
EJB 3.0 Expert Group

Specification Lead:

Linda DeMichiel, Sun Microsystems

Michael Keith, Oracle Corporation

Please send comments to: ejb3-pfd-feedback@sun.com

Proposed Final

Sun Microsystems

JSR 220: Enterprise JavaBeansTM,Version 3.0

Java Persistence API

microsystems

December 19, 2005
Version 3.0, Proposed Final Draft



Enterprise JavaBeans 3.0, Proposed Final Draft Sun Microsystems, Inc.

pro-
under

thout
f the
f this

usive,
rights
scuss

the
gree-
or to
ccor-
ears
pub-
ation
Sun
de-

Sun,
n, Sun

go, and
e U.S.

I-

nt
prod-
Specification: JSR-000220 Enterprise JavaBeans(tm) v.3.0  ("Specification")

Status: Pre-FCS, Proposed Final Draft
Release:  December 21, 2005

Copyright 2005 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

NOTICE: The Specification is protected by copyright and the information described therein may be
tected by one or more U.S. patents, foreign patents, or pending applications. Except as provided
the following license, no part of the Specification may be reproduced in any form by any means wi
the prior written authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if any. Any use o
Specification and the information described therein will be governed by the terms and conditions o
Agreement.

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-excl
non-transferable, limited license (without the right to sublicense) under Sun's intellectual property
to review the Specification only for the purposes of evaluation. This license includes the right to di
the Specification (including the right to provide limited excerpts of text to the extent relevant to
point[s] under discussion) with other licensees (under this or a substantially similar version of this A
ment) of the Specification. Other than this limited license, you acquire no right, title or interest in
the Specification or any other Sun intellectual property, and the Specification may only be used in a
dance with the license terms set forth herein. This license will expire on the earlier of: (i) two (2) y
from the date of Release listed above; (ii) the date on which the final version of the Specification is
licly released; or (iii) the date on which the Java Specification Request (JSR) to which the Specific
corresponds is withdrawn. In addition, this license will terminate immediately without notice from
if you fail to comply with any provision of this license. Upon termination, you must cease use of or
stroy the Specification.

TRADEMARKS: No right, title, or interest in or to any trademarks, service marks, or trade names of
Sun's licensors, Specification Lead or the Specification Lead's licensors is granted hereunder. Su
Microsystems, the Sun logo, Java, J2SE, J2EE, J2ME, Java Compatible, the Java Compatible Lo
the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in th
and other countries.

DISCLAIMER OF WARRANTIES: THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPER-
IMENTAL AND MAY CONTAIN DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL
NOT BE CORRECTED BY SUN. SUN MAKES NO REPRESENTATIONS OR WARRANTIES, E
THER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT
THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT
ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This docume
does not represent any commitment to release or implement any portion of the Specification in any
uct.
2 12/19/05



Enterprise JavaBeans 3.0, Proposed Final Draft Sun Microsystems, Inc.

-
Spec-

-

ation
s that
ation

ov-
ment's
e; this
cqui-

con-
with
-confi-

ense,
d use
ple-

on-
f law

gula-
d ac-
ay be

with-
iliated
THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF
ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR
THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such chang
es in the Specification will be governed by the then-current license for the applicable version of the
ification.

LIMITATION OF LIABILITY: TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT
WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSE
QUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARD-
LESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY
FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF
SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

You will hold Sun (and its licensors) harmless from any claims based on your use of the Specific
for any purposes other than the limited right of evaluation as described above, and from any claim
later versions or releases of any Specification furnished to you are incompatible with the Specific
provided to you under this license.

RESTRICTED RIGHTS LEGEND: If this Software is being acquired by or on behalf of the U.S. G
ernment or by a U.S. Government prime contractor or subcontractor (at any tier), then the Govern
rights in the Specification and accompanying documentation shall be only as set forth in this licens
is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) a
sitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT: You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in
nection with your evaluation of the Specification ("Feedback"). To the extent that you provide Sun
any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary and non
dential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable lic
with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, an
without limitation the Feedback for any purpose related to the Specification and future versions, im
mentations, and test suites thereof.

GENERAL TERMS: Any action related to this Agreement will be governed by California law and c
trolling U.S. federal law. The U.N. Convention for the International Sale of Goods and the choice o
rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import re
tions in other countries. Licensee agrees to comply strictly with all such laws and regulations an
knowledges that it has the responsibility to obtain such licenses to export, re-export or import as m
required after delivery to Licensee.

Neither party may assign or otherwise transfer any of its rights or obligations under this Agreement,
out the prior written consent of the other party, except that Sun may assign this Agreement to an aff
company.
3 12/19/05



Enterprise JavaBeans 3.0, Proposed Final Draft Sun Microsystems, Inc.

rior or
rranties
com-
mod-
ative
This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all p
contemporaneous oral or written communications, proposals, conditions, representations and wa
and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other
munication between the parties relating to its subject matter during the term of this Agreement. No
ification to this Agreement will be binding, unless in writing and signed by an authorized represent
of each party.

(Sun.pre-FCS.Spec.license.11.14.2003)
4 12/19/05



Enterprise JavaBeans 3.0, Proposed Final Draft

Sun Microsystems, Inc.
Table of Contents

Chapter 1 Introduction.................................................................................................................... 13

1.1 Expert Group ................................................................................................... 13

1.2 Document Conventions ................................................................................... 13

Chapter 2 Entities ........................................................................................................................... 15

2.1 Requirements on the Entity Class.................................................................... 15

2.1.1 Persistent Fields and Properties ........................................................ 16
2.1.2 Example ............................................................................................ 18
2.1.3 Entity Instance Creation.................................................................... 19
2.1.4 Primary Keys and Entity Identity...................................................... 19
2.1.5 Embeddable Classes.......................................................................... 20
2.1.6 Mapping Defaults for Non-Relationship Fields or Properties .......... 20
2.1.7 Entity Relationships .......................................................................... 21
2.1.8 Relationship Mapping Defaults......................................................... 22

2.1.8.1 Bidirectional OneToOne Relationships .............................. 22
2.1.8.2 Bidirectional ManyToOne/ OneToMany Relationships .... 23
2.1.8.3 Unidirectional Single-Valued Relationships....................... 25

2.1.8.3.1 Unidirectional OneToOne Relationships.............. 25
2.1.8.3.2 Unidirectional ManyToOne Relationships........... 26

2.1.8.4 Bidirectional ManyToMany Relationships ......................... 27
2.1.8.5 Unidirectional Multi-Valued Relationships ........................ 29

2.1.8.5.1 Unidirectional OneToMany Relationships........... 29
2.1.8.5.2 Unidirectional ManyToMany Relationships ........ 30

2.1.9 Inheritance......................................................................................... 31
2.1.9.1 Abstract Entity Classes....................................................... 32
2.1.9.2 Mapped Superclasses.......................................................... 33
2.1.9.3 Non-Entity Classes in the Entity Inheritance Hierarchy..... 34

2.1.10 Inheritance Mapping Strategies......................................................... 35
2.1.10.1 Single Table per Class Hierarchy Strategy ......................... 36
2.1.10.2 Table per Class Strategy ..................................................... 36
2.1.10.3 Joined Subclass Strategy..................................................... 36

Chapter 3 Entity Operations ........................................................................................................... 37

3.1 EntityManager ................................................................................................. 37

3.1.1 EntityManager Interface.................................................................... 38
3.1.2 Example of Use of EntityManager API ............................................ 42

3.2 Entity Instance’s Life Cycle ............................................................................ 42

3.2.1 Persisting an Entity Instance ............................................................. 43
3.2.2 Removal ............................................................................................ 43
3.2.3 Synchronization to the Database....................................................... 44
3.2.4 Detached Entities .............................................................................. 45

3.2.4.1 Merging Detached Entity State........................................... 45
3.2.5 Managed Instances............................................................................ 46

3.3 Persistence Context ......................................................................................... 47
5   12/19/05



Enterprise JavaBeans 3.0, Proposed Final Draft

Sun Microsystems, Inc.

s

e

3.3.1 Transaction-scoped Persistence Context ........................................... 47
3.3.2 Extended Persistence Context ........................................................... 47
3.3.3 Transaction Commit .......................................................................... 48
3.3.4 Transaction Rollback......................................................................... 48
3.3.5 Optimistic Locking and Concurrency ............................................... 48

3.3.5.1 Optimistic Locking ............................................................. 49
3.3.5.2 Version Attributes ............................................................... 49
3.3.5.3 Lock Modes ........................................................................ 50
3.3.5.4 OptimisticLockException ................................................... 51

3.4 Entity Listeners and Callback Methods........................................................... 51

3.4.1 Lifecycle Callback Methods.............................................................. 52
3.4.2 Semantics of the Life Cycle Callback Methods for Entities ............. 53
3.4.3 Example............................................................................................. 55
3.4.4 Multiple Lifecycle Callback Methods for an Entity Lifecycle Event55
3.4.5 Example............................................................................................. 57
3.4.6 Exceptions ......................................................................................... 58
3.4.7 Specification of Callback Listener Classes and Lifecycle Methods in the

XML Descriptor59
3.4.7.1 Specification of Callback Listeners .................................... 59
3.4.7.2 Specification of the Binding of Entity Listener Classes to Entitie

59
3.5 ......................................................................................................................... Qury

API59

3.5.1 Query Interface.................................................................................. 60
3.5.1.1 Example .............................................................................. 63

3.5.2 Queries and FlushMode .................................................................... 63
3.5.3 Parameter Names............................................................................... 63
3.5.4 Named Queries.................................................................................. 63
3.5.5 Polymorphic Queries......................................................................... 64
3.5.6 SQL Queries...................................................................................... 64

Chapter 4 Query Language............................................................................................................. 69

4.1 Overview.......................................................................................................... 69

4.2 EJB QL Statement Types................................................................................. 71

4.2.1 Select Statements............................................................................... 71
4.2.2 Update and Delete Statements........................................................... 71

4.3 Abstract Schema Types and Query Domains .................................................. 72

4.3.1 Naming .............................................................................................. 73
4.3.2 Example............................................................................................. 73

4.4 The FROM Clause and Navigational Declarations ......................................... 74

4.4.1 Identifiers........................................................................................... 75
4.4.2 Identification Variables...................................................................... 75
4.4.3 Range Variable Declarations ............................................................. 76
4.4.4 Path Expressions................................................................................ 77
4.4.5 Joins................................................................................................... 78

4.4.5.1 Inner Joins (Relationship Joins).......................................... 78
4.4.5.2 Left Outer Joins................................................................... 79
4.4.5.3 Fetch Joins .......................................................................... 79
  12/19/05 6



Enterprise JavaBeans 3.0, Proposed Final Draft

Sun Microsystems, Inc.

1

2

2

09

9

4.4.6 Collection Member Declarations ...................................................... 80
4.4.7 EJB QL and SQL .............................................................................. 81
4.4.8 Polymorphism ................................................................................... 81

4.5 WHERE Clause ............................................................................................... 81

4.6 Conditional Expressions.................................................................................. 82

4.6.1 Literals .............................................................................................. 82
4.6.2 Identification Variables ..................................................................... 82
4.6.3 Path Expressions ............................................................................... 83
4.6.4 Input Parameters................................................................................ 83

4.6.4.1 Positional Parameters.......................................................... 83
4.6.4.2 Named Parameters .............................................................. 83

4.6.5 Conditional Expression Composition ............................................... 84
4.6.6 Operators and Operator Precedence.................................................. 84
4.6.7 Between Expressions ........................................................................ 85
4.6.8 In Expressions ................................................................................... 85
4.6.9 Like Expressions ............................................................................... 86

4.6.10 Null Comparison Expressions........................................................... 86
4.6.11 Empty Collection Comparison Expressions ..................................... 87
4.6.12 Collection Member Expressions ....................................................... 87
4.6.13 Exists Expressions............................................................................. 88
4.6.14 All or Any Expressions ..................................................................... 88
4.6.15 Subqueries......................................................................................... 89
4.6.16 Functional Expressions ..................................................................... 89

4.6.16.1 String Functions.................................................................. 90
4.6.16.2 Arithmetic Functions .......................................................... 90

4.7 GROUP BY, HAVING .................................................................................... 91

4.8 SELECT Clause............................................................................................... 92

4.8.1 Result Type of the SELECT Clause.................................................. 93
4.8.2 Constructor Expressions in the SELECT Clause.............................. 94
4.8.3 Null Values in the Query Result........................................................ 94
4.8.4 Aggregate Functions in the SELECT Clause.................................... 94

4.8.4.1 Examples............................................................................. 95
4.9 ORDER BY Clause ......................................................................................... 96

4.10 Return Value Types.......................................................................................... 97

4.10.1 Result types for Finder and Select methods of 2.1 Entity Beans...... 97
4.11 Bulk Update and Delete Operations ................................................................ 98

4.12 Null Values ...................................................................................................... 100

4.13 Equality and Comparison Semantics............................................................... 10

4.14 Restrictions ...................................................................................................... 10

4.15 Examples ......................................................................................................... 10

4.15.1 Simple Queries.................................................................................. 102
4.15.2 Queries with Relationships ............................................................... 102
4.15.3 Queries Using Input Parameters........................................................ 103

4.16 EJB QL BNF ................................................................................................... 104

Chapter 5 Entity Managers and Persistence Contexts .................................................................... 1

5.1 Persistence Contexts ........................................................................................ 10
7   12/19/05



Enterprise JavaBeans 3.0, Proposed Final Draft

Sun Microsystems, Inc.

2

8
18

119

9

s-

ce

1

1
2
3

ce

ction)

7

7

9

0

5.1.1 Persistence Context Lifecycle Types................................................. 110
5.2 Obtaining an EntityManager............................................................................ 110

5.2.1 Obtaining an Entity Manager in the Java EE Environment............... 111
5.2.2 Obtaining an Application-managed Entity Manager ........................ 111

5.2.2.1 Control of the Application-Managed EntityManager Lifecycle.11
5.3 Obtaining an Entity Manager Factory ............................................................. 112

5.3.1 Obtaining an Entity Manager Factory in a Java EE Container ......... 112
5.3.2 Obtaining an Entity Manager Factory in a Java SE Environment..... 113

5.4 The EntityManagerFactory Interface............................................................... 113

5.5 Controlling Transactions.................................................................................. 115

5.5.1 JTA EntityManagers.......................................................................... 116
5.5.2 Resource-local EntityManagers ........................................................ 116

5.5.2.1 The EntityTransaction Interface.......................................... 117
5.6 Persistence Context Lifetime........................................................................... 117

5.6.1 Container-managed Persistence Contexts ......................................... 11
5.6.1.1 Container-managed Transaction-scoped Persistence Context1
5.6.1.2 Container-managed Extended Persistence Context ............ 118

5.6.2 Application-managed Persistence Contexts ...................................... 118
5.6.2.1 Application-managed Transaction-scoped Persistence Context
5.6.2.2 Application-managed Extended Persistence Context ......... 119

5.7 Persistence Context Propagation for Container-managed Entity Managers.... 11

5.7.0.1 Persistence Context Propagation for Transaction-scoped Persi
tence Contexts120

5.7.0.2 Persistence Context Propagation Rules for Extended Persisten
Contexts120

5.8 Examples.......................................................................................................... 12

5.8.1 Container-managed Transaction-scoped Persistence Context........... 12
5.8.2 Container-managed Extended Persistence Context........................... 12
5.8.3 Application-managed Transaction-scoped Persistence Context (JTA)12
5.8.4 Application-managed Extended Persistence Context(JTA) .............. 124
5.8.5 Application-managed Transaction-scoped Persistence Context (Resour

Transaction)125
5.8.6 Application-managed Extended Persistence Context (Resource Transa

126
5.9 Requirements on the Container ....................................................................... 12

5.9.1 Persistence Context Management ..................................................... 127
5.9.2 Container Managed Persistence Contexts ......................................... 12

Chapter 6 Entity Packaging ............................................................................................................ 129

6.1 Persistence Unit ............................................................................................... 12

6.2 Persistence Unit Packaging.............................................................................. 13

6.2.1 persistence.xml file............................................................................ 131
6.2.1.1 description........................................................................... 132
6.2.1.2 name.................................................................................... 132
6.2.1.3 provider ............................................................................... 132
6.2.1.4 transaction-type................................................................... 133
6.2.1.5 jta-data-source, non-jta-data-source.................................... 133
6.2.1.6 mapping-file, jar-file, class, exclude-unlisted-classes......... 133
  12/19/05 8



Enterprise JavaBeans 3.0, Proposed Final Draft

Sun Microsystems, Inc.

8

3

3

4

2

9

6.2.1.7 properties ............................................................................ 134
6.2.1.8 Examples............................................................................. 134

6.2.2 Persistence Unit Scope...................................................................... 136
6.3 persistence.xml Schema .................................................................................. 13

Chapter 7 Container and Provider Contracts for Deployment and Bootstrapping ......................... 14

7.1 Java EE Deployment........................................................................................ 14

7.1.1 Responsibilities of the Container ...................................................... 143
7.1.2 Responsibilities of the Persistence Provider ..................................... 144
7.1.3 javax.persistence.spi.PersistenceProvider ......................................... 14

7.1.3.1 Persistence Unit Properties ................................................. 145
7.1.4 javax.persistence.spi.PersistenceUnitInfo Interface.......................... 147

7.2 Bootstrapping in Java SE Environments ......................................................... 150

7.2.1 javax.persistence.Persistence Class................................................... 15

Chapter 8 Metadata Annotations .................................................................................................... 153

8.1 Entity ............................................................................................................... 153

8.2 Callback Annotations ...................................................................................... 154

8.3 Annotations for Queries .................................................................................. 155

8.3.1 Flush Mode Annotation .................................................................... 155
8.3.2 NamedQuery Annotation .................................................................. 155
8.3.3 NamedNativeQuery Annotation........................................................ 156
8.3.4 Annotations for SQL Query Result Set Mappings............................ 156

8.4 References to EntityManager and EntityManagerFactory .............................. 157

8.4.1 PersistenceContext Annotation ......................................................... 157
8.4.2 PersistenceUnit Annotation............................................................... 158

Chapter 9 Metadata for Object/Relational Mapping ...................................................................... 15

9.1 Annotations for Object/Relational Mapping ................................................... 159

9.1.1 Table Annotation............................................................................... 160
9.1.2 SecondaryTable Annotation .............................................................. 160
9.1.3 SecondaryTables Annotation ............................................................ 162
9.1.4 UniqueConstraint Annotation ........................................................... 162
9.1.5 Column Annotation........................................................................... 163
9.1.6 JoinColumn Annotation .................................................................... 164
9.1.7 JoinColumns Annotation................................................................... 167
9.1.8 Id Annotation .................................................................................... 167
9.1.9 GeneratedValue Annotation .............................................................. 168

9.1.10 AttributeOverride Annotation ........................................................... 169
9.1.11 AttributeOverrides Annotation.......................................................... 170
9.1.12 EmbeddedId Annotation ................................................................... 170
9.1.13 IdClass Annotation............................................................................ 171
9.1.14 Transient Annotation......................................................................... 171
9.1.15 Version Annotation ........................................................................... 172
9.1.16 Basic Annotation............................................................................... 172
9.1.17 Lob Annotation ................................................................................. 173
9   12/19/05



Enterprise JavaBeans 3.0, Proposed Final Draft

Sun Microsystems, Inc.

