
JavaTM DataObjects

JSR12

Version1.0.1
JavaDataObjectsExpertGroup

SpecificationLead:CraigRussell,
SunMicrosystemsInc.

Technicalcomments:
jdo-comments@sun.com

Processcomments:
community-process@sun.com
4140 Network Circle
Santa Clara, California 95054
408 276-5638 fax: 408 276-7191

Sun Microsystems, Inc.

Java TM Data Objects Specification ("Specification")
Version: 1.0.1
Status: FCS
Release: May 31, 2003

Copyright 2000-2003 Sun Microsystems, Inc.
4140 Network Circle, Santa Clara, California 95404, U.S.A.
All rights reserved.

NOTICE
The Specification is protected by copyright and the information described
therein may be protected by one or more U.S. patents, foreign patents, or
pending applications. Except as provided under the following license, no part
of the Specification may be reproduced in any form by any means without the
prior written authorization of Sun Microsystems, Inc. ("Sun") and its
licensors, if any. Any use of the Specification and the information described
therein will be governed by the terms and conditions of this license and the
Export Control Guidelines as set forth in the Terms of Use on Sun's website.
By viewing, downloading or otherwise copying the Specification, you agree that
you have read, understood, and will comply with all of the terms and
conditions set forth herein.
Sun hereby grants you a fully-paid, non-exclusive, non-transferable,
worldwide, limited license (without the right to sublicense), under Sun's
intellectual property rights that are essential to practice the Specification,
to internally practice the Specification for the purpose of designing and
developing your Java applets and applications intended to run on the Java
platform or creating a clean room implementation of the Specification that:
(i) includes a complete implementation of the current version of the
Specification, without subsetting or supersetting; (ii) implements all of the
interfaces and functionality of the Specification without subsetting or
supersetting; (iii) includes a complete implementation of any optional
components (as defined by the Specification) which you choose to implement,
without subsetting or supersetting; (iv) implements all of the interfaces and
functionality of such optional components, without subsetting or supersetting;
(v) does not add any additional packages, classes or interfaces to the
"java.*" or "javax.*" packages or subpackages or other packages defined by the
Specification; (vi) satisfies all testing requirements available from Sun
relating to the most recently published version of the Specification six (6)
months prior to any release of the clean room implementation or upgrade
thereto; (vii) does not derive from any Sun source code or binary code
materials; and (viii) does not include any Sun source code or binary code
materials without an appropriate and separate license from Sun. The
Specification contains the proprietary information of Sun and may only be used
in accordance with the license terms set forth herein. This license will
terminate immediately without notice from Sun if you fail to comply with any
provision of this license. Upon termination or expiration of this license,
you must cease use of or destroy the Specification.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade
names of Sun or Sun's licensors is granted hereunder. Sun, Sun Microsystems,
the Sun logo, Java, and the Java Coffee Cup logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS.
This document does not represent any commitment to release or implement any
portion of the Specification in any product.
THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY.
SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such
changes in the Specification will be governed by the then-current license for
the applicable version of the Specification.

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR
DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You will indemnify, hold harmless, and defend Sun and its licensors from any
claims arising or resulting from: (i) your use of the Specification; (ii) the
use or distribution of your Java application, applet and/or clean room
implementation; and/or (iii) any claims that later versions or releases of any
Specification furnished to you are incompatible with the Specification
provided to you under this license.

RESTRICTED RIGHTS LEGEND
U.S. Government: If this Specification is being acquired by or on behalf of
the U.S. Government or by a U.S. Government prime contractor or subcontractor
(at any tier), then the Government's rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in
accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of
Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD
acquisitions).

REPORT
You may wish to report any ambiguities, inconsistencies or inaccuracies you
may find in connection with your use of the Specification ("Feedback"). To the
extent that you provide Sun with any Feedback, you hereby: (i) agree that such
Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable
license, with the right to sublicense through multiple levels of sublicensees,
to incorporate, disclose, and use without limitation the Feedback for any
purpose related to the Specification and future versions, implementations, and
test suites thereof.

(LFI#111525/Form ID#011801)

Acknowledgments

I have come to know Rick Cattell during many shared experiences in the Java database standards
arena. Rick is a Distinguished Engineer at Sun Microsystems and has been the database guru and
Enterprise Cardinal in the Java “Church” for many years. I am deeply in his debt for his many
contributions to JDO, both technical and organizational.

I want to thank the experts on the JDO expert group who contributed ideas, APIs, feedback, and
other valuable input to the standard, especially Heiko Bobzin, Constantine Plotnikov, Luca
Garulli, Philip Conroy, Steve Johnson, Michael Birk, Michael Rowley, Gordan Vosicki, and Mar-
tin McClure.

I want to recognize Michael Bouschen, David Jordan, David Ezzio, Dave Bristor, and Jeff Norton
for their careful review of JDO for consistency, readability, and usability. Without their contribu-
tions, JDO would not have been possible.

Java Data Objects
Table of Contents

 . 15

 .

 . . . 16
. . . 17
 . . 18

 . . . 18
 . . . 19
 . . 19
 . . . 19
. . . 19
. . . 20
 . . 20
. . . . 20
. . . 20
. . . 20
. . . 2

 . 23

 . .
 . . . 2
 . . . 24
 . . . 24
. . .
 . . . 2
 . . 28

. . . 28
 . . 28
. . . 28
 . .
. . . 29
 . . . 29
 . . . 29
. . . 29
 . . . 30
 30
. . . . 31
 . 33
1 Introduction .
1.1 Overview . 15
1.2 Scope . 16
1.3 Target Audience .. . 16
1.4 Organization . 16
1.5 Document Convention .
1.6 Terminology Convention .

2 Overview .
2.1 Definitions . 18

2.1.1 JDO common interfaces. .
2.1.2 JDO in a managed environment. .

Enterprise Information System (EIS) .
EIS Resource. .
Resource Manager (RM).
Connection .
Application Component .
Session Beans .
Entity Beans .
Helper objects .
Container. 0

2.2 Rationale . 20
2.3 Goals . 21

3 JDO Architecture .
3.1 Overview . 23
3.2 JDO Architecture . 24

3.2.1 Two tier usage .4
3.2.2 Application server usage .

Resource Adapter .
Pooling . 25
Contracts .5

4 Roles and Scenarios .
4.1 Roles . 28

4.1.1 Application Developer .
4.1.2 Application Component Provider .
4.1.3 Application Assembler.
4.1.4 Deployer. 29
4.1.5 System Administrator .
4.1.6 JDO Vendor .
4.1.7 Connector Provider .
4.1.8 Application Server Vendor .
4.1.9 Container Provider .

4.2 Scenario: Embedded calendar management system .
4.3 Scenario: Enterprise Calendar Manager .

5 Life Cycle of JDO Instances .
5.1 Overview . 33
Java Data Objects 5 June 5, 2003

Java Data Objects
Table of Contents

 . . . 34
 . . . 34
. . . 35

 . . 35
. . . 36
. . . 37
. . . 37
. . 37
 . . . 38
. . . 39
 .
 . . . 40
 . . . 40
 . . . 40
. . . 41
. . . 42
 . . . 42
 . . . 42
 . . . 43
 . . . 43
 . . . 44
 . . . 45
. . . 45
 . . 46
. . . 46
 . 54

 . . . 55
. . . . 56
 . . . 56
 . . . 56
. .
. . . 5
 . . .
 58
 . . . 58
 . . . 58
 . . .
. . . 58
. . . 59
. . . 59
5.2 Goals . 34
5.3 Architecture: . 34

JDO Instances .
JDO State Manager .
JDO Managed Fields.

5.4 JDO Identity . 35
Three Types of JDO identity. .
Uniquing .
Change of identity.
JDO Identity Support .

5.4.1 Application (primary key) identity .
5.4.2 Datastore identity .
5.4.3 Nondurable JDO identity .

5.5 Life Cycle States . 40
Datastore Transactions .

5.5.1 Transient (Required) .
5.5.2 Persistent-new (Required) .
5.5.3 Persistent-dirty (Required).
5.5.4 Hollow (Required) .
5.5.5 Persistent-clean (Required) .
5.5.6 Persistent-deleted (Required). .
5.5.7 Persistent-new-deleted (Required). .

5.6 Nontransactional (Optional) .
5.6.1 Persistent-nontransactional (Optional). .

5.7 Transient Transactional (Optional) .
5.7.1 Transient-clean (Optional) .
5.7.2 Transient-dirty (Optional) .

5.8 Optimistic Transactions (Optional) .
6 The Persistent Object Model .

6.1 Overview . 54
6.2 Goals . 55
6.3 Architecture . 55

PersistenceCapable interface .
First Class Objects and Second Class Objects .
First Class Objects .
Second Class Objects .
Arrays . 57
Primitives . 8
Interfaces. .58

6.4 Field types of persistence-capable classes .
6.4.1 Nontransactional non-persistent fields. .
6.4.2 Transactional non-persistent fields .
6.4.3 Persistent fields .58

Primitive types .
Immutable Object Class types .
Mutable Object Class types .
Java Data Objects 6 June 5, 2003

Java Data Objects
Table of Contents

. . . . 59
 . . . 59
. . . 59
. . . 60
. .

 . . 62
. . . .

 .

 . . .
. .
 .
 .
.
. .
.
.

. . . 6
 . . 66
. . . 67
n-

. . 68

. . . .

 .

 . . .
. .
 .
 .
 69
 . 72
. . . . 72
 . .
 73
 73
 . . . 73
PersistenceCapable Class types .
Object Class type .
Collection Interface types .
Other Interface types.
Arrays . 60

6.5 Inheritance . 60
7 PersistenceCapable .

7.1 Persistence Manager . 62
7.2 Make Dirty . 62
7.3 JDO Identity . 63
7.4 Status interrogation .. . 63

7.4.1 Dirty . 63
7.4.2 Transactional .63
7.4.3 Persistent . 63
7.4.4 New . 64
7.4.5 Deleted .. . 64

7.5 New instance . 64
7.6 State Manager . . . 65
7.7 Replace Flags . 65
7.8 Replace Fields . 65
7.9 Provide Fields 65
7.10 Copy Fields 65
7.11 Static Fields . 65
7.12 JDO identity handling . 6

interface ObjectIdFieldSupplier .
interface ObjectIdFieldConsumer.
interface ObjectIdFieldManager extends ObjectIdFieldSupplier, ObjectIdFieldCo

sumer 67
8 JDOHelper .

8.1 Persistence Manager . 68
8.2 Make Dirty . 68
8.3 JDO Identity . 68
8.4 Status interrogation .. . 69

8.4.1 Dirty . 69
8.4.2 Transactional .69
8.4.3 Persistent . 69
8.4.4 New . 69
8.4.5 Deleted .. . 69

8.5 PersistenceManagerFactory methods .
9 JDOImplHelper .

9.1 JDOImplHelper access .
9.2 Metadata access .. . 72
9.3 Persistence-capable instance factory .
9.4 Registration of PersistenceCapable classes .

9.4.1 Notification of PersistenceCapable class registrations
Java Data Objects 7 June 5, 2003

Java Data Objects
Table of Contents

 . . . 74
 . . . 74
 . . .
 . . 75
. . 76
 .
.
.
.
 . 78
. . . . 78
. . . 79
 . . .
 81
. . . . 81
 . . . 82
 . . . 82
. . . . 83
. . 85

 . . . 85

. .

. . . . 87

. . . 87

. . . . 88

. . . 89

. . . 89
 . . . 90
 . . . 90
 . . . 92
 . . . 92
 . . . 93
 . . . 93
 . . . 93
 . . . 94
 . . . 94
. . . 94
. . . .
. . . . 95
. . . . 95
 . 96
RegisterClassEvent .
RegisterClassListener .

9.5 Security administration .74
9.6 Application identity handling .

10 InstanceCallbacks .
10.1 jdoPostLoad . 76
10.2 jdoPreStore 76
10.3 jdoPreClear . 76
10.4 jdoPreDelete . 77

11 PersistenceManagerFactory .
11.1 Interface PersistenceManagerFactory .

Construction by Properties .
11.2 ConnectionFactory .80
11.3 PersistenceManager access .
11.4 Close the PersistenceManagerFactory .
11.5 Non-configurable Properties .
11.6 Optional Feature Support .
11.7 Static Properties constructor .

12 PersistenceManager .
12.1 Overview . 85
12.2 Goals . 85
12.3 Architecture: JDO PersistenceManager .
12.4 Threading . 86
12.5 Class Loaders . . . 86
12.6 Interface PersistenceManager .

Null management .
12.6.1 Cache management .
12.6.2 Transaction factory interface .
12.6.3 Query factory interface .
12.6.4 Extent Management .
12.6.5 JDO Identity management .
12.6.6 JDO Instance life cycle management. .

Make instances persistent .
Delete persistent instances .
Make instances transient .
Make instances transactional .
Make instances nontransactional .

12.7 Transaction completion .
12.8 Multithreaded Synchronization .
12.9 User associated object . 95
12.10 PersistenceManagerFactory .
12.11 ObjectId class management .

13 Transactions and Connections .
13.1 Overview . 96
13.2 Goals . 96
Java Data Objects 8 June 5, 2003

Java Data Objects
Table of Contents

. . . . 96
 . . . 97
. . . 97
. . . 98
. . . 98
 . . .
. . . . 99
 . . . 99
. . . . 99
 . . 99
. . 100
 . . 100
 . . 100
 . . 101
. . 101
. . 102
 . . 102
 . 104

 . . 10
 . . . 106
. . . 106
 .
 . . 107
. . 107
. . 108
 . 109
 . . 109
. . 110
. . . 113
 . . 113
. . 113
 . . 114
 . . 114
.
 . . 11
. . 115
. . . 115
 . 116
. 116
. . 116
 . 118

 .
13.3 Architecture: PersistenceManager, Transactions, and Connections
Connection Management Scenarios .
Native Connection Management.
Non-native Connection Management .
Optimistic Transactions .

13.4 Interface Transaction .99
13.4.1 PersistenceManager .
13.4.2 Transaction options .

Nontransactional access to persistent values .
Optimistic concurrency control. .
Retain values at transaction commit .
Restore values at transaction rollback. .

13.4.3 Synchronization .
13.4.4 Transaction demarcation .

Non-managed environment.
Managed environment .

13.5 Optimistic transaction management .
14 Query .

14.1 Overview . 104
14.2 Goals . 104
14.3 Architecture: Query .5
14.4 Namespaces in queries .
14.5 Query Factory in PersistenceManager interface .
14.6 Query Interface .. 107

Persistence Manager .
Query element binding .
Query options .
Query compilation .

14.6.1 Query execution. .
14.6.2 Filter specification .
14.6.3 Parameter declaration.
14.6.4 Import statements. .
14.6.5 Variable declaration.
14.6.6 Ordering statement. .
14.6.7 Closing Query results. .

14.7 Examples: . . . 115
14.7.1 Basic query. .5
14.7.2 Basic query with ordering..
14.7.3 Parameter passing.
14.7.4 Navigation through single-valued field. .
14.7.5 Navigation through multi-valued field.
14.7.6 Membership in a collection .

15 Extent .
15.1 Overview . 118
15.2 Goals . 118
15.3 Interface Extent . 119
Java Data Objects 9 June 5, 2003

Java Data Objects
Table of Contents

. 120
 . .
. . . 121
 . . 121
. . . 121
 . . 122

 . 122
. 125
 . .
 . . 126
 . . 126
. . 126
 . . 126
 . . 127
. . 127
 . . 127
 . . 127
. . 127
. 127
128

. . 12
 . . 129
. . 129
 . 13
. . 130
 . 131
. . 132
. . 132
. . 132
 . . 133
 . 134
135
. . .
. . 135
 . . 135
. . 135
 . . 135
 . . 135
 . . 135
 .

. . . 136

 . . 1
16 Enterprise Java Beans .
16.1 Session Beans . 120

16.1.1 Stateless Session Bean with Container Managed Transactions.
16.1.2 Stateful Session Bean with Container Managed Transactions
16.1.3 Stateless Session Bean with Bean Managed Transactions
16.1.4 Stateful Session Bean with Bean Managed Transactions

16.2 Entity Beans .. . 122
16.2.1 BMP Entity Bean life cycle .

17 JDO Exceptions .
17.1 JDOException .125

17.1.1 JDOFatalException .
17.1.2 JDOCanRetryException. .
17.1.3 JDOUnsupportedOptionException .
17.1.4 JDOUserException .
17.1.5 JDOFatalUserException .
17.1.6 JDOFatalInternalException .
17.1.7 JDODataStoreException .
17.1.8 JDOFatalDataStoreException .
17.1.9 JDOObjectNotFoundException .
17.1.10 JDOOptimisticVerificationException .

18 XML Metadata .
18.1 ELEMENT jdo . 9
18.2 ELEMENT package .
18.3 ELEMENT class .
18.4 ELEMENT field .0

Default persistence-modifier.
18.4.1 ELEMENT collection .
18.4.2 ELEMENT map.
18.4.3 ELEMENT array .

18.5 ELEMENT extension .
18.6 The Document Type Descriptor .
18.7 Example XML file .

19 Portability Guidelines .
19.1 Optional Features . 135

19.1.1 Optimistic Transactions .
19.1.2 Nontransactional Read. .
19.1.3 Nontransactional Write .
19.1.4 Transient Transactional .
19.1.5 RetainValues .
19.1.6 IgnoreCache .

19.2 Object Model .. 135
19.3 JDO Identity .. . 136
19.4 PersistenceManager .
19.5 Query . 136
19.6 XML metadata .37
Java Data Objects 10 June 5, 2003

Java Data Objects
Table of Contents

 .
.
. 138

 . . 139

 . . 1

 . . 144
.
 . . 144
 . . 144
. . .
. . 145
 . . 145
. . 14
 . . 146
 .
 .
 . .
 . . 146
. .
. . 14
.
 . . 147
8
48
. . 149

re
 . 150
1

. . . 154
 . . 154
. . 155
 . . 155
. . . 156
. . . 157
. . . 157
 . . 157
. . 158
. . 159
 . . 160
19.7 Life cycle . 137
19.8 JDOHelper . 137
19.9 Transaction . . . 137

20 JDO Reference Enhancer .
20.1 Overview . 138
20.2 Goals . 138
20.3 Enhancement: Architecture .
20.4 Inheritance . 142
20.5 Field Numbering .42
20.6 Serialization . 142
20.7 Cloning . 143
20.8 Introspection (Java core reflection) .
20.9 Field Modifiers . . 144

20.9.1 Non-persistent .
20.9.2 Transactional non-persistent .
20.9.3 Persistent . 144
20.9.4 PrimaryKey .
20.9.5 Embedded .
20.9.6 Null-value . 5

20.10 Treatment of standard Java field modifiers .
20.10.1 Static .. 146
20.10.2 Final .. 146
20.10.3 Private .146
20.10.4 Public, Protected .

20.11 Fetch Groups . 146
20.12 jdoFlags Definition . 7
20.13 Exceptions . 147
20.14 Modified field access .
20.15 Generated fields in least-derivedPersistenceCapable class 14
20.16 Generated fields in allPersistenceCapable classes . 1

Generated static initializer .
20.17 Generated methods in least-derivedPersistenceCapable class 149
20.18 Generated methods inPersistenceCapable root classes and all classes that decla

objectid-class in xml metadata: .
20.19 Generated methods in allPersistenceCapable classes . 15
20.20 Example class: Employee .

20.20.1 Generated fields .
20.20.2 Generated static initializer .
20.20.3 Generated interrogatives .
20.20.4 Generated jdoReplaceStateManager .
20.20.5 Generated jdoReplaceFlags .
20.20.6 Generated jdoNewInstance helpers .
20.20.7 Generated jdoGetManagedFieldCount .
20.20.8 Generated jdoGetXXX methods (one per persistent field)
20.20.9 Generated jdoSetXXX methods (one per persistent field)
20.20.10 Generated jdoReplaceField and jdoReplaceFields
Java Data Objects 11 June 5, 2003

Java Data Objects
Table of Contents

. . 161

. . 162
 . . 163
. . . 163
 . . 163
. . 164
. . 164
165

. . 165
. . . 165
 . . . 166
 . . 16
.

 . . 1
 . . 167
 . . 168
. . 168
 . . 169
. . 170
. 171
172

 . . 172
. . . 172
 . . 17
 . . 1
 . . 173
 .

179
. . . 17
 . . 179
 . . . 179
 . . 179

. . 179
 . . 179
. . . 180
 . . 180
 . .
. . . 180
20.20.11 Generated jdoProvideField and jdoProvideFields .
20.20.12 Generated jdoCopyField and jdoCopyFields methods
20.20.13 Generated writeObject method .
20.20.14 Generated jdoPreSerialize method.
20.20.15 Generated jdoNewObjectIdInstance .
20.20.16 Generated jdoCopyKeyFieldsToObjectId .
20.20.17 Generated jdoCopyKeyFieldsFromObjectId .

21 Interface StateManager .
21.1 Overview . 165
21.2 Goals . 165

Clone support .
21.3 StateManager Management .
21.4 PersistenceManager Management .
21.5 Dirty management .6
21.6 State queries . . . 166
21.7 JDO Identity .. . 167
21.8 Serialization support .67
21.9 Field Management .

21.9.1 User-requested value of a field .
21.9.2 User-requested modification of a field .
21.9.3 StateManager-requested value of a field .
21.9.4 StateManager-requested modification of a field .

22 JDOPermission .
23 JDO Query BNF .

23.1 Grammar Notation .
23.2 Parameter Declaration .
23.3 Variable Declaration .3
23.4 Import Declaration .73
23.5 Ordering Specification .
23.6 Filter Expression .. 174
23.7 Types . 177
23.8 Literals . 177
23.9 Names . 178

24 Items deferred to the next release .
24.1 Nested Transactions . 9
24.2 Savepoint, Undosavepoint .
24.3 Inter-PersistenceManager References .
24.4 Enhancer Invocation API .
24.5 Prefetch API .. . 179
24.6 BLOB/CLOB datatype support .
24.7 Managed (inverse) relationship support .
24.8 Case-Insensitive Query .
24.9 String conversion in Query .
24.10 Read-only fields .180
24.11 Enumeration pattern .
Java Data Objects 12 June 5, 2003

Java Data Objects
Table of Contents

. . . 180
 . . 18
. . 18
 . . 18
 . . 181
. . 181
182
183

 . . . 1
. .
85

. . . 185

. . . 185

. . . 185

. . . 185

. . . 186
. . 187
. . . 187
. . . 188
. . . 188
. . . 189
. . . 190
. . . 190
. . . 191
 . . 192
. . . 192
. . . 193
 . . 194
24.12 Non-static inner classes .
24.13 Projections in query .1
24.14 LogWriter support . 1
24.15 New Exceptions .1
24.16 Distributed object support .
24.17 Object-Relational Mapping .

Appendix A: References .
Appendix B: Design Decisions .

B.1 Enhancer . 183
B.1 PersistenceCapable .83
B.1 Collection Factory . 184

Appendix C: Revision History . 1
C.1 Changes since Draft 0.1 .
C.1 Changes since Draft 0.2 .
C.1 Changes since Draft 0.3 .
C.1 Changes since Draft 0.4 .
C.1 Changes since Draft 0.5 .
C.1 Changes since Draft 0.6 (Participant Review Draft) .
C.1 Changes since Draft 0.7 .
C.1 Changes since Draft 0.8 .
C.1 Changes since Draft 0.9 .
C.1 Changes since draft 0.91 .
C.1 Changes since draft 0.92 .
C.1 Changes since draft 0.93 .
C.1 Changes since draft 0.94 .
C.1 Changes since draft 0.95 (Proposed Final Draft) .
C.1 Changes since draft 0.96 .
C.1 Changes since draft 0.97 .
C.1 Changes since Approved Draft .
Java Data Objects 13 June 5, 2003

Java Data Objects

ListofFigures

Figure 25: Standard plug-and-play between application programs and EISes using JDO21
Figure 26: Overview of non-managed JDO architecture . 23
Figure 27: Contracts between application server and native JDO resource adapter. 26
Figure 28: Contracts between application server and layered JDO implementation 26
Figure 29: Scenario: Embedded calendar manager . 30
Figure 30: Scenario: Enterprise Calendar Manager . 32
Figure 31: Life Cycle: New Persistent Instances . 49
Figure 32: Life Cycle: Transactional Access . 50
Figure 33: Life Cycle: Datastore Transactions . 50
Figure 34: Life Cycle: Optimistic Transactions . 50
Figure 35: Life Cycle: Access Outside Transactions . 51
Figure 36: Life Cycle: Transient Transactional . 51
Figure 37: JDO Instance State Transitions . 52
Figure 38: Instantiated persistent objects . 54
Figure 39: Transactions and Connections. 98
Figure 40: Enterprise Java Beans: Entity Bean relationships . 124

Java Data Objects 1.0.1
1 Introduction

Java is a language that defines a runtime environment in which user-defined classes exe-

cute. The instances of these user-defined classes might represent real world data. The data

might be stored in databases, file systems, or mainframe transaction processing systems.

These data sources are collectively referred to as Enterprise Information Systems (EIS).

Additionally, small footprint environments often require a way to manage persistent data

in local storage.

The data access techniques are different for each type of data source, and accessing the

data presents a challenge to application developers, who currently need to use a different

Application Programming Interface (API) for each type of data source.

This means that application developers need to learn at least two different languages to

develop business logic for these data sources: the Java programming language; and the

specialized data access language required by the data source.

Currently, there are two Java standards for storing Java data persistently: serialization and

JDBC. Serialization preserves relationships among a graph of Java objects, but does not

support sharing among multiple users. JDBC requires the user to explicitly manage the

values of fields and map them into relational database tables.

Developers can be more productive if they focus on creating Java classes that implement

business logic, and use native Java classes to represent data from the data sources. Map-

ping between the Java classes and the data source, if necessary, can be done by an EIS do-

main expert.

JDO defines interfaces and classes to be used by application programmers when using

classes whose instances are to be stored in persistent storage (persistence-capable classes),

and specifies the contracts between suppliers of persistence-capable classes and the runt-

ime environment (which is part of the JDO Implementation).

The supplier of the JDO Implementation is hereinafter called the JDO vendor.

1.1 Overview

There are two major objectives of the JDO architecture: first, to provide application pro-

grammers a transparent Java-centric view of persistent information, including enterprise

data and locally stored data; and second, to enable pluggable implementations of data-

stores into application servers.

The Java Data Objects architecture defines a standard API to data contained in local stor-

age systems and heterogeneous enterprise information systems, such as ERP, mainframe

transaction processing and database systems. The architecture also refers to the Connector

architecture[see Appendix A reference 4] which defines a set of portable, scalable, secure,

and transactional mechanisms for the integration of EIS with an application server.

This architecture enables a local storage expert, an enterprise information system (EIS)

vendor, or an EIS domain expert to provide a standard data view (JDO Implementation)

for the local data or EIS.
 JDO 1.0.1 15 June 5, 2003

Java Data Objects 1.0.1

e
-
in the
1.2 Scope

The JDO architecture defines a standard set of contracts between an application program-

mer and an JDO vendor. These contracts focus on the view of the Java instances of persis-

tence-capable classes.

JDO uses the Connector Architecture [see Appendix A reference 4] to specify the contract

between the JDO vendor and an application server. These contracts focus on the important

aspects of integration with heterogeneous enterprise information systems: instance man-

agement, connection management, and transaction management.

To provide transparent storage of local data, the JDO architecture does not require the

Connector Architecture in non-managed (non-application server) environments.

1.3 Target Audience

The target audience for this specification includes:

• application developers

• JDO vendors

• enterprise information system (EIS) vendors and EIS Connector providers

• container providers

• enterprise system integrators

• enterprise tool vendors

JDO defines two types of interfaces: theJDO API, of primary interest to application developers (th
JDO instance life cycle) and theJDO SPI, of primary interest to container providers and JDO ven
dors. An italicized notice may appear at the end of a section, directing readers interested only
API side to skip to the next API-side section.

1.4 Organization

This document describes the rationale and goals for a standard architecture for specifying

the interface between an application developer and a local file system or EIS datastore. It

then elaborates the JDO architecture and its relationship to the Connector architecture.

The document next describes two typical JDO scenarios, one managed (application server)

and the other non-managed (local file storage). This chapter explains key roles and respon-

sibilities involved in the development and deployment of portable Java applications that

require persistent storage.

The document then details the prescriptive aspects of the architecture. It starts with the

JDO instance, which is the application programmer-visible part of the system. It then de-

tails the JDO PersistenceManager , which is the primary interface between a persis-

tence-aware application, focusing on the contracts between the application developer and

JDO implementation provider. Finally, the contracts for connection and transaction man-

agement between the JDO vendor and application server vendor are defined.

1.5 Document Convention

A Palatino font is used for describing the JDO architecture.

A courier font is used for code fragments.
 JDO 1.0.1 16 June 5, 2003

Java Data Objects 1.0.1
1.6 Terminology Convention

“Must” is used where the specified component is required to implement some interface or

action to be compliant with the specification.

“Might” is used where there is an implementation choice whether or how to implement a

method or function.

“Should” is used to describe objectives of the specification and recommended application

programming usage. If the recommended usage is not followed by applications, behavior

is non-portable, unexpected, or unspecified.

“Should” is also used where there is a recommended choice for possibly different imple-

mentation actions. If the recommended usage is not followed by implementations, ineffi-

ciencies might result.
 JDO 1.0.1 17 June 5, 2003

Java Data Objects 1.0.1
2 Overview

This chapter introduces key concepts that are required for an understanding of the JDO ar-

chitecture. It lays down a reference framework to facilitate a formal specification of the

JDO architecture in the subsequent chapters of this document.

2.1 Definitions

2.1.1 JDO common interfaces

JDO Instance

A JDO instance is a Java programming language instance of a Java class that implements

the application functions, and represents data in a local file system or enterprise datastore.

Without limitation, the data might come from a single datastore entity, or from a collection

of entities. For example, an entity might be a single object from an object database, a single

row of a relational database, the result of a relational database query consisting of several

rows, a merging of data from several tables in a relational database, or the result of execut-

ing a data retrieval API from an ERP system.

JDO instances implement the PersistenceCapable interface, either explicitly by the

class writer, or implicitly by the results of the enhancer. The objective of JDO is that most

user-written classes, including both entity-type classes and utility-type classes, might be

persistence capable. The limitations are that the persistent state of the class must be repre-

sented entirely by the state of its Java fields, and that the class be enhanced (or otherwise

be written to implement the PersistenceCapable interface) prior to being loaded into

the execution environment of the Java Virtual Machine. Thus, system-type classes such as

System , Thread , Socket , File , and the like cannot be JDO persistence-capable, but

common user-defined classes can be.

JDO Implementation

A JDO implementation is a collection of classes that implement the JDO contracts. The JDO

implementation might be provided by an EIS vendor or by a third party vendor, collective-

ly known as JDO vendor. The third party might provide an implementation that is opti-

mized for a particular application domain, or might be a general purpose tool (such as a

relational mapping tool, embedded object database, or enterprise object database).

The primary interface to the application is PersistenceManager , with interfaces Que-
ry and Transaction playing supporting roles for application control of the execution

environment.

JDO Enhancer

A JDO enhancer, or byte code enhancer, is a program that modifies the byte codes of ap-

plication-component Java class files to enable transparent loading and storing of the fields

of their persistent instances. The JDO reference implementation (reference enhancement)

contains an approach for the enhancement of Java class files to allow for enhanced class

files to be shared among several coresident JDO implementations.
 JDO 1.0.1 18 June 5, 2003

Java Data Objects 1.0.1

ment

ent

ent
Alternative approaches to byte code enhancement are preprocessing or code generation. If

one of the alternatives is used instead of byte code enhancement, the PersistenceCa-
pable contract must be implemented.

A JDO implementation is free to extend the Reference Enhancement contract with imple-

mentation-specific methods and fields that might be used by its runtime environment.

Binary Compatibility Requirement: classes enhanced by the reference enhancer must be

usable by any JDO compliant implementation; classes enhanced by a JDO compliant im-

plementation must be usable by the reference implementation; and classes enhanced by a

JDO compliant implementation must be usable by any other JDO compliant implementa-

tion.

The following table determines which interface is used by a JDO implementation based on

the enhancement of the persistence-capable class. For example, if Vendor A runtime de-

tects that the class was enhanced by its own enhancement, then the runtime will use its en-

hancement contract. Otherwise, it will use the Reference Enhancement contract.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion, as it details architectural features not relevant to local environments. Skip to 2.2 – Rationale.

2.1.2 JDO in a managed environment

This discussion provides a bridge to the Connector architecture, which JDO uses for transaction and
connection management in application server environments.

Enterprise Information System (EIS)

An EIS provides the information infrastructure for an enterprise. An EIS offers a set of ser-

vices to its clients. These services are exposed to clients as local and/or remote interfaces.

Examples of EIS include:

• relational database system;

• object database system;

• ERP system; and

• mainframe transaction processing system.

EIS Resource

An EIS resource provides EIS-specific functionality to its clients. Examples are:

• a record or set of records in a database system;

• a business object in an ERP system; and

• a transaction program in a transaction processing system

Resource Manager (RM)

A resource manager manages a set of shared resources. A client requests access to a re-

source manager to use its managed resources. A transactional resource manager can par-

Table 1: Which Enhancement Interface is Used

Reference Runtime Vendor A Runtime Vendor B Runtime

Reference Enhancer Reference Enhancement Reference Enhancement Reference Enhance

Vendor A Enhancer Reference Enhancement Vendor A Enhancement Reference Enhancem

Vendor B Enhancer Reference Enhancement Reference Enhancement Vendor B Enhancem
 JDO 1.0.1 19 June 5, 2003

Java Data Objects 1.0.1
ticipate in transactions that are externally controlled and coordinated by a transaction

manager.

Connection

A connection provides connectivity to a resource manager. It enables an application client

to connect to a resource manager, perform transactions, and access services provided by

that resource manager. A connection can be either transactional or non-transactional. Ex-

amples include a database connection and a SAP R/3 connection.

Application Component

An application component can be a server-side component, such as an EJB, JSP, or servlet,

that is deployed, managed and executed on an application server. It can be a component

executed on the web-client tier but made available to the web-client by an application serv-

er, such as a Java applet, or DHTML page. It might also be an embedded component exe-

cuted in a small footprint device using flash memory for persistent storage.

Session Beans

Session objects are EJB application components that execute on behalf of a single client,

might be transaction aware, update data in an underlying datastore, and do not directly

represent data in the datastore.

Entity Beans

Entity objects are EJB application components that provide an object view of transactional

data in an underlying datastore, allow shared access from multiple users, including ses-

sion objects and remote clients, and directly represent data in the datastore.

Helper objects

Helper objects are application components that provide an object view of data in an un-

derlying datastore, allow transactionally consistent view of data in multiple transactions,

are usable by local session and entity beans, but do not have a remote interface.

Container

A container is a part of an application server that provides deployment and runtime sup-

port for application components. It provides a federated view of the underlying applica-

tion server services for the application components. For more details on different types of

standard containers, refer to Enterprise JavaBeans (EJB) [see Appendix A reference 1], Java

Server Pages (JSP), and Servlets specifications.

2.2 Rationale

There is no existing Java platform specification that proposes a standard architecture for

storing the state of Java objects persistently in transactional datastores.

The JDO architecture offers a Java solution to the problem of presenting a consistent view

of data from the large number of application programs and enterprise information systems

already in existence. By using the JDO architecture, it is not necessary for application com-

ponent vendors to customize their products for each type of datastore.

This architecture enables an EIS vendor to provide a standard data access interface for its

EIS. The JDO implementation is plugged into an application server and provides underly-

ing infrastructure for integration between the EIS and application components.

Similarly, a third party vendor can provide a standard data access interface for locally

managed data such as would be found in an embedded device.
 JDO 1.0.1 20 June 5, 2003

Java Data Objects 1.0.1
An application component vendor extends its system only once to support the JDO archi-

tecture and then exploits multiple data sources. Likewise, an EIS vendor provides one

standard JDO implementation and it has the capability to work with any application com-

ponent that uses the JDO architecture.

The Figure 1.0 on page 21 shows that an application component can plug into multiple

JDO implementations. Similarly, multiple JDO implementations for different EISes can

plug into an application component. This standard plug-and-play is made possible

through the JDO architecture.

Figure 1.0 Standard plug-and-play between application programs and EISes using JDO

2.3 Goals

The JDO architecture has been designed with the following goals:

• The JDO architecture provides a transparent interface for application component

and helper class developers to store data without learning a new data access

language for each type of persistent data storage.

Enterprise Information
Application Programs System

Application Program

JDO

JDO

Application program/EJB container

JDO implementation provided by JDO vendor

Legend:

implementations

implementation

Systems

Enterprise Information
 JDO 1.0.1 21 June 5, 2003

Java Data Objects 1.0.1
• The JDO architecture simplifies the development of scalable, secure and

transactional JDO implementations for a wide range of EISes — ERP systems,

database systems, mainframe-based transaction processing systems.

• The JDO architecture is implementable for a wide range of heterogeneous local file

systems and EISes. The intent is that there will be various implementation choices

for different EIS—each choice based on possibly application-specific

characteristics and mechanisms of a mapping to an underlying EIS.

• The JDO architecture is suitable for a wide range of uses from embedded small

footprint systems to large scale enterprise application servers. This architecture

provides for exploitation of critical performance features from the underlying EIS,

such as query evaluation and relationship management.

• The JDO architecture uses the J2EE Connector Architecture to make it applicable

to all J2EE platform compliant application servers from multiple vendors.

• The JDO architecture makes it easy for application component developers to use

the Java programming model to model the application domain and transparently

retrieve and store data from various EIS systems.

• The JDO architecture defines contracts and responsibilities for various roles that

provide pieces for standard connectivity to an EIS. This enables a standard JDO

implementation from a EIS or third party vendor to be pluggable across multiple

application servers.

• The connector architecture also enables an application programmer in a non-

managed application environment to directly use the JDO implementation to

access the underlying file system or EIS. This is in addition to a managed access to

an EIS with the JDO implementation deployed in the middle-tier application

server. In the former case, application programmers will not rely on the services

offered by a middle-tier application server for security, transaction, and

connection management, but will be responsible for managing these system-level

aspects by using the EIS connector.
 JDO 1.0.1 22 June 5, 2003

Java Data Objects 1.0.1
3 JDO Architecture

3.1 Overview

Multiple JDO implementations - possibly multiple implementations per type of EIS or lo-

cal storage - are pluggable into an application server or usable directly in a two tier or em-

bedded architecture. This enables application components, deployed either on a middle-

tier application server or on a client-tier, to access the underlying datastores using a con-

sistent Java-centric view of data. The JDO implementation provides the necessary map-

ping from Java objects into the special data types and relationships of the underlying

datastore.

Figure 2.0 Overview of non-managed JDO architecture

In a non-managed environment, the JDO implementation hides the EIS specific issues such

as data type mapping, relationship mapping, and data retrieval and storage. The applica-

tion component sees only the Java view of the data organized into classes with relation-

ships and collections presented as native Java constructs.

Managed environments additionally provide transparency for the application compo-

nents’ use of system-level mechanisms - distributed transactions, security, and connection

management, by hiding the contracts between the application server and JDO implemen-

tations.

Enterprise Information

Local Persistent
Storage

System

JDO PersistenceManager

JDO PersistenceManager

Application

transient
instance

transient
instance

transient
instance

Java Virtual Machine

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

Query

Transaction

Transaction

Query
 JDO 1.0.1 23 June 5, 2003

Java Data Objects 1.0.1
With both managed and non-managed environments, an application component develop-

er focuses on the development of business and presentation logic for the application com-

ponents without getting involved in the issues related to connectivity with a specific EIS.

3.2 JDO Architecture

3.2.1 Two tier usage

For simple two tier usage, JDO exposes to the application component two primary inter-

faces: javax.jdo.PersistenceManager , from which services are requested; and

javax.jdo.spi.PersistenceCapable , which provides the management view of

user-defined persistence-capable classes.

The PersistenceManager interface provides services such as query management,

transaction management, and life cycle management for instances of persistence-capable

classes.

The PersistenceCapable interface provides services such as life cycle state manage-

ment for instances of persistence capable classes.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tions. Skip to 4 – Roles and Scenarios.

3.2.2 Application server usage

For application server usage, the JDO architecture uses the J2EE Connector architecture,

which defines a standard set of system-level contracts between the application server and

EIS connectors. These system-level contracts are implemented in a resource adapter from

the EIS side.

The JDO persistence manager is a caching manager as defined by the J2EE Connector ar-

chitecture, that might use either its own (native) resource adapter or a third party resource

adapter. If the JDO PersistenceManager has its own resource adapter, then imple-

mentations of the system-level contracts specified in the J2EE Connector architecture must

be provided by the JDO vendor. These contracts include ManagedConnectionFacto-
ry , XAResource , and LocalTransaction interfaces.

The JDO Transaction must implement the Synchronization interface so that trans-

action completion events can cause flushing of state through the underlying connector to

the EIS.

The application components are unable to distinguish between JDO implementations that

use native resource adapters and JDO implementations that use third party resource

adapters. However, the deployer will need to understand that there are two configurable

components: the JDO PersistenceManager and its underlying resource adapter.

For convenience, the PersistenceManagerFactory provides the interface necessary

to configure the underlying resource adapter.

Resource Adapter

A resource adapter provided by the JDO vendor is called a native resource adapter, and

the interface is specific to the JDO vendor. It is a system-level software driver that is used

by an application server or an application client to connect to a resource manager.

The resource adapter plugs into a container (provided by the application server). The ap-

plication components deployed on the container then use the client API exposed by jav-
ax.jdo.PersistenceManager to access the JDO PersistenceManager . The JDO

implementation in turn uses the underlying resource adapter interface specific to the data-
 JDO 1.0.1 24 June 5, 2003

Java Data Objects 1.0.1
store. The resource adapter and application server collaborate to provide the underlying

mechanisms - transactions, security and connection pooling - for connectivity to the EIS.

The resource adapter is located within the same VM as the JDO implementation using it.

Examples of JDO native resource adapters are:

• Object/Relational (O/R) products that use their own native drivers to connect to

object relational databases

• Object Database (OODBMS) products that store Java objects directly in object

databases

Examples of non-native resource adapter implementations are:

• O/R mapping products that use JDBC drivers to connect to relational databases

• Hierarchical mapping products that use mainframe connectivity tools to connect

to hierarchical transactional systems

Pooling

There are two levels of pooling in the JDO architecture. JDO PersistenceManager s

might be pooled, and the underlying connections to the datastores might be independent-

ly pooled.

Pooling of the connections is governed by the Connector Architecture contracts. Pooling

of PersistenceManager s is an optional feature of the JDO Implementation, and is not

standardized for two-tier applications. For managed environments, PersistenceMan-
ager pooling is required to maintain correct transaction associations with Persis-
tenceManager s.

For example, a JDO PersistenceManager instance might be bound to a session run-

ning a long duration optimistic transaction. This instance cannot be used by any other user

for the duration of the optimistic transaction.

During the execution of a business method associated with the session, a connection might

be required to fetch data from the datastore. The PersistenceManager will request a

connection from the connection pool to satisfy the request. Upon termination of the busi-

ness method, the connection is returned to the pool but the PersistenceManager re-

mains bound to the session.

After completion of the optimistic transaction, the PersistenceManager instance

might be returned to the pool and reused for a subsequent transaction.

Contracts

JDO specifies the application level contract between the application components and the

JDO PersistenceManager .

The J2EE Connector architecture specifies the standard contracts between application

servers and an EIS connector used by a JDO implementation. These contracts are required

for a JDO implementation to be used in an application server environment. The Connector

architecture defines important aspects of integration: connection management, transaction

management, and security.

The connection management contracts are implemented by the EIS resource adapter

(which might include a JDO native resource adapter).

The transaction management contract is between the transaction manager (logically dis-

tinct from the application server) and the connection manager. It supports distributed

transactions across multiple application servers and heterogeneous data management pro-

grams.
 JDO 1.0.1 25 June 5, 2003

Java Data Objects 1.0.1
The security contract is required for secure access by the JDO connection to the underlying

datastore.

Figure 3.0 Contracts between application server and native JDO resource adapter

Figure 4.0 Contracts between application server and layered JDO implementation

Application
Component

Container

Transaction Manager

JDO Native

Adapter

Application Server

JDO data

Connection
Management

contract

Security
contract

JDO API

Transaction
contract

Resource

store

Application
Component

Container

Transaction Manager

Resource

Adapter

Application Server

Resource
Manager

XAResource

Synchronization
contract

JDO API
EIS-
specific
APIs

JDO implementation

(EIS datastore)

Connector Contracts

(e.g. ManagedConnection)
 JDO 1.0.1 26 June 5, 2003

Java Data Objects 1.0.1

third
The above diagram illustrates the relationship between a JDO implementation provided by a
party vendor and an EIS-provided resource adapter.
 JDO 1.0.1 27 June 5, 2003

Java Data Objects 1.0.1
4 Roles and Scenarios

4.1 Roles

This chapter describes roles required for the development and deployment of applications

built using the JDO architecture. The goal is to identify the nature of the work specific to

each role so that the contracts specific to each role can be implemented on each side of the

contracts.

The detailed contracts are specified in other chapters of this specification. The specific in-

tent here is to identify the primary users and implementors of these contracts.

4.1.1 Application Developer

The application developer writes software to the JDO API. The JDO application developer

does not have to be an expert in the technology related to a specific datastore.

4.1.2 Application Component Provider

The application component provider produces an application library that implements ap-

plication functionality through Java classes with business methods that store data persis-

tently in one or more EISes through the JDO API.

There are two types of application components that interact with JDO. JDO-transparent

application components, typically helper classes, are those that use JDO to have their state

stored in a transactional datastore, and directly access other components by references of

their fields. Thus, they do not need to use JDO APIs directly.

JDO-aware application components (bean-managed persistent entity beans and session

beans) use services of JDO by directly accessing its API. These components use JDO query

facilities to retrieve collections of JDO instances from the datastore, make specific instances

persistent in a particular datastore, delete specific persistent instances from the datastore,

interrogate the cached state of JDO instances, or explicitly manage the cache of the JDO

PersistenceManager . These application components are non-transparent users of

JDO.

Session beans that use helper JDO classes interact directly with PersistenceManager
and PersistenceCapable . Entity beans might be generated by tools that analyze

PersistenceCapable classes and produce bean-managed persistence beans corre-

sponding to some of them. These generated entity beans use the standard JDO Persis-
tenceManager contracts to request services.

The output of the application component provider is a set of jar files containing application

components.

4.1.3 Application Assembler

The application assembler is a domain expert who assembles application components

from multiple sources including in-house developers and application library vendors. The

application assembler can combine different types of application components, for example

EJBs, servlets, or JSPs, into a single end-user-visible application.
 JDO 1.0.1 28 June 5, 2003

Java Data Objects 1.0.1
The input of the application assembler is one or more jar files, produced by application

component providers. The output is one or more jar files with deployment specific de-

scriptions.

4.1.4 Deployer

The deployer is responsible for configuring assembled components into specific opera-

tional environments. The deployer resolves all external references from components to

other components or to the operational system.

For example, the deployer will bind application components in specific operating environ-

ments to datastores in those environments, and will resolve references from one applica-

tion component to another. This typically involves using container-provided tools.

The deployer must understand, and be able to define, security roles, transactions, and con-

nection pooling protocols for multiple datastores, application components, and contain-

ers.

