 is equivalent tgp.age >= 15 AND p.age <= 19

p.age NOT BETWEEN 15 and 19 is equivalent tgp.age < 15 OR p.age > 19

In EXpr essions

The syntax for the use of the comparison operator [NOT] IN in a conditional expression is as follows:
in_expression ::=

state_field _path_expression [NOT]IN (in_item {, in_item}* [subquery)
in_item ::= literal | input_parameter

The state_field_path_expression must have a string or numeric value.

The literal and/or input_parameter values must lib@ the same abstract schema type of the
state_field_path_expression in type. (See Section 4.13).

The results of the subquery must be like the same abstract schema type of the
state_field_path_expression in type. Subqgueries are discussed in Section 4.6.15, “Subqueries”.

Examples are:

85 12/19/05

Sun Microsystems, Inc.

| Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Conditional Expressions

o.country IN (UK’, 'US’, 'France’) is true forUKand false folPeru , and is equivalent
to the expressiofo.country = 'UK’) OR (o.country = 'US’) OR (o.country =’
France’)

o.country NOT IN (UK’, 'US’, 'France’) is false forUKand true forPeru , and is
equivalent to the expressioNOT ((o.country = 'UK’) OR (o.country = 'US’) OR
(o.country = 'France’))

There must be at least one element in the comma separated list that defines the set of valud for the
expression.

If the value of astate_field_path_expression in an IN or NOT IN expression islULL or unknown, the
value of the expression is unknown.

4.6.9 Lik e Expressions

The syntax for the use of the comparison operator [NOT] LIKE in a conditional expression is as fol-
lows:

string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]
The string_expression must have a string value. Thettern_value is a string literal or a string-valued
input parameter in which an underscorg 6tands for any single character, a percéft ¢haracter
stands for any sequence of characters (including the empty sequence), and all other characters stand for
themselves. The optionascape character is a single-character string literal or a character-valued
input parameter (i.echar or Character) and is used to escape the special meaning of the under-
score and percent charactergatern_value.[24]
Examples are:

* address.phone LIKE ‘12%3S true for ‘123’ ‘12993’ and false for ‘1234’

* asentence.word LIKE ‘l_sés true for ‘lose’ and false for ‘loose’

* aword.underscored LIKE _%’' ESCAPE i§ true for *_foo’ and false for ‘bar’

* address.phone NOT LIKE ‘12%¥ false for ‘123’ and ‘12993’ and true for ‘1234’
If the value of thestring_expression or pattern_value is NULL or unknown, the value of the LIKE

expression is unknown. If thescape_character is specified and iSIULL, the value of the LIKE expres-
sion is unknown.

4.6.10 Null Comparison Expressions

The syntax for the use of the comparison operator IS NULL in a conditional expression is as follows:

[24] Refer to [4] for a more precise characterization of these rules.

12/19/05 86

Sun Microsystems, Inc.

Conditional Expressions Enterprise JavaBeans 3.0, Proposed Final Draft Query Langage

4.6.11

{single_valued _path expression [input_parameter }1S [NOT]NULL

A null comparison expression tests whether or not the single-valued path expression or input parameter
is aNULL value.

Empty Collection Comparison Expressions

4.6.12

The syntax for the use of the comparison operator IS EMPTY in an
empty_collection_comparison_expression is as follows:

collection_valued_path_expression IS [NOT] EMPTY

This expression tests whether or not the collection designated by the collection-valued path expression
is empty (i.e, has no elements).

Example:
SELECT o

FROM Order o
WHERE o.lineltems IS EMPTY

If the value of the collection-valued path expression in an empty collection comparison expression is
unknown, the value of the empty comparison expression is unknown.

Collection Member Expressions

The syntax for the use of the comparison operator MEMBER ®F in an
collection_member_expression is as follows:

entity_expression [NOT] MEMBER [OF] collection_valued path _expression
entity_expression ;=

single_valued_association_path _expression | simple_entity expression
simple_entity _expression ::=

identification_variable |

input_parameter

This expression tests whether the designated value is a member of the collection specified by the cpllec-
tion-valued path expression.

If the collection valued path expression designates an empty collection, the value of the MEMBER OF
expression is FALSE and the value of the NOT MEMBER OF expression is TRUE. Otherwise, if the
value of the collection-valued path expression or single-valued association-field path expression in the
collection member expression MULL or unknown, the value of the collection member expression is
unknown.

[25] The use of the reserved word OF is optional in this expression.

87 12/19/05

Sun Microsystems, Inc.

Query Language

4.6.13

Enterprise JavaBeans 3.0, Proposed Final Draft Conditional Expressions

Exists Expressions

4.6.14

An EXISTS expression is a predicate that is true only if the result of the subquery consists of one or
more values and that is false otherwise.

The syntax of an exists expression is
exists_expression::= [NOT] EXISTS (subquery)
Example:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)

The result of this query consists of all employees whose spouses are also employees.

All or Any Expr essions

An ALL conditional expression is a predicate that is true if the comparison operation is true for all val-

ues in the result of the subquery or the result of the subquery is empty. An ALL conditional expression
is false if the result of the comparison is false for at least one row, and is unknown if neither true nor
false.

An ANY conditional expression is a predicate that is true if the comparison operation is true for some
value in the result of the subquery. An ANY conditional expression is false if the result of the subquery
is empty or if the comparison operation is false for every value in the result of the subquery, and is
unknown if neither true nor false. The keyword SOME is synonymous with ANY.

The comparison operators used with ALL or ANY conditional expressions are =, <, <=, >, >=, <>, The
result of the subquery must be like that of the other argument to the comparison operator in type. See
Section 4.13.

The syntax of an ALL or ANY expression is specified as follows:
all_or_any expression ::= { ALL [ANY | SOME} (subquery)
Example:

SELECT emp
FROM Employee emp
WHERE emp.salary > ALL (
SELECT m.salary
FROM Manager m
WHERE m.department = emp.department)

12/19/05

88

Sun Microsystems, Inc.

Conditional Expressions Enterprise JavaBeans 3.0, Proposed Final Draft Query Langage

4.6.15

Subqueries

4.6.16

Subqueries may be used in the WHERE or HAVING clétfe.
The syntax for subqueries is as follows:

subquery ::= simple_select_clause subquery from_clause [where_clause]
[groupby clause] [having clause]
simple_select clause ::= SELECT [DISTINCT] simple_select _expression
subquery from_clause ::=
FROM subselect identification variable declaration
{, subselect _identification_variable declaration}*
subselect_identification_variable_declaration ::=
identification_variable _declaration |
association_path_expression [AS] identification_variable |
collection_member_declaration
simple_select_expression::=
single_valued_path_expression |
aggregate _expression | |
identification_variable

Examples:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)

SELECT ¢
FROM Customer ¢
WHERE (SELECT COUNT(0) FROM c.orders o) > 10

Note that some contexts in which a subquery can be used require that the subquery be a scalar subquery
(i.e., produce a single result). This is illustrated in the following example involving a numeric compari-
son operation.

SELECT goodCustomer
FROM Customer goodCustomer
WHERE goodCustomer.balanceOwed < (
SELECT avg(c.balanceOwed) FROM Customer c)

Functional Expressions

EJB QL includes the following built-in functions, which may be used in the WHERE or HAVING
clause of a query.

[26]

Subqueries are restricted to the WHERE and HAVING clauses in this release. Support for subqueries in the FROM clause will be
considered in a later release of this specification.

89 12/19/05

Sun Microsystems, Inc.

Query Language

4.6.16.1

4.6.16.2

Enterprise JavaBeans 3.0, Proposed Final Draft Conditional Expressions

If the value of any argument to a functional expression is null or unknown, the value of the functional
expression is unknown.

String Functions

functions_returning_strings ::=
CONCAT(string_primary, string_primary) |
SUBSTRING(String_primary,
simple_arithmetic_expression, simple_arithmetic_expression) |
TRIM([[trim_specification] [trim_character] FROM] string_primary) |
LOWER(string_primary) |
UPPER(string_primary)
trim_specification ::= LEADING | TRAILING | BOTH

functions_returning_numerics::=
LENGTH(string_primary) |
LOCATE(string_primary, string_primary[, simple_arithmetic_expression)) |

The CONCAT function returns a string that is a concatenation of its arguments.

The second and third arguments of the SUBSTRING function denote the starting position and length of
the substring to be returned. These arguments are integers. The first position of a string is denoted by 1.
The SUBSTRING function returns a string.

The TRIM function trims the specified character from a string. If the character to be trimmed is not
specified, it is assumed to be space (or blank). The optitinalcharacter is a single-character string
literal or a character-valued input parameter (ichar or Character)[27]. If a trim specification is

not provided, BOTH is assumed. The TRIM function returns the trimmed string.

The LOWER and UPPER functions convert a string to lower and upper case, respectively. They return a
string.

The LOCATE function returns the position of a given string within a string, starting the search at a spec-
ified position. It returns the first position at which the string was found as an integer. The first argument
is the string to be located; the second argument is the string to be searched; the optional third argument
is an integer that represents the string position at which the search is started (by default, the beginning of
the strirtl)(%st]o be searched). The first position in a string is denoted by 1. If the string is not found, 0 is
returned:

The LENGTH function returns the length of the string in characters as an integer.

Arithmetic Functions

functions_returning_numerics::=

[27]

(28]

Note that not all databases support the use of a trim character other than the space character; use of this argsulemt may re
queries that are not portable.

Note that not all databases support the use of the third argument to LOCATE; use of this argument may result intcareries tha
not portable.

12/19/05

90

Sun Microsystems, Inc.

GROUP BY, HAVING Enterprise JavaBeans 3.0, Proposed Final Draft Query Languape

4.7

ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic_expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
SIZE(collection_valued _path _expression)

The ABS function takes a numeric argument and returns a number (integer, float, or double) of the same
type as the argument to the function.

The SQRT function takes a numeric argument and returns a double.
The MOD function takes two integer arguments and returns an integer.

The SIZE function returns an integer value, the number of elements of the collection. If the collection is
empty, the SIZE function evaluates to zero.

Numeric arguments to these functions may correspond to the numeric Java object types as well as the
primitive numeric types.

GROUP BY, HAVING

The GROUP BY construct enables the aggregation of values according to a set of properties. The HAV-
ING construct enables conditions to be specified that further restrict the query result. Such conditions
are restrictions upon the groups.

The syntax of the GROUP BY and HAVING clauses is as follows:

groupby clause ::= GROUP BY groupby _item {, groupby _item}*
groupby item ::= single_valued_path expression |
having_clause ::= HAVING conditional_expression

If a query contains both a WHERE clause and a GROUP BY clause, the effect is that of first applying
the where clause, and then forming the groups and filtering them according to the HAVING clause. The
HAVING clause causes those groups to be retained that satisfy the condition of the HAVING clausp.

The requirements for the SELECT clause when GROUP BY is used follow those of SQL: namely, any
item that appears in the SELECT clause (other than as an argument to an aggregate function) mugt also
appear in the GROUP BY clause. In forming the groups, null values are treated as the same for grouping
purposes.

Grouping by an entity is permitted. In this case, the entity must contain no serialized state field$ or
lob-valued state fields.

The HAVING clause must specify search conditions over the grouping items or aggregate functionsjthat
apply to grouping items.

91 12/19/05

Sun Microsystems, Inc.

Query Language

4.8

Enterprise JavaBeans 3.0, Proposed Final Draft SELECT Clause

If there is no GROUP BY clause and the HAVING clause is used, the result is treated as a single group,
and the select list can only consist of aggregate functions. The use of HAVING in the absence of
GROUP BY is not required to be supported by an implementation of this specification. Portable appli-
cations should not rely on HAVING without the use of GROUP BY.

Examples:

SELECT c.status, avg(c.filledOrderCount), count(c)
FROM Customer ¢

GROUP BY c.status

HAVING c.status IN (1, 2)

SELECT c.country, COUNT(c)
FROM Customer ¢

GROUP BY c.country

HAVING COUNT(c.country) > 3

SELECT Clause

The SELECT clause denotes the query result. More than one value may be returned from the SELECT
clause of a query.

The SELECT clause may contain one or more of the following elements: a single range variable or
identification variable that ranges over an entity abstract schema type, a single-valued path expression,
an aggregate select expression, a constructor expression.

In the case of an EJB 2.1 select method, the SELECT clause is restricted to contain one of the
above elements. In the case of a finder method, the SELECT clause is restricted to contain
either a single range variable or a single-valued path expression that evaluates to the abstract
schema type of the entity bean for which the finder method is defined.

The SELECT clause has the following syntax:

select _clause ::= SELECT [DISTINCT] select_expression {, select_expression}*
select_expression ::=

single_valued_path_expression |

aggregate _expression |

identification_variable |

OBJECT (identification_variable) |

constructor_expression
constructor_expression ;=

NEW constructor_name (constructor_item {, constructor_item}*)
constructor_item ::= single_valued _path_expression | aggregate expression
aggregate_expression ;=

{AVG | MAX [MIN [SUM } ([DISTINCT] state_field _path_expression) |

COUNT (/DISTINCT] identification_variable | state_field _path expression |

single_valued_association_path _expression)

12/19/05

92

Sun Microsystems, Inc.

SELECT Clause

4.8.1

Enterprise JavaBeans 3.0, Proposed Final Draft Query Langupge

For example: |

SELECT c.id, c.status
FROM Customer ¢ JOIN c.orders o
WHERE o.count > 100

Note that the SELECT clause must be specified to return only single-valued expressions. The query
below is therefore not valid:

SELECT o.lineltems FROM Order AS o

The DISTINCT keyword is used to specify that duplicate values must be eliminated from the query
result.

If DISTINCT is not specified, duplicate values are not eliminated unless the query is specified
for a finder or select method whose result typgaiga.util.Set. If a query is specified

for a finder or select method whose result typgig. util.Set , but does not specify DIS-
TINCT, the container must interpret the query as if SELECT DISTINCT had been specified. In
general, however, the application developer should specify the DISTINCT keyword when writ-
ing queries for methods that retujava.util. Set

All standalone identification variables in the SELECT clause may optionally be qualified by the
OBJECT operator. The SELECT clause must not use the OBJECT operator to qualify path expressipns.

Result Type of the SELECT Clause

The result type of the SELECT clause is defined by the the result types seétbet_expressions con-
tained in it. When multipleselect_expressions are used in the SELECT clause, the result of the EJH
QL query is of typeObject[]] , and the elements in this result correspond in order to the order of thg
specification in the SELECT clause and in type to the result types of eachsetdbk expressions.

r

The type of the result of select_expression is as follows:

* A single valued path _expression that is astate field path expression results in an
object of the same type as the corresponding state field of the entity. If the state field of the
entity is a primitive type, the corresponding object type is returned.

e A single_valued path_expression that is a
single_valued_association_path _expression results in an entity object of the type of the
relationship field or the subtype of the relationship field of the entity object as determined by
the object/relational mapping.

* The result type of andentification variable is the type of the entity to which that identifica-
tion variable corresponds or a subtype as determined by the object/relational mapping.

* The result type ohggregate expression is defined in section 4.8.4.

* The result type of @onstructor_expression is the type of the class for which the constructor
is defined. The types of the arguments to the constructor are defined by the above rules.

93 12/19/05

Sun Microsystems, Inc.

Query Language

4.8.2

Enterprise JavaBeans 3.0, Proposed Final Draft SELECT Clause

Constructor Expressions in the SELECT Clause

4.8.3

A constructor may be used in the SELECT list to return one or more Java instances. The specified class
is not required to be an entity or to be mapped to the database. The constructor name must be fully qual-
ified.

If an entity class name is specified in the SELECT NEW clause, the resulting entity instances are in the
new state.

SELECT NEW com.acme.example.CustomerDetails(c.id, c.status, o.count)
FROM Customer ¢ JOIN c.orders o
WHERE o.count > 100

Null Values in the Query Result

4.8.4

If the result of an EJB QL query corresponds to a association-field or state-field whose value is null, that
null value is returned in the result of the query method. The IS NOT NULL construct can be used to
eliminate such null values from the result set of the query.

In the case of queries that are associated with finder or select methods for EJB 2.1 entity
beans, if the finder or select method is a single-object finder or select method, and the result set
of the query consists of a single null value, the container must return the null value as the
result of the method. If the result set of a query for a single-object finder or select method con-
tains more than one value (whether non-null, null, or a combination), the container must throw
the FinderException.

Note, however, that state-field types defined in terms of Java numeric primitive types cannot produce

NULL values in the query result. An EJB QL query that returns such a state-field type as a result type
must not return a null value.

Aggregate Functions in the SELECT Clause

The result of an EJB QL query may be the result of an aggregate function applied to a path expression.

The following aggregate functions can be used in the SELECT clause of an EJB QL query: AVG,
COUNT, MAX, MIN, SUM.

For all aggregate functions except COUNT, the path expression that is the argument to the aggregate
function must terminate in a state-field. The path expression argument to COUNT may terminate in
either a state-field or a association-field, or the argument to COUNT may be an identification variable.

Arguments to the functions SUM and AVG must be numeric. Arguments to the functions MAX and
MIN must correspond to orderable state-field types (i.e., numeric types, string types, character types, or
date types).

The Java type that is contained in the result of a query using an aggregate function is a&%ollows

[29] The rules for finder and select method result types are defined in Section 4.10.1.

12/19/05

94

Sun Microsystems, Inc.

SELECT Clause

48.4.1

Enterprise JavaBeans 3.0, Proposed Final Draft Query Langupge

e COUNT returns Long.
* MAX, MIN return the type of the state-field to which they are applied.
* AVG returns Double.

* SUM returns Long when applied to state-fields of integral types (other than Biglinteger); Dou-
ble when applied to state-fields of floating point types; Biginteger when applied to state-fields
of type Biglinteger; and BigDecimal when applied to state-fields of type BigDecimal.

If SUM, AVG, MAX, or MIN is used, and there are no values to which the aggregate function can be
applied, the result of the aggregate function is NULL.

If COUNT is used, and there are no values to which COUNT can be applied, the result of the aggregate
function is 0.

The argument to an aggregate function may be preceded by the keyword DISTINCT to specify that
duplicate values are to be eliminated before the aggregate function is &plied.

Null values are eliminated before the aggregate function is applied, regardless of whether the keyword
DISTINCT is specified.

Examples
The following query returns the average order quantity:

SELECT AVG(o.quantity) FROM Order o

The following query returns the total cost of the items that John Smith has ordered.

SELECT SUM(l.price)
FROM Order o JOIN o.lineltems | JOIN o.customer ¢
WHERE c.lastname = ‘Smith’ AND c.firsthame = ‘John’

The following query returns the total number of orders.

SELECT COUNT(0)
FROM Order o

The following query counts the number of items in John Smith’s order for which prices have been spec-
ified.

SELECT COUNT(l.price)
FROM Order o JOIN o.lineltems | JOIN o.customer c
WHERE c.lasthame = ‘Smith’ AND c.firsthame = ‘John’

[30] Itis legal to specify DISTINCT with MAX or MIN, but it does not affect the result.

95 12/19/05

Sun Microsystems, Inc.

Query Language

4.9

Enterprise JavaBeans 3.0, Proposed Final Draft ORDER BY Clause

Note that this is equivalent to:

SELECT COUNT())

FROM Order o JOIN o.lineltems | JOIN o.customer ¢

WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’
AND l.price IS NOT NULL

ORDER BY Clause

The ORDER BY clause allows the objects or values that are returned by the query to be ordered.
The syntax of the ORDER BY clause is

orderby clause ::= ORDER BY orderby _item {, orderby_item}*
orderby item ::= state_field_path_expression [ASC | DESC]

When the ORDER BY clause is used in an EJB QL query, each element of the SELECT clause of the
guery must be one of the following:

1. an identification variable x, optionally denoted as OBJECT(x)
2. asingle_valued_association_path_expression
3. a state_field_path_expression

In the first two cases, eadrderby_item must be an orderable state-field of the entity abstract schema
type value returned by the SELECT clause. In the third caseyrtlezby item must evaluate to the same
state-field of the same entity abstract schema type astéle field path expression in the SELECT
clause.

For example, the first two queries below are legal, but the third and fourth are not.

SELECT o

FROM Customer ¢ JOIN c.orders o JOIN c.address a
WHERE a.state = ‘CA’

ORDER BY o.quantity, o.totalcost

SELECT o.quantity, a.zipcode

FROM Customer ¢ JOIN c.orders o JOIN c.address a
WHERE a.state = ‘CA’

ORDER BY o.quantity, a.zipcode

12/19/05

96

Sun Microsystems, Inc.

Return Value Types Enterprise JavaBeans 3.0, Proposed Final Draft Query Langupge

4.10

The following two queries are not legal becausedtderby _itemis not reflected in the SELECT clause
of the query.

SELECT p.product_name

FROM Order o JOIN o.lineltems | JOIN l.product p JOIN o.customer ¢
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’

ORDER BY p.price

SELECT p.product_name

FROM Order o, IN(o.lineltems) | JOIN o.customer ¢
WHERE c.lasthame = ‘Smith’ AND c.firsthame = ‘John’
ORDER BY o.quantity

If more than oneorderby item is specified, the left-to-right sequence of thelerby item elements
determines the precedence, whereby the leftardstby_item has highest precedence.

The keyword ASC specifies that ascending ordering be used; the keyword DESC specifies that descend-
ing ordering be used. Ascending ordering is the default.

SQL rules for the ordering of null values apply: that is, all null values must appear before all non-null
values in the ordering or all null values must appear after all non-null values in the ordering, but it is not
specified which.

The ordering of the query result is preserved in the result of the query method if the ORDER BY clause
is used.

Return Value Types

4.10.1

The type of the query result specified by the SELECT clause of a query is an entity abstract schema
type, a state-field type, the result of an aggregate function, the result of a construction operation, or
some sequence of these.

Result types br Finder and Select methods of 2.1 Entity Beans

The following rules apply to EJB 2.x finder and select methods:

How the result type of a query is mapped depends on whether the query is defined for a finder method
on the remote home interface, for a finder method on the local home interface, or for a select method.

* The result type of a query for a finder method must be the entity bean abstract schema type that
corresponds to the entity bean type of the entity bean on whose home interface the finder
method is defined. If the query is used for a finder method defined on the remote home inter-
face of the bean, the result of the finder method is the entity bean’s remote interface (or a col-
lection of objects implementing the entity bean’s remote interface). If the finder method is
defined on the local home interface, the result is the entity bean’s local interface (or a collec-
tion of objects implementing the entity bean’s local interface).

97 12/19/05

Sun Microsystems, Inc.

Query Language

Enterprise JavaBeans 3.0, Proposed Final Draft Bulk Update and Delete Operations

If the result type of a query for a select method is an entity bean abstract schema type, the
return values for the query method are instances of the entity bean’s local interface or instances
of the entity bean's remote interface, depending on whether the value of the
result-type-mapping deployment descriptor element contained in guery element

for the select method isocal or Remote. The default value foresult-type-mapping

isLocal .

If the result type of a query used for a select method is an abstract schema type corresponding
to a cmp-field type (excluding queries whose SELECT clause uses one of the aggregate func-
tions AVG, COUNT, MAX, MIN, SUM), the result type of the select method is as follows:

* If the Java type of the cmp-field is an object type and the select method is a sin-
gle-object select method, the result of the select method is an instance of that object
type. If the select method is a multi-object select method, the result is a collection of
instances of that type.

* If the Java type of the cmp-field is a primitive Java type (e.g., int), and the select
method is a single-object select method, the result of the select method is that primi-
tive type.

* If the Java type of the cmp-field is a primitive Java type (e.g., int), and the select
method is a multi-object select method, the result of the select method is a collection
of values of the corresponding wrappered type (e.g., Integer).

If the select method query is an aggregate query, the select method must be a single-object
select method.

* The result type of the select method must be a primitive type, a wrappered type, or an
object type that is compatible with the standard JDBC conversion mappings for the
type of the cmp-field [6].

* If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the result
type of the select method is an object type and there are no values to which the aggre-
gate function can be applied, the select method returns null.

* If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the result
type of the select method is a primitive type and there are no values to which the
aggregate function can be applied, the container must thro@lectNotFoun-
dException

* If the aggregate query uses the COUNT operator, the result of the select method
should be an exact numeric type. If there are no values to which the COUNT method
can be applied, the result of the select method is 0.

The result of a finder or select method may contain a null value if a cmp-field or cmr-field in the query
result is null.

4.11 Bulk Update and Delete Operations

Bulk update and delete operations apply to entities of a single entity class (together with its subclasses,
if any). Only one entity abstract schema type may be specified in the FROM or UPDATE clause.

12/19/05

98

Sun Microsystems, Inc.

Bulk Update and Delete Operations Enterprise JavaBeans 3.0, Proposed Final Draft Query Landuage

The syntax of these operations is as follows: |

update_statement ;.= update_clause [where_clause]
update_clause ::= UPDATE abstract_schema_name [[AS] identification_variable]
SET update_item {, update_item}*
update_item ::= [identification_variable.]{state field | single valued association _field} =
new_value
new_value ::=
simple_arithmetic_expression |
string_primary |
datetime_primary |
boolean_primary |
simple_entity expression |
NULL

delete_statement ::= delete clause [where_clause]
delete clause ::= DELETE FROM abstract_schema_name [[AS] identification_variable]

The syntax of the WHERE clause is described in Section 4.5.

A delete operation only applies to entities of the specified class and its subclasses. It does not caschde to
related entities.

The new_value specified for an update operation must be compatible in type with the state-field|to
which it is assigned.

Bulk update maps directly to a database update operation, bypassing optimistic locking checks.| The
application must manually update the value of the version column, if desired, and/or manually valiqate
the value of the version column.

The persistence context is not synchronized with the result of the bulk update or delete.

Caution should be used when executing bulk update or delete operations because they may result in
inconsistencies between the database and the entities in the active persistence context. In general, bulk
update and delete operations should only be performed within a separate transaction or at the begin-
ning of a transaction (before entities have been accessed whose state might be affected by such opera-
tions).

99 12/19/05

Sun Microsystems, Inc.

| Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Null Values

Examples:

DELETE
FROM Customer ¢
WHERE c.status = ‘inactive’

DELETE

FROM Customer ¢

WHERE c.status = ‘inactive’
AND c.orders IS EMPTY

UPDATE customer c
SET c.status = ‘outstanding’
WHERE c.balance < 10000
AND 1000 > (SELECT COUNT(0)
FROM customer cust JOIN cust.order 0)

4.12 Null Values

When the target of a reference does not exist in the database, its value is regakl¢idlaSQL 92
NULL semantics [4] defines the evaluation of conditional expressions contdidlrigvalues.

The following is a brief description of these semantics:
e Comparison or arithmetic operations with a NULL value always yield an unknown value.
* Two NULL values are not considered to be equal, the comparison yields an unknown value.
e Comparison or arithmetic operations with an unknown value always yield an unknown value.