4

9.1.18 Temporal Annotation......................................................................... 174
9.1.19 Enumerated Annotation..................................................................... 175
9.1.20 ManyToOne Annotation.................................................................... 176
9.1.21 OneToOne Annotation ...................................................................... 177
9.1.22 OneToMany Annotation.................................................................... 178
9.1.23 JoinTable Annotation ........................................................................ 180
9.1.24 ManyToMany Annotation ................................................................. 181
9.1.25 MapKey Annotation .......................................................................... 182
9.1.26 OrderBy Annotation.......................................................................... 184
9.1.27 Inheritance Annotation...................................................................... 184
9.1.28 DiscriminatorColumn Annotation..................................................... 185
9.1.29 DiscriminatorValue Annotation......................................................... 187
9.1.30 PrimaryKeyJoinColumn Annotation................................................. 188
9.1.31 PrimaryKeyJoinColumns Annotation ............................................... 189
9.1.32 Embeddable Annotation.................................................................... 190
9.1.33 Embedded Annotation....................................................................... 191
9.1.34 MappedSuperclass Annotation.......................................................... 191
9.1.35 SequenceGenerator Annotation......................................................... 191
9.1.36 TableGenerator Annotation ............................................................... 192

9.2 Examples of the Application of Annotations for Object/Relational Mapping 195

9.2.1 Examples of Simple Mappings ......................................................... 195
9.2.2 A More Complex Example................................................................ 198

Chapter 10 XML Descriptor ............................................................................................................. 203

10.1 XML Schema................................................................................................... 204

Chapter 11 Related Documents ........................................................................................................ 221

Appendix A Revision History............................................................................................................. 223

A.1 Early Draft 1 .................................................................................................... 223

A.2 Early Draft 2 .................................................................................................... 223

A.3 Changes Since EDR 2...................................................................................... 22

A.4 Changes Since Public Draft ............................................................................. 227
  12/19/05 10



Enterprise JavaBeans 3.0, Proposed Final Draft

Sun Microsystems, Inc.
List of Tables

Table 1 Definition of the AND Operator............................................................................................................100

Table 2 Definition of the OR Operator...............................................................................................................101

Table 3 Definition of the NOT Operator ............................................................................................................101

Table 4 Table Annotation Elements ...................................................................................................................160

Table 5 SecondaryTable Annotation Elements ..................................................................................................161

Table 6 UniqueConstraint Annotation Elements................................................................................................162

Table 7 Column Annotation Elements ...............................................................................................................163

Table 8 JoinColumn Annotation Elements ........................................................................................................166

Table 9 GeneratedValue Annotation Elements ..................................................................................................168

Table 10 AttributeOverride Annotation Elements ...............................................................................................169

Table 11 Basic Annotation Elements ...................................................................................................................173

Table 12 Temporal Annotation Elements.............................................................................................................174

Table 13 Enumerated Annotation Elements.........................................................................................................175

Table 14 ManyToOne Annotation Elements ........................................................................................................176

Table 15 OneToOne Annotation Elements...........................................................................................................177

Table 16 OneToMany Annotation Elements ........................................................................................................179

Table 17 JoinTable Annotation Elements.............................................................................................................180

Table 18 Inheritance Annotation Elements ..........................................................................................................185

Table 19 DiscriminatorColumn Annotation Elements.........................................................................................186

Table 20 DiscriminatorValueAnnotation Elements..............................................................................................187

Table 21 PrimaryKeyJoinColumn Annotation Elements .....................................................................................188

Table 22 SequenceGenerator Annotation Elements.............................................................................................192

Table 23 TableGenerator Annotation Elements ...................................................................................................193
11   12/19/05



Enterprise JavaBeans 3.0, Proposed Final Draft

Sun Microsystems, Inc.
  12/19/05 12



Enterprise JavaBeans 3.0, Proposed Final Draft

Sun Microsystems, Inc.
Chapter 1 Introduction
t/rela-
e an
man-

tadata
so tar-

istence
s, as

. This
hese

eremy
Sie-
rad
ant
liv-
ac-

hiel,
sant:
vins;
gen;

scrib-
This document is the specification of the Java API for the management of persistence and objec
tional mapping with Java EE and Java SE. The technical objective of this work is to provid
object/relational mapping facility for the Java application developer using a Java domain model to
age a relational database.

This persistence API—together with the query language and object/relational mapping me
defined in this document—is required to be supported under Enterprise JavaBeans 3.0. It is al
geted at being used stand-alone with Java SE.

Leading experts throughout the entire Java community have come together to build this Java pers
standard. This work incorporates contributions from the Hibernate, TopLink, and JDO communitie
well as from the EJB community.

1.1 Expert Group

This work is being conducted as part of JSR-220 under the Java Community Process Program
specification is the result of the collaborative work of the members of the JSR 220 Expert Group. T
include the following present and former expert group members: Apache Software Foundation: J
Boynes; BEA: Seth White; Borland: Jishnu Mitra; E.piphany: Karthik Kothandaraman; Fujitsu-
mens: Anton Vorsamer; Google: Cedric Beust; IBM: Jim Knutson, Randy Schnier; IONA: Con
O’Dea; Ironflare: Hani Suleiman; JBoss: Gavin King, Bill Burke, Marc Fleury; Macromedia: Hem
Khandelwal; Nokia: Vic Zaroukian; Novell: YongMin Chen; Oracle: Michael Keith, Debu Panda, O
ier Caudron; Pramati: Deepak Anupalli; SAP: Steve Winkler, Umit Yalcinalp; SAS Institute: Rob S
coccio; SeeBeyond: Ugo Corda; SolarMetric: Patrick Linskey; Sun Microsystems: Linda DeMic
Mark Reinhold; Sybase: Evan Ireland; Tibco: Shivajee Samdarshi; Tmax Soft: Woo Jin Kim; Ver
David Tinker; Xcalia: Eric Samson; Reza Behforooz; Emmanuel Bernard; Wes Biggs; David Ble
Scott Crawford; Geoff Hendrey; Oliver Ihns; Oliver Kamps; Richard Monson-Haefel; Dirk Reinsha
Carl Rosenberger; Suneet Shah.

1.2 Document Conventions

The regular Times font is used for information that is prescriptive by the EJB specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes de
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.
13   12/19/05



Introduction Enterprise JavaBeans 3.0, Proposed Final Draft Document Conventions

Sun Microsystems, Inc.

ify the
ed in

or the
The Helvetica font is used to specify the BNF of EJB QL.

This document is written in terms of the use of Java language metadata annotations to spec
semantics of persistent classes and their object/relational mapping. An XML descriptor (as specifi
Chapter 10) may be used as an alternative to annotations. The elements of this descriptor mirr
annotations and have the same semantics.
  12/19/05 14



Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Entities

Sun Microsystems, Inc.

sses

n

s well.

ay be

ce), the
Chapter 2 Entities

An entity is a lightweight persistent domain object.

The primary programming artifact is the entity class. An entity class may make use of auxiliary cla
that serve as helper classes or that are used to represent the state of the entity.

2.1 Requirements on the Entity Class

The entity class must be annotated with theEntity annotation or denoted in the XML descriptor as a
entity.

The entity class must have a no-arg constructor. The entity class may have other constructors a
The no-arg constructor must be public or protected.

The entity class must be a top-level class.

The entity class must not be final. No methods or persistent instance variables of the entity class m
final.

If an entity instance is to be passed by value as a detached object (e.g., through a remote interfa
entity class must implement theSerializable  interface.
15   12/19/05



Entities Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Sun Microsystems, Inc.

well as

o Java-
of the
y. The
meth-
lity.

applies
either

g either

ariables

anno-

rsistent

When
class

s and

roper-

nviron-
Entities support inheritance, polymorphic associations, and polymorphic queries.

Both abstract and concrete classes can be entities. Entities may extend non-entity classes as
entity classes, and non-entity classes may extend entity classes.

The persistent state of an entity is represented by instance variables, which may correspond t
Beans properties. An instance variable may be directly accessed only from within the methods
entity by the entity instance itself. Instance variables must not be accessed by clients of the entit
state of the entity is available to clients only through the entity’s accessor methods (getter/setter
ods) or other business methods. Instance variables must be private, protected, or package visibi

2.1.1 Persistent Fields and Properties

The persistent state of an entity is accessed by the persistence provider runtime[1] either via JavaBeans
style property accessors or via instance variables. A single access type (field or property access)
to an entity hierarchy. When annotations are used, the placement of the mapping annotations on
the persistent fields or persistent properties of the entity class specifies the access type as bein
field- or property-based access respectively.

• If the entity has field-based access, the persistence provider runtime accesses instance v
directly. All non-transient instance variables that are not annotated with theTransient
annotation are persistent. When field-based access is used, the object/relational mapping
tations for the entity class annotate the instance variables.

• If the entity has property-based access, the persistence provider runtime accesses pe
state via the property accessor methods. All properties not annotated with theTransient
annotation are persistent. The property accessor methods must be public or protected.
property-based access is used, the object/relational mapping annotations for the entity
annotate the getter property accessors.

• Mapping annotations cannot be applied to fields or properties that aretransient or Tran-
sient .

• The behavior is unspecified if mapping annotations are applied to both persistent field
properties.

It is required that the entity class follow the method conventions for a JavaBean when persistent p
ties are used.

In this case, for every persistent propertypropertyof typeT of the entity, there is a getter method,get-
Property, and setter methodsetProperty. For boolean properties,isPropertyis an alternative name for
the getter method.

For single-valued persistent properties, these method signatures are:

[1] The term "persistence provider runtime" refers to the runtime environment of the persistence implementation. In Java EE e
ments, this may be the Java EE container or a third-party persistence provider implementation integrated with it.
  12/19/05 16



Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Entities

Sun Microsystems, Inc.

entions

he
ample,

ethods
vider

p-
e
-

rolled
persis-
nceEx-

ust not
ties of

pes;
es,

g, and

n

• T getProperty()

• void setProperty(T t)

Collection-valued persistent fields and properties must be defined in terms ofjava.util.Collec-
tion interfaces regardless of whether the entity class otherwise adheres to the JavaBeans conv
noted above and whether field or property-based access is used.[2] The following collection interfaces
are supported: java.util.Collection , java.util.Set , java.util.List [3],
java.util.Map .

For collection-valued persistent properties, typeT must be one of these Collection interface types in t
method signatures above. Generic variants of these Collection types may also be used (for ex
Set<Order> ).

In addition to returning and setting the persistent state of the instance, the property accessor m
may contain other business logic as well, for example, to perform validation. The persistence pro
runtime executes this logic when property-based access is used.

Caution should be exercised in adding business logic to the accessor methods when pro
erty-based access is used. The order in which the persistence provider runtime calls thes
methods when loading or storing persistent state is not defined. Logic contained in such meth
ods therefore cannot rely upon a specific invocation order.

Runtime exceptions thrown by property accessor methods cause the current transaction to be
back. Exceptions thrown by such methods when used by the persistence runtime to load or store
tent state cause the persistence runtime to rollback the current transaction and to throw a Persiste
ception that wraps the application exception.

Entity subclasses may override the property accessor methods. However, portable applications m
override the object/relational mapping metadata that applies to the persistent fields or proper
entity superclasses.

The persistent fields or properties of an entity may be of the following types: Java primitive ty
java.lang.String ; other Java serializable types (including wrappers of the primitive typ
java.math.BigInteger , java.math.BigDecimal , java.util.Date ,
java.util.Calendar [4], java.sql.Date , java.sql.Time , java.sql.Timestamp ,
user-defined serializable types,byte[] , Byte[] , char[] , and Character[]) ; enums; entity
types and/or collections of entity types; and embeddable classes (see section 2.1.5).

Object/relational mapping metadata may be specified to customize the object-relational mappin
the loading and storing of the entity state and relationships. See Chapter 9.

[2] The implementation type may be used by the application to initialize fields or properties before the entity is made persistet; sub-
sequent access must be through the interface type once the entity becomes managed (or detached).

[3] Portable applications should not expect the order of lists to be maintained across persistence contexts unless theOrderBy  con-
struct is used and the modifications to the list observe the specified ordering. The order is not otherwise persistent.

[4] Note that an instance of Calendar must be fully initialized for the type that it is mapped to.
17   12/19/05



Entities Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Sun Microsystems, Inc.
2.1.2 Example
@Entity
public class Customer implements Serializable {

  private Long id;

  private String name;

  private Address address;

  private Collection<Order> orders = new HashSet();

  private Set<PhoneNumber> phones = new HashSet();

  // No-arg constructor
  public Customer() {}

  @Id // property access is used
  public Long getId() {
    return id;
  }

  public void setId(Long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public Address getAddress() {
    return address;
  }

  public void setAddress(Address address) {
    this.address = address;
  }

@OneToMany
  public Collection<Order> getOrders() {
    return orders;
  }

  public void setOrders(Collection<Order> orders) {
    this.orders = orders;
  }

  @ManyToMany
  public Set<PhoneNumber> getPhones() {
    return phones;
  }

  public void setPhones(Set<PhoneNumber> phones) {
    this.phones = phones;
  }
  12/19/05 18



Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Entities

Sun Microsystems, Inc.

y

pped
archy.

rty of

set of
ompos-
n the

pes:

ould
porta-

ss type

r pro-
  // Business method to add a phone number to the customer
  public void addPhone(PhoneNumber phone) {
    this.getPhones().add(phone);
    // Update the phone entity instance to refer to this customer
    phone.setCustomer(this);
  }
}

}

2.1.3 Entity Instance Creation
Entity instances are created by means of thenew operation. An entity instance, when first created b
new is not yet persistent. An instance becomes persistent by means of theEntityManager API. The
lifecycle of entity instances is described in Section 3.2.

2.1.4 Primary K eys and Entity Identity
Every entity must have a primary key.

The primary key must be defined on the entity that is the root of the entity hierarchy or on a ma
superclass of the entity hierarchy. The primary key must be defined exactly once in an entity hier

A simple (i.e., non-composite) primary key must correspond to a single persistent field or prope
the entity class. TheId  annotation is used to denote a simple primary key. See section 9.1.8.

A composite primary key must correspond to either a single persistent field or property or to a
such fields or properties as described below. A primary key class must be defined to represent a c
ite primary key. Composite primary keys typically arise when mapping from legacy databases whe
database key is comprised of several columns. TheEmbeddedId andIdClass annotations are used
to denote composite primary keys. See sections 9.1.12 and 9.1.13.

The primary key (or field or property of a composite primary key) should be one of the following ty
any Java primitive type; any primitive wrapper type;java.lang.String ; java.util.Date ;
java.sql.Date . In general, however, approximate numeric types (e.g., floating point types) sh
never be used in primary keys. Entities whose primary keys use types other than these will not be
ble. If generated primary keys are used, only integers will be portable. Ifjava.util.Date is used as
a primary key field or property, the temporal type should be specified asDATE.

The access type (field- or property-based access) of a primary key class is determined by the acce
of the entity for which it is the primary key.

The following rules apply for composite primary keys.

• The primary key class must be public and must have a public no-arg constructor.

• If property-based access is used, the properties of the primary key class must be public o
tected.

• The primary key class must be serializable.
19   12/19/05



Entities Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Sun Microsystems, Inc.

e types

ss (see
ltiple

lass,
ntity

, unlike
objects
d are
as unde-
ogether

excep-
is
el of

map-
XML

s it
,

ired in
• The primary key class must defineequals andhashCode methods. The semantics of value
equality for these methods must be consistent with the database equality for the databas
to which the key is mapped.

• A composite primary key must either be represented and mapped as an embeddable cla
Section 9.1.12, “EmbeddedId Annotation”) or must be represented and mapped to mu
fields or properties of the entity class (see Section 9.1.13, “IdClass Annotation”).

• If the composite primary key class is mapped to multiple fields or properties of the entity c
the names of primary key fields or properties in the primary key class and those of the e
class must correspond and their types must be the same.

The application must not change the value of the primary key[5]. The behavior is undefined if this
occurs.[6]

2.1.5 Embeddable Classes
An entity may use other fine-grained classes to represent entity state. Instances of these classes
entity instances themselves, do not have persistent identity. Instead, they exist only as embedded
of the entity to which they belong. Such embedded objects belong strictly to their owning entity, an
not sharable across persistent entities. Attempting to share an embedded object across entities h
fined semantics. Because these objects have no persistent identity, they are typically mapped t
with the entity instance to which they belong.[7]

Embeddable classes must adhere to the requirements specified in Section 2.1 for entities with the
tion that embeddable classes are not annotated asEntity . The access type for an embedded object
determined by the access type of the entity in which it is embedded. Support for only one lev
embedding is required by this specification.

Additional requirements on embeddable classes are described in section 9.1.32.

2.1.6 Mapping Defaults for Non-Relationship Fields or Properties
If a persistent field or property other than a relationship property is not annotated with one of the
ping annotations defined in Chapter 9 (or equivalent mapping information is not specified in the
descriptor), the following default mapping rules are applied in order:

• If the type is a class that is annotated with theEmbeddable annotation, it is mapped in the
same way as if the field or property were annotated with theEmbedded annotation. See Sec-
tions 9.1.32 and 9.1.33.

• If the type of the field or property is one of the following, it is mapped in the same way a
would if it were annotated asBasic : Java primitive types, wrappers of the primitive types
java.lang.String , java.math.BigInteger , java.math.BigDecimal ,

[5] This includes not changing the value of a mutable type that is primary key or element of a composite primary key.

[6] The implementation may, but is not required to, throw an exception.

[7] Support for collections of embedded objects and for the polymorphism and inheritance of embeddable classes will be requ
a future release of this specification.
  12/19/05 20



Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Entities

Sun Microsystems, Inc.

. Rela-

tions
entity:
r-

entity

of the
rela-
his is

ning
of a

.2.3.

the

ela-

ning

con-

-

java.util.Date , java.util.Calendar , java.sql.Date , java.sql.Time ,
java.sql.Timestamp , byte[] , Byte[] , char[] , Character[] , enums, any other
type that implements Serializable. See Sections 9.1.16 through 9.1.19.

It is an error if no annotation is present and none of the above rules apply.

2.1.7 Entity Relationships

Relationships among entities may be one-to-one, one-to-many, many-to-one, or many-to-many
tionships are polymorphic.

If there is an association between two entities, one of the following relationship modeling annota
must be applied to the corresponding persistent property or instance variable of the referencing
OneToOne, OneToMany, ManyToOne, ManyToMany. For associations that do not specify the ta
get type (e.g., where Java generic types are not used for collections), it is necessary to specify the
that is the target of the relationship.

These annotations mirror common practice in relational database schema modeling. The use
relationship modeling annotations allows the object/relationship mapping of associations to the
tional database schema to be fully defaulted, to provide an ease-of-development facility. T
described in Section 2.1.8, “Relationship Mapping Defaults”.

Relationships may be bidirectional or unidirectional. A bidirectional relationship has both an ow
side and an inverse side. A unidirectional relationship has only an owning side. The owning side
relationship determines the updates to the relationship in the database, as described in section 3

The following rules apply to bidirectional relationships:

• The inverse side of a bidirectional relationship must refer to its owning side by use of
mappedBy element of theOneToOne, OneToMany, or ManyToMany annotation. The
mappedBy element designates the property or field in the entity that is the owner of the r
tionship.

• The many side of one-to-many / many-to-one bidirectional relationships must be the ow
side, hence themappedBy element cannot be specified on theManyToOne annotation.

• For one-to-one bidirectional relationships, the owning side corresponds to the side that
tains the corresponding foreign key.

• For many-to-many bidirectional relationships either side may be the owning side.

The relationship modeling annotation constrains the use of thecascade=REMOVEspecification. The
cascade=REMOVEspecification should only be applied to associations that are specified asOne-
ToOne or OneToMany. Applications that applycascade=REMOVEto other associations are not por
table.
21   12/19/05



Entities Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Sun Microsystems, Inc.

over-
map-

tations
t with
map-
tion-

their
erential

nsible

ply

n-

he
Additional mapping annotations (e.g., column and table mapping annotations) may be specified to
ride or further refine the default mappings described in Section 2.1.8. For example, a foreign key
ping may be used for a unidirectional one-to-many mapping. Such schema-level mapping anno
must be specified on the owning side of the relationship. Any such overriding must be consisten
the relationship modeling annotation that is specified. For example, if a many-to-one relationship
ping is specified, it is not permitted to specify a unique key constraint on the foreign key for the rela
ship.

The persistence provider handles the object-relational mapping of the relationships, including
loading and storing to the database as specified in the metadata of the entity class, and the ref
integrity of the relationships as specified in the database (e.g., by foreign key constraints).

Note that it is the application that bears responsibility for maintaining the consistency of runt-
ime relationships—for example, for insuring that the “one” and the “many” sides of a bidirec-
tional relationship are consistent with one another when the application updates the
relationship at runtime.

If there are no associated entities for a multi-valued relationship, the persistence provider is respo
for returning an empty collection as the value of the relationship.

2.1.8 Relationship Mapping Defaults

This section defines the mapping defaults that apply to the use of theOneToOne, OneToMany,
ManyToOne, andManyToMany relationship modeling annotations. The same mapping defaults ap
when the XML descriptor is used to denote the relationship cardinalities.

2.1.8.1 Bidirectional OneToOne Relationships
Assuming that:

Entity A references a single instance of Entity B.

Entity B references a single instance of Entity A.

Entity A is specified as the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

TableA contains a foreign key to tableB. The foreign key column name is formed as the co
catenation of the following: the name of the relationship property or field of entity A; "_"; the
name of the primary key column in tableB. The foreign key column has the same type as t
primary key of tableB and there is a unique key constraint on it.
  12/19/05 22



Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Entities

Sun Microsystems, Inc.

f
he
Example:

@Entity
public class Employee {
   private Cubicle assignedCubicle;

   @OneToOne
   public Cubicle getAssignedCubicle() {
     return assignedCubicle;
   }
   public void setAssignedCubicle(Cubicle cubicle) {
     this.assignedCubicle = cubicle;
   }
  ...
}

@Entity
public class Cubicle {
    private Employee residentEmployee;

    @OneToOne(mappedBy="assignedCubicle")
    public Employee getResidentEmployee() {
      return residentEmployee;
    }
    public void setResidentEmployee(Employee employee) {
      this.residentEmployee = employee;
    }
  ...
}

In this example:

Entity Employee  references a single instance of EntityCubicle .

Entity Cubicle  references a single instance of EntityEmployee .

Entity Employee  is the owner of the relationship.

The following mapping defaults apply:

Entity Employee  is mapped to a table namedEMPLOYEE.

Entity Cubicle  is mapped to a table namedCUBICLE.

TableEMPLOYEEcontains a foreign key to tableCUBICLE. The foreign key column is named
ASSIGNEDCUBICLE_<PK of CUBICLE>, where <PK of CUBICLE> denotes the name o
the primary key column of tableCUBICLE. The foreign key column has the same type as t
primary key ofCUBICLE, and there is a unique key constraint on it.