4.1.5 System Administrator

The system administrator manages the configuration and administration of multiple con-

tainers, resource adapters and EISs that combine into an operational system.

Readers primarily interested in developing applications with the JDO API can ignore the following
sections. Skip to 4.2 – Scenario: Embedded calendar management system.

4.1.6 JDO Vendor

The JDO vendor is an expert in the technology related to a specific datastore and is respon-

sible for providing a JDO SPI implementation for that specific datastore. Since this role is

highly datastore specific, a datastore vendor will often provide the standard JDO imple-

mentation.

A vendor can also provide a JDO implementation and associated set of application devel-

opment tools through a loose coupling with a specific third party datastore. Such provid-

ers specialize in writing connectors and related tools for a specific EIS or might provide a

more general tool for a large number of datastores.

The JDO vendor requires that the EIS vendor has implemented the J2EE Connector archi-

tecture and the role of the JDO implementation is that of a synchronization adapter to the

connector architecture.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion. Skip to 4.2 – Scenario: Embedded calendar management system.

4.1.7 Connector Provider

The connector provider is typically the vendor of the EIS or datastore, and is responsible

for supplying a library of interface implementations that satisfy the resource adapter inter-

face.

In the JDO architecture, the Connector is a separate component, supplied by either the JDO

vendor or by an EIS vendor or third party.

4.1.8 Application Server Vendor

An application server vendor [see Appendix A reference 1], [see Appendix A reference 3]

provides an implementation of a J2EE compliant application server that provides support

for component-based enterprise applications. A typical application server vendor is an OS

vendor, middleware vendor, or database vendor.
 JDO 1.0.1 29 June 5, 2003

Java Data Objects 1.0.1
The role of application server vendor will typically be the same as that of the container pro-

vider.

4.1.9 Container Provider

For bean-managed persistence, the container provides deployed application components

with transaction and security management, distribution of clients, scalable management

of resources and other services that are generally required as part of a managed server

platform.

4.2 Scenario: Embedded calendar management system

This section describes a scenario to illustrate the use of JDO architecture in an embedded

mobile device such as a personal information manager (PIM) or telephone.

Figure 5.0 Scenario: Embedded calendar manager

Sven’s Phones is a manufacturer of high function telephones for the traveling businessper-

son. They have implemented a Java operating environment that provides persistence via

a Java file I/O subsystem that writes to flash RAM.

Apache Persistware is a supplier of JDO software that has a small footprint and as such, is

especially suited for embedded devices such as personal digital assistants and telephones.

They use Java file I/O to store JDO instances persistently.

Calendars-R-Us is a supplier of appointment and calendar software that is written for sev-

eral operating environments, from high function telephones to desktop workstations and

enterprise application servers.

Calendars-R-Us uses the JDO API directly to manage calendar appointments on behalf of

the user. The calendar application needs to insert, delete, and change calendar appoint-

ments based on the user’s keypad input. It uses Java application domain classes: Ap-

Flash RAM

Telephone JVM

File Manager

JDO

implementation

Java File

I/O APIs

Calendar

Manager

Application JDO

API

Calendars-R-Us Apache Persistware Sven’s Phones
 JDO 1.0.1 30 June 5, 2003

Java Data Objects 1.0.1
pointment , Contact , Note , Reminder , Location , and TelephoneNumber . It

employs JDK library classes: Time , Date , ArrayList , and Calendar .

Calendars-R-Us previously used Java file I/O APIs directly, but ran into several difficul-

ties. The most efficient storage for some environments was an indexed file system, which

was required only for management of thousands of entries. However, when they ported

the application to the telephone, the indexed file system was too resource-intensive, and

had to be abandoned.

They then wrote a data access manager for sequential files, but found that it burned out

the flash RAM due to too much rewriting of data. They concluded that they needed to use

the services of another software provider who specialized in persistence for flash RAM in

embedded devices.

Apache Persistware developed a file access manager based on the Berkeley File System

and successfully sold it to a range of Java customers from embedded devices to worksta-

tions. The interface was proprietary, which meant that every new sale was a challenge, be-

cause customers were loath to invest resources in learning a different interface for each

environment they wanted to support. After all, Java was portable. Why wasn’t file access?

Sven’s Phones was a successful supplier of telephones to the mobile professional, but

found themselves constrained by a lack of software developers. They wanted to offer a

platform on which specially tailored software from multiple vendors could operate, and

take advantage of external developers to write software for their telephones.

The solution to all of these issues was to separate the software into components that could

be tailored by the domain expert for each component.

Sven’s phones implemented the Java runtime environment for their phones, and wrote an

efficient sequential file I/O manager that implemented the Java file I/O interface. This in-

terface was used by Apache Persistware to build a JDO implementation, including a JDO

instance handler and a JDO query manager.

Using the JDO interface, Calendars-R-Us rewrote just the query part of their software. The

application classes did not have to be changed. Only the persistence interface that queried

for specific instances needed to be modified.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion. Skip to 5 – Life Cycle of JDO Instances.

4.3 Scenario: Enterprise Calendar Manager

Calendars-R-Us also supports workstations and enterprise mainframes with their calen-

dar software, and they use the same interface for persistence in all environments. For en-

terprise environments, they simply need to use a different JDO implementation supplied

by a different vendor to achieve persistence for their calendar objects.
 JDO 1.0.1 31 June 5, 2003

Java Data Objects 1.0.1
Figure 6.0 Scenario: Enterprise Calendar Manager

In this scenario, the JDO implementation is provided by a vendor that maps Java objects

to relational databases. The implementation uses a JCA Resource Adapter to connect to the

datastore.

The JDO PersistenceManager is a caching manager, as defined by the Connector ar-

chitecture, and it is configured to use a JCA Resource Adapter. The PersistenceMan-
ager instance might be cached when used with a Session Bean, and might be serially

reused for multiple session beans.

Multiple JDO PersistenceManager instances might serially reuse connections from

the same pool of JDBC drivers. Therefore, resource sharing is accomplished while main-

taining state for each session.

JDO

implementation

Calendar

Manager

Session Bean, JDO

API

Application Server

Container

 Entity Beans

Database

JCA

Transaction Manager

Resource
Adapter
 JDO 1.0.1 32 June 5, 2003

Java Data Objects 1.0.1
5 Life Cycle of JDO Instances

This chapter specifies the life cycle for persistence capable class instances, hereinafter

“JDO instances”. The classes include behavior as specified by the class (bean) developer,

and additional behavior as provided by the reference enhancer or JDO vendor’s deploy-

ment tool. The enhancement of the classes allows application developers to treat JDO in-

stances as if they were normal instances, with automatic fetching of persistent state from

the JDO implementation.

5.1 Overview

JDO instances might be either transient or persistent. That is, they might represent the per-

sistent state of data contained in a transactional datastore. If a JDO instance is transient

(and not transactional), then there is no difference between its behavior and the behavior

of an instance of the unmodified (unenhanced) persistence capable class.

If a JDO instance is persistent, its behavior is linked to the transactional datastore with

which it is associated. The JDO implementation automatically tracks changes made to the

values in the instance, and automatically refreshes values from the datastore and saves

values into the datastore as required to preserve transactional integrity of the data. Persis-

tent instances stored in the datastore retain their class and the state of their persistent

fields. Changing the class of a persistent instance is not supported explicitly by the JDO

API. However, it might be possible for an instance to change class based on external mod-

ifications to the datastore.

During the life of a JDO instance, it transitions among various states until it is finally gar-

bage collected by the JVM. During its life, the state transitions are governed by the behav-

iors executed on it directly as well as behaviors executed on the JDO

PersistenceManager by both the application and by the execution environment (in-

cluding the TransactionManager).

During the life cycle, instances at times might be inconsistent with the datastore as of the

beginning of the transaction. If instances are inconsistent, the notation for that instance in

JDO is “dirty”. Instances made newly persistent, deleted, or modified in the transaction are

dirty.

At times, the JDO implementation might store the state of persistent instances in the data-

store. This process is called “flushing”, and it does not affect the “dirty” state of the in-

stances.

Under application control, transient JDO instances might observe transaction boundaries,

in which the state of the instances is either preserved (on commit) or restored (on rollback).

Transient instances that observe transaction boundaries are called transient transactional

instances. Support for transient transactional instances is a JDO option; that is, a JDO com-

pliant implementation is not required to implement the APIs that cause the state transi-

tions associated with transient transactional instances.

Under application control, persistent JDO instances might not observe transaction bound-

aries. These instances are called persistent-nontransactional instances, and the life cycle of
 JDO 1.0.1 33 June 5, 2003

Java Data Objects 1.0.1
these instances is not affected by transaction boundaries. Support for nontransactional in-

stances is a JDO option.

If a JDO instance is persistent or transactional, it contains a non-null reference to a JDO

StateManager instance which is responsible for managing the JDO instance state

changes and for interfacing with the JDO PersistenceManager .

5.2 Goals

The JDO instance life cycle has the following goals:

• The fact of persistence should be transparent to both JDO instance developer and

application component developer

• JDO instances should be able to be used efficiently in a variety of environments,

including managed (application server) and non-managed (two-tier) cases

• Several JDO PersistenceManager s might be coresident and might share the

same persistence capable classes (although a JDO instance can be associated with

only one PersistenceManager at a time)

5.3 Architecture:

JDO Instances

For transient JDO instances, there is no supporting infrastructure required. That is, tran-

sient instances will never make calls to methods to the persistence infrastructure. There is

no requirement to instantiate objects outside the application domain. There is no differ-

ence in behavior between transient instances of enhanced classes and transient instances

of the same non-enhanced classes, with some exceptions:

• additional methods and fields added by the enhancement process are visible to

Java core reflection,

• timing of method execution is different because of added byte codes,

• extra methods for registration of metadata are executed at class load time.

Persistent JDO instances execute in an environment that contains an instance of the JDO

PersistenceManager responsible for its persistent behavior. The JDO instance con-

tains a reference to an instance of the JDO StateManager responsible for the state tran-

sitions of the instance as well as for managing the contents of the fields of the instance. The

PersistenceManager and the StateManager might be implemented by the same in-

stance, but their interfaces are distinct.

The contract between the persistence capable class and other application components ex-

tends the contract between the associated non-persistence capable class and application

components. These contract extensions support interrogation of the life cycle state of the

instances and are intended for use by management parts of the system.

JDO State Manager

Persistent and transactional JDO instances contain a reference to a JDO StateManager
instance to which all of the JDO interrogatives are delegated. The associated JDO State-
Manager instance maintains the state changes of the JDO instance and interfaces with the

JDO PersistenceManager to manage the values of the datastore.
 JDO 1.0.1 34 June 5, 2003

Java Data Objects 1.0.1
JDO Managed Fields

Only some fields are of interest to the persistence infrastructure: fields whose values are

stored in the datastore are called persistent; fields that participate in transactions (their val-

ues may be restored during rollback) are called transactional; fields of either type are

called managed.

5.4 JDO Identity

Java defines two concepts for determining if two instances are the same instance (identity),

or represent the same data (equality). JDO extends these concepts to determine if two in-

memory instances represent the same stored object.

Java object identity is entirely managed by the Java Virtual Machine. Instances are identi-

cal if and only if they occupy the same storage location within the JVM.

Java object equality is determined by the class. Distinct instances are equal if they repre-

sent the same data, such as the same value for an integer , or same set of bits for a Bit-
Set .

The interaction between Java object identity and equality is an important one for JDO de-

velopers. Java object equality is an application specific concept, and JDO implementations

must not change the application’s semantic of equality. Still, JDO implementations must

manage the cache of JDO instances such that there is only one JDO instance associated with

each JDO PersistenceManager representing the persistent state of each correspond-

ing datastore object. Therefore, JDO defines object identity differently from both the Java

VM object identity and from the application equality.

Applications should implement equals for persistence-capable classes differently from

Object ’s default equals implementation, which simply uses the Java VM object identi-

ty. This is because the JVM object identity of a persistent instance cannot be guaranteed be-

tween PersistenceManager s and across space and time, except in very specific cases

noted below.

Additionally, if persistence instances are stored in the datastore and are queried using the

== query operator, or are referred to by a persistent collection that enforces equality (Set ,

Map) then the implementation of equals should exactly match the JDO implementation

of equality, using the primary key or ObjectId as the key. This policy is not enforced,

but if it is not correctly implemented, semantics of standard collections and JDO collec-

tions may differ.

To avoid confusion with Java object identity, this document refers to the JDO concept as

JDO identity.

Three Types of JDO identity

JDO defines three types of JDO identity:

• Application identity - JDO identity managed by the application and enforced by

the datastore; JDO identity is often called the primary key

• Datastore identity - JDO identity managed by the datastore without being tied to

any field values of a JDO instance

• Nondurable identity - JDO identity managed by the implementation to guarantee

uniqueness in the JVM but not in the datastore

The type of JDO identity used is a property of a JDO PersistenceCapable class and

is fixed at enhancement time.
 JDO 1.0.1 35 June 5, 2003

Java Data Objects 1.0.1
The representation of JDO identity in the JVM is via a JDO object id. Every persistent in-

stance (Java instance representing a persistent object) has a corresponding object id. There

might be an instance in the JVM representing the object id, or not. The object id JVM in-

stance corresponding to a persistent instance might be acquired by the application at run

time and used later to obtain a reference to the same datastore object, and it might be saved

to and retrieved from durable storage (by serialization or other technique).

The class representing the object id for datastore and nondurable identity classes is defined

by the JDO implementation. The implementation might choose to use any class that satis-

fies the requirements for the specific type of JDO identity for a class. It might choose the

same class for several different JDO classes, or might use a different class for each JDO

class.

The class representing the object id for application identity classes is defined by the appli-

cation in the metadata, and might be provided by the application or by a JDO vendor tool.

The application-visible representation of the JDO identity is an instance that is completely

under the control of the application. The object id instances used as parameters or returned

by methods in the JDO interface (getObjectId , getTransactionalObjectId , and

getObjectById) will never be saved internally; rather, they are copies of the internal

representation or used to find instances of the internal representation.

Therefore, the object returned by any call to getObjectId might be modified by the us-

er, but that modification does not affect the identity of the object that was originally re-

ferred. That is, the call to getObjectId returns only a copy of the object identity used

internally by the implementation.

It is a requirement that the instance returned by a call to getObjectById(Object) of

different PersistenceManager instances returned by the same PersistenceMan-
agerFactory represent the same persistent object, but with different Java object identity

(specifically, all instances returned by getObjectId from the instances must return

true to equals comparisons with all others).

Further, any instances returned by any calls to getObjectById(Object) with the

same object id instance to the same PersistenceManager instance must be identical

(assuming the instances were not garbage collected between calls).

The JDO identity of transient instances is not defined. Attempts to get the object id for a

transient instance will return null .

Uniquing

JDO identity of persistent instances is managed by the implementation. For a durable JDO

identity (datastore or application), there is only one persistent instance associated with a

specific datastore object per PersistenceManager instance, regardless of how the per-

sistent instance was put into the cache:

• PersistenceManager.getObjectById(Object oid, boolean
validate) ;

• query via a Query instance associated with the PersistenceManager
instance;

• navigation from a persistent instance associated with the

PersistenceManager instance;

• PersistenceManager.makePersistent(Object pc);
 JDO 1.0.1 36 June 5, 2003

Java Data Objects 1.0.1

f

Change of identity

Change of identity is supported only for application identity, and is an optional feature of

a JDO implementation. An application attempt to change the identity of an instance (by

writing a primary key field) where the implementation does not support this optional fea-

ture results in JDOUnsupportedOptionException being thrown.

NOTE: Application developers should take into account that changing primary
key values changes the identity of the instance in the datastore. In production
environments where audit trails of changes are kept, change of the identity o
datastore instances might cause loss of audit trail integrity, as the historical
record of changes does not reflect the current identity in the datastore.

JDO instances using application identity may change their identity during a transaction if

the application changes a primary key field. In this case, there is a new JDO Identity asso-

ciated with the JDO instance immediately upon completion of the statement that changes

a primary key field. If a JDO instance is already associated with the new JDO Identity, then

a JDOUserException is thrown and the statement that attempted to change the prima-

ry key field does not complete.

Upon successful commit of the transaction, the existing datastore instance will have been

updated with the changed values of the primary key fields.

JDO Identity Support

A JDO implementation is required to support either or both of application (primary key)

identity or datastore identity, and may optionally support nondurable identity.

5.4.1 Application (primary key) identity

This is the JDO identity type used for datastores in which the value(s) in the instance de-

termine the identity of the object in the datastore. Thus, JDO identity is managed by the

application. The class provided by the application that implements the JDO object id has

all of the characteristics of an RMI remote object, making it possible to use the JDO object

id class as the EJB primary key class. Specifically:

• the ObjectId class must be public;

• the ObjectId class must implement Serializable ;

• the ObjectId class must have a public no-arg constructor, which might be the

default constructor;

• the field types of all non-static fields in the ObjectId class must be serializable,

and for portability should be primitive, String , Date , Byte, Short,
Integer, Long, Float, Double, BigDecimal, or BigInteger
types; JDO implementations are required to support these types and might

support other reference types;

• all serializable non-static fields in the ObjectId class must be public;

• the names of the non-static fields in the ObjectId class must include the names

of the primary key fields in the JDO class, and the types of the corresponding fields

must be identical;

• the equals() and hashCode() methods of the ObjectId class must use the

value(s) of all the fields corresponding to the primary key fields in the JDO class;

• if the ObjectId class is an inner class, it must be static ;
 JDO 1.0.1 37 June 5, 2003

Java Data Objects 1.0.1
• the ObjectId class must override the toString() method defined in Object ,

and return a String that can be used as the parameter of a constructor;

• the ObjectId class must provide a String constructor that returns an instance

that compares equal to an instance that returned that String by the

toString() method.

These restrictions allow the application to construct an instance of the primary key class

providing values only for the primary key fields, or alternatively providing only the result

of toString() from an existing instance. The JDO implementation is permitted to ex-

tend the primary key class to use additional fields, not provided by the application, to fur-

ther identify the instance in the datastore. Thus, the JDO object id instance returned by an

implementation might be a subclass of the user-defined primary key class. Any JDO im-

plementation must be able to use the JDO object id instance from any other JDO implemen-

tation.

A primary key identity is associated with a specific set of fields. The fields associated with

the primary key are a property of the persistence-capable class, and cannot be changed af-

ter the class is enhanced for use at runtime. When a transient instance is made persistent,

the implementation uses the values of the fields associated with the primary key to con-

struct the JDO identity.

A primary key instance must have none of its primary key fields set to null when used to

find a persistent instance. The persistence manager will throw JDOUserException if the

primary key instance contains any null values when the key instance is the parameter of

getObjectById .

Persistence-capable classes that use application identity have special considerations for in-

heritance. To be portable, the key class must be the same for all classes in the inheritance

hierarchy, and key fields must be declared only in the least-derived (topmost) persistence-

capable class in the hierarchy.

5.4.2 Datastore identity

This is the JDO identity type used for datastores in which the identity of the data in the

datastore does not depend on the values in the instance. The implementation guarantees

uniqueness for all instances.

A JDO implementation might choose one of the primitive wrapper classes as the Objec-
tId class (Short , Integer , Long , or String), or might choose an implementation-spe-

cific class. Implementation-specific classes used as JDO ObjectId have the following

characteristics:

• the ObjectId class must be public;

• the ObjectId class must implement Serializable ;

• the ObjectId class must have a public no-arg constructor, which might be the

default constructor;

• all serializable fields in the ObjectId class must be public;

• the field types of all non-static fields in the ObjectId class must be serializable;

• the ObjectId class must override the toString() method defined in Object ,

and return a String that can be used as the parameter of a constructor;

• the ObjectId class must provide a String constructor that returns an instance

that compares equal to an instance that returned that String by the

toString() method.
 JDO 1.0.1 38 June 5, 2003

Java Data Objects 1.0.1
Note that, unlike primary key identity, datastore identity ObjectId classes are not re-

quired to support equality with ObjectId classes from other JDO implementations. Fur-

ther, the application cannot change the JDO identity of an instance of a class using

datastore identity.

5.4.3 Nondurable JDO identity

The primary usage for nondurable JDO identity is for log files, history files, and other sim-

ilar files, where performance is a primary concern, and there is no need for the overhead

associated with managing a durable identity for each datastore instance. Objects are typi-

cally inserted into datastores with transactional semantics, but are not accessed by key.

They may have references to instances elsewhere in the datastore, but often have no keys

or indexes themselves. They might be accessed by other attributes, and might be deleted

in bulk.

Multiple objects in the datastore might have exactly the same values, yet an application

program might want to treat the objects individually. For example, the application must

be able to count the persistent instances to determine the number of datastore objects with

the same values. Also, the application might change a single field of an instance with du-

plicate objects in the datastore, and the expected result in the datastore is that exactly one

instance has its field changed. If multiple instances in memory are modified, then instances

in the datastore are modified corresponding one-to-one with the modified instances in

memory. Similarly, if the application deletes some number of multiple duplicate objects,

the same number of the objects in the datastore must be deleted.

As another example, if a datastore instance using nondurable identity is loaded twice into

the VM by the same PersistenceManager , then two separate instances are instantiat-

ed, with two different JDO identities, even though all of the values in the instances are the

same. It is permissible to update or delete only one of the instances. At commit time, if only

one instance was updated or deleted, then the changes made to that instance are reflected

in the datastore by changing the single datastore instance. If both instances were changed,

then the transaction will fail at commit, with a JDOUserException because the changes

must be applied to different datastore instances.

Because the JDO identity is not visible in the datastore, there are special behaviors with re-

gard to nondurable JDO identity:

• the ObjectId is not valid after making the associated instance hollow, and

attempts to retrieve it will throw a JDOUserException ;

• the ObjectId cannot be used in a different instance of PersistenceManager
from the one that issued it, and attempts to use it even indirectly (e.g.

getObjectById with a persistence-capable object as the parameter) will throw

a JDOUserException ;

• the persistent instance might transition to persistent-nontransactional or hollow

but cannot transition to any other state afterward;

• attempts to access the instance in the hollow state will throw a

JDOUserException ;

• the results of a query in the datastore will always return instances that are not

already in the Java VM, so multiple queries that find the same objects in the

datastore will return additional JDO instances with the same values and different

JDO identities;

• makePersistent will succeed even though another instance already has the

same values for all persistent fields.
 JDO 1.0.1 39 June 5, 2003

Java Data Objects 1.0.1
For JDO identity that is not managed by the datastore, the class that implements JDO Ob-
jectId has the following characteristics:

• the ObjectId class must be public;

• the ObjectId class must have a public constructor, which might be the default

constructor or a no-arg constructor;

• all fields in the ObjectId class must be public;

• the field types of all fields in the ObjectId class must be serializable.

5.5 Life Cycle States

There are ten states defined by this specification. Seven states are required, and three states

are optional. If an implementation does not support certain operations, then these three

states are not reachable.

Datastore Transactions

The following descriptions apply to datastore transactions with retainValues=false. Opti-

mistic transaction and retainValues=true state transitions are covered later in this chapter.

5.5.1 Transient (Required)

JDO instances created by using a developer-written constructor that do not involve the

persistence environment behave exactly like instances of the unenhanced class.

There is no JDO identity associated with a transient instance.

There is no intermediation to support fetching or storing values for fields. There is no sup-

port for demarcation of transaction boundaries. Indeed, there is no transactional behavior

of these instances, unless they are referenced by transactional instances at commit time.

When a persistent instance is committed to the datastore, instances referenced by persis-

tent fields of the flushed instance become persistent. This behavior propagates to all in-

stances in the closure of instances through persistent fields. This behavior is called

persistence by reachability.

No methods of transient instances throw exceptions except those defined by the class de-

veloper.

A transient instance transitions to persistent-new if it is the parameter of makePersis-
tent , or if it is referenced by a persistent field of a persistent instance when that instance

is committed or made persistent.

5.5.2 Persistent-new (Required)

JDO instances that are newly persistent in the current transaction are persistent-new. This

is the state of an instance that has been requested by the application component to become

persistent, by using the PersistenceManager makePersistent method on the in-

stance.

During the transition from transient to persistent-new

• the associated PersistenceManager becomes responsible to implement state

interrogation and further state transitions.

• if the transaction flag restoreValues is true , the values of persistent and

transactional non-persistent fields are saved for use during rollback.
 JDO 1.0.1 40 June 5, 2003

Java Data Objects 1.0.1
• the values of persistent fields of mutable SCO types (e.g. java.util.Date ,

java.util.HashSet , etc.) are replaced with JDO implementation-specific

copies of the field values that track changes and are owned by the persistent

instance.

• a JDO identity is assigned to the instance by the JDO implementation. This identity

uniquely identifies the instance inside the PersistenceManager and might

uniquely identify the instance in the datastore. A copy of the JDO identity will be

returned by the PersistenceManager method getObjectId(Object) .

• instances reachable from this instance by fields of persistence-capable types and

collections of persistence-capable types become provisionally persistent and

transition from transient to persistent-new. If the instances made provisionally

persistent are still reachable at commit time, they become persistent. This effect is

recursive, effectively making the transitive closure of transient instances

provisionally persistent.

A persistent-new instance transitions to persistent-new-deleted if it is the parameter of

deletePersistent .

A persistent-new instance transitions to hollow when it is flushed to the datastore during

commit when retainValues is false . This transition is not visible during before-
Completion , and is visible during afterCompletion . During beforeCompletion ,

the user-defined jdoPreStore method is called if the class implements Instance-
Callbacks .

A persistent-new instance transitions to transient at rollback. The instance loses its JDO

Identity and its association with the PersistenceManager. If restoreValues is

false , the values of managed fields in the instance are left as they were at the time roll-

back was called.

5.5.3 Persistent-dirty (Required)

JDO instances that represent persistent data that was changed in the current transaction

are persistent-dirty.

A persistent-dirty instance transitions to persistent-deleted if it is the parameter of

deletePersistent .

Persistent-dirty instances transition to hollow during commit when retainValues is

false or during rollback when restoreValues is false . During beforeComple-
tion , the user-defined jdoPreStore method is called if the class implements In-
stanceCallbacks .

If an application modifies a managed field, but the new value is equal to the old value, then

it is an implementation choice whether the JDO instance is modified or not. If no modifi-

cation to any managed field was made by the application, then the implementation must

not mark the instance as dirty. If a modification was made to any managed field that

changes the value of the field, then the implementation must mark the instance as dirty.

Since changes to array-type fields cannot be tracked by JDO, setting the value of an array-

type managed field marks the field as dirty, even if the new value is identical to the old

value. This special case is required to allow the user to mark an array-type field as dirty

without having to call the JDOHelper method makeDirty .
 JDO 1.0.1 41 June 5, 2003

Java Data Objects 1.0.1
5.5.4 Hollow (Required)

JDO instances that represent specific persistent data in the datastore but whose values are

not in the JDO instance are hollow. The hollow state provides for the guarantee of unique-

ness for persistent instances between transactions.

This is permitted to be the state of instances committed from a previous transaction, ac-

quired by the method getObjectById , returned by iterating an Extent , returned in

the result of a query execution, or navigating a persistent field reference. However, the

JDO implementation may choose to return instances in a different state reachable from

hollow.

A JDO implementation is permitted to effect a legal state transition of a hollow instance at

any time, as if a field were read. Therefore, the hollow state might not be visible to the ap-

plication.

During the commit of the transaction in which a dirty persistent instance has had its values

changed (including a new persistent instance), the underlying datastore is changed to have

the transactionally consistent values from the JDO instance, and the instance transitions to

hollow.

Requests by the application for an instance with the same JDO identity (query, navigation,

or lookup by ObjectId), in a subsequent transaction using the same PersistenceMan-
ager instance, will return the identical Java instance, assuming it has not been garbage

collected. If the application does not hold a strong reference to a hollow instance, the in-

stance might be garbage collected, as the PersistenceManager must not hold a strong

reference to any hollow instance.

The hollow JDO instance maintains its JDO identity and its association with the JDO Per-
sistenceManager . If the instance is of a class using application identity, the hollow in-

stance maintains its primary key fields.

A hollow instance transitions to persistent-deleted if it is the parameter of deletePer-
sistent .

A hollow instance transitions to persistent-dirty if a change is made to any managed field.

It transitions to persistent-clean if a read access is made to any persistent field other than

one of the primary key fields.

5.5.5 Persistent-clean (Required)

JDO instances that represent specific transactional persistent data in the datastore, and

whose values have not been changed in the current transaction, are persistent-clean. This

is the state of an instance whose values have been requested in the current datastore trans-

action, and whose values have not been changed by the current transaction.

A persistent-clean instance transitions to persistent-dirty if a change is made to any man-

aged field.

A persistent-clean instance transitions to persistent-deleted if it is the parameter of

deletePersistent .

A persistent-clean instance transitions to hollow at commit when retainValues is

false ; or rollback when restoreValues is false . It retains its identity and its associa-

tion with the PersistenceManager .

5.5.6 Persistent-deleted (Required)

JDO instances that represent specific persistent data in the datastore, and that have been

deleted in the current transaction, are persistent-deleted.
 JDO 1.0.1 42 June 5, 2003

Java Data Objects 1.0.1
Read access to primary key fields is permitted but any other access to persistent fields will

throw a JDOUserException .

Before the transition to persistent-deleted, the user-written jdoPreDelete is called if the

persistence-capable class implements InstanceCallbacks .

A persistent-deleted instance transitions to transient at commit. During the transition, its

persistent fields are written with their Java default values, and the instance loses its JDO

Identity and its association with the PersistenceManager .

A persistent-deleted instance transitions to hollow at rollback when restoreValues is

false . The instance retains its JDO Identity and its association with the Persistence-
Manager.

5.5.7 Persistent-new-deleted (Required)

JDO instances that represent instances that have been newly made persistent and deleted

in the current transaction are persistent-new-deleted.

Read access to primary key fields is permitted but any other access to persistent fields will

throw a JDOUserException .

Before the transition to persistent-new-deleted, the user-written jdoPreDelete is called

if the persistence-capable class implements InstanceCallbacks .

A persistent-new-deleted instance transitions to transient at commit. During the transi-

tion, its persistent fields are written with their Java default values, and the instance loses

its JDO Identity and its association with the PersistenceManager .

A persistent-new-deleted instance transitions to transient at rollback. The instance loses its

JDO Identity and its association with the PersistenceManager.

If RestoreValues is true , the values of managed fields in the instance are restored to

their state as of the call to makePersistent . If RestoreValues is false , the values

of managed fields in the instance are left as they were at the time rollback was called.

5.6 Nontransactional (Optional)

Management of nontransactional instances is an optional feature of a JDO implementation.

Usage is primarily for slowly changing data or for optimistic transaction management, as

the values in nontransactional instances are not guaranteed to be transactionally consis-

tent.

The use of this feature is governed by the PersistenceManager options Nontrans-
actionalRead , NontransactionalWrite , Optimistic , and RetainValues .

An implementation might support any or all of these options. For example, an implemen-

tation might support only NontransactionalRead . For options that are not support-

ed, the value of the unsupported property is false and it may not be changed.

If a PersistenceManager does not support this optional feature, an operation that

would result in an instance transitioning to the persistent-nontransactional state or a re-

quest to set the NontransactionalRead , NontransactionalWrite , Optimis-
tic , or RetainValues option to true , throws a

JDOUnsupportedOptionException .

NontransactionalRead , NontransactionalWrite , Optimistic , and Reta-
inValues are independent options. A JDO implementation must not automatically

change the values of these properties as a side effect of the user changing other properties.

With NontransactionalRead set to true :
 JDO 1.0.1 43 June 5, 2003

Java Data Objects 1.0.1

d

• Navigation and queries are valid outside a transaction. It is a JDO implementation

decision whether the instances returned are in the hollow or persistent-

nontransactional state.

• When a managed, non-key field of a hollow instance is read outside a transaction,

the instance transitions to persistent-nontransactional.

• If a persistent-clean instance is the parameter of makeNontransactional , the

instance transitions to persistent-nontransactional.

With NontransactionalWrite set to true :

• Modification of persistent-nontransactional instances is permitted outside a

transaction. The changes do not participate in any subsequent transaction.

With RetainValues set to true :

• At commit, persistent-clean, persistent-new, and persistent-dirty instances

transition to persistent-nontransactional. Fields defined in the XML metadata as

containing mutable second-class types are examined to ensure that they contain

instances that track changes made to them and are owned by the instance. If not,

they are replaced with new second class object instances that track changes,

constructed from the contents of the second class object instance. These include

java.util.Date , and Collection and Map types.

 NOTE: This process is not required to be recursive, although an
implementation might choose to recursively convert the closure of the collection
to become second class objects. JDO requires conversion only of the affecte
persistence-capable instance’s fields.

With RestoreValues set to true :

• If the JDO implementation does not support persistent-nontransactional instances,

at rollback persistent-deleted, persistent-clean and persistent-dirty instances

transition to hollow.

• If the JDO implementation supports persistent-nontransactional instances, at

rollback persistent-deleted, persistent-clean and persistent-dirty instances

transition to persistent-nontransactional. The state of each managed field in

persistent-deleted and persistent-dirty instances is restored:

• fields of primitive types (int , float , etc.), wrapper types (Integer , Float ,

etc.), immutable types (Locale , etc.), and references to persistence-capable types

are restored to their values as of the beginning of the transaction and the fields are

marked as loaded.

• fields of mutable types (Date , Collection , array-type, etc.) are set to null
and the fields are marked as not loaded.

5.6.1 Persistent-nontransactional (Optional)

NOTE: The following discussion applies only to datastore transactions. See section 5.8 for

a discussion on how optimistic transactions change this behavior.

JDO instances that represent specific persistent data in the datastore, whose values are cur-

rently loaded but not transactionally consistent, are persistent-nontransactional. There is a

JDO Identity associated with these instances, and transactional instances can be obtained

from the object ids.
 JDO 1.0.1 44 June 5, 2003

Java Data Objects 1.0.1
The persistent-nontransactional state allows persistent instances to be managed as a shad-

ow cache of instances that are updated asynchronously.

As long as a transaction is not in progress:

• if NontransactionalRead is true , persistent field values might be retrieved

from the datastore by the PersistenceManager ;

• if NontransactionalWrite is true , the application might make changes to the

persistent field values in the instance, and

• There is no state change associated with either of the above operations.

A persistent-nontransactional instance transitions to persistent-clean if it is the parameter

of a makeTransactional method executed when a transaction is in progress. The state

of the instance in memory is discarded (cleared) and the state is loaded from the datastore.

A persistent-nontransactional instance transitions to persistent-clean if any managed field

is accessed when a datastore transaction is in progress. The state of the instance in memory

is discarded and the state is loaded from the datastore.

A persistent-nontransactional instance transitions to persistent-dirty if any managed field

is written when a transaction is in progress. The state of the instance in memory is saved

for use during rollback, and the state is loaded from the datastore. Then the change is ap-

plied.

A persistent-nontransactional instance transitions to persistent-deleted if it is the parame-

ter of deletePersistent . The state of the instance in memory is saved for use during

rollback.

If the application does not hold a strong reference to a persistent-nontransactional in-

stance, the instance might be garbage collected. The PersistenceManager must not

hold a strong reference to any persistent-nontransactional instance.

5.7 Transient Transactional (Optional)

Management of transient transactional instances is an optional feature of a JDO implemen-

tation. The following sections describe the additional states and state changes when using

transient transactional behavior.

A transient instance transitions to transient-clean if it is the parameter of makeTransac-
tional .

5.7.1 Transient-clean (Optional)

JDO instances that represent transient transactional instances whose values have not been

changed in the current transaction are transient-clean. This state is not reachable if the JDO

PersistenceManager does not implement makeTransactional .

Changes made outside a transaction are allowed without a state change. A transient-clean

instance transitions to transient-dirty if any managed field is changed in a transaction.

During the transition, values of managed fields are saved by the PersistenceManager
for use during rollback.

A transient-clean instance transitions to transient if it is the parameter of makeNon-
transactional .
 JDO 1.0.1 45 June 5, 2003

Java Data Objects 1.0.1
5.7.2 Transient-dirty (Optional)

JDO instances that represent transient transactional instances whose values have been

changed in the current transaction are transient-dirty. This state is not reachable if the JDO

PersistenceManager does not implement makeTransactional .

A transient-dirty instance transitions to transient-clean at commit. The values of managed

fields saved (for rollback processing) at the time the transition was made from transient-

clean to transient-dirty are discarded. None of the values of fields in the instance are mod-

ified as a result of commit.

A transient-dirty instance transitions to transient-clean at rollback. The values of managed

fields saved at the time the transition was made from transient-clean to transient-dirty are

restored.

A transient-dirty instance transitions to persistent-new at makePersistent . The values

of managed fields saved at the time the transition was made from transient-clean to tran-

sient-dirty are used as the before image for the purposes of rollback.

5.8 Optimistic Transactions (Optional)

Optimistic transaction management is an optional feature of a JDO implementation.

The Optimistic flag set to true changes the state transitions of persistent instances:

• If a persistent field other than one of the primary key fields is read, a hollow

instance transitions to persistent-nontransactional instead of persistent-clean.

Subsequent reads of these fields do not cause a transition from persistent-

nontransactional.

• A persistent-nontransactional instance transitions to persistent-deleted if it is a

parameter of deletePersistent . The state of the managed fields of the

instance in memory is saved for use during rollback, and for verification during

commit. The values in fields of the instance in memory are unchanged. If fresh

values need to be loaded from the datastore, then the user should first call

refresh on the instance.

• A persistent-nontransactional instance transitions to persistent-clean if it is a

parameter of a makeTransactional method executed when an optimistic

transaction is in progress. The values in managed fields of the instance in memory

are unchanged. If fresh values need to be loaded from the datastore, then the user

should first call refresh on the instance.

• A persistent-nontransactional instance transitions to persistent-dirty if a managed

field is modified when an optimistic transaction is in progress. If RestoreValues
is true , a before image is saved before the state transition. This is used for

restoring field values during rollback. Depending on the implementation the

before image of the instance in memory might be saved for verification during

commit. The values in fields of the instance in memory are unchanged before the

update is applied. If fresh values need to be loaded from the datastore, then the

user should first call refresh on the instance.
 JDO 1.0.1 46 June 5, 2003

Java Data Objects 1.0.1

ged

ed

d

d

ed

s

ns

s

Table 2: State Transitions

method\ current state Transient P-new P-clean P-dirty Hollow

makePersistent P-new unchanged unchanged unchanged unchan

deletePersistent error P-new-del P-del P-del P-del

makeTransactional T-clean unchanged unchanged unchanged P-clean

makeNontransactional error error P-nontrans error unchanged

makeTransient unchanged error Transient error Transient

commit
retainValues=false

unchanged Hollow Hollow Hollow unchanged

commit
retainValues=true

unchanged P-nontrans P-nontrans P-nontrans unchang

rollback
restoreValues=false

unchanged Transient Hollow Hollow unchanged

rollback
restoreValues=true

unchanged Transient P-nontrans P-nontrans unchange

refresh with active
Datastore transaction

unchanged unchanged unchanged P-clean unchange

refresh with active Opti-
mistic transaction

unchanged unchanged unchanged P-nontrans unchang

evict n/a unchanged Hollow unchanged unchanged

read field outside transac-
tion

unchanged impossible impossible impossible P-nontran

read field with active
Optimistic transaction

unchanged unchanged unchanged unchanged P-nontra

read field with active
Datastore transaction

unchanged unchanged unchanged unchanged P-clean

write field or
makeDirty outside
transaction

unchanged impossible impossible impossible P-nontran

write field or
makeDirty with
active transaction

unchanged unchanged P-dirty unchanged P-dirty
 JDO 1.0.1 47 June 5, 2003

Java Data Objects 1.0.1

ns

ed

n

d

ed

d

d

retrieve outside or with
active Optimistic transac-
tion

unchanged unchanged unchanged unchanged P-nontra

retrieve with active Datas-
tore transaction

unchanged unchanged unchanged unchanged P-clean

method\ current state T-clean T-dirty P-new-del P-del P-nontrans

makePersistent P-new P-new unchanged unchanged unchang

deletePersistent error error unchanged unchanged P-del

makeTransactional unchanged unchanged unchanged unchanged P-clea

makeNontransactional Transient error error error unchanged

makeTransient unchanged unchanged error error Transient

commit
retainValues=false

unchanged T-clean Transient Transient unchanged

commit
retainValues=true

unchanged T-clean Transient Transient unchanged

rollback
restoreValues=false

unchanged T-clean Transient Hollow unchanged

rollback
restoreValues=true

unchanged T-clean Transient P-nontrans unchange

refresh unchanged unchanged unchanged unchanged unchang

evict unchanged unchanged unchanged unchanged Hollow

read field outside transac-
tion

unchanged impossible impossible impossible unchange

read field with Optimistic
transaction

unchanged unchanged error error unchanged

read field with active
Datastore transaction

unchanged unchanged error error P-clean

write field or
makeDirty outside
transaction

unchanged impossible impossible impossible unchange

Table 2: State Transitions

method\ current state Transient P-new P-clean P-dirty Hollow
 JDO 1.0.1 48 June 5, 2003

Java Data Objects 1.0.1

ed
error: aJDOUserException is thrown; the state does not change
unchanged: no state change takes place; no exception is thrown due to the state change
n/a: not applicable; if this instance is an explicit parameter of the method, aJDOUserException
is thrown; if this instance is an implicit parameter, it is ignored.
impossible: the state cannot occur in this scenario

Figure 7.0 Life Cycle: New Persistent Instances

write field or
makeDirty with
active transaction

T-dirty unchanged error error P-dirty

retrieve outside or with
active Optimistic transac-
tion

unchanged unchanged unchanged unchanged unchang

retrieve with active Datas-
tore transaction

unchanged unchanged unchanged unchanged P-clean

method\ current state T-clean T-dirty P-new-del P-del P-nontrans

Persistent-
new

Transient Hollow

Persistent-
new-deleted

makePersistent

rollback

commit,
rollback

deletePersistent

commit
 JDO 1.0.1 49 June 5, 2003

Java Data Objects 1.0.1
Figure 8.0 Life Cycle: Transactional Access

Figure 9.0 Life Cycle: Datastore Transactions

Figure 10.0 Life Cycle: Optimistic Transactions

Transient

Persistent-
deleted

Hollow

Active
Persistent
Instances

deletePersistent

read field,
write field

commit,
rollback

deletePersistent

rollback

commit

Hollow

Persistent-

Persistent-

write field

read field

commit,
rollback

write field

commit,
rollback

clean

dirty

Hollow

Persistent-

Persistent-

write field

read field

commit,
rollback

write field

commit,
rollback

nontransactional

dirty
 JDO 1.0.1 50 June 5, 2003

Java Data Objects 1.0.1
Figure 11.0 Life Cycle: Access Outside Transactions

Figure 12.0 Life Cycle: Transient Transactional

Hollow
Persistent-

nontransactional

read field,
write field

evict

read field,
write field

Transient

Transient-

Transient-

makeTransactional

write field

makeNontransactional

commit,
rollback

clean

dirty
 JDO 1.0.1 51 June 5, 2003

Java Data Objects 1.0.1

h it

tten.

r of a

ten.

ck.

r of a
Figure 13.0 JDO Instance State Transitions

NOTE: Not all possible state transitions are shown in this diagram.

1. A transient instance transitions to persistent-new when the instance is the
parameter of amakePersistent method.

2. A persistent-new instance transitions to hollow when the transaction in whic
was made persistent commits.

3. A hollow instance transitions to persistent-clean when a field is read.

4. A persistent-clean instance transitions to persistent-dirty when a field is wri

5. A persistent-dirty instance transitions to hollow at commit or rollback.

6. A persistent-clean instance transitions to hollow at commit or rollback.

7. A transient instance transitions to transient-clean when it is the paramete
makeTransactional method.

8. A transient-clean instance transitions to transient-dirty when a field is writ

9. A transient-dirty instance transitions to transient-clean at commit or rollba

10. A transient-clean instance transitions to transient when it is the paramete
makeNontransactional method.

11. A hollow instance transitions to persistent-dirty when a field is written.

transient-clean

transient-dirty

transient

persistent-

persistent-dirty

persistent-clean

hollow

TRANSIENT PERSISTENT

READ-OK

WRITE-OK

nontransactional

1.

3.
4.

2.
6.

8.

7.

9.

10.

12.

persistent-
new

13.

14.

5.

persistent-deleted

persistent-
new-deleted

16.

17.

18.

19.

20.

19.

21.

15.

22.

19.

11.
23.

24.
 JDO 1.0.1 52 June 5, 2003

Java Data Objects 1.0.1

mmit

it is

 a

 the

tent-

 in

mit

mit
12. A persistent-clean instance transitions to persistent-nontransactional at co
when RetainValues is set to true , at rollbackwhen RestoreValues is set

to true , or when it is the parameter of amakeNontransactional method.

13. A persistent-nontransactional instance transitions to persistent-clean when
the parameter of amakeTransactional method.

14. A persistent-nontransactional instance transitions to persistent-dirty when
field is written in a transaction.

15. A persistent-new instance transitions to transient on rollback.

16. A persistent-new instance transitions to persistent-new-deleted when it is
parameter ofdeletePersistent .

17. A persistent-new-deleted instance transitions to transient on rollback. The
values of the fields are restored as of themakePersistent method.

18. A persistent-new-deleted instance transitions to transient on commit. No
changes are made to the values.

19. A hollow, persistent-clean, or persistent-dirty instance transitions to persis
deleted when it is the parameter ofdeletePersistent .

20. A persistent-deleted instance transitions to transient when the transaction
which it was deleted commits.

21. A persistent-deleted instance transitions to hollow when the transaction in
which it was deleted rolls back.

22. A hollow instance transitions to persistent-nontransactional when the
NontransactionalRead option is set totrue , a field is read, and there is
either an optimistic transaction or no transaction active.

23.A persistent-dirty instance transitions to persistent-nontransactional at com
when RetainValues is set to true or atrollback when RestoreValues is

set to true .

24.A persistent-new instance transitions to persistent-nontransactional at com
when RetainValues is set to true .
 JDO 1.0.1 53 June 5, 2003

Java Data Objects 1.0.1
6 The Persistent Object Model

This chapter specifies the object model for persistence capable classes. To the extent possi-

ble, the object model is the same as the Java object model. Differences between the Java ob-

ject model and the JDO object model are highlighted.

6.1 Overview

The Java execution environment supports different kinds of classes that are of interest to

the developer. The classes that model the application and business domain are the primary

focus of JDO. In a typical application, application classes are highly interconnected, and

the graph of instances of those classes includes the entire contents of the datastore.

Applications typically deal with a small number of persistent instances at a time, and it is

the function of JDO to allow the illusion that the application can access the entire graph of

connected instances, while in reality only small subset of instances needs to be instantiated

in the JVM. This concept is called transparent data access, transparent persistence, or sim-

ply transparency.

Figure 14.0 Instantiated persistent objects

Instantiated persistent objects

Persistent objects

Java VM

Datastore virtual objects

Datastore

Mapping function
Transient objects
 JDO 1.0.1 54 June 5, 2003

Java Data Objects 1.0.1
Within a JVM, there may be multiple independent units of work that must be isolated from

each other. This isolation imposes requirements on JDO to permit the instantiation of the

same datastore object into multiple Java instances. The connected graph of Java instances

is only a subset of the entire contents of the datastore. Whenever a reference is followed

from one persistent instance to another, the JDO implementation transparently instanti-

ates the required instance into the JVM.