* The IS NULL and IS NOT NULL operators converfNULL state-field or single-valued associ-
ation-field value into the respective TRUE or FALSE value.

* Boolean operators use three valued logic, defined by Table 1, Table 2, and Table 3.

Table 1 Definition of the AND Operator
AND [T |F |U
T T |F U
F |F |F
U U [(F U

12/19/05 100

Sun Microsystems, Inc.

Equality and Comparison Semantics Enterprise JavaBeans 3.0, Proposed Final Draft Query Landuage

Table 2

Definition of the OR Operator

OR T |F U
T T |T |T

T |F U
U T |U (U

Table 3

4.13

Definition of the NOT Operator

NOT
P
T F
F T
u u

Note: EJB QL defines the empty string, ', as a string with 0 length, which is not equal to a NULL value.
However, NULL values and empty strings may not always be distinguished when queries are mapped to
some databases. Application developers should therefore not rely on the semantics of EJB QL compari-
sons involving the empty string and NULL value.

Equality and Comparison Semantics

EJB QL only permits the values tike types to be compared. A typelike another type if they corre-

spond to the same Java language type, or if one is a primitive Java language type and the other is the
wrappered Java class type equivalent (éng., andinteger are like types in this sense). There is one
exception to this rule: it is valid to compare numeric values for which the rules of numeric promotion
apply. Conditional expressions attempting to compare non-like type values are disallowed except for
this numeric case.

Note that EJB QL permits the arithmetic operators and comparison operators to be applied to
state-fields and input parameters of the wrappered Java class equivalents to the primitive
numeric Java types.

Two entities of the same abstract schema type are equal if and only if they have the same primary key
value.

101 12/19/05

Sun Microsystems, Inc.

| Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Restrictions

4.14 Restrictions

EJB 2.1 entity objects of different types cannot be compared. EJB QL queries that contain such compar-
isons are invalid.

4.15 Examples

The following examples illustrate the syntax and semantics of EJB QL. These examples are based on
the example presented in Section 4.3.2.

4.15.1 Simple Queries

Find all orders:

SELECT o
FROM Order o

Find all orders that need to be shipped to California:

SELECT o

FROM Order o

WHERE o.shippingAddress.state = ‘CA’
Find all states for which there are orders:

SELECT DISTINCT o.shippingAddress.state
FROM Order o

4.15.2 Queries with Relationships

Find all orders that have line items:

SELECT DISTINCT o
FROM Order o, IN(o.lineltems) |

Note that the result of this query does not include orders with no associated line items. This query can
also be written as:

SELECT o
FROM Order o
WHERE o.lineltems IS NOT EMPTY

Find all orders that have no line items:

SELECT o
FROM Order o
WHERE o.lineltems IS EMPTY

12/19/05 102

Sun Microsystems, Inc.

Examples

4.15.3

Enterprise JavaBeans 3.0, Proposed Final Draft Query Langudge

Find all pending orders:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems |
WHERE l.shipped = FALSE

Find all orders in which the shipping address differs from the billing address. This example assumes
that the application developer uses two distinct entity types to designate shipping and billing addresses,
as in Figure 1.

SELECT o

FROM Order o

WHERE

NOT (o.shippingAddress.state = o.billingAddress.state AND
o.shippingAddress.city = o.billingAddress.city AND
o.shippingAddress.street = o.billingAddress.street)

If the application developer uses a single entity in two different relationships for both the shipping
address and the billing address, the above expression can be simplified based on the equality rules
defined in Section 4.13. The query can then be written as:

SELECT o
FROM Order o
WHERE o.shippingAddress <> o.billingAddress

The query checks whether the same entity abstract schema type instance (identified by its primary key)
is related to an order through two distinct relationships.

Find all orders for a book titled ‘Applying Enterprise JavaBeans: Component-Based Development for
the J2EE Platform’: |

SELECT DISTINCT o
FROM Order o JOIN o.lineltems |
WHERE l.product.type = ‘book’ AND
I.product.name = ‘Applying Enterprise JavaBeans:
Component-Based Development for the J2EE Platform’ |

Queries Using Input Rarameters

The following query finds the orders for a product whose name is designated by an input parameter:

SELECT DISTINCT o
FROM Order o, IN(0.lineltems) |
WHERE l.product.name = ?1

For this query, the input parameter must be of the type of the state-field name, i.e., a string.

103 12/19/05

Sun Microsystems, Inc.

| Query Language Enterprise JavaBeans 3.0, Proposed Final Draft EJB QL BNF

4.16 EJB QL BNF

EJB QL BNF notation summary:

e {...}grouping

e [...]optional constructs

boldface keywords
e *Zzero or more
* [alternates

The following is the BNF for EJB QL. This is a superset of EJB QL as defined in [5].

EJB QL ::= select_statement | update_statement [delete statement
select_statement .= select_clause from_clause [where_clause] [groupby clause]
[having_clause] [orderby clause]
update_statement ::= update_clause [where_clause]
delete_statement ::= delete_clause [where_clause]
from_clause ::=
FROM identification_variable declaration
{, {identification_variable _declaration | collection_member_declaration}}*
identification_variable _declaration ::= range_variable declaration { join | fetch_join }*
range_variable _declaration ::= abstract schema_name [AS] identification_variable
Join ::= join_spec join_association_path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH join_association_path _expression
association_path_expression ::=
collection_valued_path_expression | single_valued_association_path _expression
join_spec::= [LEFT [OUTER] [INNER] JOIN
Join_association_path _expression ::= join_collection _valued path_expression |
Join_single valued _association _path_expression
Join_collection_valued _path_expression::=
identification_variable.collection _valued _association_field
Join_single valued_association _path _expression:.=
identification_variable.single_valued_association_field
collection_member_declaration ::=
IN (collection_valued path_expression) [AS] identification_variable
single_valued_path_expression ::=
state_field _path_expression [single_valued_association_path _expression
state_field _path_expression ::=
{identification _variable | single_valued_association_path expression}.state_field
single_valued_association_path _expression ::=
identification_variable.{single_valued_association_field.}* single _valued _association_field
collection_valued_path_expression ::=
identification_variable.{single _valued _association _field.}*collection_valued_association_field

12/19/05 104

Sun Microsystems, Inc.

EJB QL BNF Enterprise JavaBeans 3.0, Proposed Final Draft Query Langugge

state_field ::= {embedded class state field.}*simple_state field
update_clause ::= UPDATE abstract_schema_name [[AS] identification_variable]
SET update_item {, update_item}*
update_item ::= [identification_variable.]{state field | single valued association _field} =
new_value |
new_value ::=
simple_arithmetic_expression |
string_primary |
datetime_primary |
boolean_primary |
simple_entity expression |
NULL ‘
delete clause ::= DELETE FROM abstract_schema_name [[AS] identification_variable]
select clause ::= SELECT [DISTINCT] select_expression {, select_expression}*
select_expression ;=
single_valued_path _expression |
aggregate _expression | |
identification_variable |
OBJECT (identification_variable) |
constructor_expression
constructor_expression ;=
NEW constructor_name (constructor_item {, constructor_item}*)
constructor_item ::= single_valued _path_expression | aggregate expression
aggregate_expression ;=
{AVG | MAX [MIN [SUM } ([DISTINCT] state_field _path_expression) |
COUNT (/DISTINCT] identification_variable | state_field _path expression |
single_valued_association_path_expression)
where_clause ::= WHERE conditional _expression
groupby clause ::= GROUP BY groupby _item {, groupby _item}*
groupby item ::= single_valued_path expression |
having_clause ::= HAVING conditional_expression
orderby clause ::= ORDER BY orderby item {, orderby item}*
orderby item ::= state field path expression [ASC | DESC]
subquery ::= simple_select clause subquery from_clause [where_clause]
[groupby clause] [having clause]
subquery from_clause ::=
FROM subselect identification variable declaration
{, subselect _identification_variable declaration}*
subselect_identification_variable_declaration ::=
identification_variable _declaration |
association_path_expression [AS] identification_variable |
collection_member_declaration
simple_select clause ::= SELECT [DISTINCT] simple_select _expression
simple_select_expression::=
single_valued_path _expression |
aggregate _expression | |
identification_variable
conditional _expression :.= conditional _term | conditional _expression OR conditional _term
conditional _term ::= conditional factor | conditional _term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary

105 12/19/05

Sun Microsystems, Inc.

| Query Language

Enterprise JavaBeans 3.0, Proposed Final Draft EJB QL BNF

conditional_primary ::= simple_cond_expression [(conditional_expression)
simple_cond_expression ;=
comparison_expression |
between_expression |
like_expression |
in_expression |
null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression |
exists_expression
between_expression ;=
arithmetic_expression [NOT] BETWEEN
arithmetic_expression AND arithmetic_expression |
string_expression [NOT] BETWEEN string_expression AND String_expression |
datetime_expression [NOT] BETWEEN
datetime_expression AND datetime_expression
in_expression ::=
state_field _path_expression [NOT]IN (in_item {, in_item}* [subquery)
in_item ::= literal | input_parameter
like_expression ::=
string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]
null_comparison_expression ::=
{single_valued_path _expression [input_parameter} 1S [NOT] NULL
empty_collection_comparison_expression ::=
collection_valued _path_expression IS [NOT] EMPTY
collection_member_expression ::= entity_expression
[NOT] MEMBER [OF] collection_valued _path _expression
exists_expression.:= [NOT] EXISTS (subquery)
all_or_any expression ::= { ALL [ANY | SOME} (subquery)
comparison_expression ;=
string_expression comparison_operator {string_expression [all_or_any expression} |
boolean_expression { =|<>} {boolean _expression | all_or_any expression} |
datetime_expression comparison_operator
{datetime_expression [all_or_any_expression} |
entity_expression { = [<> } {entity _expression [all_or_any expression} |
arithmetic _expression comparison_operator
{arithmetic_expression | all_or_any expression}
comparison_operator ::== [> [>= [< [<= [<>
arithmetic_expression ::= simple_arithmetic_expression | (subquery)
simple_arithmetic_expression ::=
arithmetic_term | simple_arithmetic _expression { + [- } arithmetic_term
arithmetic_term :.= arithmetic _factor [arithmetic_term {* |1 } arithmetic _factor
arithmetic_factor ::= [{ + [- }] arithmetic_primary
arithmetic_primary ::=
state_field_path_expression |
numeric_literal |
(simple_arithmetic_expression) |
input_parameter |
functions_returning_numerics |
aggregate_expression

12/19/05

106

Sun Microsystems, Inc.

EJB QL BNF Enterprise JavaBeans 3.0, Proposed Final Draft

string_expression ::= string_primary | (subquery)
string_primary ::=
state_field_path_expression |
string_literal |
input_parameter |
functions_returning_strings |
aggregate_expression
datetime_expression ;.= datetime_primary | (subquery)
datetime_primary ::=
state_field_path_expression |
input_parameter |
functions_returning_datetime |
aggregate_expression
boolean_expression ::= boolean_primary | (subquery)
boolean_primary ::=
state_field_path_expression |
boolean_literal |
input_parameter |
entity_expression ;=

single_valued_association_path _expression | simple_entity expression

simple_entity _expression ::=
identification_variable |
input_parameter

functions_returning_numerics::=
LENGTH(string_primary) |

LOCATE(Sstring_primary, string_primary[, simple_arithmetic _expression)) |

ABS(simple_arithmetic_expression) [
SQRT(simple_arithmetic _expression) |

MOD(simple_arithmetic_expression, simple_arithmetic_expression) |

SIZE(collection_valued _path _expression)
functions_returning_datetime ::=

CURRENT_DATE/

CURRENT_TIME |/

CURRENT_TIMESTAMP
functions_returning_strings ::=

CONCAT(string_primary, string_primary) |

SUBSTRING(string_primary,

Query Langugge

simple_arithmetic_expression, simple_arithmetic_expression)|

TRIM([[trim_specification] [trim_character] FROM] string_primary) |

LOWER(string_primary) |
UPPER(string_primary)
trim_specification ::= LEADING | TRAILING | BOTH

107

12/19/05

Sun Microsystems, Inc.

| Query Language Enterprise JavaBeans 3.0, Proposed Final Draft EJB QL BNF

12/19/05 108

Sun Microsystems, Inc.

Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence CJontexts

«aers 2Nt Managers and Persistence Contexts

5.1 Persistence Contexts

A persistence context is a set of managed entity instances in which for any persistent entity ideftity
there is a unique entity instance. Within the persistence context, the entity instances and their lifeqycle
are managed by the entity manager.

In Java EE environments, a JTA transaction typically flows across multiple components. Often, quch
components may need to access the same persistence context within the transaction. To facilitate gase of
use of entity managers in Java EE environments, when an entity manager is injected into a compgnent
or looked up directly in JNDI, its persistence context will automatically be propagated with the currlnt
JTA transaction, and the EntityManager references that are mapped to the same persistence unjt will
provide access to this same persistence context within the JTA transaction. This propagation of persis-
tence context by the Java EE container avoids the need for the application to pass references to Bntity-
Manager instances from one component to another. An entity manager for which the container marjages
the persistence context in this manner is termedrgainer-managed entity managércontainer-man-
aged entity manager’s lifecycle is managed by the Java EE container.

109 12/19/05

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Obtaining an EntityManager

5.1.1

In less common use cases within Java EE containers, applications may need to access a persistence con-
text that is “stand-alone”—i.e. not propagated along with the JTA transaction across the EntityManager
references for the given persistence unit. Instead, each instance of creating an entity manager must
cause a new, isolated persistence context to be created that is not accessible through other EntityMan-
ager references within the same transaction. These use cases are supported thicyegletbeti-

tyManager methods of th&ntityManagerFactory interface. An entity manager that is used by

the application to create and destroy persistence contexts in this manner is terapglieation-man-

aged entity manageAn application-managed entity manager’s lifecycle is managed by the application.

Both container-managed entity managers and application-managed entity managers and their persis-
tence contexts are required to be supported in Java EE web containers and EJB containers. Within an
EJB environment, container-managed entity managers are typically used.

In Java SE environments, only application-managed entity managers are required to be supported.

Persistence Context Lifecycle ypes

5.2

The lifecycle of a persistence context is independent of whether the persistence context is propagated or
stand-alone. The persistence context may either be defined to have a lifecycle that is transaction-scoped
or extended, according to tfRersistenceContextType that is specified when its EntityManager

is created.

A persistence context that is transaction-scoped has a lifetime that is scoped to a single transaction. A

persistence context that is extended has a lifetime that spans multiple transactions. The lifecycle of per-
sistence contexts is described further in section 5.6.

Obtaining an EntityManager

The entity manager for a persistence context is obtained from an entity manager factory.

When container-managed entity managers are used in Java EE environments, the application typically
does not interact with the entity manager factory since entity managers can be obtained directly through
dependency injection or from JNDI, and the container manages this interaction transparently to the

application.

When application-managed entity managers are used, the application must use the entity manager fac-
tory to manage the entity manager and persistence context lifecycle.

In both cases, when multiple persistence units are present in the application, the application must desig-
nate the persistence unit with which the entity manager and/or entity manager factory is associated.

12/19/05

110

Sun Microsystems, Inc.

Obtaining an EntityManager Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Cpntexts

5.2.1

Obtaining an Entity Manager in the Java EE Ervironment

5.2.2

A container-managed entity manager is obtained by the application through dependency injectioh, or
direct lookup of the entity manager in the JNDI namesﬁ&l:eThe container manages the persistenc
context lifecycle and the creation and the closing of the entity manager instance transparently tq the
application.

The application may also use the EntityManagerFactory.getEntityManager() method to obtain

a container-managed entity manager. This method, however, is intended primarily for use by
the container in Java EE environments. In Java SE environments, if the persistence provider
supports the use of JTA, the getEntityManager method is used by the application to obtain a|
transaction-propagated persistence context that is managed by the persistence provider (the
effective persistence “container” in Java SE). L

The PersistenceContext annotation is used for entity manager injection. If multiple persistenc|
units exist, theunitName element must be specified. Thge element specifies whether a transac-
tion-scoped or extended persistence context is to be used. See section 5.6. |

For example,

@PersistenceContext(unitName="order")
EntityManager em;

/Ihere only one persistence unit exists
@PersistenceContext(type=PersistenceContextType.EXTENDED)
EntityManager orderEM,;

The IJNDI lookup of an entity manager is illustrated below:

@Stateless

@PersistenceContext(name="0OrderEM", unitName="Order")

public class MySessionBean implements MylInterface {
@Resource SessionContext ctx;

public void doSomething() {

EntityManager em = (EntityManager)
ctx.lookup("OrderEM™);

Obtaining an Application-managed Entity Manager

An application-managed entity manager—i.e., an entity manager with a stand-alone persistencejcon-
text—is obtained by the application from an entity manager factory.

The EntityManagerFactory API used to obtain an application-managed entity manager is the
same independent of whether this APl is used in Java EE or Java SE environments.

[31] Note that an entity manager might be a proxy. |

111 12/19/05

Sun Microsystems, Inc.

| Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Obtaining an Entity Manager Factory

5.3

5.2.2.1 Control of the Application-Managed EntityManager Lifecycle.

The EntityManager methodslose andisOpen are used to manage the lifecycle of an applica-
tion-managed entity manager and its associated persistence context.

The EntityManager.close method closes an entity manager to release its persistence context and
other resources. Thedose method must only be invoked when a transaction is not active. The close
method must not be invoked on a container-managed entity manager (including an entity manager with
a transaction-propagated persistence context that has been obtained by meagsté&hitityMan-

ager method) or on an entity manager that has been closed.

The EntityManager.isOpen method indicates whether the entity manager is open.iS@pen
method returns true until the entity manager has been closed.

Obtaining an Entity Manager Factory

53.1

The EntityManagerFactory interface is used to create an entity manager and manage its lifecy-
cle.

Each entity manager factory provides entity manager instances that are all configured in the same man-
ner (e.g., configured to connect to the same database, use the same initial settings as defined by the
implementation, etc.).

More than one entity manager factory instance may be available simultaneously in thglavm.

When multiple persistence units exist within the referencing scope, the application must designate the
persistence unit with which the entity manager factory and its entity managers are associated.

Obtaining an Entity Manager Factory in a Java EE Container

Within a Java EE environment, an entity manager factory may be injected usifgthistence-
Unit annotation or obtained through JNDI lookup.

For example

@PersistenceUnit
EntityManagerFactory emf;

If multiple persistence units exist, thaitName element must be specified:

@PersistenceUnit(unitName="order")
EntityManagerFactory emf;

[32] This may be the case when using multiple databases, since in a typical configuration a single entity manager only @smmunicat

with a single database. There is only one entity manager factory per persistence unit, however.

12/19/05

112

Sun Microsystems, Inc.

The EntityManagerFactory Interface Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence (ontexts
5.3.2 Obtaining an Entity Manager Factory in a Java SE Environment
Outside a Java EE container environment, jtheax.persistence.Persistence class is the
bootstrap class that provides access to an entity manager factory. The application creates an entity man-
ager factory by calling thereateEntityManagerFactory method of thegjavax.persis-
tence.Persistence class.
For example,

5.4

EntityManagerFactory emf =
javax.persistence.Persistence.createEntityManagerFactory("Order");
EntityManager em = emf.createEntityManager();

The EntityManagerFactory Interface

The EntityManagerFactory interface is used by the application to obtain an entity managdr
instance and its associated persistence cdAtexthen the application has finished using the entit
manager factory, and/or at application shutdown, the application should close the entity manager fac-
tory. Once an EntityManagerFactory has been closed, all its entity managers are considered to be |n the
closed state.

[33] It may also be used internally by the Java EE container. See section 5.9. |

113 12/19/05

Sun Microsystems, Inc.

| Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft The EntityManagerFactory Interface

public interface javax.persistence.EntityManagerFactory {

/**

* Create a new EntityManager of of type

* PersistenceContextType. TRANSACTION.

* This method returns a new application-managed EntityManager
* instance (with a new stand-alone persistence context) each

* time it is invoked.

* The isOpen method will return true on the returned instance.

*

EntityManager createEntityManager();

/**
* Create a new EntityManager of the specified persistence
* context type.
* This method returns a new application-managed EntityManager
* instance (with a new stand-alone persistence context) each
* time it is invoked.
* The isOpen method will return true on the returned instance.
*
/
EntityManager createEntityManager(PersistenceContextType type);

/**
* Get an EntityManager instance whose persistence context
* is propagated with the current JTA transaction.
* If there is no persistence context bound to the current
* JTA transaction, a new transaction-scoped persistence
* context is created and associated with the transaction
* and the entity manager instance that is created and
* returned. If no JTA transaction is in progress, an
* EntityManager instance is created for which the persistence
* context will be propagated with subsequent JTA transactions.
* Throws lllegalStateException if called on an
* EntityManagerFactory that does not provide JTA EntityManagers.
*
/
EntityManager getEntityManager();

/**

* Close the factory, releasing any resources that it holds.

* After a factory instance is closed, all methods invoked on
* it will throw an IllegalStateException, except for isOpen,
* which will return false.

*/

void close();

/**

* Indicates whether the factory is open. Returns true
* until the factory has been closed.

*/

public boolean isOpen();

12/19/05

114

Sun Microsystems, Inc.

Controlling Transactions

5.5

The following example illustrates the creation of an entity manager factory in a Java SE environm
and its use in creating and using a resource-local entity maA&ger.

import javax.persistence.*;

public class PasswordChanger {
public static void main (String[] args) {

EntityManagerFactory emf =
Persistence.createEntityManagerFactory();
EntityManager em = emf.createEntityManager();

em.getTransaction().begin();
user = em.createQuery
("SELECT u FROM User u WHERE u.name=:name AND
u.pass=:pass")
.setParameter("name", args[0])
.setParameter("pass", args[1])
.getSingleResult();

if (user!=null)
user.setPassword(args[2]);

em.getTransaction().commit();

em.close();
emf.close ();

Configuration information needed for the creation of an EntityManagerFactory is described in Cha
6, “Entity Packaging”.

Controlling Transactions

Depending on the transactional type of the entity manager, transactions involving EntityManager o
tions may controlled either through JTA or through use of the resource#ottdy Transaction

API, which is mapped to a resource transaction over the resource that underlies the entities manag
the entity manager.

An entity manager whose underlying transactions are controlled through JTA is terdied entity
manager

An entity manager whose underlying transactions are controlled by the application througttithe
tyTransaction API is termed a@esource-local entity manager

An entity manager is defined to be of a given transactional type—either JTA or resource-local—at
time its underlying entity manager factory is configured and created.

[34] Resource-local entity managers are described in Section 5.5.2.

115 12/19/05

Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence C¢ntexts

Iant,

pter

era-

ed by

the

Sun Microsystems, Inc.

| Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Controlling Transactions

5.5.1

A container-managed entity manager must be a JTA entity manager. JTA entity managers are only spec-
ified for use in Java EE containers.

An application-managed entity manager may be either a JTA entity manager or a resource-local entity
manager.

Both JTA entity managers and resource-local entity managers are required to be supported in Java EE

web containers and EJB contairlé?k Within an EJB environment, a JTA entity manager is typically
used. In general, in Java SE environments only resource-local entity managers are supported.

JTA EntityManagers

5.5.2

An entity manager whose transactions are controlled through JTA is a JTA entity manager. A JTA
entity manager participates in the current JTA transaction, which is begun and committed external to the
entity manager and propagated to the underlying resource manager.

Resource-local EntityManagers

An entity manager whose transactions are controlled by the application througintibgl'rans-

action APl is aresource-local entity manager. A resource-local entity manager transaction is mapped
to a resource transaction over the resource by the persistence provider. Resource-local entity managers
may use server or local resources to connect to the database and are unaware of the presence of JTA
transactions that may or may not be active.

[35] Note that JTA support is not required in application client containers.

12/19/05

116

Sun Microsystems, Inc.

Persistence Context Lifetime Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Cpntexts

5.5.2.1 The EntityTransaction Interface |
The EntityTransaction interface is used to control resource transactions on resource-local entity

managers. Thé&ntityManager.getTransaction() method returns th&ntityTransac- |
tion interface.

public interface EntityTransaction {
/**
* Start a resource transaction.
* @throws lllegalStateException if isActive() is true. |
*/
public void begin();
/**
* Commit the current transaction, writing any unflushed
* changes to the database.
* @throws lllegalStateException if isActive() is false.
* @throws PersistenceException if the commit fails.
*/
public void commit();

/**

* Roll back the current transaction.
* @throws lllegalStateException if isActive() is false.
* @throws PersistenceException if an unexpected error
* condition is encountered.
*
/
public void rollback();

/**

* |Indicate whether a transaction is in progress.

* @throws PersistenceException if an unexpected error
* condition is encountered.

*/

public boolean isActive();

5.6 Persistence Context Lifetime

A persistence context may either have a lifetime that is scoped to a single transaction or have a lifgtime
that spans multiple transactions. This specification refers to such persistence contasissas-
tion-scoped persistence conteatelextended persistence contexdspectively.

These lifetime types are independent of whether the entity manager is container-managed or applica-
tion-managed—i.e., whether the persistence context is transaction-propagated or stand-alone.

Persistence context lifetime types and the persistence context lifecycle are described in this segtion.
Examples are given in Section 5.8.

117 12/19/05

Sun Microsystems, Inc.

| Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Context Lifetime

5.6.1.2

5.6.1

Container-managed Rersistence Contexts

5.6.1.1

5.6.2

When a container-managed persistence entity manager is used, the lifecycle of the persistence context is
always managed automatically—whether by the Java EE container (in Java EE environments), by the
persistence provider (in Java SE environments, if the persistence provider supports the use of JTA), or
by the Java EE container in conjunction with the persistence provider (in Java EE environments if plug-
gable third-party persistence providers are used). In all of these cases, the management of the persis-
tence context lifecycle is transparent to the application. As described in section 5.1, the
container-managed persistence context is propagated with the JTA transaction.

Container-managed Transaction-scoped Persistence Context
A new persistence context begins when a container-managed entity manager is [FV akelde scope
of an active JTA transaction, and there is no current persistence context already associated with the JTA
transaction. The persistence context is created and then associated with the current JTA transaction.
The persistence context ends when the associated JTA transaction commits or rolls back, and all entities
that were managed by the EntityManager become detached.

If the entity manager is invoked outside the scope of a transaction, a persistence context is created and
destroyed to service the method call only, and any entities loaded from the database will immediately
become detached at the end of the method call.

Container-managed Extended Persistence Context
A container-managed extended persistence context exists from the point at which the container-man-
aged entity manager has been obtained by dependency injection or through JNDI lookup until it is
closed by the container. Such an extended persistence context can only be initiated within the scope of a
stateful session bean and is closed by the container whe@ Bemoveanethod of the stateful session

bean completes (or the stateful session bean instance is otherwise destroyed).