2.1.8.2 Bidirectional ManyToOne / OneToMany Relationships
Assuming that:

Entity A references a single instance of Entity B.

Entity B references a collection of Entity A.

Entity A must be the owner of the relationship.
23   12/19/05



Entities Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Sun Microsystems, Inc.

n-

he
The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

TableA contains a foreign key to tableB. The foreign key column name is formed as the co
catenation of the following: the name of the relationship property or field of entity A; "_"; the
name of the primary key column in tableB. The foreign key column has the same type as t
primary key of tableB.

Example:

@Entity
public class Employee {
   private Department department;

   @ManyToOne
   public Department getDepartment() {
     return department;
   }
   public void setDepartment(Department department) {
     this.department = department;
   }
  ...
}

@Entity
public class Department {
   private Collection<Employee> employees = new HashSet();

   @OneToMany(mappedBy="department")
   public Collection<Employee> getEmployees() {
     return employees;
   }

   public void setEmployees(Collection<Employee> employees) {
     this.employees = employees;
   }
  ...
}

In this example:

Entity Employee  references a single instance of EntityDepartment .

Entity Department  references a collection of EntityEmployee .

Entity Employee  is the owner of the relationship.

The following mapping defaults apply:

Entity Employee  is mapped to a table namedEMPLOYEE.

Entity Department  is mapped to a table namedDEPARTMENT.
  12/19/05 24



Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Entities

Sun Microsystems, Inc.

tional

n-

he
TableEMPLOYEEcontains a foreign key to tableDEPARTMENT. The foreign key column is
namedDEPARTMENT_<PK of DEPARTMENT>, where <PK of DEPARTMENT> denotes
the name of the primary key column of tableDEPARTMENT. The foreign key column has the
same type as the primary key ofDEPARTMENT.

2.1.8.3 Unidirectional Single-Valued Relationships
Assuming that:

Entity A references a single instance of Entity B.

Entity B does not reference Entity A.

A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional single-valued relationship modeling case can be specified as either a unidirec
OneToOne or as a unidirectionalManyToOne relationship.

2.1.8.3.1 Unidirectional OneToOne Relationships

The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

TableA contains a foreign key to tableB. The foreign key column name is formed as the co
catenation of the following: the name of the relationship property or field of entity A; "_"; the
name of the primary key column in tableB. The foreign key column has the same type as t
primary key of tableB and there is a unique key constraint on it.

Example:

@Entity
public class Employee {
   private TravelProfile profile;

   @OneToOne
   public TravelProfile getProfile() {
     return profile;
   }
   public void setProfile(TravelProfile profile) {
     this.profile = profile;
   }
  ...
}

@Entity
public class TravelProfile {
   ...
}

In this example:

Entity Employee  references a single instance of EntityTravelProfile .
25   12/19/05



Entities Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Sun Microsystems, Inc.

n-

he
Entity TravelProfile  does not reference EntityEmployee .

Entity Employee  is the owner of the relationship.

The following mapping defaults apply:

Entity Employee  is mapped to a table namedEMPLOYEE.

Entity TravelProfile  is mapped to a table namedTRAVELPROFILE.

TableEMPLOYEEcontains a foreign key to tableTRAVELPROFILE. The foreign key column
is named PROFILE_<PK of TRAVELPROFILE>, where <PK of TRAVELPROFILE>
denotes the name of the primary key column of tableTRAVELPROFILE. The foreign key col-
umn has the same type as the primary key ofTRAVELPROFILE, and there is a unique key
constraint on it.

2.1.8.3.2 Unidirectional ManyToOne Relationships

The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

TableA contains a foreign key to tableB. The foreign key column name is formed as the co
catenation of the following: the name of the relationship property or field of entity A; "_"; the
name of the primary key column in tableB. The foreign key column has the same type as t
primary key of tableB.

Example:

@Entity
public class Employee {
   private Address address;

   @ManyToOne
   public Address getAddress() {
     return address;
   }
   public void setAddress(Address address) {
     this.address = address;
   }
  ...
}

@Entity
public class Address {
   ...
}

In this example:

Entity Employee  references a single instance of EntityAddress .

Entity Address  does not reference EntityEmployee .

Entity Employee  is the owner of the relationship.
  12/19/05 26



Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Entities

Sun Microsystems, Inc.

ary
ey

y
of
ing:

i-
the
The following mapping defaults apply:

Entity Employee  is mapped to a table namedEMPLOYEE.

Entity Address  is mapped to a table namedADDRESS.

TableEMPLOYEEcontains a foreign key to tableADDRESS. The foreign key column is named
ADDRESS_<PK of ADDRESS>, where <PK of ADDRESS> denotes the name of the prim
key column of tableADDRESS. The foreign key column has the same type as the primary k
of ADDRESS.

2.1.8.4 Bidirectional ManyToMany Relationships
Assuming that:

Entity A references a collection of Entity B.

Entity B references a collection of Entity A.

Entity A is the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

There is a join table that is namedA_B (owner name first). This join table has two foreign ke
columns. One foreign key column refers to tableA and has the same type as the primary key
tableA. The name of this foreign key column is formed as the concatenation of the follow
the name of the relationship property or field of entity B; "_"; the name of the primary key col-
umn in tableA. The other foreign key column refers to tableB and has the same type as the pr
mary key of tableB. The name of this foreign key column is formed as the concatenation of
following: the name of the relationship property or field of entity A; "_"; the name of the pri-
mary key column in tableB.
27   12/19/05



Entities Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Sun Microsystems, Inc.

ary

he
Example:

@Entity
public class Project {
   private Collection<Employee> employees;

   @ManyToMany
   public Collection<Employee> getEmployees() {
     return employees;
   }

   public void setEmployees(Collection<Employee> employees) {
     this.employees = employees;
   }
   ...
}

@Entity
public class Employee {
   private Collection<Project> projects;

   @ManyToMany(mappedBy="employees")
   public Collection<Project> getProjects() {
     return projects;
   }

   public void setProjects(Collection<Project> projects) {
     this.projects = projects;
   }
  ...
}

In this example:

Entity Project  references a collection of EntityEmployee .

Entity Employee  references a collection of EntityProject .

Entity Project  is the owner of the relationship.

The following mapping defaults apply:

Entity Project  is mapped to a table namedPROJECT.

Entity Employee  is mapped to a table namedEMPLOYEE.

There is a join table that is namedPROJECT_EMPLOYEE(owner name first). This join table
has two foreign key columns. One foreign key column refers to tablePROJECTand has the
same type as the primary key ofPROJECT. The name of this foreign key column is
PROJECTS_<PK of PROJECT>, where <PK of PROJECT> denotes the name of the prim
key column of tablePROJECT. The other foreign key column refers to tableEMPLOYEEand
has the same type as the primary key ofEMPLOYEE. The name of this foreign key column is
EMPLOYEES_<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of t
primary key column of tableEMPLOYEE.
  12/19/05 28



Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Entities

Sun Microsystems, Inc.

tional

y
of
ing:

tena-
2.1.8.5 Unidirectional Multi-Valued Relationships
Assuming that:

Entity A references a collection of Entity B.

Entity B does not reference Entity A.

A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional multi-valued relationship modeling case can be specified as either a unidirec
OneToMany or as a unidirectionalManyToMany relationship.

2.1.8.5.1 Unidirectional OneToMany Relationships

The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

There is a join table that is namedA_B (owner name first). This join table has two foreign ke
columns. One foreign key column refers to tableA and has the same type as the primary key
tableA. The name of this foreign key column is formed as the concatenation of the follow
the name of entity A; "_"; the name of the primary key column in tableA. The other foreign
key column refers to tableB and has the same type as the primary key of tableB and there is a
unique key constraint on it. The name of this foreign key column is formed as the conca
tion of the following: the name of the relationship property or field of entity A; "_"; the name
of the primary key column in tableB.

Example:

@Entity
public class Employee {
   private Collection<AnnualReview> annualReviews;

   @OneToMany
   public Collection<AnnualReview> getAnnualReviews() {
     return annualReviews;
   }

   public void setAnnualReviews(Collection<AnnualReview> annualRe-
views) {
     this.annualReviews = annualReviews;
   }
  ...
}

@Entity
public class AnnualReview {
   ...
}

In this example:
29   12/19/05



Entities Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Sun Microsystems, Inc.

ri-

y
of
ing:

rela-
Entity Employee  references a collection of EntityAnnualReview .

Entity AnnualReview  does not reference EntityEmployee .

Entity Employee  is the owner of the relationship.

The following mapping defaults apply:

Entity Employee  is mapped to a table namedEMPLOYEE.

Entity AnnualReview  is mapped to a table namedANNUALREVIEW.

There is a join table that is namedEMPLOYEE_ANNUALREVIEW(owner name first). This
join table has two foreign key columns. One foreign key column refers to tableEMPLOYEE
and has the same type as the primary key ofEMPLOYEE. This foreign key column is named
EMPLOYEE_<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the p
mary key column of tableEMPLOYEE. The other foreign key column refers to tableANNUAL-
REVIEWand has the same type as the primary key ofANNUALREVIEW. This foreign key
column is namedANNUALREVIEWS_<PK of ANNUALREVIEW>, where <PK of ANNU-
ALREVIEW> denotes the name of the primary key column of tableANNUALREVIEW. There
is a unique key constraint on the foreign key that refers to tableANNUALREVIEW.

2.1.8.5.2 Unidirectional ManyToMany Relationships

The following mapping defaults apply:

Entity A is mapped to a table namedA.

Entity B is mapped to a table namedB.

There is a join table that is namedA_B (owner name first). This join table has two foreign ke
columns. One foreign key column refers to tableA and has the same type as the primary key
table A. The name of this foreign key column is formed as the concatenation of the follow
the name of entityA; "_"; the name of the primary key column in tableA. The other foreign
key column refers to tableB and has the same type as the primary key of tableB. The name of
this foreign key column is formed as the concatenation of the following: the name of the
tionship property or field of entityA; "_"; the name of the primary key column in tableB.
  12/19/05 30



Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Entities

Sun Microsystems, Inc.

ri-

ey

tions,

nnotated
Example:

@Entity
public class Employee {
   private Collection<Patent> patents;

   @ManyToMany
   public Collection<Patent> getPatents() {
     return patents;
   }

   public void setPatents(Collection<Patent> patents) {
     this.patents = patents;
   }
  ...
}

@Entity
public class Patent {
   ...
}

In this example:

Entity Employee  references a collection of EntityPatent .

Entity Patent  does not reference EntityEmployee .

Entity Employee  is the owner of the relationship.

The following mapping defaults apply:

Entity Employee  is mapped to a table namedEMPLOYEE.

Entity Patent  is mapped to a table namedPATENT.

There is a join table that is namedEMPLOYEE_PATENT(owner name first). This join table
has two foreign key columns. One foreign key column refers to tableEMPLOYEEand has the
same type as the primary key ofEMPLOYEE. This foreign key column is named
EMPLOYEE_<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the p
mary key column of tableEMPLOYEE. The other foreign key column refers to tablePATENT
and has the same type as the primary key ofPATENT. This foreign key column is named
PATENTS_<PK of PATENT>, where <PK of PATENT> denotes the name of the primary k
column of tablePATENT.

2.1.9 Inheritance
An entity may inherit from another entity class. Entities support inheritance, polymorphic associa
and polymorphic queries.

Both abstract and concrete classes can be entities. Both abstract and concrete classes can be a
with theEntity  annotation, mapped as entities, and queried for as entities.

Entities can extend non-entity classes and non-entity classes can extend entity classes.
31   12/19/05



Entities Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Sun Microsystems, Inc.

nly in
rget of

s

y.
These concepts are described further in the following sections.

2.1.9.1 Abstract Entity Classes
An abstract class can be specified as an entity. An abstract entity differs from a concrete entity o
that it cannot be directly instantiated. An abstract entity is mapped as an entity and can be the ta
queries (which will operate over and/or retrieve instances of its concrete subclasses).

An abstract entity class is annotated with theEntity annotation or denoted in the XML descriptor a
an entity.

The following example shows the use of an abstract entity class in the entity inheritance hierarch

Example: Abstract class as an Entity

@Entity
@Table(name="EMP")
@Inheritance(strategy=JOINED)
public abstract class Employee {

@Id protected Integer empId;
@Version protected Integer version;
@ManyToOne protected Address address;
...

}

@Entity
@Table(name="FT_EMP")
@DiscriminatorValue("FT")
@PrimaryKeyJoinColumn(name="FT_EMPID")
public class FullTimeEmployee extends Employee {

    // Inherit empId, but mapped in this class to FT_EMP.FT_EMPID
    // Inherit version mapped to EMP.VERSION
    // Inherit address mapped to EMP.ADDRESS fk

protected Integer salary;
// Defaults to FT_EMP.SALARY
public Integer getSalary() { return salary; }
...

}

@Entity
@Table(name="PT_EMP")
@DiscriminatorValue("PT")
// PK field is PT_EMP.EMPID due to PrimaryKeyJoinColumn default
public class PartTimeEmployee extends Employee {

protected Float hourlyWage;
...

}

  12/19/05 32



Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Entities

Sun Microsystems, Inc.

ation,
state

Entity-
ship.

a

a-

hat
itself.

tables.
2.1.9.2 Mapped Superclasses
An entity may inherit from a superclass that provides persistent entity state and mapping inform
but which is not itself an entity. Typically, the purpose of such a mapped superclass is to define
and mapping information that is common to multiple entity classes.

A mapped superclass, unlike an entity, is not queryable and cannot be passed as an argument to
Manager or Query operations. A mapped superclass cannot be the target of a persistent relation

Both abstract and concrete classes may be specified as mapped superclasses. TheMappedSuper-
class annotation (ormapped-superclass XML descriptor element) is used to designate
mapped superclass.

A class designated asMappedSuperclass has no separate table defined for it. Its mapping inform
tion is applied to the entities that inherit from it.

A class designated asMappedSuperclass can be mapped in the same way as an entity except t
the mappings will apply only to its subclasses since no table exists for the mapped superclass
When applied to the subclasses, the inherited mappings will apply in the context of the subclass
Mapping information can be overridden in such subclasses by using theAttributeOverride anno-
tation orattribute-override  XML element.

All other entity mapping defaults apply equally to a class designated asMappedSuperclass .

The following example illustrates the definition of a concrete class as a mapped superclass.
33   12/19/05



Entities Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Sun Microsystems, Inc.

lass is
entity
tained
Example: Concrete class as a mapped superclass

@MappedSuperclass
public class Employee {

    @Id protected Integer empId;
    @Version protected Integer version;
    @ManyToOne @JoinColumn(name="ADDR")
    protected Address address;

    public Integer getEmpId() { ... }
    public void setEmpId(Integer id) { ... }
    public Address getAddress() { ... }
    public void setAddress(Address addr) { ... }
}

// Default table is FTEMPLOYEE table
@Entity
public class FTEmployee extends Employee {

    // Inherited empId field mapped to FTEMPLOYEE.EMPID
    // Inherited version field mapped to FTEMPLOYEE.VERSION
    // Inherited address field mapped to FTEMPLOYEE.ADDR fk

protected Integer salary;

// Defaults to FTEMPLOYEE.SALARY
public FTEmployee() {}

public Integer getSalary() { ... }
public void setSalary(Integer salary) { ... }

}

@Entity @Table(name="PT_EMP")
@AttributeOverride(name="address", column=@Column(name="ADDR_ID"))
public class PartTimeEmployee extends Employee {

    // Inherited empId field mapped to PT_EMP.EMPID
    // Inherited version field mapped to PT_EMP.VERSION
    // address field mapping overridden to PT_EMP.ADDR_ID fk
    @Column(name="WAGE")
    protected Float hourlyWage;

    public PartTimeEmployee() {}

    public Float getHourlyWage() { ... }
    public void setHourlyWage(Float wage) { ... }
}

2.1.9.3 Non-Entity Classes in the Entity Inheritance Hierarchy
An entity can have a non-entity superclass, which may be either a concrete or abstract class.

The non-entity superclass serves for inheritance of behavior only. The state of a non-entity superc
not persistent. Any state inherited from non-entity superclasses is non-persistent in an inheriting
class. This non-persistent state is not managed by the EntityManager, nor it is required to be re
across transactions. Any annotations on such superclasses are ignored.
  12/19/05 34



Requirements on the Entity Class Enterprise JavaBeans 3.0, Proposed Final Draft Entities

Sun Microsystems, Inc.

terfaces

lational

han the
class.

strat-
Non-entity classes cannot be passed as arguments to methods of the EntityManager or Query in
and cannot bear mapping information.

The following example illustrates the use of a non-entity class as a superclass of an entity.

Example: Non-entity superclass

public class Cart {

    // This state is transient
    Integer operationCount;

    public Cart() { operationCount = 0; }
    public Integer getOperationCount() { return operationCount; }
    public void incrementOperationCount() { operationCount++; }
}

@Entity
public class ShoppingCart extends Cart {

    Collection<Item> items = new Vector<Item>();

    public ShoppingCart() { super(); }

...

    @OneToMany
    public Collection<Item> getItems() { return items; }
    public void addItem(Item item) {
        items.add(item);
        incrementOperationCount();
    }
}

2.1.10 Inheritance Mapping Strategies

The mapping of class hierarchies is specified through metadata.

There are three basic strategies that are used when mapping a class or class hierarchy to a re
database schema:

• a single table per class hierarchy

• a single table per concrete entity class

• a strategy in which fields that are specific to a subclass are mapped to a separate table t
fields that are common to the parent class, and a join is performed to instantiate the sub

An implementation is required to support the single table per class hierarchy inheritance mapping
egy and the joined subclass strategy.

Support for the table per class inheritance mapping strategy is optional in this release.
35   12/19/05



Entities Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Entity Class

Sun Microsystems, Inc.

n that
ss to

d for

to the

luding

sued

ch sub-
lass (not
ry key
.

tances
at range
Support for the combination of inheritance strategies within a single entity inheritance hierar-
chy is not required by this specification.

2.1.10.1 Single Table per Class Hierarchy Strategy
In this strategy, all the classes in a hierarchy are mapped to a single table. The table has a colum
serves as a “discriminator column”, that is, a column whose value identifies the specific subcla
which the instance that is represented by the row belongs.

This mapping strategy provides good support for polymorphic relationships between entities an
queries that range over the class hierarchy.

It has the drawback, however, that it requires that the columns that correspond to state specific
subclasses be nullable.

2.1.10.2 Table per Class Strategy
In this mapping strategy, each class is mapped to a separate table. All properties of the class, inc
inherited properties, are mapped to columns of the table for the class.

This strategy has the following drawbacks:

• It provides poor support for polymorphic relationships.

• It typically requires that SQL UNION queries (or a separate SQL query per subclass) be is
for queries that are intended to range over the class hierarchy.

2.1.10.3 Joined Subclass Strategy
In the joined subclass strategy, the root of the class hierarchy is represented by a single table. Ea
class is represented by a separate table that contains those fields that are specific to the subc
inherited from its superclass), as well as the column(s) that represent its primary key. The prima
column(s) of the subclass table serves as a foreign key to the primary key of the superclass table

This strategy provides support for polymorphic relationships between entities.

It has the drawback that it requires that one or more join operations be performed to instantiate ins
of a subclass. In deep class hierarchies, this may lead to unacceptable performance. Queries th
over the class hierarchy likewise require joins.
  12/19/05 36



EntityManager Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.

d

set of
n the

and to

istence
n, and

c-
section
meth-
Chapter 3 Entity Operations

This chapter describes the use of theEntityManager API to manage the entity instance lifecycle an
the use of theQuery  API to retrieve and query entities and their persistent state.

3.1 EntityManager

An EntityManager instance is associated with a persistence context. A persistence context is a
entity instances in which for any persistent entity identity there is a unique entity instance. Withi
persistence context, the entity instances and their lifecycle are managed. TheEntityManager inter-
face defines the methods that are used to interact with the persistence context. TheEntityManager
API is used to create and remove persistent entity instances, to find entities by their primary key,
query over entities.

The set of entities that can be managed by a given EntityManager instance is defined by a pers
unit. A persistence unit defines the set of all classes that are related or grouped by the applicatio
which must be colocated in their mapping to a single database.

Section 3.1 defines theEntityManager interface. The entity instance lifecycle is described in Se
tion 3.2. The relationships between entity managers and persistence contexts are described in
3.3 and in further detail in Chapter 5. Section 3.4 describes entity listeners and lifecycle callback
ods for entities. TheQuery  interface is described in section 3.5.
37   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft EntityManager

Sun Microsystems, Inc.
3.1.1 EntityManager Interface

package javax.persistence;

/**
 * Interface used to interact with the persistence context.
*/
public interface EntityManager {

/**
 * Make an instance managed and persistent.
 * @param entity
 * @throws IllegalArgumentException if not an entity
 *                 or entity is detached
 * @throws TransactionRequiredException if there is
 * no transaction and the persistence context is
 * of type PersistenceContextType.TRANSACTION
 */
public void persist(Object entity);

/**
 * Merge the state of the given entity into the
 * current persistence context.
 * @param entity
 * @return the instance that the state was merged to
 * @throws IllegalArgumentException if instance is not an
 *                 entity or is a removed entity
 * @throws TransactionRequiredException if there is
 * no transaction and the persistence context is
 * of type PersistenceContextType.TRANSACTION
 */
public <T> T merge(T entity);

/**
 * Remove the entity instance.
 * @param entity
 * @throws IllegalArgumentException if not an entity
 *                 or if a detached entity
 * @throws TransactionRequiredException if there is
 * no transaction and the persistence context is
 * of type PersistenceContextType.TRANSACTION
 */
public void remove(Object entity);

/**
 * Find by primary key.
 * @param entityClass
 * @param primaryKey
 * @return the found entity instance or null
 * if the entity does not exist
 * @throws IllegalArgumentException if the first argument does
 * not denote an entity type or the second
 * argument is not a valid type for that
 * entity’s primary key
 */
public <T> T find(Class<T> entityClass, Object primaryKey);

/**
  12/19/05 38



EntityManager Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.
 * Get an instance, whose state may be lazily fetched.
 * If the requested instance does not exist in the database,
 * throws EntityNotFoundException when the instance state is
 * first accessed. (The persistence provider runtime is
 * permitted to throw the EntityNotFoundException when
 * getReference is called.)