The storage of objects in datastores might be quite different from the storage of objects in

the JVM. Therefore, there is a mapping between the Java instances and the objects in the

datastore. This mapping is performed by the JDO implementation, using metadata that is

available at runtime. The metadata is generated by a JDO vendor-supplied tool, in coop-

eration with the deployer of the system. The mapping is not standardized by JDO.

JDO instances are stored in the datastore and retrieved, possibly field by field, from the

datastore at specific points in their life cycle. The class developer might use callbacks at

certain points to make a JDO instance ready for execution in the JVM, or make a JDO in-

stance ready to be removed from the JVM. While executing in the JVM, a JDO instance

might be connected to other instances, both persistent and transient.

There is no restriction on the types of non-persistent fields of persistence-capable classes.

These fields behave exactly as defined by the Java language. Persistent fields of persis-

tence-capable classes have restrictions in JDO, based on the characteristics of the types of

the fields in the class definition.

6.2 Goals

The JDO Object Model has the following objectives:

• All field types supported by the Java language, including primitive types,

reference types and interface types should be supported by JDO instances.

• All class and field modifiers supported by the Java language including private,

public, protected, static, transient, abstract, final, synchronized, and volatile,

should be supported by JDO instances.

• All user-defined classes should be allowed to be persistence-capable.

• Some system-defined classes (especially those for modeling state) should be

persistence-capable.

6.3 Architecture

In Java, variables (including fields of classes) have types. Types are either primitive types

or reference types. Reference types are either classes or interfaces. Arrays are treated as

classes.

An object is an instance of a specific class, determined when the instance is constructed.

Instances may be assigned to variables if they are assignment compatible with the variable

type.

PersistenceCapable interface

The JDO Object Model distinguishes between two kinds of classes: those that implement

PersistenceCapable and those that don’t. A user-defined class can implement Per-
sistenceCapable unless its state depends on the state of inaccessible or remote objects

(e.g. it extends java.net.SocketImpl or uses JNI (native calls) to implement ja-
 JDO 1.0.1 55 June 5, 2003

Java Data Objects 1.0.1
va.net.SocketOptions). A non-static inner class cannot be persistence-capable be-

cause the state of its instances depends on the state of their enclosing instances.

Except for system-defined classes specially addressed by the JDO specification, system-de-

fined classes (those defined in java.lang , java.io , java.util , java.net , etc.) are

not persistence-capable, nor is a system-defined class allowed to be the type of a persistent

field.

First Class Objects and Second Class Objects

A First Class Object (FCO) is an instance of PersistenceCapable that has JDO Identity

and can be stored in a datastore, and independently deleted and queried. A Second Class

Object (SCO) has no JDO Identity of its own and is stored in the datastore only as part of

a First Class Object. In some JDO implementations, some SCO instances are actually arti-

facts that have no literal datastore representation at all, but are used only to represent re-

lationships. For example, a Collection of a PersistenceCapable class might not be

stored in the datastore, but created when needed to represent the relationship in memory.

At commit time, the memory artifact is discarded and the relationship is represented en-

tirely by datastore relationships.

First Class Objects

FCOs support uniquing; whenever an FCO is instantiated into memory, there is guaran-

teed to be only one instance representing that FCO managed by the same Persistence-
Manager instance. They are passed as arguments by reference.

An FCO can be shared among multiple FCOs, and if an FCO is changed (and the change

is committed to the datastore), then the changes are visible to all other FCOs that refer to it.

Second Class Objects

Second Class Objects are either instances of immutable system classes (java.lang.In-
teger , java.lang.String , etc.), JDO implementation subclasses of mutable system

classes that implement the functionality of their system class (java.util.Date , ja-
va.util.HashSet , etc.), or PersistenceCapable classes.

Second Class Objects of mutable system classes and persistence-capable classes track

changes made to them, and notify their owning FCO that they have changed. The change

is reflected as a change to the owning FCO (e.g. the owning instance might change state

from persistent-clean to persistent-dirty). They are stored in the datastore only as part of a

FCO. They do not support uniquing, and the Java object identity of the values of the per-

sistent fields containing them is lost when the owning FCO is flushed to the datastore.

They are passed as arguments by reference.

SCO fields must be explicitly or by default identified in the metadata as embedded. If a

field, or an element of a collection or a map key or value is identified as embedded (em-

bedded-element, embedded-key, or embedded-value) then any instances so identified in

the collection or map are treated as SCO during commit. That is, the value is stored with

the owning FCO and the value loses its own identity if it had one.

SCO fields of persistence-capable types are identified as embedded. The behavior of em-

bedded persistence-capable types is intended to mirror the behavior of system types, but

this is not standard, and portable applications must not depend on this behavior.

It is possible for an application to assign the same instance of a mutable SCO class to mul-

tiple FCO embedded fields, but this non-portable behavior is strongly discouraged for the

following reason. If the assignment is done to persistent-new, persistent-clean, or persis-

tent-dirty instances, then at the time that the FCOs are committed to the datastore, the Java

object identity of the owned SCOs might change, because each FCO might have its own
 JDO 1.0.1 56 June 5, 2003

Java Data Objects 1.0.1
unshared SCO. If the assignment is done before makePersistent is called to make the

FCOs persistent, the embedded fields are immediately replaced by copies, and no sharing

takes place.

When an FCO is instantiated in the JVM by a JDO implementation, and an embedded field

of a mutable type is accessed, the JDO implementation assigns to these fields a new in-

stance that tracks changes made to itself, and notifies the owning FCO of the change. Sim-

ilarly, when an FCO is made persistent, either by being the parameter of

makePersistent or makePersistentAll or by being reachable from a parameter of

makePersistent or makePersistentAll at the time of the execution of the makeP-
ersistent or makePersistentAll method call, the JDO implementation replaces the

field values of mutable SCO types with instances of JDO implementation subclasses of the

mutable system types.

Therefore, the application cannot assume that it knows the actual class of instances as-

signed to SCO fields, although it is guaranteed that the actual class is assignment compat-

ible with the type.

There are few differences visible to the application between a field mapped to an FCO and

an SCO. One difference is in sharing. If an FCO1 is assigned to a persistent field in FCO2

and FCO3, then any changes at any time to instance FCO1 will be visible from FCO2 and

FCO3.

If an SCO1 is assigned to a persistent field in persistent instances FCO1 and FCO2, then

any changes to SCO1 will be visible from instances FCO1 and FCO2 only until FCO1 and

FCO2 are committed. After commit, instance SCO1 might not be referenced by either

FCO1 or FCO2, and any changes made to SCO1 might not be reflected in either FCO1 or

FCO2.

Another difference is in visibility of SCO instances by queries. SCO instances are not add-

ed to Extent s. If the SCO instance is of a PersistenceCapable type, it is not visible to

queries of the Extent of the PersistenceCapable . Furthermore, the field values of

SCO instances of PersistenceCapable types might not be visible to queries at all.

Sharing of immutable SCO fields is supported in that it is good practice to assign the same

immutable instance to multiple SCO fields. But the field values should not be compared

using Java identity, but only by Java equality. This is the same good practice used with

non-persistent instances.

Arrays

Arrays are system-defined classes that do not necessarily have any JDO Identity of their

own, and support by a JDO implementation is optional. If an implementation supports

them, they might be stored in the datastore as part of an FCO. They do not support uniqu-

ing, and the Java object identity of the values of the persistent fields containing them is lost

when the owning FCO is flushed to the datastore. They are passed as arguments by refer-

ence.

Tracking changes to Arrays is not required to be done by a JDO implementation. If an Ar-

ray owned by an FCO is changed, then the changes might not be flushed to the datastore.

Portable applications must not require that these changes be tracked. In order for changes

to arrays to be tracked, the application must explicitly notify the owning FCO of the

change to the Array by calling the jdoMakeDirty method of the PersistenceCa-
pable interface (or makeDirty of the JDOHelper class), or by replacing the field value

with its current value.

Since changes to array-type fields cannot be tracked by JDO, setting the value of an array-

type managed field marks the field as dirty, even if the new value is identical to the old
 JDO 1.0.1 57 June 5, 2003

Java Data Objects 1.0.1
value. This special case is required to allow the user to mark an array-type field as dirty

without having to call the JDOHelper method makeDirty .

Furthermore, an implementation is permitted, but not required to, track changes to Arrays

passed as references outside the body of methods of the owning class. There is a method

defined on interface PersistenceCapable that allows the application to mark the field

containing such an Array to be modified so its changes can be tracked. Portable applica-

tions must not require that these changes be tracked automatically. When a reference to

the Array is returned as a result of a method call, a portable application first marks the Ar-

ray field as dirty.

It is possible for an application to assign the same instance of an Array to multiple FCOs,

but after the FCO is flushed to the datastore, the Java object identity of the Array might

change.

When an FCO is instantiated in the JVM, the JDO implementation assigns to fields with an

Array type a new instance with a different Java object identity from the instance stored.

Therefore, the application cannot assume that it knows the identity of instances assigned

to Array fields, although it is guaranteed that the actual value is the same as the value

stored.

Primitives

Primitives are types defined in the Java language and comprise boolean , byte , short ,

int , long , char , float , and double . They might be stored in the datastore only as part

of an FCO. They have no Java identity and no datastore identity of their own. They are

passed as arguments by value.

Interfaces

Interfaces are types whose values may be instances of any class that declare that they im-

plement that interface.

6.4 Field types of persistence-capable classes

6.4.1 Nontransactional non-persistent fields

There are no restrictions on the types of nontransactional non-persistent fields. These

fields are managed entirely by the application, not by the JDO implementation. Their state

is not preserved by the JDO implementation, although they might be modified during ex-

ecution of user-written callbacks defined in interface InstanceCallbacks at specific

points in the life cycle, or any time during the instance’s existence in the JVM.

6.4.2 Transactional non-persistent fields

There are no restrictions on the types of transactional non-persistent fields. These fields are

partly managed by the JDO implementation. Their state is preserved and restored by the

JDO implementation during certain state transitions.

6.4.3 Persistent fields

Primitive types

JDO implementations must support fields of any of the primitive types

• boolean , byte , short , int , long , char , float , and double .

Primitive values are stored in the datastore associated with their owning FCO. They have

no JDO Identity.
 JDO 1.0.1 58 June 5, 2003

Java Data Objects 1.0.1
Immutable Object Class types

JDO implementations must support fields that reference instances of immutable object

classes, and may choose to support these instances as SCOs or FCOs:

• package java.lang: Boolean , Character , Byte , Short , Integer , Long ,

Float , Double , and String ;

• package java.util: Locale ;

• package java.math : BigDecimal , BigInteger .

Portable JDO applications must not depend on whether instances of these classes are treat-

ed as SCOs or FCOs.

Mutable Object Class types

JDO implementations must support fields that reference instances of the following muta-

ble object classes, and may choose to support these instances as SCOs or FCOs:

• package java.util : Date , HashSet .

JDO implementations may optionally support fields that reference instances of the follow-

ing mutable object classes, and may choose to support these instances as SCOs or FCOs:

• package java.util:ArrayList , HashMap, Hashtable , LinkedList ,

TreeMap , TreeSet , and Vector .

Because the treatment of these fields may be as SCO, the behavior of these mutable object

classes when used in a persistent instance is not identical to their behavior in a transient

instance.

Portable JDO applications must not depend on whether instances of these classes refer-

enced by fields are treated as SCOs or FCOs.

PersistenceCapable Class types

JDO implementations must support references to FCO instances of PersistenceCa-
pable and are permitted, but not required, to support references to SCO instances of

PersistenceCapable .

Portable JDO applications must not depend on whether these fields are treated as SCOs or

FCOs.

Object Class type

JDO implementations must support fields of Object class type as FCOs. The implemen-

tation is permitted, but is not required, to allow any class to be assigned to the field. If an

implementation restricts instances to be assigned to the field, a ClassCastException
must be thrown at the time of any incorrect assignment.

Portable JDO applications must not depend on whether these fields are treated as SCOs or

FCOs.

Collection Interface types

JDO implementations must support fields of interface types, and may choose to support

them as SCOs or FCOs: package java.util : Collection , Map, Set , and List . Col-
lection and Set are required; Map and List are optional.

Portable JDO applications must not depend on whether these fields are treated as SCOs or

FCOs.
 JDO 1.0.1 59 June 5, 2003

Java Data Objects 1.0.1
Other Interface types

JDO implementations must support fields of interface types other than Collection in-

terface types as FCOs. The implementation is permitted, but is not required, to allow any

class that implements the interface to be assigned to the field. If an implementation further

restricts instances that can be assigned to the field, a ClassCastException must be

thrown at the time of any incorrect assignment.

Portable JDO applications must treat these fields as FCOs.

Arrays

JDO implementations may optionally support fields of array types, and may choose to

support them as SCOs or FCOs. If Arrays are supported by JDO implementations, they are

permitted, but not required, to track changes made to Arrays that are fields of persistence

capable classes in the methods of the classes. They need not track changes made to Arrays

that are passed by reference as arguments to methods, including methods of persistence-

capable classes.

Portable JDO applications must not depend on whether these fields are treated as SCOs or

FCOs.

6.5 Inheritance

A class might be persistence-capable even if its superclass is not persistence-capable. This

allows users to extend classes that were not designed to be persistence-capable. If a class

is persistence-capable, then its subclasses might or might not be persistence-capable them-

selves.

Further, subclasses of such classes that are not persistence-capable might be persistence-

capable. That is, it is possible for classes in the inheritance hierarchy to be independently

persistence-capable and not persistence-capable. It is not sufficient to test if a class imple-

ments PersistenceCapable (e.g. testing anInstance instanceof Persis-
tenceCapable) to determine whether an instance is allowed to be stored.

Fields identified in the XML metadata as persistent or transactional in persistence-capable

classes must be fields declared in that Java class definition. That is, inherited fields cannot

be named in the XML metadata.

Fields identified as persistent in persistence-capable classes will be persistent in subclass-

es; fields identified as transactional in persistence-capable classes will be transactional in

subclasses; and fields identified as non-persistent in persistence-capable classes will be

non-persistent in subclasses.

Of course, a class might define a new field with the same name as the field declared in the

superclass, and might define it with a different persistence-modifier from the inherited

field. But Java treats the declared field as a different field from the inherited field, so there

is no conflict.

All persistence-capable classes must have a no-arg constructor. This constructor might be

a private constructor, as it is only used from within the jdoNewInstance methods. The

constructor might be the default no-arg constructor created by the compiler when the

source code does not define any constructors.

The identity type of the least-derived persistence-capable class defines the identity type for

all persistence-capable classes that extend it.

Persistence-capable classes that use application identity have special considerations for in-

heritance:
 JDO 1.0.1 60 June 5, 2003

Java Data Objects 1.0.1
Key fields may be declared only in abstract superclasses and least-derived concrete classes

in inheritance hierarchies. Key fields declared in these classes must also be declared in the

corresponding objectid classes, and the objectid classes must form an inheritance hierar-

chy corresponding to the inheritance hierarchy of the persistence-capable classes. A per-

sistence-capable class can only have one concrete objectid class anywhere in its inheritance

hierarchy.

For example, if an abstract class Component declares a key field masterId , the objectid

class ComponentKey must also declare a field of the same type and name. If Compo-
nentKey is concrete, then no subclass is allowed to define an objectid class.

If ComponentKey is abstract, an instance of a concrete subclass of ComponentKey must

be used to find a persistent instance. A concrete class Part that extends Component must

declare a concrete objectid class (for example, PartKey) that extends ComponentKey .

There might be no key fields declared in Part or PartKey . Persistence-capable subclass-

es of Part must not have an objectid class.

Another concrete class Assembly that extends Component must declare a concrete ob-

jectid class (for example, AssemblyKey) that extends ComponentKey . If there is a key

field, it must be declared in both Assembly and AssemblyKey . Persistence-capable sub-

classes of Assembly must not have an objectid class.

There might be other abstract classes or non-persistence-capable classes in the inheritance

hierarchy between Component and Part , or between Component and Assembly .

These classes are ignored for the purposes of objectid classes and key fields.
 JDO 1.0.1 61 June 5, 2003

Java Data Objects 1.0.1
7 PersistenceCapable

Every instance that is managed by a JDO PersistenceManager must be of a class that

implements the public PersistenceCapable interface. This interface defines methods

that allow the implementation to manage the instances. It also defines methods that allow

a JDO aware application to examine the runtime state of instances, for example to discover

whether the instance is transient, persistent, transactional, dirty, etc., and to discover its as-

sociated PersistenceManager if it has one.

The JDO Reference Enhancer modifies the class to implement PersistenceCapable
prior to loading the class into the runtime environment. The enhancer additionally adds

code to implement the methods defined by PersistenceCapable .

The PersistenceCapable interface is designed to avoid name conflicts in the scope of

user-defined classes. All of its declared method names are prefixed with “jdo”.

Class implementors may explicitly declare that the class implements PersistenceCa-
pable . If this is done, the implementor must implement the PersistenceCapable
contract, and the enhancer will ignore the class instead of enhancing it.

The recommended approach for applications to interrogate the state of the instance is to

use the class JDOHelper , which provides static methods that delegate to the instance if it

implements PersistenceCapable , and if not, returns the values that would have been

returned by a transient instance.

NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations. Applications should use the methods
defined in class JDOHelper instead of these methods.

package javax.jdo.spi;

interface PersistenceCapable {

7.1 Persistence Manager

PersistenceManager jdoGetPersistenceManager();

This method returns the associated PersistenceManager or null if the instance is

transient.

7.2 Make Dirty

void jdoMakeDirty (String fieldName);

This method marks the specified field dirty so that its values will be modified in the data-

store when the transaction in which the instance is modified is committed. The field-
Nameis the name of the field to be marked as dirty, optionally including the fully qualified

package name and class name of the field. This method returns with no effect if the in-
 JDO 1.0.1 62 June 5, 2003

Java Data Objects 1.0.1
stance is not managed by a StateManager . This method has the same effect on the life

cycle state of the instance as changing a managed field would.

If the same name is used for multiple fields (a class declares a field of the same name as a

field in one of its superclasses) then the unqualified name refers to the most-derived class

in which the field is declared to be persistent. The qualified name (className.fieldName)

should always be used to identify the field to avoid ambiguity with subclass-defined

fields.

The rationale for this is that a method in a superclass might call this method, and specify

the name of the field that is hidden by a subclass. The StateManager has no way of

knowing which class called this method, and therefore assumes the Java rule regarding

field names.

It is always safe to explicitly name the class and field referred to in the parameter to the

method. The StateManager will resolve the scope of the name in the class named in the

parameter.

For example, if class C inherits class B which inherits class A, and field X is declared in

classes A and C, a method declared in class B may refer to the field in the method as “B.X”

and it will refer to the field declared in class A. Field X is not declared in B; however, in the

scope of class B, X refers to A.X.

7.3 JDO Identity

Object jdoGetObjectId();

This method returns the JDO identity of the instance. If the instance is transient, null is

returned. If the identity is being changed in a transaction, this method returns the identity

as of the beginning of the transaction.

Object jdoGetTransactionalObjectId();

This method returns the JDO identity of the instance. If the instance is transient, null is

returned. If the identity is being changed in a transaction, this method returns the current

identity in the transaction.

7.4 Status interrogation

The status interrogation methods return a boolean that represents the state of the instance:

7.4.1 Dirty

boolean jdoIsDirty();

Instances whose state has been changed in the current transaction return true . If the in-

stance is transient, false is returned.

7.4.2 Transactional

boolean jdoIsTransactional();

Instances whose state is associated with the current transaction return true . If the in-

stance is transient, false is returned.

7.4.3 Persistent

boolean jdoIsPersistent();
 JDO 1.0.1 63 June 5, 2003

Java Data Objects 1.0.1
Instances that represent persistent objects in the datastore return true . If the instance is

transient, false is returned.

7.4.4 New

boolean jdoIsNew();

Instances that have been made persistent in the current transaction return true . If the in-

stance is transient, false is returned.

7.4.5 Deleted

boolean jdoIsDeleted();

Instances that have been deleted in the current transaction return true . If the instance is

transient, false is returned.

7.5 New instance

PersistenceCapable jdoNewInstance(StateManager sm);

This method creates a new instance of the class of the instance. It is intended to be used as

a performance optimization compared to constructing a new instance by reflection using

the constructor. It is intended to be used only by JDO implementations, not by applica-

tions. If the class is abstract, null is returned.

PersistenceCapable jdoNewInstance(StateManager sm, Object oid);

This method creates a new instance of the class of the instance, and copies key field values

from the oid parameter instance. It is intended to be used as a performance optimization

compared to constructing a new instance by reflection using the constructor, and copying

Table 3: State interrogation

Persistent Transactional Dirty New Deleted

Transient

Transient-clean ✓

Transient-dirty ✓ ✓

Persistent-new ✓ ✓ ✓ ✓

Persistent-
nontransactional

✓

Persistent-clean ✓ ✓

Persistent-dirty ✓ ✓ ✓

Hollow ✓

Persistent-deleted ✓ ✓ ✓ ✓

Persistent-new-
deleted

✓ ✓ ✓ ✓ ✓
 JDO 1.0.1 64 June 5, 2003

Java Data Objects 1.0.1
values from the oid instance by reflection. It is intended to be used only by JDO implemen-

tations for classes that use application identity, not by applications. If the class is abstract,

null is returned.

7.6 State Manager

void jdoReplaceStateManager (StateManager sm)

throws SecurityException;

This method sets the jdoStateManager field to the parameter. This method is normally

used by the StateManager during the process of making an instance persistent, trans-

actional, or transient. The caller of this method must have JDOPermission("set-
StateManager") for the instance, otherwise SecurityException is thrown.

7.7 Replace Flags

void jdoReplaceFlags ();

This method tells the instance to call the owning StateManager ’s replacingFlags
method to get a new value for the jdoFlags field.

7.8 Replace Fields

void jdoReplaceField (int fieldNumber);

This method gets a new value from the StateManager for the field specified in the pa-

rameter. The field number must refer to a field declared in this class or in a superclass.

void jdoReplaceFields (int[] fieldNumbers);

This method iterates over the array of field numbers and calls jdoReplaceField for

each one.

7.9 Provide Fields

void jdoProvideField (int fieldNumber);

This method provides the value of the specified field to the StateManager . The field

number must refer to a field declared in this class or in a superclass.

void jdoProvideFields (int[] fieldNumbers);

This method iterates over the array of field numbers and calls jdoProvideField for

each one.

7.10 Copy Fields

void jdoCopyFields (Object other, int[] fieldNumbers);

This method copies fields from another instance of the same class. This method can be in-

voked only when both this and other are managed by the same StateManager .

7.11 Static Fields

The following fields define the permitted values for the jdoFlags field.
 JDO 1.0.1 65 June 5, 2003

Java Data Objects 1.0.1
public static final byte READ_WRITE_OK = 0;

public static final byte READ_OK = -1;

public static final byte LOAD_REQUIRED = 1;

The following fields define the flags for the jdoFieldFlags elements.

public static final byte CHECK_READ = 1;

public static final byte MEDIATE_READ = 2;

public static final byte CHECK_WRITE = 4;

public static final byte MEDIATE_WRITE = 8;

public static final byte SERIALIZABLE = 16;

7.12 JDO identity handling

public Object jdoNewObjectIdInstance();

This method creates a new instance of the class used for JDO identity. It is intended only

for application identity. If the class has been enhanced for datastore identity, or if the class

is abstract, null is returned.

public Object jdoNewObjectIdInstance(String str);

This method creates a new instance of the class used for JDO identity, using the String
constructor of the object id class. It is intended only for application identity. If the class has

been enhanced for datastore identity, or if the class is abstract, null is returned.

public void jdoCopyKeyFieldsToObjectId(Object oid);

This method copies all key fields from this instance to the parameter. The first parameter

be an instance of the JDO identity class, or ClassCastException is thrown.

public void jdoCopyKeyFieldsToObjectId(ObjectIdFieldSupplier
fs, Object oid);

This method copies fields from the field manager instance to the second parameter in-

stance. Each key field in the ObjectId class matching a key field in the Persistence-
Capable class is set by the execution of this method. For each key field, the method of the

ObjectIdFieldSupplier is called for the corresponding type of field. The second pa-

rameter must be an instance of the JDO identity class. If the parameter is not of the correct

type, then ClassCastException is thrown.

public void jdoCopyKeyFieldsFromObjectId(ObjectIdFieldConsumer
fc, Object oid);

This method copies fields to the field manager instance from the second parameter in-

stance. Each key field in the ObjectId class matching a key field in the Persistence-
Capable class is retrieved by the execution of this method. For each key field, the method

of the ObjectIdFieldConsumer is called for the corresponding type of field. The sec-

ond parameter must be an instance of the JDO identity class. If the parameter is not of the

correct type, then ClassCastException is thrown.

interface ObjectIdFieldSupplier

boolean fetchBooleanField (int fieldNumber);

char fetchCharField (int fieldNumber);

short fetchShortField (int fieldNumber);
 JDO 1.0.1 66 June 5, 2003

Java Data Objects 1.0.1
int fetchIntField (int fieldNumber);

long fetchLongField (int fieldNumber);

float fetchFloatField (int fieldNumber);

double fetchDoubleField (int fieldNumber);

String fetchStringField (int fieldNumber);

Object fetchObjectField (int fieldNumber);

These methods all fetch one field from the field manager. The returned value is stored in

the object id instance. The generated code in the PersistenceCapable class calls a

method in the field manager for each key field in the object id. The field number is the same

as in the persistence capable class for the corresponding key field.

interface ObjectIdFieldConsumer

void storeBooleanField (int fieldNumber, boolean value);

void storeCharField (int fieldNumber, char value);

void storeShortField (int fieldNumber, short value);

void storeIntField (int fieldNumber, int value);

void storeLongField (int fieldNumber, long value);

void storeFloatField (int fieldNumber, float value);

void storeDoubleField (int fieldNumber, double value);

void storeStringField (int fieldNumber, String value);

void storeObjectField (int fieldNumber, Object value);

These methods all store one field to the field manager. The value is retrieved from the ob-

ject id instance. The generated code in the PersistenceCapable class calls a method

in the field manager for each key field in the object id. The field number is the same as in

the persistence capable class for the corresponding key field.

interface ObjectIdFieldManager extends ObjectIdFieldSupplier,
ObjectIdFieldConsumer

This interface is a convenience interface that extends both ObjectIdFieldSupplier
and ObjectIdFieldConsumer .

Readers primarily interested in developing applications with the JDO API can ignore the following
chapters. Skip to 10 – InstanceCallbacks.
 JDO 1.0.1 67 June 5, 2003

Java Data Objects 1.0.1
8 JDOHelper

JDOHelper is a class with static methods that is intended for use by persistence-aware

classes. It contains methods that allow interrogation of the persistent state of an instance

of a persistence-capable class.

Each method delegates to the instance, if it implements PersistenceCapable . Other-

wise, if the method returns a value of reference type, it returns null ; if the method returns

a value of boolean type, it returns false ; and if the method returns void , there is no ef-

fect.

package javax.jdo;

class JDOHelper {

8.1 Persistence Manager

static PersistenceManager getPersistenceManager (Object pc);

This method returns the associated PersistenceManager . It returns null if the in-

stance is transient or null or does not implement PersistenceCapable .

See also PersistenceCapable.jdoGetPersistenceManager() .

8.2 Make Dirty

static void makeDirty (Object pc, String fieldName);

This method marks the specified field dirty so that its values will be modified in the data-

store when the instance is flushed. The fieldName is the name of the field to be marked

as dirty, optionally including the fully qualified package name and class name of the field.

This method has no effect if the instance is transient or null , or does not implement Per-
sistenceCapable ; or fieldName is not a managed field.

See also PersistenceCapable.jdoMakeDirty(String fieldName) .

8.3 JDO Identity

static Object getObjectId (Object pc);

This method returns the JDO identity of the instance. It returns null if the instance is tran-

sient or null or does not implement PersistenceCapable . If the identity is being

changed in a transaction, this method returns the identity as of the beginning of the trans-

action.

See also PersistenceCapable.jdoGetObjectId() and PersistenceMan-
ager.getObjectId(Object pc) .

static Object getTransactionalObjectId (Object pc);
 JDO 1.0.1 68 June 5, 2003

Java Data Objects 1.0.1
This method returns the JDO identity of the instance. It returns null if the instance is tran-

sient or null or does not implement PersistenceCapable . If the identity is being

changed in a transaction, this method returns the current identity in the transaction.

See also PersistenceCapable.jdoGetTransactionalObjectId() and Per-
sistenceManager.getTransactionalObjectId(Object pc) .

8.4 Status interrogation

The status interrogation methods return a boolean that represents the state of the in-

stance:

8.4.1 Dirty

static boolean isDirty (Object pc);

Instances whose state has been changed in the current transaction return true . It returns

false if the instance is transient or null or does not implement PersistenceCa-
pable .

See also PersistenceCapable.jdoIsDirty();

8.4.2 Transactional

static boolean isTransactional (Object pc);

Instances whose state is associated with the current transaction return true . It returns

false if the instance is transient or null or does not implement PersistenceCa-
pable .

See also PersistenceCapable.jdoIsTransactional() .

8.4.3 Persistent

static boolean isPersistent (Object pc);

Instances that represent persistent objects in the datastore return true . It returns false
if the instance is transient or null or does not implement PersistenceCapable .

See also PersistenceCapable.jdoIsPersistent();

8.4.4 New

static boolean isNew (Object pc);

Instances that have been made persistent in the current transaction return true . It returns

false if the instance is transient or null or does not implement PersistenceCa-
pable .

See also PersistenceCapable.jdoIsNew();

8.4.5 Deleted

static boolean isDeleted (Object pc);

Instances that have been deleted in the current transaction return true . It returns false
if the instance is transient or null or does not implement PersistenceCapable .

See also PersistenceCapable.jdoIsDeleted();

8.5 PersistenceManagerFactory methods

public static
 JDO 1.0.1 69 June 5, 2003

Java Data Objects 1.0.1
PersistenceManagerFactory getPersistenceManagerFactory

(Properties props, ClassLoader cl);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(Properties props);

These methods return a PersistenceManagerFactory based on properties con-

tained in the Properties parameter. In the method without a class loader parameter, the

calling thread’s current contextClassLoader is used to resolve the class name.

This method delegates to the static method getPersistenceManagerFactory in the

class named in the property javax.jdo.PersistenceManagerFactoryClass . If

there are any exceptions while trying to call the static method, then either JDOFata-
lUserException or JDOFatalInternalException is thrown, depending on

whether the exception is due to the user or the implementation. The nested exception in-

dicates the cause of the exception.

If the class named by the javax.jdo.PersistenceManagerFactoryClass prop-

erty cannot be found, or is not accessible to the user, then JDOFatalUserException is

thrown. If there is no public static implementation of the getPersistenceManager-
Factory(Properties) method, then JDOFatalInternalException is thrown. If

the implementation of the static getPersistenceManagerFactory(Properties)
method throws an exception, it is rethrown by this method.

The following are standard key values for the Properties :

javax.jdo.PersistenceManagerFactoryClass

javax.jdo.option.Optimistic

javax.jdo.option.RetainValues

javax.jdo.option.RestoreValues

javax.jdo.option.IgnoreCache

javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.Multithreaded

javax.jdo.option.ConnectionDriverName

javax.jdo.option.ConnectionUserName

javax.jdo.option.ConnectionPassword

javax.jdo.option.ConnectionURL

javax.jdo.option.ConnectionFactoryName

javax.jdo.option.ConnectionFactory2Name

JDO implementations are permitted to define key values of their own. Any key values not

recognized by the implementation must be ignored. Key values that are recognized but not

supported by an implementation must result in a JDOFatalUserException thrown by

the method.

The returned PersistenceManagerFactory is not configurable (the setXXX meth-

ods will throw an exception). JDO implementations might manage a map of instantiated

PersistenceManagerFactory instances based on specified property key values, and
 JDO 1.0.1 70 June 5, 2003

Java Data Objects 1.0.1
return a previously instantiated PersistenceManagerFactory instance. In this case,

the properties of the returned instance must exactly match the requested properties.
 JDO 1.0.1 71 June 5, 2003

Java Data Objects 1.0.1
9 JDOImplHelper

This class is a public helper class for use by JDO implementations. It contains a registry of

metadata by class. Use of the methods in this class avoids the use of reflection at runtime.

PersistenceCapable classes register metadata with this class during class initializa-

tion.

NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations.

package javax.jdo.spi;

public JDOImplHelper {

9.1 JDOImplHelper access

public static JDOImplHelper getInstance()

throws SecurityException;

This method returns an instance of the JDOImplHelper class if the caller is authorized

for JDOPermission(“getMetadata”) , and throws SecurityException if not

authorized. This instance gives access to all of the other methods, except for register-
Class , which is static and does not need any authorization.

9.2 Metadata access

public String[] getFieldNames (Class pcClass);

This method returns the names of persistent and transactional fields of the parameter class.

If the class does not implement PersistenceCapable , or if it has not been enhanced

correctly to register its metadata, a JDOFatalUserException is thrown.

Otherwise, the names of fields that are either persistent or transactional are returned, in

order. The order of names in the returned array are the same as the field numbering. Rel-

ative field 0 refers to the first field in the array. The length of the array is the number of

persistent and transactional fields in the class.

public Class[] getFieldTypes (Class pcClass);

This method returns the types of persistent and transactional fields of the parameter class.

If the parameter does not implement PersistenceCapable , or if it has not been en-

hanced correctly to register its metadata, a JDOFatalUserException is thrown.

Otherwise, the types of fields that are either persistent or transactional are returned, in or-

der. The order of types in the returned array is the same as the field numbering. Relative

field 0 refers to the first field in the array. The length of the array is the number of persistent

and transactional fields in the class.

public byte[] getFieldFlags (Class pcClass);
 JDO 1.0.1 72 June 5, 2003

Java Data Objects 1.0.1
This method returns the field flags of persistent and transactional fields of the parameter

class. If the parameter does not implement PersistenceCapable , or if it has not been

enhanced correctly to register its metadata, a JDOFatalUserException is thrown.

Otherwise, the types of fields that are either persistent or transactional are returned, in or-

der. The order of types in the returned array is the same as the field numbering. Relative

field 0 refers to the first field in the array. The length of the array is the number of persistent

and transactional fields in the class.

public Class getPersistenceCapableSuperclass (Class pcClass);

This method returns the PersistenceCapable superclass of the parameter class, or

null if there is none.

9.3 Persistence-capable instance factory

public PersistenceCapable newInstance (Class pcClass,

StateManager sm);

public PersistenceCapable newInstance (Class pcClass, StateMan-
ager sm, Object oid);

If the class does not implement PersistenceCapable , or if it has not been enhanced

correctly to register its metadata, a JDOFatalUserException is thrown. If the class is

abstract, a JDOFatalInternalException is thrown.

Otherwise, a new instance of the class is constructed and initialized with the parameter

StateManager . The new instance has its jdoFlags set to LOAD_REQUIREDbut has no

defined state. The behavior of the instance is determined by the owning StateManager .

The second form of the method returns a new instance of PersistenceCapable that

has had its key fields initialized by the ObjectId parameter instance. If the class has been

enhanced for datastore identity, then the oid parameter is ignored.

See also PersistenceCapable.jdoNewInstance(StateManager sm) and

PersistenceCapable.jdoNewInstance (StateManager sm, Object oid) .

9.4 Registration of PersistenceCapable classes

public static void registerClass

(Class pcClass, String[] fieldNames,

Class[] fieldTypes,

byte[] fieldFlags,

Class persistenceCapableSuperclass,

PersistenceCapable pcInstance);

This method registers a PersistenceCapable class so that the other methods can re-

turn the correct information. The registration must be done in a static initializer for the per-

sistence-capable class.

9.4.1 Notification ofPersistenceCapable class registrations

addRegisterClassListener(RegisterClassListener rcl);

This method registers a RegisterClassListener to be notified upon new Persis-
tenceCapable Class registrations. A RegisterClassEvent instance is generated
 JDO 1.0.1 73 June 5, 2003

Java Data Objects 1.0.1
for each class registered already plus classes registered in future, which is sent to each reg-

istered listener. The same event instance might be sent to multiple listeners.

removeRegisterClassListener(RegisterClassListener rcl);

This method removes a RegisterClassEvent from the list to be notified upon new

PersistenceCapable Class registrations.

RegisterClassEvent

public class RegisterClassEvent extends java.util.EventObject {

An instance of this class is generated for each class that registers itself, and is sent to each

registered listener.

public Class getRegisteredClass();

Returns the newly registered Class .

public String[] getFieldNames();

Returns the field names of the newly registered Class .

public Class[] getFieldTypes();

Returns the field types of the newly registered Class .

public byte[] getFieldFlags();

Returns the field flags of the newly registered Class .

public Class getPersistenceCapableSuperclass();

Returns the PersistenceCapable superclass of the newly registered Class .

} // class RegisterClassEvent

RegisterClassListener

interface RegisterClassListener extends java.util.EventListener
{

This interface must be implemented by classes that register as listeners to be notified

of registrations of PersistenceCapable classes.

void registerClass (RegisterClassEvent rce);

This method is called for each PersistenceCapable class that registers itself.

} // interface RegisterClassListener

9.5 Security administration

public static void registerAuthorizedStateManagerClass

(Class smClass);

This method manages the list of classes authorized to execute replaceStateManager .

During execution of this method, the security manager, if present, is called to validate that

the caller is authorized for JDOPermission(“setStateManager”) . If successful, the

parameter class is added to the list of authorized StateManager classes.

This method provides for a fast security check during makePersistent . An implemen-

tation of StateManager should register itself with the JDOImplHelper to take advan-

tage of this fast check.

public static void checkAuthorizedStateManager(StateManager sm);
 JDO 1.0.1 74 June 5, 2003

Java Data Objects 1.0.1
This method is called by enhanced persistence-capable class method replaceStateM-
anager . If the parameter instance is of a class in the list of authorized StateManager
classes, then this method returns silently. If not, then the security manager, if present, is

called to validate that the caller is authorized for JDOPermission(“setStateMan-
ager”) . If successful, the method returns silently. If not, a SecurityException is

thrown.

9.6 Application identity handling

public Object newObjectIdInstance(Class pcClass);

This method creates a new instance of the Object Id class for the PersistenceCa-
pable class. If the class uses datastore identity, then null is returned. If the class is ab-

stract, a JDOFatalInternalException is thrown.

public Object newObjectIdInstance(Class pcClass, String str);

This method creates a new instance of the Object Id class for the PersistenceCa-
pable class, using the String constructor of the object id class. If the class uses datastore

identity, then null is returned. If the class is abstract, a JDOFatalInternalExcep-
tion is thrown.

public void copyKeyFieldsToObjectId (Class pcClass, Persis-
tenceCapable.ObjectIdFieldSupplier fs, Object oid);

This method copies key fields from the field manager to the Object Id instance oid. This

is intended for use by the implementation to copy fields from a datastore-specific repre-

sentation to the Object Id . If the class is abstract, a JDOFatalInternalException
is thrown.

public void copyKeyFieldsFromObjectId (Class pcClass, Persis-
tenceCapable.ObjectIdFieldConsumer fc, Object oid);

This method copies key fields to the field manager from the Object Id instance oid. This

is intended for use by the implementation to copy fields to a datastore-specific representa-

tion from the Object Id . If the class is abstract, a JDOFatalInternalException is

thrown.
 JDO 1.0.1 75 June 5, 2003

Java Data Objects 1.0.1
10 InstanceCallbacks

Instance callbacks provide a mechanism for instances to take some action on specific JDO

instance life cycle events. For example, classes that include non-persistent fields might use

callbacks to correctly populate the values in these fields. Classes that affect the runtime en-

vironment might use callbacks to register and deregister themselves with other objects.

This interface defines the methods executed by the StateManager for these life cycle

events.

These methods will be called only on instances for which javax.jdo.InstanceCall-
backs.class.isInstance(pc) returns true .

10.1 jdoPostLoad

public void jdoPostLoad();

This method is called after the default fetch group values have been loaded from the

StateManager into the instance. Non-persistent fields whose value depends on values

of default fetch group fields should be initialized in this method. This method is not mod-

ified by the enhancer. Only fields that are in the default fetch group should be accessed by

this method, as other fields are not guaranteed to be initialized. This method might register

the instance with other objects in the runtime environment.

The context in which this call is made does not allow access to other persistent JDO in-

stances.

10.2 jdoPreStore

public void jdoPreStore();

This method is called before the values are stored from the instance to the datastore. This

happens during beforeCompletion for persistent-new and persistent-dirty instances

of persistence-capable classes that implement InstanceCallbacks . Datastore fields

that might have been affected by modified non-persistent fields should be updated in this

method. This method is modified by the enhancer so that changes to persistent fields will

be reflected in the datastore.

The context in which this call is made allows access to the PersistenceManager and

other persistent JDO instances.

This method is not called for deleted instances.

10.3 jdoPreClear

public void jdoPreClear();

This method is called before the implementation clears the values in the instance to their

Java default values. This happens during an application call to evict , and in afterCom-
pletion for commit with RetainValues false and rollback with RestoreValues
 JDO 1.0.1 76 June 5, 2003

Java Data Objects 1.0.1
false . The method is called during any state transition to hollow. Non-persistent, non-

transactional fields should be cleared in this method. Associations between this instance

and others in the runtime environment should be cleared. This method is not modified by

the enhancer, so access to fields is not mediated.

10.4 jdoPreDelete

public void jdoPreDelete();

This method is called during the execution of deletePersistent before the state tran-

sition to persistent-deleted or persistent-new-deleted. Access to field values within this

call are valid. Access to field values after this call are disallowed. This method is modified

by the enhancer so that fields referenced can be used in the business logic of the method.

To implement a containment aggregate, the user could implement this method to delete

contained persistent instances.
 JDO 1.0.1 77 June 5, 2003

Java Data Objects 1.0.1
11 PersistenceManagerFactory

This chapter details the PersistenceManagerFactory , which is responsible for cre-

ating PersistenceManager instances for application use.

package javax.jdo;

interface PersistenceManagerFactory {

11.1 Interface PersistenceManagerFactory

A JDO vendor must provide a class that implements PersistenceManagerFactory
and is permitted to provide a PersistenceManager constructor[s].

A non-managed JDO application might choose to use a PersistenceManager con-

structor (JDO vendor specific) or use a PersistenceManagerFactory (provided by

the JDO vendor). A portable JDO application must use the PersistenceManagerFac-
tory .

In a managed environment, the JDO PersistenceManager instance is acquired by a

two step process: the application uses JNDI lookup to retrieve an environment-named ob-

ject, which is then cast to javax.jdo.PersistenceManagerFactory ; and then calls

one of the factory’s getPersistenceManager methods.

In a non-managed environment, the JDO PersistenceManager instance is acquired by

lookup as above; by constructing a javax.jdo.PersistenceManager ; or by con-

structing a javax.jdo.PersistenceManagerFactory , configuring the factory,

and then calling the factory’s getPersistenceManager method. These constructors

are not part of the JDO standard. However, the following is recommended to support por-

table applications.

Configuring the PersistenceManagerFactory follows the Java Beans pattern. Sup-

ported properties have a get method and a set method.

The following properties, if set in the PersistenceManagerFactory , are the default

settings of all PersistenceManager instances created by the factory:

• Optimistic : the transaction mode that specifies concurrency control

• RetainValues : the transaction mode that specifies the treatment of persistent

instances after commit

• RestoreValues : the transaction mode that specifies the treatment of persistent

instances after rollback

• IgnoreCache : the query mode that specifies whether cached instances are

considered when evaluating the filter expression

• NontransactionalRead : the PersistenceManager mode that allows

instances to be read outside a transaction
 JDO 1.0.1 78 June 5, 2003

Java Data Objects 1.0.1
• NontransactionalWrite : the PersistenceManager mode that allows

instances to be written outside a transaction

• Multithreaded : the PersistenceManager mode that indicates that the

application will invoke methods or access fields of managed instances from

multiple threads.

The following properties are for convenience, if there is no connection pooling or other

need for a connection factory:

• ConnectionUserName : the name of the user establishing the connection

• ConnectionPassword : the password for the user

• ConnectionURL : the URL for the data source

• ConnectionDriverName : the class name of the driver

For a portable application, if any other connection properties are required, then a connec-

tion factory must be configured.

The following properties are for use when a connection factory is used, and override the

connection properties specified in ConnectionURL , ConnectionUserName , or Con-
nectionPassword .

• ConnectionFactory : the connection factory from which datastore connections

are obtained

• ConnectionFactoryName : the name of the connection factory from which

datastore connections are obtained. This name is looked up with JNDI to locate the

connection factory.

If multiple connection properties are set, then they are evaluated in order:

• if ConnectionFactory is specified (not null), all other properties are ignored;

• else if ConnectionFactoryName is specified (not null), all other properties

are ignored.

For the application server environment, connection factories always return connections

that are enlisted in the thread’s current transaction context. To use optimistic transactions

in this environment requires a connection factory that returns connections that are not en-

listed in the current transaction context. For this purpose, the following two properties are

used:

• ConnectionFactory2 : the connection factory from which nontransactional

datastore connections are obtained

• ConnectionFactory2Name : the name of the connection factory from which

nontransactional datastore connections are obtained. This name is looked up with

JNDI to locate the connection factory.

Construction by Properties

An implementation must provide a method to construct a PersistenceManagerFac-
tory by a Properties instance. This static method is called by the JDOHelper method

getPersistenceManagerFactory (Properties props) .

static PersistenceManagerFactory getPersistenceManagerFactory
(Properties props);

The properties consist of: “javax.jdo.PersistenceManagerFactoryClass” ,

whose value is the name of the implementation class; any JDO vendor-specific properties;
 JDO 1.0.1 79 June 5, 2003

Java Data Objects 1.0.1
and the following standard property names, which correspond to the properties as docu-

mented in this chapter:

• "javax.jdo.option.Optimistic"

• "javax.jdo.option.RetainValues"

• "javax.jdo.option.RestoreValues"

• "javax.jdo.option.IgnoreCache"

• "javax.jdo.option.NontransactionalRead"

• "javax.jdo.option.NontransactionalWrite"

• "javax.jdo.option.Multithreaded"

• "javax.jdo.option.ConnectionUserName"

• "javax.jdo.option.ConnectionPassword"

• "javax.jdo.option.ConnectionURL"

• "javax.jdo.option.ConnectionDriverName"

• "javax.jdo.option.ConnectionFactoryName"

• "javax.jdo.option.ConnectionFactory2Name"

The property “javax.jdo.PersistenceManagerFactoryClass” is the fully

qualified class name of the PersistenceManagerFactory .

The String type properties are taken without change from the value of the correspond-

ing keys. Boolean type properties treat the String value as representing true if the

value of the String compares equal, ignoring case, to “true” , and false if the value

of the String is anything else.

Any property not recognized by the implementation must be silently ignored. Any stan-

dard property corresponding to an optional feature not supported by the implementation

must throw JDOUnsupportedOptionException .

Default values for properties not specified in the Properties parameter are provided by the

implementation. A portable application must specify all values for properties needed by

the application.

11.2 ConnectionFactory

For implementations that layer on top of standard Connector implementations, the con-

figuration will typically support all of the associated ConnectionFactory properties.

When used in a managed environment, the ConnectionFactory will be obtained from

a ManagedConnectionFactory , which is then responsible for implementing the re-

source adapter interactions with the container.