When an extended persistence context is used, the entities managed by the EntityManager remain man-

aged independently of whether JTA transactions are begun or committed. They do not become detached
until the persistence context ends.

Application-managed Rersistence Contexts

When an application-managed entity manager is used, the application interacts directly with the persis-
tence provider's entity manager factory to obtain and destroy stand-alone persistence contexts by means
of the EntityManagerFactory.createEntityManager() and EntityMan-

ager.close() operations and transaction APIs.

[36] Specifically, when one of the methods of the EntityManager interface is invoked.

12/19/05

118

Sun Microsystems, Inc.

Persistence Context Propagation for Container-managed Entity ManagersEnterprise JavaBeans 3.0, Proposed Final Draft EntIty Man-

5.6.2.1 Application-managed Transaction-scoped Persistence Context

For an application-managed JTA entity manager with transaction-scoped persistence context, a ney per-
sistence context begins when the entity manager is invoked in the scope of an active JTA transaction,
and there is no current persistence context already associated with the entity manager. This persistence
context is associated with the entity manager instance. The persistence context ends when the associ-
ated JTA transaction completes, and all entities that were managed by the EntityManager become
detached. If the entity manager is invoked outside the scope of a transaction, a persistence context is
created and destroyed to service the method call only, and any entities loaded from the database will
immediately become detached at the end of the method call.

For a resource-local entity manager, a new persistence context begins whenever a new resource transac
tion is started vigEntityTransaction.begin . The persistence context ends when the resour
fhe

transaction ends—whether bEntityTransaction.commit or by EntityTransac-

tion.rollback —and all entities that were managed by the EntityManager become detached. |

entity manager is invoked outside the scope of a transaction, a persistence context is created and
destroyed to service the method call only, and any entities loaded from the database will immediately
become detached at the end of the method call.

5.6.2.2 Application-managed Extended Persistence Context
In the case of an application-managed entity manager with extended persistence context (whether a JTA
or resource-local entity manager), the extended persistence context exists from the point at which the
entity manager has been created until the entity manager is closed, ustgtitydlanagerFac-
tory.createEntityManager() and EntityManager.close() APIs for the management
of the entity manager lifecycle. The extended persistence context obtained from the application-rjan-
aged entity manager is a stand-alone persistence context—it is not propagated with the transactic:lju.

When an extended persistence context is used, the entities managed by the EntityManager remain man-
aged independently of whether JTA transactions or resource-local transactions are begun or comnijitted.
They do not become detached until the persistence context ends.

5.7 Persistence Context Propagation for Container-managed
Entity Managers

As described in section 5.1, for transaction-propagated persistence contexts, a single persistence dontext
may correspond to one or more JTA entity manager instances associated with the same entity mahager
factory.

The persistence context is shared across several such entity manager instances as the JTA transaktion is
propagated. In the case of transaction-propagated persistence contexts BétgisenceCon-
textType. TRANSACTION , the persistence context is also said tbdnendto the JTA transaction.

Entity managers obtained from different entity manager factories never share the same persistencé con-
text.

Entity managers in different JTA transactions do not share the same persistence context.

119 12/19/05

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Context Propagation for Con-

Propagation of persistence contexts only applies within a local environment. Persistence contexts are
not propagated to remote tiers.

As described in section 5.1, persistence context propagation does not apply to the stand-alone persis-
tence contexts obtained from application-managed entity managers.

5.7.0.1 Persistence Context Propagation for Transaction-scoped Persistence Contexts
The application may obtain a container-managed JTA entity manager with transaction-scoped persis-
tence context (a persistence context of tjgsrsistenceContextType. TRANSACTION) bound
to the JTA transaction by injection or direct lookup of the entity manager in the JNDI namespace, or by
calling getEntityManager() on a JTA entity manager factory.

In either case, the returned entity manager accesses a persistence context that is propagated with the JTA
transaction:

* If the entity manager is called when no JTA transaction is in progress, a persistence context is
created and destroyed to service the method call only, and any entities loaded from the data-
base will immediately become detached at the end of the method call.

* If the entity manager is called and there is no persistence context associated with the current
JTA transaction, a new persistence context will be created and bound to the JTA transaction,
and the call will take place in that context.

* If the entity manager is called and there is an existing persistence context bound to the current
JTA transaction, the call takes place in that context.

5.7.0.2 Persistence Context Propagation Rules for Extended Persistence Contexts

The application may obtain a container-managed JTA entity manager with persistence context of type
PersistenceContextType.EXTENDED bound to a stateful session bean instance by injection or
JNDI lookup.

The following rules apply when the persistence context type of a container-managed entity manager is
EXTENDED

* If a component with a transaction-scoped persistence context calls a component with an
extended persistence context in the same JTA transaction, an lllegalStateException is
thrown[37]

* If a component with an extended persistence context calls a component with a transac-
tion-scoped persistence context in the same JTA transaction, the persistence context is propa-
gated.

* If a component with an extended persistence context calls a component in a different JTA
transaction context, the persistence context is not propagated.

[37] Note that there is no transaction-scoped persistence context for a component unless its EntityManager has beerhvoked in t
given transaction.

12/19/05 120

Sun Microsystems, Inc.

Examples Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Cojtexts

* If a component with an extended persistence context instantiates a stateful session bean with an
extended persistence context, the extended persistence context is inherited by that stateful ses-
sion bean and exists until all such stateful session beans have been destroyed. If, howevel, that
stateful session bean is called with a different transaction context than the instantiating conjpo-
nent, an lllegalStateException is thrown.

* If a component with an extended persistence context calls a component with a different
extended persistence context in the same transaction, an lllegalStateException is thrown.

In general, an exception is thrown if there are two different extended persistence contexts for the §ame
EntityManagerFactory in the same transaction.

5.8 Examples

5.8.1 Container-managed Tansaction-scoped Brsistence Context

@Stateless
public class ShoppingCartimpl implements ShoppingCart {

@PersistenceContext EntityManager em;

public Order getOrder(Long id) {
return em.find(Order.class, id);
}

public Product getProduct(String name) {
return (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)

.getSingleResult();
}
public Lineltem createLineltem(Order order, Product product, int
guantity) {
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
em.persist(li);
return li;
}

121 12/19/05

Sun Microsystems, Inc.

| Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Examples

5.8.2 Container-managed Extended Brsistence Context

@ Stateful
@Transaction(REQUIRES_NEW)
public class ShoppingCartimpl implements ShoppingCart {

@PersistenceContext(type=EXTENDED)
EntityManager em;

private Order order;
| private Product product;

public void initOrder(Long id) {
order = em.find(Order.class, id);
}

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)
.getSingleResult();

}

public Lineltem createLineltem(int quantity) {
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
return li;

12/19/05 122

Sun Microsystems, Inc.

Examples Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Cojtexts

5.8.3 Application-managed Transaction-scoped Brsistence Context (JA)

@Stateless
public class ShoppingCartimpl implements ShoppingCart {

@PersistenceUnit
private EntityManagerFactory emf;

private EntityManager em;

@PostConstruct
public void init() {

em = emf.createEntityManager();
}

public Order getOrder(Long id) {
return em.find(Order.class, id);

public Product getProduct() {
return (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)
.getSingleResult();

}

public Lineltem createlLineltem(Order order, Product product, int
quantity) {
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
em.persist(li);
return li;

}

@PreDestroy
public void destroy() {
em.close();

123 12/19/05

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft

5.8.4 Application-managed Extended Brsistence Context(JAR)

@ Stateful
public class ShoppingCartimpl implements ShoppingCart {

@PersistenceUnit
private EntityManagerFactory emf;

private EntityManager em;

private Order order;
private Product product;

@PostConstruct
public void init() {
em = emf.createEntityManager(PersistenceContext-
Type.EXTENDED);
}

public void initOrder(Long id) {
order = em.find(Order.class, id);
}

public void initProduct(String name) {

Examples

product = (Product) em.createQuery("select p from Product p

where p.name = :name")
.setParameter("name”, name)
.getSingleResult();

}

public Lineltem createLineltem(int quantity) {
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
return [i;

@Remove
public void destroy() {
em.close();

12/19/05 124

Sun Microsystems, Inc.

Examples Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Cojtexts

5.8.5 Application-managed Transaction-scoped Brsistence Context (Resouwe

Transaction)

/' Usage in an ordinary Java class
public class Shoppingimpl {

private EntityManager em;
private EntityManagerFactory emf;

public ShoppingCart() {
emf = Persistence.createEntityManagerFactory();
em = emf.createEntityManager();

}

public Order getOrder(Long id) {
return em.find(Order.class, id);
}

public Product getProduct() {
return (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)

.getSingleResult();
}
public Lineltem createlLineltem(Order order, Product product, int
quantity) {
em.getTransaction().begin();
Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);
em.persist(li);
em.getTransaction().commit();
return li;
}
public void destroy() {
em.close();
emf.close();

125 12/19/05

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft

5.8.6 Application-managed Extended Brsistence Context (Resowe Transaction)

/I Usage in an ordinary Java class
public class Shoppingimpl {

private EntityManager em;
private EntityManagerFactory emf;

public ShoppingCart() {
emf = Persistence.createEntityManagerFactory();
em = emf.createEntityManager(PersistenceContext-
Type.EXTENDED);
}

private Order order;
private Product product;

public void initOrder(Long id) {
order = em.find(Order.class, id);
}

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p
where p.name = :name")
.setParameter("name”, name)
.getSingleResult();

}

public Lineltem createLineltem(int quantity) {
em.getTransaction().begin();

Lineltem li = new Lineltem(order, product, quantity);
order.getLineltems().add(li);

em.getTransaction().commit();

return li;

}

public void destroy() {
em.close();
emf.close();

12/19/05 126

Examples

Sun Microsystems, Inc.

Requirements on the Container Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence ontexts

5.9

Requirements on the Container

5.9.1

Persistence Context Management

5.9.2

For application managed persistence contexts, the application uséntihdManagerFactory
andEntityManager APIs to create and destroy persistence contexts. For container-managed pefsis-
tence contexts, the container might use these same APIs or might use its own internal APIs; however,
the container is required to support third-party persistence providers. The APIs for the support of
third-party persistence providers are described further in Chapter 7.

Persistence contexts are always associated with an entity manager factory. In the following, everywhere
that "the persistence context" appears, it should be understood to mean "the persistence context associ-
ated with a particular entity manager factory".

Outside the container environment, the application creates an entity manager factory explicitly by call-
ing Persistence.createEntityManagerFactory . Inside the container environment, the
container must instantiate the entity manager factory and expose it to the application via JNDI. The I:on-
tainer might use internal APIs to create the entity manager factory, or it mighPesssten-

ceProvider.createContainerEntityManagerFactory . However, the container is |
required to support third-party persistence providers, and in this case, the container mustiRese the
sistenceProvider.createContainerEntityManagerFactory call to create the entity
manager factory and must c&htityManagerFactory.close to destroy the entity manager fac-

tory prior to shutdown.

Container Managed Rersistence Contexts

When operating in a container environment, the container is responsible for managing the lifecycle of
persistence contexts, and injectiigtityManager references into web components and session
bean and message-driven bean components.

When operating with a third-party persistence provider, the container usdsrttigyMan-
agerFactory/EntityManager contract defined here to create and destroy persistence
contexts. It is undefined whether a new entity manager instance is created for every persistencd
context, or whether entity manager instances are sometimes reused. Exactly how the containe
maintains the association between persistence context and JTA transaction is not defined. The
container may maintain this association internally, or it may delegate this concern to the per-
sistence provider by usingetEntityManager() to obtain the provider's current entity
manager.

The container:

* Begins a new persistence context of typersistenceContextType. TRANSACTION
whenever the first invocation of an entity manager wiersistenceContext-
Type.TRANSACTION occurs within the scope of a business method executing in a new J
transaction.

* Associates that persistence context with the JTA transaction, so that subsequent local business
methods which occur in the same JTA transaction also propagate the persistence context]

127 12/19/05

Sun Microsystems, Inc.

Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Container

* Ends the persistence context when the JTA transaction completes.
The container also:

* Begins a new persistence context of typersistenceContextType.EXTENDED when-
ever a stateful session bean using an entity manager RetsistenceContext-
Type.EXTENDED is created outside the scope of a JTA transaction and associates that
persistence context with the stateful session bean instance.

* Associates the persistence context with the current JTA transaction whenever a business
method of the stateful session bean is invoked or a UserTransaction is begun within a method
of the stateful session bean, so that

* subsequent local business methods which occur in the same JTA transaction also
propagate the persistence context;

* instantiations of stateful session beans with entity managersReithistence-
ContextType.EXTENDED associate the persistence context with the new instance
of the stateful bean.

* Ends the persistence context when the bean is removed.

The container is responsible for associating &mgityManager references injected into compo-

nents with the managed persistence context before invoking a business method of the component. The
container must also make the managed persistence context available as a result of direct EntityManager
lookup in INDI.

The rules above can result in "persistence context duplication", where a persistence context associated
with the JTA transaction is not the same as the persistence context associated with a stateful bean which
is being invoked in the context of that transaction. (See Section 5.7 above). For example, this could hap-
pen if a business method annotafe@dnsaction(REQUIRED) of a stateful session bean using a
persistence context of tygeersistenceContextType.EXTENDED was called from a stateless
session bean. The container must detect persistence context duplication and throw the lllegalStateEx-
ception.

12/19/05

128

Sun Microsystems, Inc.

Persistence Unit Enterprise JavaBeans 3.0, Proposed Final Draft Entity Packading

aamers 2Ny Packaging

This chapter describes the packaging of persistence units.

6.1 Persistence Unit

A persistence unit is a logical grouping that includes:

* An entity manager factory and its entity managers, together with their configuration infornja-
tion.

* The set of managed classes included in the persistence unit and managed by the entity mgnag-
ers of the entity manager factory.

* Mapping metadata (in the form of metadata annotations and/or XML metadata) that specifies
the mapping of the classes to the database.

129 12/19/05

Sun Microsystems, Inc.

| Entity Packaging

6.2

Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Unit Packaging

Persistence Unit Packaging

Within Java EE environments, an EJB-JAR, WAR, EAR, or application client JAR can define a persis-
tence unit. Any number of persistence units may be defined within these scopes.

A persistence unit may be packaged within one or more jar files contained within a WAR or EAR, as a
set of classes within an EJB-JAR file or in the WBRsses directory, or as a combination of these as
defined below.

A persistence unit is defined byparsistence.xml file. The jar file or directory whoskRIETA-INF
directory contains theersistence.xml file is termed theoot of the persistence unit. In Java EE,
the root of a persistence unit may be one of the following:

* an EJB-JAR file

+ theWEB-INF/classes directory of a WAR filE*!

* ajar file in theWEB-INF/lib directory of a WAR file

* ajar file in the root of the EAR

* ajar file in the EAR library directory

* an application client jar file
It is not required that an EJB-JAR or WAR containing a persistence unit be packaged in an EAR unless
the persistence unit contains persistence classes in addition to those contained in the EJB-JAR or WAR.
See Section 6.2.1.6.
A persistence unit must have a name. Only one persistence unit of any given name may be defined
within a single EJB-JAR file, within a single WAR file, within a single application client jar, or within

an EAR (in the EAR root dib directory). See Section 6.2.2, “Persistence Unit Scope”.

Thepersistence.xml file may be used to designate more than one persistence unit within the same
scope.

All persistence classes defined at the level of the Java EE EAR must be accessible to all other Java EE
components in the application—i.e. loaded by the application classloader—such that if the same entity

class is referenced by two different Java EE components (which may be using different persistence

units), the referenced class is the same identical class.

In Java SE environments, the metadata mapping files, jar files, and classes described in the following
sections can be used. To insure the portability of a Java SE application, it is necessary to explicitly list
the managed persistence classes that are included in the persistence unit. See Section 6.2.1.6.

(38]

The root of the persistence unit is théEB-INF/classes directory; thepersistence.xml file is therefore contained in the
WEB-INF/classes/META-INF directory.

12/19/05

130

Sun Microsystems, Inc.

Persistence Unit Packaging Enterprise JavaBeans 3.0, Proposed Final Draft Entity Packgging

6.2.1 persistence.xml fie

A persistence.xml file defines a persistence unit. It may be used to specify managed persistepce
classes included in the persistence unit, object/relational mapping information for those classes) and
other configuration information for the persistence unit and for the entity manager(s) and entity njan-
ager factory for the persistence unit. Tipersistence.xml file is located in theMETA-INF direc-
tory of the root of the persistence unit. This information may be defined by containment or by referefice,
as described below.

The object/relational mapping information may take the form of annotations on the managed pefsis-
tence classes included in the persistence unit, one or more XML files contained in the root of the persis-
tence unit, one or more XML files outside the root of the persistence unit on the classpath pnd
referenced from thpersistence.xml , or a combination of these.

The managed persistence classes may either be contained within the root of the persistence unit; dr they
may be specified by reference—i.e., by naming the classes, class archives, or mapping XML files

(which in turn reference classes) that are accessible on the application classpath; or they may be speci-
fied by some combination of these means. See Section 6.2.1.6.

Thepersistence element consists of one or mgrersistence-unit elements.
Thepersistence-unit element consists of the following sub-elements and attribdescrip-
tion name, provider transaction-type , jta-data-source ,
non-jta-data-source , mapping-file , jarfile , exclude-unlisted-classes ,

class , andproperties

The name attribute is required; the other attributes and elements are optional. Their semantics|are
described in the following subsections.

131 12/19/05

Sun Microsystems, Inc.

| Entity Packaging

6.2.1.1

6.2.1.2

6.2.1.3

Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Unit Packaging

Examples:

<persistence>
<persistence-unit name="OrderManagement">
<description>
This unit manages orders and customers.
It does not rely on any vendor-specific features and can
therefore be deployed to any persistence provider.
</description>
<jta-data-source>jdbc/MyOrderDB</jta-data-source>
<mapping-file>ormap.xml</mapping-file>
<jar-file>MyOrderApp.jar</jar-file>
<class>com.widgets.Order</class>
<class>com.widgets.Customer</class>
</persistence-unit>
</persistence>

<persistence>
<persistence-unit name="OrderManagement2">
<description>
This unit manages inventory for auto parts.
It depends on features provided by the
com.acme.persistence implementation.
</description>
<provider>com.acme.persistence</provider>
<jta-data-source>jdbc/MyPartDB</jta-data-source>
<mapping-file>ormap.xml</mapping-file>
<jar-file>MyPartsApp.jar</jar-file>
<properties>
<property name="com.acme.persistence.sql-logging"
value="on"/>
</properties>
</persistence-unit>
</persistence>

description
Thedescription element provides optional descriptive information about the persistence unit.

name
The name attribute defines the name for the persistence unit. This name is used to identify the persis-
tence unit referred to by theersistenceContext andPersistenceUnit annotations and the
programmatic API for creating entity managers and entity manager factories.

provider
The provider element specifies the name of the persistence providavax.persis-
tence.spi.PersistenceProvider class. Theprovider element must be specified if the

application is dependent upon a particular persistence provider being used. In Java SE environments, the
persistence provider must be specified—either by means of this element or by vendor-specific means.

12/19/05

132

Sun Microsystems, Inc.

Persistence Unit Packaging Enterprise JavaBeans 3.0, Proposed Final Draft Entity Packgging

6.2.1.4

6.2.1.5

6.2.1.6

transaction-type

The transaction-type attribute is used to specify whether the entity managers provided by the
entity manager factory for the persistence unit must be JTA entity managers or resource-local ehtity
managers. The value of this elemendisA or RESOURCE_LOCAIf this element is not specified, the

default isJTA. A transaction-type of JTA assumes that a JTA data source will be provided
either as specified by the jta-data-source element or provided by the container). In general, in Java EE
environments, dransaction-type of RESOURCE_LOCA4ssumes that a non-JTA datasourc

will be provided.

jta-data-source, non-jta-data-source

In Java EE environments, tfta-data-source andnon-jta-data-source elements are used
to specify the global JNDI name of the JTA and/or non-JTA data source to be used by the persistgnce
provider. If neither is specified, the deployer must specify a JTA data source at deployment or a PTA
data source must be provided by the container, and a JTA EntityManagerFactory will be created to|cor-
respond to it.

These elements name the data source in the local environment; the format of these names and the Rbility
to specify the names are product specific.

In Java SE environments, these elements may be used or the datasource information may be specified by
other means—depending upon the requirements of the provider.

mapping-file, jar-file, class, exclude-unlisted-classes
The following classes must be implicitly or explicitly denoted as managed persistence classes tp be
included within a persistence unit: entity classes; embeddable classes; mapped superclasses.

The set of managed persistence classes that are managed by a persistence unit is defined by using one or
more of the followingf39]

* One or more object/relational mapping XML files
* One or more jar files that will be searched for classes
* An explicit list of the classes

* The annotated managed persistence classes contained in the root of the persistence unit (finless
theexclude-unlisted-classes element is specified)

An object/relational mapping XML file contains mapping information for the classes listed in it. An
orm.xml file may be specified in thBIETA-INF directory in the root of the persistence unit or in the
META-INF directory of any jar file referenced by tipersistence.xml . Alternatively, or in addi-
tion, other mapping files may be referenced by thapping-file elements of thepersis-
tence-unit element, and may be present anywhere on the class patbrmAixml file or other
mapping file is loaded as a resource by the persistence provider. If a mapping file is specified] the
classes and mapping information specified in the mapping file will be used. If multiple mapping files
are specified (possibly including one or mamen.xml files), the resulting mappings are obtained by|

[39] Note that an individual class may be used in more than one persistence unit.

133 12/19/05

Sun Microsystems, Inc.

Entity Packaging

6.2.1.7

Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Unit Packaging

combining the mappings from all of the files. The result is undefined if multiple mapping files (includ-
ing anyorm.xml file) referenced within a single persistence unit contain overlapping mapping infor-
mation for any given class. The object/relational mapping information contained in any mapping file
referenced within the persistence unit must be disjoint at the class-level from object/relational mapping
information contained in any other such mapping file.

One or more JAR files may be specified usingjtefile elements instead of, or in addition to the
mapping files specified in thmapping-file elements. If specified, these JAR files will be searched

for managed persistence classes, and any mapping metadata annotations found on them will be pro-
cessed, or they will be mapped using the mapping annotation defaults defined by this specification.
Such JAR files are specified relative to the root of the persistence unitifésgnyUltils.jar).

A list of named managed persistence classes may also be specified instead of, or in addition to, the JAR
files and mapping files. Any mapping metadata annotations found on these classes will be processed, or
they will be mapped using the mapping annotation defaults.Cldms element is used to list a man-

aged persistence class. A list of all named managed persistence classes must be specified in Java SE
environments to insure portability. Portable Java SE applications should not rely on the other mecha-
nisms described here to specify the managed persistence classes of a persistence unit. Persistence pro-
viders may also require that the set of entity classes and classes that are to be managed must be fully
enumerated in each of thersistence.xml files in Java SE environments.

All classes contained in the root of the persistence unit are also searched for annotated managed persis-
tence classes and any mapping metadata annotations found on them will be processed, or they will be
mapped using the mapping annotation defaults. If it is not intended that the annotated persistence
classes contained in the root of the persistence unit be included in the persistence unit, the
exclude-unlisted-classes element should be used. Tleaclude-unlisted-classes

element is not intended for use in Java SE environments.

The resulting set of entities managed by the persistence unit is the union of these sources, with the map-
ping metadata annotations (or annotation defaults) for any given class being overridden by the XML
mapping information file if there are both annotations as well as XML mappings for that class. The min-
imum portable level of overriding is at the level of the persistent field or property.

The classes and/or jars that are named as part of a persistence unit must be on the classpath; referencing
them from thepersistence.xml file does not cause them to be placed on the classpath.

All classes must be on the classpath to ensure that entity managers from different persistence units that
map the same class will be accessing the same identical class.

properties
The properties element is used to specify vendor-specific properties that apply to the persistence
unit and its entity manager factory configuration.

If a persistence provider does not recognize properties (other than those defined by this specification),
the provider must ignore those properties.

6.2.1.8 Examples

The following are sample contents gbersistence.xml file.

12/19/05

134

Sun Microsystems, Inc.

Persistence Unit Packaging Enterprise JavaBeans 3.0, Proposed Final Draft Entity Packgging
Example 1:
<persistence-unit name= " OrderManagement " />

A persistence unit nameédrderManagement is created.

Any annotated managed persistence classes found in the root of the persistence unit are added to the list
of managed persistence classes. MBTA-INF/orm.xml file exists, any classes referenced by it and
mapping information contained in it are used as specified above. Because no provider is specified, the

persistence unit is assumed to be portable across providers. Because the transaction type is notfspeci-
fied, JTA is assumed. The container must provide the data source (it may be specified at appli’c”rtion

deployment, for example); in Java SE environments, the data source may be specified by others njeans.
Example 2:
<persistence-unit name= " OrderManagement2 ">

<mapping-file>mappings.xml</mapping-file>
</persistence-unit>

A persistence unit name@rderManagement2 is created. Any annotated managed persistencg
classes found in the root of the persistence unit are added to the list of managed persistence classgs. The
mappings.xml resource exists on the classpath and any classes and mapping information contgined

in it are used as specified above. FETA-INF/orm.xml file exists, any classes and mapping infor-
mation contained in it are used as well. The transaction type, data source, and provider are as des¢ribed
above.

Example 3:

<persistence-unit name= " OrderManagement3 ">
<jar-file>order.jar</jar-file>
<jar-file>order-supplemental.jar</jar-file>
</persistence-unit>

A persistence unit name@rderManagement3 is created. Any annotated managed persistencg
classes found in the root of the persistence unit are added to the list of managed persistence class¢s. If a
META-INF/orm.xml file exists, any classes and mapping information contained in it are used fas
specified above. Therder.jar andorder-supplemental.jar files are searched for managed
persistence classes and any annotated managed persistence classes found in them and/or any|classes
specified in theorm.xml files of these jar files are added. The transaction-type, data source and gro-
vider are as described above.

135 12/19/05

Sun Microsystems, Inc.

Entity Packaging

6.2.2

Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Unit Packaging

Example 4:

<persistence-unit
name="OrderManagement4 "
transaction-type=RESOURCE_LOCAL>
<non-jta-data-source>jdbc/MyDB</jta-data-source>
<mapping-file>order-mappings.xml</mapping-file>
<exclude-unlisted-classes/>
<class>com.acme.Order</class>
<class>com.acme.Customer</class>
<class>com.acme.ltem</class>
</persistence-unit>

A persistence unit namedrderManagement4 is created Theorder-mappings.xmi is read as
aresource and any classes referenced by it and mapping information contained in it are used. The anno-
tatedOrder , Customer andltem classes are loaded and are added. No (other) classes contained in
the root of the persistence unit are added to the list of managed persistence classes. The persistence unit
is portable across providers. A entity manager factory supplying resource-local entity managers will be
created. The data sourjckhc/MyDB must be used.