* The application should not expect that the instance state will
 * be available upon detachment, unless it was accessed by the
 * application while the entity manager was open.
 * @param entityClass
 * @param primaryKey
 * @return the found entity instance
 * @throws IllegalArgumentException if the first argument does
 * not denote an entity type or the second
 * argument is not a valid type for that
 * entity’s primary key
 * @throws EntityNotFoundException if the entity state
 * cannot be accessed
 */
public <T> T getReference(Class<T> entityClass, Object prima-

ryKey);

/**
 * Synchronize the persistence context to the
 * underlying database.
 * @throws TransactionRequiredException if there is
 *                 no transaction
 * @throws PersistenceException if the flush fails
 */
public void flush();

/**
 * Set the flush mode that applies to all objects contained
 * in the persistence context.
 * @param flushMode
 */
public void setFlushMode(FlushModeType flushMode);

/**
 * Get the flush mode that applies to all objects contained
 * in the persistence context.
 * @return flushMode
 */
public FlushModeType getFlushMode();

/**
 * Set the lock mode for an entity object contained
 * in the persistence context.
 * @param entity
 * @param lockMode
 * @throws PersistenceException if an unsupported lock call
 * is made
 * @throws IllegalArgumentException if the instance is not
 * an entity or is a detached entity
 * @throws TransactionRequiredException if there is no
 * transaction
 */
public void lock(Object entity, LockModeType lockMode);
39   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft EntityManager

Sun Microsystems, Inc.
/**
 * Refresh the state of the instance from the database,
 * overwriting changes made to the entity, if any.
 * @param entity
 * @throws IllegalArgumentException if not an entity
 *                 or entity is not managed
 * @throws TransactionRequiredException if there is
 * no transaction and the persistence context is
 * of type PersistenceContextType.TRANSACTION
 * @throws EntityNotFoundException if the entity no longer
 *  exists in the database
 */
public void refresh(Object entity);

/**
 * Clear the persistence context, causing all managed
 * entities to become detached. Changes made to entities that
 * have not been flushed to the database will not be
 * persisted.
 */
public void clear();

/**
 * Check if the instance belongs to the current persistence
 * context.
 * @param entity
 * @return
 * @throws IllegalArgumentException if not an entity
 */
public boolean contains(Object entity);

/**
 * Create an instance of Query for executing an
 * EJB QL statement.
 * @param ejbqlString an EJB QL query string
 * @return the new query instance
 * @throws IllegalArgumentException if query string is not valid
 */
public Query createQuery(String ejbqlString);

/**
 * Create an instance of Query for executing a
 * named query (in EJB QL or native SQL).
 * @param name the name of a query defined in metadata
 * @return the new query instance
 * @throws IllegalArgumentException if a query has not been
 * defined with the given name
 */
public Query createNamedQuery(String name);

/**
 * Create an instance of Query for executing
 * a native SQL statement, e.g., for update or delete.
 * @param sqlString a native SQL query string
 * @return the new query instance
 */
public Query createNativeQuery(String sqlString);

/**
  12/19/05 40



EntityManager Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.

-
ontext,

t. If
will be
ed. See
 * Create an instance of Query for executing
 * a native SQL query.
 * @param sqlString a native SQL query string
 * @param resultClass the class of the resulting instance(s)
 * @return the new query instance
 */
public Query createNativeQuery(String sqlString, Class result-

Class);

/**
 * Create an instance of Query for executing
 * a native SQL query.
 * @param sqlString a native SQL query string
 * @param resultSetMapping the name of the result set mapping
 * @return the new query instance
 */
public Query createNativeQuery(String sqlString, String result-

SetMapping);

/**
 * Close an application-managed EntityManager.
 * After an EntityManager has been closed, all methods on the
 * EntityManager instance will throw the IllegalStateException
 * except for isOpen, which will return false.
 * This method can only be called when the EntityManager
 * is not associated with an active transaction.
 * @throws IllegalStateException if the EntityManager is
 * associated with an active transaction or if the
 * EntityManager is container-managed.
 */
public void close();

/**
 * Determine whether the EntityManager is open.
 * @return true until the EntityManager has been closed.
 */
public boolean isOpen();

/**
 * Return the resource-level transaction object.
 * The EntityTransaction instance may be used serially to
 * begin and commit multiple transactions.
 * @return EntityTransaction instance
 * @throws IllegalStateException if invoked on a JTA
 * EntityManager or an EntityManager that has been closed.
 */
public EntityTransaction getTransaction();

}

Thepersist , merge , remove , flush , andrefresh methods must be invoked within a transac
tion context when a transaction-scoped persistence context is used . If there is no transaction c
the javax.persistence.TransactionRequiredException  is thrown.

Thefind andgetReference methods are not required to be invoked within a transaction contex
an entity manager with transaction-scoped persistence context is in use, the resulting entities
detached; if an entity manager with an extended persistence context is used, they will be manag
sections 5.6.1 and 5.6.2 for entity manager use outside a transaction.
41   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Entity Instance’s Life Cycle

Sun Microsystems, Inc.

at

-
the
query
ersis-

ed
Man-

n

tence

ciated

ger)

ersis-
TheQuery andEntityTransaction objects obtained from an entity manager are valid while th
entity manager is open.

If the argument to thecreateQuery method is not a valid EJB QL query string, the IllegalArgumen
tException may be thrown or the query execution will fail. If a native query is not a valid query for
database in use or if the result set specification is incompatible with the result of the query, the
execution will fail and a PersistenceException will be thrown when the query is executed. The P
tenceException should wrap the underlying database exception when possible.

Runtime exceptions thrown by the methods of theEntityManager interface will cause the current
transaction to be rolled back.

The methodsclose , isOpen , and getTransaction are used to manage application-manag
entity managers and their lifecycle. See Section 5.2.2, “Obtaining an Application-managed Entity
ager”.

3.1.2 Example of Use of EntityManager API

@Stateless public class OrderEntryBean implements OrderEntry {

  @PersistenceContext EntityManager em;

  public void enterOrder(int custID, Order newOrder) {
     Customer cust = em.find(Customer.class, custID);
     cust.getOrders().add(newOrder);
     newOrder.setCustomer(cust);
   }
}

3.2 Entity Instance’s Life Cycle

This section describes theEntityManager operations for managing an entity instance’s lifecycle. A
entity instance may be characterized as being new, managed, detached, or removed.

• A new entity instance has no persistent identity, and is not yet associated with a persis
context.

• A managed entity instance is an instance with a persistent identity that is currently asso
with a persistence context.

• A detached entity instance is an instance with a persistent identity that is not (or no lon
associated with a persistence context.

• A removed entity instance is an instance with a persistent identity, associated with a p
tence context, that is scheduled for removal from the database.
  12/19/05 42



Entity Instance’s Life Cycle Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.

he cas-

at or

rsist
other

tion

no-

n is
nno-

oper-
tities

tion
The following subsections describe the effect of lifecycle operations upon entities. Use of thecascade
annotation element may be used to propagate the effect of an operation to associated entities. T
cade functionality is most typically used in parent-child relationships.

3.2.1 Persisting an Entity Instance

A new entity instance becomes both managed and persistent by invoking thepersist method on it or
by cascading the persist operation.

The semantics of the persist operation, applied to an entityX are as follows:

• If X is a new entity, it becomes managed. The entity X will be entered into the database
before transaction commit or as a result of the flush operation.

• If X is a preexisting managed entity, it is ignored by the persist operation. However, the pe
operation is cascaded to entities referenced by X, if the relationships from X to these
entities is annotated with thecascade=PERSIST or cascade=ALL annotation element
value or specified with the equivalent XML descriptor element.

• If X is a removed entity, it becomes managed.

• If X is a detached object, an IllegalArgumentException will be thrown by the persist opera
(or the transaction commit will fail).

• For all entities Y referenced by a relationship from X, if the relationship to Y has been an
tated with thecascade element valuecascade=PERSIST or cascade=ALL , the persist
operation is applied to Y.

3.2.2 Removal

A managed entity instance becomes removed by invoking theremove method on it or by cascading the
remove operation.

The semantics of the remove operation, applied to an entity X are as follows:

• If X is a new entity, it is ignored by the remove operation. However, the remove operatio
cascaded to entities referenced by X, if the relationships from X to these other entities is a
tated with thecascade=REMOVE or cascade=ALL  annotation element value.

• If X is a managed entity, the remove operation causes it to become removed. The remove
ation is cascaded to entities referenced by X, if the relationships from X to these other en
is annotated with thecascade=REMOVE or cascade=ALL  annotation element value.

• If X is a detached entity, an IllegalArgumentException will be thrown by the remove opera
(or the transaction commit will fail).

• If X is a removed entity, it is ignored by the remove operation.
43   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Entity Instance’s Life Cycle

Sun Microsystems, Inc.

as a

at the

roniza-
speci-

operty
.

by the
nces
hange.
nsibil-

re
es
n

r times
3.5.2.
per-

tics.

en

has

2.1
• A removed entity X will be removed from the database at or before transaction commit or
result of the flush operation.

After an entity has been removed, its state (except for generated state) will be that of the entity
point at which the remove operation was called.

3.2.3 Synchronization to the Database

The state of persistent entities is synchronized to the database at transaction commit. This synch
tion involving writing to the database any updates to persistent entities and their relationships as
fied above.

An update to the state of an entity includes both the assignment of a new value to a persistent pr
or field of the entity as well as the modification of a mutable value of a persistent property or field

Synchronization to the database does not involve a refresh of any managed entities unless therefresh
operation is explicitly invoked on those entities.

Bidirectional relationships between managed entities will be persisted based on references held
owning side of the relationship. It is the developer’s responsibility to keep the in-memory refere
held on the owning side and those held on the inverse side consistent with each other when they c
In the case of unidirectional one-to-one and one-to-many relationships, it is the developer’s respo
ity to insure that the semantics of the relationships are adhered to.[8]

It is particularly important to ensure that changes to the inverse side of a relationship result in
appropriate updates on the owning side, so as to ensure the changes are not lost when they a
synchronized to the database. Developers may choose whether or not to update referenc
held by the inverse side when the owning side changes, depending on whether the applicatio
can handle out-of-date references on the inverse side until the next database refresh occurs.

The persistence provider runtime is permitted to perform synchronization to the database at othe
as well when a transaction is active—for example, before query execution—as defined in section
The flush method can be used to force synchronization. It applies to entities associated with the
sistence context. TheFlushMode annotation can be used to further control synchronization seman
If there is no transaction active, the persistence provider must not flush to the database.

The semantics of the flush operation, applied to an entityX are as follows:

• If X is a managed entity, it is synchronized to the database.

• For all entities Y referenced by a relationship from X, if the relationship to Y has be
annotated with thecascade element valuecascade=PERSIST or cas-
cade=ALL , the persist operation is applied to Y.

• For any entity Y referenced by a relationship from X, where the relationship to Y
not been annotated with thecascade element valuecascade=PERSIST or cas-
cade=ALL :

[8] This might be an issue if unique constraints (such as those described for the default mappings in sections 2.1.8.3.1 and .8.5.1)
were not applied in the definition of the object/relational mapping.
  12/19/05 44



Entity Instance’s Life Cycle Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.

sh
will

ion-
hro-
vior

t.

k (see
arate

e per-
 state.

persis-

ay only

use.

tate

socia-

ntities

ce X'
• If Y is new or removed, an IllegalStateException will be thrown by the flu
operation (and the transaction rolled back) or the transaction commit
fail.

• If Y is detached, the semantics depend upon the ownership of the relat
ship. If X owns the relationship, any changes to the relationship are sync
nized with the database; otherwise, if Y owns the relationships, the beha
is undefined.

• If X is a removed entity, it is removed from the database. No cascade options are relevan

3.2.4 Detached Entities

A detached entity may result from transaction commit (see section 3.3.3), from transaction rollbac
section 3.3.4), from serializing an entity or otherwise passing an entity by value—e.g., to a sep
application tier, through a remote interface, etc.

Detached entity instances continue to live outside of the persistence context in which they wer
sisted or retrieved, and their state is no longer guaranteed to be synchronized with the database

The application may access the available state of available detached entity instances after the
tence context ends. The available state includes:

• Any persistent field or property not markedfetch=LAZY

• Any persistent field or property that was accessed by the application

If the persistent field or property is an association, the available state of an associated instance m
be safely accessed if the associated instance is available. The available instances include:

• Any entity instance retrieved usingfind() .

• Any entity instances retrieved using a query or explicitly requested in a FETCH JOIN cla

• Any entity instance for which an instance variable holding non-primary-key persistent s
was accessed by the application.

• Any entity instance that may be reached from another available instance by navigating as
tions markedfetch=EAGER .

3.2.4.1 Merging Detached Entity State

The merge operation allows for the propagation of state from detached entities onto persistent e
managed by the EntityManager.

The semantics of the merge operation applied to an entity X are as follows:

• If X is a detached entity, the state of X is copied onto a pre-existing managed entity instan
of the same identity or a new managed copy X' of X is created.
45   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Entity Instance’s Life Cycle

Sun Microsystems, Inc.

f X is

rge

ion is
anno-

-
ct as

s a

tation

tion.

ersis-
an one

e cur-

d.

r-

cas-

ist
• If X is a new entity instance, a new managed entity instance X' is created and the state o
copied into the new managed entity instance X'.

• If X is a removed entity instance, an IllegalArgumentException will be thrown by the me
operation (or the transaction commit will fail).

• If X is a managed entity, it is ignored by the merge operation, however, the merge operat
cascaded to entities referenced by relationships from X if these relationships have been
tated with thecascade  element valuecascade=MERGE or cascade=ALL  annotation.

• For all entities Y referenced by relationships from X having thecascade element value
cascade=MERGE or cascade=ALL , Y is merged recursively as Y'. For all such Y refer
enced by X, X' is set to reference Y'. (Note that if X is managed then X is the same obje
X'.)

• If X is an entity merged to X', with a reference to another entity Y, wherecascade=MERGE
or cascade=ALL is not specified, then navigation of the same association from X' yield
reference to a managed object Y' with the same persistent identity as Y.

Any Version columns used by the entity must be checked by the persistence runtime implemen
during the merge operation and/or at flush or commit time. In the absence ofVersion columns there is
no additional version checking done by the persistence provider runtime during the merge opera

3.2.5 Managed Instances
It is the responsibility of the application to insure that an instance is managed in only a single p
tence context. The behavior is undefined if the same Java instance is made managed in more th
persistence context.

Thecontains() method can be used to determine whether an entity instance is managed in th
rent persistence context.

Thecontains  method returns true:

• If the entity has been retrieved from the database, and has not been removed or detache

• If the entity instance is new, and thepersist method has been called on the entity or the pe
sist operation has been cascaded to it.

Thecontains  method returns false:

• If the instance is detached.

• If the remove method has been called on the entity, or the remove operation has been
caded to it.

• If the instance is new, and thepersist method has not been called on the entity or the pers
operation has not been cascaded to it.
  12/19/05 46



Persistence Context Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.

ay be

istence
istence
e

f type

ted

pe of a
s (either

ce con-

time the
trans-
text is

tion or
in the
Note that the effect of the cascading of persist or remove is immediately visible to thecontains
method, whereas the actual insertion or deletion of the database representation for the entity m
deferred until the end of the transaction.

3.3 Persistence Context

A persistence context lifetime may either be scoped to a transaction (transaction-scoped pers
context), or have a lifetime scope that extends beyond that of a single transaction (extended pers
context). The enumPersistenceContextType is used to define the persistence context lifetim
scope:

public enum PersistenceContextType {
  TRANSACTION,
  EXTENDED
}

By default, a persistence context's lifecycle corresponds to the scope of a transaction (i.e., it is o
PersistenceContextType.TRANSACTION ).

The PersistenceContextType is that defined when the EntityManager instance is crea
(whether explicitly, or in conjunction with injection or JNDI lookup). See Section 5.6.

3.3.1 Transaction-scoped Persistence Context
A transaction-scoped persistence context begins when the entity manager is invoked in the sco
transaction, as described in section 5.6. The persistence context ends when the transaction end
by commit or rollback).

3.3.2 Extended Persistence Context

A persistence context may be maintained across multiple transactions by specifying the persisten
text as an extended persistence context.

When an extended persistence context is used, the extended persistence context exists from the
EntityManager instance is created until it is closed. This persistence context might span multiple
actions and non-transactional invocations of the EntityManager. The extended persistence con
enlisted in the current transaction when the EntityManager is invoked in the scope of that transac
when the stateful session bean to which the extended persistence context is bound is invoked
scope of that transaction.
47   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Context

Sun Microsystems, Inc.

bjects
ey may

a trans-
hether

nsaction

he
typi-

ticular,
sistent.
t were
etached

h per-
n (or a
ically

the

(i.e.,
of an

cation.
tions

than
wever,

insta
An EntityManager with an extended persistence context maintains its references to the entity o
after a transaction has committed. Those objects remain managed by the EntityManager, and th
be updated as managed objects between transactions.[9] Navigation from a managed object in an
extended persistence context results in one or more other managed objects regardless of whether
action is active. The persist, remove, merge, and refresh operations may be called regardless of w
a transaction is active.

Extended persistence contexts are described futher in Section 5.6.

3.3.3 Transaction Commit
The managed entities of a transaction-scoped persistence context become detached when the tra
commits; the managed entities of an extended persistence context remain managed.

3.3.4 Transaction Rollback
For both transaction-scoped and extended persistence contexts, transaction rollback causes allpre-exist-
ing managed instances and removed instances[10] to become detached. The instances’ state will be t
state of the instances at the point at which the transaction was rolled back. Transaction rollback
cally causes the persistence context to be in an inconsistent state at the point of rollback. In par
the state of version attributes and generated state (e.g., generated primary keys) may be incon
Instances that were formerly managed by the persistence context (including new instances tha
made persistent in that transaction) may therefore not be reusable in the same manner as other d
objects—for example, they may fail when passed to the merge operation.[11]

3.3.5 Optimistic Locking and Concurrency
This specification assumes the use of "optimistic locking". It assumes that the databases to whic
sistence units are mapped will be accessed by implementations using read-committed isolatio
vendor equivalent in which long-term read locks are not held), and that writes to the database typ
occur only when theflush method has been invoked—whether explicitly by the application, or by
persistence provider runtime in accordance with theFlushMode settings. If a transaction is active, a
compliant implementation of this specification is permitted to write to the database immediately
whenever a managed entity is updated, created, and/or removed), however, the configuration
implementation to require such non-deferred database writes is outside the scope of this specifi
The configuration of the setting of optimistic lock modes is described in section 3.3.5.3. Applica
that prefer the use of pessimistic locking may require that database isolation levels higher
read-committed be in effect. The configuration of the setting of such database isolation levels, ho
is outside the scope of this specification.

[9] Note that when a new transaction is begun, the managed objects in an extended persistence context arenot reloaded from the data-
base.

[10] These are instances that were persistent in the database at the start of the transaction.

[11] It is unspecified as to whether instances that were not persistent in the database behave as new instances or detached nces
after rollback. This may be implementation-dependent.
  12/19/05 48



Persistence Context Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.

onding
for the
nsistent
t would

nable
ected
er state
r the

It is
on the
eld

plica-

to the
y are

tribute

ce the
excep-

timis-
eside

is not

check
is not

s from
3.3.5.1 Optimistic Locking
Optimistic locking is a technique that is used to insure that updates to the database data corresp
to the state of an entity are made only when no intervening transaction has updated that data
entity state since the entity state was read. This insures that updates or deletes to that data are co
with the current state of the database and that intervening updates are not lost. Transactions tha
cause this constraint to be violated result in anOptimisticLockException being thrown and
transaction rollback.

Portable applications that wish to enable optimistic locking for entities must specifyVersion
attributes for those entities—i.e., persistent properties or fields annotated with theVersion annotation
or specified in the XML descriptor as version attributes. Applications are strongly encouraged to e
optimistic locking for all entities that may be concurrently accessed or merged from a disconn
state.  Failure to use optimistic locking may lead to inconsistent entity state, lost updates and oth
irregularities. If optimistic locking is not defined as part of the entity state, the application must bea
burden of maintaining data consistency.