The following properties of the ConnectionFactory should be used if the data source

has a corresponding concept:

• URL: the URL for the data source

• UserName: the name of the user establishing the connection

• Password : the password for the user

• DriverName : the driver name for the connection
 JDO 1.0.1 80 June 5, 2003

Java Data Objects 1.0.1
• ServerName : name of the server for the data source

• PortNumber : port number for establishing connection to the data source

• MaxPool : the maximum number of connections in the connection pool

• MinPool : the minimum number of connections in the connection pool

• MsWait : the number of milliseconds to wait for an available connection from the

connection pool before throwing a JDODataStoreException

• LogWriter : the PrintWriter to which messages should be sent

• LoginTimeout : the number of seconds to wait for a new connection to be

established to the data source

In addition to these properties, the PersistenceManagerFactory implementation

class can support properties specific to the data source or to the PersistenceManager .

Aside from vendor-specific configuration APIs, there are three required methods for Per-
sistenceManagerFactory .

11.3 PersistenceManager access

PersistenceManager getPersistenceManager();

PersistenceManager getPersistenceManager(String userid, String
password);

Returns a PersistenceManager instance with the configured properties. The instance

might have come from a pool of instances. The default values for option settings are reset

to the value specified in the PersistenceManagerFactory before returning the in-

stance.

After the first use of getPersistenceManager , none of the set methods will succeed.

The settings of operational parameters might be modified dynamically during runtime via

a vendor-specific interface.

If the method with the userid and password is used to acquire the PersistenceMan-
ager , then all accesses to the connection factory during the life of the PersistenceM-
anager will use the userid and password to get connections. If PersistenceManager
instances are pooled, then only PersistenceManager instances with the same userid

and password will be used to satisfy the request.

11.4 Close the PersistenceManagerFactory

During operation of JDO, resources might be acquired on behalf of a PersistenceMan-
agerFactory , e.g. connection pools, persistence manager pools, compiled queries,

cached metadata, etc. If a PersistenceManagerFactory is no longer needed, these re-

sources should be returned to the system. The close method disables the Persistence-
ManagerFactory and allows cleanup of resources.

Premature close of a PersistenceManagerFactory has a significant impact on the op-

eration of the system. Therefore, a security check is performed to check that the caller has

the proper permission. The security check is for JDOPermission("closePersis-
tenceManagerFactory"). If the security check fails, the close method throws Securi-
tyException .

void close();
 JDO 1.0.1 81 June 5, 2003

Java Data Objects 1.0.1
Close this PersistenceManagerFactory . Check for JDOPermission("closePer-
sistenceManagerFactory") and if not authorized, throw SecurityException .

If the authorization check succeeds, check to see that all PersistenceManager instances

obtained from this PersistenceManagerFactory have no active transactions. If any

PersistenceManager instances have an active transaction, throw a JDOUserExcep-
tion , with one nested JDOUserException for each PersistenceManager with an ac-

tive Transaction .

If there are no active transactions, then close all PersistenceManager instances ob-

tained from this PersistenceManagerFactory , mark this PersistenceManager-
Factory as closed, disallow getPersistenceManager methods, and allow all other

get methods. If a set method or getPersistenceManager method is called after close,

then JDOUserException is thrown.

11.5 Non-configurable Properties

The JDO vendor might store certain non-configurable properties and make those proper-

ties available to the application via a Properties instance. This method retrieves the

Properties instance.

Properties getProperties();

The application is not prevented from modifying the instance.

Each key and value is a String . The keys defined for standard JDO implementations are:

• VendorName : The name of the JDO vendor.

• VersionNumber : The version number string.

Other properties are vendor-specific.

11.6 Optional Feature Support

Collection supportedOptions();

The JDO implementation might optionally support certain features, and will report the

features that are supported. The supported query languages are included in the returned

Collection .

This method returns a Collection of String , each String instance representing an

optional feature of the implementation or a supported query language. The following are

the values of the String for each optional feature in the JDO specification:

javax.jdo.option.TransientTransactional

javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.RetainValues

javax.jdo.option.Optimistic

javax.jdo.option.ApplicationIdentity

javax.jdo.option.DatastoreIdentity

javax.jdo.option.NonDurableIdentity

javax.jdo.option.ArrayList
 JDO 1.0.1 82 June 5, 2003

Java Data Objects 1.0.1
javax.jdo.option.HashMap

javax.jdo.option.Hashtable

javax.jdo.option.LinkedList

javax.jdo.option.TreeMap

javax.jdo.option.TreeSet

javax.jdo.option.Vector

javax.jdo.option.Map

javax.jdo.option.List

javax.jdo.option.Array

javax.jdo.option.NullCollection

javax.jdo.option.ChangeApplicationIdentity

The standard JDO query must be returned as the String :

javax.jdo.query.JDOQL

Other query languages are represented by a String not defined in this specification.

11.7 Static Properties constructor

public static PersistenceManagerFactory

getPersistenceManagerFactory (Properties props);

This method returns an instance of PersistenceManagerFactory based on the prop-

erties in the parameter. It is used by JDOHelper to construct an instance of Persis-
tenceManagerFactory based on user-specified properties.

The following are standard key values for the Properties :

javax.jdo.PersistenceManagerFactoryClass

javax.jdo.option.Optimistic

javax.jdo.option.RetainValues

javax.jdo.option.RestoreValues

javax.jdo.option.IgnoreCache

javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.Multithreaded

javax.jdo.option.ConnectionUserName

javax.jdo.option.ConnectionPassword

javax.jdo.option.ConnectionURL

javax.jdo.option.ConnectionFactoryName

javax.jdo.option.ConnectionFactory2Name

JDO implementations are permitted to define key values of their own. Any key values not

recognized by the implementation must be ignored. Key values that are recognized but not

supported by an implementation must result in a JDOFatalUserException thrown by

the method.
 JDO 1.0.1 83 June 5, 2003

Java Data Objects 1.0.1
The returned PersistenceManagerFactory is not configurable (the setXXX meth-

ods will throw an exception). JDO implementations might manage a map of instantiated

PersistenceManagerFactory instances based on specified property key values, and

return a previously instantiated PersistenceManagerFactory instance. In this case,

the properties of the returned instance must exactly match the requested properties.
 JDO 1.0.1 84 June 5, 2003

Java Data Objects 1.0.1
12 PersistenceManager

This chapter specifies the JDO PersistenceManager and its relationship to the appli-

cation components, JDO instances, and J2EE Connector.

12.1 Overview

The JDO PersistenceManager is the primary interface for JDO-aware application

components. It is the factory for the Query interface and contains methods for managing

the life cycle of persistent instances.

The JDO PersistenceManager interface is architected to support a variety of environ-

ments and data sources, from small footprint embedded systems to large enterprise appli-

cation servers. It might be a layer on top of a standard Connector implementation such as

JDBC or JMS, or itself include connection management and distributed transaction sup-

port.

J2EE Connector support is optional . If it is not supported by a JDO implementation, then

a constructor for the JDO PersistenceManager or PersistenceManagerFactory
is required. The details of the construction of the PersistenceManager or Persis-
tenceManagerFactory are not specified by JDO.

12.2 Goals

The architecture of the PersistenceManager has the following goals:

• No changes to application programs to change to a different vendor’s

PersistenceManager if the application is written to conform to the portability

guidelines

• Application to non-managed and managed environments with no code changes

12.3 Architecture: JDO PersistenceManager

The JDO PersistenceManager instance is visible only to certain application compo-

nents: those that explicitly manage the life cycle of JDO instances; and those that query for

JDO instances. The JDO PersistenceManager is not required to be used by JDO in-

stances.

There are three primary environments in which the JDO PersistenceManager is ar-

chitected to work:

• non-managed (non-application server), minimum function, single transaction,

single JDO PersistenceManager where compactness is the primary metric;

• non-managed but where extended features are desired, such as multiple

PersistenceManager instances to support multiple data sources, XA

coordinated transactions, or nested transactions; and
 JDO 1.0.1 85 June 5, 2003

Java Data Objects 1.0.1
• managed, where the full range of capabilities of an application server is required.

Support for these three environments is accomplished by implementing transaction com-

pletion APIs on a companion JDO Transaction instance, which contains transaction

policy options and local transaction support.

12.4 Threading

It is a requirement for all JDO implementations to be thread-safe. That is, the behavior of

the implementation must be predictable in the presence of multiple application threads.

Operations implemented by the PersistenceManager directly or indirectly via access

or modification of persistent or transactional fields of persistence-capable classes must be

treated as if they were serialized. The implementation is free to serialize internal data

structures and thus order multi-threaded operations in any way it chooses. The only ap-

plication-visible behavior is that operations might block indefinitely (but not infinitely)

while other operations complete.

Since synchronizing the PersistenceManager is a relatively expensive operation, and

not needed in many applications, the application must specify whether multiple threads

might access the same PersistenceManager or instances managed by the Persis-
tenceManager (persistent or transactional instances of PersistenceCapable class-

es; instances of Transaction or Query ; query results, etc.).

If applications depend on serializing operations, then the applications must implement the

appropriate synchronizing behavior, using instances visible to the application. This in-

cludes some instances of the JDO implementation (e.g. PersistenceManager , Query ,

etc.) and instances of persistence-capable classes.

The implementation must not use user-visible instances (instances of PersistenceM-
anagerFactory , PersistenceManager , Transaction , Query , etc.) as synchroni-

zation objects, with one exception. The implementation must synchronize instances of

PersistenceCapable during state transitions that replace the StateManager . This

is to avoid race conditions where the application attempts to make the same instance per-

sistent in multiple PersistenceManagers .

12.5 Class Loaders

JDO requires access to class instances in several situations where the class instance is not

provided explicitly. In these cases, the only information available to the implementation is

the name of the class.

To resolve class names to class instances, JDO implementations will use Class.forName
(String name, ClassLoader loader) with up to three loaders. These loaders will

be used in this order:

1. The loader that loaded the class or instance referred to in the API that caused this class

to be loaded.

• In case of query, this is the loader of the candidate class.

• In case of navigation from a persistent instance, this is the loader of the class of the

instance.

• In the case of getExtent with subclasses, this is the loader of the candidate class.

• In the case of getObjectById , this is the loader of the object id instance.

• Other cases do not have an explicit loader.
 JDO 1.0.1 86 June 5, 2003

Java Data Objects 1.0.1
2. The loader returned in the current context by Thread.getContextClassLoad-
er() .

3. The loader returned by Thread.getContextClassLoader() at the time of Per-
sistenceManagerFactory.getPersistenceManager() . This loader is saved

with the PersistenceManager and cleared when the PersistenceManager is

closed.

12.6 Interface PersistenceManager

package javax.jdo;

interface PersistenceManager {

A JDO PersistenceManager instance supports any number of JDO instances at a time.

It is responsible for managing the identity of its associated JDO instances. A JDO instance

is associated with either zero or one JDO PersistenceManager . It will be zero if and

only if the JDO instance is in the transient state. As soon as the instance is made persistent

or transactional, it will be associated with exactly one JDO PersistenceManager .

A JDO PersistenceManager instance supports one transaction at a time, and uses one

connection to the underlying data source at a time. The JDO PersistenceManager in-

stance might use multiple transactions serially, and might use multiple connections serial-

ly.

Therefore, to support multiple concurrent connection-oriented data sources in an applica-

tion, multiple JDO PersistenceManager instances are required.

In this interface, JDO instances passed as parameters and returned as values must imple-

ment PersistenceCapable . However, the interface defines these formal parameters

as Object because casting user classes to PersistenceCapable is awkward.

public interface javax.jdo.PersistenceManager {

boolean isClosed();

void close();

The isClosed method returns false upon construction of the PersistenceMan-
ager instance, or upon retrieval of a PersistenceManager from a pool. It returns

true only after the close method completes successfully. After being closed, the Per-
sistenceManager instance might be returned to the pool or garbage collected, at the

choice of the JDO implementation. Before being used again to satisfy a getPersis-
tenceManager request, the options will be reset to their default values as specified in the

PersistenceManagerFactory .

In a non-managed environment, if the current transaction is active, close throws

JDOUserException .

After close completes, all methods on the PersistenceManager instance except is-
Closed throw a JDOFatalUserException .

Null management

In the APIs that follow, Object[] and Collection are permitted parameter types. As

these may contain nulls, the following rules apply.

Null arguments to APIs that take an Object parameter cause the API to have no effect.

Null arguments to APIs that take Object[] or Collection will cause the API to throw

NullPointerException . Non-null Object[] or Collection arguments that con-
 JDO 1.0.1 87 June 5, 2003

Java Data Objects 1.0.1
tain null elements will have the documented behavior for non-null elements, and the null

elements will be ignored.

12.6.1 Cache management

Normally, cache management is automatic and transparent. When instances are queried,

navigated to, or modified, instantiation of instances and their fields and garbage collection

of unreferenced instances occurs without any explicit control. When the transaction in

which persistent instances are created, deleted, or modified completes, eviction is auto-

matically done by the transaction completion mechanisms. Therefore, eviction is not nor-

mally required to be done explicitly. However, if the application chooses to become more

involved in the management of the cache, several methods are available.

The non-parameter version of these methods applies the operation to each appropriate

JDO instance in the cache. For evictAll , these are all persistent-clean instances; for re-
freshAll , all persistent-nontransactional instances.

void evict (Object pc);

void evictAll ();

void evictAll (Object[] pcs);

void evictAll (Collection pcs);

Eviction is a hint to the PersistenceManager that the application no longer needs the

parameter instances in the cache. Eviction allows the parameter instances to be subse-

quently garbage collected. Evicted instances will not have their values retained after trans-

action completion, regardless of the settings of the retainValues or restoreValues
flags.

If evictAll with no parameters is called, then all persistent-clean instances are evicted

(they transition to hollow). If users wish to automatically evict transactional instances at

transaction commit time, then they should set RetainValues to false . Similarly, to au-

tomatically evict transactional instances at transaction rollback time, then they should set

RestoreValues to false .

For each persistent-clean and persistent-nontransactional instance that the JDO Persis-
tenceManager evicts, it:

• calls the jdoPreClear method on each instance, if the class of the instance

implements InstanceCallbacks

• clears persistent fields on each instance (sets the value of the field to its Java default

value);

• changes the state of instances to hollow.

void refresh (Object pc);

void refreshAll ();

void refreshAll (Object[] pcs);

void refreshAll (Collection pcs);

The refresh method updates the values in the parameter instance[s] from the data in the

datastore. The intended use is for optimistic transactions where the state of the JDO in-

stance is not guaranteed to reflect the state in the datastore, and for datastore transactions

to undo the changes to a specific set of instances instead of rolling back the entire transac-

tion. This method can be used to minimize the occurrence of commit failures due to mis-

match between the state of cached instances and the state of data in the datastore.
 JDO 1.0.1 88 June 5, 2003

Java Data Objects 1.0.1
The refreshAll method with no parameters causes all transactional instances to be re-

freshed. If a transaction is not in progress, then this call has no effect.

Note that this method will cause loss of changes made to affected instances by the appli-

cation due to refreshing the contents from the datastore.

The JDO PersistenceManager :

• loads persistent values from the datastore into the instance;

• calls the jdoPostLoad method on each persistent instance, if the class of the

instance implements InstanceCallbacks ; and

• changes the state of persistent-dirty instances to persistent-clean in a datastore

transaction; or persistent-nontransactional in an optimistic transaction.

void retrieve(Object pc);

void retrieveAll(Collection pcs);

void retrieveAll(Collection pcs, boolean DFGOnly);

void retrieveAll(Object[] pcs);

void retrieveAll(Object[] pcs, boolean DFGOnly);

These methods request the PersistenceManager to load all persistent fields into the

parameter instances. Subsequent to this call, the application might call makeTransient
on the parameter instances, and the fields can no longer be touched by the Persis-
tenceManager . The PersistenceManager might also retrieve related instances ac-

cording to a pre-read policy (not specified by JDO).

If the DFGOnly parameter is true , then this is a hint to the implementation that only the

fields in the default fetch group need to be retrieved. A compliant implementation is per-

mitted to retrieve all fields regardless of the setting of this parameter. After the call with

the DFGOnly parameter true , all default fetch group fields have been fetched, but other

fields might be fetched lazily by the implementation.

The JDO PersistenceManager :

• loads persistent values from the datastore into the instance;

• for hollow instances, changes the state to persistent-clean in a datastore

transaction; or persistent-nontransactional in an optimistic transaction, and if the

class of the instance implements InstanceCallbacks calls jdoPostLoad .

12.6.2 Transaction factory interface

Transaction currentTransaction();

The currentTransaction method returns the Transaction instance associated

with the PersistenceManager . The identical Transaction instance will be returned

by all currentTransaction calls to the same PersistenceManager until close .

Note that multiple transactions can be begun and completed (serially) with this same in-

stance.

Even if the Transaction instance returned cannot be used for transaction completion

(due to external transaction management), it still can be used to set flags.

12.6.3 Query factory interface

The query factory methods are detailed in the Query chapter .

void setIgnoreCache (boolean flag);
 JDO 1.0.1 89 June 5, 2003

Java Data Objects 1.0.1
boolean getIgnoreCache ();

These methods get and set the value of the IgnoreCache option for all Query instances

created by this PersistenceManager [see Query options]. The IgnoreCache option

if set to true , is a hint to the query engine that the user expects queries to be optimized to

return approximate results by ignoring changed values in the cache.

The IgnoreCache option also affects the iterator obtained from Extent instances ob-

tained from this PersistenceManager .

The IgnoreCache option is preserved for query instances constructed from other query

instances.

12.6.4 Extent Management

Extents are collections of datastore objects managed by the datastore, not by explicit user

operations on collections. Extent capability is a boolean property of classes that are persis-

tence capable. If an instance of a class that has a managed extent is made persistent via

reachability, the instance is put into the extent implicitly.

Extent getExtent (Class PersistenceCapableClass, boolean sub-
classes);

The getExtent method returns an Extent that contains all of the instances in the pa-

rameter class, and if the subclasses flag is true , all of the instances of the parameter class

and its subclasses.

If the metadata does not indicate via the requires-extent attribute in the class ele-

ment that an extent is managed for the parameter class, then JDOUserException is

thrown. The extent might not include instances of those subclasses for which the metadata

indicates that an extent is not managed for the subclass.

This method can be called whether or not a transaction is active, regardless of whether

NontransactionalRead is supported. If NontransactionalRead is not supported,

then the iterator method will throw a JDOUnsupportedOptionException if called

outside a transaction.

It might be a common usage to iterate over the contents of the Extent , and the Extent
should be implemented in such a way as to avoid out-of-memory conditions on iteration.

The primary use for the Extent returned as a result of this method is as a candidate col-

lection parameter to a Query instance. For this usage, the elements in the Extent typical-

ly will not be instantiated in the Java VM; it is used only to identify the prospective

datastore instances.

12.6.5 JDO Identity management

Object getObjectById (Object oid, boolean validate);

The getObjectById method attempts to find an instance in the cache with the specified

JDO identity. The oid parameter object might have been returned by an earlier call to ge-
tObjectId or getTransactionalObjectId , or might have been constructed by the

application.

If the PersistenceManager is unable to resolve the oid parameter to an ObjectId
instance, then it throws a JDOUserException . This might occur if the implementation

does not support application identity, and the parameter is an instance of an object identity

class.

• If the validate flag is false :
 JDO 1.0.1 90 June 5, 2003

Java Data Objects 1.0.1
• If there is already an instance in the cache with the same JDO identity as the oid

parameter, then this method returns it. There is no change made to the state of the

returned instance.

• If there is not an instance already in the cache with the same JDO identity as the

oid parameter, then this method creates an instance with the specified JDO

identity and returns it. If there is no transaction in progress, the returned instance

will be hollow or persistent-nontransactional, at the choice of the implementation.

• If there is a transaction in progress, the returned instance will be hollow,

persistent-nontransactional, or persistent-clean, at the choice of the

implementation.

• It is an implementation decision whether to access the datastore, if required to

determine the exact class. This will be the case of inheritance, where multiple

PersistenceCapable classes share the same Object Id class.

• If the instance does not exist in the datastore, then this method might not fail. It is

an implementation choice if the method fails immediately with a

JDOObjectNotFoundException . But a subsequent access of the fields of the

instance will throw a JDOObjectNotFoundException if the instance does

not exist at that time. Further, if a relationship is established to this instance, and

the instance does not exist when the instance is flushed to the datastore, then the

transaction in which the association was made will fail.

• If the validate flag is true :

• If there is already a transactional instance in the cache with the same jdo identity

as the oid parameter, then this method returns it. There is no change made to the

state of the returned instance.

• If there is an instance already in the cache with the same jdo identity as the oid

parameter, the instance is not transactional, and the instance does not exist in the

datastore, then a JDOObjectNotFoundException is thrown.

• If there is not an instance already in the cache with the same jdo identity as the oid

parameter, then this method creates an instance with the specified jdo identity,

verifies that it exists in the datastore, and returns it. If the instance does not exist

in the datastore, then a JDOObjectNotFoundException is thrown.

• If there is no transaction in progress, the returned instance will be hollow or

persistent-nontransactional, at the choice of the implementation.

• If there is a datastore transaction in progress, the returned instance will be

persistent-clean.

• If there is an optimistic transaction in progress, the returned instance will be

persistent-nontransactional.

Object getObjectId (Object pc);

The getObjectId method returns an ObjectId instance that represents the object

identity of the specified JDO instance. The identity is guaranteed to be unique only in the

context of the JDO PersistenceManager that created the identity, and only for two

types of JDO Identity: those that are managed by the application, and those that are man-

aged by the datastore.

If the object identity is being changed in the transaction, by the application modifying one

or more of the application key fields, then this method returns the identity as of the begin-

ning of the transaction. The value returned by getObjectId will be different following

afterCompletion processing for successful transactions.

Within a transaction, the ObjectId returned will compare equal to the ObjectId re-

turned by only one among all JDO instances associated with the PersistenceManager
regardless of the type of ObjectId .
 JDO 1.0.1 91 June 5, 2003

Java Data Objects 1.0.1
The ObjectId does not necessarily contain any internal state of the instance, nor is it nec-

essarily an instance of the class used to manage identity internally. Therefore, if the appli-

cation makes a change to the ObjectId instance returned by this method, there is no

effect on the instance from which the ObjectId was obtained.

The getObjectById method can be used between instances of PersistenceMan-
ager of different JDO vendors only for instances of persistence capable classes using ap-

plication-managed (primary key) JDO identity. If it is used for instances of classes using

datastore identity, the method might succeed, but there are no guarantees that the param-

eter and return instances are related in any way.

If the parameter pc is not persistent, or is null , then null is returned.

Object getTransactionalObjectId (Object pc);

If the object identity is being changed in the transaction, by the application modifying one

or more of the application key fields, then this method returns the current identity in the

transaction. If there is no transaction in progress, or if none of the key fields is being mod-

ified, then this method has the same behavior as getObjectId .

To get an instance in a PersistenceManager with the same identity as an instance

from a different PersistenceManager , use the following: aPersistenceMan-
ager.getObjectById(JDOHelper.getObjectId(pc), validate) . The val-
idate parameter has a value of true or false depending on your application

requirements.

12.6.6 JDO Instance life cycle management

The following methods take either a single instance or multiple instances as parameters.

If a collection or array of instances is passed to any of the methods in this section, and one

or more of the instances fail to complete the required operation, then all instances will be

attempted, and a JDOUserException will be thrown which contains a nested exception

array, each exception of which contains one of the failing instances. The succeeding in-

stances will transition to the specified life cycle state, and the failing instances will remain

in their current state.

Make instances persistent

void makePersistent (Object pc);

void makePersistentAll (Object[] pcs);

void makePersistentAll (Collection pcs);

These methods make a transient instance persistent directly. They must be called in the

context of an active transaction, or a JDOUserException is thrown. They will assign an

object identity to the instance and transition it to persistent-new. Any transient instances

reachable from this instance via persistent fields of this instance will become provisionally

persistent, transitively. That is, they behave as persistent-new instances (return true to

isPersistent , isNew , and isDirty). But at commit time, the reachability algorithm

is run again, and instances made provisionally persistent that are not currently reachable

from persistent instances will revert to transient.

These methods have no effect on parameter persistent instances already managed by this

PersistenceManager . They will throw a JDOUserException if the parameter in-

stance is managed by a different PersistenceManager .
 JDO 1.0.1 92 June 5, 2003

Java Data Objects 1.0.1
If an instance is of a class whose identity type (application , datastore , or none) is

not supported by the JDO implementation, then a JDOUserException will be thrown

for that instance.

Delete persistent instances

void deletePersistent (Object pc);

void deletePersistentAll (Object[] pcs);

void deletePersistentAll (Collection pcs);

These methods delete persistent instances from the datastore. They must be called in the

context of an active transaction, or a JDOUserException is thrown. The representation

in the datastore will be deleted when this instance is flushed to the datastore (via commit
or evict).

Note that this behavior is not exactly the inverse of makePersistent , due to the transi-

tive nature of makePersistent . The implementation might delete dependent datastore

objects depending on implementation-specific policy options that are not covered by the

JDO specification.

These methods have no effect on parameter instances already deleted in the transaction or

on embedded instances. Embedded instances are deleted when their owning instance is

deleted.

If deleting an instance would violate datastore integrity constraints, it is implementation-

defined whether an exception is thrown at commit time, or the delete operation is simply

ignored. Portable applications should use this method to delete instances from the data-

store, and not depend on any reachability algorithm to automatically delete instances.

These methods will throw a JDOUserException if the parameter instance is managed

by a different PersistenceManager .These methods will throw a JDOUserExcep-
tion if the parameter instance is transient.

Make instances transient

void makeTransient (Object pc);

void makeTransientAll (Object[] pcs);

void makeTransientAll (Collection pcs);

These methods make persistent instances transient, so they are no longer associated with

the PersistenceManager instance. They do not affect the persistent state in the data-

store. They can be used as part of a sequence of operations to move a persistent instance

to another PersistenceManager . The instance transitions to transient, and it loses its

JDO identity. If the instance has state (persistent-nontransactional or persistent-clean) the

state in the cache is preserved unchanged. If the instance is dirty, a JDOUserException
is thrown.

The effect of this method is immediate and not subject to rollback. Field values in the in-

stances are not modified. To avoid having the instances become persistent by reachability

at commit, the application should update all persistent instances containing references to

the parameter instances to avoid referring to them, or make the referring instances tran-

sient.

These methods will be ignored if the instance is transient.

Make instances transactional

void makeTransactional (Object pc);
 JDO 1.0.1 93 June 5, 2003

Java Data Objects 1.0.1
void makeTransactionalAll (Object[] pcs);

void makeTransactionalAll (Collection pcs);

These methods make transient instances transactional and cause a state transition to tran-

sient-clean. After the method completes, the instance observes transaction boundaries. If

the transaction in which this instance is made transactional commits, then the transient in-

stance retains its values. If the transaction is rolled back, then the transient instance takes

its values as of the call to makeTransactional if the call was made within the current

transaction; or the beginning of the transaction, if the call was made prior to the beginning

of the current transaction.

If the implementation does not support TransientTransactional , and the parame-

ter instance is transient, then JDOUnsupportedOptionException is thrown.

These methods are also used to mark a nontransactional persistent instance as being part

of the read-consistency set of the transaction. In this case, the call must be made in the con-

text of an active transaction, or a JDOUserException is thrown.

The effect of these methods is immediate and not subject to rollback.

Make instances nontransactional

void makeNontransactional (Object pc);

void makeNontransactionalAll (Object[] pcs);

void makeNontransactionalAll (Collection pcs);

These methods make transient-clean instances nontransactional and cause a state transi-

tion to transient. After the method completes, the instance does not observe transaction

boundaries.

These methods make persistent-clean instances nontransactional and cause a state transi-

tion to persistent-nontransactional.

If this method is called with a dirty parameter instance, a JDOUserException is thrown.

The effect of these methods is immediate and not subject to rollback.

12.7 Transaction completion

Transaction completion management is delegated to the associated Transaction in-

stance .

12.8 Multithreaded Synchronization

The application might require the PersistenceManager to synchronize internally to

avoid corruption of data structures due to multiple application threads. This synchroniza-

tion is not required when the flag Multithreaded is set to false .

void setMultithreaded (boolean flag);

boolean getMultithreaded();

NOTE: When the Multithreaded flag is set to true , there is a synchronization issue

with jdoFlags values READ_OKand READ_WRITE_OK. Due to out-of-order memory

writes, there is a chance that a value for a field in the default fetch group might be incorrect

(stale) when accessed by a thread that has not synchronized with the thread that set the

jdoFlags value. Therefore, it is recommended that a JDO implementation not use

READ_OK or READ_WRITE_OK for jdoFlags if Multithreaded is set to true .
 JDO 1.0.1 94 June 5, 2003

Java Data Objects 1.0.1
The application may choose to perform its own synchronization, and indicate this to the

implementation by setting the Multithreaded flag to false . In this case, the JDO im-

plementation is not required to implement any additional synchronizations, although it is

permitted to do so.

12.9 User associated object

The application might manage PersistenceManager instances by using an associated

object for bookkeeping purposes. These methods allow the user to manage the associated

object.

void setUserObject (Object o);

Object getUserObject ();

The parameter is not inspected or used in any way by the JDO implementation.

12.10 PersistenceManagerFactory

The application might need to get the PersistenceManagerFactory that created this

PersistenceManager . If the PersistenceManager was created using a construc-

tor, then this call returns null .

PersistenceManagerFactory getPersistenceManagerFactory();

12.11 ObjectId class management

In order for the application to construct instances of the ObjectId class, there is a method

that returns the ObjectId class given the persistence capable class.

Class getObjectIdClass (Class pcClass);

This method returns the class of the object id for the given class. This method returns the

class specified by the application for persistence capable classes that use application (pri-

mary key) JDO identity. It returns the implementation-defined class for persistence-capa-

ble classes that use datastore identity. If the parameter class is not persistence-capable, or

the parameter is null , null is returned. If the object-id class defined in the metadata for

the parameter class is abstract then null is returned.

If the implementation does not support application identity, and the class is defined in the

jdo metadata to use application identity, then null is returned.

Object newObjectIdInstance (Class pcClass, String str);

This method returns an object id instance corresponding to the Class and String argu-

ments. The String argument might have been the result of executing toString on an ob-

ject id instance.

This method is portable for datastore identity and application identity.
 JDO 1.0.1 95 June 5, 2003

Java Data Objects 1.0.1
13 Transactions and Connections

This chapter describes the interactions among JDO instances, JDO Persistence Managers,

datastore transactions, and datastore connections.

13.1 Overview

Operations on persistent JDO instances at the user’s choice might be performed in the con-

text of a transaction. That is, the view of data in the datastore is transactionally consistent,

according to the standard definition of ACID transactions:

• atomic --within a transaction, changes to values in JDO instances are all executed

or none is executed

• consistent -- changes to values in JDO instances are consistent with changes to

other values in the same JDO instance

• isolated -- changes to values in JDO instances are isolated from changes to the same

JDO instances in different transactions

• durable -- changes to values in JDO instances survive the end of the VM in which

the changes were made

13.2 Goals

The JDO transaction and connection contracts have the following goals.

• JDO implementations might span a range of small, embedded systems to large,

enterprise systems

• Transaction management might be entirely hidden from class developers and

application components, or might be explicitly exposed to class and application

component developers.

13.3 Architecture: PersistenceManager, Transactions, and Connections

An instance of an object supporting the PersistenceManager interface represents a

single user’s view of persistent data, including cached persistent instances across multiple

serial datastore transactions.

There is a one-to-one relationship between the PersistenceManager and the Trans-
action . The Transaction interface is isolated because of separation of concerns. The

methods could have been added to the PersistenceManager interface.

The javax.jdo.Transaction interface provides for management of transaction op-

tions and, in the non-managed environment, for transaction completion. It is similar in

functionality to javax.transaction.UserTransaction . That is, it contains begin,

commit, and rollback methods used to delimit transactions.
 JDO 1.0.1 96 June 5, 2003

Java Data Objects 1.0.1
Connection Management Scenarios

• single connection: In the simplest case, the PersistenceManager directly connects

to the datastore and manages transactional data. In this case, there is no reason to

expose any Connection properties other than those needed to identify the user and

the data source. During transaction processing, the Connection will be used to

satisfy data read, write, and transaction completion requests from the

PersistenceManager .

• connection pooling: In a slightly more complex situation, the

PersistenceManagerFactory creates multiple PersistenceManager
instances which use connection pooling to reduce resource consumption. The

PersistenceManager s are used in single datastore transactions. In this case, a

pooling connection manager is a separate component used by the

PersistenceManager instances to effect the pooling of connections. The

PersistenceManagerFactory will include a reference to the connection

pooling component, either as a JNDI name or as an object reference. The

connection pooling component is separately configured, and the

PersistenceManagerFactory simply needs to be configured to use it.

• distributed transactions: An even more complex case is where the

PersistenceManager instances need to use connections that are involved in

distributed transactions. This case requires coordination with a Transaction

Manager, and exposure of the XAResource from the datastore Connection. JDO

does not specify how the application coordinates transactions among the

PersistenceManager and the Transaction Manager.

• managed connections: The last case to consider is the managed environment,

where the PersistenceManagerFactory uses a datastore Connection whose

transaction completion is managed by the application server. This case requires

the datastore Connection to implement the J2EE Connector Architecture and the

PersistenceManager to use the architected interfaces to obtain a reference to a

Connection.

The interface between the JDO implementation and the Connection component is not

specified by JDO. In the non-managed environment, transaction completion is handled by

the Connection managed internally by the Transaction. In the managed environment,

transaction completion is handled by the XAResource associated with the Connection.

In both cases, the PersistenceManager implementation is responsible for setting up

the appropriate interface to the Connection infrastructure.

Native Connection Management

If the JDO implementation supplies its own resource adapter implementation, this is

termed native connection management. For use in a managed environment, the associa-

tion between Transaction and Connection must be established using the J2EE Connec-

tion Architecture [see Appendix A reference 4]. This is done by the JDO implementation

implementing the javax.resource.ManagedConnectionFactory interface.

When used in a non-managed environment, with non-distributed transaction manage-

ment (local transactions) the application can use the PersistenceManagerFactory .

But if distributed transaction management is required, the application needs to supply an

implementation of javax.resource.ManagedConnectionFactory interface. This

interface provides the infrastructure to enlist the XAResource with the Transaction Man-

ager used in the application.
 JDO 1.0.1 97 June 5, 2003

Java Data Objects 1.0.1
Non-native Connection Management

If the JDO implementation uses a third party Connection interface, then it can be used in

a managed environment only if the third party Connection supports the J2EE Connector

Architecture. In this case, the PersistenceManagerFactory property Connec-
tionFactory is used to allow the application server to manage connections.

In the non-managed case, non-distributed transaction management can use the Persis-
tenceManagerFactory , as above. But if distributed transaction management is re-

quired, the application needs to supply an implementation of

javax.resource.ConnectionManager interface to be used with the application’s

implementation of the Connection management.

Optimistic Transactions

There are two types of transaction management strategies supported by JDO: “datastore

transaction management”; and “optimistic transaction management”.

With datastore transaction management, all operations performed by the application on

persistent data are done using a datastore transaction. This means that between the first

data access until the commit, there is an active datastore transaction.

With optimistic transaction management, operations performed by the application on per-

sistent data outside a transaction or before commit are done using a short local datastore

transaction. During flush, a datastore transaction is used for the update operations, veri-

fying that the proposed changes do not conflict with a parallel update by a different trans-

action.

Optimistic transaction management is specified by the Optimistic setting on Trans-
action .

Figure 15.0 Transactions and Connections

JDO PersistenceManager

JDO PersistenceManager

Application

Transaction

Connection

Connection

XAResource

XAResource

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

Manager

Transaction

Transaction

Transaction Option

Transaction
Completion

Methods

Methods
 JDO 1.0.1 98 June 5, 2003

Java Data Objects 1.0.1
13.4 Interface Transaction

package javax.jdo.Transaction;

interface Transaction {

13.4.1 PersistenceManager

PersistenceManager getPersistenceManager ();

This method returns the PersistenceManager associated with this Transaction in-

stance.

boolean isActive ();

This method tells whether there is an active transaction. The transaction might be either a

local transaction or a distributed transaction. If the transaction is local, then the begin
method was executed and neither commit nor rollback has been executed. If the trans-

action is managed by XAResource with a TransactionManager , then this method in-

dicates whether there is a distributed transaction active.

This method returns true after the transaction has been started, until the afterCom-
pletion synchronization method is called.

13.4.2 Transaction options

Transaction options are valid for both managed and non-managed environments. Flags

are durable until changed explicitly by set methods. They are not changed by transaction

demarcation methods.

If any of the set methods is called during commit or rollback processing (within the be-
foreCompletion and afterCompletion synchronization methods), a JDOUserEx-
ception is thrown.

If an implementation does not support the option, then an attempt to set the flag to an un-

supported value will throw JDOUnsupportedOptionException .

Nontransactional access to persistent values

boolean getNontransactionalRead ();

void setNontransactionalRead (boolean flag);

These methods access the flag that allows persistent instances to be read outside a transac-

tion. If this flag is set to true , then queries and field read access (including navigation) are

allowed without an active transaction. If this flag is set to false , then queries and field

read access (including navigation) outside an active transaction throw a JDOUserEx-
ception .

boolean getNontransactionalWrite ();

void setNontransactionalWrite (boolean flag);

These methods access the flag that allows non-transactional instances to be written in the

cache. If this flag is set to true , then updates to non-transactional instances are allowed

without an active transaction. If this flag is set to false , then updates to non-transactional

instances outside an active transaction throw a JDOUserException .

Optimistic concurrency control

If this flag is set to true , then optimistic concurrency is used for managing transactions.

boolean getOptimistic ();
 JDO 1.0.1 99 June 5, 2003

Java Data Objects 1.0.1
The optimistic setting currently active is returned.

void setOptimistic (boolean flag);

The optimistic setting passed replaces the optimistic setting currently active.

This method can be used only when there is not an active transaction. If it is used while

there is an active transaction, a JDOUserException is thrown.

Retain values at transaction commit

If this flag is set to true , then eviction of transactional persistent instances does not take

place at transaction commit. If this flag is set to false , then eviction of transactional per-

sistent instances takes place at transaction commit.

boolean getRetainValues ();

The retainValues setting currently active is returned.

void setRetainValues (boolean flag);

The retainValues setting passed replaces the retainValues setting currently active.

Restore values at transaction rollback

If this flag is set to true , then restoration of transactional persistent instances takes place

at transaction rollback. If this flag is set to false , then eviction of transactional persistent

instances takes place at transaction rollback.

boolean getRestoreValues ();

The restoreValues setting currently active is returned.

void setRestoreValues (boolean flag);

The restoreValues setting passed replaces the restoreValues setting currently ac-

tive. This method can be used only when there is not an active transaction. If it is used

while there is an active transaction, a JDOUserException is thrown.

13.4.3 Synchronization

The Transaction instance participates in synchronization in two ways: as a supplier of

synchronization callbacks, and as a consumer of callbacks. As a supplier of callbacks, a

user can register with the Transaction instance to be notified at transaction completion.

As a consumer of callbacks, the Transaction implementation will use the proprietary

interfaces of the managed environment to be notified of externally-initiated transaction

completion events. In a managed environment, this notification is used to cause flushing

of changes to the datastore as part of transaction completion.

For this latter purpose, the JDO implementation class might implement javax.trans-
action.Synchronization or might use a delegate to be notified.

Synchronization is supported for both managed and non-managed environments. A Syn-
chronization instance registered with the Transaction remains registered until

changed explicitly by another setSynchronization .

Only one Synchronization instance can be registered with the Transaction . If the

application requires more than one instance to receive synchronization callbacks, then the

application instance is responsible for managing them, and forwarding callbacks to them.

void setSynchronization (javax.transaction.Synchronization
sync);

The Synchronization instance is registered with the Transaction for transaction

completion notifications. Any Synchronization instance already registered will be re-
 JDO 1.0.1 100 June 5, 2003

Java Data Objects 1.0.1
placed. If the parameter is null , then no instance will be notified. If this method is called

during commit processing (within the user’s beforeCompletion or afterComple-
tion method), a JDOUserException is thrown.

The beforeCompletion method will be called during the behavior specified for the

transaction completion method commit . The beforeCompletion method will not be

called before rollback .

The afterCompletion method will be called during the transaction completion meth-

ods. The parameter for the afterCompletion(int status) method will be either

javax.transaction.Status.STATUS_COMMITTED or javax.transac-
tion.Status.STATUS_ROLLEDBACK .

These two methods allow the application control over the environment in which the trans-

action completion executes (for example, validate the state of the cache before completion)

and to control the cache disposition once the transaction completes (for example, to change

persistent instances to persistent-nontransactional state).

javax.transaction.Synchronization getSynchronization ();

This method returns the Synchronization currently registered.

13.4.4 Transaction demarcation

If multiple parallel transactions are required, then multiple PersistenceManager in-

stances must be used. If distributed transactions are required, then the Connector Archi-

tecture is used to coordinate transactions among the JDO PersistenceManager s.

Non-managed environment

In a non-managed environment, with a single JDO PersistenceManager per applica-

tion, there is a Transaction instance representing a local transaction associated with the

PersistenceManager instance.

void begin();

void commit();

void rollback();

The commit and rollback methods can be used only in a non-managed environment,

or in a managed environment with Bean Managed Transactions. If one of these methods is

executed in a managed environment with Container Managed Transactions, a JDOUser-
Exception is thrown.

The commit method performs the following operations:

• calls the beforeCompletion method of the Synchronization instance

registered with the Transaction ;

• flushes dirty persistent instances;

• notifies the underlying datastore to commit the transaction;

• transitions persistent instances according to the life cycle specification;

• calls the afterCompletion method of the Synchronization instance

registered with the Transaction with the results of the datastore commit

operation.

The rollback method performs the following operations:

• transitions persistent instances according to the life cycle specification;
 JDO 1.0.1 101 June 5, 2003

Java Data Objects 1.0.1
• rolls back changes made in this transaction from the datastore;

• calls the afterCompletion method of the Synchronization instance

registered with the Transaction .

Managed environment

In a managed environment, there is either a user transaction or a local transaction associ-

ated with the PersistenceManager instance when executing method calls on JDO in-

stances or on the PersistenceManager . Which of the two types of transactions is

active is a policy issue for the managed environment.

If datastore transaction management is being used with the PersistenceManager in-

stance, and a Connection to the datastore is required during execution of the Persis-
tenceManager or JDO instance method, then the PersistenceManager will

dynamically acquire a Connection. The call to acquire the Connection will be made with

the calling thread in the appropriate transactional context, and the Connection acquired

will be in the proper datastore transaction.

If optimistic transaction management is being used with the PersistenceManager in-

stance, and a Connection to the datastore is required during execution of an instance meth-

od or a non-completion PersistenceManager method, then the

PersistenceManager will use a local transaction Connection.

13.5 Optimistic transaction management

Optimistic transactions are an optional feature of a JDO implementation. They are useful

when there are long-running transactions that rarely affect the same instances, and there-

fore the datastore will exhibit better performance by deferring datastore exclusion on

modified instances until commit.

In the following discussion, “transactional datastore context” refers to the transaction con-

text of the underlying datastore, while “transaction”, “datastore transaction”, and “opti-

mistic transaction” refer to the JDO transaction concepts.

With datastore transactions, persistent instances accessed within the scope of an active

transaction are guaranteed to be associated with the transactional datastore context. With

optimistic transactions, persistent instances accessed within the scope of an active transac-

tion are not associated with the transactional datastore context; the only time any instances

are associated with the transactional datastore context is during commit.

With optimistic transactions, instances queried or read from the datastore will not be

transactional unless they are modified, deleted, or marked by the application as transac-

tional. At commit time, the JDO implementation:

• establishes a transactional datastore context in which verification, insert, delete,

and updates will take place.

• calls the beforeCompletion method of the Synchronization instance

registered with the Transaction ;

• verifies unmodified instances that have been made transactional, to ensure that the

state in the datastore is the same as the instance used in the transaction [this is done

using a JDO implementation-specific algorithm];
 JDO 1.0.1 102 June 5, 2003

Java Data Objects 1.0.1
• verifies modified and deleted instances during flushing to the datastore, to ensure

that the state in the datastore is the same as the before image of the instance that

was modified or deleted by the transaction [this is done using a JDO

implementation-specific algorithm]

• If any instance fails the verification, a

JDOOptimisticVerificationException is thrown which contains an

array of JDOOptimisticVerificationException , one for each instance

that failed the verification. The optimistic transaction is failed, and the transaction

is rolled back. The definition of “changed instance” is a JDO implementation

choice, but it is required that a field that has been changed to different values in

different transactions results in one of the transactions failing.

• if verification succeeds, notifies the underlying datastore to commit the

transaction;

• transitions persistent instances according to the life cycle specification, based on

whether the transaction succeeds and the setting of the RetainValues and

RestoreValues flags;

• calls the afterCompletion method of the Synchronization instance

registered with the Transaction with the results of the commit operation.

Details of the state transitions of persistent instances in optimistic transactions may be

found in section 5.8.
 JDO 1.0.1 103 June 5, 2003

Java Data Objects 1.0.1
14 Query

This chapter specifies the query contract between an application component and the JDO

PersistenceManager .

The query facility consists of two parts: the query API, and the query language. The query

language described in this chapter is “JDOQL”.

14.1 Overview

An application component requires access to JDO instances so it can invoke specific behav-

ior on those instances. From a JDO instance, it might navigate to other associated instances,

thereby operating on an application-specific closure of instances.

However, getting to the first JDO instance is a bootstrap issue. There are three ways to get

an instance from JDO. First, if the users have or can construct a valid ObjectId , then they

can get an instance via the persistence manager’s getObjectById method. Second, us-

ers can iterate a class extent by calling getExtent . Third, the JDO Query interface pro-

vides the ability to acquire access to JDO instances from a particular JDO persistence

manager based on search criteria specified by the application.

The persistent manager instance is a factory for query instances, and queries are executed

in the context of the persistent manager instance.

The actual query execution might be performed by the JDO PersistenceManager or

might be delegated by the JDO PersistenceManager to its datastore. The actual query

executed thus might be implemented in a very different language from Java, and might be

optimized to take advantage of particular query language implementations.

For this reason, methods in the query filter have semantics possibly different from those

in the Java VM.

14.2 Goals

The JDO Query interface has the following goals:

• Query language neutrality. The underlying query language might be a relational

query language such as SQL; an object database query language such as OQL; or

a specialized API to a hierarchical database or mainframe EIS system.

• Optimization to specific query language. The Query interface must be capable of

optimizations; therefore, the interface must have enough user-specified

information to allow for the JDO implementation to exploit data source specific

query features.

• Accommodation of multi-tier architectures. Queries might be executed entirely in

memory, or might be delegated to a back end query engine. The JDO Query
interface must provide for both types of query execution strategies.
 JDO 1.0.1 104 June 5, 2003

Java Data Objects 1.0.1
• Large result set support. Queries might return massive numbers of JDO instances

that match the query. The JDO Query architecture must provide for processing

the results within the resource constraints of the execution environment.

• Compiled query support. Parsing queries may be resource-intensive, and in many

applications can be done during application development or deployment, prior to

execution time. The query interface allows for compiling queries and binding run-

time parameters to the bound queries for execution.