Example 5:

<persistence-unit name= " OrderManagement5 ">
<provider>com.acme.persistence</provider>
<mapping-file>orderl.xml</mapping-file>
<mapping-file>order2.xml</mapping-file>
<jar-file>order.jar</jar-file>
<jar-file>order-supplemental.jar</jar-file>
</persistence-unit>

A persistence unit name@rderManagement5 is created. Any annotated managed persistence
classes found in the root of the persistence unit are added to the list of managed classes. The
orderl.xml andorder2.xml files are read as resources and any classes referenced by them and
mapping information contained in them are also used as specified aboverdergar is a jar file

on the classpath containing another persistence unit, winiler-supplemental.jar is just a

library of classes. Both of these jar files are searched for annotated managed persistence classes and any
annotated managed persistence classes found in them and/or any classes specifechinrtie files

(if any) of these jar files are added. The provioen.acme.persistence must be used.

Note that thepersistence.xml file contained inorder.jar is not used to augment the
persistence uniEM-5 with the classes of the persistence unit whose rawtir.jar

Persistence Unit Scope

An EJB-JAR, WAR, application client jar, or EAR can define a persistence unit.
The visibility scope of the persistence unit is determined by its point of definition.
A persistence unit that is defined at the level of an EJB-JAR, WAR, or application client jar is scoped to

that EJB-JAR, WAR, or application jar respectively. It is visible to the components defined in that jar or
war, but is not visible as a persistence unit to other parts of the application.

12/19/05

136

Sun Microsystems, Inc.

Persistence Unit Packaging Enterprise JavaBeans 3.0, Proposed Final Draft Entity Packgging

A persistence unit that is to be visible to the application as a whole must be defined at EAR level. A per-
sistence unit that is defined at the level of the EAR is generally visible to all components in the appljca-
tion. However, if a persistence unit of the same name is defined by an EJB-JAR, WAR, or applicatior] jar
file within the EAR, the persistence unit of that name defined at EAR level will not be visible to the
components defined by that EJB-JAR, WAR, or application jar file.

137 12/19/05

Sun Microsystems, Inc.

Entity Packaging Enterprise JavaBeans 3.0, Proposed Final Draft

6.3 persistence.xml Schema

persistence.xml Schema

This section provides the XML schema for gesistence.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<l-- Java Persistence persistence.xml schema -->
<xsd:schema targetNamespace="http://java.sun.com/xml/ns/persistence"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema" xmins:persis-
tence="http://java.sun.com/xml/ns/persistence" elementFormDefault="quali-
fied" attributeFormDefault="unqualified" version="1.0">
<xsd:annotation>
<xsd:documentation>
@#)persistence_1_0.xsd 1.0 Dec 1 2005
</xsd:documentation>
</xsd:annotation>
<xsd:annotation>
<xsd:documentation><![CDATA[

This is the XML Schema for the persistence configuration file.
The file must be named "META-INF/persistence.xml" in the
persistence archive.

Persistence configuration files must indicate

the persistence schema by using the persistence namespace:

http://java.sun.com/xml/ns/persistence

and indicate the version of the schema by
using the version element as shown below:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">

<7i6ersistence>
]]></xsd:documentation>

</xsd:annotation>
<xsd:include schemalLocation="persistence_1_0.xsd"/>

<ok * * * * *kkk * ** >

<xsd:element name="persistence">
<xsd:complexType>
<xsd:sequence>

<lo % S * * * * >

<xsd:element name="persistence-unit"
minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:annotation>

<xsd:documentation>
Configuration of a persistence unit.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<I-- *kkk * * S * *x S

<xsd:element name="description" type="xsd:string"
minOccurs="0">

12/19/05 138

Sun Microsystems, Inc.

persistence.xml Schema Enterprise JavaBeans 3.0, Proposed Final Draft Entity Packaging

<xsd:annotation>
<xsd:documentation>
Textual description of this persistence unit.
</xsd:documentation>
</xsd:annotation>
</xsd:element>

<l-- >

<xsd:element name="provider" type="xsd:string"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>
Provider class that supplies EntityManagers
for this persistence unit.
</xsd:documentation>
</xsd:annotation>
</xsd:element>

<l-- -->

<xsd:element name="jta-data-source" type="xsd:string"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>
The container-specific name of the JTA datasource to use.
</xsd:documentation>
</xsd:annotation>
</xsd:element>

<l-- * * * >

<xsd:element name="non-jta-data-source"
type="xsd:string"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>
The container-specific name of a non-JTA datasource to use.
</xsd:documentation>
</xsd:annotation>
</xsd:element>

<l-- * * * >

<xsd:element name="mapping-file" type="xsd:string"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>
File containing mapping information. Loaded as a
resource by the persistence provider.
</xsd:documentation>
</xsd:annotation>
</xsd:element>

<I-- * * * >

<xsd:element name="jar-file" type="xsd:string"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>
Jar file that should be scanned for entities.
Not applicable to Java SE persistence units.
</xsd:documentation>
</xsd:annotation>
</xsd:element>

139 12/19/05

Sun Microsystems, Inc.

Entity Packaging Enterprise JavaBeans 3.0, Proposed Final Draft

<I-- * * * >

<xsd:element name="class" type="xsd:string"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>
Class to scan for annotations. It should be
annotated with either @Entity, @Embeddable or
@MappedSuperclass
</xsd:documentation>
</xsd:annotation>
</xsd:element>

<l-- >

<xsd:element name="exclude-unlisted-classes"
type="xsd:boolean"
default="false"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>
When set to true then only listed classes and
jars will be scanned for persistent classes,
otherwise the enclosing jar or directory will
also be scanned.
Not applicable to Java SE persistence units.
</xsd:documentation>
</xsd:annotation>
</xsd:element>

<l-- * * * >

<xsd:element name="properties" minOccurs="0">
<xsd:annotation>
<xsd:documentation>
A list of vendor-specific properties.
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="property"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>
A name-value pair.
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="name" type="xsd:string"
use="required"/>
<xsd:attribute name="value" type="xsd:string"
use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>

<l-- -

<xsd:attribute name="name" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation>
Name used in code to reference this persistence unit.
</xsd:documentation>

persistence.xml Schema

12/19/05 140

Sun Microsystems, Inc.

persistence.xml Schema Enterprise JavaBeans 3.0, Proposed Final Draft

</xsd:annotation>
</xsd:attribute>

<l-- >

<xsd:attribute name="transaction-type"
type="persistence:persistent-unit-transaction-type">
<xsd:annotation>
<xsd:documentation>
Type of transactions used by EntityManagers
from this persistence unit.
</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<l FHR * * * >

<xsd:simpleType name="persistent-unit-transaction-type">
<xsd:annotation>
<xsd:documentation>
public enum TransactionType { JTA, RESOURCE_LOCAL };
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="JTA"/>
<xsd:enumeration value="RESOURCE_LOCAL"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Entity Packaging

141

12/19/05

Sun Microsystems, Inc.

| Entity Packaging Enterprise JavaBeans 3.0, Proposed Final Draft persistence.xml Schema

12/19/05 142

Sun Microsystems, Inc.

Java EE Deployment Enterprise JavaBeans 3.0, Proposed Final Draft Container and Provider ContraTs for

«wer CONtainer and Provider Contracts for |
Deployment and Bootstrapping

This chapter defines requirements on the Java EE container and on the persistence provider for d¢ploy-
ment and bootstrapping.

7.1 Java EE Deployment

Each persistence unit deployed into a Java EE container consists of apgngjitence.xml file,
any number of mapping files, and any number of class files.

7.1.1 Responsibilities of the Container

At deployment time the container is responsible for scanning the locations specified in Section 6.2Jand
discovering thepersistence.xml files and processing them.

143 12/19/05

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Proposed Final Draft Java EE Deploy-

When the container findsgersistence.xml file, it processes the persistence unit definitions that it
contains. Provider or data source information not specified irp#rsistence.xml file must be
provided at deployment time or defaulted by the container. The container may optionally add any con-
tainer-specific properties to be passed to the provider when creating the entity manager factory for the
persistence unit.

Once the container has read the persistence metadata, it determingavaxepersis-
tence.spi.PersistenceProvider implementation class for each deployed named persistence
unit. It creates an instance of this implementation class and invokeg¢hgeContainerEnti-
tyManagerFactory method on that instance. The metadata—in the form Beesistence-

Unitinfo class—is passed to the persistence provider as part of this call. The factory obtained as a
result will be used by the container to create container-managed entity managers. Only one EntityMan-
agerFactory is permitted to be created for each deployed persistence unit configuration. Any number of
EntityManager instances may be created from a given factory.

When a persistence unit is redeployed, the container should catldke method on the previous
EntityManagerFactory instance and call thereateContainerEntityManagerFactory
method again, with the requir@ersistenceUnitInfo metadata, to achieve the redeployment.

7.1.2 Responsibilities of the Brsistence Povider

The persistence provider must implement BersistenceProvider SPI and be able to process
the metadata that is passed to it at the tareateContainerEntityManagerFactory method

is called. An instance dEntityManagerFactory is created using thBersistenceUnitInfo
metadata for the factory. The factory is then returned to the container.

7.1.3 javax.persistence.spi.BrsistencePovider

The interfacgavax.persistence.spi.PersistenceProvider is implemented by the per-
sistence provider.

It is invoked by the container in Java EE environments. It is invoked byjakex.persis-

tence.Persistence class in Java SE environments. Tja@ax.persistence.spi.Per-
sistenceProvider implementation is not intended to be used by the application.
ThePersistenceProvider class must have a public no-arg constructor.

12/19/05 144

Sun Microsystems, Inc.

Java EE Deployment Enterprise JavaBeans 3.0, Proposed Final Draft Container and Provider ContraTs for
The properties used in treeateEntityManagerFactory method in Java SE environments are
described further in section 7.1.3.1 below.

package javax.persistence.spi;

/**

* Interface implemented by the persistence provider.

* This interface is used to create an EntityManagerFactory.

* |t is invoked by the container in Java EE environments and
* by the Persistence class in Java SE environments.

*/

public interface PersistenceProvider {

/**

* Called by Persistence class when an EntityManagerFactory
* is to be created.
*

* @param emName The name of the persistence unit
* @param map A Map of properties for use by the
* persistence provider. These properties may be used to
* gverride the settings in the persistence.xml.
* @return EntityManagerFactory for the persistence unit,
* or null if the provider is not the right provider
*
/
public EntityManagerFactory createEntityManagerFactory(String
emName, Map map);

/**

* Called by the container when an EntityManagerFactory
*is to be created.

*

* @param info Metadata for use by the persistence provider
* @return EntityManagerFactory for the persistence unit
* specified by the metadata
*
public EntityManagerFactory createContainerEntityManagerFac-
tory(PersistenceUnitinfo info); |

7.1.3.1 Persistence Unit Properties
Persistence unit properties may be passed to persistence providers in the Map parametzeaf the
teEntityManagerFactory(String, Map) method. These properties correspond to the ele
ments in thepersistence.xml file. When any of these properties are specified in the Map
parameter, their values override the values of the corresponding elementgersistence.xml

file for the named persistence unit. They also override any defaults that the provider might have applied.

The properties listed below are defined by this specification.

* javax.persistence.provider — Corresponds to thegrovider element in the pe
sistence.xml . See section 6.2.1.3.

145 12/19/05

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Proposed Final Draft Java EE Deploy-

* javax.persistence.transactionType — Corresponds to thetransac-
tion-type attribute of thepersistent-unit element in theersistence.xml . See
section 6.2.1.4.

* javax.persistence.jtaDataSource — Corresponds to thgta-data-source
element in the@ersistence.xml . See section 6.2.1.5.

* javax.persistence.nonJtaDataSource - Corresponds to the
non-jta-data-source element in th@ersistence.xml . See section 6.2.1.5.

Any number of vendor-specific properties may also be included in the map. Properties that are not rec-
ognized by a vendor must be ignored.

Entries that make use of the namesppa@x.persistence and its subnamespaces must not be
used for vendor-specific information. The namesgaweax.persistence is reserved for use by
this specification.

12/19/05 146

Sun Microsystems, Inc.

Java EE Deployment Enterprise JavaBeans 3.0, Proposed Final Draft Container and Provider ContraTs for

7.1.4 javax.persistence.spi.Brsistencé&JnitInfo Interface

import javax.sgl.DataSource;

/**

* Interface implemented by the container and used by the
* persistence provider when creating an EntityManagerFactory.
*/

public interface PersistenceUnitinfo {

/**
* @return The name of the persistence unit.
* Corresponds to the <name> element in the persistence.xml file.
*/
public String getPersistenceUnitName(); |

/**

* @return The fully qualified name of the persistence provider
* implementation class.

* Corresponds to the <provider> element in the persistence.xml
* file.

*/ ile

public String getPersistenceProviderClassName();

/**

* @return The transaction type of the entity managers created
* by the EntityManagerFactory.

* The transaction type corresponds to the transaction-type

* attribute in the persistence.xml file.

*

public PersistenceUnitTransactionType getTransactionType();

/**
* @return The JTA-enabled data source to be used by the |
* persistence provider.

* The data source corresponds to the <jta-data-source>
* element in the persistence.xml file or is provided at
deployment or by the container.

*
*/
public DataSource getJtaDataSource();

/**
* @return The non-JTA-enabled data source to be used by the
* persistence provider for accessing data outside a JTA |
* transaction.
* The data source corresponds to the named <non-jta-data-source>
* element in the persistence.xml file or provided at
* deployment or by the container.
*
/
public DataSource getNonJtaDataSource();

/**

* @return The list of mapping file names that the persistence

* provider must load to determine the mappings for the entity

* classes. The mapping files must be in the standard XML

* mapping format, be uniquely named and be resource-loadable

* from the application classpath. |
* Each mapping file name corresponds to a <mapping-file>
* element in the persistence.xml file. |

147 12/19/05

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Proposed Final Draft Java EE Deploy-

*/
public List<String> getMappingFileNames();

/**

* @return The list of JAR file URLSs that the persistence

* provider must examine for managed classes of the persistence
* unit. Each jar file URL corresponds to a named <jar-file>

* element in the persistence.xml file.

*/

public List<URL> getJarFileUrls();

/**

* @return The URL for the jar file or directory that is the

* root of the persistence unit. (If the persistence unit is

* rooted in the WEB-INF/classes directory, this will be the
* URL of that directory.)

*

public URL getPersistenceUnitRootUrl();

/**
* @return The list of the names of the classes that the
* persistence provider must add it to its set of managed
* classes. Each name corresponds to a named <class> element
*in the persistence.xml file.
*
/

public List<String> getManagedClassNames();

/**
* @return Whether classes in the root of the persistence
* unit that have not been explicitly listed are to be
* included in the set of managed classes.
* This value corresponds to the <exclude-unlisted-classes>
* element in the persistence.xml file.
*
/

public boolean excludeUnlistedClasses();

/**

* @return Properties object. Each property corresponds
* to a <property> element in the persistence.xml file
*/

public Properties getProperties();

/**

* @return ClassLoader that the provider may use to load any
* classes, resources, or open URLSs.

*/

public ClassLoader getClassLoader();

/**

* Add a transformer supplied by the provider that will be

* called for every new class definition or class redefinition

* that gets loaded by the loader returned by the

* Persistencelnfo.getClassLoader method. The transformer

* has no effect on the result returned by the

* Persistencelnfo.getTempClassLoader method.

* Classes are only transformed once within the same classloading
* scope, regardless of how many persistence units they may be

* a part of.

*

12/19/05 148

Sun Microsystems, Inc.

Java EE Deployment Enterprise JavaBeans 3.0, Proposed Final Draft Container and Provider ContraTs for

* @param transformer A provider-supplied transformer that the
* Container invokes at class-(re)definition time

*/

public void addTransformer(ClassTransformer transformer);

/**

* Return a new instance of a ClassLoader that the provider

* may use to temporarily load any classes, resources, or

* open URLs. The scope and classpath of this loader is

* exactly the same as that of the loader returned by

* Persistencelnfo.getClassLoader. None of the classes loaded

* by this class loader will be visible to application

* components. The container does not use or maintain references
* to this class loader after returning it to the provider.

*

* @return Temporary ClassLoader with same visibility as current
* loader

*/

public ClassLoader getNewTempClassLoader();

The enum javax.persistence.spi.PersistenceUnitTransactionType defines
whether the entity managers created by the factory will be JTA or resource-local entity managers.

public enum PersistenceUnitTransactionType {
JTA,
RESOURCE_LOCAL

149 12/19/05

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Proposed Final Draft Bootstrappingin

Thejavax.persistence.spi.ClassTransformer interface is implemented by a persistence
provider that wants to transform entities and managed classes at class load time or at class redefinition
time.

/**

* A persistence provider supplies an instance of this
* interface to the PersistenceUnitinfo.addTransformer
* method. The supplied transformer instance will get
* called to transform entity class files when they are
* loaded or redefined. The transformation occurs before
* the class is defined by the JVM.
*
/
public interface ClassTransformer {

/**

* Invoked when a class is being loaded or redefined.

* The implementation of this method may transform the
* supplied class file and return a new replacement class
.r

. file.

* @param loader The defining loader of the class to be
* transformed, may be null if the bootstrap loader

* @param className The name of the class in the internal form
* of fully qualified class and interface names

* @param classBeingRedefined If this is a redefine, the
* class being redefined, otherwise null

* @param protectionDomain The protection domain of the
* class being defined or redefined

* @param classfileBuffer The input byte buffer in class

* file format - must not be modified

* @return A well-formed class file buffer (the result of

* the transform), or null if no transform is performed

* @throws lllegalClassFormatException If the input does
* not represent a well-formed class file

*

/

byte[] transform(ClassLoader loader,
String className,
Class<?> classBeingRedefined,
ProtectionDomain protectionDomain,
byte[] classfileBuffer)
throws lllegalClassFormatException;

7.2 Bootstrapping in Java SE Environments

In Java SE environments, ttﬁcersistence.createErggi/ManagerFactory method is used
by the application to create an entity manager fattary

A persistence provider implementation running in a Java SE environment should also act as a service
provider by supplying a service provider configuration file as described in the JAR File Specification

[8].

[40] Use of these Java SE bootstrapping APIs may be supported in Java EE containers; however, support for such useeis not requir

12/19/05 150

Sun Microsystems, Inc.

Bootstrapping in Java SE Environments Enterprise JavaBeans 3.0, Proposed Final Draft Container and Provider Contr1cts for

The provider configuration file serves to export the provider implementation class tetises- I
tence bootstrap class, positioning the provider as a candidate for backing named persistence unifs.

The provider supplies the provider configuration file by creating a text file naaveat.persis-

tence.spi.PersistenceProvider and placing it in theMETA-INF/services directory of

one of its JAR files. The contents of the file should be the name of the provider implementation clags of
thejavax.persistence.spi.PersistenceProvider interface.

Example:

A persistence vendor called ACME persistence products ships a JAR aaitezljar that contains its
persistence provider implementation. The JAR includes the provider configuration file.

acme.jar
META-INF/services/javax.persistence.PersistenceProvider
com.acme.PersistenceProvider

The contents of th&ETA-INF/services/javax.persistence.PersistenceProvider
file is nothing more than the name of the implementation clasm.acme.PersistencePro-
vider

Persistence provider jars may be installed or made available in the same ways as other service providers,
e.g. as extensions or added to the application classpath according to the guidelines in the JAR File $pec-
ification.

ThePersistence bootstrap class will locate all of the persistence providers by their provider confify-
uration files and caltreateEntityManagerFactory() on them in turn until an appropriate
backing provider returns an EntityManagerFactory. A provider may deem itself as appropriate for{the
persistence unit if any of the following are true:

* Its implementation class has been specified irpttovider element for that persistence unit

in the persistence.xml file.

* Thejavax.persistence.provider property was included in the Map passedte-
ateEntityManagerFactory() and the value of the property is the provider’'s implemen-
tation class.

* No provider was specified for the persistence unit in eitherpérsistence.xml or the

property map.

If a provider does not qualify as the provider for the named persistence unit, it mustmeturnwhen
createEntityManagerFactory() is invoked on it.

151 12/19/05

Sun Microsystems, Inc.

Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Proposed Final Draft Bootstrappingin

7.2.1 javax.persistence.Brsistence Class
package javax.persistence;

import java.util.*;

/**

* Bootstrap class that is used to obtain an

* EntityManagerFactory, from which EntityManager
* references can be obtained.

*/

public class Persistence {

/**

* Create and return an EntityManagerFactory for the
* named persistence unit.
*

* @param persistenceUnitName The name of the persistence unit
* @return The factory that creates EntityManagers configured
* according to the specified persistence unit
*

public static EntityManagerFactory createEntityManagerFac-
tory(String persistenceUnitName) {...}

/**

* Create and return an EntityManagerFactory for the
* named persistence unit using the given properties.
*

* @param persistenceUnitName The name of the persistence unit
* @param props Additional properties to use when creating the

* factory. The values of these properties override any values

* that may have been configured elsewhere.

* @return The factory that creates EntityManagers configured

* according to the specified persistence unit.

*

/

public static EntityManagerFactory createEntityManagerFac-
tory(String persistenceUnitName, Map properties) {...}

12/19/05 152

Sun Microsystems, Inc.

Entity

Chapter 8

8.1

Enterprise JavaBeans 3.0, Proposed Final Draft Metadata Annotatiojs

Metadata Annotations

This chapter and chapter 9 define the metadata annotations introduced by this specification.
The XML schema defined in chapter 10 provides an alternative to the use of metadata annotatations.

These annotations are in the packgyax.persistence

Entity

The Entity annotation specifies that the class is an entity. This annotation is applied to the entity
class.

The name annotation element defaults to the unqualified name of the entity class. This name is used to
refer to the entity in queries. The name must not be a reserved literal in EJB QL.

@Target(TYPE) @Retention(RUNTIME)
public @interface Entity {
String name() default ",

153 12/19/05

Sun Microsystems, Inc.

| Metadata Annotations Enterprise JavaBeans 3.0, Proposed Final Draft Callback Annotations

8.2 Callback Annotations

The EntityListeners annotation specifies the callback listener classes to be used for an entity.

@Target({TYPE}) @Retention(RUNTIME)
public @interface EntityListeners {
Class[] value();

The ExcludeSuperclassListeners annotation specifies that the invocation of superclass listen-
ers is to be excluded for the entity class (and its subclasses).

@Target({TYPE}) @Retention(RUNTIME)
public @interface ExcludeSuperclassListeners {

}

The ExcludeDefaultListeners annotation specifies that the invocation of default listeners is to
be excluded for the entity class (and its subclasses).

@Target({TYPE}) @Retention(RUNTIME)
public @interface ExcludeDefaultListeners {

The following annotations are used to specify callback methods for the corresponding lifecycle events.
These annotations may be applied to methods on the entity class or methodsntitynistener
class.

@Target{METHODY}) @Retention(RUNTIME)
public @interface PrePersist {}

@Target{METHODY}) @Retention(RUNTIME)
public @interface PostPersist {}

@Target{METHODY}) @Retention(RUNTIME)
public @interface PreRemove {}

@Target{METHODY}) @Retention(RUNTIME)
public @interface PostRemove {}

@Target{METHODY}) @Retention(RUNTIME)
public @interface PreUpdate {}

@Target{METHODY}) @Retention(RUNTIME)
public @interface PostUpdate {}

@Target{METHODY}) @Retention(RUNTIME)
public @interface PostLoad {}

12/19/05

154

Sun Microsystems, Inc.

Annotations for Queries Enterprise JavaBeans 3.0, Proposed Final Draft Metadata Annotatjons

8.3

Annotations for Queries

8.3.1

Flush Mode Annotation

8.3.2

The FlushMode annotation is used to designate the points at which entities are to be flushed to

the

databasef-lushMode(AUTO) causes flushes to occur at commit and before query execution when a

transaction is activdcFlushMode(COMMIT) will cause flushing to occur only at transaction commit;
the persistence provider runtime is permitted to flush before query execution if a transaction is ac
Flush mode semantics are further defined in section 3.5.2.

ive.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface FlushMode {

FlushModeType value() default AUTO; |

}

public enum FlushModeType {
COMMIT,
AUTO

NamedQuery Annotation

The NamedQuery annotation is used to specify a named EJB QL query.fdrae element is used to
refer to the query when using the EntityManager methods that create query objects.

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedQuery {

String name();

String query();

QueryHint[] hints() default {};

@Target({}) @Retention(RUNTIME)
public @interface QueryHint {
String name();
String value();

}

@Target({TYPE}) @Retention(RUNTIME)

public @interface NamedQueries {
NamedQuery[] value ();

}

155 12/19/05

Sun Microsystems, Inc.

| Metadata Annotations Enterprise JavaBeans 3.0, Proposed Final Draft Annotations for Queries

8.3.3

NamedNatveQuery Annotation

8.3.4

The NamedNativeQuery annotation is used to specify a native SQL named query. The name ele-
ment is used to refer to the query when using the EntityManager methods that create query objects. The
resultClass element refers to the class of the result; the value ofdiseltSetMapping ele-

ment is the name of 8QLResultSetMapping , as defined in metadata.

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQuery {
String name();
String query();
QueryHint[] hints() default {};
Class resultClass() default void.class;
String() resultSetMapping() default "™; // name of SQLResultSet-
Mapping
}

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQueries {
NamedNativeQuery][] value ();

}

Annotations for SQL Query Result Set Mappings

The SqlResultSetMapping annotation is used to specify the mapping of the result of a native SQL
query.

@Target({TYPE, METHOD}) @Retention(RUNTIME)
public @interface SglResultSetMapping {
String name();
EntityResult[] entities() default {};
ColumnResult[] columns() default {};

}

Thename element is the name given to the result set mapping, and used to refer to it in the methods of
the Query API. Thentities andcolumns elements are used to specify the mapping to entities and
to scalar values respectively.

@Target({}) @Retention(RUNTIME)
public @interface EntityResult {
Class entityClass();
FieldResult[] fields() default {};
String discriminatorColumn() default "";

TheentityClass element specifies the class of the result.

ThediscriminatorColumn element is used to specify the column name (or alias) of the columnin
the SELECT list that is used to determine the type of the entity instance.

Thefields elementis used to map the columns specified in the SELECT list of the query to the prop-
erties or fields of the entity class.

12/19/05

156

Sun Microsystems, Inc.

References to EntityManager and EntityManagerFactoryEnterprise JavaBeans 3.0, Proposed Final Draft Metadata Anngtations

8.4

@Target({}) @Retention(RUNTIME)
public @interface FieldResult {
String name();
String column();

Thename element is the name of the persistent field or property of the class.

The column names that are used in these annotations refer to the names of the columns in the SELECT
clause—i.e., column aliases, if applicable.

@Target({}) @Retention(RUNTIME)
public @interface ColumnResult {
String name();

References to EntityManager and EntityManagerFactory

8.4.1

These annotations are used to express dependencies on entity managers and entity manager factpries.