3.3.5.2 Version Attributes
TheVersion field or property is used by the persistence provider to perform optimistic locking.
accessed and/or set by the persistence provider in the course of performing lifecycle operations
entity instance. An entity is automatically enabled for optimistic locking if it has a property or fi
mapped with aVersion  mapping.

An entity may access the state of its version field or property or export a method for use by the ap
tion to access the version, but must not modify the version value[12]. Only the persistence provider is
permitted to set or update the value of the version attribute in the object.

The version attribute is updated by the persistence provider runtime when the object is written
database. All non-relationship fields and properties and all relationships owned by the entit
included in version checks.

The persistence provider's implementation of the merge operation must examine the version at
when an entity is being merged and throw anOptimisticLockException if it is discovered that
the object being merged is a stale copy of the entity—i.e. that the entity has been updated sin
entity became detached. Depending on the implementation strategy used, it is possible that this
tion may not be thrown untilflush  is called or commit time, whichever happens first.

The persistence provider runtime is only required to use the version attribute when performing op
tic lock checking. Persistence provider implementations may provide additional mechanisms b
version attributes to enable optimistic lock checking. However, support for such mechanisms
required of an implementation of this specification.[13]

If only some entities contain version attributes, the persistence provider runtime is required to
those entities for which version attributes have been specified. The consistency of the object graph
guaranteed, but the absence of version attributes on some of the entities will not stop operation
completing.

[12] EJB QL bulk update statements, however, are permitted to set the value of version attributes. See section 4.11

[13] Such additional mechanisms may be standardized by a future release of this specification.
49   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Context

Sun Microsystems, Inc.

of the

r

and
tually
does

fies or
fully.

row.
r the
com-
omena

the

-

ly, or
as to
longer

the

her or
all
3.3.5.3 Lock Modes
In addition to the semantics described above, lock modes may be further specified by means
EntityManager lock  method.

Two lock mode types are defined:READ andWRITE:

public enum LockMode
{
    READ,
    WRITE
}

The semantics of requesting locks of typeLockMode.READ andLockMode.WRITE are the follow-
ing.

If transaction T1 callslock(entity, LockMode.READ) on a versioned object, the entity manage
must ensure that neither of the following phenomena can occur:

• P1 (Dirty read): Transaction T1 modifies a row. Another transaction T2 then reads that row
obtains the modified value, before T1 has committed or rolled back. Transaction T2 even
commits successfully; it does not matter whether T1 commits or rolls back and whether it
so before or after T2 commits.

• P2 (Non-repeatable read): Transaction T1 reads a row. Another transaction T2 then modi
deletes that row, before T1 has committed. Both transactions eventually commit success

This will generally be achieved by the entity manager acquiring a lock on the underlying database
Any such lock may be obtained immediately (so long as it is retained until commit completes), o
lock may be deferred until commit time (although even then it must be retained until the commit
pletes). Any implementation that supports repeatable reads in a way that prevents the above phen
is permissible.

The persistence implementation is not required to support callinglock(entity, Lock-
Mode.READ) on a non-versioned object. When it cannot support such a lock call, it must throw
PersistenceException. When supported, whether for versioned or non-versioned objects,Lock-
Mode.READmust always prevent the phenomena P1 and P2. Applications that calllock(entity,
LockMode.READ)  on non-versioned objects will not be portable.

If transaction T1 callslock(entity, LockMode.WRITE) on a versioned object, the entity man
ager must avoid the phenomena P1 and P2 (as withLockMode.READ ) and must also force an update
(increment) to the entity's version column. A forced version update may be performed immediate
may be deferred until a flush or commit. If an entity is removed before a deferred version update w
have been applied, the forced version update is omitted, since the underlying database row no
exists.

The persistence implementation is not required to support callinglock(entity, Lock-
Mode.WRITE) on a non-versioned object. When it cannot support a such lock call, it must throw
PersistenceException. When supported, whether for versioned or non-versioned objects,Lock-
Mode.WRITE must always prevent the phenomena P1 and P2. For non-versioned objects, whet
not LockMode.WRITE has any additional behaviour is vendor-specific. Applications that c
lock(entity, LockMode.WRITE)  on non-versioned objects will not be portable.
  12/19/05 50



Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.

at the

sure

ssi-

con-
ntil
f the

ion to

to be
n but
n this

h as a
excep-

tion is

ycle

ciated
hods
ay be

peci-
For versioned objects, it is permissible for an implementation to useLockMode.WRITE where
LockMode.READ  was requested, but not vice versa.

If a versioned object is otherwise updated or removed, then the implementation must ensure th
requirements ofLockMode.WRITE are met, even if no explicit call toEntityManager.lock was
made.

For portability, an application should not depend on vendor-specific hints or configuration to en
repeatable read for objects that are not updated or removed via any mechanism other thanEntity-
Manager.lock . However, it should be noted that if an implementation has acquired up-front pe
mistic locks on some database rows, then it is free to ignorelock(entity, LockMode.READ)
calls on the entity objects representing those rows.

3.3.5.4 OptimisticLockException
Provider implementations may defer writing to the database until the end of the transaction, when
sistent with theFlushMode setting in effect. In this case, the optimistic lock check may not occur u
commit time, and OptimisticLockExceptions may be thrown in the "before completion" phase o
commit. If OptimisticLockExceptions must be caught or handled by the application, theflush method
should be used by the application to force the database writes to occur. This will allow the applicat
catch and handle optimistic lock exceptions.

The OptimisticLockException provides an API to return the object that caused the exception
thrown. The object reference is not guaranteed to be present every time the exception is throw
should be provided whenever the persistence provider can supply it. Applications cannot rely upo
object being available.

In some cases an OptimisticLockException will be thrown and wrapped by another exception, suc
RemoteException, when VM boundaries are crossed. Entities that may be referenced in wrapped
tions should be Serializable so that marshalling will not fail.

OptimisticLockExceptions always cause the transaction to roll back.

Refreshing objects or reloading objects in a new transaction context and then retrying the transac
a potential response to an OptimisticLockException.

3.4 Entity Listeners and Callback Methods

A method may be designated as a lifecycle callback method to receive notification of entity lifec
events.

A lifecycle callback method may be defined on an entity class or on an entity listener class asso
with the entity. An entity listener class is a class—distinct from the entity class itself—whose met
are invoked in response to lifecycle events on the entity. Any number of entity listener classes m
defined for an entity class.

Default entity listeners—entity listeners that apply to all entities in the persistence unit—can be s
fied by means of the XML descriptor.
51   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Entity Listeners and Callback Methods

Sun Microsystems, Inc.

tadata
es are
re
in the
the

lass or
llback
.

llback
cation

tion
to be

r

nter-
in the
hod is

entity

which

tity lis-

h tr
ac-
Lifecycle callback methods and entity listener classes are defined for an entity by means of me
annotations or the XML descriptor. When annotations are used, one or more entity listener class
denoted using theEntityListeners annotation on the entity class. If multiple entity listeners a
defined, the order in which they are invoked is determined by the order in which they are specified
EntityListeners annotation. The XML descriptor may be used as an alternative to specify
invocation order of entity listeners or to override the order specified in metadata annotations.

Any subset or combination of annotations appropriate to the entity may be specified on an entity c
listener class. A single entity class or listener class may not have more than one lifecycle ca
method for the same lifecycle event. The same method may be used for multiple callback events

Multiple entity classes in an inheritance hierarchy may define listener classes and/or lifecycle ca
methods directly on the entity class. Section 3.4.4 describes the rules that apply to method invo
order in this case.

The entity listener class must have a public no-arg constructor.

Entity listeners are stateless.  The lifecycle of an entity listener is unspecified.

The following rules apply to lifecycle callbacks:

• Lifecycle callback methods may throw unchecked/runtime exceptions. A runtime excep
thrown by a callback method that executes within a transaction causes that transaction
rolled back.

• Lifecycle callbacks can invoke JNDI, JDBC, JMS, and enterprise beans.

• Portable applications must not invokeEntityManager or Query operations or access othe
entity instances in a lifecycle callback method.[14]

When invoked from within a Java EE environment, the callback listeners for an entity share the e
prise naming context of the invoking component, and the entity callback methods are invoked
transaction and security contexts of the calling component at the time at which the callback met
invoked.[15]

3.4.1 Lifecycle Callback Methods
Entity lifecycle callback methods can be defined on an entity listener class and/or directly on the
class.

Lifecycle callback methods are annotated with annotations designating the callback events for
they are invoked or are mapped to the callback event using the XML descriptor.

The annotations used for callback methods on the entity class and for callback methods on the en
tener class are the same.  The signatures of individual methods, however, differ.

[14] The semantics of such operations may be standardized in a future release of this specification.

[15] For example, if a transaction commit occurs as a result of the normal termination of a session bean business method witansac-
tion attributeRequiresNew , thePostPersist  andPostRemove  callbacks are executed in the naming context, the trans
tion context, and the security context of that component.
  12/19/05 52



Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.

be

not be

pond-

ec-
ch the

opied

as
these

tly after
h oper-
e avail-
Callback methods defined on an entity class have the following signature:

void <METHOD>()

Callback methods defined on an entity listener class have the following signature:

void <METHOD>(Object)

The Object argument is the entity instance for which the callback method is invoked. It may
declared as the actual entity type.

The callback methods can have public, private, protected, or package level access, but must
static  or final .

The following annotations are defined to designate lifecycle event callback methods of the corres
ing types.

• PrePersist

• PostPersist

• PreRemove

• PostRemove

• PreUpdate

• PostUpdate

• PostLoad

3.4.2 Semantics of the Life Cycle Callback Methods for Entities
ThePrePersist andPreRemove callback methods are invoked for a given entity before the resp
tive EntityManager persist and remove operations for that entity are executed. For entities to whi
merge operation has been applied and causes the creation of newly managed instances, thePrePer-
sist callback methods will be invoked for the managed instance after the entity state has been c
to it. ThesePrePersist and PreRemove callbacks will also be invoked on all entities to which
these operations are cascaded. ThePrePersist andPreRemove methods will always be invoked
as part of the synchronous persist, merge, and remove operations.

ThePostPersist andPostRemove callback methods are invoked for an entity after the entity h
been made persistent or removed. These callbacks will also be invoked on all entities to which
operations are cascaded. ThePostPersist and PostRemove methods will be invoked after the
database insert and delete operations respectively. These database operations may occur direc
the persist, merge, or remove operations have been invoked or they may occur directly after a flus
ation has occurred (which may be at the end of the transaction). Generated primary key values ar
able in thePostPersist  method.
53   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Entity Listeners and Callback Methods

Sun Microsystems, Inc.

ns to
ated or
action).

r

rsis-

rsed.

ascad-
ThePreUpdate andPostUpdate callbacks occur before and after the database update operatio
entity data respectively. These database operations may occur at the time the entity state is upd
they may occur at the time state is flushed to the database (which may be at the end of the trans

Note that it is implementation-dependent as to whetherPreUpdate andPostUpdate call-
backs occur when an entity is persisted and subsequently modified in a single transaction o
when an entity is modified and subsequently removed within a single transaction. Portable
applications should not rely on such behavior.

ThePostLoad method for an entity is invoked after the entity has been loaded into the current pe
tence context from the database or after the refresh operation has been applied to it. ThePostLoad
method is invoked before a query result is returned or accessed or before an association is trave

It is implementation-dependent as to whether callback methods are invoked before or after the c
ing of the lifecycle events to related entities. Applications should not depend on this ordering.
  12/19/05 54



Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.

n of

ners

in the
3.4.3 Example
@Entity
@EntityListeners(com.acme.AlertMonitor.class)
public class Account {

Long accountId;
Integer balance;
boolean preferred;

@Id
public Long getAccountId() { ... }
public Integer getBalance() { ... }
...

    @Transient // because status depends upon non-persistent context
    public boolean isPreferred() { ... }

    public void deposit(Integer amount) { ... }
public Integer withdraw(Integer amount) throws NSFException {... }

    @PrePersist
    protected void validateCreate() {
        if (getBalance() < MIN_REQUIRED_BALANCE)
        throw new AccountException("Insufficient balance to open an
account");
    }

    @PostLoad
    protected void adjustPreferredStatus() {
        preferred =
            (getBalance() >= AccountManager.getPreferredStatu-
sLevel());
    }
}

public class AlertMonitor {

    @PostPersist
    public void newAccountAlert(Account acct) {
        Alerts.sendMarketingInfo(acct.getAccountId(), acct.getBal-
ance());
}

3.4.4 Multiple Lifecycle Callback Methods for an Entity Lifecycle Event

If multiple callback methods are defined for an entity lifecycle event, the ordering of the invocatio
these methods is as follows.

Default listeners, if any, are invoked first, in the order specified in the XML descriptor. Default liste
apply to all entities in the persistence unit, unless explicitly excluded by means of theExcludeDe-
faultListeners  annotation orexclude-default-listeners  XML element.

The lifecycle callback methods defined on the entity listener classes for an entity class are invoked
same order as the specification of the entity listener classes in theEntityListeners  annotation.
55   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Entity Listeners and Callback Methods

Sun Microsystems, Inc.

for a

tener
lass to

ub-

om

r one
ses are
tted to
ethod

llback
llback

ed in
If multiple entity classes in an inheritance hierarchy define entity listeners, the listeners defined
superclass are invoked before the listeners defined for its subclasses in this order. TheExcludeSu-
perclassListeners annotation orexclude-superclass-listeners XML element may
be applied to an entity class to exclude the invocation of the listeners defined by the entity lis
classes for the superclasses of the entity. The excluded listeners are excluded from the entity c
which theExcludeSuperclassListeners annotation or element has been specified and its s
classes.[16] The ExcludeSuperclassListeners annotation (or exclude-super-
class-listeners XML element) does not cause default entity listeners to be excluded fr
invocation.

If a lifecycle callback method for the same lifecycle event is also specified on the entity class and/o
or more of its entity superclasses, the callback methods on the entity class and/or entity superclas
invoked after the other lifecycle callback methods, most general superclass first. A class is permi
override an inherited callback method of the same callback type, and in this case, the overridden m
is not invoked.

Callback methods are invoked by the persistence provider runtime in the order specified. If the ca
method execution terminates normally, the persistence provider runtime then invokes the next ca
method, if any.

The XML descriptor may be used to override the lifecycle callback method invocation order specifi
annotations.

[16] Excluded listeners may be reintroduced on an entity class by listing them explicitly in theEntityListeners  annotation or
XML entity-listeners  element.
  12/19/05 56



Entity Listeners and Callback Methods Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.
3.4.5 Example
There are several entity classes and listeners for animals:

@Entity
public class Animal {
    ....
    @PostPersist
    protected void postPersistAnimal() {
        ....
    }
}

@Entity
@EntityListeners(PetListener.class)
public class Pet extends Animal {
    ....
}

@Entity
@EntityListeners({CatListener.class, CatListener2.class})
public class Cat extends Pet {
    ....
}

public class PetListener {
    @PostPersist
    protected void postPersistPetListenerMethod(Object pet) {
       ....
    }
}

public class CatListener {
    @PostPersist
    protected void postPersistCatListenerMethod(Object cat) {
       ....
    }
}

public class CatListener2 {
    @PostPersist
    protected void postPersistCatListener2Method(Object cat) {
       ....
    }
}

If a PostPersist  event occurs on an instance ofCat ,  the following methods are called in order:

    postPersistPetListenerMethod
    postPersistCatListenerMethod
    postPersistCatListener2Method
    postPersistAnimal
57   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Entity Listeners and Callback Methods

Sun Microsystems, Inc.

back
ecycle
Assume thatSiameseCat  is defined as a subclass ofCat :

@EntityListeners(SiameseCatListener.class)
@Entity
public class SiameseCat extends Cat {
  ...
  @PostPersist
  protected void postSiameseCat() {
     ...
  }
}

public class SiameseCatListener {
    @PostPersist

protected void postPersistSiameseCatListenerMethod(Object cat) {
       ....
    }
}

If a PostPersist event occurs on an instance ofSiameseCat , the following methods are called in
order:

postPersistPetListenerMethod
postPersistCatListenerMethod
postPersistCatListener2Method
postPersistSiameseCatListenerMethod
postPersistAnimal
postPersistSiameseCat

Assume the definition ofSiameseCat  were instead:

@EntityListeners(SiameseCatListener.class)
@Entity
public class SiameseCat extends Cat {
  ...
  @PostPersist
  protected void postPersistAnimal() {
     ...
  }
}

In this case, the following methods would be called in order, wherepostPersistAnimal is the
PostPersist  method defined in theSiameseCat  class:

postPersistPetListenerMethod
postPersistCatListenerMethod
postPersistCatListener2Method
postPersistSiameseCatListenerMethod
postPersistAnimal

3.4.6 Exceptions
Lifecycle callback methods may throw runtime exceptions. A runtime exception thrown by a call
method that executes within a transaction causes that transaction to be rolled back. No further lif
callback methods will be invoked after a runtime exception is thrown.
  12/19/05 58



Query API Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.

stener
ds as

of

-persist
and/or
ether

he

its

ntity

or

to an

for
given

ribed

uery
3.4.7 Specification of Callback Listener Classes and Lifecycle Methods in the XML
Descriptor
The XML descriptor can be used as an alternative to metadata annotations to specify entity li
classes and their binding to entities or to override the invocation order of lifecycle callback metho
specified in annotations.

3.4.7.1 Specification of Callback Listeners

Theentity-listener XML descriptor element is used to specify the lifecycle listener methods
an entity listener class. The lifecycle listener methods are specified by using thepre-persist ,
post-persist , pre-remove , post-remove , pre-update , post-update , and/or
post-load elements.

At most one method of an entity listener class can be designated as a pre-persist method, post
method, pre-remove method, post-remove method, pre-update method, post-update method,
post-load method, regardless of whether the XML descriptor is used to define entity listeners or wh
some combination of annotations and XML descriptor elements is used.

3.4.7.2 Specification of the Binding of Entity Listener Classes to Entities
The default-entity-listeners element is used to specify the default entity listeners for t
persistence unit.

The entity-listeners element is used to specify the entity listener classes for an entity and
subclasses. Theentity-listeners  element is a subelement of theentity  element.

The subelements of theentity-listeners  element are as follows:

• The listener-class elements specifies the entity listener classes defined on the e
class, in the order in which they are to be invoked.

• The exclude-superclass-listeners element specifies that the listener methods f
an entity’s superclasses are not to be invoked for an entity class and its subclasses.

The binding of entity listeners to entity classes is additive. The entity listener classes bound
entity’s superclasses are applied to it as well.

The exclude-superclass-listeners element disables superclass listeners for the entity
which it is specified and its subclasses. Explicitly listing an excluded superclass listener for a
entity class causes it to be applied to that entity and its subclasses.

In the case of multiple callback methods for a single lifecycle event, the invocation order rules desc
in section 3.4.4 apply.

3.5 Query API

The Query API is used for both static queries (i.e., named queries) and dynamic queries. The Q
API also supports named parameter binding and pagination control.
59   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Query API

Sun Microsystems, Inc.
3.5.1 Query Interface
package javax.persistence;

import java.util.Calendar;
import java.util.Date;
import java.util.List;

/**
 * Interface used to control query execution.
 */
public interface Query {

/**
 * Execute a SELECT query and return the query results
 * as a List.
 * @return a list of the results
 * @throws IllegalStateException if called for an EJB QL
 * UPDATE or DELETE statement
 */
public List getResultList();

/**
 * Execute a SELECT query that returns a single result.
 * @return the result
 * @throws NoResultException if there is no result
 * @throws NonUniqueResultException if more than one result
 * @throws IllegalStateException if called for an EJB QL
 * UPDATE or DELETE statement
 */
public Object getSingleResult();

/**
 * Execute an update or delete statement.
 * @return the number of entities updated or deleted
 * @throws IllegalStateException if called for an EJB QL
 * SELECT statement
 * @throws TransactionRequiredException if there is
 *                 no transaction
 */
public int executeUpdate();

/**
 * Set the maximum number of results to retrieve.
 * @param maxResult
 * @return the same query instance
 * @throws IllegalArgumentException if argument is negative
 */
public Query setMaxResults(int maxResult);

/**
 * Set the position of the first result to retrieve.
 * @param start position of the first result, numbered from 0
 * @return the same query instance
 * @throws IllegalArgumentException if argument is negative
 */
public Query setFirstResult(int startPosition);

/**
  12/19/05 60



Query API Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.
 * Set an implementation-specific hint.
 * If the hint name is not recognized, it is silently ignored.
 * @param hintName
 * @param value
 * @return the same query instance

* @throws IllegalArgumentException if the second argument is not
 * valid for the implementation
 */
public Query setHint(String hintName, Object value);

/**
 * Bind an argument to a named parameter.
 * @param name the parameter name
 * @param value
 * @return the same query instance
 * @throws IllegalArgumentException if parameter name does not
 * correspond to parameter in query string
 * or argument is of incorrect type
 */
public Query setParameter(String name, Object value);

/**
 * Bind an instance of java.util.Date to a named parameter.
 * @param name
 * @param value
 * @param temporalType
 * @return the same query instance
 * @throws IllegalArgumentException if parameter name does not
 * correspond to parameter in query string
 */
public Query setParameter(String name, Date value, TemporalType

temporalType);

/**
 * Bind an instance of java.util.Calendar to a named parameter.
 * @param name
 * @param value
 * @param temporalType
 * @return the same query instance
 * @throws IllegalArgumentException if parameter name does not
 * correspond to parameter in query string
 */
public Query setParameter(String name, Calendar value, Temporal-

Type temporalType);

/**
 * Bind an argument to a positional parameter.
 * @param position
 * @param value
 * @return the same query instance
 * @throws IllegalArgumentException if position does not
 * correspond to positional parameter of query
 * or argument is of incorrect type
 */
public Query setParameter(int position, Object value);

/**
 * Bind an instance of java.util.Date to a positional parameter.
61   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Query API

Sun Microsystems, Inc.

f type

re-
corre-
r the
y may

s-

ersis-
d per-
er use
 * @param position
 * @param value
 * @param temporalType
 * @return the same query instance
 * @throws IllegalArgumentException if position does not
 * correspond to positional parameter of query
 */
public Query setParameter(int position, Date value, TemporalType

temporalType);

/**
 * Bind an instance of java.util.Calendar to a positional param-

eter.
 * @param position
 * @param value
 * @param temporalType
 * @return the same query instance
 * @throws IllegalArgumentException if position does not
 * correspond to positional parameter of query
 */
public Query setParameter(int position, Calendar value, Temporal-

Type temporalType);

/**
 * Set the flush mode type to be used for the query execution.
 * @param flushMode
 */
public Query setFlushMode(FlushModeType flushMode);

}

The elements of a query result whose SELECT clause consists of more than one value are o
Object[] .