14.3 Architecture: Query

The JDO PersistenceManager instance is a factory for JDO Query instances, which

implement the JDO Query interface. Multiple JDO Query instances might be active si-

multaneously in the same JDO PersistenceManager instance. Multiple queries might

be executed simultaneously by different threads, but the implementation might choose to

execute them serially. In either case, the execution must be thread safe.

There are three required elements in any query:

• the class of the candidate instances. The class is used to scope the names in the

query filter. All of the candidate instances are of this class or a subclass of this class.

• the collection of candidate JDO instances. The collection of candidate instances is

either a java.util.Collection , or an Extent of instances in the datastore.

Instances that are not of the required class or subclass will be silently ignored. The

Collection might be a previous query result, allowing for subqueries.

• the query filter. The query filter is a Java boolean expression that tells whether

instances in the candidate collection are to be returned in the result. If not

specified, the filter defaults to true .

Other elements in queries include:

• parameter declarations. The parameter declaration is a String containing one or

more query parameter declarations separated with commas. It follows the syntax

for formal parameters in the Java language. Each parameter named in the

parameter declaration must be bound to a value when the query is executed.

• parameter values to bind to parameters. Values are specified as Java Object s, and

might include simple wrapper types or more complex object types. The values are

passed to the execute methods and are not preserved after a query executes.

• variable declarations: Variables might be used in the filter, and these variables

must be declared with their type. The variable declaration is a String containing

one or more variable declarations. Each declaration consists of a type and a

variable name, with declarations separated by a semicolon if there are two or more

declarations. It is similar to the syntax for local variables in the Java language.

• import statements: Parameters and variables might come from a different class

from the candidate class, and the names might need to be declared in an import

statement to eliminate ambiguity. Import statements are specified as a String
with semicolon-separated statements. The syntax is the same as in the Java

language import statement.

• ordering specification. The ordering specification includes a list of expressions

with the ascending/descending indicator. The expression’s type must be one of:
 JDO 1.0.1 105 June 5, 2003

Java Data Objects 1.0.1
• primitive types except boolean ;

• wrapper types except Boolean ;

• BigDecimal ;

• BigInteger ;

• String ;

• Date .

The class implementing the Query interface must be serializable. The serialized fields in-

clude the candidate class, the filter, parameter declarations, variable declarations, imports,

and ordering specification. If a serialized instance is restored, it loses its association with

its former PersistenceManager .

14.4 Namespaces in queries

The query namespace is modeled after methods in Java:

• setClass corresponds to the class definition

• declareParameters corresponds to formal parameters of a method

• declareVariables corresponds to local variables of a method

• setFilter and setOrdering correspond to the method body

There are two namespaces in queries. Type names have their own namespace that is sep-

arate from the namespace for fields, variables and parameters.

The method setClass introduces the name of the candidate class in the type namespace.

The method declareImports introduces the names of the imported class or interface

types in the type namespace. When used (e.g. in a parameter declaration, cast expression,

etc.) a type name must be the name of the candidate class, the name of a class or interface

imported by the parameter to declareImports , denote a class or interface from the

same package as the candidate class, or must be declared by exactly one type-import-on-

demand declaration (“import <package>.*; “). It is valid to specify the same import

multiple times.

The names of the public types declared in the package java.lang are automatically im-

ported as if the declaration “import java.lang.*; ” appeared in declareImports .

It is a JDOQL-compile time error (reported during compile() or execute(...) methods) if a

used type name is declared by more than one type-import-on-demand declaration.

The method setClass also introduces the names of the candidate class fields.

The method declareParameters introduces the names of the parameters. A name in-

troduced by declareParameters hides the name of a candidate class field if equal. Pa-

rameter names must be unique.

The method declareVariables introduces the names of the variables. A name intro-

duced by declareVariables hides the name of a candidate class field if equal. Variable

names must be unique and must not conflict with parameter names.

A hidden field may be accessed using the this qualifier: this.fieldName .

14.5 Query Factory in PersistenceManager interface

The PersistenceManager interface contains Query factory methods.

Query newQuery();
 JDO 1.0.1 106 June 5, 2003

Java Data Objects 1.0.1
Construct an empty query instance.

Query newQuery (Object query);

Construct a query instance from another query. The parameter might be a serialized/re-

stored Query instance from the same JDO vendor but a different execution environment,

or the parameter might be currently bound to a PersistenceManager from the same

JDO vendor. Any of the elements Class, Filter, IgnoreCache flag, Import declarations, Vari-

able declarations, Parameter declarations, and Ordering from the parameter Query are

copied to the new Query instance, but a candidate Collection or Extent element is

discarded.

Query newQuery (String language, Object query);

Construct a query instance using the specified language and the specified query. The que-

ry instance will be of a class defined by the query language. The language parameter for

the JDO Query language as herein documented is “javax.jdo.query.JDOQL ”. Other

languages’ parameter is not specified.

Query newQuery (Class cls);

Construct a query instance with the candidate class specified.

Query newQuery (Extent cln);

Construct a query instance with the candidate Extent specified; the candidate class is

taken from the Extent .

Query newQuery (Class cls, Collection cln);

Construct a query instance with the candidate class and candidate Collection speci-

fied.

Query newQuery (Class cls, String filter);

Construct a query instance with the candidate class and filter specified.

Query newQuery (Class cls, Collection cln, String filter);

Construct a query instance with the candidate class, the candidate Collection , and fil-

ter specified.

Query newQuery (Extent cln, String filter);

Construct a query instance with the candidate Extent and filter specified; the candidate

class is taken from the Extent .

14.6 Query Interface

package javax.jdo;

interface Query extends Serializable {

Persistence Manager

PersistenceManager getPersistenceManager();

Return the associated PersistenceManager instance. If this Query instance was re-

stored from a serialized form, then null is returned.

Query element binding

The Query interface provides methods to bind required and other elements prior to exe-

cution.
 JDO 1.0.1 107 June 5, 2003

Java Data Objects 1.0.1
All of these methods replace the previously set query element, by the parameter. [The

methods are not additive.] For example, if multiple variables are needed in the query, all

of them must be specified in the same call to declareVariables .

void setClass (Class candidateClass);

Bind the candidate class to the query instance.

void setCandidates (Collection candidateCollection);

Bind the candidate Collection to the query instance. If the user adds or removes ele-

ments from the Collection after this call, it is not determined whether the added/re-

moved elements take part in the Query , or whether a NoSuchElementException is

thrown during execution of the Query .

For portability, the elements in the collection must be persistent instances associated with

the same PersistenceManager as the Query instance. An implementation might sup-

port transient instances in the collection. If persistent instances associated with another

PersistenceManager are in the collection, JDOUserException is thrown during

execute() .

If the candidates are not specified explicitly by newQuery , setCandidates(Collec-
tion) , or setCandidates(Extent) , then the candidate extent is the extent of instances

of the candidate class in the datastore including subclasses. That is, the candidates are the

result of getPersistenceManager().getExtent(candidateClass, true) .

void setCandidates (Extent candidateExtent);

Bind the candidate Extent to the query instance.

void setFilter (String filter);

Bind the query filter to the query instance.

void declareImports (String imports);

Bind the import statements to the query instance. All imports must be declared in the same

method call, and the imports must be separated by semicolons.

void declareVariables (String variables);

Bind the variable statements to the query instance. This method defines the types and

names of variables that will be used in the filter but not provided as values by the exe-
cute method.

void declareParameters (String parameters);

Bind the parameter statements to the query instance. This method defines the parameter

types and names that will be used by a subsequent execute method.

void setOrdering (String ordering);

Bind the ordering statements to the query instance.

Query options

void setIgnoreCache (boolean flag);

boolean getIgnoreCache ();

The IgnoreCache option, when set to true , is a hint to the query engine that the user

expects queries be optimized to return approximate results by ignoring changed values in

the cache. This option is useful only for optimistic transactions and allows the datastore to

return results that do not take modified cached instances into account. An implementation
 JDO 1.0.1 108 June 5, 2003

Java Data Objects 1.0.1
may choose to ignore the setting of this flag, and always return exact results reflecting cur-

rent cached values, as if the value of the flag were false .

Query compilation

The Query interface provides a method to compile queries for subsequent execution.

void compile();

This method requires the Query instance to validate any elements bound to the query in-

stance and report any inconsistencies by throwing a JDOUserException . It is a hint to

the Query instance to prepare and optimize an execution plan for the query.

14.6.1 Query execution

The Query interface provides methods that execute the query based on the parameters

given. They return an unmodifiable Collection which the user can iterate to get results.

Executing any operation on the Collection that might change it throws Unsupport-
edOperationException . For future extension, the signature of the execute methods

specifies that they return an Object that must be cast to Collection by the user.

Any parameters passed to the execute methods are used only for this execution, and are

not remembered for future execution.

For portability, parameters of persistence-capable types must be persistent or transactional

instances. Parameters that are persistent or transactional instances must be associated with

the same PersistenceManager as the Query instance. An implementation might sup-

port transient instances of persistence-capable types as parameters. If a persistent instance

associated with another PersistenceManager is passed as a parameter, JDOUserEx-
ception is thrown during execute() .

Queries may be constructed at any time before the PersistenceManager is closed, but

may be executed only at certain times. If the PersistenceManager that constructed the

Query is closed, then the execute methods throw JDOUserException . If the Non-
transactionalRead property is false , and a transaction is not active, then the exe-
cute methods throw JDOUserException .

Object execute ();

Object execute (Object p1);

Object execute (Object p1, Object p2);

Object execute (Object p1, Object p2, Object p3);

The execute methods execute the query using the parameters and return the result,

which is an unmodifiable collection of instances that satisfy the boolean filter. The result

may be a large Collection , which should be iterated or possibly passed to another

Query . The size() method might return Integer.MAX_VALUE if the actual size of the

result is not known (for example, the Collection represents a cursored result).

When using an Extent to define candidate instances, the contents of the extent are subject

to the setting of the ignoreCache flag. With ignoreCache set to false :

• if instances were made persistent in the current transaction, the instances will be

considered part of the candidate instances.

• if instances were deleted in the current transaction, the instances will not be

considered part of the candidate instances.

With ignoreCache set to true :
 JDO 1.0.1 109 June 5, 2003

Java Data Objects 1.0.1
• if instances were made persistent in the current transaction, the new instances

might not be considered part of the candidate instances.

• if instances were deleted in the current transaction, the instances will not be

considered part of the candidate instances.

Each parameter of the execute method(s) is an Object that is either the value of the cor-

responding parameter or the wrapped value of a primitive parameter. The parameters as-

sociate in order with the parameter declarations in the Query instance.

Object executeWithMap (Map m);

The executeWithMap method is similar to the execute method, but takes its parame-

ters from a Map instance. The Map contains key/value pairs, in which the key is the de-

clared parameter name, and the value is the value to use in the query for that parameter.

Unlike execute , there is no limit on the number of parameters.

Object executeWithArray (Object[] a);

The executeWithArray method is similar to the execute method, but takes its pa-

rameters from an array instance. The array contains Object s, in which the positional Ob-
ject is the value to use in the query for that parameter. Unlike execute , there is no limit

on the number of parameters.

14.6.2 Filter specification

The filter specification is a String containing a boolean expression that is to be evaluated

for each of the instances in the candidate collection. If the filter is not specified, then it de-

faults to "true" , and the input Collection is filtered only for class type.

An element of the candidate collection is returned in the result if:

• it is assignment compatible to the candidate Class of the Query ; and

• for all variables there exists a value for which the filter expression evaluates to

true . The user may denote uniqueness in the filter expression by explicitly

declaring an expression (for example, e1 != e2) . For example, a filter for a

Department where there exists an Employee with more than one dependent

and an Employee making more than 30,000 might be:

"(emps.contains(e1) & e1.dependents > 1) &
(emps.contains(e2) & e2.salary > 30000)" . The same Employee
might satisfy both conditions. But if the query required that there be two different

Employee s satisfying the two conditions, an additional expression could be

added: "(emps.contains(e1) & e1.dependents > 1) &
(emps.contains(e2) & (e2.salary > 30000 & e1 != e2))" .

Rules for constructing valid expressions follow the Java language, except for these differ-

ences:

• Equality and ordering comparisons between primitives and instances of wrapper

classes are valid.

• Equality and ordering comparisons of Date fields and Date parameters are valid.

• Equality and ordering comparisons of String fields and String parameters are

valid. The comparison is done according to an ordering not specified by JDO. This

allows an implementation to order according to a datastore-specified ordering,

which might be locale-specific.

• White space (non-printing characters space, tab, carriage return, and line feed) is a

separator and is otherwise ignored.
 JDO 1.0.1 110 June 5, 2003

Java Data Objects 1.0.1
• The assignment operators =, +=, etc. and pre- and post-increment and -decrement

are not supported.

• Methods, including object construction, are not supported, except for

Collection.contains(Object o) , Collection.isEmpty() ,

String.startsWith(String s) , and String.endsWith(String e) .

Implementations might choose to support non-mutating method calls as non-

standard extensions.

• Navigation through a null-valued field, which would throw

NullPointerException , is treated as if the subexpression returned false .

Similarly, a failed cast operation, which would throw ClassCastException , is

treated as if the subexpression returned false . Other subexpressions or other

values for variables might still qualify the candidate instance for inclusion in the

result set.

• Navigation through multi-valued fields (Collection types) is specified using a

variable declaration and the Collection.contains(Object o) method.

• The following literals are supported, as described in the Java Language

Specification: IntegerLiteral , FloatingPointLiteral ,

BooleanLiteral , CharacterLiteral , StringLiteral , and

NullLiteral .

Note that comparisons between floating point values are by nature inexact. Therefore,

equality comparisons (== and !=) with floating point values should be used with caution.

Identifiers in the expression are considered to be in the name space of the specified class,

with the addition of declared imports, parameters and variables. As in the Java language,

this is a reserved word, and it refers to the element of the collection being evaluated.

Identifiers that are persistent field names are required to be supported by JDO implemen-

tations. Identifiers that are not persistent field names (including final and static field

names) might be supported but are not required. Portable queries must not use non-per-

sistent, final, or static field names in filter expressions.

Navigation through single-valued fields is specified by the Java language syntax of

field_name.field_name.field_name .

A JDO implementation is allowed to reorder the filter expression for optimization purpos-

es.

The following are minimum capabilities of the expressions that every implementation

must support:

• operators applied to all types where they are defined in the Java language:

Table 4: Query Operators

Operator Description

== equal

!= not equal

> greater than

< less than

>= greater than or equal
 JDO 1.0.1 111 June 5, 2003

Java Data Objects 1.0.1
• exceptions to the above:

• String concatenation is supported only for String + String , not String +

<primitive> ;

• parentheses to explicitly mark operator precedence

• cast operator (class)

• promotion of numeric operands for comparisons and arithmetic operations. The

rules for promotion follow the Java rules (see chapter 5.6 Numeric Promotions of

the Java language spec) extended by BigDecimal , BigInteger and numeric

wrapper classes:

• if either operand is of type BigDecimal , the other is converted to

BigDecimal .

• otherwise, if either operand is of type BigInteger , and the other type is a

floating point type (float , double) or one of its wrapper classes (Float ,

Double) both operands are converted to BigDecimal .

• otherwise, if either operand is of type BigInteger , the other is converted to

BigInteger .

• otherwise, if either operand is of type double , the other is converted to double .

• otherwise, if either operand is of type float , the other is converted to float .

• otherwise, if either operand is of type long , the other is converted to long .

• otherwise, both operands are converted to type int .

<= less than or equal

& boolean logical AND
(not bitwise)

&& conditional AND

| boolean logical OR
(not bitwise)

|| conditional OR

~ integral unary bitwise
complement

+ binary or unary addi-
tion or String concate-
nation

- binary subtraction or
numeric sign inversion

* times

/ divide by

! logical complement

Table 4: Query Operators

Operator Description
 JDO 1.0.1 112 June 5, 2003

Java Data Objects 1.0.1
• operands of numeric wrapper classes are treated as their corresponding primitive

types. If one of the operands is of a numeric wrapper class and the other operand

is of a primitive numeric type, the rules above apply and the result is of the

corresponding numeric wrapper class.

• equality comparison among persistent instances of PersistenceCapable
types use the JDO Identity comparison of the references. Thus, two objects will

compare equal if they have the same JDO Identity.

• comparisons between persistent and non-persistent instances return not equal.

• equality comparison of instances of non-PersistenceCapable reference types

uses the equals method of the type.

• String methods startsWith and endsWith support wild card queries. JDO

does not define any special semantic to the argument passed to the method; in

particular, it does not define any wild card characters.

• Null -valued fields of Collection types are treated as if they were empty if a

method is called on them. In particular, they return true to isEmpty and return

false to all contains methods. For datastores that support null values for

Collection types, it is valid to compare the field to null . Datastores that do not

support null values for Collection types, will return false if the query

compares the field to null . Datastores that support null values for

Collection types should include the option

"javax.jdo.option.NullCollection" in their list of supported options

(PersistenceManagerFactory.supportedOptions()).

14.6.3 Parameter declaration

The parameter declaration is a String containing one or more parameter type declara-

tions separated by commas. This follows the Java syntax for method signatures.

Parameter types for primitive values can be specified as either the primitive types or the

corresponding wrapper types. If a parameter type is specified as a primitive, the parame-

ter value passed to execute() must not be null.

14.6.4 Import statements

The import statements follow the Java syntax for import statements.

14.6.5 Variable declaration

The type declarations follow the Java syntax for local variable declarations.

If the variable is not named in a contains clause, that variable’s scope while evaluating the

filter expression is the Extent (including subclasses) of the class of the variable. If the

class does not manage an Extent , then no results will satisfy the query.

A portable query will constrain all variables with a contains clause in each “OR” expres-

sion of the filter where the variable is used. Further, the contains clause must be the left

expression of an “AND” expression where the variable is used in the right expression. That

is, for each occurrence of an expression in the filter using the variable, there is a contains
clause “ANDed” with the expression that constrains the possible values by the elements

of a collection.

A variable that is not constrained with an explicit contains clause is constrained by the

extent of the persistence capable class in the database.

The semantics of contains is “exists”. The meaning of the expression “emps.contains(e) &&

e.salary < param” is “there exists an e in the emps collection such that e.salary is less than
 JDO 1.0.1 113 June 5, 2003

Java Data Objects 1.0.1
param”. This is the natural meaning of contains in the Java language, except where the ex-

pression is negated.

If the expression is negated, then “!(emps.contains(e) && e.salary < param)” means “there

does not exist an employee e in the collection emps such that e.salary is less than param”.

Another way of expressing this is “for each employee e in the collection emps, e.salary is

greater than or equal to param”.

14.6.6 Ordering statement

The ordering statement is a String containing one or more ordering declarations sepa-

rated by commas. Each ordering declaration is a Java expression of an orderable type:

• primitives except boolean ;

• wrappers except Boolean ;

• BigDecimal ;

• BigInteger ;

• String ;

• Date

followed by one of the following words: “ascending ” or “descending ”.

Ordering might be specified including navigation. The name of the field to be used in or-

dering via navigation through single-valued fields is specified by the Java language syntax

of field_name.field_namefield_name .

The result of the first (leftmost) expression is used to order the results. If the leftmost ex-

pression evaluates the same for two or more elements, then the second expression is used

for ordering those elements. If the second expression evaluates the same, then the third ex-

pression is used, and so on until the last expression is evaluated. If all of the ordering ex-

pressions evaluate the same, then the ordering of those elements is unspecified.

The ordering of instances containing null-valued fields specified by the ordering is not

specified. Different JDO implementations might order the instances containing null-val-

ued fields either before or after instances whose fields contain non-null values.

14.6.7 Closing Query results

When the application has finished with the query results, it might optionally close the re-

sults, allowing the JDO implementation to release resources that might be engaged, such

as database cursors or iterators. The following methods allow early release of these re-

sources.

void close (Object queryResult);

This method closes the result of one execute(...) method, and releases resources as-

sociated with it. After this method completes, the query result can no longer be used, for

example to iterate the returned elements. Any elements returned previously by iteration

of the results remain in their current state. Any iterators acquired from the queryResult

will return false to hasNext() and will throw NoSuchElementException to

next() .

void closeAll ();

This method closes all results of execute(...) methods on this Query instance, as

above. The Query instance is still valid and can still be used.
 JDO 1.0.1 114 June 5, 2003

Java Data Objects 1.0.1
14.7 Examples:

The following class definitions for persistence capable classes are used in the examples:

package com.xyz.hr;

class Employee {

String name;

Float salary;

Department dept;

Employee boss;

}

package com.xyz.hr;

class Department {

String name;

Collection emps;

}

14.7.1 Basic query.

This query selects all Employee instances from the candidate collection where the salary is

greater than the constant 30000 .

Note that the float value for salary is unwrapped for the comparison with the literal

int value, which is promoted to float using numeric promotion. If the value for the

salary field in a candidate instance is null , then it cannot be unwrapped for the com-

parison, and the candidate instance is rejected.

Class empClass = Employee.class;

Extent clnEmployee = pm.getExtent (empClass, false);

String filter = “salary > 30000”;

Query q = pm.newQuery (empClass, clnEmployee, filter);

Collection emps = (Collection) q.execute ();

14.7.2 Basic query with ordering.

This query selects all Employee instances from the candidate collection where the salary is

greater than the constant 30000, and returns a Collection ordered based on employee

salary.

Class empClass = Employee.class;

Extent clnEmployee = pm.getExtent (empClass, false);

String filter = “salary > 30000”;

Query q = pm.newQuery (clnEmployee, filter);

q.setOrdering (“salary ascending”);

Collection emps = (Collection) q.execute ();

14.7.3 Parameter passing.

This query selects all Employee instances from the candidate collection where the salary is

greater than the value passed as a parameter.
 JDO 1.0.1 115 June 5, 2003

Java Data Objects 1.0.1
If the value for the salary field in a candidate instance is null , then it cannot be un-

wrapped for the comparison, and the candidate instance is rejected.

Class empClass = Employee.class;

Extent clnEmployee = pm.getExtent (empClass, false);

String filter = “salary > sal”;

Query q = pm.newQuery (clnEmployee, filter);

String param = “Float sal”;

q.declareParameters (param);

Collection emps = (Collection) q.execute (new Float (30000.));

14.7.4 Navigation through single-valued field.

This query selects all Employee instances from the candidate collection where the value of

the name field in the Department instance associated with the Employee instance is equal

to the value passed as a parameter.

If the value for the dept field in a candidate instance is null , then it cannot be navigated

for the comparison, and the candidate instance is rejected.

Class empClass = Employee.class;

Extent clnEmployee = pm.getExtent (empClass, false);

String filter = “dept.name == dep”;

String param = “String dep”;

Query q = pm.newQuery (clnEmployee, filter);

q.declareParameters (param);

String rnd = “R&D”;

Collection emps = (Collection) q.execute (rnd);

14.7.5 Navigation through multi-valued field.

This query selects all Department instances from the candidate collection where the col-

lection of Employee instances contains at least one Employee instance having a salary

greater than the value passed as a parameter.

Class depClass = Department.class;

Extent clnDepartment = pm.getExtent (depClass, false);

String vars = “Employee emp”;

String filter = “emps.contains (emp) & emp.salary > sal”;

String param = “float sal”;

Query q = pm.newQuery (clnDepartment, filter);

q.declareParameters (param);

q.declareVariables (vars);

Collection deps = (Collection) q.execute (new Float (30000.));

14.7.6 Membership in a collection

This query selects all Department instances where the name field is contained in a pa-

rameter collection, which in this example consists of three department names.
 JDO 1.0.1 116 June 5, 2003

Java Data Objects 1.0.1
Class depClass = Department.class;

Extent clnDepartment = pm.getExtent (depClass, false);

String filter = “depts.contains(name)”;

List depts =

Arrays.asList(new String [] {“R&D”, “Sales”, “Marketing”};

String param = “Collection depts”;

Query q = pm.newQuery (clnDepartment, filter);

q.declareParameters (param);

Collection deps = (Collection) q.execute (depts);
 JDO 1.0.1 117 June 5, 2003

Java Data Objects 1.0.1
15 Extent

This chapter specifies the Extent contract between an application component and the

JDO implementation.

15.1 Overview

An application needs to provide a candidate collection of instances to a query. If the query

filtering is to be performed in the datastore, then the application must supply the collection

of instances to be filtered. This is the primary function of the Extent interface.

An Extent instance is logically a holder for information:

• the class of instances;

• whether subclasses are part of the Extent ; and

• a collection of active iterators over the Extent .

Thus, no action is taken at the time the Extent is constructed. The contents of the Extent
are calculated at the point in time when a query is executed and when an iterator is ob-

tained via the iterator() method.

A query may be executed against either a Collection or an Extent . The Extent is

used when the query is intended to be filtered by the datastore, not by in-memory process-

ing. There are no Collection methods in Extent except for iterator() . Thus, com-

mon Collection behaviors are not possible, including determining whether one

Extent contains another, determining the size of the Extent , or determining whether a

specific instance is contained in the Extent . Any such operations must be performed by

executing a query against the Extent .

If the Extent is large, then an appropriate iteration strategy should be adopted by the

JDO implementation.

The Extent for classes of embedded instances is not affected by changes to fields in refer-

encing class instances.

15.2 Goals

The extent interface has the following goals:

• Large result set support. Queries might return massive numbers of JDO instances

that match the query. The JDO Query architecture must provide for processing

the results within the resource constraints of the execution environment.

• Application resource management. Iterating an Extent might use resources that

should be released when the application has finished an iteration. The application

should be provided with a means to release iterator resources.
 JDO 1.0.1 118 June 5, 2003

Java Data Objects 1.0.1
15.3 Interface Extent

package javax.jdo;

public interface Extent {

Iterator iterator();

This method returns an Iterator over all the instances in the Extent . If Nontransac-
tionalRead property is set to false , this method will throw a JDOUserException if

called outside a transaction.

If the IgnoreCache option is set to true in the PersistenceManager at the time that

this Iterator instance is obtained, then new and deleted instances in the current trans-

action might be ignored by the Iterator at the option of the implementation. That is,

new instances might not be returned; and deleted instances might be returned.

If the IgnoreCache option is set to false in the PersistenceManager at the time

that this Iterator instance is obtained, then:

• If instances were made persistent in the transaction prior to the execution of this

method, the returned Iterator will contain the instances.

• If instances were deleted in the transaction prior to the execution of this method,

the returned Iterator will not contain the instances.

The above describes the behavior of an extent-based query at query execution.

If any mutating method, including the remove method, is called on the Iterator re-

turned by this method, a UnsupportedOperationException is thrown.

boolean hasSubclasses();

This method returns an indicator of whether the extent is proper or includes subclasses.

Class getCandidateClass();

This method returns the class of the instances contained in it.

PersistenceManager getPersistenceManager();

This method returns the PersistenceManager that created it.

void close(Iterator i);

This method closes an Iterator acquired from this Extent . After this call, the param-

eter Iterator will return false to hasNext() , and will throw NoSuchElementEx-
ception to next() . The Extent itself can still be used to acquire other iterators and can

be used as the Extent for queries.

void closeAll ();

This method closes all iterators acquired from this Extent . After this call, all iterators ac-

quired from this Extent will return false to hasNext() , and will throw

NoSuchElementException to next() .

Readers primarily interested in JDO as a local persistence mechanism can ignore the following
chapter. Skip to 17 – JDO Exceptions.
 JDO 1.0.1 119 June 5, 2003

Java Data Objects 1.0.1
16 Enterprise Java Beans

Enterprise Java Beans (EJB) is a component architecture for development and deployment

of distributed business applications. Java Data Objects is a suitable component for integra-

tion with EJB in these scenarios:

• Session Beans with JDO persistence-capable classes used to implement dependent

objects;

• Entity Beans with JDO persistence-capable classes used as delegates for both Bean

Managed Persistence and Container Managed Persistence.

16.1 Session Beans

A session bean should be associated with an instance of PersistenceManagerFacto-
ry that is established during a session life cycle event, and each business method should

use an instance of PersistenceManager obtained from the PersistenceManager-
Factory . The timing of when the PersistenceManager is obtained will vary based

on the type of bean.

The bean class should contain instance variables that hold the associated Persistence-
Manager and PersistenceManagerFactory .

During activation of the bean, the PersistenceManagerFactory should be found via

JNDI lookup. The PersistenceManagerFactory should be the same instance for all

beans sharing the same datastore resource. This allows for the PersistenceManager-
Factory to manage an association between the distributed transaction and the Persis-
tenceManager .

When appropriate during the bean life cycle, the PersistenceManager should be ac-

quired by a call to the PersistenceManagerFactory . The PersistenceManager-
Factory should look up the transaction association of the caller, and return a

PersistenceManager with the same transaction association. If there is no Persis-
tenceManager currently enlisted in the caller’s transaction, a new PersistenceMan-
ager should be created and associated with the transaction. The

PersistenceManager should be registered for synchronization callbacks with the

TransactionManager . This provides for transaction completion callbacks asynchro-

nous to the bean life cycle.

The instance variables for a session bean of any type include:

• a reference to the PersistenceManagerFactory , which should be initialized

by the method setSessionContext . This method looks up the

PersistenceManagerFactory by JNDI access to the named object

"java:comp/env/jdo/<persistence manager factory name>" .

• a reference to the PersistenceManager, which should be acquired by each

business method, and closed at the end of the business method; and
 JDO 1.0.1 120 June 5, 2003

Java Data Objects 1.0.1
• a reference to the SessionContext , which should be initialized by the method

setSessionContext .

16.1.1 Stateless Session Bean with Container Managed Transactions

Stateless session beans are service objects that have no state between business methods.

They are created as needed by the container and are not associated with any one user. A

business method invocation on a remote reference to a stateless session bean might be dis-

patched by the container to any of the available beans in the ready pool.

Each business method must acquire its own PersistenceManager instance from the

PersistenceManagerFactory . This is done via the method getPersistenceM-
anager on the PersistenceManagerFactory instance. This method must be imple-

mented by the JDO vendor to find a PersistenceManager associated with the instance

of javax.transaction.Transaction of the executing thread.

At the end of the business method, the PersistenceManager instance must be closed.

This allows the transaction completion code in the PersistenceManager to free the in-

stance and return it to the available pool in the PersistenceManagerFactory .

16.1.2 Stateful Session Bean with Container Managed Transactions

Stateful session beans are service objects that are created for a particular user, and may

have state between business methods. A business method invocation on a remote refer-

ence to a stateful session bean will be dispatched to the specific instance created by the us-

er.

The behavior of stateful session beans with container managed transactions is otherwise

the same as for stateless session beans. All business methods in the remote interface must

acquire a PersistenceManager at the beginning of the method, and close it at the end,

since the transaction context is managed by the container.

16.1.3 Stateless Session Bean with Bean Managed Transactions

Bean managed transactions offer additional flexibility to the session bean developer, with

additional complexity. Transaction boundaries are established by the bean developer, but

the state (including the PersistenceManager) cannot be retained across business

method boundaries. Therefore, the PersistenceManager must be acquired and closed

by each business method.

The alternative techniques for transaction boundary demarcation are:

• javax.transaction.UserTransaction

If the bean developer directly uses UserTransaction, then the PersistenceManager must be

acquired from the PersistenceManagerFactory only after establishing the correct

transaction context of UserTransaction . During the getPersistenceManager
method, the PersistenceManager will be enlisted in the UserTransaction . For ex-

ample, if non-transactional access is required, a PersistenceManager must be ac-

quired when there is no UserTransaction active. After beginning a

UserTransaction , a different PersistenceManager must be acquired for transac-

tional access. The user must keep track of which PersistenceManager is being used

for which transaction.

• javax.jdo.Transaction

If the bean developer chooses to use the same PersistenceManager for multiple trans-

actions, then transaction completion must be done entirely by using the jav-
 JDO 1.0.1 121 June 5, 2003

Java Data Objects 1.0.1
ax.jdo.Transaction instance associated with the PersistenceManager . In this

case, acquiring a PersistenceManager without beginning a UserTransaction re-

sults in the PersistenceManager being able to manage transaction boundaries via

begin , commit , and rollback methods on javax.jdo.Transaction . The Per-
sistenceManager will automatically begin the UserTransaction during jav-
ax.jdo.Transaction.begin and automatically commit the UserTransaction
during javax.jdo.Transaction.commit .

16.1.4 Stateful Session Bean with Bean Managed Transactions

Stateful session beans allow the bean developer to manage the transaction context as part

of the conversational state of the bean. Thus, it is no longer required to acquire a Persis-
tenceManager in each business method. Instead, the PersistenceManager can be

managed over a longer period of time, and it might be stored as an instance variable of the

bean.

The behavior of stateful session beans is otherwise the same as for stateless session beans.

The user has the choice of using javax.transaction.UserTransaction or jav-
ax.jdo.Transaction for transaction completion.

16.2 Entity Beans

There are several components in the entity bean scenario that need to be considered to un-

derstand the JDO integration possibilities.

EJBObject : this is the class of non-transactional instances to which all remote proxies

make reference so they can execute remote calls. When the EJB container receives a remote

call on this instance, it looks up a transactional instance of the Entity Bean associated with

the user’s transaction and delegates the business method to it.

Entity Bean : this is the class of transactional instances whose life cycle is managed by

the container to service remote method calls. At certain points in its life cycle an instance

will be associated with an EntityContext instance, a PersistenceManager in-

stance, and a JDO instance.

The Entity Bean might be constructed manually by the bean developer or automatical-

ly by a tool provided by a JDO vendor or third party.

JDO PersistenceCapable class : this is the class of instances that actually imple-

ment the business method by accessing and possibly modifying state. During execution of

its business methods, it may associate with other JDO instances, which themselves are in

the transaction but do not have remote references. If during the execution of a method, a

reference to a JDO instance needs to be returned to the client, then the Entity Bean will ask

the Home Interface to construct an EJBObject using the primary key of the referred JDO

instance.

JDO instances might be used to implement both the Entity Bean and the helper instances

that are transactional but not returned to clients as remote references.

16.2.1 BMP Entity Bean life cycle

The Entity Bean that delegates to a JDO instance will contain a reference to an Entity-
Context instance, a PersistenceManager instance, and a JDO instance. All of these

will be set to null at creation time.
 JDO 1.0.1 122 June 5, 2003

Java Data Objects 1.0.1
The setEntityContext method copies the value of the EntityContext parameter

to the instance variable entityContext , looks up the PersistenceManagerFacto-
ry using JNDI, and sets it into the persistenceManagerFactory variable.

The unsetEntityContext method clears the entityContext variable and the per-
sistenceManagerFactory variable.

The ejbCreate method gets the PersistenceManager from the PersistenceMan-
agerFactory , creates a new instance of the corresponding JDO class corresponding to

the primary key value, sets the jdoInstance variable, and calls makePersistent
with the instance as a parameter.

The ejbRemove method calls deletePersistent with the JDO instance as a parame-

ter.

The ejbActivate method does nothing.

The ejbPassivate method clears the reference to the PersistenceManager and JDO

instance.

The ejbLoad method acquires the PersistenceManager . Business methods operat-

ing on the JDO instance will access fields which will transparently cause the appropriate

state transitions of the persistent instance. The state of the JDO instances will be synchro-

nized with the datastore during transaction completion.

The ejbStore method does nothing.

Business methods of the bean delegate to the JDO instance after performing parameter re-

placement operations. Parameters of Entity Bean reference types are transformed into pa-

rameters of JDO instances by using getObjectById .

During execution of business methods, persistent instances may be used without regard

to EJB. The persistent instances might be of classes that have remote interfaces, but there

is no requirement that an EJBObject be created for each persistent instance. Only those in-

stances that need to be returned as a remote interface need to have an EJBObject created.

JDO instances may be returned as value types using standard Java Serialization. The main

consideration is that the closure of instances via non-transient fields be appropriate. Con-

sidering that the closure of instances via persistent fields is potentially the entire database,

care must be given to distinguishing persistent fields from serializable fields.

JDO instance return types are transformed into Entity Bean references by using getOb-
jectId and looking up the EJB instance in the home interface.
 JDO 1.0.1 123 June 5, 2003

Java Data Objects 1.0.1
Figure 16.0 Enterprise Java Beans: Entity Bean relationships

client (TX1) JDO instanceEJBObject

Entity Bean

remote
procedure
call

delegation
of
business
method

client (TX2)

Instance

Entity Bean
Instance

(TX1)

JDO instance
(TX2)

delegation
to
transactional
instance

(TX2)

(TX1)
 JDO 1.0.1 124 June 5, 2003

Java Data Objects 1.0.1
17 JDO Exceptions

The exception philosophy of JDO is to treat all exceptions as runtime exceptions. This pre-

serves the transparency of the interface to the degree possible, allowing the user to choose

to catch specific exceptions only when required by the application.

JDO implementations will often be built as layers on an underlying datastore interface,

which itself might use a layered protocol to another tier. Therefore, there are many oppor-

tunities for components to fail that are not under the control of the application.

Exceptions thus fall into several broad categories, each of which is treated separately:

• user errors that can be corrected and retried;

• user errors that cannot be corrected because the state of underlying components

has been changed and cannot be undone;

• internal logic errors that should be reported to the JDO vendor’s technical support;

• errors in the underlying datastore that can be corrected and retried;

• errors in the underlying datastore that cannot be corrected due to a failure of the

datastore or communication path to the datastore;

Exceptions that are documented in interfaces that are used by JDO, such as the Collec-
tion interfaces, are used without modification by JDO. JDO exceptions that reflect under-

lying datastore exceptions will wrap the underlying datastore exceptions. JDO exceptions

that are caused by user errors will contain the reason for the exception.

JDO Exceptions must be serializable.

17.1 JDOException

This is the base class for all JDO exceptions. It is a subclass of RuntimeException , and

need not be declared or caught. It includes a descriptive String, an optional nested Excep-

tion array, and an optional failed Object.

Methods are provided to retrieve the nested exception array and failed object. If there are

multiple nested exceptions, then each might contain one failed object. This will be the case

where an operation requires multiple instances, such as commit, makePersistentAll, etc.

If the JDO PersistenceManager is internationalized, then the descriptive string

should be internationalized.

public Throwable[] getNestedExceptions();

This method returns an array of Throwable or null if there are no nested exceptions.

public Object getFailedObject();

This method returns the failed object or null if there is no failed object for this exception.

public Throwable getCause();

This method returns the first nested Throwable or null if there are no nested exceptions.
 JDO 1.0.1 125 June 5, 2003

Java Data Objects 1.0.1
17.1.1 JDOFatalException

This is the base class for errors that cannot be retried. It is a derived class of JDOExcep-
tion . This exception generally means that the transaction associated with the Persis-
tenceManager has been rolled back, and the transaction should be abandoned.

17.1.2 JDOCanRetryException

This is the base class for errors that can be retried. It is a derived class of JDOException .

17.1.3 JDOUnsupportedOptionException

This class is a derived class of JDOUserException . This exception is thrown by an im-

plementation to indicate that it does not implement a JDO optional feature.

17.1.4 JDOUserException

This is the base class for user errors that can be retried. It is a derived class of JDOCanRe-
tryException . Some of the reasons for this exception include:

• Object not PersistenceCapable . This exception is thrown when a method

requires an instance of PersistenceCapable and the instance passed to the

method does not implement PersistenceCapable . The failed Object has the

failed instance.

• Extent not managed. This exception is thrown when getExtent is called with a

class that does not have a managed extent.

• Object exists. This exception is thrown during flush of a new instance or an

instance whose primary key changed where the primary key of the instance

already exists in the datastore. It might also be thrown during makePersistent
if an instance with the same primary key is already in the

PersistenceManager cache. The failed Object is the failed instance.

• Object owned by another PersistenceManager . This exception is thrown

when calling makePersistent , makeTransactional , makeTransient ,

evict , refresh , or getObjectId where the instance is already persistent or

transactional in a different PersistenceManager . The failed Object has the

failed instance.

• Non-unique ObjectId not valid after transaction completion. This exception is

thrown when calling getObjectId on an object after transaction completion

where the ObjectId is not managed by the application or datastore.

• Unbound query parameter. This exception is thrown during query compilation or

execution if there is an unbound query parameter.

• Query filter cannot be parsed. This exception is thrown during query compilation

or execution if the filter cannot be parsed.

• Transaction is not active. This exception is thrown if the transaction is not active

and makePersistent , deletePersistent , commit , or rollback is called.

• Object deleted. This exception is thrown if an attempt is made to access any fields

of an instance that was deleted in this transaction (except to read key fields). This

is not the exception thrown if the instance does not exist in the datastore (see

JDOObjectNotFoundException).

• Primary key contains null values. This exception is thrown if the application

identity parameter to getObjectById contains any key field whose value is null.
 JDO 1.0.1 126 June 5, 2003

Java Data Objects 1.0.1
17.1.5 JDOFatalUserException

This is the base class for user errors that cannot be retried. It is a derived class of JDOFa-
talException .

• PersistenceManager was closed. This exception is thrown after close()
was called, when any method except isClosed() is executed on the

PersistenceManager instance, or any method is called on the Transaction
instance, or any Query instance, Extent instance, or Iterator instance created

by the PersistenceManager .

• Metadata unavailable. This exception is thrown if a request is made to the

JDOImplHelper for metadata for a class, when the class has not been registered

with the helper.

17.1.6 JDOFatalInternalException

This is the base class for JDO implementation failures. It is a derived class of JDOFatal-
Exception . This exception should be reported to the vendor for corrective action. There

is no user action to recover.

17.1.7 JDODataStoreException

This is the base class for datastore errors that can be retried. It is a derived class of

JDOCanRetryException .

17.1.8 JDOFatalDataStoreException

This is the base class for fatal datastore errors. It is a derived class of JDOFatalExcep-
tion . When this exception is thrown, the transaction has been rolled back.

• Transaction rolled back. This exception is thrown when the datastore rolls back a

transaction without the user asking for it. The cause may be a connection timeout,

an unrecoverable media error, an unrecoverable concurrency conflict, or other

cause outside the user’s control.

17.1.9 JDOObjectNotFoundException

This exception is to notify the application that an object does not exist in the datastore. It

is a derived class of JDODataStoreException . When this exception is thrown during

a transaction, there has been no change in the status of the transaction in progress. If this

exception is a nested exception thrown during commit, then the transaction is rolled back.

This exception is never the result of executing a query. The failedObject contains a ref-

erence to the failed instance. The failed instance is in the hollow state, and has an identity

which can be obtained by calling getObjectId with the instance as a parameter. This

might be used to determine the identity of the instance that cannot be found.

This exception is thrown when a hollow instance is being fetched and the object does not

exist in the datastore. This exception might result from the user executing getObjectBy-
Id with the validate parameter set to true , or from navigating to an object that no long-

er exists in the datastore.

17.1.10 JDOOptimisticVerificationException

This exception is the result of a user commit operation in an optimistic transaction where

the verification of new, modified, or deleted instances fails the verification. It is a derived

class of JDOFatalDataStoreException . This exception contains an array of nested ex-

ceptions, each of which contains an instance that failed verification. The user will never see

this exception except as a result of commit.
 JDO 1.0.1 127 June 5, 2003

Java Data Objects 1.0.1
18 XML Metadata

This chapter specifies the metadata that describes a persistence-capable class. The metada-

ta is stored in XML format. The information must be available when the class is enhanced,

and might be cached by an implementation for use at runtime. If the metadata is changed

between enhancement and runtime, the behavior is unspecified.

Metadata files must be available via resources loaded by the same class loader as the class.

These rules apply both to enhancement and to runtime. Hereinafter, the term "metadata"

refers to the aggregate of all XML data for all packages and classes, regardless of their

physical packaging.

The metadata associated with each persistence capable class must be contained within a

file, and its format is defined by the DTD. If the metadata is for only one class, then its file

name is <class-name>.jdo. If the metadata is for a package, or a number of packages, then

its file name is package.jdo. In this case, the file is located in one of several directories:

“META-INF”; “WEB-INF”; <none>, in which case the metadata file name is "package.jdo"

with no directory; “<package>/.../<package>”, in which case the metadata directory

name is the partial or full package name with “package.jdo” as the file name.

When metadata information is needed for a class, and the metadata for that class has not

already been loaded, the metadata is searched as follows: META-INF/package.jdo, WEB-

INF/package.jdo, package.jdo, <package>/.../<package>/package.jdo, and <package>/

<class>.jdo. Once metadata for a class has been loaded, the metadata will not be replaced

in memory. Therefore, metadata contained higher in the search order will always be used

instead of metadata contained lower in the search order.

For example, if the persistence-capable class is com.xyz.Wombat, and there is a file "ME-

TA-INF/package.jdo" containing xml for this class, then its definition is used. If there is no

such file, but there is a file "WEB-INF/package.jdo" containing metadata for

com.xyz.Wombat, then it is used. If there is no such file, but there is a file "package.jdo"

containing metadata for com.xyz.Wombat, then it is used. If there is no such file, but there

is a file "com/package.jdo" containing metadata for com.xyz.Wombat, then it is used. If

there is no such file, but there is a file "com/xyz/package.jdo" containing metadata for

com.xyz.Wombat, then it is used. If there is no such file, but there is a file "com/xyz/

Wombat.jdo", then it is used. If there is no such file, then com.xyz.Wombat is not persis-

tence-capable.

Note that this search order is optimized for implementations that cache metadata informa-

tion as soon as it is encountered so as to optimize the number of file accesses needed to

load the metadata. Further, if metadata is not in the natural location, it might override

metadata that is in the natural location. For example, while looking for metadata for class

com.xyz.Wombat, the file com/package.jdo might contain metadata for class org.ac-

me.Foo. In this case, subsequent search of metadata for org.acme.Foo will find the cached

metadata and none of the usual locations for metadata will be searched.

The metadata must declare all persistence-capable classes. If any field declarations are not

provided in the metadata, then field metadata is defaulted for the missing field declara-

tions. Therefore, the JDO implementation is able to determine based on the metadata
 JDO 1.0.1 128 June 5, 2003

Java Data Objects 1.0.1
whether a class is persistence-capable or not. And any class not known to be persistence-

capable by the JDO specification (for example, java.lang.Integer) and not explicitly named

in the metadata is not persistence-capable.

For compatibility with installed applications, an implementation might first use the search

order as specified in the JDO 1.0 release. In this case, if metadata is not found, then the

search order as specified in JDO 1.0.1 must be used.

18.1 ELEMENT jdo

This element is the highest level element in the xml document. It is used to allow multiple

packages to be described in the same document.

18.2 ELEMENT package

This element includes all classes in a particular package. The complete qualified package

name is required.

18.3 ELEMENT class

This element includes fields declared in a particular class, and optional vendor extensions.

The name of the class is required. The name is relative to the package name of the enclosing

package.

Only persistence-capable classes may be declared. Non-persistence-capable classes must

not be included in the metadata.

The identity type of the least-derived persistence-capable class defines the identity type for

all persistence-capable classes that extend it.

The identity type of the least-derived persistence-capable class is defaulted to applica-
tion if objectid-class is specified, and datastore , if not.

The objectid-class attribute is required only for application identity. The objectid

class name uses Java rules for naming: if no package is included in the name, the package

name is assumed to be the same package as the persistence-capable class. Inner classes are

identified by the “$” marker. If the objectid-class attribute is defined in any concrete

class, then the objectid class itself must be concrete, and no subclass of the class may in-

clude the objectid-class attribute. If the objectid-class attribute is defined for

any abstract class, then:

• the objectid class of this class must directly inherit Object or must be a subclass

of the objectid class of the most immediate abstract persistence-capable superclass

that defines an objectid class; and

• if the objectid class is abstract, the objectid class of this class must be a superclass

of the objectid class of the most immediate subclasses that define an objectid class;

and

• if the objectid class is concrete, no subclass of this persistence-capable class may

define an objectid class.