PersistenceContext Annotation

The PersistenceContext annotation is used to express a dependency on a container-managed
EntityManager persistence context.

The name element refers to the name by which the EntityManager and its persistence unit are to be
known in the environment referencing context, and is not needed when dependency injection is used.

TheunitName element refers to the name of the persistence unit. It must be specified if there is more
than one persistence unit within the referencing scope. |

Thetype element specifies whether a transaction-scoped or extended persistence context is to be used.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceContext{

String name() default ™,

String unitName() default ";

PersistenceContextType type default TRANSACTION;

public enum PersistenceContextType {
TRANSACTION,
EXTENDED

}

@Target(TYPE) @Retention(RUNTIME)
public @interface PersistenceContexts{
PersistenceContext[] value(); |

}

157 12/19/05

Sun Microsystems, Inc.

Metadata Annotations Enterprise JavaBeans 3.0, Proposed Final Draft References to EntityManager and Entity-

8.4.2 PersistenceUnit Annotation

The PersistenceUnit annotation is used to express a dependency on an EntityManagerFactory.

The name element refers to the name by which the EntityManagerFactory is to be known in the envi-
ronment referencing context, and is not needed when dependency injection is used.

The unitName element refers to the name of the persistence unit as defined ipettsis-
tence.xml file. It must be specified if there is more than one persistence unit in the referencing scope.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceUnit{

String name() default ";
String unitName() default "";

}

@Target(TYPE) @Retention(RUNTIME)
public @interface PersistenceUnits{
PersistenceUnit[] value();

12/19/05 158

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mgpping

Chapter 9

9.1

Metadata for Object/Relational Mapping

Object/relational mapping metadata is part of the application domain model contract.

The object/relational mapping metadata expresses requirements and expectations on the part pf the
application as to the mapping of the entities and relationships of the application domain to a dataljase.

Queries (and, in particular, SQL queries) written against the database schema that corresponds fo the
application domain model are dependent upon the mappings expressed by means of the object/relational
mapping metadata. The implementation of this specification must assume this application dependency

upon the object/relational mapping metadata and insure that the semantics and requirements expfessed
by that mapping are observed.

Itis permitted, but not required, that DDL generation be supported by an implementation of this specifi-
cation. Portable applications should not rely upon the use of DDL generation. |

Annotations for Object/Relational Mapping

These annotations and types are in the pacjeage.persistence . |

159 12/19/05

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

9.11

Table Annotation

The Tableannotation specifies the primary table for the annotated entity. Additional tables may be
specified usinggecondaryTable or SecondaryTables annotation.

Table 4 lists the annotation elements that may be specifiedfabke annotation and their default val-
ues.

If no Table annotation is specified for an entity class, the default values defined in Table 4 apply.

@Target({TYPE}) @Retention(RUNTIME)

public @interface Table {
String name() default "™;
String catalog() default ™;
String schema() default "";

UniqueConstraint[] uniqueConstraints() default {};

Table 4

9.1.2

Table Annotation Elements

Type Name Description Default

String name (Optional) The name of the table. Entity name

String catalog (Optional) The catalog of the table. Default catalog

String schema (Optional) The schema of the table. Default schema
for user

UniqueConstraint[]| uniqueConstrains (Optional) Unique constraints that are to heNo additional
placed on the table. These are only used if talpleonstraints
generation is in effect. These constraints apply

in addition to any constraints specified by thg
Column and JoinColumn annotations and con-
straints entailed by primary key mappings.

Example:

@Entity
@Table(hame="CUST", schema="RECORDS")
public class Customer { ... }

SecondaryTable Annotation

The SecondaryTable annotation is used to specify a secondary table for the annotated entity class.
Specifying one or more secondary tables indicates that the data for the entity class is stored across mul-
tiple tables.

Table 5 lists the annotation elements that may be specified 8scandaryTable annotation and
their default values.

12/19/05

160

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mgpping

If no SecondaryTable annotation is specified, it is assumed that all persistent fields or propertiesjof
the entity are mapped to the primary table. If no primary key join columns are specified, the join qol-
umns are assumed to reference the primary key columns of the primary table, and have the same fjames
and types as the referenced primary key columns of the primary table.

@Target({TYPE}) @Retention(RUNTIME)
public @interface SecondaryTable {
String name();
String catalog() default "™;
String schema() default ";
PrimaryKeyJoinColumn[] pkJoinColumns() default {}; |

UniqueConstraint[] uniqueConstraints() default {};

Table 5

SecondaryTable Annotation Elements

Type Name Description Default

String name (Required) The name of the table

String catalog (Optional) The catalog of the table. Default catalog

String schema (Optional) The schema of the table. Default schema for user

PrimaryKeyJoin- pkJoinColumns (Optional) The columns thatare | Column(s) of the same

Column|] used to join with the primary table.| name as the primary key
column(s) in the primary
table

UniqueConstraint[]| uniqueConstraints (Optional) Unique constraints thatNo additional constraints
are to be placed on the table. Thege
are typically only used if table gen-
eration is in effect. These constraint
apply in addition to any constraints|
specified by the Column and Join-
Column annotations and constrain
entailed by primary key mappings.

7]

n

Example 1:Single secondary table with a single primary key column.

@Entity

@Table(name="CUSTOMER")

@SecondaryTable(hname="CUST_DETAIL",
pkJoinColumns=@PrimaryKeyJoinColumn(name="CUST_ID")) |

public class Customer { ... }

Example 2: Single secondary table with multiple primary key columns. |

@Entity
@Table(hname="CUSTOMER")
@SecondaryTable(name="CUST_DETAIL",
pkJoinColumns=@PrimaryKeyJoinColumns({ |
@PrimaryKeyJoinColumn(name="CUST_ID"),
@PrimaryKeyJoinColumn(name="CUST_TYPE")}))
public class Customer { ... }

161 12/19/05

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

9.1.3

Secondaryfables Annotation

9.14

TheSecondaryTables annotation is used to specify multiple secondary tables for an entity.

@Target({TYPE}) @Retention(RUNTIME)

public @interface SecondaryTables {
SecondaryTable[] value();

}

Example 1: Multiple secondary tables assuming primary key columns are named the same in all tables.

@Entity

@Table(name="EMPLOYEE")

@SecondaryTables({
@SecondaryTable(name="EMP_DETAIL"),
@SecondaryTable(name="EMP_HIST")

public class Employee { ... }

Example 2: Multiple secondary tables with differently named primary key columns.

@Entity
@Table(name="EMPLOYEE")
@SecondaryTables({
@SecondaryTable(name="EMP_DETAIL",
pkJoinColumns=@PrimaryKeyJoinColumn(name="EMPL_ID")),
@SecondaryTable(name="EMP_HIST",
pkJoinColumns=@PrimaryKeyJoinColumn(name="EMPLOYEE_ID"))

public class Employee { ... }

UniqueConstraint Annotation

The UnigueConstraint annotation is used to specify that a unique constraint is to be included in
the generated DDL for a primary or secondary table.

Table 6 lists the annotation elements that may be specifiedJoigaeConstraint annotation.

@Target({}) @Retention(RUNTIME)
public @interface UniqueConstraint {
String[] columnNames();

Table 6

UniqueConstraint Annotation Elements

Type Name Description Default

String[] | columnNames (Required) An array of the column names that make up the
constraint.

12/19/05

162

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mgpping

Example:

@Entity
@Table(
name="EMPLOYEE",
unigueConstraints=
{@UniqueConstraint(columnNames={"EMP_ID", "EMP_NAME"})}

public class Employee { ... }

9.1.5 Column Annotation

TheColumn annotation is used to specify a mapped column for a persistent property or field.

Table 7 lists the annotation elements that may be specified @olamn annotation and their default
values.

If no Column annotation is specified, the default values in Table 7 apply.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Column {

String name() default ";

boolean unique() default false;

boolean nullable() default true;

boolean insertable() default true;

boolean updatable() default true;

String columnDefinition() default ";

String table() default "™; |

int length() default 255;

int precision() default O; // decimal precision

int scale() default O; / decimal scale

}
Table 7 Column Annotation Elements

Type Name Description Default

String name (Optional) The name of the column. The property or field name

boolean| unique (Optional) Whether the property is a unique kefalse
This is a shortcut for the UniqueConstraint anro-
tation at the table level and is useful for when the
unique key constraint is only a single field. This
constraint applies in addition to any constraint
entailed by primary key mapping and to con-
straints specified at the table level.

boolean| nullable (Optional) Whether the database column is nuirue
lable.

boolean| insertable (Optional) Whether the column is included in true |
SQL INSERT statements generated by the per-
sistence provider.

163 12/19/05

Sun Microsystems, Inc.

| Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

9.16

Type Name Description Default

boolean| updatable (Optional) Whether the column is included in true
SQL UPDATE statements generated by the per-
sistence provider.

String columnDefinition| (Optional) The SQL fragment that is used wheGenerated SQL to create a
generating the DDL for the column. column of the inferred

type.

String table (Optional) The name of the table that contains Column is in primary table.
the column. If absent the column is assumed {o
be in the primary table.

int length (Optional) The column length. (Applies only if g 255
string-valued column is used.)

int precision (Optional) The precision for a decimal (exact| 0 (Value must be set by
numeric) column. (Applies only if a decimal co|- developer.)
umn is used.)

int scale (Optional) The scale for a decimal (exact 0
numeric) column. (Applies only if a decimal col-
umn is used.)

Example 1:

@Column(name="DESC", nullable=false, length=512)
public String getDescription() { return description; }

Example 2:

@Column(name="DESC",

columnDefinition="CLOB NOT NULL",
table="EMP_DETAIL")

@Lob

public String getDescription() { return description; }

Example 3:

@Column(name="ORDER_COST", updatable=false, precision=12, scale=2)
public BigDecimal getCost() { return cost; }

JoinColumn Annotation

The JoinColumn annotation is used to specify a mapped column for joining an entity association.

Table 8 lists the annotation elements that may be specified SaireColumn annotation and their
default values.

If no JoinColumn

described below apply.

annotation is specified, a single join column is assumed and the default values

12/19/05

164

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mgpping

The name annotation element defines the name of the foreign key column. The remaining annotafion
elements (other thareferencedColumnName) refer to this column and have the same semantics as
for theColumn annotation.

If there is a single join column, and if teame annotation member is missing, the join column name ig
formed as the concatenation of the following: the name of the referencing relationship property or 1]e|d
of the referencing entity; "_"; the name of the referenced primary key column. If there is no such refer-
encing relationship property or field in the entity (i.e., a join table is used), the join column namg is
formed as the concatenation of the following: the name of the entity; " "; the name of the referented
primary key column.

If the referencedColumnName element is missing, the foreign key is assumed to refer to the pr,
mary key of the referenced table.

Support for referenced columns that are not primary key columns of the referenced table is optidgnal.
Applications that use such mappings will not be portable.

If there is more than one join columnJainColumn annotation must be specified for each join col-
umn using theJoinColumns annotation. Both theame and thereferencedColumnName ele-
ments must be specified in each slisimColumn annotation.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinColumn {

String name() default ";

String referencedColumnName() default ",

boolean unique() default false;

boolean nullable() default true;

boolean insertable() default true;

boolean updatable() default true;

String columnDefinition() default ™;

String table() default "™;

165 12/19/05

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Table 8 JoinColumn Annotation Elements
Type Name Description Default
String name (Optional) The name of the foreign key column{Default only
The table in which it is found depends upon theapplies if a single
context. If the join is for a OneToOne or Manyt join column is
ToOne mapping, the foreign key column is in theused.) The concate-
table of the source entity. If the join is for a nation of the fol-
ManyToMany, the foreign key is in a join table| lowing: the name of
the referencing rela-
tionship property or
field of the refer-
encing entity; "_";
the name of the ref-
erenced primary
key column. If there
is no such referenc-
ing relationship
property or field in
the entity, the join
column name is
formed as the con-
catenation of the
following: the name
of the entity; "_";
the name of the ref-
erenced primary
key column.
String referencedColumnName (Optional) The name of the column referencéBefault only
by this foreign key column. When used with | appliesif single join
relationship mappings, the referenced column igolumn is being
in the table of the target entity. When used insiflaused.) The same
a JoinTable annotation, the referenced key cdl-name as the primary
umn is in the entity table of the owning entity, gr key column of the
inverse entity if the join is part of the inverse joip referenced table.
definition.
boolean| unique (Optional) Whether the property is a unique kefalse
This is a shortcut for the UniqueConstraint anro-
tation at the table level and is useful for when the
unique key constraint is only a single field. It is
not necessary to explicitly specify this for a join
column that corresponds to a primary key that|is
part of a foreign key.
boolean| nullable (Optional) Whether the foreign key column ig true
nullable.
boolean| insertable (Optional) Whether the column is included in true
SQL INSERT statements generated by the per-
sistence provider.
boolean| updatable (Optional) Whether the column is included in true
SQL UPDATE statements generated by the per-
sistence provider.
String columnDefinition (Optional) The SQL fragment that is used wheGenerated SQL for
generating the DDL for the column. the column.

12/19/05

166

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft

9.1.7

Type Name Description Default

String table (Optional) The name of the table that contains Column is in pri-
the column. If a table is not specified, the col-| mary table.

umn is assumed to be in the primary table of the
applicable entity.

Example:

@ManyToOne
@JoinColumn(name="ADDR_ID")
public Address getAddress() { return address; }

JoinColumns Annotation

9.18

Composite foreign keys are supported by means ofitieColumns annotation. TheJoinCol-
umns annotation groupdoinColumn annotations for the same relationship or table association.

When theJoinColumns annotation is used, both theame and thereferencedColumnName
elements must be specified in each sl@hColumn annotation.

@Target{METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinColumns {
JoinColumn[] value();

}

Example:

@ManyToOne

@JoinColumns({
@JoinColumn(name="ADDR_ID", referencedColumnName="ID"),
@JoinColumn(name="ADDR_ZIP", referencedColumnName="ZIP")

)
public Address getAddress() { return address; }

Id Annotation

Theld annotation specifies the primary key property or field of an entity. [ih@nnotation may be
applied in an entity or mapped superclass.

By default, the mapped column for the primary key of the entity is assumed to be the primary key of

Metadata for Object/Relational Mgpping

the

primary table. If naColumn annotation is specified, the primary key column name is assumed to be the

name of the primary key property or field.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Id {}

Example:

@Id
public Long getld() { return id; }

167 12/19/05

Sun Microsystems, Inc.

| Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

9.1.9 Generated\alue Annotation

The GeneratedValue annotation provides for the specification of generation strategies for the val-
ues of primary keys. Th€eneratedValue annotation may be applied to a primary key property or
field of an entity or mapped superclass in conjunction wittidhannotation.

Table 9 lists the annotation elements that may be specified @ereeratedValue annotation and
their default values.

The types of primary key generation are defined byGigerationType enum:

public enum GenerationType { TABLE, SEQUENCE, IDENTITY, AUTO };

The TABLE generator type value indicates that the persistence provider must assign primary keys for
the entity using an underlying database table to ensure uniquenesSEIGENCENd IDENTITY

values specify the use of a database sequence or identity column, respectiveyJ TBgalue indi-

cates that the persistence provider should pick an appropriate strategy for the particular database. This
specification does not define the exact behavior of these strategies.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface GeneratedValue {

GenerationType strategy() default AUTO;

String generator() default ";

Table 9

GeneratedValue Annotation Elements

Type Name Description Default

Generation- strategy (Optional) The primary key generation straf- GenerationType. AUTO
Type egy that the persistence provider must use {o
generate the annotated entity primary key.

String generator] (Optional) The name of the primary key genbefault id generator supplied
erator to use as specified in the SequenceGeoy persistence provider.
erator or TableGenerator annotation.

Example 1:

@Id

@GeneratedValue(strategy=SEQUENCE, generator="CUST_SEQ")
@Column(name="CUST_ID")

public Long getld() { return id; }

Example 2:

@Id

@GeneratedValue(strategy=TABLE, generator="CUST_GEN")
@Column(name="CUST_ID")

Long id;

12/19/05

168

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mgpping

9.1.10 Attrib uteOverride Annotation

TheAttributeOverride annotation is used to override the mapping of a property or field.

The AttributeOverride annotation may be applied to an entity that extends a mapped superclfiss
or to an embedded field or property to override a mapping defined by the mapped supercla% or
embeddable class. If thgtributeOverride annotation is not specified, the column is mapped th

same as in the original mapping.

Table 10 lists the annotation elements that may be specified fattabuteOverride annotation.

The column element refers to the table for the class that contains the annotation.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverride {

String name();

Column column();

}
Table 10 AttributeOverride Annotation Elements
Type Name Description Default
String name (Required) The name of the property in the embedded object

that is being mapped if property-based access is being uged,
or the name of the field if field-based access is used.

Column column| (Required) The column that is being mapped to the persis-
tent attribute. The mapping type will remain the same as|is
defined in the embeddable class or mapped superclass. |

169 12/19/05

Sun Microsystems, Inc.

| Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

9.1.11

Example:

@MappedSuperclass
public class Employee {

@Id protected Integer empld;

@Version protected Integer version;
@ManyToOne @JoinColumn(name="ADDR")
protected Address address;

public Integer getEmpld() { ... }

public void setEmpld(Integer id) { ... }
public Address getAddress() { ... }

public void setAddress(Address addr) { ... }

}

@Entity
@AttributeOverride(name="address", column=@Column(hame="ADDR_ID"))
public class PartTimeEmployee extends Employee {
// address field mapping overridden to ADDR_ID fk
@Column(name="WAGE")
protected Float hourlyWage;

public PartTimeEmployee() {}

public Float getHourlyWage() { ... }
public void setHourlyWage(Float wage) { ... }

Attrib uteOverrides Annotation

9.1.12

The mappings of multiple properties or fields may be overridden AtvéouteOverrides
tation is used for this purpose.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverrides {
AttributeOverride[] value();

Example:

@Embedded
@AttributeOverrides({
@AttributeOverride(name="startDate", column=@Col-
umn("EMP_START")),
@AttributeOverride(name="endDate", column=@ Column("EMP_END"))

)
public EmploymentPeriod getEmploymentPeriod() { ... }

Embeddedld Annotation

anno-

The Embeddedld annotation is applied to a persistent field or property of an entity class or mapped

superclass to denote a composite primary key that is an embeddable class.

12/19/05

170

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mgpping

9.1.13

There must be only onembeddedid annotation and ntld annotation when thEmbeddedid anno-
tation is used.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Embeddedid {}

Example:

@Embeddedld
protected EmployeePK empPK;

IdClass Annotation

9.1.14

TheldClass annotation is applied to an entity class or a mapped superclass to specify a compdsite
primary key class that is mapped to multiple fields or properties of the entity.

The names of the fields or properties in the primary key class and the primary key fields or propertigs of
the entity must correspond and their types must be the same. See Section 2.1.4, “Primary Keyg and
Entity Identity”.

Theld annotation must also be applied to the corresponding fields or properties of the entity.

@Target({TYPE}) @Retention(RUNTIME)
public @interface IdClass {

Class value();
}

Example:

@IdClass(com.acme.EmployeePK.class)
@Entity |
public class Employee {

@Id String empName;

@Id Date birthDay;

Transient Annotation

TheTransient annotation is used to annotate a property or field of the entity class. It specifies that
the property or field is not persistent.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Transient {}

Example:

@Entity
public class Employee {
@ld int id;
@Transient User currentUser;

171 12/19/05

Sun Microsystems, Inc.

| Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

9.1.15

Version Annotation

9.1.16

TheVersion annotation specifies the version field or property of an entity class that serves as its opti-
mistic lock value. The version is used to ensure integrity when performing the merge operation and for
optimistic concurrency control.

Only a singleVersion property or field should be used per class; applications that use more than one
Version property or field will not be portable.

The Version property should be mapped to the primary table for the entity class; applications that
map theVersion property to a table other than the primary table will not be portable.

Fields or properties that are specified with Yersion annotation should not be updated by the appli-
cation.

The following types are supported for version propertias: , Integer , short , Short , long ,
Long, Timestamp .

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Version {}

Example:

@Version
@Column(name="OPTLOCK")
protected int getVersionNum() { return versionNum; }

Basic Annotation

TheBasic annotation is the simplest type of mapping to a database columnBasie annotation

can be applied to a persistent property or instance variable of any of the following types: Java primitive
types, wrappers of the primitive typegava.lang.String , java.math.Biglnteger ,
java.math.BigDecimal , jJava.util.Date , java.util.Calendar , java.sgl.Date ,
java.sgl.Time , java.sgl.Timestamp , byte[] , Byte[]] , char[]] , Character]] |,
enums, and any other type that impleme®ésializable . As described in Section 2.1.6, the use of
theBasic annotation is optional for persistent fields and properties of these types.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Basic {

FetchType fetch() default EAGER,;

boolean optional() default true;

}

Table 11 lists the annotation elements that may be specifiedBais&c annotation and their default
values.

TheFetchType enum defines strategies for fetching data from the database:

public enum FetchType { LAZY, EAGER };

12/19/05

172

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mgpping

The EAGER strategy is a requirement on the persistence provider runtime that data must be eaperly
fetched. The LAZY strategy is hint to the persistence provider runtime that data should be fetched
lazily when it is first accessed. The implementation is permitted to eagerly fetch data for which the
LAZY strategy hint has been specified. In particular, lazy fetching might only be availabkagic
mappings for which property-based access is used.

Theoptional element is a hint as to whether the value of the field or property may be null. Itis disre-
garded for primitive types, which are considered non-optional.

Table 11

9.1.17

Basic Annotation Elements

Type Name Description Default

FetchType fetch (Optional) Whether the value of the field oy EAGER
property should be lazily loaded or must be
eagerly fetched. The EAGER strategy is a
requirement on the persistence provider rur
ime that the value must be eagerly fetched.
The LAZY strategy is a hint to the persisteng
provider runtime.

—
T

@

boolean optional (Optional) Whether the value of the field o true
property may be null. This is a hintand is d
regarded for primitive types; it may be used
schema generation.

5%

Example 1:

@Basic
protected String name;

Example 2:

@Basic(fetch=LAZY)
protected String getName() { return name; }

Lob Annotation

A Lob annotation specifies that a persistent property or field should be persisted as a large object to a
database-supported large object type. Thle annotation may be used in conjunction with Basic
annotation. A Lob may be either a binary or character type. The Lob type is inferred from the type ofjthe
persistent field or property, and except for string and character-based types defaults to Blob.

@Target({(METHOD, FIELD}) @Retention(RUNTIME)
public @interface Lob {
}

173 12/19/05

Sun Microsystems, Inc.

| Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

9.1.18

Example 1:

@Lob @Basic(fetch=EAGER)
@Column(name="REPORT")
protected String report;

Example 2:

@Lob @Basic(fetch=LAZY)
@Column(name="EMP_PIC", columnDefinition="BLOB NOT NULL")
protected byte[] pic;

Temporal Annotation

A Temporal annotation specifies that a persistent property or field should be persisted as a temporal
type. TheTemporal annotation may be used in conjunction withBasic annotation.

The TemporalType enum defines the mapping for temporal types. The temporal type must be speci-
fied for persistent fields or properties of tygea.util. Date andjava.util.Calendar

public enum TemporalType {
DATE, /ljava.sql.Date
TIME, //java.sql.Time
TIMESTAMP //java.sgl.Timestamp

}

If the temporal type is not specified or tAi@mporal annotation is not used, the temporal type is
assumed to bEIMESTAMP

@Target({(METHOD, FIELD}) @Retention(RUNTIME)
public @interface Temporal {
TemporalType value() default TIMESTAMP;

Table 12 lists the annotation elements that may be specified Tanaporal annotation and their
default values.

Table 12 Temporal Annotation Elements
Type Name Description Default
TemporalType | value (Optional) The type used in mapping a tempoMMESTAMP
ral type. rT
Example:
@Temporal(DATE)
protected java.util.Date endDate;
12/19/05 174

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mgpping

9.1.19 Enumerated Annotation

An Enumerated annotation specifies that a persistent property or field should be persisted as a ¢nu-
merated type. ThEnumerated annotation may be used in conjunction withBasic annotation.

An enum can be mapped as either a string or an integerEnbenType enum defines the mapping for
enumerated types.

public enum EnumType {
ORDINAL,
STRING

}

If the enumerated type is not specified or Breumerated annotation is not used, the enumerated type
is assumed to bBRDINAL

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Enumerated {

EnumType value() default ORDINAL;
}

Table 13 lists the annotation elements that may be specified Emuaerated annotation and their
default values.

Table 13 Enumerated Annotation Elements
Type Name Description Default
EnumType value (Optional) The type used in mapping an enu@RDINAL
type.
Example:

public enum EmployeeStatus {FULL_TIME, PART_TIME, CONTRACT}
public enum SalaryRate {JUNIOR, SENIOR, MANAGER, EXECUTIVE}
@Entity public class Employee {

b'inIic EmployeeStatus getStatus() {...}

@Enumerated(STRING)
public SalaryRate getPayScale() {...}

}

If the status property is mapped to a column of integer type, and the payscale property to a colurrn of
varchar type, an instance that has a statdART_TIMEand a pay rate afUNIOR will be stored with
STATUSset to 1 andPAYSCALEset to"JUNIOR" .

175 12/19/05

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

9.1.20 ManyToOne Annotation

The ManyToOne annotation defines a single-valued association to another entity class that has
many-to-one multiplicity. It is not normally necessary to specify the target entity explicitly since it can
usually be inferred from the type of the object being referenced.

Table 14 lists the annotation elements that may be specified karsayToOne annotation and their
default values.

Thecascade element specifies the set of cascadable operations that are propagated to the associated
entity. The operations that are cascadable are defined BativadeType enum:

public enum CascadeType { ALL, PERSIST, MERGE, REMOVE, REFRESH]};

The value cascade=ALL is equivalent tocascade={PERSIST, ¥MERGE, REMOVE,
REFRESH}

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER,;
boolean optional() default true;

The EAGER strategy is a requirement on the persistence provider runtime that the associated entity
must be eagerly fetched. The LAZY strategy isiat to the persistence provider runtime that the associ-
ated entity should be fetched lazily when it is first accessed. The implementation is permitted to eagerly
fetch associations for which the LAZY strategy hint has been specified.

Table 14

ManyToOne Annotation Elements

Type Name Description Default

Class targetEntity] (Optional) The entity class that is the targetl of he type of the field or
the association. property that stores the
association.

CascadeType[]| cascade (Optional) The operations that must be cas-No operations are cas-
caded to the target of the association. caded.

FetchType fetch (Optional) Whether the association should beEAGER
lazily loaded or must be eagerly fetched. The
EAGER strategy is a requirement on the persis-
tence provider runtime that the associated entity
must be eagerly fetched. The LAZY strategy|is
a hint to the persistence provider runtime.

boolean optional (Optional) Whether the association is optionattue
If set to false then a non-null relationship must
always exist.