An IllegalArgumentException is thrown if a parameter name is specified that does not cor
spond to a named parameter in the query string, if a positional value is specified that does not
spond to a positional parameter in the query string, or if the type of the parameter is not valid fo
query. This exception may be thrown when the parameter is bound, or the execution of the quer
fail.

Query methods other than theexecuteUpdate method are not required to be invoked within a tran
action context. In particular, thegetResultList and getSingleResult methods are not
required to be invoked within a transaction context. If an entity manager with transaction-scoped p
tence context is in use, the resulting entities will be detached; if an entity manager with an extende
sistence context is used, they will be managed. See sections 5.6.1 and 5.6.2 for entity manag
outside a transaction.

Runtime exceptions other than theNoResultException and NonUniqueResultException
thrown by the methods of theQuery  interface cause the current transaction to be rolled back.
  12/19/05 62



Query API Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.

ot
pdates
query
this by
ode set-
d.

fiers
native

QL or in
3.5.1.1 Example

public List findWithName(String name) {
  return em.createQuery(

"SELECT c FROM Customer c WHERE c.name LIKE :custName")
    .setParameter("custName", name)
    .setMaxResults(10)
    .getResultList();
}

3.5.2 Queries and FlushMode

The flush mode setting affects the result of a query as follows.

When queries are executed within a transaction, ifFlushMode.AUTO is set on the Query object, or if
the flush mode setting for the persistence context isAUTO(the default) and a flush mode setting has n
been specified for the Query object, the persistence provider is responsible for ensuring that all u
to the state of all entities in the persistence context which could potentially affect the result of the
are visible to the processing of the query. The persistence provider implementation may achieve
flushing those entities to the database or by some other means. In the absence of such flush m
tings, the effect of updates made to entities in the persistence context upon queries is unspecifie

If there is no transaction active, the persistence provider must not flush to the database.

3.5.3 Parameter Names
A named parameter is an identifier that is prefixed by the ":" symbol. It follows the rules for identi
defined in Section 4.4.1. The use of named parameters applies to EJB QL, and is not defined for
queries. Only positional parameter binding may be portably used for native queries.

3.5.4 Named Queries
Named queries are static queries expressed in metadata. Named queries can be defined in EJB
SQL. Query names are scoped to the persistence unit.

The following is an example of the definition of an EJB QL named query:

@NamedQuery(
  name="findAllCustomersWithName",
  query="SELECT c FROM Customer c WHERE c.name LIKE :custName"
)

The following is an example of the use of a named query:

@PersistenceContext
public EntityManager em;
...
customers = em.createNamedQuery("findAllCustomersWithName")
  .setParameter("custName", "Smith")
  .getResultList();
63   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Query API

Sun Microsystems, Inc.

only
. The
ns.

s, sca-
ntity

o
ve

to the

results

d and

sing
ed in
3.5.5 Polymorphic Queries

By default, all queries are polymorphic. That is, the FROM clause of a query designates not
instances of the specific entity class(es) to which it explicitly refers, but subclasses as well
instances returned by a query include instances of the subclasses that satisfy the query conditio[17]

For example, the query

select avg(e.salary) from Employee e where e.salary > 80000

returns the average salary of all employees, including subtypes ofEmployee , such asManager and
Exempt .

3.5.6 SQL Queries
Queries may be expressed in native SQL. The result of a native SQL query may consist of entitie
lar values, or a combination of the two. The entities returned by a query may be of different e
types.

The SQL query facility is intended to provide support for those cases where it is necessary t
use the native SQL of the target database in use (and/or where EJB QL cannot be used). Nati
SQL queries are not expected to be portable across databases.

When multiple entities are returned by a SQL query, the entities must be specified and mapped
column results of the SQL statement in aSqlResultSetMapping metadata definition. This result
set mapping metadata can then be used by the persistence provider runtime to map the JDBC
into the expected objects. See Section 8.3.4 for the definition of theSqlResultSetMapping meta-
data annotation and related annotations.

If the results of the query are limited to entities of a single entity class, a simpler form may be use
SqlResultSetMapping  metadata is not required.

This is illustrated in the following example in which a native SQL query is created dynamically u
thecreateNativeQuery method and the entity class that specifies the type of the result is pass
as an argument.

Query q = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Item i " +
"WHERE (o.item = i.id) AND (i.name = ‘widget’)",

       com.acme.Order.class);

[17] Constructs to restrict query polymorphism will be considered in a future release.
  12/19/05 64



Query API Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.

The

y

ped to
ained
o map

the col-
clause
When executed, this query will return a Collection of all Order entities for items named "widget".
same results could also be obtained usingSqlResultSetMapping :

Query q = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Item i " +
"WHERE (o.item = i.id) AND (i.name = ‘widget’)",
"WidgetOrderResults");

In this case, the metadata for the query result type might be specified as follows:

@SqlResultSetMapping(name="WidgetOrderResults",
       entities=@EntityResult(entityClass=com.acme.Order.class))

The following query andSqlResultSetMapping metadata illustrates the return of multiple entit
types and assumes default metadata and column name defaults.

   Query q = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item, i.id, i.name, i.description "+
"FROM Order o, Item i " +
"WHERE (o.quantity > 25) AND (o.item = i.id)",
"OrderItemResults");

   @SqlResultSetMapping(name="OrderItemResults",
       entities={
          @EntityResult(entityClass=com.acme.Order.class),
          @EntityResult(entityClass=com.acme.Item.class)
       })

When an entity is being returned, the SQL statement should select all of the columns that are map
the entity object. This should include foreign key columns to related entities. The results obt
when insufficient data is available are undefined. A SQL result set mapping must not be used t
results to the non-persistent state of an entity.

The column names that are used in the SQL result set mapping annotations refer to the names of
umns in the SQL SELECT clause. Note that column aliases must be used in the SQL SELECT
where the SQL result would otherwise contain multiple columns of the same name.
65   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Query API

Sun Microsystems, Inc.

uires

com-
h

form
eys.

f

An example of combining multiple entity types and that includes aliases in the SQL statement req
that the column names be explicitly mapped to the entity fields. TheFieldResult annotation is used
for this purpose.

Query q = em.createNativeQuery(
      "SELECT o.id AS order_id, " +

"o.quantity AS order_quantity, " +
"o.item AS order_item, " +
"i.id, i.name, i.description " +

"FROM Order o, Item i " +
"WHERE (order_quantity > 25) AND (order_item = i.id)",

      "OrderItemResults");

   @SqlResultSetMapping(name="OrderItemResults",
       entities={
          @EntityResult(entityClass=com.acme.Order.class, fields={
             @FieldResult(name="id", column="order_id"),
             @FieldResult(name="quantity", column="order_quantity"),
             @FieldResult(name="item", column="order_item")}),
          @EntityResult(entityClass=com.acme.Item.class)
   })

Scalar result types can be included in the query result by specifying theColumnResult annotation in
the metadata.

Query q = em.createNativeQuery(
      "SELECT o.id AS order_id, " +

"o.quantity AS order_quantity, " +
"o.item AS order_item, " +
"i.name AS item_name, " +

"FROM Order o, Item i " +
"WHERE (order_quantity > 25) AND (order_item = i.id)",

      "OrderResults");

   @SqlResultSetMapping(name="OrderResults",
      entities={
         @EntityResult(entityClass=com.acme.Order.class, fields={
            @FieldResult(name="id", column="order_id"),
            @FieldResult(name="quantity", column="order_quantity"),
            @FieldResult(name="item", column="order_item")})},
      columns={
         @ColumnResult(name="item_name")}
   )

When the returned entity type is the owner of a single-valued relationship and the foreign key is a
posite foreign key (composed of multiple columns), aFieldColumn element should be used for eac
of the foreign key columns. TheFieldColumn element must use a dot (". ") notation form to indicate
which column maps to each property or field of the target entity primary key. The dot-notation
described below is not required to be supported for any usage other than for composite foreign k

If the target entity has a primary key of typeIdClass , this specification takes the form of the name o
the field or property for the relationship, followed by a dot (". "), followed by the name of the field or
property of the primary key in the target entity. The latter will be annotated withId , as specified in sec-
tion 9.1.13.
  12/19/05 66



Query API Enterprise JavaBeans 3.0, Proposed Final Draft Entity Operations

Sun Microsystems, Inc.

e

Example:

Query q = em.createNativeQuery(
    "SELECT o.id AS order_id, " +
        "o.quantity AS order_quantity, " +
        "o.item_id AS order_item_id, " +
        "o.item_name AS order_item_name, " +
        "i.id, i.name, i.description " +
    "FROM Order o, Item i " +
    "WHERE (order_quantity > 25) AND (order_item_id = i.id) AND
(order_item_name = i.name)",
        "OrderItemResults");

@SqlResultSetMapping(name="OrderItemResults",
    entities={
        @EntityResult(entityClass=com.acme.Order.class, fields={
            @FieldResult(name="id", column="order_id"),
            @FieldResult(name="quantity", column="order_quantity"),
            @FieldResult(name="item.id", column="order_item_id")}),
            @FieldResult(name="item.name",

column="order_item_name")}),
        @EntityResult(entityClass=com.acme.Item.class)
})

If the target entity has a primary key of typeEmbeddedId , this specification is composed of the nam
of the field or property for the relationship, followed by a dot (". "), followed by the name or the field or
property of the primary key (i.e., the name of the field or property annotated asEmbeddedId ), fol-
lowed by the name of the corresponding field or property of the embedded primary key class.

Example:

Query q = em.createNativeQuery(
    "SELECT o.id AS order_id, " +
        "o.quantity AS order_quantity, " +
        "o.item_id AS order_item_id, " +
        "o.item_name AS order_item_name, " +
        "i.id, i.name, i.description " +
    "FROM Order o, Item i " +
    "WHERE (order_quantity > 25) AND (order_item_id = i.id) AND
(order_item_name = i.name)",
        "OrderItemResults");

@SqlResultSetMapping(name="OrderItemResults",
    entities={
        @EntityResult(entityClass=com.acme.Order.class, fields={
            @FieldResult(name="id", column="order_id"),
            @FieldResult(name="quantity", column="order_quantity"),
            @FieldResult(name="item.itemPk.id",

column="order_item_id")}),
            @FieldResult(name="item.itemPk.name",

column="order_item_name")}),
        @EntityResult(entityClass=com.acme.Item.class)
})
67   12/19/05



Entity Operations Enterprise JavaBeans 3.0, Proposed Final Draft Query API

Sun Microsystems, Inc.

key
tity if

ing for
The FieldResult elements for the composite foreign key are combined to form the primary
EmbeddedId class for the target entity. This may then be used to subsequently retrieve the en
the relationship is to be eagerly loaded.

The use of named parameters is not defined for native queries. Only positional parameter bind
SQL queries may be used by portable applications.

Support for joins is currently limited to single-valued relationships.
  12/19/05 68



Overview Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

eir per-
ortable

oper-
sub-

que-
. Named

rough
earlier
ds) as
Chapter 4 Query Language

The Enterprise JavaBeans query language, EJB QL, is used to define queries over entities and th
sistent state. EJB QL enables the application developer to specify the semantics of queries in a p
way, independent of the particular database in use in an enterprise environment.

This specification release augments the previous version of EJB QL defined in [5] with additional
ations, including bulk update and delete, JOIN operations, GROUP BY, HAVING, projection, and
queries. It also provides for the use of EJB QL in dynamic queries.

The full range of EJB QL may be used in both static and dynamic queries. Both static and dynamic
ries may be parameterized. Named parameters as well as positional parameters are supported
parameters, which are new to this specification release, are described in Section 4.6.4.2.

This chapter provides the full definition of the language.

4.1 Overview

EJB QL is a query specification language for dynamic queries and for static queries expressed th
metadata. It applies both to the persistent entities defined by this specification, as well as to the
EJB 2.1 entity beans with container-managed persistence (and their finder and select metho
defined in [1].[18]
69   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Overview

Sun Microsystems, Inc.

re. This
base,
result,

ncluding
model.
es and
s are

nt

er

relation-
of enti-
he path

n

y-

ce of

stract
r-man-

QL
entity

s “EJB
EJB QL can be compiled to a target language, such as SQL, of a database or other persistent sto
allows the execution of queries to be shifted to the native language facilities provided by the data
instead of requiring queries to be executed on the runtime representation of the entity state. As a
query methods can be optimizable as well as portable.

The Enterprise JavaBeans query language uses the abstract persistence schemas of entities, i
their relationships, for its data model, and it defines operators and expressions based on this data
EJB QL uses a SQL-like syntax to select objects or values based on entity abstract schema typ
relationships among them. It is possible to parse and validate EJB QL queries before entitie
deployed because EJB QL is based on abstract schema types.

The term abstract persistence schema refers to the persistent schema abstraction (persiste
entities, their state, and their relationships) over which EJB QL queries operate. EJB QL
translates queries over this persistent schema abstraction into queries that are executed ov
the database schema to which entities are mapped.  See Section 4.3.

The developer uses EJB QL to write queries based on the abstract persistence schemas and the
ships defined in the metadata annotations or XML descriptor. The abstract schema types of a set
ties can be used in a query if the entities are defined in the same persistence unit as the query. T
expressions of EJB QL allow for navigation over relationships defined in the persistence unit.

A persistence unit defines the set of all classes that are related or grouped by the applicatio
and which must be colocated in their mapping to a single database.

Compatibility Note: For EJB 2.1 and earlier entity beans, the scope of the persistence unit is
defined by the ejb-jar file. It is assumed that a single deployment descriptor in an ejb-jar file
constitutes a nondecomposable unit for the container responsible for implementing the
abstract persistence schemas of the entity beans and the relationships defined in the deplo
ment descriptor and the ejb-jar file. Queries can be written by utilizing navigation over the
cmr-fields of related beans supplied in the same ejb-jar file.

EJB QL queries can be used in several different ways:

• as queries for selecting entity objects or values through use of methods of theQuery API
(Section 3.5.1), where the queries are expressed either in metadata or dynamically.

• as queries for selecting entity objects through finder methods defined in the home interfa
EJB 2.1 container-managed entity bean components using the EJB 2.1 API.

• as queries for selecting entity objects or other values derived from an entity bean’s ab
schema type through select methods defined on the entity bean class of EJB 2.1 containe
aged entity bean components using the EJB 2.1 API.

A compliant implementation of this specification is only required to support that subset of EJB
defined in the Enterprise JavaBeans 2.1 specification for use with finder and select methods of
beans with container managed persistence [1].

[18] We use the term “entity” in this chapter to refer both to entities as defined by this specification document as well as to the entity
beans with container-managed persistence defined by [1]. Where it is important to distinguish the latter, we refer to them a
2.1 entity beans.”
  12/19/05 70



EJB QL Statement Types Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

ent.

adata

pres-

y the

s of

y the

dicate
4.2 EJB QL Statement Types

An EJB QL statement may be either a select statement, an update statement, or a delete statem

This chapter refers to all such statements as “queries”. Where it is important to distinguish
among statement types, the specific statement type is referenced.

In BNF syntax, an EJB QL statement is defined as:

EJB QL :: = select_statement | update_statement | delete_statement

Any EJB QL statement may be constructed dynamically or may be statically defined in a met
annotation or XML descriptor element.

All EJB QL statement types may have parameters.

4.2.1 Select Statements

An EJB QL select statement is a string which consists of the following clauses:

• a SELECT clause, which determines the type of the objects or values to be selected.

• a FROM clause, which provides declarations that designate the domain to which the ex
sions specified in the other clauses of the query apply.

• an optional WHERE clause, which may be used to restrict the results that are returned b
query.

• an optional GROUP BY clause, which allows query results to be aggregated in term
groups.

• an optional HAVING clause, which allows filtering over aggregated groups.

• an optional ORDER BY clause, which may be used to order the results that are returned b
query.

In BNF syntax, an EJB QL select statement is defined as:

select_statement :: = select_clause from_clause [where_clause] [groupby_clause]
[having_clause] [orderby_clause]

A select statement must always have a SELECT and a FROM clause. The square brackets [] in
that the other clauses are optional.

4.2.2 Update and Delete Statements
Update and delete statements provide bulk operations over sets of entities.
71   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Abstract Schema Types and Query

Sun Microsystems, Inc.

HERE

con-

sion is
le dec-
rals.

n pro-

lass,
r the

ship
ract
ny, a

quired

ned in

ment

ent
In BNF syntax, these operations are defined as:

update_statement :: = update_clause [where_clause]

delete_statement :: = delete_clause [where_clause]

The update and delete clauses determine the type of the entities to be updated or deleted. The W
clause may be used to restrict the scope of the update or delete operation.

Update and delete statements are described further in Section 4.11.

Compatibility Note: Update and delete statements are not supported for EJB 2.1 entity beans with
tainer-managed persistence.

4.3 Abstract Schema Types and Query Domains

EJB QL is a typed language, and every expression in EJB QL has a type. The type of an expres
derived from the structure of the expression, the abstract schema types of the identification variab
larations, the types to which the persistent fields and relationships evaluate, and the types of lite

The abstract schema type of an entity is derived from the entity class and the metadata informatio
vided by Java language annotations or in the XML descriptor.

Informally, the abstract schema type of an entity can be characterized as follows:

• For every persistent field or get accessor method (for a persistent property) of the entity c
there is a field (“state-field”) whose abstract schema type corresponds to that of the field o
result type of the accessor method.[19]

• For every persistent relationship field or get accessor method (for a persistent relation
property) of the entity class, there is a field (“association-field”) whose type is the abst
schema type of the related entity (or, if the relationship is a one-to-many or many-to-ma
collection of such).[20]

Abstract schema types are specific to the EJB QL data model. The persistence provider is not re
to implement or otherwise materialize an abstract schema type.

The domain of an EJB QL query consists of the abstract schema types of all entities that are defi
the same persistence unit.

[19] For EJB 2.1 entity beans with container-managed persistence, these correspond to the cmp-field elements of the deploy
descriptor.

[20] For EJB 2.1 entity beans with container-managed persistence, these correspond to the cmr-field elements of the deploym
descriptor.
  12/19/05 72



Abstract Schema Types and Query DomainsEnterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

ng the
a types

assigns
be used

.

senting
ypes for

h

The domain of a query may be restricted by thenavigabilityof the relationships of the entity on which it
is based. The association-fields of an entity’s abstract schema type determine navigability. Usi
association-fields and their values, a query can select related entities and use their abstract schem
in the query.

4.3.1 Naming

Entities are designated in EJB QL query strings by their abstract schema names. The developer
unique abstract schema names to entities as part of the development process so that they can
within queries. These unique names are scoped within the persistence unit.

The abstract schema name is defined by thename element of theEntity annotation (or the
entity-name  XML descriptor element), and defaults to the unqualified name of the entity class

Compatibility Note: For EJB 2.1 entities, abstract schema names are specified by the
abstract-schema-name elements in the deployment descriptor, and there is a one-to-one
mapping between entity bean abstract schema types and entity bean homes.

4.3.2 Example

This example assumes that the application developer provides several entity classes, repre
orders, products, line items, shipping addresses, and billing addresses. The abstract schema t
these entities areOrder , Product , LineItem , ShippingAddress , and BillingAddress
respectively. These entities are logically in the same persistence unit, as shown in Figure 1.

Figure 1 Several Entities with Abstract Persistence Schemas Defined in the Same Persistence Unit.

The entitiesShippingAddress andBillingAddress each have one-to-many relationships wit
Order . There is also a one-to-many relationship betweenOrder and Lineitem . The entity
LineItem  is related toProduct  in a many-to-one relationship.