The effect of this is that objectid classes form an inheritance hierarchy corresponding to the

inheritance hierarchy of the persistence-capable classes. Associated with every concrete

persistence-capable class is exactly one objectid class.
 JDO 1.0.1 129 June 5, 2003

Java Data Objects 1.0.1
The objectid class must declare fields identical in name and type to fields declared in this

class.

The requires-extent attribute specifies whether an extent must be managed for this

class. The PersistenceManager.getExtent method can be executed only for class-

es whose metadata attribute requires-extent is specified or defaults to true . If the

PersistenceManager.getExtent method is executed for a class whose metadata

specifies requires-extent as false , a JDOUserException is thrown. If re-
quires-extent is specified or defaults to true for a class, then requires-extent
must not be specified as false for any subclass.

The persistence-capable-superclass attribute is the class name of the nearest

superclass that is persistence-capable, and is required only for classes that have a persis-

tence-capable superclass. The persistence-capable-superclass class name uses

Java rules for naming: if no package is included in the name, the package name is assumed

to be the same package as the persistence-capable class. If omitted, there is no superclass

in the hierarchy that is persistence-capable.

18.4 ELEMENT field

The element field is optional, and the nameattribute is the field name as declared in the

class. If the field declaration is omitted in the xml, then the values of the attributes are de-

faulted.

The persistence-modifier attribute specifies whether this field is persistent, trans-

actional, or none of these. The persistence-modifier attribute can be specified only

for fields declared in the Java class, and not fields inherited from superclasses. There is spe-

cial treatment for fields whose persistence-modifier is persistent or trans-
actional .

Default persistence-modifier

The default for the persistence-modifier attribute is based on the Java type and

modifiers of the field:

• Fields with modifier static : none . No accessors or mutators will be generated

for these fields during enhancement.

• Fields with modifier transient : none . Accessors and mutators will be

generated for these fields during enhancement, but they will not delegate to the

StateManager .

• Fields with modifier final : none . Accessors will be generated for these fields

during enhancement, but they will not delegate to the StateManager .

• Fields of a type declared to be persistence-capable: persistent .

• Fields of the following types: persistent :

• primitives: boolean , byte , short , int , long , char , float , double ;

• java.lang wrappers: Boolean , Byte , Short , Integer , Long , Character ,

Float , Double ;

• java.lang : String , Number;

• java.math : BigDecimal , BigInteger ;

• java.util : Date , Locale , ArrayList , HashMap, HashSet , Hashtable ,

LinkedList , TreeMap , TreeSet , Vector , Collection , Set , List , and

Map;
 JDO 1.0.1 130 June 5, 2003

Java Data Objects 1.0.1
• Arrays of primitive types, java.util.Date , java.util.Locale ,

java.lang and java.math types specified immediately above, and

PersistenceCapable types.

• Fields of types of user-defined classes and interfaces not mentioned above: none .

No accessors or mutators will be generated for these fields.

The primary-key attribute is used to identify fields that have special treatment by the

enhancer and by the runtime. The enhancer generates accessor methods for primary key

fields that always permit access, regardless of the state of the instance. The mutator meth-

ods always delegate to the jdoStateManager , if it is non-null , regardless of the state

of the instance.

The null-value attribute specifies the treatment of null values for persistent fields

during storage in the datastore. The default is "none" .

• "none" : store null values as null in the datastore, and throw a

JDOUserException if null values cannot be stored by the datastore.

• "exception" : always throw a JDOUserException if this field contains a

null value at runtime when the instance must be stored;

• "default" : convert the value to the datastore default value if this field contains

a null value at runtime when the instance must be stored.

The default-fetch-group attribute specifies whether this field is managed as a

group with other fields. It defaults to "true" for non-key fields of primitive types, ja-
va.util.Date , and fields of java.lang , java.math types specified above.

The embedded attribute specifies whether the field should be stored as part of the con-

taining instance instead of as its own instance in the datastore. It must be specified or de-

fault to "true" for fields of primitive types, wrappers, java.lang , java.math ,

java.util , collection, map, and array types specified above; and "false" otherwise.

While a compliant implementation is permitted to support these types as first class in-

stances in the datastore, the semantics of embedded=”true” imply containment. That is,

the embedded instances have no independent existence in the datastore and have no Ex-
tent representation.

If the embedded attribute is "true" the field values are stored as persistent references to

the referred instances in the datastore.

The embedded attribute applied to a field of a PersistenceCapable type is a hint to

the implementation to treat the field as if it were a Second Class Object. But this behavior

is not further specified and is not portable.

A portable application must not assign instances of mutable classes to multiple embedded

fields, and must not compare values of these fields using Java identity (“f1==f2 ”).

The following field declarations are mutually exclusive; only one may be specified:

• default-fetch-group = “true”

• primary-key = “true”

• persistence-modifier = “transactional”

• persistence-modifier = “none”

18.4.1 ELEMENT collection

This element specifies the element type of collection typed fields. The default is Collec-
tion typed fields are persistent, and the element type is Object .
 JDO 1.0.1 131 June 5, 2003

Java Data Objects 1.0.1
The element-type attribute specifies the type of the elements. The type name uses Java

rules for naming: if no package is included in the name, the package name is assumed to

be the same package as the persistence-capable class. Inner classes are identified by the "$"

marker.

The embedded-element attribute specifies whether the values of the elements should

be stored as part of the containing instance instead of as their own instances in the data-

store. It defaults to "false" for PersistenceCapable types, Object types, and inter-

face types; and "true" for other types.

The embedded treatment of the collection instance itself is governed by the embedded at-

tribute of the field element.

18.4.2 ELEMENT map

This element specifies the treatment of keys and values of map typed fields. The default is

map typed fields are persistent, and the key and value types are Object .

The key-type and value-type attributes specify the types of the key and value, re-

spectively. The type names use Java rules for naming: if no package is included in the

name, the package name is assumed to be the same package as the persistence-capable

class. Inner classes are identified by the "$" marker.

The embedded-key and embedded-value attributes specify whether the key and val-

ue should be stored as part of the containing instance instead of as their own instances in

the datastore. They default to "false" for PersistenceCapable types, Object types,

and interface types; and "true" for other types.

The embedded treatment of the map instance itself is governed by the embedded attribute

of the field element.

18.4.3 ELEMENT array

This element specifies the treatment of array typed fields. The default persistence-modifier

for array typed fields is based on the Java type of the component and modifiers of the field,

according to the rules in 18.4 Default persistence-modifier.

The embedded-element attribute specifies whether the values of the components

should be stored as part of the containing instance instead of as their own instances in the

datastore. It defaults to "false" for PersistenceCapable types, Object types, inter-

face types, and concrete implementation classes of map and collection types. It defaults to

"true" for other types.

The embedded treatment of the array instance itself is governed by the embedded at-

tribute of the field element.

18.5 ELEMENT extension

This element specifies JDO vendor extensions. The vendor-name attribute is required.

The vendor name "JDORI" is reserved for use by the JDO reference implementation. The

key and value attributes are optional, and have vendor-specific meanings. They may be

ignored by any JDO implementation.
 JDO 1.0.1 132 June 5, 2003

Java Data Objects 1.0.1
18.6 The Document Type Descriptor

The document type descriptor is referred by the xml, and must be identified with a DOC-

TYPE so that the parser can validate the syntax of the metadata file. Either the SYSTEM or

PUBLIC form of DOCTYPE can be used.

• If SYSTEM is used, the URI must be accessible; a jdo implementation might

optimize access for the URI “file:/javax/jdo/jdo.dtd”

• If PUBLIC is used, the public id should be "-//Sun Microsystems, Inc.//
DTD Java Data Objects Metadata 1.0//EN“ ; a jdo implementation might

optimize access for this id.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jdo

PUBLIC "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"

 "http://java.sun.com/dtd/jdo_1_0.dtd">
<!ELEMENT jdo ((package)+, (extension)*)>
<!ELEMENT package ((class)+, (extension)*)>
<!ATTLIST package name CDATA #REQUIRED>
<!ELEMENT class (field|extension)*>
<!ATTLIST class name CDATA #REQUIRED>
<!ATTLIST class identity-type (application|datastore|nondurable)
#IMPLIED>
<!ATTLIST class objectid-class CDATA #IMPLIED>
<!ATTLIST class requires-extent (true|false) ‘true’>
<!ATTLIST class persistence-capable-superclass CDATA #IMPLIED>
<!ELEMENT field ((collection|map|array)?, (extension)*)?>
<!ATTLIST field name CDATA #REQUIRED>
<!ATTLIST field persistence-modifier (persistent|transaction-
al|none) #IMPLIED>
<!ATTLIST field primary-key (true|false) ‘false’>
<!ATTLIST field null-value (exception|default|none) ‘none’>
<!ATTLIST field default-fetch-group (true|false) #IMPLIED>
<!ATTLIST field embedded (true|false) #IMPLIED>
<!ELEMENT collection (extension)*>
<!ATTLIST collection element-type CDATA #IMPLIED>
<!ATTLIST collection embedded-element (true|false) #IMPLIED>
<!ELEMENT map (extension)*>
<!ATTLIST map key-type CDATA #IMPLIED>
<!ATTLIST map embedded-key (true|false) #IMPLIED>
<!ATTLIST map value-type CDATA #IMPLIED>
<!ATTLIST map embedded-value (true|false) #IMPLIED>
<!ELEMENT array (extension)*>
<!ATTLIST array embedded-element (true|false) #IMPLIED>
<!ELEMENT extension (extension)*>
<!ATTLIST extension vendor-name CDATA #REQUIRED>
<!ATTLIST extension key CDATA #IMPLIED>
<!ATTLIST extension value CDATA #IMPLIED>
 JDO 1.0.1 133 June 5, 2003

Java Data Objects 1.0.1
18.7 Example XML file

An example XML file for the query example classes follows. Note that all fields of both

classes are persistent, which is the default for fields. The emps field in Department con-

tains a collection of elements of type Employee , with an inverse relationship to the dept
field in Employee .

In directory com/xyz , a file named hr.jdo contains:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jdo SYSTEM “jdo.dtd”>
<jdo>
<package name=”com.xyz.hr”>
<class name=”Employee” identity-type=”application” objectid-
class=”EmployeeKey”>
<field name=”name” primary-key=”true”>
<extension vendor-name=”sunw” key=”index” value=”btree”/>
</field>
<field name=”salary” default-fetch-group=”true”/>
<field name=”dept”>
<extension vendor-name=”sunw” key=”inverse” value=”emps”/>
</field>
<field name=”boss”/>
</class>
<class name=”Department” identity-type=”application” objectid-
class=”DepartmentKey”>
<field name=”name” primary-key=”true”/>
<field name=”emps”>
<collection element-type=”Employee”>
<extension vendor-name=”sunw” key=”element-inverse” value=”dept”/>
</collection>
</field>
</class>
</package>
</jdo>
 JDO 1.0.1 134 June 5, 2003

Java Data Objects 1.0.1
19 Portability Guidelines

One of the objectives of JDO is to allow an application to be portable across multiple JDO

implementations. This Chapter summarizes portability rules that are expressed elsewhere

in this document. If all of these programming rules are followed, then the application will

work in any JDO compliant implementation.

19.1 Optional Features

These features may be used by the application if the JDO vendor supports them. Since they

are not required features, a portable application must not use them.

19.1.1 Optimistic Transactions

Optimistic transactions are enabled by the PersistenceManagerFactory or Trans-
action method setOptimistic(true) . JDO implementations that do not support

optimistic transactions throw JDOUnsupportedOptionException .

19.1.2 Nontransactional Read

Nontransactional read is enabled by the PersistenceManagerFactory or Trans-
action method setNontransactionalRead(true) . JDO implementations that do

not support nontransactional read throw JDOUnsupportedOptionException .

19.1.3 Nontransactional Write

Nontransactional write is enabled by the PersistenceManagerFactory or Trans-
action method setNontransactionalWrite(true) . JDO implementations that

do not support nontransactional write throw JDOUnsupportedOptionException .

19.1.4 Transient Transactional

Transient transactional instances are created by the PersistenceManager makeT-
ransactional(Object) . JDO implementations that do not support transient transac-

tional throw JDOUnsupportedOptionException .

19.1.5 RetainValues

A portable application should run the same regardless of the setting of the retainVal-
ues flag.

19.1.6 IgnoreCache

A portable application should set this flag to false . The results of iterating Extent s and

executing queries might be different among different implementations.

19.2 Object Model

References among PersistenceCapable classes must be defined as First Class Objects

in the model.
 JDO 1.0.1 135 June 5, 2003

Java Data Objects 1.0.1
SCO instances must not be shared among multiple persistent instances.

Arrays must not be shared among multiple persistent instances.

If arrays are passed by reference outside the defining class, the owning persistent instance

must be notified via jdoMakeDirty .

The application must not depend on any sharing semantics of immutable class objects.

The application must not depend on knowing the exact class of an SCO instance, as they

may be substituted by a subclass of the type.

Persistence-capable classes must not contain final non-static fields or methods or fields

that start with "jdo".

19.3 JDO Identity

Applications must be aware that support for application identity and datastore identity

are optional, and some implementations might support only one of these identity types.

The supported identity type(s) of the implementation should be checked by using the

supportedOptions method of PersistenceManagerFactory .

Applications must construct only ObjectId instances for classes that use application-de-

fined JDO identity, or use the PersistenceManager getObjectIdClass to obtain

the ObjectId class.

Classes that use application identity must only use key field types of primitive, String ,

Date , Byte, Short, Integer, Long, Float, Double, BigDecimal, or
BigInteger .

Applications must only compare ObjectId instances from different JDO implementa-

tions for classes that use application-defined JDO identity.

The equals and hashCode methods of any persistence-capable class using application

identity must depend on all of the key fields.

Key fields can be defined only in the least-derived persistence-capable class in an inherit-

ance hierarchy. All of the classes in the hierarchy use the same key class.

A JDO implementation might not support changing primary key field values (which has

the effect of changing the primary key of the underlying datastore instance). Portable ap-

plications do not change primary key fields.

19.4 PersistenceManager

To be portable, instances of PersistenceManager must be obtained from a Persis-
tenceManagerFactory , and not by construction. The recommended way to instantiate

a PersistenceManagerFactory is to use the JDOHelper.getPersistenceMan-
agerFactory(Properties) method.

19.5 Query

Using a query language other than JDOQL is not portable.

A query must constrain all variables used in any expressions with a contains clause refer-

encing a persistent field of a PersistenceCapable class.

Not all datastores allow storing null-valued collections. Portable queries on these collec-

tions should use isEmpty() instead of comparing to null .
 JDO 1.0.1 136 June 5, 2003

Java Data Objects 1.0.1
Portable queries must not use non-persistent, final, or static field names in filter expres-

sions.

Portable queries must pass persistent or transactional instances as parameters of persis-

tence-capable types.

19.6 XML metadata

Portable applications will define all persistence-capable classes in the XML metadata.

19.7 Life cycle

Portable applications will not depend on requiring instances to be hollow or persistent-

nontransactional, or to remain non-transactional in a transaction.

19.8 JDOHelper

Portable applications will use JDOHelper for state interrogations of instances of persis-

tence-capable classes and for determining if an instance is of a persistence-capable class.

19.9 Transaction

Portable applications must not depend on isolation levels stronger than read-committed

provided by the underlying datastore. Some fields might be read at different times by the

JDO implementation, and there is no guarantee as to read consistency compared to previ-

ously read data. A JDO persistence-capable instance might contain fields instantiated by

multiple datastore accesses, with no guarantees of consistency (read-committed isolation

level).

Readers primarily interested in developing applications with the JDO API can ignore the following
chapters. Skip to 22 – JDOPermission.
 JDO 1.0.1 137 June 5, 2003

Java Data Objects 1.0.1

d

20 JDO Reference Enhancer

This chapter specifies the JDO Reference Enhancement, which specifies the contract be-

tween JDO persistence-capable classes and JDO StateManager in the runtime environ-

ment. The JDO Reference Enhancer modifies persistence-capable classes to run in the JDO

environment and implement the required contract. The resulting classes, hereinafter re-

ferred to as enhanced classes, implement a contract used by the JDOHelper , the JDOIm-
plHelper , and the StateManager classes.

The JDO Reference Enhancer is just one possible implementation of the JDO Reference En-

hancement contract. Tools may instead preprocess or generate source code to create class-

es that implement this contract.

NOTE: This chapter is not intended to be used by application programmers. It
is for use only by implementations. Applications should use the methods define
in class JDOHelper instead of these methods and fields.

20.1 Overview

The JDO Reference Enhancer will be used to modify each persistence-capable class before

using that persistence-capable class with the Reference Implementation Persistence-
Manager in the Java VM. It might be used before class loading or during the class loading

process.

The JDO Reference Enhancer transforms the class by making specific changes to the class

definition to enable the state of any persistent instances to be synchronized with the rep-

resentation of the data in the datastore.

Tools that generate source code or modify the Java source code files must generate classes

that meet the defined contract in this chapter.

The Reference Enhancer provides an implementation for the PersistenceCapable in-

terface.

20.2 Goals

The following are the goals for the JDO Reference Enhancer:

• Binary compatibility and portability of application classes among JDO vendor

implementations

• Binary compatibility between application classes enhanced by different JDO

vendors at different times.

• Minimal intrusion into the operation of the class and class instances

• Provide metadata at runtime without requiring implementations to be granted

reflect permission for non-private fields
 JDO 1.0.1 138 June 5, 2003

Java Data Objects 1.0.1
• Values of fields can be read and written directly without wrapping code with

accessors or mutators (field1 += 13 is allowed, instead of requiring the user

to code setField1(getField1() + 13))

• Navigation from one instance to another uses natural Java syntax without any

requirement for explicit fetching of referenced instances

• Automatically track modification of persistent instances without any explicit

action by the application or component developer

• Highest performance for transient instances of persistence-capable classes

• Support for all class and field modifiers

• Transparent operation of persistent and transient instances as seen by application

components and persistence-capable classes

• Shared use of persistence-capable classes (utility components) among multiple

JDO PersistenceManager instances in the same Java VM

• Preservation of the security of instances of PersistenceCapable classes from

unauthorized access

• Support for debugging enhanced classes by line number

20.3 Enhancement: Architecture

The reference enhancement of PersistenceCapable classes has the primary objective

of preserving transparency for the classes. Specifically, accesses to fields in the JDO in-

stance are mediated to allow for initializing values of fields from the associated values in

the datastore and for storing the values of fields in the JDO instance into the associated val-

ues in the datastore at transaction boundaries.

To avoid conflicts in the name space of the PersistenceCapable classes, all methods

and fields added to the PersistenceCapable classes have the “jdo ” prefix.

Enhancement might be performed at any time prior to use of the class by the application.

During enhancement, special JDO class metadata must be available if any non-default ac-

tions are to be taken. The metadata is in XML format .

Specifically, the following will require access to special class metadata at class enhance-

ment time, because these are not the defaults:

• classes are to use primary key or non-managed object identity;

• fields declared as transient in the class definition are to be persistent in the

datastore;

• fields not declared as transient in the class definition are to be non-persistent in the

datastore;

• fields are to be transactional non-persistent;

• fields with domains of references to PersistenceCapable classes are to be

part of the default fetch group;

• fields with domains of primitive types (boolean , char , byte , short , int ,

long , float , double) or primitive wrapper types (Boolean , Char , Byte ,

Short , Integer , Long , Float , Double) are not to be part of the default fetch

group;

• fields with domains of String are not to be part of the default fetch group;
 JDO 1.0.1 139 June 5, 2003

Java Data Objects 1.0.1
• fields with domains of array types are to be part of the default fetch group.

Enhancement makes changes to two categories of classes: persistence-capable and persis-

tence-aware. Persistence-capable classes are those whose instances are allowed to be

stored in a JDO-managed datastore. Persistence aware classes are those that while not nec-

essarily persistence-capable themselves, contain references to managed fields of classes

that are persistence-capable. Thus, persistence-capable classes may also be persistence-

aware.

To preserve the security of instances of PersistenceCapable classes, access restric-

tions to fields before enhancement will be propagated to accessor methods after enhance-

ment. Further, to become the delegate of field access (StateManager) the caller must be

authorized for JDOPermission .

A JDO implementation must interoperate with classes enhanced by the Reference Enhanc-

er and with classes enhanced with other Vendor Enhancers. Additionally, classes en-

hanced by any Vendor Enhancers must interoperate with the Reference Implementation.

Name scope issues are minimized because the Reference Enhancement contract adds

methods and fields that begin with “jdo ”, while methods and fields added by Vendor En-

hancers must not begin with “jdo ”. Instead, they may begin with “sunwjdo ”, “exlnj-
do” or other string that includes a vendor-identifying name and the “jdo ” string.

Debugging by source line number must be preserved by the enhancement process. If any

code modification within a method body changes the byte code offsets within the method,

then the line number references of the method must be updated to reflect the change.

The Reference Enhancer makes the following changes to the least-derived (topmost) per-

sistence-capable classes:

• adds a field named jdoStateManager , of type

javax.jdo.spi.StateManager to associate each instance with zero or one

instance of JDO StateManager ;

• adds a synchronized method jdoReplaceStateManager (to replace the value

of the jdoStateManager), which invokes security checking for declared

JDOPermission ;

• adds a field named jdoFlags of type byte in the least-derived persistence

capable class, to distinguish readable and writable instances from non-readable

and non-writable instances;

• adds a method jdoReplaceFlags to require the instance to request an updated

value for the jdoFlags field from the StateManager ;

• adds methods to implement status query methods by delegating to the

StateManager ;

• adds method jdoReplaceFields(int[]) to obtain values of specified fields

from the StateManager and cache the values in the instance;

• adds method jdoProvideFields(int[]) to supply values of specific fields

to the StateManager ;

• adds a method void jdoCopyFields(Object other, int[]
fieldNumbers) to allow the StateManager to manage multiple images of the

persistence capable instance;

• adds a method jdoPreSerialize to load all non-transient fields into the

instance prior to serialization;
 JDO 1.0.1 140 June 5, 2003

Java Data Objects 1.0.1
The Reference Enhancer makes the following changes to least-derived (topmost) persis-

tence-capable classes and classes that declare an objectid-class in their xml:

• adds methods jdoCopyKeyFieldsToObjectId(PersistenceCapable
pc, Object oid) and

jdoCopyKeyFieldsToObjectId(ObjectIdFieldSupplier fs,
Object oid) .

• adds methods jdoCopyKeyFieldsFromObjectId(Object oid) and

jdoCopyKeyFieldsFromObjectId(ObjectIdFieldConsumer fc,
Object oid) .

• adds a method jdoNewObjectIdInstance() which creates an instance of the

jdo ObjectId for this class.

The Reference Enhancer makes the following changes to all classes:

• adds “implements javax.jdo.spi.PersistenceCapable ” to the class

definition;

• adds two methods jdoNewInstance , one of which takes a parameter of type

StateManager , to be used by the implementation when a new persistent

instance is required (this method allows a performance optimization), and the

other takes a parameter of type StateManager and a parameter of an

ObjectId for key field initialization;

• adds method jdoReplaceField(int) to obtain values of specified fields from

the StateManager and cache the values in the instance;

• adds method jdoProvideField(int) to supply values of specific fields to the

StateManager ;

• adds an accessor method and mutator method for each field declared in the class,

which delegates to the StateManager for values;

• leaves the modifiers of all persistent fields the same as the unenhanced class to

allow the enhanced classes to be used for compilation of other classes;

• adds a method jdoCopyField(<class> other, int fieldNumber) to

allow the StateManager to manage multiple images of the persistence capable

instance;

• adds a method jdoGetManagedFieldCount() to manage the numbering of

fields with respect to inherited managed fields.

• adds a field jdoInheritedFieldCount , which is set at class initialization time

to the returned value of super.jdoGetManagedFieldCount() .

• adds fields jdoFieldNames , jdoFieldTypes , and jdoFieldFlags , which

contain the names, types, and flags of managed fields.

• adds field Class jdoPersistenceCapableSuperclass , which contains

the Class of the PersistenceCapable superclass.

• adds a static initializer to register the class with the JDOImplHelper .

• adds a field serialVersionUID if it does not already exist, and calculates its

initial value based on the non-enhanced class definition.

Enhancement makes the following changes to persistence aware classes:
 JDO 1.0.1 141 June 5, 2003

Java Data Objects 1.0.1
• modifies executable code that accesses fields of PersistenceCapable classes

not known to be not managed, replacing getfield and putfield calls with

calls to the generated accessor and mutator methods.

20.4 Inheritance

Enhancement allows a class to manage the persistent state only of declared fields. It is a

future objective to allow a class to manage fields of a non-persistence capable superclass.

Fields that hide inherited fields (because they have the same name) are fully supported.

The enhancer delegates accesses of inherited hidden fields to the appropriate class by ref-

erencing the appropriate method implemented in the declaring class.

All persistence capable classes in the inheritance hierarchy must use the same kind of JDO

identity.

20.5 Field Numbering

Enhancement assigns field numbers to all managed (transactional or persistent) fields.

Generated methods and fields that refer to fields (jdoFieldNames , jdoFieldTypes ,

jdoFieldFlags , jdoGetManagedFieldCount , jdoCopyFields , jdo-
MakeDirty , jdoProvideField , jdoProvideFields , jdoReplaceField , and

jdoReplaceFields) are generated to include both transactional and persistent fields.

Relative field numbers are calculated at enhancement time. For each persistence capable

class the enhancer determines the declared managed fields. To calculate the relative field

number, the declared fields array is sorted by field name. Each managed field is assigned

a relative field number, starting with zero.

Absolute field numbers are calculated at runtime, based on the number of inherited man-

aged fields, and the relative field number. The absolute field number used in method calls

is the relative field number plus the number of inherited managed fields.

The absolute field number is used in method calls between the StateManager and Per-
sistenceCapable ; and in the reference implementation, between the StateManager
and StoreManager .

20.6 Serialization

Serialization of a transient instance results in writing an object graph of objects connected

via non-transient fields. The explicit intent of JDO enhancement of serializable classes is to

permit serialization of transient instances or persistent instances to a format that can be de-

serialized by either an enhanced or non-enhanced class.

When the writeObject method is called on a class to serialize it, all fields not declared

as transient must be loaded into the instance. This function is performed by the enhancer-

generated method jdoPreSerialize . This method simply delegates to the StateM-
anager to ensure that all persistent non-transient fields are loaded into the instance.

[Fields not declared as transient and not declared as persistent must have been loaded by

the PersistenceCapable class an application-specific way.]

The jdoPreSerialize method need be called only once for a persistent instance.

Therefore, the writeObject method in the least-derived pc class that implements Se-
rializable in the inheritance hierarchy needs to be modified or generated to call it.
 JDO 1.0.1 142 June 5, 2003

Java Data Objects 1.0.1
If a standard serialization is done to an enhanced class instance, the fields added by the

enhancer will not be serialized because they are declared to be transient .

To allow a non-enhanced class to deserialize the stream, the serialVersionUID for the

enhanced and non-enhanced classes must be identical. If the serialVersionUID field

does not already exist in the non-enhanced class, the enhancer will calculate it (excluding

any enhancer-generated fields or methods) and add it to the enhanced class.

If a PersistenceCapable class is assignable to java.io.Serializable but its

persistence-capable superclass is not, then the enhancer will modify the class in the follow-

ing way:

• if the class does not contain implementations of writeObject , or

writeReplace , then the enhancer will generate writeObject . Fields that are

required to be present during serialization operations will be explicitly

instantiated by the generated method jdoPreSerialize , which will be called

by the enhancer-generated writeObject .

• if the class contains an implementation of writeObject or writeReplace , it

will be changed to call jdoPreSerialize prior to any user-written code in the

method.

If a PersistenceCapable class is assignable to java.io.Serializable , then the

non-transient fields might be instantiated prior to serialization. However, the closure of in-

stances reachable from this instance might include a large part of instances in the data-

store.

The results of restoring a serialized persistent instance graph is a graph of interconnected

transient instances. The method readObject is not enhanced, as it deals only with tran-

sient instances.

20.7 Cloning

If a standard clone is made of a persistent instance, the jdoFlags and jdoStateMan-
ager fields will also be cloned. The clone will eventually invoke the StateManager if

the source of the cloned instance is not transient. This condition will be detected by the

runtime, but disconnecting the clone is a convoluted process. To avoid this situation where

possible, the enhancer modifies the cloning behavior by modifying certain methods that

invoke clone , setting these two fields to indicate that the clone is a transient instance.

Otherwise, all of the fields in the clone contain the standard shallow copy of the fields of

the cloned instance.

The reference enhancement will modify the clone() method in the persistence-capable

root class (the least-derived (topmost) PersistenceCapable class) to reset these two

fields immediately after returning from super.clone() . This caters for the normal case

where clone methods in subclasses call super.clone() and the clone is disconnected

immediately after being cloned.

This technique does not address these cases:

• A non-persistence-capable superclass clone method calls a runtime method (for

example, makePersistent) on the newly created clone. In this case, the

makePersistent will succeed, but the clone method in the persistence-

capable subclass will disconnect the clone, thereby undoing the

makePersistent . Thus, calling any life cycle change methods with the clone as

an argument is not permitted in clone methods.
 JDO 1.0.1 143 June 5, 2003

Java Data Objects 1.0.1
• Where there is no clone method declared in the persistence-capable root class, the

clone will not be disconnected, and the runtime will disconnect the clone the first

time the StateManager is called by the clone.

20.8 Introspection (Java core reflection)

No changes are made to the behavior of introspection. The current state of all fields is ex-

posed to the reflection APIs.

This is not at all what some users might expect. It is a future objective to more gracefully

support introspection of fields in persistent instances of persistence capable classes.

20.9 Field Modifiers

Fields in PersistenceCapable classes are treated by the enhancer in one of several

ways, based on their modifiers as declared in the Java language and their enhanced mod-

ifiers as declared by the PersistenceCapable MetaData.

These modifiers are orthogonal to the modifiers defined by the Java language. They have

default values based on modifiers defined in the class for the fields. They may be specified

in the XML metadata used at enhancement time.

20.9.1 Non-persistent

Non-persistent fields are ignored by the enhancer. They are assumed to lie outside the do-

main of persistence. They might be changed at will by any method based only on the pri-

vate/protected/public modifiers. There is no enhancement of accesses to non-persistent

fields.

The default modifier is non-persistent for fields identified as transient in the class declara-

tion.

20.9.2 Transactional non-persistent

Transactional non-persistent fields are non-persistent fields whose values are saved and

restored during rollback. Their values are not stored in the datastore. There is no enhance-

ment of read accesses to transactional non-persistent fields. Write accesses are always me-

diated (the StateManager is called on write).

20.9.3 Persistent

Persistent fields are fields whose values are synchronized with values in the datastore. The

synchronization is performed transparent to the methods in the PersistenceCapable
class.

The default persistence-modifier for fields is based on their modifiers and type, as detailed

in the XML metadata chapter.

The modification to the class by the enhancer depends on whether the persistent field is a

member of the default fetch group.

If the persistent field is a member of the default fetch group, then the enhanced code be-

haves as follows. The constant values READ_OK, READ_WRITE_OK, and

LOAD_REQUIRED are defined in interface PersistenceCapable .

• for read access, jdoFlags is checked for READ_OKor READ_WRITE_OK. If it is

then the value in the field is retrieved. If it is not, then the StateManager
instance is requested to load the value of the field from the datastore, which might

cause the StateManager to populate values of all default fetch group fields in
 JDO 1.0.1 144 June 5, 2003

Java Data Objects 1.0.1
the instance, and other values as defined by the JDO vendor policy. This behavior

is not required, but optional. If the StateManager chooses, it may simply

populate the value of the specific field requested. Upon conclusion of this process,

the jdoFlags value might be set by the StateManager to READ_OKand the

value of the field is retrieved. If not all fields in the default fetch group were

populated, the StateManager must not set the jdoFlags to be READ_OK.

• for write access, jdoFlags is checked for READ_WRITE_OK. If it is

READ_WRITE_OK, then the value is stored in the field. If it is not

READ_WRITE_OK, then the StateManager instance is requested to load the

state of the values from the datastore, which might cause the StateManager to

populate values of all default fetch group fields in the instance. Upon conclusion

of the load process, the jdoFlags value might be set by the StateManager to

READ_WRITE_OK and the value of the field is stored.

If the persistent field is not a member of the default fetch group, then each read and write

access to the field is delegated to the StateManager . For read, the value of the field is

obtained from the StateManager , stored in the field, and returned to the caller. For

write, the proposed value is given to the StateManager , and the returned value from

the StateManager is stored in the field.

The enhanced code that fetches or modifies a field that is not in the default fetch group first

checks to see if there is an associated StateManager instance and if not (the case for tran-

sient instances) the access is allowed without intervention.

20.9.4 PrimaryKey

Primary key fields are not part of the default fetch group; all changes to the field can be

intercepted by the StateManager . This allows special treatment by the implementation

if any primary key fields are changed by the application.

Primary key fields are always available in the instance, regardless of the state. Therefore,

read access to these fields is never mediated.

20.9.5 Embedded

Fields identified as embedded in the XML metadata are treated as containing embedded

instances. The default for Array, Collection , and Maptypes is embedded. This is to al-

low JDO implementations to map PersistenceCapable field types to embedded ob-

jects (aggregation by containment pattern).

20.9.6 Null-value

Fields of Object types might be mapped to datastore elements that do not allow null val-

ues. The default behavior “none” is that no special treatment is done for null-valued fields.

In this case, null-valued fields throw a JDOUserException when the instance is flushed

to the datastore and the datastore does not support null values.

However, the treatment of null -valued fields can be modified by specifying the behavior

in the XML metadata. The null -value setting of “default” is used when the default value

for the datastore element is to be used for null -valued fields.

If the application requires non-null values to be stored in this field, then the setting

should be “exception”, which throws a JDOUserException if the value of the field is

null at the time the instance is stored in the datastore.

For example, if a field of type Integer is mapped to a datastore int value, committing an

instance with a field value of null where the null -value setting is “default” will result in
 JDO 1.0.1 145 June 5, 2003

Java Data Objects 1.0.1
a zero written to the datastore element. Similarly, a null-valued String field would be

written to the datastore as an empty (zero length) String where the null-value setting is

“default”.

20.10 Treatment of standard Java field modifiers

20.10.1 Static

Static fields are ignored by the enhancer. They are not initialized by JDO; accesses to values

are not mediated.

20.10.2 Final

Final fields are treated as non-persistent and non-transactional by the enhancer. Final

fields are initialized only by the constructor, and their values cannot be changed after con-

struction of the instance. Therefore, their values cannot be loaded or stored by JDO; access-

es are not mediated.

This treatment might not be what users expect; therefore, final fields are not supported as

persistent or transactional instance fields, final static fields are supported by ignoring

them.

20.10.3 Private

Private fields are accessed only by methods in the class itself. JDO handles private fields

according to the semantic that values are stored in private fields by the enhancement-gen-

erated jdoSetXXX methods or jdoReplaceField , which become part of the class def-

inition. The enhancement-generated jdoGetXXX or jdoProvideField methods,

which become part of the class definition, load values from private fields.

20.10.4 Public, Protected

Public fields are not recommended to be persistent in persistence capable classes. Classes

that make reference to persistent public fields (persistence aware) must be enhanced them-

selves prior to execution. Protected fields and fields without an explicit access modifier

(commonly referred to as package access) may be persistent.

Users must enhance all classes, regardless of package, that reference any persistent or

transactional field.

20.11 Fetch Groups

Fetch groups represent a grouping of fields that are retrieved from the datastore together.

Typically, a datastore associates a number of data values together and efficiently retrieves

these values. Other values require extra method calls to retrieve.

For example, in a relational database, the Employee table defines columns for Employee

id, Name, and Position. These columns are efficiently retrieved with one data transfer re-

quest. The corresponding fields in the Employee class might be part of the default fetch

group.

Continuing this example, there is a column for Department dept, defined as a foreign key

from the Employee table to the Department table, which corresponds to a field in the Em-

ployee class named dept of type Department. The runtime behavior of this field depends

on the mapping to the Department table. The reference might be to a derived class and it

might be expensive to determine the class of the Department instance. Therefore, the dept

field will not be defined as part of the default fetch group, even though the foreign key that
 JDO 1.0.1 146 June 5, 2003

Java Data Objects 1.0.1
implements the relationship might be fetched when the Employee is fetched. Rather, the

value for the dept field will be retrieved from the StateManager every time it is request-

ed. Similarly, the StateManager will be called for each modification of the value of dept.

The jdoFlags field is the indicator of the state of the default fetch group.

20.12 jdoFlags Definition

The value of the jdoFlags field is entirely determined by the StateManager . The

StateManager calls the jdoReplaceFlags method to inform the persistence capable

class to retrieve a new value for the jdoFlags field. The values permitted are constants

defined in the interface PersistenceCapable : READ_OK, READ_WRITE_OK, and

LOAD_REQUIRED.

During the transition from transient to a managed life cycle state, the jdoFlags field is

set to LOAD_REQUIREDby the persistence capable instance, to indicate that the instance

is not ready. During the transition from a managed state to transient, the jdoFlags field

is set to READ_WRITE_OKby the persistence capable instance, to indicate that the instance

is available for read and write of any field.

The jdoFlags field is a byte with three possible values and associated meanings:

• 0 - READ_WRITE_OK: the values in the default fetch group can be read or written

without intermediation of the associated StateManager instance.

• -1 - READ_OK: the values in the default fetch group can be read but not written

without intermediation of the associated StateManager instance.

• 1 - LOAD_REQUIRED: the values in the default fetch group cannot be accessed,

either for read or write, without intermediation of the associated StateManager
instance.

20.13 Exceptions

Generated methods validate the state of the persistence-capable class and the arguments

to the method.

If an argument is illegal, then IllegalArgumentException is thrown. For example,

an illegal field number argument is less than zero or greater than the number of managed

fields.

Some methods require a non-null state manager. In these cases, if the jdoStateManager
is null , then IllegalStateException is thrown.

20.14 Modified field access

The enhancer modifies field accesses to guarantee that the values of fields are retrieved

from the datastore prior to application usage.

For any field access that reads the value of a field, the getfield byte code is replaced with a

call to a generated local method, jdoGetXXX , which determines based on the kind of field

(default fetch group or not) and the state of the jdoFlags whether to call the StateM-
anager with the field number needed.

For any field access that stores the new value of a field, the putfield byte code is replaced

with a call to a generated local method, jdoSetXXX , which determines based on the kind
 JDO 1.0.1 147 June 5, 2003

Java Data Objects 1.0.1
of field (default fetch group or not) and the state of the jdoFlags whether to call the

StateManager with the field number needed. A JDO implementation might perform

field validation during this operation and might throw a JDOUserException if the val-

ue of the field does not meet the criterion.

The following table specifies the values of the jdoFieldFlags for each type of mediated

field.

not checked: access is always granted

checked: the condition of jdoFlags is checked to see if access should be mediated

mediated: access is always mediated (delegated to the StateManager)

flags: the value in the jdoFieldFlags field

The flags are defined in PersistenceCapable and may be combined only as in the

above table (SERIALIZABLE may be combined with any other flags):

1 - CHECK_READ

2 - MEDIATE_READ

4 - CHECK_WRITE

8 - MEDIATE_WRITE

16 - SERIALIZABLE

20.15 Generated fields in least-derivedPersistenceCapable class

These fields are generated only in the least-derived (topmost) class in the inheritance hier-

archy of persistence-capable classes.

protected transient javax.jdo.spi.StateManager jdoStateManager;

This field contains the managing StateManager instance, if this instance is being managed.

protected transient byte jdoFlags;

20.16 Generated fields in allPersistenceCapable classes

The following fields are generated in all persistence-capable classes.

private final static int jdoInheritedFieldCount;

This field is initialized at class load time to be the number of fields managed by the super-

classes of this class, or to zero if there is no persistence capable superclass.

Table 5: Field access mediation

field type read access write access flags

transient transactional not checked checked CHECK_WRITE

primary key not checked mediated MEDIATE_WRITE

default fetch group checked checked CHECK_READ +
CHECK_WRITE

non-default fetch group mediated mediated MEDIATE_READ +
MEDIATE_WRITE
 JDO 1.0.1 148 June 5, 2003

Java Data Objects 1.0.1
private final static String[] jdoFieldNames;

This field is initialized at class load time to an array of names of persistent and transaction-

al fields. The position in the array is the relative field number of the field.

private final static Class[] jdoFieldTypes;

This field is initialized at class load time to an array of types of persistent and transactional

fields. The position in the array is the relative field number of the field.

private final static byte[] jdoFieldFlags;

This field is initialized at class load time to an array of flags indicating the characteristics

of each persistent and transactional field.

private final static Class jdoPersistenceCapableSuperclass;

This field is initialized at class load time to the class instance of the PersistenceCa-
pable superclass, or null if there is none.

private final static long serialVersionUID;

This field is declared only if it does not already exist, and it is initialized to the value that

would obtain prior to enhancement.

Generated static initializer

The generated static initializer uses the values for jdoFieldNames , jdoFieldTypes, jd-
oFieldFlags , and jdoPersistenceCapableSuperclass , and calls the static

registerClass method in JDOImplHelper to register itself with the runtime envi-

ronment. If the class is abstract, then it does not register a helper instance. If the class is not

abstract, it registers a newly constructed instance.

The generated static initialization code is placed after any user-defined static initialization

code.

20.17 Generated methods in least-derivedPersistenceCapable class

These methods are declared in interface PersistenceCapable .

public final boolean jdoIsPersistent();

public final boolean jdoIsTransactional();

public final boolean jdoIsNew();

public final boolean jdoIsDirty();

public final boolean jdoIsDeleted();

These methods check if the jdoStateManager field is null . If so, they return false .

If not, they delegate to the corresponding method in StateManager .

public final void jdoMakeDirty (String fieldName);

This method checks if the jdoStateManager field is null . If so, it returns silently. If

not, it delegates to the makeDirty method in StateManager .

public final PersistenceManager jdoGetPersistenceManager();

This method checks if the jdoStateManager field is null . If so, it returns null . If not,

it delegates to the getPersistenceManager method in StateManager .

public final Object jdoGetObjectId();

public final Object jdoGetTransactionalObjectId();
 JDO 1.0.1 149 June 5, 2003

Java Data Objects 1.0.1
These methods check if the jdoStateManager field is null . If so, they return null . If

not, they delegate to the corresponding method in StateManager .

public synchronized final void jdoReplaceStateManager (StateM-
anager sm);

NOTE: This method will be called by the StateManager on state changes when transi-

tioning an instance from transient to a managed state, and from a managed state to tran-

sient.

This method is implemented as synchronized to resolve race conditions, if more than one

StateManager attempts to acquire ownership of the same PersistenceCapable in-

stance.

If the current jdoStateManager is not null , this method replaces the current value for

jdoStateManager with the result of calling jdoStateManager.replacing-
StateManager(this, sm) . If successful, the method ends. If the change was not re-

quested by the StateManager , then the StateManager throws a

JDOUserException .

If the current jdoStateManager field is null , then a security check is performed by

calling JDOImplHelper.checkAuthorizedStateManager with the StateManager
parameter smpassed as the parameter to the check. Thus, only StateManager instances

in code bases authorized for JDOPermission(“setStateManager”) are allowed to

set the StateManager . If the security check succeeds, the jdoStateManager field is

set to the value of the parameter sm, and the jdoFlags field is set to LOAD_REQUIRED
to indicate that mediation is required.

public final void jdoReplaceFlags ();

NOTE: This method will be called by the StateManager on state changes when transi-

tioning an instance from a managed state to transient.

If the current jdoStateManager field is null , then this method silently returns with no

effect.

If the current jdoStateManager is not null , this method replaces the current value for

jdoFlags with the result of calling jdoStateManager.replacingFlags(this) .

public final void jdoReplaceFields (int[] fields);

For each field number in the fields parameter, jdoReplaceField method is called.

public final void jdoProvideFields (int[] fields);

For each field number in the fields parameter, jdoProvideField method is called.

protected final void jdoPreSerialize();

This method is called by the generated or modified writeObject to allow the instance

to fully populate serializable fields. This method delegates to the StateManager method

preSerialize so that fields can be fetched by the JDO implementation prior to serial-

ization. If the jdoStateManager field is null, this method returns with no effect.

20.18 Generated methods inPersistenceCapable root classes and all classes that declare
objectid-class in xml metadata:

public void jdoCopyKeyFieldsToObjectId (ObjectIdFieldSupplier
fs, Object oid)
 JDO 1.0.1 150 June 5, 2003

Java Data Objects 1.0.1
This method is called by the JDO implementation (or implementation helper) to populate

key fields in object id instances. If this class is not the PersistenceCapable root class,

it first calls the method of the same name in the root class. Then, for each key field declared

in the metadata, this method calls the object id field supplier and stores the result in the

oid instance.

If the oid parameter is not assignment compatible with the object id class of this instance,

then ClassCastException is thrown. If this class does not use application identity,

then this method silently returns.

public void jdoCopyKeyFieldsToObjectId (Object oid)

This method is called by the JDO implementation (or implementation helper) to populate

key fields in object id instances from persistence-capable instances. This might be used to

implement getObjectId or getTransactionalObjectId . If this class is not the

PersistenceCapable root class, it first calls the method of the same name in the root

class. Then, for each key field declared in the metadata, this method copies the value of the

key field to the oid instance.

If the oid parameter is not assignment compatible with the object id class of this instance,

then ClassCastException is thrown. If this class does not use application identity,

then this method silently returns.

public void jdoCopyKeyFieldsFromObjectId(ObjectIdFieldConsumer
fc, Object oid)

This method is called by the JDO implementation (or implementation helper) to export key

fields from object id instances. If this class is not the PersistenceCapable root class,

it first calls the method of the same name in the root class. Then, for each key field declared

in the metadata, this method passes the value of the key field in the oid instance to the store

method of the object id field consumer.

If the oid parameter is not assignment compatible with the object id class of this instance,

then ClassCastException is thrown. If this class does not use application identity,

then this method silently returns.

protected void jdoCopyKeyFieldsFromObjectId (Object oid)

This method is called by the jdoNewInstance(Object oid) method. If this class is

not the PersistenceCapable root class, it first calls the method of the same name in

the root class. Then, for each key field declared in the metadata, this method copies the val-

ue of the key field in the oid instance to the key field in this instance.

If the oid parameter is not assignment compatible with the object id class of this instance,

then ClassCastException is thrown. If this class does not use application identity,

then this method silently returns.

public Object jdoNewObjectIdInstance();

public Object jdoNewObjectIdInstance(String str);

NOTE: This method is called by the JDO implementation (or implementation helper) to

populate key fields in object id instances.

If this class uses application identity, then this method returns a new instance of the Ob-

jectId class. Otherwise, null is returned.