12/19/05

176

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft

9.1.21

Example:

@ManyToOne(optional=false)
@JoinColumn(name="CUST_ID", nullable=false, updatable=false)
public Customer getCustomer() { return customer; }

OneToOne Annotation

The OneToOne annotation defines a single-valued association to another entity that has one-to-one
multiplicity. It is not normally necessary to specify the associated target entity explicitly since it can

usually be inferred from the type of the object being referenced.

Table 15 lists the annotation elements that may be specified @neloOne annotation and their

default values.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToOne {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER,;
boolean optional() default true;

String mappedBy() default

Metadata for Object/Relational Mgpping

Table 15

OneToOne Annotation Elements

Type

Name

Description

Default

Class

targetEntity

(Optional) The entity class that is the target
the association.

of he type of the field or
property that stores the
association.

CascadeType[]

cascade

(Optional) The operations that must be cal
caded to the target of the association.

sNo operations are cas-
caded.

FetchType

fetch

(Optional) Whether the association should
lazily loaded or must be eagerly fetched. The
EAGER strategy is a requirement on the per
tence provider runtime that the associated ent
must be eagerly fetched. The LAZY strategy
a hint to the persistence provider runtime.

DeEAGER

5iS-
ity
is

boolean

optional

(Optional) Whether the association is optionattue

If set to false then a non-null relationship mu
always exist.

5t

String

mappedBy

(Optional) The field that owns the relationsh
The mappedBy element is only specified on t
inverse (non-owning) side of the association.

ip.
he

Example 1: One-to-one association that maps a foreign key column.

177

12/19/05

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

9.1.22

On Customer class:

@OneToOne(optional=false)
@JoinColumn(

name="CUSTREC_ID", unique=true, nullable=false, updatable=false)
public CustomerRecord getCustomerRecord() { return customerRecord; }

On CustomerRecord class:

@O0OneToOne(optional=false, mappedBy="customerRecord")
public Customer getCustomer() { return customer; }

Example 2: One-to-one association that assumes both the source and target share the same primary key
values.

On Employee class:

@Entity
public class Employee {
@Id Integer id;

@OneToOne @PrimaryKeyJoinColumn
Employeelnfo info;

}

On Employeelnfo class:

@Entity
public class Employeelnfo {
@Id Integer id;

OneToMany Annotation

A OneToMany annotation defines a many-valued association with one-to-many multiplicity.

Table 16 lists the annotation elements that may be specified @mefl oMany annotation and their
default values.

If the Collection is defined using generics to specify the element type, the associated target entity type
need not be specified; otherwise the target entity class must be specified.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToMany {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String mappedBy() default "";

12/19/05

178

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft

Metadata for Object/Relational Mgpping

Table 16 OneToMany Annotation Elements

Type Name Description

Default

Class targetEntity

ics. Must be specified otherwise.

(Optional) The entity class that is the targ
of the association. Optional only if the Col-
lection property is defined using Java gene

efThe parameterized type of
the Collection when defined
rusing generics.

CascadeType[]| cascade (Optional) The operations that must be

caded to the target of the association.

cdde operations are cascaded.

FetchType fetch
lazily loaded or must be eagerly fetched. T!

EAGER strategy is a requirement on the p

entities must be eagerly fetched. The LAZ

(Optional) Whether the association should

sistence provider runtime that the associat

ReAZY
e
er-

ed

=

strategy is a hint to the persistence provide
runtime.

String mappedBy | The field that owns the relationship.
Required unless the relationship is unidire

tional.

The default schema-level mapping for unidirectional one-to-many relationships uses a join
table, as described in Section 2.1.8.5. Unidirectional one-to-many relationships may be imple-
mented using one-to-many foreign key mappings, however, such support is not required in this
release. Applications that want to use a foreign key mapping strategy for one-to-many relation-
ships should make these relationships bidirectional to ensure portability.

Example 1: One-to-Many association using generics
In Customer class:

@OneToMany(cascade=ALL, mappedBy="customer”)
public Set<Order> getOrders() { return orders; }

In Order class:

@ManyToOne
@JoinColumn(name="CUST_ID", nullable=false)
public Customer getCustomer() { return customer; }

Example 2: One-to-Many association without using generics
In Customer class:

@OneToMany(targetEntity=com.acme.Order.class, cascade=ALL,
mappedBy="customer”)
public Set getOrders() { return orders; }

179

12/19/05

Sun Microsystems, Inc.

| Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

In Order class:

@ManyToOne
@JoinColumn(name="CUST_ID", nullable=false)
public Customer getCustomer() { return customer; }

9.1.23 JoinTable Annotation
TheJoinTable annotation is used in the mapping of associationdoisTable annotation is spec-
ified on the owning side of a many-to-many association, or in a unidirectional one-to-many association.
Table 17 lists the annotation elements that may be specified Joirfable annotation and their
default values.
If the JoinTable annotation is missing, the default values of the annotation elements apply.
The name of the join table is assumed to be the table names of the associated primary tables concate-
nated together (owning side first) using an underscore.
@Target{METHOD, FIELD})
public @interface JoinTable {
String name() default ™;
String catalog() default "™;
String schema() default "™;
JoinColumn[] joinColumns() default {};
JoinColumn[] inverseJoinColumns() default {};
UniqueConstraint[] unigueConstraints default {};
}
Table 17 JoinTable Annotation Elements

Type Name Description Default

String name (Optional) The name of the join table. =~ The concatenated names of
the two associated primary
entity tables, separated by an

underscore.

String catalog (Optional) The catalog of the table Default catalog.
String schema (Optional) The schema of the table. Default schema for user.
JoinCol- joinColumns (Optional) The foreign key columng The same defaults as for
umn(] of the join table which reference thg JoinColumn.

primary table of the entity owning the

association (i.e. the owning side of

the association).
JoinCol- inverseJoinColumng (Optional) The foreign key columrisThe same defaults as for
umn(] of the join table which reference thg JoinColumn.

primary table of the entity that does
not own the association (i.e. the
inverse side of the association).

12/19/05

180

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mgpping

9.1.24

Type Name Description Default
UniqueCon- | uniqueConstraints (Optional) Unique constraints that aro additional constraints
straint[] to be placed on the table. These are
only used if table generation is in
effect. |
Example:
@JoinTable(
name="CUST_PHONE",
joinColumns=

@JoinColumn(name="CUST _ID", referencedColumnName="ID"),
inverseJoinColumns=
@JoinColumn(name="PHONE_ID", referencedColumnName="ID")

ManyToMany Annotation

A ManyToMany annotation defines a many-valued association with many-to-many multiplicity. If the
Collection is defined using generics to specify the element type, the associated target entity class does
not need to be specified; otherwise it must be specified.

Every many-to-many association has two sides, the owning side and the non-owning, or inverse, Eide.
The join table is specified on the owning side. If the association is bidirectional, either side may be des-
ignated as the owning side.

The same annotation elements for reToMany annotation apply to th&lanyToMany annotation.
Table 16 lists these annotation elements and their default values.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToMany {
Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String mappedBy() default "";

Example 1:
In Customer class:

@ManyToMany
@JoinTable(name="CUST_PHONES")
public Set<PhoneNumber> getPhones() { return phones; }

In PhoneNumber class:

@ManyToMany(mappedBy="phones") |
public Set<Customer> getCustomers() { return customers; }

181 12/19/05

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

9.1.25

Example 2:
In Customer class:

@ManyToMany(targetEntity=com.acme.PhoneNumber.class)
public Set getPhones() { return phones; }

In PhoneNumber class:

@ManyToMany(targetEntity=com.acme.Customer.class, mappedBy="phones")
public Set getCustomers() { return customers; }

Example 3:
In Customer class:

@ManyToMany
@JoinTable(
name="CUST_PHONE",
joinColumns=
@JoinColumn(name="CUST _ID", referencedColumnName="ID"),
inverseJoinColumns=
@JoinColumn(name="PHONE_ID", referencedColumnName="ID")

public Set<PhoneNumber> getPhones() { return phones; }

In PhoneNumberClass:

@ManyToMany(mappedBy="phones")
public Set<Customer> getCustomers() { return customers; }

MapK ey Annotation

The MapKey annotation is used to specify the map key for associations ofatygetil.Map

@Target({(METHOD, FIELD}) @Retention(RUNTIME)
public @interface MapKey {
String name() default ™,

Thename element designates the name of the persistent field or property of the associated entity that is
used as the map key. If theame element is not specified, the primary key of the associated entity is
used as the map key. If the primary key is a composite primary key and is mappe@lass , an
instance of the primary key class is used as the key.

If a persistent field or property other than the primary key is used as a map key then it is expected to
have a uniqueness constraint associated with it.

12/19/05

182

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mgpping

Example 1: |

@Entity
public class Department {

@OneToMany(mappedBy:"department")
@MapKey(name="empld")
public Map<Integer, Employee> getEmployees() {... }

}

@Entity
public class Employee {

@Id I.rlllteger getEmpid() { ...} |

@ManyToOne
@JoinColumn(name="dept_id")
public Department getDepartment() { ... }

}
Example 2:

@Entity
public class Department {

@OneToMany(mappedBy:"department")
@MapKey(name="empPK")
public Map<EmployeePK, Employee> getEmployees() {... }

}
@Entity
public class Employee {
@Embeddedld public EmployeePK getEmpPK() { ... }

@ManyToOne
@JoinColumn(name="dept_id")
public Department getDepartment() { ... }

}
@Embeddable |
public class EmployeePK {
String name;
Date bday;
} |

183 12/19/05

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

9.1.26

OrderBy Annotation

9.1.27

TheOrderBy annotation specifies the ordering of the elements of a collection valued association at the
point when the association is retrieved.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OrderBy {
String value() default ";

The syntax of thealue ordering element is aorderby _list, as follows:

orderby list::= orderby item [,orderby_item]*
orderby _item::= property_or_field_name [ASC | DESC]

If ASCor DESCis not specifiedASC(ascending order) is assumed.
If the ordering element is not specified, ordering by the primary key of the associated entity is assumed.

The property or field name must correspond to that of a persistent property or field of the associated
class. The properties or fields used in the ordering must correspond to columns for which comparison
operators are supported.

Example:

@Entity public class Course {
@ManyToMany

@OrderBy("lastname ASC")
public List<Student> getStudents() {...};

}
@Entity public class Student {
@ManyToMany(mappedBy:"students")

@OrderBy // PK is assumed
public List<Course> getCourses() {...};

}

Inheritance Annotation

Thelnheritance annotation defines the inheritance strategy to be used for an entity class hierarchy.
It is specified on the entity class that is the root of the entity class hierarchy.

It is permitted for an entity class within the entity hierarchy to specify a different inheritance strategy,
however, support for such combination of inheritance strategies is not required by this specification. An
inheritance strategy specified by an entity class remains in effect for the entities that are its subclasses
unless another entity class further down in the class hierarchy specifies that a different inheritance strat-
egy is to be used for it and its subclasses.

12/19/05

184

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mgpping

The three inheritance mapping strategies are the single table per class hierarchy, joined subclas§, and
table per class strategies. See Section 2.1.10 for a more detailed discussion of inheritance strategigs. The
inheritance strategy options are defined byltheritanceType enum:

public enum InheritanceType
{ SINGLE_TABLE, JOINED, TABLE_PER_CLASS };

Support for the TABLE_PER_CLASS mapping strategy is optional in this release.

If no inheritance type is specified for an entity class hierarchy, the SINGLE_TABLE mapping stratdgy
is used.

Table 18 lists the annotation elements that may be specifiedIfdramitance annotation and their
default values.

@Target({TYPE}) @Retention(RUNTIME)
public @interface Inheritance {

InheritanceType strategy() default SINGLE_TABLE;
}

Table 18

9.1.28

Inheritance Annotation Elements

Type Name Description Default

InheritanceType strategy (Optional) The inheritancénheritanceType.SINGLE_TABLE
strategy to use for the
entity inheritance hierar-
chy.

Example:

@Entity
@Inheritance(strategy=JOINED)
public class Customer { ... }

@Entity
public class ValuedCustomer extends Customer { ... }

DiscriminatorColumn Annotation

For the SINGLE_TABLE mapping strategy, and typically also for the JOINED strategy, the persistefice
provider will use a type discriminator column. TBescriminatorColumn annotation is used to
define the discriminator column for the SINGLE_TABLE and JOINED inheritance mapping strategies.

The strategy and the discriminator column are only specified in the root of an entity class hierarchy or
subhierarchy in which a different inheritance strategy is applied.

TheDiscriminatorColumn annotation can be specified on an entity class (including on an abstrdct
entity class).

185 12/19/05

Sun Microsystems, Inc.

| Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

If the DiscriminatorColumn annotation is missing, and a discriminator column is required, the
name of the discriminator column defaults to "DTYPE" and the discriminator type to STRING.

Table 19 lists the annotation elements that may be specified Bas@iminatorColumn annota-
tion and their default values.

The supported discriminator types are defined byikeriminatorType enum:

public enum DiscriminatorType { STRING, CHAR, INTEGER };

The type of the discriminator column, if specified in the optics@lmnDefinition element, must
be consistent with the discriminator type.

@Target{TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorColumn {
String name() default "";
DiscriminatorType discriminatorType() default STRING;
String columnDefinition() default ™;
int length() default 31;

Table 19 DiscriminatorColumn Annotation Elements
Type Name Description Default
String name (Optional) The name of column to be used fotDTYPE”
the discriminator.
Dis- discriminator- (Optional) The type of object/column to use| DiscriminatorType.STRING
crimi- Type as a class discriminator.
natorTy
pe

String columnDefinition| (Optional) The SQL fragment that is used | Provider-generated SQL to
when generating the DDL for the discrimina- create a column of the speci-
tor column. fied discriminator type.

String length (Optional) The column length for 31
String-based discriminator types. Ignored fqg
other discriminator types.

=

Example:

@Entity

@Table(name="CUST")

@Inheritance(strategy=SINGLE_TABLE)
@DiscriminatorColumn(name="DISC", discriminatorType=STRING,length=20)
public class Customer { ... }

@Entity
public class ValuedCustomer extends Customer { ... }

12/19/05 186

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mgpping

9.1.29 DiscriminatorV alue Annotation

TheDiscriminatorValue annotation is used to specify the value of the discriminator column far
entities of the given type. ThBiscriminatorValue annotation can only be specified on a con-
crete entity class. If th®iscriminatorValue annotation is not specified and a discriminator col-
umn is used, a provider-specific function will be used to generate a value representing the entity type.

The inheritance strategy and the discriminator column are only specified in the root of an entity class
hierarchy or subhierarchy in which a different inheritance strategy is applied. The discriminator valug, if
not defaulted, should be specified for each entity class in the hierarchy.

Table 20 lists the annotation elements that may be specifiedD@aiminatorValue annotation
and their default values.

The discriminator value must be consistent in type with the discriminator type of the specified|or
defaulted discriminator column. If the discriminator type is an integer, the value specified must be qble
to be converted to an integer value (€'%,).

@Target({TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorValue {
String value();

Table 20 DiscriminatorValueAnnotation Elements
Type Name Description Default
String value (Optional) The value that indicates that the If the DiscriminatorValue

row is an entity of the annotated entity type| annotation is not specified, a
provider-specific function to
generate a value represent-
ing the entity type is used for
the value of the discriminator
column. If the Discriminator-
Type is STRING, the dis-
criminator value default is
the entity name.

Example:

@Entity

@Table(name="CUST")

@Inheritance(strategy=SINGLE_TABLE)
@DiscriminatorColumn(name="DISC", discriminatorType=STRING,length=20)
@DiscriminatorValue("CUSTOMER")

public class Customer { ... }

@Entity
@DiscriminatorValue("VCUSTOMER")
public class ValuedCustomer extends Customer { ... }

187 12/19/05

Sun Microsystems, Inc.

| Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

9.1.30 PrimaryK eyJoinColumn Annotation

The PrimaryKeyJoinColumn annotation specifies a primary key column that is used as a foreign
key to join to another table.

The PrimaryKeyJoinColumn annotation is used to join the primary table of an entity subclass in
the JOINED mapping strategy to the primary table of its superclass; it is used v8icand-
aryTable annotation to join a secondary table to a primary table; and it may be use€dneBoOne
mapping in which the primary key of the referencing entity is used as a foreign key to the referenced
entity.

Table 21 lists the annotation elements that may be specifiedRaneryKeyJoinColumn annota-
tion and their default values.

If no PrimaryKeyJoinColumn annotation is specified for a subclass in the JOINED mapping strat-
egy, the foreign key columns are assumed to have the same names as the primary key columns of the
primary table of the superclass.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumn {

String name() default ";

String referencedColumnName() default ";

String columnDefinition() default ";

Table 21 PrimaryKeyJoinColumn Annotation Elements

Type | Name Description Default

String | name The name of the primary key col- The same name as the primary key
umn of the current table. column of the superclass (JOINED

mapping strategy); the same name
as the primary key column of the
primary table (SecondaryTable
mapping); or the same name as the
primary key column for the table for
the referencing entity (OneToOne
mapping).

String | referencedColumnName (Optional) The name of the pri- The same name as the primary key
mary key column of the table column of the primary table of the
being joined to. superclass (JOINED mapping strat-

egy); the same name as the name of
the primary key column of the pri-
mary table (SecondaryTable map-
ping); or the same name as the
primary key column of the table for
the referenced entity (OneToOne
mapping).

String | columnDefinition (Optional) The SQL fragment thatGenerated SQL to create a column
is used when generating the DDL of the inferred type.
for the column. This should not be
specified for a OneToOne primary
key association.

12/19/05 188

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft

9.1.31

Example: Customer and ValuedCustomer subclass

@Entity
@Table(name="CUST")
@Inheritance(strategy=JOINED)
@DiscriminatorValue("CUST")
public class Customer { ... }

@Entity

@Table(name="VCUST")
@DiscriminatorValue("VCUST")
@PrimaryKeyJoinColumn(name="CUST_ID")

public class ValuedCustomer extends Customer { ... }

PrimaryK eyJoinColumns Annotation

Composite foreign keys are supported by means oPttiaryKeyJoinColumns annotation. The
PrimaryKeyJoinColumns annotation groupBrimaryKeyJoinColumn annotations.

@Target({TYPE}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumns {
PrimaryKeyJoinColumn(] value();

Example 1:ValuedCustomer subclass

@Entity
@Table(name="VCUST")
@DiscriminatorValue("VCUST")
@PrimaryKeyJoinColumns({
@PrimaryKeyJoinColumn(name="CUST_ID",
referencedColumnName="ID"),
@PrimaryKeyJoinColumn(name="CUST_TYPE",
referencedColumnName="TYPE")

1)
public class ValuedCustomer extends Customer { ... }

Metadata for Object/Relational Mgpping

189

12/19/05

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

9.1.32

Example 2: OneToOne relationship between Employee and Employeelnfo classes

public class EmpPK {
public Integer id;
public String name;

}

@Entity
@IdClass(com.acme.EmpPK.class)
public class Employee {

@Id Integer id;
@Ild String name;

@OneToOne
@PrimaryKeyJoinColumns({
@PrimaryKeyJoinColumn(name="ID", referencedColumn-
Name="EMP_ID"),
@PrimaryKeyJoinColumn(name="NAME", referencedColumn-
Name="EMP_NAME")})
Employeelnfo info;

-

@Entity
@IdClass(com.acme.EmpPK.class)
public class Employeelnfo {

@Ild @Column(name="EMP_ID")
Integer id;

@Ild @Column(name="EMP_NAME")
String name;

Embeddable Annotation

The Embeddable annotation is used to specify a class whose instances are stored as an intrinsic part
of an owning entity and share the identity of the entity. Each of the persistent properties or fields of the
embedded object is mapped to the database table for the entityBasiy , Column, Lob, Tempo-

ral , andEnumerated mapping annotations may portably be used to map the persistent fields or
properties of classes annotatedcasbeddable .

@Target({TYPE}) @Retention(RUNTIME)
public @interface Embeddable {

}

12/19/05

190

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft

Example:

@Embeddable

public class EmploymentPeriod {
java.util.Date startDate;
java.util.Date endDate;

Metadata for Object/Relational Mgpping

S

n one

the

}

9.1.33 Embedded Annotation
The Embedded annotation is used to specify a persistent field or property of an entity whose valud
an instance of an embeddable class.
The AttributeOverride and/ orAttributeOverrides annotations may be used to override
the column mappings declared within the embeddable class, which are mapped to the entity table
Implementations are not required to support embedded objects that are mapped across more tha
table (e.g., split across primary and secondary tables or multiple secondary tables).
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Embedded {}
Example:
@Embedded
@AttributeOverrides({

@AttributeOverride(name="startDate",
column=@Column("EMP_START")),
@AttributeOverride(name="endDate", column=@ Column("EMP_END"))

)
public EmploymentPeriod getEmploymentPeriod() { ... }

9.1.34 MappedSuperlass Anotation
The MappedSuperclass annotation designates a class whose mapping information is applied to the
entities that inherit from it. A mapped superclass has no separate table defined for it.
A class designated with thdappedSuperclass annotation can be mapped in the same way as
entity except that the mappings will apply only to its subclasses since no table exists for the magped
superclass itself. When applied to the subclasses the inherited mappings will apply in the context
subclass tables. Mapping information may be overridden in such subclasses by ughtigile
teOverride annotation.
@Target(TYPE) @Retention(RUNTIME)
public @interface MappedSuperclass {}

9.1.35 SequenceGenerator Annotation

191 12/19/05

Sun Microsystems, Inc.

| Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

The SequenceGenerator annotation defines a primary key generator that may be referenced by
name when a generator element is specified fo@areratedValue annotation. A sequence gener-

ator may be specified on the entity class or on the primary key field or property. The scope of the gener-
ator name is global to the persistence unit (across all generator types).

Table 22 lists the annotation elements that may be specified $@gaenceGenerator annotation
and their default values.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface SequenceGenerator {
String name();
String sequenceName() default ";
int initialValue() default O;
int allocationSize() default 50;

}

Table 22

9.1.36

SequenceGenerator Annotation Elements

Type Name Description Default

String | name (Required) A unique generator name that can be referenceq by
one or more classes to be the generator for primary key valugs.

String | sequenceName (Optional) The name of the database sequence object from whimtovider-

to obtain primary key values. chosen
value
int initialValue (Optional) The value from which the sequence object is to starD
generating.
int allocationSize (Optional) The amount to increment by when allocating sequerkte

numbers from the sequence.

Example:

@SequenceGenerator(name="EMP_SEQ", allocationSize=25)

TableGenerator Annotation

The TableGenerator annotation defines a primary key generator that may be referenced by name
when a generator element is specified for@eneratedValue annotation. A table generator may be
specified on the entity class or on the primary key field or property. The scope of the generator name is
global to the persistence unit (across all generator types).

Table 23 lists the annotation elements that may be specified TableGenerator annotation and
their default values.

12/19/05

192

Sun Microsystems, Inc.

Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft

Metadata for Object/Relational Mgpping

The table element specifies the name of the table that is used by the persistence provider to store gener-
ated id values for entities. An entity type will typically use its own row in the table for the generation pf
its id values. The id values are normally positive integers.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface TableGenerator {
String name();
String table() default "™;
String catalog() default "";
String schemay() default "";
String pkColumnName() default "™;
String valueColumnName() default ";
String pkColumnValue() default "™;
int initialValue() default O;
int allocationSize() default 50;

UniqueConstraint[] uniqgueConstraints() default {};

Table 23

}
TableGenerator Annotation Elements

Type Name Description Default

String | name (Required) A unique generator name that |
can be referenced by one or more classges
to be the generator for id values. |

String | table (Optional) Name of table that stores the Name is chosen by persistence
generated id values. provider

String | catalog (Optional) The catalog of the table. Default catalog

String | schema (Optional) The schema of the table. Default schema for user |

String | pkColumnName (Optional) Name of the primary key col- A provider-chosen hame
umn in the table.

String | valueColumn- (Optional) Name of the column that storgs A provider-chosen name

Name the last value generated.

String | pkColumnValue (Optional) The primary key value in thg A provider-chosen value to store
generator table that distinguishes this set in the primary key column of the
of generated values from others that maly generator table
be stored in the table.

int initialValue (Optional) The initial value to be used | 0
when allocating id numbers from the gen-
erator.

int allocationSize (Optional) The amount to increment by| 50
when allocating id numbers from the genp-
erator.

Uniqu | uniqueConstraints| (Optional) Unique constraints that are foNo additional constraints

eCon- be placed on the table. These are only uged

straint if table generation is in effect. These con-

1] straints apply in addition to primary key
constraints .