Order

LineItem

Shipping
Address

Billing
Address

1
m

m

1

m
1

m

1

Product
73   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final DraftThe FROM Clause and Navigational Decla-

Sun Microsystems, Inc.

defined
l-

ne
tems.)

LSE

tities, the
ts, and

ducts

name
e navi-

vari-
in of

ROM
Queries to select orders can be defined by navigating over the association-fields and state-fields
by Order andLineItem . A query to find all orders with pending line items might be written as fo
lows:

SELECT DISTINCT o
FROM Order AS o JOIN o.lineItems AS l
WHERE l.shipped = FALSE

This query navigates over the association-fieldlineItems of the abstract schema typeOrder to find
line items, and uses the state-fieldshipped of LineItem to select those orders that have at least o
line item that has not yet shipped. (Note that this query does not select orders that have no line i

Although predefined reserved identifiers, such as DISTINCT, FROM, AS, JOIN, WHERE, and FA
appear in upper case in this example, predefined reserved identifiers are case insensitive.

The SELECT clause of this example designates the return type of this query to be of typeOrder .

Because the same persistence unit defines the abstract persistence schemas of the related en
developer can also specify a query over orders that utilizes the abstract schema type for produc
hence the state-fields and association-fields of both the abstract schema typesOrder andProduct .
For example, if the abstract schema typeProduct has a state-field namedproductType , a query
over orders can be specified using this state-field. Such a query might be to find all orders for pro
with product type office supplies. An EJB QL query string for this might be as follows.

SELECT DISTINCT o
FROM Order o JOIN o.lineItems l JOIN l.product p
WHERE p.productType = ‘office_supplies’

BecauseOrder is related toProduct by means of the relationships betweenOrder andLineItem
and betweenLineItem and Product , navigation using the association-fieldslineItems and
product is used to express the query. This query is specified by using the abstract schema
Order , which designates the abstract schema type over which the query ranges. The basis for th
gation is provided by the association-fieldslineItems andproduct of the abstract schema types
Order  andLineItem  respectively.

4.4 The FROM Clause and Navigational Declarations

The FROM clause of an EJB QL query defines the domain of the query by declaring identification
ables. An identification variable is an identifier declared in the FROM clause of a query. The doma
the query may be constrained by path expressions.

Identification variables designate instances of a particular entity abstract schema type. The F
clause can contain multiple identification variable declarations separated by a comma (, ).

from_clause ::=
FROM identification_variable_declaration

{, {identification_variable_declaration | collection_member_declaration}}*
identification_variable_declaration ::= range_variable_declaration { join | fetch_join }*
  12/19/05 74



The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

a Java
ntifier

ION,
TE,

n vari-

is

t be

ollow-
range_variable_declaration ::= abstract_schema_name [AS] identification_variable
join ::= join_spec join_association_path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH join_association_path_expression
join_association_path_expression ::= join_collection_valued_path_expression |

join_single_valued_association_path_expression
join_spec::= [ LEFT [OUTER] | INNER ] JOIN
collection_member_declaration ::=

IN (collection_valued_path_expression) [AS] identification_variable

The following subsections discuss the constructs used in the FROM clause.

4.4.1 Identifiers

An identifier is a character sequence of unlimited length. The character sequence must begin with
identifier start character, and all other characters must be Java identifier part characters. An ide
start character is any character for which the methodCharacter.isJavaIdentifierStart
returns true. This includes the underscore (_) character and the dollar sign ($) character. An identifier
part character is any character for which the methodCharacter.isJavaIdentifierPart
returns true. The question mark (?) character is reserved for use by EJB QL.

The following are the reserved identifiers in EJB QL:SELECT, FROM, WHERE, UPDATE, DELETE,
JOIN, OUTER, INNER, LEFT, GROUP, BY, HAVING, FETCH, DISTINCT, OBJECT, NULL, TRUE,
FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, AS, UNKNOWN[21], EMPTY, MEMBER, OF, IS, AVG,
MAX, MIN, SUM, COUNT, ORDER, BY, ASC, DESC, MOD, UPPER, LOWER, TRIM, POSIT
CHARACTER_LENGTH, CHAR_LENGTH, BIT_LENGTH, CURRENT_TIME, CURRENT_DA
CURRENT_TIMESTAMP, NEW, EXISTS, ALL, ANY, SOME.

Reserved identifiers are case insensitive. Reserved identifiers must not be used as identificatio
ables.

It is recommended that other SQL reserved words also not be as identification variables in EJB
QL queries because they may be used as EJB QL reserved identifiers in future releases of th
specification.

4.4.2 Identification Variables

An identification variable is a valid identifier declared in the FROM clause of an EJB QL query.

All identification variables must be declared in the FROM clause. Identification variables canno
declared in other clauses.

An identification variable must not be a reserved identifier or have the same name as any of the f
ing in the same persistence unit:

[21] Not currently used in EJB QL; reserved for future use.
75   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final DraftThe FROM Clause and Navigational Decla-

Sun Microsystems, Inc.

y

vari-

iable
bstract

three
denti-
ation
query

QL;

ot be

, more
use.
• entity name (as defined by theEntity annotation orentity-name XML descriptor ele-
ment)

• abstract-schema-name (as defined by theabstract-schema-name deployment descriptor
element for EJB 2.1 entity beans)

• ejb-name (as defined by theejb-name deployment descriptor element for EJB 2.1 entit
beans)

Identification variables are case insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the
able. For example, consider the previous query:

SELECT DISTINCT o
FROM Order o JOIN o.lineItems l JOIN l.product p
WHERE p.productType = ‘office_supplies’

In the FROM clause declarationo.lineItems l , the identification variablel evaluates to any
LineItem value directly reachable fromOrder . The association-fieldlineItems is a collection of
instances of the abstract schema typeLineItem and the identification variablel refers to an element
of this collection. The type ofl  is the abstract schema type ofLineItem .

An identification variable ranges over the abstract schema type of an entity. An identification var
designates an instance of an entity abstract schema type or an element of a collection of entity a
schema type instances. Identification variables are existentially quantified in an EJB QL query.

An identification variable always designates a reference to a single value. It is declared in one of
ways: in a range variable declaration, in a join clause, or in a collection member declaration. The i
fication variable declarations are evaluated from left to right in the FROM clause, and an identific
variable declaration can use the result of a preceding identification variable declaration of the
string.

4.4.3 Range Variable Declarations

The EJB QL syntax for declaring an identification variable as a range variable is similar to that of S
optionally, it uses the AS keyword.

range_variable_declaration ::= abstract_schema_name [AS] identification_variable

Range variable declarations allow the developer to designate a “root” for objects which may n
reachable by navigation.

In order to select values by comparing more than one instance of an entity abstract schema type
than one identification variable ranging over the abstract schema type is needed in the FROM cla
  12/19/05 76



The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

mith.
f the
ith

s
n; that

posed.
aluates

d may

n-ter-
d does

s:

e or

a

The following query returns orders whose quantity is greater than the order quantity for John S
This example illustrates the use of two different identification variables in the FROM clause, both o
abstract schema typeOrder . The SELECT clause of this query determines that it is the orders w
quantities larger than John Smith’s that are returned.

SELECT DISTINCT o1
FROM Order o1, Order o2
WHERE o1.quantity > o2.quantity AND

o2.customer.lastname = ‘Smith’ AND
o2.customer.firstname= ‘John’

4.4.4 Path Expressions

An identification variable followed by the navigation operator (. ) and a state-field or association-field i
a path expression. The type of the path expression is the type computed as the result of navigatio
is, the type of the state-field or association-field to which the expression navigates.

Depending on navigability, a path expression that leads to a association-field may be further com
Path expressions can be composed from other path expressions if the original path expression ev
to a single-valued type (not a collection) corresponding to a association-field. Note that a state fiel
correspond to an embedded class. A path expression that ends in asimplestate-field, rather than an
embedded class, is terminal and cannot be further composed.

Path expression navigability is composed using “inner join” semantics. That is, if the value of a no
minal association-field in the path expression is null, the path is considered to have no value, an
not participate in the determination of the result.

The syntax for single-valued path expressions and collection valued path expressions is as follow

single_valued_path_expression ::=
state_field_path_expression | single_valued_association_path_expression

state_field_path_expression ::=
{identification_variable | single_valued_association_path_expression}.state_field

single_valued_association_path_expression ::=
identification_variable.{single_valued_association_field.}*single_valued_association_field
collection_valued_path_expression ::=
identification_variable.{single_valued_association_field.}*collection_valued_association_field
state_field ::= {embedded_class_state_field.}*simple_state_field

A single_valued_association_field is designated by the name of an association-field in a one-to-on
many-to-one relationship. The type of asingle_valued_association_field and thus a
single_valued_association_path_expression is the abstract schema type of the related entity.

A collection_valued_association_field is designated by the name of an association-field in
one-to-many or a many-to-many relationship. The type of acollection_valued_association_field is a col-
lection of values of the abstract schema type of the related entity.

Navigation to a related entity results in a value of the related entity’s abstract schema type.
77   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final DraftThe FROM Clause and Navigational Decla-

Sun Microsystems, Inc.

corre-

collec-

EJB
ed in

owing:

nd a
esian

reign

icitly

use,
use of
tions.
The evaluation of a path expression terminating in a state-field results in the abstract schema type
sponding to the Java type designated by the state-field.

It is syntactically illegal to compose a path expression from a path expression that evaluates to a
tion. For example, ifo designatesOrder , the path expressiono.lineItems.product is illegal
since navigation tolineItems results in a collection. This case should produce an error when the
QL query string is verified. To handle such a navigation, an identification variable must be declar
the FROM clause to range over the elements of thelineItems collection. Another path expression
must be used to navigate over each such element in the WHERE clause of the query, as in the foll

SELECT DISTINCT l.product
FROM Order AS o, IN(o.lineItems) l

4.4.5 Joins
An inner join may be implicitly specified by the use of a cartesian product in the FROM clause a
join condition in the WHERE clause. In the absence of a join condition, this reduces to the cart
product.

The main use case for this generalized style of join is when a join condition does not involve a fo
key relationship that is mapped to an entity relationship.

Example:

select c from Customer c, Employee e where c.hatsize = e.shoesize

In general, use of this style of inner join (also referred to as theta-join) is less typical than expl
defined joins over entity relationships.

The syntax for explicit join operations is as follows:

join ::= join_spec join_association_path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH join_association_path_expression
join_association_path_expression ::= join_collection_valued_path_expression |

join_single_valued_association_path_expression
join_spec::= [ LEFT [OUTER] | INNER ] JOIN

The following inner and outer join operation types are supported.

4.4.5.1 Inner Joins (Relationship Joins)
A join over an entity relationship is a typical use case for EJB QL. The IN operator in the FROM cla
described in Section 4.4.6, was introduced by EJB 2.0 for this purpose. This release adds explicit
the JOIN operator to provide a more natural SQL-like syntax and to allow a wider range of opera

The syntax for the inner join operation is

[ INNER ] JOIN join_association_path_expression [AS] identification_variable
  12/19/05 78



The FROM Clause and Navigational DeclarationsEnterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

ype of

ose

tities

effect

ry. A

n that
tifica-
refer-
For example, the query below joins over the relationship between customers and orders. This t
join typically equates to a join over a foreign key relationship in the database.

SELECT c FROM Customer c JOIN c.orders o WHERE c.status = 1

The keyword INNER may optionally be used:

SELECT c FROM Customer c INNER JOIN c.orders o WHERE c.status = 1

This is equivalent to the following query using the earlier IN construct, defined in [5]. It selects th
customers of status 1 for which at least one order exists:

SELECT OBJECT(c) FROM Customer c, IN(c.orders) o WHERE c.status = 1

4.4.5.2 Left Outer Joins
LEFT JOIN and LEFT OUTER JOIN are synonymous. They enable the retrieval of a set of en
where matching values in the join condition may be absent.

The syntax for a left outer join is

LEFT [OUTER] JOIN join_association_path_expression [AS] identification_variable

For example:

SELECT c FROM Customer c LEFT JOIN c.orders o WHERE c.status = 1

The keyword OUTER may optionally be used:

SELECT c FROM Customer c LEFT OUTER JOIN c.orders o WHERE c.status = 1

4.4.5.3 Fetch Joins

An important use case for LEFT JOIN is in enabling the prefetching of related data items as a side
of a query. This is accomplished by specifying the LEFT JOIN as a FETCH JOIN.

A FETCH JOIN enables the fetching of an association as a side effect of the execution of a que
FETCH JOIN is specified over an entity and its related entities.

The syntax for a fetch join is

fetch_join ::= [ LEFT [OUTER] | INNER ] JOIN FETCH join_association_path_expression

The association referenced by the right side of the FETCH JOIN clause must be an associatio
belongs to an entity that is returned as a result of the query. It is not permitted to specify an iden
tion variable for the entities referenced by the right side of the FETCH JOIN clause, and hence
ences to the implicitly fetched entities cannot appear elsewhere in the query.
79   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final DraftThe FROM Clause and Navigational Decla-

Sun Microsystems, Inc.

r those
sistent
n of
for the

fied on
ced in

refer-

vigation
can be
s.

r, the
e path
ssoci-

of
The following query returns a set of departments. As a side effect, the associated employees fo
departments are also retrieved, even though they are not part of the explicit query result. The per
fields or properties of the employees that are eagerly fetched are fully initialized. The initializatio
the relationship properties of the employees that are retrieved is determined by the metadata
Employee entity class.

SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno = 1

A fetch join has the same join semantics as a left outer join, except that the related objects speci
the right-hand side of the join operation are not returned in the query result or otherwise referen
the query. Hence, for example, if department 1 has five employees, the above query returns five
ences to the department 1 entity.

4.4.6 Collection Member Declarations

An identification variable declared by acollection_member_declaration ranges over values of a col-
lection obtained by navigation using a path expression. Such a path expression represents a na
involving the association-fields of an entity abstract schema type. Because a path expression
based on another path expression, the navigation can use the association-fields of related entitie

An identification variable of a collection member declaration is declared using a special operato
reserved identifier IN. The argument to the IN operator is a collection-valued path expression. Th
expression evaluates to a collection type specified as a result of navigation to a collection-valued a
ation-field of an entity abstract schema type.

The syntax for declaring a collection member identification variable is as follows:

collection_member_declaration ::=
IN (collection_valued_path_expression) [AS] identification_variable

For example, the query

SELECT DISTINCT o
FROM Order o JOIN o.lineItems l JOIN l.product p
WHERE p.productType = ‘office_supplies’

may equivalently be expressed as follows, using the IN operator:

SELECT DISTINCT o
FROM Order o, IN(o.lineItems) l
WHERE l.product.productType = ‘office_supplies’

In this example,lineItems is the name of an association-field whose value is a collection
instances of the abstract schema typeLineItem . The identification variablel designates a member of
this collection, asingleLineItem abstract schema type instance. In this example,o is an identifica-
tion variable of the abstract schema typeOrder .
  12/19/05 80



WHERE Clause Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

t the
ld use
hether

xisting
d no

only
. The

es that
e of an

entity
ult as
4.4.7 EJB QL and SQL

EJB QL treats the FROM clause similarly to SQL in that the declared identification variables affec
results of the query even if they are not used in the WHERE clause. Application developers shou
caution in defining identification variables because the domain of the query can depend on w
there are any values of the declared type.

For example, the FROM clause below defines a query over all orders that have line items and e
products. If there are noProduct instances in the database, the domain of the query is empty an
order is selected.

SELECT o
FROM Order AS o, IN(o.lineItems) l, Product p

4.4.8 Polymorphism
EJB QL queries are automatically polymorphic. The FROM clause of a query designates not
instances of the specific entity class(es) to which explicitly refers but of subclasses as well
instances returned by a query include instances of the subclasses that satisfy the query criteria.[22]

4.5 WHERE Clause

The WHERE clause of a query consists of a conditional expression used to select objects or valu
satisfy the expression. The WHERE clause restricts the result of a select statement or the scop
update or delete operation.

A WHERE clause is defined as follows:

where_clause ::= WHERE conditional_expression

The GROUP BY construct enables the aggregation of values according to the properties of an
class. The HAVING construct enables conditions to be specified that further restrict the query res
restrictions upon the groups.

The syntax of the HAVING clause is as follows:

having_clause ::= HAVING conditional_expression

The GROUP BY and HAVING constructs are further discussed in Section 4.7.

[22] Such query polymorphism does not apply to EJB 2.1 entity beans, since they do not support inheritance.
81   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Conditional Expressions

Sun Microsystems, Inc.

sion of

n

gle
ava
rted in

literal

mate

th the
is not

TE
n vari-
use.

that
stract

tabase.
4.6 Conditional Expressions

The following sections describe the language constructs that can be used in a conditional expres
the WHERE clause or HAVING clause.

Note that state-fields that are mapped in serialized form or as lobs may not be portably used i
conditional expressions[23].

4.6.1 Literals

A string literal is enclosed in single quotes—for example: ‘literal’. A string literal that includes a sin
quote is represented by two single quotes—for example: ‘literal’’s’. EJB QL string literals, like J
String literals, use unicode character encoding. The use of Java escape notation is not suppo
EJB QL string literals

Exact numeric literals support the use of Java integer literal syntax as well as SQL exact numeric
syntax.

Approximate literals support the use Java floating point literal syntax as well as SQL approxi
numeric literal syntax.

Appropriate suffixes may be used to indicate the specific type of a numeric literal in accordance wi
Java Language Specification. Support for the use of hexadecimal and octal numeric literals
required by this specification.

The boolean literals areTRUE andFALSE.

Although predefined reserved literals appear in upper case, they are case insensitive.

4.6.2 Identification Variables

All identification variables used in the WHERE or HAVING clause of an EJB QL SELECT or DELE
statement must be declared in the FROM clause, as described in Section 4.4.2. The identificatio
ables used in the WHERE clause of an UPDATE statement must be declared in the UPDATE cla

Identification variables are existentially quantified in the WHERE and HAVING clause. This means
an identification variable represents a member of a collection or an instance of an entity’s ab
schema type. An identification variable never designates a collection in its entirety.

[23] The implementation is not expected to perform such query operations involving such fields in memory rather than in the da
  12/19/05 82



Conditional Expressions Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

e mixed

at the
f the

ame-
is not
thod.
meter
. It is
priate

fiers
4.6.3 Path Expressions

It is illegal to use acollection_valued_path_expression within a WHERE or HAVING clause as part of a
conditional expression except in anempty_collection_comparison_expression, in a
collection_member_expression, or as an argument to the SIZE operator.

4.6.4 Input Parameters

Either positional or named parameters may be used. Positional and named parameters may not b
in a single query.

Input parameters can only be used in the WHERE clause or HAVING clause of a query.

Note that if an input parameter value is null, comparison operations or arithmetic operations
involving the input parameter will return an unknown value. See Section 4.12.

4.6.4.1 Positional Parameters
The following rules apply to positional parameters.

• Input parameters are designated by the question mark (?) prefix followed by an integer. For
example:?1 .

• Input parameters are numbered starting from 1.

Note that the same parameter can be used more than once in the query string and th
ordering of the use of parameters within the query string need not conform to the order o
positional parameters.

• If the query is associated with a finder or select method, the number of distinct input par
ters must not exceed the number of input parameters for the finder or select method. It
required that the EJB QL query use all of the input parameters for the finder or select me
An input parameter evaluates to the abstract schema type of the corresponding para
defined in the signature of the finder or select method with which the query is associated
the responsibility of the persistence provider to map the input parameter to the appro
abstract schema type value.

4.6.4.2 Named Parameters
A named parameter is an identifier that is prefixed by the ":" symbol. It follows the rules for identi
defined in Section 4.4.1.

Example:

SELECT c
FROM Customer c
WHERE c.status = :stat

Section 3.5.1 describes the API for the binding of named query parameters.

Named parameters are not supported for EJB 2.1 finder and select methods.
83   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Conditional Expressions

Sun Microsystems, Inc.

logical
param-

osed of
values,

n 4.7.
4.6.5 Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations,
operations, path expressions that evaluate to boolean values, boolean literals, and boolean input
eters.

Arithmetic expressions can be used in comparison expressions. Arithmetic expressions are comp
other arithmetic expressions, arithmetic operations, path expressions that evaluate to numeric
numeric literals, and numeric input parameters.

Arithmetic operations use numeric promotion.

Standard bracketing()  for ordering expression evaluation is supported.

Conditional expressions are defined as follows:

conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [ NOT ] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::=

comparison_expression |
between_expression |
like_expression |
in_expression |
null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression |
exists_expression

Aggregate functions can only be used in conditional expressions in a HAVING clause. See sectio

4.6.6 Operators and Operator Precedence

The operators are listed below in order of decreasing precedence.

• Navigation operator (. )

• Arithmetic operators:

+, - unary

*, / multiplication and division

+, - addition and subtraction

• Comparison operators :=, >, >=, <, <=, <> (not equal),[NOT] BETWEEN, [NOT] LIKE ,
[NOT] IN , IS [NOT] NULL , IS [NOT] EMPTY, [NOT] MEMBER [OF]

• Logical operators:
  12/19/05 84



Conditional Expressions Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

is as

ws:

e

the
NOT

AND

OR

The following sections describe other operators used in specific expressions.