20.19 Generated methods in allPersistenceCapable classes

public PersistenceCapable jdoNewInstance(StateManager sm);
 JDO 1.0.1 151 June 5, 2003

Java Data Objects 1.0.1
This method uses the default constructor, assigns the sm parameter to the jdoStateM-
anager field, and assigns LOAD_REQUIREDto the jdoFlags field. If the class is ab-

stract, a JDOFatalInternalException is thrown.

public PersistenceCapable jdoNewInstance(StateManager sm, Ob-
ject objectid);

This method uses the default constructor, assigns the StateManager parameter to the

jdoStateManager field, assigns LOAD_REQUIREDto the jdoFlags field, and copies

the key fields from the objectid parameter. If the class is abstract, a JDOFatalInter-
nalException is thrown. If the objectid parameter is not of the correct class, then

ClassCastException is thrown.

protected static int jdoGetManagedFieldCount();

This method returns the number of managed fields declared by this class plus the number

inherited from all superclasses. This method is generated in the class to allow the class to

determine at runtime the number of inherited fields, without having introspection code in

the enhanced class.

final static mmm ttt jdoGet<field>(<class> instance);

The generated jdoGet methods have exactly the same stack signature as the byte code

getfield . They return the value of one specific field. The field returned was either

cached in the instance or retrieved from the StateManager .

The name of the generated method is constructed from the field name. This allows for hid-

den fields to be supported explicitly, and for classes to be enhanced independently.

The modifier mmmis the same access modifier as the corresponding field in the unenhanced

class. The return type ttt is the same type as the corresponding field in the unenhanced

class.

The generated code depends on the type of field:

• If the field is CHECK_READ, then the method first checks to see if the jdoFlags
field is not LOAD_REQUIRED. If so, the value of the field is returned. If not, then

the value of jdoStateManager is checked. If it is null , the value of the field is

returned. If non-null , then method isLoaded is called on the

jdoStateManager . If the result of isLoaded is true , then the value of the

field is returned. If the result of isLoaded is false , then the result of method

getXXXField on the jdoStateManager is returned.

• If the field is MEDIATE_READ, then the value of jdoStateManager is checked.

If it is null , the value of the field is returned. If non-null , then method

isLoaded is called on the jdoStateManager . If the result of isLoaded is

true , then the value of the field is returned. If the result of isLoaded is false ,

then the result of method getXXXField on the jdoStateManager is returned.

• If the field is neither of the above, then the value of the field is returned.

final static mmm void jdoSet<field> (<class> instance, ttt
newValue);

The generated jdoSet methods have exactly the same stack signature as the byte code

putfield . They set the value of one specific field. The field might be provided to the

StateManager .

The name of the generated method is constructed from the field name. This allows for hid-

den fields to be supported explicitly, and for classes to be enhanced independently.
 JDO 1.0.1 152 June 5, 2003

Java Data Objects 1.0.1
The modifier mmmis the same access modifier as the corresponding field in the unenhanced

class. The type ttt is the same type as the corresponding field in the unenhanced class.

The generated code depends on the type of field:

• If the field is CHECK_WRITE, then the method first checks to see if the jdoFlags
field is READ_WRITE_OK. If so, then the field is set to the new value. If not, then

the value of jdoStateManager is checked. If it is null , the value of the field is

set to the new value. If non-null , then method setXXXField is executed on the

jdoStateManager , passing the new value.

• If the field is MEDIATE_WRITE, then the value of jdoStateManager is checked.

If it is null , then the field is set to the parameter. If non-null , then method

setXXXField is executed on the jdoStateManager , passing the new value.

• If the field is neither of the above, then the value of the field is set to the new value.

public void jdoReplaceField (int field);

NOTE: This method is used by the StateManager to store values from the datastore into

the instance. If there is no StateManager (the jdoStateManager field is null), then

this method throws JDOFatalInternalException .

This method calls the StateManager replacingXXXField to get a new value for one

field from the StateManager .

The field number is examined to see if it is a declared field or an inherited field. If it is in-

herited, then the call is delegated to the superclass. If it is declared, then the appropriate

StateManager replacingXXXField method is called, which retrieves the new value

for the field.

If the field is out of range (less than zero or greater than the number of managed fields in

the class) then a JDOFatalInternalException is thrown.

public void jdoProvideField (int field);

NOTE: This method is used by the StateManager to retrieve values from the instance,

during flush to the datastore or for in-memory query processing. If there is no StateM-
anager (the jdoStateManager field is null), then this method throws JDOFa-
talInternalException .

This method calls the StateManager providedXXXField method to supply the value

of the specified field to the StateManager .

The field number is examined to see if it is a declared field or an inherited field. If it is in-

herited, then the call is delegated to the superclass. If it is declared, then the appropriate

StateManager providedXXXField method is called, which provides the StateM-
anager with the value for the field.

If the field is out of range (less than zero or greater than the number of managed fields in

the class) then a JDOFatalInternalException is thrown.

public void jdoCopyFields (Object other, int[] fieldNumbers);

This method is called by the StateManager to create before images of instances for the

purpose of rollback.This method copies the specified fields from the other instance, which

must be the same class as this instance, and owned by the same StateManager .

If the other instance is not assignment compatible with this instance, then ClassCas-
tException is thrown. If the other instance is not owned by the same StateManager ,

then JDOFatalInternalException is thrown.
 JDO 1.0.1 153 June 5, 2003

Java Data Objects 1.0.1
protected final void jdoCopyField (<class> other, int fieldNum-
ber);

This method is called by the jdoCopyFields method to copy the specified field from the

other instance. If the field number corresponds to a field in a persistence-capable super-

class, this method delegates to the superclass method. If the field is out of range (less than

zero or greater than the number of managed fields in the class) then a JDOFatalInter-
nalException is thrown.

private void writeObject(java.io.ObjectOutputStream out)

throws java.io.IOException{

If no user-written method writeObject exists, then one will be generated. The generat-

ed writeObject makes sure that all persistent and transactional serializable fields are

loaded into the instance, by calling jdoPreSerialize() , and then the default output

behavior is invoked on the output stream.

If the class is serializable (either by explicit declaration or by inheritance) then this code

will guarantee that the fields are loaded prior to standard serialization. If the class is not

serializable, then this code will never be executed.

Note that there is no modification of a user’s readObject . During the execution of

readObject , a new transient instance is created. This instance might be made persistent

later, but while it is being constructed by serialization, it remains transient.

20.20 Example class: Employee

The following class definitions for persistence capable classes are used in the examples:

package com.xyz.hr;

import javax.jdo.spi.*; // generated by enhancer...

class EmployeeKey {

int empid;

}

class Employee

implements PersistenceCapable // generated by enhancer...

{

Employee boss; // relative field 0

Department dept; // relative field 1

int empid; // relative field 2, key field

String name; // relative field 3

20.20.1 Generated fields

protected transient javax.jdo.spi.StateManager jdoStateManager =
null;

protected transient byte jdoFlags =

javax.jdo.spi.PersistenceCapable.READ_WRITE_OK;

// if no superclass, the following:

private final static int jdoInheritedFieldCount = 0;

/* otherwise,

private final static int jdoInheritedFieldCount =
 JDO 1.0.1 154 June 5, 2003

Java Data Objects 1.0.1
<persistence-capable-superclass>.jdoGetManagedFieldCount();

*/

private final static String[] jdoFieldNames = {“boss”, “dept”, “em-
pid”, “name”};

private final static Class[] jdoFieldTypes = {Employee.class, De-
partment.class, int.class, String.class};

private final static byte[] jdoFieldFlags = {

MEDIATE_READ+MEDIATE_WRITE,

MEDIATE_READ+MEDIATE_WRITE,

MEDIATE_WRITE,

CHECK_READ+CHECK_WRITE

};

// if no PersistenceCapable superclass, the following:

private final static Class jdoPersistenceCapableSuperclass = null;

/* otherwise,

private final static Class jdoPersistenceCapableSuperclass = <pc-
super>;

private final static long serialVersionUID = 1234567890L;

*/

20.20.2 Generated static initializer

static {

javax.jdo.spi.JDOImplHelper.registerClass (

Employee.class,

jdoFieldNames,

jdoFieldTypes,

jdoFieldFlags,

jdoPersistenceCapableSuperclass,

new Employee());

}

20.20.3 Generated interrogatives

public final boolean jdoIsPersistent() {

return jdoStateManager==null?false:

jdoStateManager.isPersistent(this);

}

public final boolean jdoIsTransactional(){

return jdoStateManager==null?false:

jdoStateManager.isTransactional(this);

}

public final boolean jdoIsNew(){
 JDO 1.0.1 155 June 5, 2003

Java Data Objects 1.0.1
return jdoStateManager==null?false:

jdoStateManager.isNew(this);

}

public final boolean jdoIsDirty(){

return jdoStateManager==null?false:

jdoStateManager.isDirty(this);

}

public final boolean jdoIsDeleted(){

return jdoStateManager==null?false:

jdoStateManager.isDeleted(this);

}

public final void jdoMakeDirty (String fieldName){

if (jdoStateManager==null) return;

jdoStateManager.makeDirty(this, fieldName);

}

public final PersistenceManager jdoGetPersistenceManager(){

return jdoStateManager==null?null:

jdoStateManager.getPersistenceManager(this);

}

public final Object jdoGetObjectId(){

return jdoStateManager==null?null:

jdoStateManager.getObjectId(this);

}

public final Object jdoGetTransactionalObjectId(){

return jdoStateManager==null?null:

jdoStateManager.getTransactionalObjectId(this);

}

20.20.4 Generated jdoReplaceStateManager

The generated method asks the current StateManager to approve the change or vali-

dates the caller’s authority to set the state.

public final synchronized void jdoReplaceStateManager

(javax.jdo.spi.StateManager sm) {

// throws exception if current sm didn’t request the change

if (jdoStateManager != null) {

jdoStateManager = jdoStateManager.replacingStateManager (this,

sm);

} else {

// the following will throw an exception if not authorized

JDOImplHelper.checkAuthorizedStateManager(sm);

jdoStateManager = sm;

this.jdoFlags = LOAD_REQUIRED;

}

 JDO 1.0.1 156 June 5, 2003

Java Data Objects 1.0.1
}

20.20.5 Generated jdoReplaceFlags

public final void jdoReplaceFlags () {

if (jdoStateManager != null) {

jdoFlags = jdoStateManager.replacingFlags (this);

}

}

20.20.6 Generated jdoNewInstance helpers

The first generated helper assigns the value of the passed parameter to the jdoStateM-
anager field of the newly created instance.

public PersistenceCapable jdoNewInstance(StateManager sm) {

// if class is abstract, throw new JDOFatalInternalException()

Employee pc = new Employee ();
pc.jdoStateManager = sm;

pc.jdoFlags = LOAD_REQUIRED;

return pc;

}

/* The second generated helper assigns the value of the passed parameter to the

jdoStateManager field of the newly created instance, and initializes the values of the

key fields from the oid parameter.

*/

public PersistenceCapable jdoNewInstance(StateManager sm, Object
oid) {

// if class is abstract, throw new JDOFatalInternalException()

Employee pc = new Employee ();
pc.jdoStateManager = sm;

pc.jdoFlags = LOAD_REQUIRED;

// now copy the key fields into the new instance

jdoCopyKeyFieldsFromObjectId (oid);

return pc;

}

20.20.7 Generated jdoGetManagedFieldCount

The generated method returns the number of managed fields in this class plus the number

of inherited managed fields. This method is expected to be executed only during class

loading of the subclasses.

protected static int jdoGetManagedFieldCount () {
 JDO 1.0.1 157 June 5, 2003

Java Data Objects 1.0.1
return jdoInheritedFieldCount + jdoFieldNames.length;

}

20.20.8 Generated jdoGetXXX methods (one per persistent field)

The access modifier is the same modifier as the corresponding field definition. Therefore,

access to the method is controlled by the same policy as for the corresponding field.

final static String

jdoGetname(Employee x) {

// this field is in the default fetch group (CHECK_READ)

if (x.jdoFlags <= READ_WRITE_OK) {

 // ok to read

 return x.name;

}

// field needs to be fetched from StateManager

// this call might result in name being stored in instance

StateManager sm = x.jdoStateManager;

if (sm != null) {

if (sm.isLoaded (x, jdoInheritedFieldCount + 3))

return x.name;

return sm.getStringField(x, jdoInheritedFieldCount + 3,

 x.name);

} else {

return x.name;

}

}

final static com.xyz.hr.Department

jdoGetdept(Employee x) {

// this field is not in the default fetch group (MEDIATE_READ)

StateManager sm = x.jdoStateManager;

if (sm != null) {

if (sm.isLoaded (x, jdoInheritedFieldCount + 1))

return x.dept;

return (com.xyz.hr.Department)

sm.getObjectField(x,

jdoInheritedFieldCount + 1,

x.dept);

} else {

return x.dept;
 JDO 1.0.1 158 June 5, 2003

Java Data Objects 1.0.1
}

}

20.20.9 Generated jdoSetXXX methods (one per persistent field)

The access modifier is the same modifier as the corresponding field definition. Therefore,

access to the method is controlled by the same policy as for the corresponding field.

final static void

jdoSetname(Employee x, String newValue) {

// this field is in the default fetch group

if (x.jdoFlags == READ_WRITE_OK) {

 // ok to read, write

 x.name = newValue;

 return;

}

StateManager sm = x.jdoStateManager;

if (sm != null) {

sm.setStringField(x,

jdoInheritedFieldCount + 3,

x.name,

newValue);

} else {

x.name = newValue;

}

}

final static void

jdoSetdept(Employee x, com.xyz.hr.Department newValue) {

// this field is not in the default fetch group

StateManager sm = x.jdoStateManager;

if (sm != null) {

sm.setObjectField(x,

jdoInheritedFieldCount + 1,

x.dept, newValue);

} else {

x.dept = newValue;

}

}

 JDO 1.0.1 159 June 5, 2003

Java Data Objects 1.0.1
20.20.10 Generated jdoReplaceField and jdoReplaceFields

The generated jdoReplaceField retrieves a new value from the StateManager for

one specific field based on field number. This method is called by the StateManager
whenever it wants to update the value of a field in the instance, for example to store values

in the instance from the datastore.

This may be used by the StateManager to clear fields and handle cleanup of the objects cur-

rently referred to by the fields (e.g., embedded objects).

public void jdoReplaceField (int fieldNumber) {

int relativeField = fieldNumber - jdoInheritedFieldCount;

switch (relativeField) {

case (0): boss = (Employee)

jdoStateManager.replacingObjectField (this,

fieldNumber);

break;

case (1): dept = (Department)

jdoStateManager.replacingObjectField (this,

fieldNumber);

break;

case (2): empid =

jdoStateManager.replacingIntField (this,

fieldNumber);

break;

case (3): name =

jdoStateManager.replacingStringField (this,

fieldNumber);

break;

default:

/* if there is a pc superclass, delegate to it

if (relativeField < 0) {

super.jdoReplaceField (fieldNumber);

} else {

throw new IllegalArgumentException(“fieldNumber”);

}

*/

// if there is no pc superclass, throw an exception

throw new IllegalArgumentException(“fieldNumber”);

} // switch

}

public final void jdoReplaceFields (int[] fieldNumbers) {
 JDO 1.0.1 160 June 5, 2003

Java Data Objects 1.0.1
for (int i = 0; i < fieldNumbers.length; ++i) {

int fieldNumber = fieldNumbers[i];

jdoReplaceField (fieldNumber);

}

}

20.20.11 Generated jdoProvideField and jdoProvideFields

The generated jdoProvideField gives the current value of one field to the StateM-
anager . This method is called by the StateManager whenever it wants to get the value

of a field in the instance, for example to store the field in the datastore.

public void jdoProvideField (int fieldNumber) {

int relativeField = fieldNumber - jdoInheritedFieldCount;

switch (relativeField) {

case (0): jdoStateManager.providedObjectField(this,

fieldNumber, boss);

break;

case (1): jdoStateManager.providedObjectField(this,

fieldNumber, dept);

break;

case (2): jdoStateManager.providedIntField(this,

fieldNumber, empid);

break;

case (3): jdoStateManager.providedStringField(this,

fieldNumber, name);

break;

default:

/* if there is a pc superclass, delegate to it

if (relativeField < 0) {

super.jdoProvideField (fieldNumber);

} else {

throw new IllegalArgumentException(“fieldNumber”);

}

*/

// if there is no pc superclass, throw an exception

throw new IllegalArgumentException(“fieldNumber”);

} // switch

}

public final void jdoProvideFields (int[] fieldNumbers) {

for (int i = 0; i < fieldNumbers.length; ++i) {
 JDO 1.0.1 161 June 5, 2003

Java Data Objects 1.0.1
int fieldNumber = fieldNumbers[i];

jdoProvideField (fieldNumber);

}

}

20.20.12 Generated jdoCopyField and jdoCopyFields methods

The generated jdoCopyFields copies fields from another instance to this instance. This

method might be used by the StateManager to create before images of instances for roll-

back, or to restore instances in case of rollback.

This method delegates to method jdoCopyField to copy values for all fields requested.

To avoid security exposure, jdoCopyFields can be invoked only when both instances

are owned by the same StateManager . Thus, a malicious user cannot use this method

to copy fields from a managed instance to a non-managed instance, or to an instance man-

aged by a malicious StateManager .

public void jdoCopyFields (Object pc, int[] fieldNumbers){

// the other instance must be owned by the same StateManager

// and our StateManager must not be null!

if (((PersistenceCapable)other).jdoStateManager

!= this.jdoStateManager)

throw new IllegalArgumentException(“this.jdoStateManager !=
other.jdoStateManager”);

if (this.jdoStateManager == null)

throw new IllegalStateException(“this.jdoStateManager ==
null”);

// throw ClassCastException if other class is the wrong class

Employee other = (Employee) pc;

for (int i = 0; i < fieldNumbers.length; ++i) {

jdoCopyField (other, fieldNumbers[i]);

} // for loop

} // jdoCopyFields

protected void jdoCopyField (Employee other, int fieldNumber) {

int relativeField = fieldNumber - jdoInheritedFieldCount;

switch (relativeField) {

case (0): this.boss = other.boss;

break;

case (1): this.dept = other.dept;

break;

case (2): this.empid = other.empid;
 JDO 1.0.1 162 June 5, 2003

Java Data Objects 1.0.1
break;

case (3): this.name = other.name;

break;

default: // other fields handled in superclass

// this class has no superclass, so throw an exception

throw new IllegalArgumentException(“fieldNumber”);

/* if it had a superclass, it would handle the field as follows:

super.jdoCopyField (other, fieldNumber);

 */

break;

} // switch

} // jdoCopyField

20.20.13 Generated writeObject method

If no user-written method writeObject exists, then one will be generated. The generat-

ed writeObject makes sure that all persistent and transactional serializable fields are

loaded into the instance, and then the default output behavior is invoked on the output

stream.

private void writeObject(java.io.ObjectOutputStream out)

throws java.io.IOException{

jdoPreSerialize();

out.defaultWriteObject ();

}

20.20.14 Generated jdoPreSerialize method

The generated jdoPreSerialize method makes sure that all persistent and transac-

tional serializable fields are loaded into the instance by delegating to the corresponding

method in StateManager .

private final void jdoPreSerialize() {

if (jdoStateManager != null)

jdoStateManager.preSerialize(this);

}

20.20.15 Generated jdoNewObjectIdInstance

The generated methods create and return a new instance of the object id class.

public Object jdoNewObjectIdInstance() {

return new EmployeeKey();

}

public Object jdoNewObjectIdInstance(String str) {

return new EmployeeKey(str);
 JDO 1.0.1 163 June 5, 2003

Java Data Objects 1.0.1
}

20.20.16 Generated jdoCopyKeyFieldsToObjectId

The generated methods copy key field values from the PersistenceCapable instance

or from the ObjectIdFieldSupplier .

public void jdoCopyKeyFieldsToObjectId (ObjectIdFieldSupplier fs,
Object oid) {

((EmployeeKey)oid).empid = fs.fetchIntField (2);

}

public void jdoCopyKeyFieldsToObjectId (Object oid) {

((EmployeeKey)oid).empid = empid;

}

20.20.17 Generated jdoCopyKeyFieldsFromObjectId

The generated methods copy key fields from the object id instance to the Persistence-
Capable instance or to the ObjectIdFieldConsumer.

public void jdoCopyKeyFieldsFromObjectId (ObjectIdFieldConsumer
fc, Object oid) {

 fc.storeIntField (2, ((EmployeeKey)oid).empid);

}

protected void jdoCopyKeyFieldsFromObjectId (Object oid) {

empid = ((EmployeeKey)oid).empid;

}

} // end class definition
 JDO 1.0.1 164 June 5, 2003

Java Data Objects 1.0.1
21 Interface StateManager

This chapter specifies the StateManager interface, which is responsible for managing

the state of fields of persistence-capable classes in the JDO environment.

NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations.

21.1 Overview

A class that implements the JDO StateManager interface must be supplied by the JDO

implementation. There is no user-visible behavior for this implementation; its only caller

from the user’s perspective is the PersistenceCapable class.

21.2 Goals

This interface allows the JDO implementation to completely control the behavior of the

PersistenceCapable classes under management. In particular, the implementation

may choose to exploit the caching capabilities of PersistenceCapable or not.

The architecture permits JDO implementations to have a singleton StateManager for all

PersistenceCapable instances; a StateManager for all PersistenceCapable
instances associated with a particular PersistenceManager or PersistenceMan-
agerFactory ; a StateManager for all PersistenceCapable instances of a partic-

ular class; or a StateManager for each PersistenceCapable instance. This list is not

intended to be exhaustive, but simply to identify the cases that might be typical.

Clone support

Note that any of the methods in this interface might be called by a clone of a persistence-

capable instance, and the implementation of StateManager must disconnect the clone

upon detecting it. Disconnecting the clone requires setting the clone’s jdoFlags to

READ_WRITE_OK; setting the clone’s jdoStateManager to null ; and then returning

from the method as if the clone were transient. For example, in response to isLoaded , the

StateManager calls clone.jdoReplaceFlags(READ_WRITE_OK); clone.re-
placeStateManager(null); return true .

package javax.jdo.spi;

interface StateManager {

21.3 StateManager Management

The following methods provide for updating the corresponding PersistenceCapable
fields. These methods are intended to be called only from the PersistenceCapable in-

stance.
 JDO 1.0.1 165 June 5, 2003

Java Data Objects 1.0.1
It is possible for these methods to be called from a cloned instance of a persistent instance

(between the time of the execution of clone() and the enhancer-generated reset of the

jdoStateManager and jdoFlags fields). In this case, the StateManager is not man-

aging the clone. The StateManager must detect this case and disconnect the clone from

the StateManager . The end result of disconnecting is that the jdoFlags field is set to

READ_WRITE_OK and the jdoStateManager field is set to null .

public StateManager replacingStateManager (PersistenceCapable pc,
StateManager sm);

The current StateManager should be the only caller of PersistenceCapable.re-
placeStateManager , which calls this method. This method should be called only

when the current StateManager wants to set the jdoStateManager field to null to

transition the instance to transient.

The jdoFlags are completely controlled by the StateManager . The meaning of the

values are the following:

0: READ_WRITE_OK

any negative number: READ_OK

any positive number: LOAD_REQUIRED

public byte replacingFlags(PersistenceCapable pc);

This method is called by the PersistenceCapable in response to the StateManager
calling jdoReplaceFlags . The PersistenceCapable will store the returned value

into its jdoFlags field.

21.4 PersistenceManager Management

The following method provides for getting the PersistenceManager . This method is

intended to be called only from the PersistenceCapable instance.

public PersistenceManager getPersistenceManager (PersistenceCa-
pable pc);

21.5 Dirty management

The following method provides for marking the PersistenceCapable instance dirty:

public void makeDirty (PersistenceCapable pc, String fieldName);

21.6 State queries

The following methods are delegated from the PersistenceCapable class, to imple-

ment the associated behavior of PersistenceCapable .

public boolean isPersistent (PersistenceCapable pc);

public boolean isTransactional (PersistenceCapable pc);

public boolean isNew (PersistenceCapable pc);

public boolean isDirty (PersistenceCapable pc);

public boolean isDeleted (PersistenceCapable pc);
 JDO 1.0.1 166 June 5, 2003

Java Data Objects 1.0.1
21.7 JDO Identity

public Object getObjectId (PersistenceCapable pc);

This method returns the JDO identity of the instance.

public Object getTransactionalObjectId (PersistenceCapable pc);

This method returns the transactional JDO identity of the instance.

21.8 Serialization support

public void preSerialize (PersistenceCapable pc);

This method loads all non-transient persistent fields in the PersistenceCapable in-

stance, as a precursor to serializing the instance. It is called by the generated jdoPreSe-
rialize() method in the PersistenceCapable class.

21.9 Field Management

The StateManager completely controls the behavior of the PersistenceCapable
with regard to whether fields are loaded or not. Setting the value of the jdoFlags field in

the PersistenceCapable directly affects the behavior of the PersistenceCapable
with regard to fields in the default fetch group.

• The StateManager might choose to never cache any field values in the

PersistenceCapable , but rather to retrieve the values upon request. To

implement this strategy, the StateManager will always use the

LOAD_REQUIREDvalue for the jdoFlags , and will always return false to any

call to isLoaded .

• The StateManager might choose to selectively retrieve and cache field values in

the PersistenceCapable . To implement this strategy, the StateManager
will always use the LOAD_REQUIREDvalue for jdoFlags , and will return true
to calls to isLoaded that refer to fields that are cached in the

PersistenceCapable .

• The StateManager might choose to retrieve at one time all field values for fields

in the default fetch group, and to take advantage of the performance optimization

in the PersistenceCapable . To implement this strategy, the StateManager
will use the LOAD_REQUIREDvalue for jdoFlags only when the fields in the

default fetch group are not cached. Once all of the fields in the default fetch group

are cached in the PersistenceCapable , the StateManager will set the value

of the jdoFlags to READ_OK. This will probably be done during the call to

isLoaded made for one of the fields in the default fetch group, and before

returning true to the method, the StateManager will call

jdoReplaceFields with the field numbers of all fields in the default fetch

group, and will call jdoReplaceFlags to set jdoFlags to READ_OK.

• The StateManager might choose to manage updates of fields in the default fetch

group individually. To implement this strategy, the StateManager will not use

the READ_WRITE_OK value for jdoFlags . This will result in the

PersistenceCapable always delegating to the StateManager for any

change to any field. In this way, the StateManager can reliably tell when any

field changes, and can optimize the writing of data to the store.
 JDO 1.0.1 167 June 5, 2003

Java Data Objects 1.0.1
The following method is used by the PersistenceCapable to determine whether the

value of the field is already cached in the PersistenceCapable instance. If it is cached

(perhaps during the execution of this method) then the value of the field is returned by the

PersistenceCapable method without further calls to the StateManager .

boolean isLoaded (PersistenceCapable pc, int field);

21.9.1 User-requested value of a field

The following methods are used by the PersistenceCapable instance to inform the

StateManager of a user-initiated request to access the value of a persistent field.

The pc parameter is the instance of PersistenceCapable making the call; the field
parameter is the field number of the field; and the currentValue parameter is the cur-

rent value of the field in the instance.

The current value of the field is passed as a parameter to allow the StateManager to

cache values in the PersistenceCapable . If the value is cached in the Persis-
tenceCapable , then the StateManager can simply return the current value provided

with the method call.

public boolean getBooleanField (PersistenceCapable pc, int field,
boolean currentValue);

public char getCharField (PersistenceCapable pc, int field, char
currentValue);

public byte getByteField (PersistenceCapable pc, int field, byte
currentValue);

public short getShortField (PersistenceCapable pc, int field, short
currentValue);

public int getIntField (PersistenceCapable pc, int field, int cur-
rentValue);

public long getLongField (PersistenceCapable pc, int field, long
currentValue);

public float getFloatField (PersistenceCapable pc, int field, float
currentValue);

public double getDoubleField (PersistenceCapable pc, int field,
double currentValue);

public String getStringField (PersistenceCapable pc, int field,
String currentValue);

public Object getObjectField (PersistenceCapable pc, int field, Ob-
ject currentValue);

21.9.2 User-requested modification of a field

The following methods are used by the PersistenceCapable instance to inform the

StateManager of a user-initiated request to modify the value of a persistent field.

The pc parameter is the instance of PersistenceCapable making the call; the field
parameter is the field number of the field; the currentValue parameter is the current

value of the field in the instance; and the newValue parameter is the value of the field giv-

en by the user method.

public void setBooleanField (PersistenceCapable pc, int field,
boolean currentValue, boolean newValue);
 JDO 1.0.1 168 June 5, 2003

Java Data Objects 1.0.1
public void setCharField (PersistenceCapable pc, int field, char
currentValue, char newValue);

public void setByteField (PersistenceCapable pc, int field, byte
currentValue, byte newValue);

public void setShortField (PersistenceCapable pc, int field, short
currentValue, short newValue);

public void setIntField (PersistenceCapable pc, int field, int cur-
rentValue, int newValue);

public void setLongField (PersistenceCapable pc, int field, long
currentValue, long newValue);

public void setFloatField (PersistenceCapable pc, int field, float
currentValue, float newValue);

public void setDoubleField (PersistenceCapable pc, int field, dou-
ble currentValue, double newValue);

public void setStringField (PersistenceCapable pc, int field,
String currentValue, String newValue);

public void setObjectField (PersistenceCapable pc, int field, Ob-
ject currentValue, Object newValue);

21.9.3 StateManager-requested value of a field

The following methods inform the StateManager of the value of a persistent field re-

quested by the StateManager .

The pc parameter is the instance of PersistenceCapable making the call; the field
parameter is the field number of the field; and the currentValue parameter is the cur-

rent value of the field in the instance.

public void providedBooleanField (PersistenceCapable pc, int field,
boolean currentValue);

public void providedCharField (PersistenceCapable pc, int field,
char currentValue);

public void providedByteField (PersistenceCapable pc, int field,
byte currentValue);

public void providedShortField (PersistenceCapable pc, int field,
short currentValue);

public void providedIntField (PersistenceCapable pc, int field, int
currentValue);

public void providedLongField (PersistenceCapable pc, int field,
long currentValue);

public void providedFloatField (PersistenceCapable pc, int field,
float currentValue);

public void providedDoubleField (PersistenceCapable pc, int field,
double currentValue);

public void providedStringField (PersistenceCapable pc, int field,
String currentValue);

public void providedObjectField (PersistenceCapable pc, int field,
Object currentValue);
 JDO 1.0.1 169 June 5, 2003

Java Data Objects 1.0.1
21.9.4 StateManager-requested modification of a field

The following methods ask the StateManager for the value of a persistent field request-

ed to be modified by the StateManager .

The pc parameter is the instance of PersistenceCapable making the call; and the

field parameter is the field number of the field.

public boolean replacingBooleanField (PersistenceCapable pc, int
field);

public char replacingCharField (PersistenceCapable pc, int field);

public byte replacingByteField (PersistenceCapable pc, int field);

public short replacingShortField (PersistenceCapable pc, int
field);

public int replacingIntField (PersistenceCapable pc, int field);

public long replacingLongField (PersistenceCapable pc, int field);

public float replacingFloatField (PersistenceCapable pc, int
field);

public double replacingDoubleField (PersistenceCapable pc, int
field);

public String replacingStringField (PersistenceCapable pc, int
field);

public Object replacingObjectField (PersistenceCapable pc, int
field);
 JDO 1.0.1 170 June 5, 2003

Java Data Objects 1.0.1
22 JDOPermission

A permission represents access to a system resource. For a resource access to be allowed

for an applet (or an application running with a security manager), the corresponding per-

mission must be explicitly granted to the code attempting the access.

The JDOPermission class provides a marker for the security manager to grant access to

a class to perform privileged operations necessary for JDO implementations.

There are three JDO permissions defined:

• setStateManager : this permission allows an instance to manage an instance of

PersistenceCapable , which allows the instance to access and modify any

fields defined as persistent or transactional. This permission is similar to but

allows access to only a subset of the broader ReflectPermission
("suppressAccessChecks") . This permission is checked by the

PersistenceCapable.replaceStateManager method.

• getMetadata : this permission allows an instance to access the metadata for any

registered PersistenceCapable class. This permission allows access to a

subset of the broader RuntimePermission("accessDeclaredMembers") .

This permission is checked by the JDOImplHelper.getJDOImplHelper
method.

• closePersistenceManagerFactory : this permission allows a caller to close a

PersistenceManagerFactory , thereby releasing resources. This permission is

checked by the close() method of PersistenceManagerFactory .

Use of JDOPermission allows the security manager to restrict potentially malicious

classes from accessing information contained in instances of PersistenceCapable .

A sample policy file entry granting code from the /home/jdoImpl directory permission

to get metadata, manage PersistenceCapable instances, and close PersistenceM-
anagerFactory instances is

grant codeBase "file:/home/jdoImpl/" {

permission javax.jdo.spi.JDOPermission "getMetadata";

permission javax.jdo.spi.JDOPermission "setStateManager";

permission javax.jdo.spi.JDOPermission

"closePersistenceManagerFactory";

};
 JDO 1.0.1 171 June 5, 2003

Java Data Objects 1.0.1
23 JDO Query BNF

23.1 Grammar Notation

The grammar notation is taken from the Java Language Specification:

• Terminal symbols are shown in bold in the productions of the lexical and

syntactic grammars, and throughout this specification whenever the text is

directly referring to such a terminal symbol. These are to appear in a program

exactly as written.

• Nonterminal symbols are shown in italic type. The definition of a nonterminal

is introduced by the name of the nonterminal being defined followed by a colon.

One or more alternative right-hand sides for the nonterminal then follow on

succeeding lines.

• The suffix “opt”, which may appear after a terminal or nonterminal, indicates an

optional symbol. The alternative containing the optional symbol actually specifies

two right-hand sides, one that omits the optional element and one that includes it.

• When the words “one of” follow the colon in a grammar definition, they signify

that each of the terminal symbols on the following line or lines is an alternative

definition.

23.2 Parameter Declaration

This section describes the syntax of the declareParameters argument.

DeclareParameters:

 Parameters , opt

Parameters:

 Parameter

 Parameters , Parameter

Parameter:

 Type Identifier
 JDO 1.0.1 172 June 5, 2003

Java Data Objects 1.0.1
23.3 Variable Declaration

This section describes the syntax of the declareVariables argument.

DeclareVariables:

 Variables ; opt

Variables:

 Variable

 Variables ; Variable

Variable:

 Type Identifier

23.4 Import Declaration

This section describes the syntax of the declareImports argument.

DeclareImports:

 ImportDeclarations ; opt

ImportDeclarations:

 ImportDeclaration

 ImportDeclarations ; ImportDeclaration

ImportDeclaration:

import Name

import Name.*

23.5 Ordering Specification

This section describes the syntax of the setOrdering argument.

SetOrdering:

 OrderSpecifications , opt
 JDO 1.0.1 173 June 5, 2003

Java Data Objects 1.0.1
OrderSpecifications:

 OrderSpecification

 OrderSpecifications , OrderSpecification

OrderSpecification:

Expression ascending

Expression descending

23.6 Filter Expression

This section describes the syntax of the setFilter argument.

Basically, the query filter expression is a Java boolean expression, where some of the Java

expression are not permitted. Specifically, pre- and post- increment and decrement (++

and - -), shift (>> and <<) and assignment expressions (+=, -=, etc.) are not permitted.

The description is bottom-up, i.e. the last rule Expression is the root of the filter expression

syntax.

Please note, the grammar allows arbritary method calls (MethodInvocation), where JDO

permits calls only to the methods contains() , isEmpty() , and a number of String
methods. This restriction cannot be expressed in terms of the syntax and has to be ensured

by a semantic check.

Primary:

 Literal

this

(Expression)

FieldAccess

 MethodInvocation

ArgumentList:

 Expression

 ArgumentList , Expression

FieldAccess:
 JDO 1.0.1 174 June 5, 2003

Java Data Objects 1.0.1
 Primary . Identifier

MethodInvocation:

 Primary . Identifier (ArgumentList opt)

PostfixExpression:

 Primary

 Name

UnaryExpression:

+ UnaryExpression

- UnaryExpression

 UnaryExpressionNotPlusMinus

UnaryExpressionNotPlusMinus:

 PostfixExpression

~ UnaryExpression

! UnaryExpression

 CastExpression

CastExpression:

(Type) UnaryExpression

MultiplicativeExpression:

 UnaryExpression

 MultiplicativeExpression * UnaryExpression

 MultiplicativeExpression / UnaryExpression

AdditiveExpression:

 MultiplicativeExpression
 JDO 1.0.1 175 June 5, 2003

Java Data Objects 1.0.1
 AdditiveExpression + MultiplicativeExpression

 AdditiveExpression - MultiplicativeExpression

RelationalExpression:

 AdditiveExpression

 RelationalExpression < AdditiveExpression

 RelationalExpression > AdditiveExpression

 RelationalExpression <= AdditiveExpression

 RelationalExpression >= AdditiveExpression

EqualityExpression:

 RelationalExpression

 EqualityExpression == RelationalExpression

 EqualityExpression != RelationalExpression

AndExpression:

 EqualityExpression

 AndExpression & EqualityExpression

InclusiveOrExpression:

 AndExpression

 InclusiveOrExpression | AndExpression

ConditionalAndExpression:

 InclusiveOrExpression

 ConditionalAndExpression && InclusiveOrExpression

ConditionalOrExpression:

 ConditionalAndExpression
 JDO 1.0.1 176 June 5, 2003

Java Data Objects 1.0.1
 ConditionalOrExpression || ConditionalAndExpression

Expression:

 ConditionalOrExpression

23.7 Types

This section decribes a type specification, used in a parameter or variable declaration or in

a cast expression.

Type

 PrimitiveType

 Name

PrimitiveType:

 NumericType

boolean

NumericType:

 IntegralType

 FloatingPointType

IntegralType: one of

byte short int long char

FloatingPointType: one of

float double

23.8 Literals

A literal is the source code representation of a value of a primitive type, the String type,

or the null type. Please refer to the Java Language Specification for the lexical structure

of IntegerLiterals, FloatingPointLiterals, CharacterLiterals and StringLiterals.

IntegerLiteral: ...

FloatingPointLiteral: ...
 JDO 1.0.1 177 June 5, 2003

Java Data Objects 1.0.1
BooleanLiteral: one of

true false

CharacterLiteral: ...

StringLiteral: ...

NullLiteral:

null

Literal:

 IntegerLiteral

 FloatingPointLiteral

 BooleanLiteral

 CharacterLiteral

 StringLiteral

 NullLiteral

23.9 Names

A name is a possibly qualified identifier. Please refer to the Java Language Specification

for the lexical structure of an identifier.

Name:

 Identifier

 QualifiedName

QualifiedName:

 Name . Identifier
 JDO 1.0.1 178 June 5, 2003

Java Data Objects 1.0.1
24 Items deferred to the next release

This chapter contains the list of items that were raised during the development of JDO but

were not resolved.

24.1 Nested Transactions

Define the semantics of nested transactions.

24.2 Savepoint, Undosavepoint

Related to nested transactions, savepoints allow for making changes to instances and then

undoing those changes without making any datastore changes. It is a single-child nested

transaction.

24.3 Inter-PersistenceManager References

Explain how to establish and maintain relationships between persistent instances man-

aged by different PersistenceManager s.

24.4 Enhancer Invocation API

A standard interface to call the enhancer will be defined.

24.5 Prefetch API

A standard interface to specify prefetching of instances by policy will be defined. The in-

tended use it to allow the application to specify a policy whereby instances of persistence

capable classes will be prefetched from the datastore when related instances are fetched.

This should result in improved performance characteristics if the prefetch policy matches

actual application access patterns.

24.6 BLOB/CLOB datatype support

JDO implementations can choose to implement mapping from java.sql.Blob datatype to

byte arrays, and java.sql.Clob to String or other java type; but these mappings are not stan-

dard, and may not have the performance characteristics desired.

24.7 Managed (inverse) relationship support

In order for JDO implementations to be used for container managed persistence entity

beans, relationships among persistent instances need to be explicitly managed. See the EJB

Specification 2.0, sections 9.4.6 and 9.4.7 for requirements. The intent is to support these

semantics when the relationships are identified in the metadata as inverse relationships.
 JDO 1.0.1 179 June 5, 2003

Java Data Objects 1.0.1
24.8 Case-Insensitive Query

Use of String.toLowerCase() as a supported method in query filters would allow case-in-

sensitive queries.

24.9 String conversion in Query

Supported String constructors String(<integer expression>) and String(<floating-point ex-

pression>) would make queries more flexible.

24.10 Read-only fields

Support (probably marking the fields in the XML metadata) for read-only fields would al-

low better support for databases where modification of data elements is proscribed. The

metadata annotation would permit earlier detection of incorrect modification of the corre-

sponding fields.

24.11 Enumeration pattern

The enumeration pattern is a powerful technique for emulating enums. The pattern in

summary allows for fields to be declared as:

class Foo {

Bar myBar = Bar.ONE;

Bar someBar = new Bar(“illegal”); // doesn’t compile

}

class Bar {

private String istr;

private Bar(String s) {

istr = s;

}

public static Bar ONE = new Bar(“one”);

public static Bar TWO = new Bar(“two”);

}

The advantage of this pattern is that fields intended to contain only certain values can be

constrained to those values. Supporting this pattern explicitly allows for classes that use

this pattern to be supported as persistence-capable classes.

24.12 Non-static inner classes

Allow non-static inner classes to be persistence-capable. The implication is that the enclos-

ing class must also be persistence-capable, and there is a one-many relationship between

the enclosing class and the inner class.
 JDO 1.0.1 180 June 5, 2003

Java Data Objects 1.0.1
24.13 Projections in query

Currently the only return value from a JDOQL query is a Collection of persistent instances.

Many applications need values returned from queries, not instances. For example, to prop-

erly support EJBQL, projections are required. One way to provide projections is to model

what EJBQL has already done, and add a method setResult (String projection) to jav-

ax.jdo.Query. This method would take as a parameter a single-valued navigation expres-

sion. The result of execute for the query would be a Collection of instances of the

expression.

24.14 LogWriter support

Currently, there is no direct support for writing log messages from an implementation, al-

though there is a connection factory property that can be used for this purpose. A future

revision could define how an implementation should use a log writer.

24.15 New Exceptions

Some exceptions might be added to more clearly define the cause of an exception. Candi-

dates include JDODuplicateObjectIdException, JDOClassNotPersis-
tenceCapableException, JDOExtentNotManagedException,
JDOConcurrentModificationException, JDOQueryException, JDOQue-
rySyntaxException, JDOUnboundQueryParameterException, JDOTrans-
actionNotActiveException, JDODeletedObjectFieldAccessException .

24.16 Distributed object support

Provide for remote object graph support, including instance reconciliation, relationship

graph management, instance insertion ordering, etc.

24.17 Object-Relational Mapping

Extend the current xml metadata to include optional O/R mapping information. This

could include tables to map to classes, columns to map to fields, and foreign keys to map

to relationships.

Other O/R mapping issues include sequence generation for primary key support.
 JDO 1.0.1 181 June 5, 2003

Java Data Objects 1.0.1
Appendix A: References

[1] Enterprise JavaBeans (EJB) specification:

http://java.sun.com/products/ejb/docs.html

[2] Java Transaction API (JTA) specification - version 1.0

http://java.sun.com/products/jta/

[3] Java 2 Platform Enterprise Edition (J2EE), Platform specification:

http://java.sun.com/j2ee/docs.html

[4] Java 2 Platform Enterprise Edition (J2EE), Connector Architecture:

http://java.sun.com/j2ee/apidocs/

http://java.sun.com/j2ee/download.html#connectorspec
 JDO 1.0.1 182 June 5, 2003

Java Data Objects 1.0.1
Appendix B: Design Decisions

This appendix outlines some of the design decisions that were considered and not taken,

along with the rationale.

B.1 Enhancer
The enhancer could generate code that would delegate to the associated StateManager ev-

ery access (read or write) for every field. This design was rejected because of several fac-

tors.

• Code bloat: the enhanced code would add an extra method call to every access to

a persistent field.

• Performance: the calls to the StateManager would add extra cycles to every

access to a persistent field, even if the field were already fetched into the persistent

instance.

The enhancer could require complete metadata descriptions for all persistence-capable

classes and persistent and transactional fields, and further require that all classes be avail-

able during enhancement of any class.

This would allow the enhancer to generate the most efficient code, but imposes an extra

burden on the user to keep the metadata and class definition absolutely in sync. If a field

were declared in a class after the metadata was defined, the user would have to update the

metadata to add the new field.

Requiring access to all classes during enhancement of any class was also seen as an extra

burden on the user, who would have to execute the enhancement in an environment that

did not necessarily reflect the runtime environment. There is also a performance penalty

and additional complexity for the enhancer.

The decision that was taken was that the enhancer must be able to determine the persis-

tence-modifier (persistent or none) from the Java modifiers and type of a field. Further, the

information needed to enhance a class is only the class file for the class being enhanced,

plus the metadata for the class and classes directly reachable (via references or inheritance)

from the class.

The java byte codes generated in a class for a field in another class do not contain much

information about the modifiers (final or transient) of the field. They do have the field

name and the field type, and whether the field is static. There is an implied access control

that permits the generated access (package, protected, or public) but no distinction among

the choices.

Therefore, a field that is not declared in the metadata must be enhanced to generate an ac-

cessor and mutator even though the field is not persistent. For example, for a final int field

declared in a class, the field is not persistent, so it is not included in the list of persistent/

transactional fields, but an accessor is generated for it. This accessor will be used only by

other classes’ accesses, and access will not be mediated (the StateManager will never be

called). Accesses within the class are not enhanced.

B.2 PersistenceCapable
The PersistenceCapable interface could be eliminated entirely in favor of having all inter-

rogatives operate via the PersistenceManager, not directly on the JDO instance. This

would make the JDO instance entirely user-written. However, the impact would be that to

find out which PersistenceManager, if any, was responsible for the JDO instance, a new
 JDO 1.0.1 183 June 5, 2003

Java Data Objects 1.0.1
singleton would have to be provided. The singleton would have to register all Persistence-

Manager instances and ask each if it managed a specific JDO instance.

This was deemed too complex to manage, as well as too slow to find simple information

that should be easily available.

B.3 Collection Factory
The collection factory could be defined as methods on PersistenceManager or as methods

on a separate interface. Also, a single method that takes a type, or multiple methods, one

for each type could be defined.

The decision was taken to define two methods on PersistenceManager based on the re-

quirement to create an instance of a collection based on the type of an existing instance.

This operation would be complex if individual methods were used, one per type.

A convenience interface can easily be created using the defined methods.
 JDO 1.0.1 184 June 5, 2003

Java Data Objects 1.0.1
Appendix C: Revision History

This appendix outlines the significant changes during the evolution of the specification.

C.1 Changes since Draft 0.1
Added Appendix for revision history

Added Appendix for design decisions not taken

C.2 Changes since Draft 0.2
Changed the description for the persistent state (cached non-transactional values)

Added JDO instance state transition diagram and descriptions of state transitions.

Enhanced description of non-datastore JDO identity.

Added persistent-new-dirty and persistent-new-clean states to the life cycle.

Removed the checkpoint method from the Transaction interface. This functionality

is now done by the TRANSACTION_RETAIN_VALUES Transaction flag.

Added jdoCopy to the PersistenceCapable interface.

Added Query interface.

C.3 Changes since Draft 0.3
Changed Query signatures for setVars and setParams .

Changed all “set ” Query signatures to return void instead of “Query ”.

Added description of key (JDO identity) change semantics.

Added life cycle description for deletePersistent , a new interrogatory jdoIsDe-
leted , and two new states persistent-new-deleted and persistent-deleted.

Added Chapter 6 Persistent Object Model, which specifies the field types for persistent

fields, including the required Collection types.

Added descriptions of enhancement to Chapter 13 JDO Enhancer, including serialization,

cloning, and reflection.