193

12/19/05

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Example 1:

@Entity public class Employee {

@TableGenerator(
name="empGen",
table="ID_GEN",
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="EMP_ID",
allocationSize=1)

@lId
@GeneratedValue(strategy=TABLE, generator="empGen")
public int id;

}

Example 2:

@Entity public class Address {

@TableGenerator(
name="addressGen",
table="ID_GEN",
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="ADDR_ID")
@lId
@GeneratedValue(strategy=TABLE, generator="addressGen")
public int id;

12/19/05 194

Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft MeIadata

9.2 Examples of the Application of Annotations for
Object/Relational Mapping

9.2.1 Examples of Simple Mappings

@Entity |
public class Customer {

@Ild @GeneratedValue(strategy=AUTO) Long id; |
@Version protected int version;
@ManyToOne Address address;
@Basic String description;
@OneToMany(targetEntity=com.acme.Order.class,
mappedBy="customer")
Collection orders = new Vector();
@ManyToMany(mappedBy="customers")
Set<DeliveryService> serviceOptions = new HashSet();

public Long getld() { return id; }

public Address getAddress() { return address; }
public void setAddress(Address addr) {
this.address = addr;

}

public String getDescription() { return description; }
public void setDescription(String desc) {
this.description = desc;

public Collection getOrders() { return orders; }

public Set<DeliveryService> getServiceOptions() {
return serviceOptions;

@Entity
public class Address {

private Long id;
private int version;
private String street;

@Ild @GeneratedValue(strategy=AUTO)
public Long getld() { return id; }
protected void setld(Long id) { this.id = id; }

@Version

public int getVersion() { return version; }

protected void setVersion(int version) {
this.version = version;

195 12/19/05

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final Draft

}

public String getStreet() { return street; }

public void setStreet(String street) {
this.street = street;

}

@Entity
public class Order {

}

private Long id;

private int version;
private String itemName;
private int quantity;
private Customer cust;

@Ild @GeneratedValue(strategy=AUTO)
public Long getld() { return id; }
public void setld(Long id) { this.id = id; }

@Version

protected int getVersion() { return version; }

protected void setVersion(int version) {
this.version = version;

public String getltemName() { return itemName; }

public void setltemName(String itemName) {
this.itemName = itemName;

}

public int getQuantity() { return quantity; }
public void setQuantity(int quantity) {
this.quantity = quantity;

@ManyToOne

public Customer getCustomer() { return cust; }

public void setCustomer(Customer cust) {
this.cust = cust;

}

@Entity
@Table(name="DLVY_SVC")
public class DeliveryService {

private String serviceName;
private int priceCategory;
private Collection customers;

@Id

public String getServiceName() { return serviceName; }

public void setServiceName(String serviceName) {
this.serviceName = serviceName;

}

public int getPriceCategory() { return priceCategory; }

Examples of the Application of Annota-

12/19/05

196

Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft MeIadata

public void setPriceCategory(int priceCategory) {
this.priceCategory = priceCategory;

@ManyToMany(targetEntity=com.acme.Customer.class)
@JoinTable(name="CUST_DLVRY") |
public Collection getCustomers() { return customers; }
public setCustomers(Collection customers) {
this.customers = customers;

}
}

197 12/19/05

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final Draft Examples of the Application of Annota-

9.2.2 A More Complex Example

[***x Employee class *****/

@Entity
@Table(name="EMPL")
@SecondaryTable(name="EMP_SALARY",
pkJoinColumns=@PrimaryKeyJoinColumn(name="EMP_ID",
referencedColumnName="ID"))
public class Employee implements Serializable {

private Long id;

private int version;

private String name;

private Address address;

private Collection phoneNumbers;
private Collection<Project> projects;
private Long salary;

private EmploymentPeriod period;

@Id @GeneratedValue(strategy=TABLE)
public Integer getld() { return id; }
protected void setld(Integer id) { this.id = id; }

@Version
@Column(name="EMP_VERSION", nullable=false)
public int getVersion() { return version; }
protected void setVersion(int version) {
this.version = version;

}

@Column(name="EMP_NAME", length=80)
public String getName() { return name; }
public void setName(String name) { this.name = name; }

@ManyToOne(cascade=PERSIST, optional=false)
@JoinColumn(name="ADDR_ID",
referencedColumnName="ID", nullable=false)
public Address getAddress() { return address; }
public void setAddress(Address address) {
this.address = address;

}

@OneToMany(targetEntity=com.acme.PhoneNumber.class,
cascade=ALL, mappedBy="employee")
public Collection getPhoneNumbers() { return phoneNumbers; }
public void setPhoneNumbers(Collection phoneNumbers) {
this.phoneNumbers = phoneNumbers;

@ManyToMany(cascade=PERSIST, mappedBy="employee")
@JoinTable(
name="EMP_PROJ",
joinColumns=@JoinColumn(
name="EMP_ID", referencedColumnName="ID"),
inverseJoinColumns=@JoinColumn(
name="PROJ_ID", referencedColumnName="ID"))
public Collection<Project> getProjects() { return projects; }
public void setProjects(Collection<Project> projects) {

12/19/05 198

Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft MeIadata

this.projects = projects;

@Column(name="EMP_SAL", table="EMP_SALARY") |
public Long getSalary() { return salary; }
public void setSalary(Long salary) {

this.salary = salary;

@Embedded
@AttributeOverrides({
@AttributeOverride(name="startDate",
column=@Column(hame="EMP_START")),
@AttributeOverride(name="endDate",
column=@Column(name="EMP_END"))

)
public EmploymentPeriod getEmploymentPeriod() {
return period;

}
public void setEmploymentPeriod(EmploymentPeriod period) {
this.period = period;

[F**** Address class *****/

@Entity
public class Address implements Serializable {

private Integer id;
private int version;
private String street;
private String city;

@Ild @GeneratedValue(strategy=IDENTITY)
public Integer getld() { return id; }
protected void setld(Integer id) { this.id = id; }

@Version @Column("VERS", nullable=false)

public int getVersion() { return version; }

protected void setVersion(int version) {
this.version = version;

@Column(name="RUE")

public String getStreet() { return street; }

public void setStreet(String street) {
this.street = street;

}

@Column(name="VILLE")

public String getCity() { return city; }

public void setCity(String city) { this.city = city; }
}

[***** PhoneNumber class *****/

@Entity

199 12/19/05

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final Draft Examples of the Application of Annota-

@Table(hname="PHONE")
public class PhoneNumber implements Serializable {

private String number;
private int phoneType;
private Employee employee;

@Id

public String getNumber() { return number; }

public void setNumber(String number) {
this.number = number;

}

@Column(name="PTYPE")

public int getPhonetype() { return phonetype; }

public void setPhoneType(int phoneType) {
this.phoneType = phoneType;

@ManyToOne(optional=false)

@JoinColumn(name="EMP_ID", nullable=false)

public Employee getEmployee() { return employee; }

public void setEmployee(Employee employee) {
this.employee = employee;

[*¥***x Project class *****/

@Entity

@Inheritance(strategy=JOINED)
DiscriminatorValue("Proj")
@DiscriminatorColumn(name="DISC")
public class Project implements Serializable {

private Integer projld;

private int version;

private String name;

private Set<Employee> employees;

@Ild @GeneratedValue(strategy=TABLE)
public Integer getld() { return projld; }
protected void setld(Integer id) { this.projld = id; }

@Version
public int getVersion() { return version; }
protected void setVersion(int version) { this.version = version; }

@Column(hame="PROJ_NAME")
public String getName() { return name; }
public void setName(String name) { this.name = name; }

@ManyToMany(mappedBy="projects")

public Set<Employee> getEmployees() { return employees; }

public void setEmployees(Set<Employee> employees) {
this.employees = employees;

12/19/05

200

Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft MeIadata

[***** GovernmentProject subclass *****/

@Entity
@Table(name="GOVT_PROJECT")
@DiscriminatorValue("GovtProj") |
@PrimaryKeyJoinColumn(name="GOV_PROJ_ID",
referencedColumnName="ID")
public class GovernmentProject extends Project {

private String filelnfo;

@Column("INFO")
public String getFilelnfo() { return filelnfo; }
public void setFileInfo(String filelnfo) {
this.fileInfo = fileInfo;
}
}

[¥**** CovertProject subclass *****/

@Entity
@Table(name="C_PROJECT")
@DiscriminatorValue("CovProj") |
@PrimaryKeyJoinColumn(name="COV_PROJ_ID",
referencedColumnName="|D")
public class CovertProject extends Project {

private String classified,;
public CovertProject() { super(); }

public CovertProject(String classified) {
this(); |
this.classified = classified;

}

@Column(updatable=false)

public String getClassified() { return classified; }

protected void setClassified(String classified) {
this.classified = classified;

[***** EmploymentPeriod class *****/

@Embeddable
public class EmploymentPeriod implements Serializable {

private Date start;
private Date end;

@Column(nullable=false)

public Date getStartDate() { return start; }

public void setStartDate(Date start) {
this.start = start;

201 12/19/05

Sun Microsystems, Inc.

Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final Draft Examples of the Application of Annota-

}

public Date getEndDate() { return end; }
public void setEndDate(Date end) {
this.end = end;

12/19/05 202

Sun Microsystems, Inc.

Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft IXML

aamere XML Descriptor

The XML descriptor is intended to serve as both an alternative and an overriding mechanism
to the use of Java language metadata annotations.

203 12/19/05

Sun Microsystems, Inc.

I XML Descriptor

Enterprise JavaBeans 3.0, Proposed Final Draft

10.1 XML Schema

XML Schema

This section provides the XML schema for use with the persistence API.

<?xml version="1.0" encoding="UTF-8"?>

<l-- Java Persistence orm.xml schema -->

<xsd:schema targetNamespace="http://java.sun.com/xml/ns/persistence/orm"
xmlins:orm="http://java.sun.com/xml/ns/persistence/orm"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified" version="1.0">

<xsd:annotation>

<xsd:documentation>
@#)orm_1_0.xsd 1.0 Dec 9 2005

</xsd:documentation>

</xsd:annotation>

<xsd:annotation>
<xsd:documentation><![CDATA[

This is the XML Schema for the persistence object-relational
mapping file.

The file may be named "META-INF/orm.xml" in the persistence
archive or it may be named some other name which would be
used to locate the file as resource on the classpath.

]]></xsd:documentation>
</xsd:annotation>
<xsd:include schemalLocation="orm_1 0.xsd"/>

& FATATA KKK *kkkok * *kkkkkkkkkkkkk * >

<xsd:element name="entity-mappings">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="entity" type="orm:entity"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="embeddable" type="orm:embeddable"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="mapped-superclass" type="orm:mapped-superclass"”
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="named-query" type="orm:named-query"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="named-native-query" type="orm:named-native-query"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="sql-result-set-mapping"

type="orm:sql-result-set-mapping"

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="sequence-generator" type="orm:sequence-generator”

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="table-generator" type="orm:table-generator"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="default-entity-listeners"
type="orm:entity-listeners"
minOccurs="0"/>
<xsd:element name="cascade"
type="orm:cascade-type"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="package" type="xsd:string"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
<xsd:attribute name="access" type="orm:access-type"/>
<xsd:attribute name="flush-mode" type="orm:flush-mode-type"/>
</xsd:complexType>

12/19/05

204

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft XML Descriptgr

</xsd:element>

<xsd:complexType name="entity">
<xsd:annotation>
<xsd:documentation>
@Target(TYPE) @Retention(RUNTIME)
public @interface Entity {
String name() default "";

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="table" type="orm:table" minOccurs="0"/>
<xsd:element name="secondary-table" type="orm:secondary-table"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="primary-key-join-column”
type="orm:primary-key-join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="id-class" type="orm:id-class" minOccurs="0"/>
<xsd:element name="inheritance" type="orm:inheritance" minOccurs="0"/>
<xsd:element name="discriminator-value" type="orm:discriminator-value"
minOccurs="0"/>
<xsd:element name="discriminator-column"
type="orm:discriminator-column”
minOccurs="0"/>
<xsd:element name="sequence-generator" type="orm:sequence-generator"
minOccurs="0"/>
<xsd:element name="table-generator" type="orm:table-generator"
minOccurs="0"/>
<xsd:element name="attribute-override" type="orm:attribute-override"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="named-query" type="orm:named-query"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="named-native-query" type="orm:named-native-query"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="sql-result-set-mapping"
type="orm:sql-result-set-mapping"
minOccurs="0"/>
<xsd:element name="exclude-default-listeners" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="exclude-superclass-listeners" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="entity-listeners" type="orm:entity-listeners"
minOccurs="0"/>
<xsd:element name="pre-persist" type="orm:pre-persist" minOccurs="0"/>
<xsd:element name="post-persist" type="orm:post-persist"
minOccurs="0"/>
<xsd:element name="pre-remove" type="orm:pre-remove" minOccurs="0"/>
<xsd:element name="post-remove" type="orm:post-remove" minOccurs="0"/>
<xsd:element name="pre-update" type="orm:pre-update" minOccurs="0"/>
<xsd:element name="post-update" type="orm:post-update" minOccurs="0"/>
<xsd:element name="post-load" type="orm:post-load" minOccurs="0"/>
<xsd:choice>
<xsd:element name="id" type="orm:id"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="embedded-id" type="orm:embedded-id"
minOccurs="0"/>
</xsd:choice>
<xsd:element name="attribute" type="orm:attribute"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="class" type="xsd:string" use="required"/>
<xsd:attribute name="access" type="orm:access-type"/>
</xsd:complexType>

205 12/19/05

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft

<xsd:complexType name="id">
<xsd:annotation>
<xsd:documentation>
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Id {}
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="column" type="orm:column"/>
<xsd:element name="generated-value" type="orm:generated-value"/>
<xsd:element name="temporal" type="orm:temporal"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="embedded-id">
<xsd:annotation>
<xsd:documentation>
@Target({(METHOD, FIELD}) @Retention(RUNTIME)
public @interface EmbeddedId {}
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="attribute-override" type="orm:attribute-override"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="attribute">
<xsd:sequence>
<xsd:choice minOccurs="0">
<xsd:element name="basic" type="orm:basic"/>
<xsd:element name="version" type="orm:version"/>
<xsd:element name="many-to-one" type="orm:many-to-one"/>
<xsd:element name="one-to-many" type="orm:one-to-many"/>
<xsd:element name="one-to-one" type="orm:one-to-one"/>
<xsd:element name="many-to-many" type="orm:many-to-many"/>
<xsd:element name="embedded" type="orm:embedded"/>
<xsd:element name="transient" type="orm:transient"/>
</xsd:choice>
<xsd:choice minOccurs="0">
<xsd:element name="column" type="orm:column"/>
<xsd:element name="join-column" type="orm:join-column"
maxOccurs="unbounded"/>
<xsd:element name="join-table" type="orm:join-table"/>
</xsd:choice>
<xsd:choice minOccurs="0">
<xsd:element name="lob" type="orm:lob"/>
<xsd:element name="temporal" type="orm:temporal"/>
<xsd:element name="enumerated" type="orm:enumerated"/>
<xsd:element name="map-key" type="orm:map-key"/>
<xsd:element name="order-by" type="orm:order-by"/>
</xsd:choice>
<xsd:element name="attribute-override" type="orm:attribute-override"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:simpleType name="access-type">
<xsd:annotation>
<xsd:documentation>
public enum AccessType { PROPERTY, FIELD };
</xsd:documentation>
</xsd:annotation>

XML Schema

12/19/05 206

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft

<xsd:restriction base="xsd:string">
<xsd:enumeration value="PROPERTY"/>
<xsd:enumeration value="FIELD"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="entity-listeners">
<xsd:annotation>
<xsd:documentation>
@Target({TYPE}) @Retention(RUNTIME)
public @interface EntityListeners {
Class][] value();

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="entity-listener" type="orm:entity-listener"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="entity-listener">
<xsd:sequence>

<xsd:element name="pre-persist" type="orm:pre-persist" minOccurs="0"/>

<xsd:element name="post-persist" type="orm:post-persist"
minOccurs="0"/>

<xsd:element name="pre-remove" type="orm:pre-remove" minOccurs="0"/>
<xsd:element name="post-remove" type="orm:post-remove" minOccurs="0"/>
<xsd:element name="pre-update" type="orm:pre-update" minOccurs="0"/>
<xsd:element name="post-update" type="orm:post-update" minOccurs="0"/>
<xsd:element name="post-load" type="orm:post-load" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="class" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="pre-persist">
<xsd:annotation>
<xsd:documentation>
@Target({(METHOD}) @Retention(RUNTIME)
public @interface PrePersist {}
</xsd:documentation>
</xsd:annotation>

<xsd:attribute name="method-name" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="post-persist">
<xsd:annotation>
<xsd:documentation>
@Target({(METHOD}) @Retention(RUNTIME)
public @interface PostPersist {}
</xsd:documentation>
</xsd:annotation>

<xsd:attribute name="method-name" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="pre-remove">
<xsd:annotation>
<xsd:documentation>
@Target({(METHOD}) @Retention(RUNTIME)
public @interface PreRemove {}
</xsd:documentation>
</xsd:annotation>

<xsd:attribute name="method-name" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="post-remove">

XML Descriptgr

207

12/19/05

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft

<xsd:annotation>
<xsd:documentation>
@Target({(METHOD}) @Retention(RUNTIME)
public @interface PostRemove {}
</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="pre-update">
<xsd:annotation>
<xsd:documentation>
@Target({(METHOD}) @Retention(RUNTIME)
public @interface PreUpdate {}
</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="post-update">
<xsd:annotation>
<xsd:documentation>
@Target({(METHOD}) @Retention(RUNTIME)
public @interface PostUpdate {}
</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="post-load">
<xsd:annotation>
<xsd:documentation>
@Target({(METHOD}) @Retention(RUNTIME)
public @interface PostLoad {}
</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:simpleType name="flush-mode-type">
<xsd:annotation>
<xsd:documentation>
public enum FlushModeType {
COMMIT,
AUTO

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="COMMIT"/>
<xsd:enumeration value="AUTQ"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="query-hint">
<xsd:annotation>
<xsd:documentation>
@Target({}) @Retention(RUNTIME)
public @interface QueryHint {
String name();
String value();

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="value" type="xsd:string" use="required"/>

XML Schema

12/19/05 208

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft

</xsd:complexType>

<xsd:complexType name="named-query">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)

public @interface NamedQuery {
String name();
String query();
QueryHint[] hints() default {};

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="hint" type="orm:query-hint"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="query" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="named-native-query">
<xsd:annotation>
<xsd:documentation>
@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQuery {
String name();
String query();
QueryHint[] hints() default {};
Class resultClass();
String resultSetMapping() default ™; // name of SQLResultSetMapping

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="hint" type="orm:query-hint"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="query" type="xsd:string" use="required"/>
<xsd:attribute name="result-class" type="xsd:string"/>
<xsd:attribute name="result-set-mapping" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="sql-result-set-mapping">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE, METHODY}) @Retention(RUNTIME)

public @interface SqlResultSetMapping {
String name();
EntityResult[] entities() default {};
ColumnResult[] columns() default {};

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="entity-result" type="orm:entity-result"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="column-result" type="orm:column-result"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="entity-result">
<xsd:annotation>

XML Descriptgr

209

12/19/05

Sun Microsystems, Inc.

XML Schema

XML Descriptor

Enterprise JavaBeans 3.0, Proposed Final Draft

<xsd:documentation>
@Target({}) @Retention(RUNTIME)
public @interface EntityResult {
Class entityClass();
FieldResult[] fields() default {};
String discriminatorColumn() default "";

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="field-result" type="orm:field-result"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="entity-class" type="xsd:string" use="required"/>
<xsd:attribute name="discriminator-column" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="field-result">
<xsd:annotation>
<xsd:documentation>
@Target({}) @Retention(RUNTIME)
public @interface FieldResult {
String name();
String column();

</xsd:documentation>

</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="column" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="column-result">

<xsd:annotation>
<xsd:documentation>
@Target({}) @Retention(RUNTIME)
public @interface ColumnResult {

String name();

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="table">
<xsd:annotation>
<xsd:documentation>
@Target({TYPE}) @Retention(RUNTIME)
public @interface Table {
String name() default ™;
String catalog() default ";

String schema() default ";
UnigueConstraint[] uniqgueConstraints() default {};

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="unique-constraint" type="orm:unique-constraint"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="secondary-table">
<xsd:annotation>

12/19/05

210

Sun Microsystems, Inc.

XML Schema

Enterprise JavaBeans 3.0, Proposed Final Draft

<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)

public @interface SecondaryTable {
String name();
String catalog() default ";
String schema() default ";
PrimaryKeyJoinColumn[] pkJoinColumns() default {};
UnigueConstraint[] uniqgueConstraints() default {};

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="primary-key-join-column"
type="orm:primary-key-join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="unique-constraint" type="orm:unigue-constraint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="unique-constraint">
<xsd:annotation>
<xsd:documentation>
@Target({TYPE}) @Retention(RUNTIME)
public @interface UniqueConstraint {
String[] columnNames();

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="column-name" type="xsd:string"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="column">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)

public @interface Column {
String name() default "";
boolean unique() default false;
boolean nullable() default true;
boolean insertable() default true;
boolean updatable() default true;
String columnDefinition() default ™;
String table() default ";
int length() default 255;
int precision() default O; // decimal precision
int scale() default O; // decimal scale

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="unique" type="xsd:boolean"/>
<xsd:attribute name="nullable" type="xsd:boolean"/>
<xsd:attribute name="insertable" type="xsd:boolean"/>
<xsd:attribute name="updatable" type="xsd:boolean"/>
<xsd:attribute name="column-definition" type="xsd:string"/>
<xsd:attribute name="table" type="xsd:string"/>
<xsd:attribute name="length" type="xsd:int"/>
<xsd:attribute name="precision" type="xsd:int"/>
<xsd:attribute name="scale" type="xsd:int"/>

XML Descriptgr

211

12/19/05

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft XML Schema

</xsd:complexType>

<xsd:complexType name="join-column">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)

public @interface JoinColumn {
String name() default "";
String referencedColumnName() default ";
boolean unique() default false;
boolean nullable() default true;
boolean insertable() default true;
boolean updatable() default true;
String columnDefinition() default ™;
String table() default ";

</xsd:documentation>

</xsd:annotation>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="referenced-column-name" type="xsd:string"/>

<xsd:attribute name="unique" type="xsd:boolean"/>

<xsd:attribute name="nullable" type="xsd:boolean"/>

<xsd:attribute name="insertable" type="xsd:boolean"/>

<xsd:attribute name="updatable" type="xsd:boolean"/>

<xsd:attribute name="column-definition" type="xsd:string"/>

<xsd:attribute name="table" type="xsd:string"/>
</xsd:complexType>

<xsd:simpleType name="generation-type">
<xsd:annotation>
<xsd:documentation>
public enum GenerationType { TABLE, SEQUENCE, IDENTITY, AUTO };
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="TABLE"/>
<xsd:enumeration value="SEQUENCE"/>
<xsd:enumeration value="IDENTITY"/>
<xsd:enumeration value="AUTQ"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="attribute-override">
<xsd:annotation>
<xsd:documentation>
@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverride {
String name();
Column column();

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="column" type="orm:column"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:simpleType name="id-class">
<xsd:annotation>
<xsd:documentation>
@Target({TYPE}) @Retention(RUNTIME)
public @interface IdClass {
Class value();

</xsd:documentation>

12/19/05 212

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft

</xsd:annotation>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<xsd:simpleType name="transient">
<xsd:annotation>
<xsd:documentation>
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Transient {}
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<xsd:simpleType name="version">
<xsd:annotation>
<xsd:documentation>
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Version {}
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<xsd:complexType name="basic">
<xsd:annotation>
<xsd:documentation>
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Basic {
FetchType fetch() default EAGER,;
boolean optional() default true;

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="optional" type="xsd:boolean"/>
</xsd:complexType>

<xsd:simpleType name="fetch-type">
<xsd:annotation>
<xsd:documentation>
public enum FetchType { LAZY, EAGER };
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="LAZY"/>
<xsd:enumeration value="EAGER"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="lob">
<xsd:annotation>
<xsd:documentation>
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Lob {}
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:length value="0"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="temporal">
<xsd:annotation>
<xsd:documentation>
@Target({METHOD, FIELD}) @Retention(RUNTIME)

XML Descriptgr

213

12/19/05

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft

public @interface Temporal {
TemporalType value() default TIMESTAMP;

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="orm:temporal-type"/>
</xsd:simpleType>

<xsd:simpleType name="temporal-type">
<xsd:annotation>
<xsd:documentation>
public enum TemporalType {
DATE, // java.sql.Date
TIME, // java.sql.Time
TIMESTAMP // java.sql.Timestamp

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:string">
<xsd:enumeration value="DATE"/>
<xsd:enumeration value="TIME"/>
<xsd:enumeration value="TIMESTAMP"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType nhame="enumerated">
<xsd:annotation>
<xsd:documentation>
@Target({(METHOD, FIELD}) @Retention(RUNTIME)
public @interface Enumerated {
EnumType value() default ORDINAL;

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="orm:enum-type"/>
</xsd:simpleType>

<xsd:simpleType name="enum-type">
<xsd:annotation>
<xsd:documentation>
public enum EnumType {
ORDINAL,
STRING

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="ORDINAL"/>
<xsd:enumeration value="STRING"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="many-to-one">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)

public @interface ManyToOne {
Class targetEntity();
CascadeType[] cascade() default {};
FetchType fetch() default EAGER,;
boolean optional() default true;

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="cascade" type="orm:cascade-type"

XML Schema

12/19/05 214

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft XML Descriptgr

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="optional" type="xsd:boolean"/>
</xsd:complexType>

<xsd:simpleType name="cascade-type">
<xsd:annotation>
<xsd:documentation>
public enum CascadeType { ALL, PERSIST, MERGE, REMOVE, REFRESH};
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="ALL"/>
<xsd:enumeration value="PERSIST"/>
<xsd:enumeration value="MERGE"/>
<xsd:enumeration value="REMOVE"/>
<xsd:enumeration value="REFRESH"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="one-to-one">
<xsd:annotation>
<xsd:documentation>
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToOne {
Class targetEntity();
CascadeType[] cascade() default {};
FetchType fetch() default EAGER,;
boolean optional() default true;
String mappedBy() default "";

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="cascade" type="orm:cascade-type"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="optional" type="xsd:boolean"/>
<xsd:attribute name="mapped-by" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="one-to-many">
<xsd:annotation>
<xsd:documentation>

@Target({(METHOD, FIELD}) @Retention(RUNTIME)

public @interface OneToMany {
Class targetEntity();
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String mappedBy() default "";

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="cascade" type="orm:cascade-type"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="mapped-by" type="xsd:string"/>
</xsd:complexType>

215 12/19/05

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft

<xsd:complexType name="join-table">
<xsd:annotation>
<xsd:documentation>
@Target({METHOD, FIELDY})
public @interface JoinTable {
String name() default "";
String catalog() default ";
String schema() default ";
JoinColumn[] joinColumns() default {};
JoinColumn(] inverseJoinColumns() default {};

UniqueConstraint[] uniqueConstraints() default {};

}
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="join-column" type="orm:join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="inverse-join-column" type="orm:join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="unique-constraint" type="orm:unigque-constraint
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="many-to-many">
<xsd:annotation>
<xsd:documentation>

@Target({(METHOD, FIELD}) @Retention(RUNTIME)

public @interface ManyToMany {
Class targetEntity();
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;

String mappedBy() default "";

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="cascade" type="orm:cascade-type"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="mapped-by" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="generated-value">
<xsd:annotation>
<xsd:documentation>
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface GeneratedValue {
GenerationType strategy() default AUTO;
String generator() default ",

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="strategy" type="orm:generation-type"/>
<xsd:attribute name="generator" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="map-key">
<xsd:annotation>
<xsd:documentation>
@Target({METHOD, FIELD}) @Retention(RUNTIME)

XML Schema

12/19/05 216

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft

public @interface MapKey {
String name() default "";

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:complexType>

<xsd:simpleType name="order-by">
<xsd:annotation>
<xsd:documentation>
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OrderBy{
String value() default "";

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<xsd:complexType name="inheritance">
<xsd:annotation>
<xsd:documentation>
@Target({TYPE}) @Retention(RUNTIME)
public @interface Inheritance {
InheritanceType strategy() default SINGLE_TABLE;

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="strategy" type="orm:inheritance-type"/>
</xsd:complexType>

<xsd:simpleType name="inheritance-type">
<xsd:annotation>
<xsd:documentation>
public enum InheritanceType
{ SINGLE_TABLE, JOINED, TABLE_PER_CLASS};
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="SINGLE_TABLE"/>
<xsd:enumeration value="JOINED"/>
<xsd:enumeration value="TABLE_PER_CLASS"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="discriminator-value">
<xsd:annotation>
<xsd:documentation>
@Target({TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorValue {
String value();

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<xsd:simpleType name="discriminator-type">

<xsd:annotation>

<xsd:documentation>
public enum DiscriminatorType { STRING, CHAR, INTEGER };

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:string">
<xsd:enumeration value="STRING"/>

XML Descriptgr

217

12/19/05

Sun Microsystems, Inc.

XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft

<xsd:enumeration value="CHAR"/>
<xsd:enumeration value="INTEGER"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="primary-key-join-column">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)

public @interface PrimaryKeyJoinColumn {
String name() default "™;
String referencedColumnName() default ";
String columnDefinition() default ™;

}
</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="referenced-column-name" type="xsd:string"/>
<xsd:attribute name="column-definition" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="discriminator-column">
<xsd:annotation>

<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)

public @interface DiscriminatorColumn {
String name() default ™;
DiscriminatorType discriminatorType() default STRING;
String columnDefinition() default ™;
int length() default 31;

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="discriminator-type" type="orm:discriminator-type"/>
<xsd:attribute name="column-definition" type="xsd:string"/>
<xsd:attribute name="length" type="xsd:int"/>
</xsd:complexType>

<xsd:complexType name="embeddable">
<xsd:annotation>
<xsd:documentation>
@Target({TYPE}) @Retention(RUNTIME)
public @interface Embeddable {}
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="embeddable-attribute"
type="orm:embeddable-attribute"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="class" type="xsd:string" use="required"/>
<xsd:attribute name="access" type="orm:access-type"/>
</xsd:complexType>

<xsd:complexType name="embeddable-attribute">
<xsd:sequence>
<xsd:element name="basic" type="orm:basic" minOccurs="0"/>
<xsd:element name="lob" type="orm:lob" minOccurs="0"/>
<xsd:element name="temporal" type="orm:temporal” minOccurs="0"/>
<xsd:element name="enumerated" type="orm:enumerated" minOccurs="0"/>
<xsd:element name="column" type="orm:column" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

XML Schema

12/19/05 218

Sun Microsystems, Inc.

XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft

<xsd:simpleType name="embedded">
<xsd:annotation>
<xsd:documentation>
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Embedded {}
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<xsd:complexType name="mapped-superclass">
<xsd:annotation>
<xsd:documentation>
@Target(TYPE) @Retention(RUNTIME)
public @interface MappedSuperclass{}
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="id-class" type="orm:id-class" minOccurs="0"/>
<xsd:element name="exclude-default-listeners" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="exclude-superclass-listeners" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="entity-listener" type="orm:entity-listener"
minOccurs="0"/>
<xsd:element name="pre-persist" type="orm:pre-persist" minOccurs="0"/>
<xsd:element name="post-persist" type="orm:post-persist"
minOccurs="0"/>
<xsd:element name="pre-remove" type="orm:pre-remove" minOccurs="0"/>
<xsd:element name="post-remove" type="orm:post-remove" minOccurs="0"/>
<xsd:element name="pre-update" type="orm:pre-update" minOccurs="0"/>
<xsd:element name="post-update" type="orm:post-update” minOccurs="0"/>
<xsd:element name="post-load" type="orm:post-load" minOccurs="0"/>
<xsd:choice>
<xsd:element name="id" type="orm:id"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="embedded-id" type="orm:embedded-id"
minOccurs="0"/>
</xsd:choice>
<xsd:element name="attribute" type="orm:attribute"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="class" type="xsd:string" use="required"/>
<xsd:attribute name="access" type="orm:access-type"/>
</xsd:complexType>

<xsd:complexType name="sequence-generator">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)

public @interface SequenceGenerator {
String name();
String sequenceName() default "";
int initialValue() default O;
int allocationSize() default 50;

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="sequence-name" type="xsd:string"/>
<xsd:attribute name="initial-value" type="xsd:int"/>
<xsd:attribute name="allocation-size" type="xsd:int"/>
</xsd:complexType>

<xsd:complexType name="table-generator">
<xsd:annotation>

XML Descriptgr

219

12/19/05

Sun Microsystems, Inc.

I XML Descriptor

Enterprise JavaBeans 3.0, Proposed Final Draft

<xsd:documentation>
@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface TableGenerator {
String name();
String table() default ";
String catalog() default ";
String schema() default ";
String pkColumnName() default "™;
String valueColumnName() default "";
String pkColumnValue() default "";
int initialValue() default O;
int allocationSize() default 50;
UniqueConstraint[] uniqueConstraints() default {};

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="unique-constraint" type="orm:unigue-constraint”

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="table" type="xsd:string"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
<xsd:attribute name="pk-column-name" type="xsd:string"/>
<xsd:attribute name="value-column-name" type="xsd:string"/>
<xsd:attribute name="pk-column-value" type="xsd:string"/>
<xsd:attribute name="initial-value" type="xsd:int"/>
<xsd:attribute name="allocation-size" type="xsd:int"/>
</xsd:complexType>

</xsd:schema>

XML Schema

12/19/05

220

Sun Microsystems, Inc.

XML Schema

Chapter 11

Enterprise JavaBeans 3.0, Proposed Final Draft

Related Documents

[1]
[2]
[3]

[4]
[5]
[6]
[7]
[8]

Enterprise JavaBeans, v. 3.0. EJB Core Contracts and Requirements.

Related Documejnts

JSR-250: Common Annotations for the Java Platfdrtp://jcp.org/en/jsr/detail ?id=250

JSR-175: A Metadata Facility for the Java Programming Language.
http://jcp.org/en/jsr/detail ?id=175

Database Language SQL. ANSI X3.135-1992 or ISO/IEC 9075:1992.
Enterprise JavaBeans, v 2http://java.sun.com/products/ejb

JDBC 3.0 Specificatiottp://java.sun.com/products/jdbc

Enterprise JavaBeans, Simplified API, v $ifip://java.sun.com/products/ejb

JAR File Specificatiomttp://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html

221

12/19/05

Sun Microsystems, Inc.

| Related Documents Enterprise JavaBeans 3.0, Proposed Final Draft XML Schema

12/19/05 222

Sun Microsystems, Inc.

Early Draft 1 Enterprise JavaBeans 3.0, Proposed Final Draft Revision Histofy

Appendix A ReViSion History

This appendix lists the significant changes that have been made during the development of the EJB 3.0
specification.

A.1 Early Draft 1

Created document.

A.2 Early Draft 2

Split Persistence APfrom single Early Draft 1 document.
Renamed dependent classes as "embedded classes".
Added support for EJB 2.1 style composite keys for entities.
Added support for BLOBs and CLOBs

Clarified rules for defaulting of O/R mapping when OneToOne, OneToMany, ManyToOne, and Many-
ToMany annotations are used.

223 12/19/05

Sun Microsystems, Inc.

| Revision History Enterprise JavaBeans 3.0, Proposed Final Draft Changes Since EDR 2

Clarified default mappings for non-relationship fields and properties.

Clarified exceptions for entity lifecycle operations dfidtityManager andQuery interface meth-
ods.

Clarified semantics afontains method.

Renaming of annotations for dependent objects to reflect "embedded" terminology.

Added Embeddedld and IdClass annotations to support composite keys.

Added AttributeOverride annotation to support embedded objects and embedded primary keys.
Added annotations to support BLOB/CLOB mappings.

Renamed GeneratorTable annotation as GeneratedldTable.

Added setFlushMode method to Query interface.

Added missing Transient annotation.

Rename create() method as persist() in EntityManager API, and CREATE as PERSIST in CascadeType
enum.

Provided full definition of EJB QL.

Removed POSITION, CHAR_LENGTH, and CHARACTER_LENGTH as redundant.
Added support for mapping of SQL query results.

Extended EJB QL queries to apply to embedded classes.

Added XML descriptor.

Added Related Documents section.

Updated numerous examples.

A.3 Changes Since EDR 2

Clearer formatting for description of merge operation.
Removed requirements for java.sql.Blob and java.sql.Clob.
Added java.util.Date and java.sql.Date as permitted primary key types.

Added introduction to O/R mapping metadata specification.

12/19/05 224

Sun Microsystems, Inc.

Changes Since EDR 2 Enterprise JavaBeans 3.0, Proposed Final Draft Revision Hisfory

Removed primary annotation element from UniqueConstraint, Column, and JoinColumn annotations as
redundant.

Clarified that UniqueConstraint applies in addition to unique constraints entailed by primary key map-
pings.

Clarified that PostLoad method should be invoked after refresh.
Added caution about use of business logic in accessor methods when access=PROPERTY.
Clarified that precision and scale apply to decimal columns.

Editorial changes to remove implications that entity lifecycle operations entail implementation in terms
of a “state” model.

Removed entityType and version elements of Entity annotation.

Added note about the use of EJB QL bulk update and delete operations.
Clarified that fetch=LAZY is a hint; implementations may elect to prefetch.
Clarified that only a single version property is required to be supported per class.
Allowed persistent instance variables to be private.

Removed requirement that if access=FIELD, the fields in the primary key class must be public or pro-
tected.

Extended mapping defaults for fields and properties of byte[], Byte[], char[], and Character[] to Basic
mapping type.

Made TemporalType enum top-level; added NONE so that it can be used to specify Basic mapping for
temporal types.

Clarified that query execution methods getResultList and getSingleResult throw lllegalStateException
when called for EJB QL UPDATE or DELETE statements; executeUpdate throws lllegalStateException
when called for EJB QL SELECT statement.

Clarified that constructor names in EJB QL queries must be fully qualified.

Removed requirement for support of BIT_LENGTH function from EJB QL.

The executeUpdate method throws TransactionRequiredException if there is no active transaction.

Clarified that EJB QL delete operation does not cascade.

Added support for use of EntityManager in application-managed environments, including outside of
Java EE containers. |

Added EntityManager bootstrapping APIs.

225 12/19/05

Sun Microsystems, Inc.

| Revision History Enterprise JavaBeans 3.0, Proposed Final Draft Changes Since EDR 2

Added support for extended persistence contexts.

Added support for non-entity classes in the entity inheritance hierarchy.

Added supported support for abstract entity classes in the entity inheritance hierarchy.
Added EmbeddableSuperclass annotation.

Clarifications to EntityManager and Query exceptions.

Added LEFT, EXISTS, ALL, ANY, SOME to EJB QL reserved identifiers.

Renamed InheritanceJoinColumn as PrimaryKeyJoinColumn. Removed usePKasFK from the One-
ToOne annotation, clarifying that PrimaryKeyJoinColumn can be used instead.

Clarified result types for aggregate functions.
Clarification of TRIM function and its arguments.

In OneToOne, OneToMany, ManyToOne, ManyToMany annotations, targetEntity type is Class, note
String.

Merge @Serialized annotation into @Basic.
Added discriminatorColumn element to @EntityResult
Instance variables allowed to be private, package visibility.

Removed restriction about use of identification variable for IS EMPTY in the FROM clause, since this
is no longer true given outer joins.

Removed restriction that @Table must have been explicitly specified if @SecondaryTable is used—this
is unnecessary, since defaults can be used.

Removed specified element for @Column: it is not needed.
Remove operation applied to removed entity is ignored.
EntityManager.find changed to return null if the entity does not exist.
EntityManager.contains doesn’t require a transaction be active.
Added @OrderBy, @MapKey annotations

Clarified rules regarding the availability of detached instances.
Added SIZE function to EJB QL.

Cleaned up EJB QL grammar.

12/19/05 226

Sun Microsystems, Inc.

Changes Since Public Draft Enterprise JavaBeans 3.0, Proposed Final Draft Revision Hisfory

Added optional hint to Basic and Lob annotations.

Added EntityManager.getReference().

EJB QL LIKE operator allows string-expressions.

Added chapters with contracts on packaging, deployment, and bootstrapping outside a container.
Merged GeneratedldTable into TableGenerator annotation to resolve overlap between the two.
Updated XML descriptor to match annotations.

Editorial sweep over document.

A.4 Changes Since Public Draft

Changed J2EE to Java EE and J2SE to Java SE.

Renamed EmbeddableSuperclass as MappedSuperclass.

Added hints to NamedQuery and NamedNativeQuery.

Required support for JOINED inheritance strategy.

Specified single generated Id column in compound Id column case (IdClass).
Added EntityManager.setFlushMode() method.

Updated Entity Packaging to remove .par files, to allow persistence units to be specified in EJB-JAR|and
WAR files, and to allow multiple persistence units to be specified in a single persistence.xml file.

Renamed entity-mappings.xml to orm.xml.
Added EntityManager.clear() method.

EntityTransaction.rollback and EntityTransaction.isActive throw PersistenceException if an unexpe¢ted

error is encountered.

—

Renamed pkJoin element of SecondaryTable annotation to pkJoinColumns.
Split Id generation elements out from Id annotation and into GeneratedValue annotation.

Default value for a string discriminator type is the entity name.

Changed name of default discriminator column name to “DTYPE” to save use of “TYPE” for the apf|
cation.

227 12/19/05

Sun Microsystems, Inc.

Revision History

Enterprise JavaBeans 3.0, Proposed Final Draft Changes Since Public Draft

Flattened nested Table element in JoinTable and TableGenerator annotations for consistency with Sec-
ondaryTable and better ease of use.

Added standard properties for use in createEntityManagerFactory.
Added transaction-type element to persistence.xml.
Added persistence.xml schema.

Generalized wording of extended persistence context propagation rules to handle transitive closure
cases.

Clarified that entity class, its methods, and its instance variables must not be final.

Removed requirement that EntityManagerFactory be Referenceable.

Added support for transformers in persistence provider pluggability contracts.

Added clarifications about use of HAVING in EJB QL.

Added clarifications about query results when multiple items are used in the SELECT clause.
Generalization of entity listeners to allow multiple listeners and default listeners; added ExcludeSuperc-
classListeners and ExcludeDefaultListeners annotations; changed EntityListener annotation to Enti-
tyListeners.

Added section on optimistic locking.

Added EntityManager.lock method and lock modes.

Renamed getTempClassLoader as getNewTempClassLoader.

Required use of a single access type in an entity hierarchy; placement of the mapping annotations deter-
mines the access type in effect.

Renamed secondaryTable element of Column and JoinColumn annotations to table.

Clarified that EJB QL bulk updates do not update version columns nor synchronize the persistence con-
text with the results of the update/delete.

Replaced EntityNotFoundException with NoResultException in getSingleResult—results other than
entities might be returned, and exception should be recoverable.

Clarified that the exceptions thrown by getSingleResult do not cause the transaction to be rolled back.

Added clarifications about effect of rollback on persistence contexts, and what the application can count
on.

Refactorization of Inheritance and DiscriminatorColumn annotations.

12/19/05

228

Sun Microsystems, Inc.

Changes Since Public Draft Enterprise JavaBeans 3.0, Proposed Final Draft Revision Hisfory

Allow GROUP BY to group over entities.

Added Enumerated annotation for mapping of enums.
Clarified that named queries are scoped to persisence unit.
Clarified join syntax to remove ambiguity with regard to combination of path expressions with out joifs.
Allow setting of relationships in EJB QL update statements.

Fixed all_or_any_expression definition to be consistent with SQL.

Clarified how composite foreign keys in SQL query results can be mapped.
Fixed syntax of EJB QL comparison operations to allow aggregate functions in the HAVING cluasq.

Allowed persist, merge, remove, refshed to be invoked in the absence of a transaction when an extgnded
persistence context is used.

Added getFlushMode method.

Clarified that transaction must be active for flushing to occur.
UniqueConstraint annotation is now usable only within Table and SecondaryTable, not as on TYPE.
Remove Target(TYPE) from JoinColumns annotation—this isn’t needed.
Added ClassTransformer interface.

Updated orm.xml to reflect annotations.

Editorial sweep.

229 12/19/05

	Chapter 1 Introduction
	1.1 Expert Group
	1.2 Document Conventions

	Chapter 2 Entities
	2.1 Requirements on the Entity Class
	2.1.1 Persistent Fields and Properties
	2.1.2 Example
	2.1.3 Entity Instance Creation
	2.1.4 Primary Keys and Entity Identity
	2.1.5 Embeddable Classes
	2.1.6 Mapping Defaults for Non-Relationship Fields or Properties
	2.1.7 Entity Relationships
	2.1.8 Relationship Mapping Defaults
	2.1.8.1 Bidirectional OneToOne Relationships
	2.1.8.2 Bidirectional ManyToOne / OneToMany Relationships
	2.1.8.3 Unidirectional Single-Valued Relationships
	2.1.8.3.1 Unidirectional OneToOne Relationships
	2.1.8.3.2 Unidirectional ManyToOne Relationships

	2.1.8.4 Bidirectional ManyToMany Relationships
	2.1.8.5 Unidirectional Multi-Valued Relationships
	2.1.8.5.1 Unidirectional OneToMany Relationships
	2.1.8.5.2 Unidirectional ManyToMany Relationships

	2.1.9 Inheritance
	2.1.9.1 Abstract Entity Classes
	2.1.9.2 Mapped Superclasses
	2.1.9.3 Non-Entity Classes in the Entity Inheritance Hierarchy

	2.1.10 Inheritance Mapping Strategies
	2.1.10.1 Single Table per Class Hierarchy Strategy
	2.1.10.2 Table per Class Strategy
	2.1.10.3 Joined Subclass Strategy

	Chapter 3 Entity Operations
	3.1 EntityManager
	3.1.1 EntityManager Interface
	3.1.2 Example of Use of EntityManager API

	3.2 Entity Instance’s Life Cycle
	3.2.1 Persisting an Entity Instance
	3.2.2 Removal
	3.2.3 Synchronization to the Database
	3.2.4 Detached Entities
	3.2.4.1 Merging Detached Entity State

	3.2.5 Managed Instances

	3.3 Persistence Context
	3.3.1 Transaction-scoped Persistence Context
	3.3.2 Extended Persistence Context
	3.3.3 Transaction Commit
	3.3.4 Transaction Rollback
	3.3.5 Optimistic Locking and Concurrency
	3.3.5.1 Optimistic Locking
	3.3.5.2 Version Attributes
	3.3.5.3 Lock Modes
	3.3.5.4 OptimisticLockException

	3.4 Entity Listeners and Callback Methods
	3.4.1 Lifecycle Callback Methods
	3.4.2 Semantics of the Life Cycle Callback Methods for Entities
	3.4.3 Example
	3.4.4 Multiple Lifecycle Callback Methods for an Entity Lifecycle Event
	3.4.5 Example
	3.4.6 Exceptions
	3.4.7 Specification of Callback Listener Classes and Lifecycle Methods in the XML Descriptor
	3.4.7.1 Specification of Callback Listeners
	3.4.7.2 Specification of the Binding of Entity Listener Classes to Entities

	3.5 Query API
	3.5.1 Query Interface
	3.5.1.1 Example

	3.5.2 Queries and FlushMode
	3.5.3 Parameter Names
	3.5.4 Named Queries
	3.5.5 Polymorphic Queries
	3.5.6 SQL Queries

	Chapter 4 Query Language
	4.1 Overview
	4.2 EJB QL Statement Types
	4.2.1 Select Statements
	4.2.2 Update and Delete Statements

	4.3 Abstract Schema Types and Query Domains
	4.3.1 Naming
	4.3.2 Example

	4.4 The FROM Clause and Navigational Declarations
	4.4.1 Identifiers
	4.4.2 Identification Variables
	4.4.3 Range Variable Declarations
	4.4.4 Path Expressions
	4.4.5 Joins
	4.4.5.1 Inner Joins (Relationship Joins)
	4.4.5.2 Left Outer Joins
	4.4.5.3 Fetch Joins

	4.4.6 Collection Member Declarations
	4.4.7 EJB QL and SQL
	4.4.8 Polymorphism

	4.5 WHERE Clause
	4.6 Conditional Expressions
	4.6.1 Literals
	4.6.2 Identification Variables
	4.6.3 Path Expressions
	4.6.4 Input Parameters
	4.6.4.1 Positional Parameters
	4.6.4.2 Named Parameters

	4.6.5 Conditional Expression Composition
	4.6.6 Operators and Operator Precedence
	4.6.7 Between Expressions
	4.6.8 In Expressions
	4.6.9 Like Expressions
	4.6.10 Null Comparison Expressions
	4.6.11 Empty Collection Comparison Expressions
	4.6.12 Collection Member Expressions
	4.6.13 Exists Expressions
	4.6.14 All or Any Expressions
	4.6.15 Subqueries
	4.6.16 Functional Expressions
	4.6.16.1 String Functions
	4.6.16.2 Arithmetic Functions

	4.7 GROUP BY, HAVING
	4.8 SELECT Clause
	4.8.1 Result Type of the SELECT Clause
	4.8.2 Constructor Expressions in the SELECT Clause
	4.8.3 Null Values in the Query Result
	4.8.4 Aggregate Functions in the SELECT Clause
	4.8.4.1 Examples

	4.9 ORDER BY Clause
	4.10 Return Value Types
	4.10.1 Result types for Finder and Select methods of 2.1 Entity Beans

	4.11 Bulk Update and Delete Operations
	4.12 Null Values
	4.13 Equality and Comparison Semantics
	4.14 Restrictions
	4.15 Examples
	4.15.1 Simple Queries
	4.15.2 Queries with Relationships
	4.15.3 Queries Using Input Parameters

	4.16 EJB QL BNF

	Chapter 5 Entity Managers and Persistence Contexts
	5.1 Persistence Contexts
	5.1.1 Persistence Context Lifecycle Types

	5.2 Obtaining an EntityManager
	5.2.1 Obtaining an Entity Manager in the Java EE Environment
	5.2.2 Obtaining an Application-managed Entity Manager
	5.2.2.1 Control of the Application-Managed EntityManager Lifecycle.

	5.3 Obtaining an Entity Manager Factory
	5.3.1 Obtaining an Entity Manager Factory in a Java EE Container
	5.3.2 Obtaining an Entity Manager Factory in a Java SE Environment

	5.4 The EntityManagerFactory Interface
	5.5 Controlling Transactions
	5.5.1 JTA EntityManagers
	5.5.2 Resource-local EntityManagers
	5.5.2.1 The EntityTransaction Interface

	5.6 Persistence Context Lifetime
	5.6.1 Container-managed Persistence Contexts
	5.6.1.1 Container-managed Transaction-scoped Persistence Context
	5.6.1.2 Container-managed Extended Persistence Context

	5.6.2 Application-managed Persistence Contexts
	5.6.2.1 Application-managed Transaction-scoped Persistence Context
	5.6.2.2 Application-managed Extended Persistence Context

	5.7 Persistence Context Propagation for Container-managed Entity Managers
	5.7.0.1 Persistence Context Propagation for Transaction-scoped Persistence Contexts
	5.7.0.2 Persistence Context Propagation Rules for Extended Persistence Contexts

	5.8 Examples
	5.8.1 Container-managed Transaction-scoped Persistence Context
	5.8.2 Container-managed Extended Persistence Context
	5.8.3 Application-managed Transaction-scoped Persistence Context (JTA)
	5.8.4 Application-managed Extended Persistence Context(JTA)
	5.8.5 Application-managed Transaction-scoped Persistence Context (Resource Transaction)
	5.8.6 Application-managed Extended Persistence Context (Resource Transaction)

	5.9 Requirements on the Container
	5.9.1 Persistence Context Management
	5.9.2 Container Managed Persistence Contexts

	Chapter 6 Entity Packaging
	6.1 Persistence Unit
	6.2 Persistence Unit Packaging
	6.2.1 persistence.xml file
	6.2.1.1 description
	6.2.1.2 name
	6.2.1.3 provider
	6.2.1.4 transaction-type
	6.2.1.5 jta-data-source, non-jta-data-source
	6.2.1.6 mapping-file, jar-file, class, exclude-unlisted-classes
	6.2.1.7 properties
	6.2.1.8 Examples

	6.2.2 Persistence Unit Scope

	6.3 persistence.xml Schema

	Chapter 7 Container and Provider Contracts for Deployment and Bootstrapping
	7.1 Java EE Deployment
	7.1.1 Responsibilities of the Container
	7.1.2 Responsibilities of the Persistence Provider
	7.1.3 javax.persistence.spi.PersistenceProvider
	7.1.3.1 Persistence Unit Properties

	7.1.4 javax.persistence.spi.PersistenceUnitInfo Interface

	7.2 Bootstrapping in Java SE Environments
	7.2.1 javax.persistence.Persistence Class

	Chapter 8 Metadata Annotations
	8.1 Entity
	8.2 Callback Annotations
	8.3 Annotations for Queries
	8.3.1 Flush Mode Annotation
	8.3.2 NamedQuery Annotation
	8.3.3 NamedNativeQuery Annotation
	8.3.4 Annotations for SQL Query Result Set Mappings

	8.4 References to EntityManager and EntityManagerFactory
	8.4.1 PersistenceContext Annotation
	8.4.2 PersistenceUnit Annotation

	Chapter 9 Metadata for Object/Relational Mapping
	9.1 Annotations for Object/Relational Mapping
	9.1.1 Table Annotation
	9.1.2 SecondaryTable Annotation
	9.1.3 SecondaryTables Annotation
	9.1.4 UniqueConstraint Annotation
	9.1.5 Column Annotation
	9.1.6 JoinColumn Annotation
	9.1.7 JoinColumns Annotation
	9.1.8 Id Annotation
	9.1.9 GeneratedValue Annotation
	9.1.10 AttributeOverride Annotation
	9.1.11 AttributeOverrides Annotation
	9.1.12 EmbeddedId Annotation
	9.1.13 IdClass Annotation
	9.1.14 Transient Annotation
	9.1.15 Version Annotation
	9.1.16 Basic Annotation
	9.1.17 Lob Annotation
	9.1.18 Temporal Annotation
	9.1.19 Enumerated Annotation
	9.1.20 ManyToOne Annotation
	9.1.21 OneToOne Annotation
	9.1.22 OneToMany Annotation
	9.1.23 JoinTable Annotation
	9.1.24 ManyToMany Annotation
	9.1.25 MapKey Annotation
	9.1.26 OrderBy Annotation
	9.1.27 Inheritance Annotation
	9.1.28 DiscriminatorColumn Annotation
	9.1.29 DiscriminatorValue Annotation
	9.1.30 PrimaryKeyJoinColumn Annotation
	9.1.31 PrimaryKeyJoinColumns Annotation
	9.1.32 Embeddable Annotation
	9.1.33 Embedded Annotation
	9.1.34 MappedSuperclass Annotation
	9.1.35 SequenceGenerator Annotation
	9.1.36 TableGenerator Annotation

	9.2 Examples of the Application of Annotations for Object/Relational Mapping
	9.2.1 Examples of Simple Mappings
	9.2.2 A More Complex Example

	Chapter 10 XML Descriptor
	10.1 XML Schema

	Chapter 11 Related Documents
	Appendix A Revision History
	A.1 Early Draft 1
	A.2 Early Draft 2
	A.3 Changes Since EDR 2
	A.4 Changes Since Public Draft