Added multiple object versions of makePersistent , makeTransactional , mak-
eNontransactional .

C.4 Changes since Draft 0.4

C.4.1 PersistenceManager

Removed flush and postCompletion from the API.

Changed refresh to indicate it is effective only in optimistic transactions.

Removed getFlags and setFlags, substituting getXXX and setXXX for all options.

Added getProperties, which returns VendorName, VersionNumber, etc.

Added get/setUserObject, which allow a user-specified object to be remembered by the

PersistenceManager.

Required the implementation to support PersistenceManagerFactory and specified the in-

terface for it.
 JDO 1.0.1 185 June 5, 2003

Java Data Objects 1.0.1
Associated the concept of Extent with makePersistent and deletePersistent. Only classes

with a managed Extent can be parameters of these methods.

Added getObjectIdClass to allow the application to get the ObjectId class for a class.

C.4.2 Query

Added newQuery (Class cls, String filter).

Changed signature of compile to return void. This is not required to do anything but val-

idate query elements.

Made the Query implementation class serializable. A serialized and restored query in-

stance can be bound to a PersistenceManager by newQuery (Object).

Removed execute methods with four, five, and six parameters.

Allowed Date comparisons for equality and range queries.

Allowed String comparisons for equality and range queries.

Added “this” as a valid keyword in filters.

Added a query option to indicate faster queries that don’t execute the filter on cached in-

stances.

Clarified that portable applications require all variables to be scoped by a contains clause.

Defined that variables not scoped by a contains clause are scoped by the Extent of the class.

C.4.3 Object Model

Changed the name of “Tracked SCO” to “SCO”.

Required a transaction to be in effect to execute makePersistent and deletePersistent.

Allowed an implementation to treat all reference types as First Class Objects.

Sharing of SCOs is permitted but the semantics are not guaranteed to be portable.

C.4.4 Life Cycle

Removed state persistent-new-clean and changed the name of persistent-new-dirty to per-

sistent-new.

Updated life cycle state diagram to simplify state transition descriptions.

Added section describing optimistic transaction state changes.

C.4.5 PersistenceCapable

Removed methods jdoIsReadReady and jdoIsWriteReady . None of the applica-

tion’s business, these.

Changed the semantics of jdoIsTransactional to return false if an instance is read

in an optimistic transaction. In an optimistic transaction, only new, deleted, modified in-

stances and instances made transactional return true .

Added jdoGetPersistenceManager , jdoGetObjectId , and jdoMakeDirty .

C.5 Changes since Draft 0.5
Clarified NontransactionalRead, Optimistic, and RetainValues flag dependencies.

Added a table and diagrams of life cycle transitions.

Changed datastore ObjectId to allow primitive wrapper classes to be used.
 JDO 1.0.1 186 June 5, 2003

Java Data Objects 1.0.1
Added failed object array and methods to JDOException, JDOCanRetryException, JDO-

DataStoreException, and JDOUserException.

Added a Chapter on Application Portability Guidelines.

Added a Chapter on XML Metadata.

Added two collection factories to PersistenceManager.

Added connection factory to PersistenceManagerFactory.

C.6 Changes since Draft 0.6 (Participant Review Draft)
Updated life cycle table to match transition descriptions for persistent-nontransactional in-

stances. Clarified that all data accessed while a datastore transaction is in progress will be

transactional.

Added a discussion on inheritance issues for persistence capable classes.

Added class JDOHelper with static methods to avoid calling JDO specific methods on Per-

sistenceCapable classes.

Added a discussion on using the life cycle methods of PersistenceManager to clarify that

the correct method must be called if an instance that implements a Collection interface is

to be a parameter.

Query use of operator = was extended to include pre- and post-increment and -decrement

operators.

Query variables need not be unique; if they need to be unique, then uniqueness can be

specified with an additional query term.

Query examples were clarified as to their intent.

The terms persistent, non-persistent, transient were made consistent throughout the doc-

ument. “Persistent field” and “non-persistent field” refer to fields as declared in the JDO

metadata. “Transient field” refers to the field modifiers (orthogonal to persistent/non-per-

sistent) and “transient instance” refers to an instance of a persistence capable class that is

not persistent. “Persistent instance” refers to an instance of a persistence capable class that

is persistent.

Derived fields were removed. These fields were supposed to be non-persistent fields

whose values depended on values of persistent fields. For example, age depends on birth-

date. The application will have to have a method age() instead of an instance variable age.

Transactional non-persistent fields were added. These fields have their values saved and

restored during rollback transitions along with persistent fields.

More details were added on use of JDO in the EJB environment.

C.7 Changes since Draft 0.7
Binary compatibility table was added to 2.1.1.

Optional features were added to Portability Guidelines.

Section 5.5.2 was clarified to require that the JDO identity instance can be obtained imme-

diately after the transition from transient to persistent-new.

The treatment of marking fields dirty for hidden fields was changed.

A table of arithmetic operators was added to the Query section.
 JDO 1.0.1 187 June 5, 2003

Java Data Objects 1.0.1
C.8 Changes since Draft 0.8
Query filter defaults to “true” if not specified.

Added java.lang.BigInteger, java.lang.BigDecimal to object model.

Added cast operator (class) to query filter syntax.

Added bitwise invert operator to query filter syntax.

Added unary + to query filter syntax.

Added parentheses to query filter syntax.

Added String methods beginsWith and endsWith to query filter syntax.

Added chapter for StateManager interface.

Rewrote entire chapter on Reference Enhancer.

Updated PersistenceCapable interface to match Reference Enhancer.

Removed PersistenceManager.setObjectId.

Updated XML to conform to xml4j DOM and Apache/Xerces verifying parsers.

Added second-class XML attribute to field element.

Added null-value XML attribute to field element. This attribute specifies the behavior of

the runtime system when a null-valued field mapped to a non-nullable datastore element

is stored. The user can choose to throw an exception or to convert the null value to a default

datastore value.

Changed the description of life cycle states and enhancer to indicate that primary key field

access is always permitted, regardless of the life cycle state.

Added Extent chapter. The Extent interface was defined to be the result type of Persis-

tenceManager.getExtent. The interface does not have the methods of Collection, so it can

be used only for iteration or for specifying the candidate instances for Query.

Fields in an inherited class may not be managed by a persistence capable class. It is a future

objective to allow a class to manage the state of inherited fields if it directly derives from a

non-persistence capable class.

Clarified the behavior of null parameters in calls to PersistenceManager. Null values are

permitted as parameters for PersistenceCapable instances, and permitted as elements of

Collection and Object[] parameters, but are not permitted as parameters for Collection and

Object[].

Added JDOPermission class to allow security management to enable jdo implementations

without requiring ReflectPermission, which is too permissive.

C.9 Changes since Draft 0.9
Updated XML Metadata

• Added xml version number

• Changed definition of class element to allow multiple field, vendor elements

• Added jdo element, which contains multiple package elements

• Added key-type to field element for Map types.

• Changed key-type in class element to identity-type

• Changed key-class in class element to objectid-class

• Added inverse to field element for managed relationships
 JDO 1.0.1 188 June 5, 2003

Java Data Objects 1.0.1
• Added has-extent to class element

Fixed missing “static” in generated jdoInheritedFieldCount.

Fixed jdoGetXXX/jdoSetXXX in enhanced code for non-dfg fields. Transient instances

would have thrown null pointer exception.

Fixed missing generated method in PersistenceCapable: PersistenceCapable jdoNewIn-

stance(StateManager sm)

Fixed the reference to the Connector Architecture in Appendix A.

Updated ordering to include expressions and restrict the types of ordering expressions to

primitives except boolean, wrappers except Boolean, BigDecimal, BigInteger, and Date.

Removed bitwise AND, OR, and XOR from query operators.

Changed signatures of PersistenceManager methods getObjectById and getTransactiona-

lInstance to include a boolean flag indicating whether to validate that the instance exists in

the datastore.

Clarified that getObjectId returns the identity as of the beginning of the transaction, in case

the identity is being modified in the transaction.

C.10 Changes since draft 0.91
Changed xml has-extent to requires-extent

Corrected the signature of replacingIntField in StateManager.

Corrected the example code generated for PersistenceCapable jdoReplaceField.

Corrected the name of the verify parameter to validate in the signature of getObjectById.

Removed getTransactionalInstance in favor of overloading the meaning of getObjectById.

Changed the requirement to expose the hollow state to the application. A JDO implemen-

tation might perform a state transition of a hollow instance as if the application had read

a field.

Changed inheritance rules to allow non-persistence-capable classes to have persistence-ca-

pable superclasses and subclasses.

Corrected the description of the field name in the markDirty method so an unqualified

name refers to the field in the most-derived class.

Corrected the signature of the newInstance method in JDOHelper to return Object.

Updated the instance callback description to include the rationale and environment for

callbacks.

Updated makePersistent and deletePersistent to remove the restriction that the class of the

instances must have an Extent.

The behavior of failing instances in the life cycle methods was clarified to specify that all

instances will be attempted, and all failing instances will be included in the exception.

The newCollectionInstance was modified to include an initialContents parameter.

A new method newMapInstance was created to allow construction of a second class map

instance.

Optimistic transaction management was clarified to specify that instances accessed during

an optimistic transaction are not enlisted in any datastore transaction until commit.

The ordering specification was modified to include String.

The isEmpty method was added to the allowed Collection methods in query.
 JDO 1.0.1 189 June 5, 2003

Java Data Objects 1.0.1
The treatment of null-valued collection fields was specified to be identical to fields con-

taining empty collections.

Specified the behavior of the iterator of an Extent if there are deleted or newly persistent

instances in the Extent.

The chapter on EJB has been substantially redone.

Exceptions were updated as to the contents of the failed object array.

The meaning of JDOHelper.getObjectId versus PersistenceManager.getObjectId was clar-

ified with regard to change of identity within a transaction.

Fixed (removed) all references to reference parameter in StateManager.

Changed interface in PersistenceCapable for creating new instances, registering the Persis-

tenceCapable class with the runtime, and managing minimal “reflective” metadata for the

runtime (managed field names and types).

Added chapters for JDOHelper and JDOImplHelper.

C.11 Changes since draft 0.92
PersistenceManager methods that take a collection or array of instances have been

changed to include All in their names.

Text throughout the document has been clarified to refer to the specific exception thrown.

Corrected sample code generated by the enhancer.

Added PersistenceManagerFactory methods getPersistenceManager(String userid, String

password).

Static fields for values of jdoFlags were added to the PersistenceCapable interface.

A new ELEMENT array was added to the XML metadata to specify for array types wheth-

er the elements are embedded or not.

Clarified the possible treatment of jdoFlags by the StateManager, and the handling of is-

Loaded.

Added methods PersistenceManager.getTransactionalObjectId, PersistenceCapable.jdo-

GetTransactionalObjectId, and JDOHelper.getTransactionalObjectId to cover the case of

changing primary key in a transaction.

Changed the requirement for a compliant implementation to support all Collection types.

The behavior of all Collection types is specified, but only Collection, Set, and HashSet are

required.

Clarified the semantics of getObjectId with the validate flag set to true when the instance

is in the cache, for the cases of transactional v. nontransactional instances.

Changed failedObjectArray to failedObject, and nestedException to nestedExceptionAr-

ray in JDOException.

C.12 Changes since draft 0.93
Removed the requirement for application identity key classes to implement equals for all

object types that include the correct name and type fields.

Changed the state transition of persistent-deleted to be unchanged by refresh.

Added a generated constructor jdoNewObjectIdInstance to facilitate key class handling.

Added a generated constructor jdoNewInstance (StateManager sm, Object oid) to facilitate

key class handling.
 JDO 1.0.1 190 June 5, 2003

Java Data Objects 1.0.1
Added generated jdoCopyKeyFieldsToObjectId methods to facilitate key class handling.

Added nested interface ObjectIdFieldManager to facilitate key class handling.

Added PersistenceManagerFactory properties ConnectionFactory2 and

ConnectionFactory2Name for application server optimistic transaction support.

Added loadFactor to the newCollectionInstance method.

Clarified handling of getObjectId, getObjectById, and validate.

Added methods close(Iterator) and closeAll() to Extent.

Added methods close (Object queryResult) and closeAll() to Query.

Updated EJB chapter to clarify life cycle changes.

Removed inverse from XML metadata.

Corrected some code examples in reference enhancer.

Added methods to support different query languages: PersistenceManager.newQuery

(String language, Object query) and Set supportedQueryLanguages().

Added nested extensions, and package extensions to xml.

C.13 Changes since draft 0.94
Added PersistenceManager and PersistenceManagerFactory methods to support the Mul-

tithreaded property. This property indicates that the application is multithreaded (multi-

ple threads will access instances managed by the PersistenceManager).

Removed the PersistenceCapable constructor that takes StateManager as an argument.

The helper methods newInstance will use the default constructor instead, and will create

protected default constructor if none exists.

Removed jdoVersionUID and replaced it with explicit byte[] jdoFieldFlags and Class jdoP-

ersistenceCapableSuperclass.

Added static fields to define values for jdoFieldFlags elements.

Added a chapter on JDOPermission.

Added optional extension element to xml elements array, collection, and map.

Added Multithreaded property to PersistenceManager, which indicates whether the Per-

sistenceManager must synchronize accesses from multiple application threads.

Added allowNulls parameter to PersistenceManager newMapInstance.

Changed the name of the method getJDOImplHelper to getInstance.

Clarified the handling of abstract classes, which might be PersistenceCapable (for the ben-

efit of concrete subclasses).

Removed the requirement for implementations to track modifications made to arrays.

Removed method getProperties from PersistenceManager. This method now is in Persis-

tenceManagerFactory only.

Removed supportedQuery from PersistenceManager. This method has been replaced by

supportedOptions, from which supported query languages should be available.

Added a method supportedOptions to PersistenceManagerFactory for the application to

determine which optional features are supported by an implementation.

Added query BNF chapter.
 JDO 1.0.1 191 June 5, 2003

Java Data Objects 1.0.1
C.14 Changes since draft 0.95 (Proposed Final Draft)
Defined the term “Managed Fields” to mean persistent or transactional fields.

Clarified the treatment of non-managed identity if multiple instances are changed or de-

leted.

Removed the requirement that a transaction be active to make an instance transactional or

nontransactional.

Reorganized the State Transitions table to indicate that some state transitions are impossi-

ble (e.g. without a transaction active, there can be no new instances).

Clarified the requirement for a no-args constructor in PersistenceCapable classes and su-

perclasses.

Fixed bug in PersistenceCapable.replaceStateManager code generation.

Removed properties minPool, maxPool, msWait, and ConnectionDriverName from the in-

terface. These can be specified by PersistenceManagerFactory implementations as needed.

Reorganized sections 20.14 through 20.16 for clarity.

Changed jdoFieldFlags to be independent flags, allowing for identification of non-tran-

sient (serializable) fields.

Reworded the transaction synchronization sections for clarity.

Reworded the optimistic transaction section for clarity.

Modified the String concatenation operator (+) to allow only String + String, not String +

primitive.

Clarified that String comparisons are lexicographical (not Locale-specific).

Added descriptions of JDOUserException for transaction not active and object deleted.

C.15 Changes since draft 0.96
Changed to specify that String comparisons in queries are based on an ordering not spec-

ified by JDO, allowing for locale-specific orderings by JDO implementations.

Added a portability requirement for object id classes to have a toString() method and a

public constructor that takes a String argument. Added newObjectIdInstance (Class,

String) to PersistenceCapable, jdoNewObjectIdInstance(String) to PersistenceCapable and

newObjectIdInstance(Class, String) to JDOImplHelper.

Split PersistenceCapable.ObjectIdFieldManager into two interfaces: PersistenceCa-

pable.ObjectIdFieldSupplier to supply values and PersistenceCapable.ObjectIdFieldCon-

sumer to receive values.

Added the ability to construct a PersistenceManagerFactory from a Properties instance

containing keys and values of properties. Added a convenience method to JDOHelper get-

PersistenceManagerFactory(Properties) to call the method in the implementation class.

Changed SCO factory name to newTrackedInstance, and removed the simultaneous set-

ting of the field value in the persistence-capable instance. The user must assign the newly

created instance to a field directly.

Added a parameter to newTrackedInstance to allow the user to specify a comparator for

Collection or Map.

Modified the behavior of makePersistent with regard to reachable instances. The newly

reachable instances have the characteristics of persistent-new until transaction end, at

which time they either become persistent or revert to transient.
 JDO 1.0.1 192 June 5, 2003

Java Data Objects 1.0.1
Made support for application changes to application object identity an optional feature.

Methods retrieve and retrieveAll were added to PersistenceManager to allow the applica-

tion to give the implementation a hint that the instances are going to be used by the appli-

cation, and the implementation can perform some optimized fetching of the instances.

Introduced the notion of provisional persistence. Instances that are reachable by persistent

fields from instances made persistent become provisionally persistent. They behave like

persistent instances until commit, at which time if they are no longer reachable from per-

sistent instances they revert to transient.

Type-import-on-demand (import <package-name>.*) has been added to query declareIm-

ports. The Java rules for determining the package for an unqualified name are followed by

query.

The newQuery methods that take both Extent and Class have been changed to eliminate

the Class argument. The Class is taken from the Extent.

The Reference Enhancement chapter was reorganized to make it easier to determine:

changes to PersistenceCapable root classes; changes to non-root classes; and changes to

non-PersistenceCapable classes.

Changed the signatures of StateManager interface methods to take PersistenceCapable as

the first argument, to avoid a cast operation.

Defined a new method to be enhanced into the least-derived PersistenceCapable class to

handle copying key fields from oid into the instance: jdoCopyKeyFieldsFromObjectId

(Object oid).

Removed that makeDirty in JDOHelper throws an exception in the case that the instance

is not transient and the field is not managed. This is only one case that throws an exception;

the other cases silently ignore the condition. To be consistent, this condition will also si-

lently return.

C.16 Changes since draft 0.97
Clarified comparisons in JDOQL for wrapped types and promotion of numeric types.

Made static method getPersistenceManagerFactory(Properties) mandatory for JDO imple-

mentations.

Added PersistenceManagerFactory property ConnectionDriverName .

Added vendor-specific global configuration data in the first part of a XXX.jdo file. For this,

the DTD was changed from <!ELEMENT jdo (package)+> to <!ELEMENT jdo (package)+

(extension)*>.

Clarified that the class of a persistent instance must be preserved, unless some outside

change is made to the datastore.

Clarified that parameters to query must be persistent, associated with the same Persis-

tenceManager as the Query.

Clarified that for portability, the instances in a candidate collection must be persistent, as-

sociated with the same PersistenceManager as the Query.

Changed the semantics of retrieve and retrieveAll to require that the PersistenceManager

load all fields of the parameter instances, so a subsequent call to makeTransient can oper-

ate on a valid instance (all persistent fields loaded).

Added description of class loaders to the PersistenceManager chapter 12.5.

Clarified that there are no default values for flags in getPersistenceManager.
 JDO 1.0.1 193 June 5, 2003

Java Data Objects 1.0.1
Added transaction flag restoreValues, which determines the treatment of persistent in-

stances at transaction rollback.

Changed the specification of application identity key classes to require (instead of recom-

mend) that the class override the toString method and provide a public constructor that

takes only a String parameter.

Clarified query comparisons for persistent and transient parameters and candidate in-

stances.

C.17 Changes since Approved Draft
Changed 3.2.1 to correct the interface name from javax.jdo.PersistenceCapable to jav-

ax.jdo.spi.PersistenceCapable.

Fixed typo in 5.5.6. Changed “The instance loses its JDO Identity and its association with

the PersistenceManager.” to “ The instance retains its JDO Identity and its associ-

ation with the PersistenceManager.”

In 5.4.1 changed the wording regarding field types of application identity key fields to re-

quire portable applications to use only primitive, String , Date , and Number types.

In 5.4.1 added a restriction that application object id instances must not have any key fields

with a value of null.

Added to 5.6.1 that the PersistenceManager must not hold a strong reference to a per-

sistent-nontransactional instance, so that it may be garbage collected.

In 5.8, clarified that a before image might be created on update depending on the imple-

mentation of optimistic verification.

Corrected table 2 for rollback entries; changed the flag that affects the operation from re-

tainValues to restoreValues.

In Figure 13 Note 23, fixed “A persistent-dirty instance transitions to persistent-nontrans-

actional... at rollback when RestoreValues set to true .”

In Figure 13 Note 18 fixed from “The instance is cleared of values.” to ”No changes are

made to the values.”

Clarified 6.3 to discuss the treatment of Second Class Objects embedded in First Class Ob-

jects. SCO instances of PersistenceCapable types have no standard treatment.

In 8.5, fixed missing property javax.jdo.option.ConnectionDriverName in JDOHelper list

of standard properties for getPersistenceManagerFactory.

Added new section 9.5 for new security checking for StateManager. The new authorization

strategy does not require that the persistence-capable classes be authorized for JDOPer-

mission(“setStateManager”).

Fixed 10.3 the description of jdoPreClear does not include deleted instances, as these in-

stances do not transition to hollow.

Fixed typos in 11.2, 12.6.5: changed “JDODatastoreException ” to “JDODataS-
toreException ”

Inserted new 11.4 to add PersistenceManagerFactory close method.

Added to 12.6 “In a non-managed environment, if the current transaction is active, close()

throws JDOUserException .”

In 12.6.1, added new methods retrieveAll (Collection, boolean) and retrieveAll (Object[],

boolean).
 JDO 1.0.1 194 June 5, 2003

Java Data Objects 1.0.1
In 12.6.1, clarified the description of retrieve.

In 12.6.4, clarified the description of getExtent to throw JDOUserException if the metadata

does not require an extent to be maintained.

In 12.6.5, changed code example from aPersistenceManager.getObjectById (pc.getPersis-

tenceManager().getObjectId(pc), validate) to aPersistenceManager.getObjectById

(JDOHelper.getObjectId(pc), validate). This avoids using the PersistenceCapable interface

from user code.

In 12.6.5, changed the exception thrown by getObjectById to JDOObjectNotFoundEx-
ception.

In 12.6.6, clarified description of makeTransient to make clear that the persistence manager

is not responsible for clearing references to parameter instances to avoid making them per-

sistent by reachability at commit.

In 12.6.6, clarified description of makeTransactional to include throwing JDOUnsupport-

edOptionException if a parameter is transient but TransientTransactional is not support-

ed.

Fixed typo in 13.4.2. Changed “The retainValues setting currently active is returned.“

to “The restoreValues setting currently active is returned.“

Fixed typo in 13.4.2. Changed “If this flag is set to true , then restoration of persistent in-

stances does not take place after transaction rollback.” to “If this flag is set to true , then

restoration of persistent instances takes place after transaction rollback.”

Corrected 13.4.3 to remove the requirement that Transaction must implement javax.trans-

action.Synchronization.

In 13.5, changed the behavior of failed optimistic transactions. The commit method throws

a JDOOptimisticVerificationException and automatically rolls back the transaction.

Clarified 14.3 that variable declarations each require a type and a name, and there must be

separating semicolons only if more than one declaration.

Clarified 14.3 that “candidate instances” are a subset of the candidate collection that are

instances of the candidate class or a subset of the candidate class.

Clarified 14.4 that “compile time” refers to “JDOQL-compile time”.

Changed 14.5 to state “If the candidates are not specified, then the candidate extent is the

extent of instances in the datastore with subclasses true .”

Clarified 14.6.2 if a cast operation would throw ClassCastException , it is treated the

same as a NullPointerException.

Clarified 14.6.5 the semantics of “contains” is “exists”. This clarification is needed to pro-

vide a rational meaning if the contains clause is negated.

Clarified in 15 that Extents are not managed for instances of embedded fields.

In 15.3, clarified that the iterator method will throw an exception if NontransactionalRead

is not supported.

In 17.1, added getCause() , getFailedObject() and getNestedExceptions() to

the description of JDOException .

In 17.1, fixed description of JDOUnsupportedOptionException : “This class is a de-

rived class of JDOUserException . This exception is thrown by an implementation to in-

dicate that it does not implement a JDO optional feature.”

In 17.1.9, added new JDOObjectNotFoundException to report instances that cannot be

found in the datastore.
 JDO 1.0.1 195 June 5, 2003

Java Data Objects 1.0.1
In 17.1.10, added new JDOOptimisticVerificationException to report optimistic

verification failures during commit.

Changed chapter 18 introduction to describe new policy for naming and accessing meta-

data files.

In 18.3, changed name scoping for persistence-capable-superclass .

Corrected 18.4 to correct an inconsistency with 20.9.6: “null-valued fields throw a

JDOUserException when the instance is flushed to the datastore and the datastore

does not support null values.”

Clarified in 18.4 that Extents are not managed for instances of embedded fields.

Updated 18.4.1 and 18.4.2 to clarify type name scoping: The type names use Java rules for

naming: if no package is included in the name, the package name is assumed to be the

same package as the persistence-capable class. Inner classes are identified by the "$" mark-

er.

In 18.6, added DOCTYPE description to describe access to the public DTD at ja-

va.sun.com/dtd.

Changed 19.3 to reflect change in portable object identity field types.

Changed 20.9.6 to correct an inconsistency with 18.4: “null-valued fields throw a

JDOUserException when the instance is flushed to the datastore and the datastore

does not support null values.”

Changed 20.17 and 20.20.4 to modify security checking for JDOPermission(“setStateMan-

ager”).

Changed 20.17 to correct the access modifier of jdoPreSerialize from private to protected.

Changed 20.20.1 to correct the interface name from javax.jdo.PersistenceCapable to jav-

ax.jdo.spi.PersistenceCapable.

Added new JDOPermission(“closePersistenceManagerFactory”) to check that the caller of

PersistenceManagerFactory.close() is authorized.

Corrected Chapter 23 to remove alternative Name (ArgumentListopt) from MethodInvo-

cation nonterminal in the BNF.

Corrected Chapter 23 to remove the exclusive or operator from the BNF.

Removed Appendix B.3 since it no longer reflects reality.
 JDO 1.0.1 196 June 5, 2003

Index

7

A
accessDeclaredMembers 171
afterCompletion 41
application 34
associated object 95
B
beforeCompletion 41
begin 101
Binary Compatibility 19
Binary compatibility 138
C
Cache management 88
Change of identity 37
Cloning 143
Closing Query results 114
Collection 87
commit 101
compile 109
Connection 20, 24
connection 16, 23, 25, 96
Connection Management 97
ConnectionFactory 80
copyKeyFieldsToObjectId 75
D
declareImports 108
declareParameters 108
declareVariables 108
Delete persistent instances 93
deletePersistent 93, 123
Document Type Descriptor 133
E
ejbActivate 123
ejbCreate 123
ejbLoad 123
ejbPassivate 123
ejbRemove 123
ejbStore 123
ELEMENT array 132
ELEMENT class 129
ELEMENT collection 131
ELEMENT extension 132
ELEMENT field 130
ELEMENT jdo 129
ELEMENT map 132

ELEMENT package 129
evict 88
exceptions 125
execute 109
executeWithArray 110
executeWithMap 110
Extent 90, 119
Extent iterator 119
F
Field Numbering 142
G
Generated fields 148, 149
Generated methods 149
Generated static initializer 149
getFieldNames 72
getFieldTypes 72
getIgnoreCache 90, 108
getJDOImplHelper 171
getMultithreaded 94
getObjectById 90, 123
getObjectId 91, 123
getObjectIdClass 95
GetPersistenceManager 62
getPersistenceManager 81, 99, 107
getPersistenceManagerFactory 95
getSynchronization 101
getTransactionalObjectId 92
getUserObject 95
H
Hollow 42
home interface 123
I
IgnoreCache 108
Inheritance 60, 142
inheritance 129
Inner class 129
Instance life cycle management 92
InstanceCallbacks 76
Introspection (Java core reflection) 144
isActive 99
J
JDO Identity 35, 40, 56, 63, 68, 90, 113, 136, 16
JDO identity 38
JDO option 33, 34, 43
Java Data Objects

Index

jdoCopyFields 162
jdoCopyKeyFieldsToObjectId 150, 151, 163,
164
jdoFieldFlags 148
jdoFieldNames 149, 155
jdoFieldTypes 149, 155
jdoFlags 147, 154
jdoGetField 140, 141, 146, 158
jdoGetManagedFieldCount 157
jdoGetObjectId 63, 68, 69
jdoGetPersistenceManager 62
JDOHelper 62, 68
JDOImplHelper 72
jdoInheritedFieldCount 148, 154
jdoIsDeleted 64, 69
jdoIsDirty 63
jdoIsNew 64, 69
jdoIsPersistent 63, 69
jdoIsTransactional 63, 69
jdoMakeDirty 57, 62
jdoNewInstance 64, 151, 157
JDOPermission("getMetadata") 171
JDOPermission("setStateManager") 171
jdoPersistenceCapableSuperclass 149
jdoPostLoad 76
jdoPreClear 76
jdoPreSerialize 163
jdoPreStore 76
jdoProvideField 161
jdoProvideFields 161
jdoReplaceField 160
jdoReplaceFields 160
jdoReplaceStateManager 156, 157
jdoSetField 140, 141, 146, 159, 160, 161
jdoStateManager 154
M
Make instances nontransactional 94
Make instances persistent 92
Make instances transactional 93
Make instances transient 93
makeNontransactional 94
makePersistent 92, 123
makeTransactional 93
makeTransient 93

Membership 116
Multithreaded 94
N
Namespaces in queries 106
newInstance 73
newObjectIdInstance 75
newQuery 106
Nontransactional 43
NontransactionalRead 99
NullCollection 83, 113
O
Object Database 25
object database 18, 19, 104
object equality 35
object identity 35, 139
ObjectId class management 95
Optimistic 98, 99, 102
Optimistic transaction 46
Ordering 114
P
persistence by reachability 40
PersistenceCapable 62
PersistenceManager 85, 87
PersistenceManagerFactory 78
Persistent-clean 42
Persistent-deleted 42
Persistent-dirty 41
Persistent-new 40
Persistent-nontransactional 44
Portability Guidelines 135
primary key 35
Properties 82
provisionally persistent 92
Q
Query factory 89
R
ReflectPermission 171
refresh 88
registerClass 73, 155
relational 15, 18, 19, 25, 32, 104, 146
restoreValue 40
RestoreValues 43, 44, 70, 100
RetainValues 100
retrieve 89
Java Data Objects

Index

retrieveAll 89
rollback 101
S
Serialization 142
setCandidates 108
setClass 108
setEntityContext 123
setFilter 108
setIgnoreCache 89, 108
setMultithreaded 94
setNontransactionalRead 99
setNontransactionalWrite 99
setOptimistic 100
setOrdering 108
setRetainValues 100
setStateManager 171
setSynchronization 100
setUserObject 95
SQL 104

static initialization 149
static initializer 155
supported query languages 82
supportedOptions 82
suppressAccessChecks 171
Synchronization 94, 100
T
Threading 86
Transaction factory 89
Transient 40
Transient-clean 45
Transient-dirty 46
U
unsetEntityContext 123
V
validate 90
W
writeObject 163
Java Data Objects

4140 Network Circle

Santa Clara, CA 95404

For U.S. Sales Office locations, call:

800 821-4643

In California:

800 821-4642

Australia: (02) 844 5000

Belgium: 32 2 716 7911

Canada: 416 477-6745

Finland: +358-0-525561

France: (1) 30 67 50 00

Germany: (0) 89-46 00 8-0

Hong Kong: 852 802 4188

Italy: 039 60551

Japan: (03) 5717-5000

Korea: 822-563-8700

Latin America: 415 688-9464

The Netherlands: 033 501234

New Zealand: (04) 499 2344

Nordic Countries: +46 (0) 8 623 90 00

PRC: 861-849 2828

Singapore: 224 3388

Spain: (91) 5551648

Switzerland: (1) 825 71 11

Taiwan: 2-514-0567

UK: 0276 20444

Elsewhere in the world,

call Corporate Headquarters:

415 960-1300

Intercontinental Sales: 415 688-9000

	chapter - 1 Introduction
	section - 1.1 Overview
	section - 1.2 Scope
	section - 1.3 Target Audience
	section - 1.4 Organization
	section - 1.5 Document Convention
	section - 1.6 Terminology Convention

	chapter - 2 Overview
	section - 2.1 Definitions
	subsection - 2.1.1 JDO common interfaces
	subsection - 2.1.2 JDO in a managed environment

	section - 2.2 Rationale
	section - 2.3 Goals

	chapter - 3 JDO Architecture
	section - 3.1 Overview
	section - 3.2 JDO Architecture
	subsection - 3.2.1 Two tier usage
	subsection - 3.2.2 Application server usage

	chapter - 4 Roles and Scenarios
	section - 4.1 Roles
	subsection - 4.1.1 Application Developer
	subsection - 4.1.2 Application Component Provider
	subsection - 4.1.3 Application Assembler
	subsection - 4.1.4 Deployer
	subsection - 4.1.5 System Administrator
	subsection - 4.1.6 JDO Vendor
	subsection - 4.1.7 Connector Provider
	subsection - 4.1.8 Application Server Vendor
	subsection - 4.1.9 Container Provider

	section - 4.2 Scenario: Embedded calendar management system
	section - 4.3 Scenario: Enterprise Calendar Manager

	chapter - 5 Life Cycle of JDO Instances
	section - 5.1 Overview
	section - 5.2 Goals
	section - 5.3 Architecture:
	section - 5.4 JDO Identity
	subsection - 5.4.1 Application (primary key) identity
	subsection - 5.4.2 Datastore identity
	subsection - 5.4.3 Nondurable JDO identity

	section - 5.5 Life Cycle States
	subsection - 5.5.1 Transient (Required)
	subsection - 5.5.2 Persistent-new (Required)
	subsection - 5.5.3 Persistent-dirty (Required)
	subsection - 5.5.4 Hollow (Required)
	subsection - 5.5.5 Persistent-clean (Required)
	subsection - 5.5.6 Persistent-deleted (Required)
	subsection - 5.5.7 Persistent-new-deleted (Required)

	section - 5.6 Nontransactional (Optional)
	subsection - 5.6.1 Persistent-nontransactional (Optional)

	section - 5.7 Transient Transactional (Optional)
	subsection - 5.7.1 Transient-clean (Optional)
	subsection - 5.7.2 Transient-dirty (Optional)

	section - 5.8 Optimistic Transactions (Optional)

	chapter - 6 The Persistent Object Model
	section - 6.1 Overview
	section - 6.2 Goals
	section - 6.3 Architecture
	section - 6.4 Field types of persistence-capable classes
	subsection - 6.4.1 Nontransactional non-persistent fields
	subsection - 6.4.2 Transactional non-persistent fields
	subsection - 6.4.3 Persistent fields

	section - 6.5 Inheritance

	chapter - 7 PersistenceCapable
	section - 7.1 Persistence Manager
	section - 7.2 Make Dirty
	section - 7.3 JDO Identity
	section - 7.4 Status interrogation
	subsection - 7.4.1 Dirty
	subsection - 7.4.2 Transactional
	subsection - 7.4.3 Persistent
	subsection - 7.4.4 New
	subsection - 7.4.5 Deleted

	section - 7.5 New instance
	section - 7.6 State Manager
	section - 7.7 Replace Flags
	section - 7.8 Replace Fields
	section - 7.9 Provide Fields
	section - 7.10 Copy Fields
	section - 7.11 Static Fields
	section - 7.12 JDO identity handling

	chapter - 8 JDOHelper
	section - 8.1 Persistence Manager
	section - 8.2 Make Dirty
	section - 8.3 JDO Identity
	section - 8.4 Status interrogation
	subsection - 8.4.1 Dirty
	subsection - 8.4.2 Transactional
	subsection - 8.4.3 Persistent
	subsection - 8.4.4 New
	subsection - 8.4.5 Deleted

	section - 8.5 PersistenceManagerFactory methods

	chapter - 9 JDOImplHelper
	section - 9.1 JDOImplHelper access
	section - 9.2 Metadata access
	section - 9.3 Persistence-capable instance factory
	section - 9.4 Registration of PersistenceCapable classes
	subsection - 9.4.1 Notification of PersistenceCapable class registrations

	section - 9.5 Security administration
	section - 9.6 Application identity handling

	chapter - 10 InstanceCallbacks
	section - 10.1 jdoPostLoad
	section - 10.2 jdoPreStore
	section - 10.3 jdoPreClear
	section - 10.4 jdoPreDelete

	chapter - 11 PersistenceManagerFactory
	section - 11.1 Interface PersistenceManagerFactory
	section - 11.2 ConnectionFactory
	section - 11.3 PersistenceManager access
	section - 11.4 Close the PersistenceManagerFactory
	section - 11.5 Non-configurable Properties
	section - 11.6 Optional Feature Support
	section - 11.7 Static Properties constructor

	chapter - 12 PersistenceManager
	section - 12.1 Overview
	section - 12.2 Goals
	section - 12.3 Architecture: JDO PersistenceManager
	section - 12.4 Threading
	section - 12.5 Class Loaders
	section - 12.6 Interface PersistenceManager
	subsection - 12.6.1 Cache management
	subsection - 12.6.2 Transaction factory interface
	subsection - 12.6.3 Query factory interface
	subsection - 12.6.4 Extent Management
	subsection - 12.6.5 JDO Identity management
	subsection - 12.6.6 JDO Instance life cycle management

	section - 12.7 Transaction completion
	section - 12.8 Multithreaded Synchronization
	section - 12.9 User associated object
	section - 12.10 PersistenceManagerFactory
	section - 12.11 ObjectId class management

	chapter - 13 Transactions and Connections
	section - 13.1 Overview
	section - 13.2 Goals
	section - 13.3 Architecture: PersistenceManager, Transactions, and Connections
	section - 13.4 Interface Transaction
	subsection - 13.4.1 PersistenceManager
	subsection - 13.4.2 Transaction options
	subsection - 13.4.3 Synchronization
	subsection - 13.4.4 Transaction demarcation

	section - 13.5 Optimistic transaction management

	chapter - 14 Query
	section - 14.1 Overview
	section - 14.2 Goals
	section - 14.3 Architecture: Query
	section - 14.4 Namespaces in queries
	section - 14.5 Query Factory in PersistenceManager interface
	section - 14.6 Query Interface
	subsection - 14.6.1 Query execution
	subsection - 14.6.2 Filter specification
	subsection - 14.6.3 Parameter declaration
	subsection - 14.6.4 Import statements
	subsection - 14.6.5 Variable declaration
	subsection - 14.6.6 Ordering statement
	subsection - 14.6.7 Closing Query results

	section - 14.7 Examples:
	subsection - 14.7.1 Basic query.
	subsection - 14.7.2 Basic query with ordering.
	subsection - 14.7.3 Parameter passing.
	subsection - 14.7.4 Navigation through single-valued field.
	subsection - 14.7.5 Navigation through multi-valued field.
	subsection - 14.7.6 Membership in a collection

	chapter - 15 Extent
	section - 15.1 Overview
	section - 15.2 Goals
	section - 15.3 Interface Extent

	chapter - 16 Enterprise Java Beans
	section - 16.1 Session Beans
	subsection - 16.1.1 Stateless Session Bean with Container Managed Transactions
	subsection - 16.1.2 Stateful Session Bean with Container Managed Transactions
	subsection - 16.1.3 Stateless Session Bean with Bean Managed Transactions
	subsection - 16.1.4 Stateful Session Bean with Bean Managed Transactions

	section - 16.2 Entity Beans
	subsection - 16.2.1 BMP Entity Bean life cycle

	chapter - 17 JDO Exceptions
	section - 17.1 JDOException
	subsection - 17.1.1 JDOFatalException
	subsection - 17.1.2 JDOCanRetryException
	subsection - 17.1.3 JDOUnsupportedOptionException
	subsection - 17.1.4 JDOUserException
	subsection - 17.1.5 JDOFatalUserException
	subsection - 17.1.6 JDOFatalInternalException
	subsection - 17.1.7 JDODataStoreException
	subsection - 17.1.8 JDOFatalDataStoreException
	subsection - 17.1.9 JDOObjectNotFoundException
	subsection - 17.1.10 JDOOptimisticVerificationException

	chapter - 18 XML Metadata
	section - 18.1 ELEMENT jdo
	section - 18.2 ELEMENT package
	section - 18.3 ELEMENT class
	section - 18.4 ELEMENT field
	subsection - 18.4.1 ELEMENT collection
	subsection - 18.4.2 ELEMENT map
	subsection - 18.4.3 ELEMENT array

	section - 18.5 ELEMENT extension
	section - 18.6 The Document Type Descriptor
	section - 18.7 Example XML file

	chapter - 19 Portability Guidelines
	section - 19.1 Optional Features
	subsection - 19.1.1 Optimistic Transactions
	subsection - 19.1.2 Nontransactional Read
	subsection - 19.1.3 Nontransactional Write
	subsection - 19.1.4 Transient Transactional
	subsection - 19.1.5 RetainValues
	subsection - 19.1.6 IgnoreCache

	section - 19.2 Object Model
	section - 19.3 JDO Identity
	section - 19.4 PersistenceManager
	section - 19.5 Query
	section - 19.6 XML metadata
	section - 19.7 Life cycle
	section - 19.8 JDOHelper
	section - 19.9 Transaction

	chapter - 20 JDO Reference Enhancer
	section - 20.1 Overview
	section - 20.2 Goals
	section - 20.3 Enhancement: Architecture
	section - 20.4 Inheritance
	section - 20.5 Field Numbering
	section - 20.6 Serialization
	section - 20.7 Cloning
	section - 20.8 Introspection (Java core reflection)
	section - 20.9 Field Modifiers
	subsection - 20.9.1 Non-persistent
	subsection - 20.9.2 Transactional non-persistent
	subsection - 20.9.3 Persistent
	subsection - 20.9.4 PrimaryKey
	subsection - 20.9.5 Embedded
	subsection - 20.9.6 Null-value

	section - 20.10 Treatment of standard Java field modifiers
	subsection - 20.10.1 Static
	subsection - 20.10.2 Final
	subsection - 20.10.3 Private
	subsection - 20.10.4 Public, Protected

	section - 20.11 Fetch Groups
	section - 20.12 jdoFlags Definition
	section - 20.13 Exceptions
	section - 20.14 Modified field access
	section - 20.15 Generated fields in least-derived PersistenceCapable class
	section - 20.16 Generated fields in all PersistenceCapable classes
	section - 20.17 Generated methods in least-derived PersistenceCapable class
	section - 20.18 Generated methods in PersistenceCapable root classes and all classes that declare...
	section - 20.19 Generated methods in all PersistenceCapable classes
	section - 20.20 Example class: Employee
	subsection - 20.20.1 Generated fields
	subsection - 20.20.2 Generated static initializer
	subsection - 20.20.3 Generated interrogatives
	subsection - 20.20.4 Generated jdoReplaceStateManager
	subsection - 20.20.5 Generated jdoReplaceFlags
	subsection - 20.20.6 Generated jdoNewInstance helpers
	subsection - 20.20.7 Generated jdoGetManagedFieldCount
	subsection - 20.20.8 Generated jdoGetXXX methods (one per persistent field)
	subsection - 20.20.9 Generated jdoSetXXX methods (one per persistent field)
	subsection - 20.20.10 Generated jdoReplaceField and jdoReplaceFields
	subsection - 20.20.11 Generated jdoProvideField and jdoProvideFields
	subsection - 20.20.12 Generated jdoCopyField and jdoCopyFields methods
	subsection - 20.20.13 Generated writeObject method
	subsection - 20.20.14 Generated jdoPreSerialize method
	subsection - 20.20.15 Generated jdoNewObjectIdInstance
	subsection - 20.20.16 Generated jdoCopyKeyFieldsToObjectId
	subsection - 20.20.17 Generated jdoCopyKeyFieldsFromObjectId

	chapter - 21 Interface StateManager
	section - 21.1 Overview
	section - 21.2 Goals
	section - 21.3 StateManager Management
	section - 21.4 PersistenceManager Management
	section - 21.5 Dirty management
	section - 21.6 State queries
	section - 21.7 JDO Identity
	section - 21.8 Serialization support
	section - 21.9 Field Management
	subsection - 21.9.1 User-requested value of a field
	subsection - 21.9.2 User-requested modification of a field
	subsection - 21.9.3 StateManager-requested value of a field
	subsection - 21.9.4 StateManager-requested modification of a field

	chapter - 22 JDOPermission
	chapter - 23 JDO Query BNF
	section - 23.1 Grammar Notation
	section - 23.2 Parameter Declaration
	section - 23.3 Variable Declaration
	section - 23.4 Import Declaration
	section - 23.5 Ordering Specification
	section - 23.6 Filter Expression
	section - 23.7 Types
	section - 23.8 Literals
	section - 23.9 Names

	chapter - 24 Items deferred to the next release
	section - 24.1 Nested Transactions
	section - 24.2 Savepoint, Undosavepoint
	section - 24.3 Inter-PersistenceManager References
	section - 24.4 Enhancer Invocation API
	section - 24.5 Prefetch API
	section - 24.6 BLOB/CLOB datatype support
	section - 24.7 Managed (inverse) relationship support
	section - 24.8 Case-Insensitive Query
	section - 24.9 String conversion in Query
	section - 24.10 Read-only fields
	section - 24.11 Enumeration pattern
	section - 24.12 Non-static inner classes
	section - 24.13 Projections in query
	section - 24.14 LogWriter support
	section - 24.15 New Exceptions
	section - 24.16 Distributed object support
	section - 24.17 Object-Relational Mapping
	appendix - Appendix A: References
	appendix - Appendix B: Design Decisions
	AppSection - B.1 Enhancer
	AppSection - B.2 PersistenceCapable
	AppSection - B.3 Collection Factory

	appendix - Appendix C: Revision History
	AppSection - C.1 Changes since Draft 0.1
	AppSection - C.2 Changes since Draft 0.2
	AppSection - C.3 Changes since Draft 0.3
	AppSection - C.4 Changes since Draft 0.4
	AppSubsection - C.4.1 PersistenceManager
	AppSubsection - C.4.2 Query
	AppSubsection - C.4.3 Object Model
	AppSubsection - C.4.4 Life Cycle
	AppSubsection - C.4.5 PersistenceCapable

	AppSection - C.5 Changes since Draft 0.5
	AppSection - C.6 Changes since Draft 0.6 (Participant Review Draft)
	AppSection - C.7 Changes since Draft 0.7
	AppSection - C.8 Changes since Draft 0.8
	AppSection - C.9 Changes since Draft 0.9
	AppSection - C.10 Changes since draft 0.91
	AppSection - C.11 Changes since draft 0.92
	AppSection - C.12 Changes since draft 0.93
	AppSection - C.13 Changes since draft 0.94
	AppSection - C.14 Changes since draft 0.95 (Proposed Final Draft)
	AppSection - C.15 Changes since draft 0.96
	AppSection - C.16 Changes since draft 0.97
	AppSection - C.17 Changes since Approved Draft
	GroupTitlesIX - A
	GroupTitlesIX - B
	GroupTitlesIX - C
	GroupTitlesIX - D
	GroupTitlesIX - E
	GroupTitlesIX - F
	GroupTitlesIX - G
	GroupTitlesIX - H
	GroupTitlesIX - I
	GroupTitlesIX - J
	GroupTitlesIX - M
	GroupTitlesIX - N
	GroupTitlesIX - O
	GroupTitlesIX - P
	GroupTitlesIX - Q
	GroupTitlesIX - R
	GroupTitlesIX - S
	GroupTitlesIX - T
	GroupTitlesIX - U
	GroupTitlesIX - V
	GroupTitlesIX - W