4.6.7 BetweenExpressions

The syntax for the use of the comparison operator [NOT] BETWEEN in a conditional expression
follows:

arithmetic_expression [NOT] BETWEEN arithmetic-expression AND arithmetic-expression |
string_expression [NOT] BETWEEN string-expression AND string-expression |
datetime_expression [NOT] BETWEEN datetime-expression AND datetime-expression

The BETWEEN expression

x BETWEEN y AND z

is semantically equivalent to:

y <= x AND x <= z

The rules for unknown and NULL values in comparison operations apply. See Section 4.12.

Examples are:

p.age BETWEEN 15 and 19  is equivalent top.age >= 15 AND p.age <= 19

p.age NOT BETWEEN 15 and 19  is equivalent top.age < 15 OR p.age > 19

4.6.8 In Expr essions

The syntax for the use of the comparison operator [NOT] IN in a conditional expression is as follo

in_expression ::=
state_field_path_expression [NOT] IN ( in_item {, in_item}* | subquery)

in_item ::= literal | input_parameter

Thestate_field_path_expression must have a string or numeric value.

The literal and/or input_parameter values must belike the same abstract schema type of th
state_field_path_expression in type. (See Section 4.13).

The results of the subquery must be like the same abstract schema type of
state_field_path_expression in type. Subqueries are discussed in Section 4.6.15, “Subqueries”.

Examples are:
85   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Conditional Expressions

Sun Microsystems, Inc.

the

fol-

tand for
ed
er-

ws:
o.country IN (’UK’, ’US’, ’France’) is true forUKand false forPeru , and is equivalent
to the expression(o.country = ’UK’) OR (o.country = ’US’) OR (o.country = ’
France’) .

o.country NOT IN (’UK’, ’US’, ’France’) is false forUKand true forPeru , and is
equivalent to the expressionNOT ((o.country = ’UK’) OR (o.country = ’US’) OR
(o.country = ’France’)) .

There must be at least one element in the comma separated list that defines the set of values forIN
expression.

If the value of astate_field_path_expression in an IN or NOT IN expression isNULLor unknown, the
value of the expression is unknown.

4.6.9 Lik eExpressions

The syntax for the use of the comparison operator [NOT] LIKE in a conditional expression is as
lows:

string_expression [NOT] LIKE  pattern_value [ESCAPE escape_character]

The string_expression must have a string value. Thepattern_value is a string literal or a string-valued
input parameter in which an underscore (_) stands for any single character, a percent (%) character
stands for any sequence of characters (including the empty sequence), and all other characters s
themselves. The optionalescape_character is a single-character string literal or a character-valu
input parameter (i.e.,char or Character ) and is used to escape the special meaning of the und
score and percent characters inpattern_value.[24]

Examples are:

• address.phone LIKE ‘12%3’ is true for ‘123’ ‘12993’ and false for ‘1234’

• asentence.word LIKE ‘l_se’ is true for ‘lose’ and false for ‘loose’

• aword.underscored LIKE ‘\_%’ ESCAPE ‘\’ is true for ‘_foo’ and false for ‘bar’

• address.phone NOT LIKE ‘12%3’ is false for ‘123’ and ‘12993’ and true for ‘1234’

If the value of thestring_expression or pattern_value is NULL or unknown, the value of the LIKE
expression is unknown. If theescape_character is specified and isNULL, the value of the LIKE expres-
sion is unknown.

4.6.10 Null Comparison Expressions

The syntax for the use of the comparison operator IS NULL in a conditional expression is as follo

[24] Refer to [4] for a more precise characterization of these rules.
  12/19/05 86



Conditional Expressions Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

ameter

an

ession

ion is

collec-

R OF
f the
in the
is
{single_valued_path_expression | input_parameter } IS [NOT] NULL

A null comparison expression tests whether or not the single-valued path expression or input par
is aNULL value.

4.6.11 Empty Collection Comparison Expressions

The syntax for the use of the comparison operator IS EMPTY in
empty_collection_comparison_expression is as follows:

collection_valued_path_expression IS [NOT] EMPTY

This expression tests whether or not the collection designated by the collection-valued path expr
is empty (i.e, has no elements).

Example:

SELECT o
FROM Order o
WHERE o.lineItems IS EMPTY

If the value of the collection-valued path expression in an empty collection comparison express
unknown, the value of the empty comparison expression is unknown.

4.6.12 Collection Member Expressions

The syntax for the use of the comparison operator MEMBER OF[25] in an
collection_member_expression is as follows:

entity_expression [NOT] MEMBER [OF] collection_valued_path_expression
entity_expression ::=

single_valued_association_path_expression | simple_entity_expression
simple_entity_expression ::=

identification_variable |
input_parameter

This expression tests whether the designated value is a member of the collection specified by the
tion-valued path expression.

If the collection valued path expression designates an empty collection, the value of the MEMBE
expression is FALSE and the value of the NOT MEMBER OF expression is TRUE. Otherwise, i
value of the collection-valued path expression or single-valued association-field path expression
collection member expression isNULL or unknown, the value of the collection member expression
unknown.

[25] The use of the reserved word OF is optional in this expression.
87   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Conditional Expressions

Sun Microsystems, Inc.

ne or

val-
ssion
e nor

ome
uery
nd is

The
e. See
4.6.13 Exists Expressions
An EXISTS expression is a predicate that is true only if the result of the subquery consists of o
more values and that is false otherwise.

The syntax of an exists expression is

exists_expression::= [NOT] EXISTS (subquery)

Example:

SELECT DISTINCT emp
FROM Employee emp
WHERE EXISTS (
  SELECT spouseEmp
  FROM Employee spouseEmp
  WHERE spouseEmp = emp.spouse)

The result of this query consists of all employees whose spouses are also employees.

4.6.14 All or Any Expr essions
An ALL conditional expression is a predicate that is true if the comparison operation is true for all
ues in the result of the subquery or the result of the subquery is empty. An ALL conditional expre
is false if the result of the comparison is false for at least one row, and is unknown if neither tru
false.

An ANY conditional expression is a predicate that is true if the comparison operation is true for s
value in the result of the subquery. An ANY conditional expression is false if the result of the subq
is empty or if the comparison operation is false for every value in the result of the subquery, a
unknown if neither true nor false. The keyword SOME is synonymous with ANY.

The comparison operators used with ALL or ANY conditional expressions are =, <, <=, >, >=, <>.
result of the subquery must be like that of the other argument to the comparison operator in typ
Section 4.13.

The syntax of an ALL or ANY expression is specified as follows:

all_or_any_expression ::= { ALL  | ANY | SOME} (subquery)

Example:

SELECT emp
FROM Employee emp
WHERE emp.salary > ALL (

SELECT m.salary
FROM Manager m
WHERE m.department = emp.department)
  12/19/05 88



Conditional Expressions Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

ubquery
ari-

G

will be
4.6.15 Subqueries
Subqueries may be used in the WHERE or HAVING clause.[26]

The syntax for subqueries is as follows:

subquery ::= simple_select_clause subquery_from_clause [where_clause]
[groupby_clause] [having_clause]

simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
subquery_from_clause ::=

FROM subselect_identification_variable_declaration
{, subselect_identification_variable_declaration}*

subselect_identification_variable_declaration ::=
identification_variable_declaration |
association_path_expression [AS] identification_variable |
collection_member_declaration

simple_select_expression::=
single_valued_path_expression |
aggregate_expression |
identification_variable

Examples:

SELECT DISTINCT emp
FROM Employee emp
WHERE EXISTS (
  SELECT spouseEmp
  FROM Employee spouseEmp
  WHERE spouseEmp = emp.spouse)

SELECT c
FROM Customer c
WHERE (SELECT COUNT(o) FROM c.orders o) > 10

Note that some contexts in which a subquery can be used require that the subquery be a scalar s
(i.e., produce a single result). This is illustrated in the following example involving a numeric comp
son operation.

SELECT goodCustomer
FROM Customer goodCustomer
WHERE goodCustomer.balanceOwed < (
  SELECT avg(c.balanceOwed) FROM Customer c)

4.6.16 Functional Expressions

EJB QL includes the following built-in functions, which may be used in the WHERE or HAVIN
clause of a query.

[26] Subqueries are restricted to the WHERE and HAVING clauses in this release. Support for subqueries in the FROM clause
considered in a later release of this specification.
89   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Conditional Expressions

Sun Microsystems, Inc.

ional

gth of
d by 1.

not

turn a

pec-
ment
ument

ning of
, 0 is

 re

 tha
If the value of any argument to a functional expression is null or unknown, the value of the funct
expression is unknown.

4.6.16.1 String Functions

functions_returning_strings ::=
CONCAT(string_primary, string_primary) |
SUBSTRING(string_primary,

simple_arithmetic_expression, simple_arithmetic_expression) |
TRIM([[trim_specification] [trim_character] FROM] string_primary) |
LOWER(string_primary) |
UPPER(string_primary)

trim_specification ::= LEADING | TRAILING | BOTH

functions_returning_numerics::=
LENGTH(string_primary) |
LOCATE(string_primary, string_primary[, simple_arithmetic_expression]) |

The CONCAT function returns a string that is a concatenation of its arguments.

The second and third arguments of the SUBSTRING function denote the starting position and len
the substring to be returned. These arguments are integers. The first position of a string is denote
The SUBSTRING function returns a string.

The TRIM function trims the specified character from a string. If the character to be trimmed is
specified, it is assumed to be space (or blank). The optionaltrim_character is a single-character string
literal or a character-valued input parameter (i.e.,char or Character )[27]. If a trim specification is
not provided, BOTH is assumed. The TRIM function returns the trimmed string.

The LOWER and UPPER functions convert a string to lower and upper case, respectively. They re
string.

The LOCATE function returns the position of a given string within a string, starting the search at a s
ified position. It returns the first position at which the string was found as an integer. The first argu
is the string to be located; the second argument is the string to be searched; the optional third arg
is an integer that represents the string position at which the search is started (by default, the begin
the string to be searched). The first position in a string is denoted by 1. If the string is not found
returned.[28]

The LENGTH function returns the length of the string in characters as an integer.

4.6.16.2 Arithmetic Functions

functions_returning_numerics::=

[27] Note that not all databases support the use of a trim character other than the space character; use of this argument maysult in
queries that are not portable.

[28] Note that not all databases support the use of the third argument to LOCATE; use of this argument may result in queriest are
not portable.
  12/19/05 90



GROUP BY, HAVING Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

same

ion is

l as the

HAV-
itions

lying
. The
se.

, any
ust also
ouping

ds or

s that
ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic_expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
SIZE(collection_valued_path_expression)

The ABS function takes a numeric argument and returns a number (integer, float, or double) of the
type as the argument to the function.

The SQRT function takes a numeric argument and returns a double.

The MOD function takes two integer arguments and returns an integer.

The SIZE function returns an integer value, the number of elements of the collection. If the collect
empty, the SIZE function evaluates to zero.

Numeric arguments to these functions may correspond to the numeric Java object types as wel
primitive numeric types.

4.7 GROUP BY, HAVING

The GROUP BY construct enables the aggregation of values according to a set of properties. The
ING construct enables conditions to be specified that further restrict the query result. Such cond
are restrictions upon the groups.

The syntax of the GROUP BY and HAVING clauses is as follows:

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*
groupby_item ::= single_valued_path_expression
having_clause ::= HAVING conditional_expression

If a query contains both a WHERE clause and a GROUP BY clause, the effect is that of first app
the where clause, and then forming the groups and filtering them according to the HAVING clause
HAVING clause causes those groups to be retained that satisfy the condition of the HAVING clau

The requirements for the SELECT clause when GROUP BY is used follow those of SQL: namely
item that appears in the SELECT clause (other than as an argument to an aggregate function) m
appear in the GROUP BY clause. In forming the groups, null values are treated as the same for gr
purposes.

Grouping by an entity is permitted. In this case, the entity must contain no serialized state fiel
lob-valued state fields.

The HAVING clause must specify search conditions over the grouping items or aggregate function
apply to grouping items.
91   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft SELECT Clause

Sun Microsystems, Inc.

roup,
ce of
ppli-

LECT

le or
ession,

e
in
t

If there is no GROUP BY clause and the HAVING clause is used, the result is treated as a single g
and the select list can only consist of aggregate functions. The use of HAVING in the absen
GROUP BY is not required to be supported by an implementation of this specification. Portable a
cations should not rely on HAVING without the use of GROUP BY.

Examples:

SELECT c.status, avg(c.filledOrderCount), count(c)
FROM Customer c
GROUP BY c.status
HAVING c.status IN (1, 2)

SELECT c.country, COUNT(c)
FROM Customer c
GROUP BY c.country
HAVING COUNT(c.country) > 3

4.8 SELECT Clause

The SELECT clause denotes the query result. More than one value may be returned from the SE
clause of a query.

The SELECT clause may contain one or more of the following elements: a single range variab
identification variable that ranges over an entity abstract schema type, a single-valued path expr
an aggregate select expression, a constructor expression.

In the case of an EJB 2.1 select method, the SELECT clause is restricted to contain one of th
above elements. In the case of a finder method, the SELECT clause is restricted to conta
either a single range variable or a single-valued path expression that evaluates to the abstrac
schema type of the entity bean for which the finder method is defined.

The SELECT clause has the following syntax:

select_clause ::= SELECT [DISTINCT] select_expression {, select_expression}*
select_expression ::=

single_valued_path_expression |
aggregate_expression |
identification_variable |
OBJECT( identification_variable) |
constructor_expression

constructor_expression ::=
NEW constructor_name ( constructor_item {, constructor_item}* )

constructor_item ::= single_valued_path_expression | aggregate_expression
aggregate_expression ::=

{ AVG | MAX | MIN | SUM } ([DISTINCT] state_field_path_expression) |
COUNT ([DISTINCT] identification_variable | state_field_path_expression |

single_valued_association_path_expression)
  12/19/05 92



SELECT Clause Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

query

uery

d

-

the
sions.

JB
heir

f the

d by

-

r
.

For example:

SELECT c.id, c.status
FROM Customer c JOIN c.orders o
WHERE o.count > 100

Note that the SELECT clause must be specified to return only single-valued expressions. The
below is therefore not valid:

SELECT o.lineItems FROM Order AS o

The DISTINCT keyword is used to specify that duplicate values must be eliminated from the q
result.

If DISTINCT is not specified, duplicate values are not eliminated unless the query is specifie
for a finder or select method whose result type isjava.util.Set. If a query is specified
for a finder or select method whose result type isjava.util.Set , but does not specify DIS-
TINCT, the container must interpret the query as if SELECT DISTINCT had been specified. In
general, however, the application developer should specify the DISTINCT keyword when writ
ing queries for methods that returnjava.util.Set .

All standalone identification variables in the SELECT clause may optionally be qualified by
OBJECT operator. The SELECT clause must not use the OBJECT operator to qualify path expres

4.8.1 Result Type of the SELECT Clause
The result type of the SELECT clause is defined by the the result types of theselect_expressions con-
tained in it. When multipleselect_expressions are used in the SELECT clause, the result of the E
QL query is of typeObject[] , and the elements in this result correspond in order to the order of t
specification in the SELECT clause and in type to the result types of each of theselect_expressions.

The type of the result of aselect_expression is as follows:

• A single_valued_path_expression that is astate_field_path_expression results in an
object of the same type as the corresponding state field of the entity. If the state field o
entity is a primitive type, the corresponding object type is returned.

• A single_valued_path_expression that is a
single_valued_association_path_expression results in an entity object of the type of the
relationship field or the subtype of the relationship field of the entity object as determine
the object/relational mapping.

• The result type of anidentification_variable is the type of the entity to which that identifica
tion variable corresponds or a subtype as determined by the object/relational mapping.

• The result type ofaggregate_expression is defined in section 4.8.4.

• The result type of aconstructor_expression is the type of the class for which the constructo
is defined.  The types of the arguments to the constructor are defined by the above rules
93   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft SELECT Clause

Sun Microsystems, Inc.

d class
y qual-

in the

ll, that
d to

y
et

-

oduce
t type

ession.

VG,

regate
ate in
iable.

and
es, or
4.8.2 Constructor Expressions in the SELECT Clause

A constructor may be used in the SELECT list to return one or more Java instances. The specifie
is not required to be an entity or to be mapped to the database. The constructor name must be full
ified.

If an entity class name is specified in the SELECT NEW clause, the resulting entity instances are
new state.

SELECT NEW com.acme.example.CustomerDetails(c.id, c.status, o.count)
FROM Customer c JOIN c.orders o
WHERE o.count > 100

4.8.3 Null Values in the Query Result

If the result of an EJB QL query corresponds to a association-field or state-field whose value is nu
null value is returned in the result of the query method. The IS NOT NULL construct can be use
eliminate such null values from the result set of the query.

In the case of queries that are associated with finder or select methods for EJB 2.1 entit
beans, if the finder or select method is a single-object finder or select method, and the result s
of the query consists of a single null value, the container must return the null value as the
result of the method. If the result set of a query for a single-object finder or select method con
tains more than one value (whether non-null, null, or a combination), the container must throw
the FinderException.

Note, however, that state-field types defined in terms of Java numeric primitive types cannot pr
NULL values in the query result. An EJB QL query that returns such a state-field type as a resul
must not return a null value.

4.8.4 Aggregate Functions in the SELECT Clause
The result of an EJB QL query may be the result of an aggregate function applied to a path expr

The following aggregate functions can be used in the SELECT clause of an EJB QL query: A
COUNT, MAX, MIN, SUM.

For all aggregate functions except COUNT, the path expression that is the argument to the agg
function must terminate in a state-field. The path expression argument to COUNT may termin
either a state-field or a association-field, or the argument to COUNT may be an identification var

Arguments to the functions SUM and AVG must be numeric. Arguments to the functions MAX
MIN must correspond to orderable state-field types (i.e., numeric types, string types, character typ
date types).

The Java type that is contained in the result of a query using an aggregate function is as follows[29]:

[29] The rules for finder and select method result types are defined in Section 4.10.1.
  12/19/05 94



SELECT Clause Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

ou-
elds

be

regate

y that

yword

spec-
• COUNT returns Long.

• MAX, MIN return the type of the state-field to which they are applied.

• AVG returns Double.

• SUM returns Long when applied to state-fields of integral types (other than BigInteger); D
ble when applied to state-fields of floating point types; BigInteger when applied to state-fi
of type BigInteger; and BigDecimal when applied to state-fields of type BigDecimal.

If SUM, AVG, MAX, or MIN is used, and there are no values to which the aggregate function can
applied, the result of the aggregate function is NULL.

If COUNT is used, and there are no values to which COUNT can be applied, the result of the agg
function is 0.

The argument to an aggregate function may be preceded by the keyword DISTINCT to specif
duplicate values are to be eliminated before the aggregate function is applied.[30]

Null values are eliminated before the aggregate function is applied, regardless of whether the ke
DISTINCT is specified.

4.8.4.1 Examples

The following query returns the average order quantity:

SELECT AVG(o.quantity) FROM Order o

The following query returns the total cost of the items that John Smith has ordered.

SELECT SUM(l.price)
FROM Order o JOIN o.lineItems l JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’

The following query returns the total number of orders.

SELECT COUNT(o)
FROM Order o

The following query counts the number of items in John Smith’s order for which prices have been
ified.

SELECT COUNT(l.price)
FROM Order o JOIN o.lineItems l JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’

[30] It is legal to specify DISTINCT with MAX or MIN, but it does not affect the result.
95   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft ORDER BY Clause

Sun Microsystems, Inc.

.

of the

ma
Note that this is equivalent to:

SELECT COUNT(l)
FROM Order o JOIN o.lineItems l JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’

AND l.price IS NOT NULL

4.9 ORDER BY Clause

The ORDER BY clause allows the objects or values that are returned by the query to be ordered

The syntax of the ORDER BY clause is

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::= state_field_path_expression [ASC | DESC]

When the ORDER BY clause is used in an EJB QL query, each element of the SELECT clause
query must be one of the following:

1. an identification variable x, optionally denoted as OBJECT(x)

2. a single_valued_association_path_expression

3. a state_field_path_expression

In the first two cases, eachorderby_item must be an orderable state-field of the entity abstract sche
type value returned by the SELECT clause. In the third case, theorderby_item must evaluate to the same
state-field of the same entity abstract schema type as thestate_field_path_expression in the SELECT
clause.

For example, the first two queries below are legal, but the third and fourth are not.

SELECT o
FROM Customer c JOIN c.orders o JOIN c.address a
WHERE a.state = ‘CA’
ORDER BY o.quantity, o.totalcost

SELECT o.quantity, a.zipcode
FROM Customer c JOIN c.orders o JOIN c.address a
WHERE a.state = ‘CA’
ORDER BY o.quantity, a.zipcode
  12/19/05 96



Return Value Types Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

scend-

-null
s not

lause

hema
on, or

ethod
thod.

e that
finder
inter-
a col-
d is
llec-
The following two queries are not legal because theorderby_item is not reflected in the SELECT clause
of the query.

SELECT p.product_name
FROM Order o JOIN o.lineItems l JOIN l.product p JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’
ORDER BY p.price

SELECT p.product_name
FROM Order o, IN(o.lineItems) l JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’
ORDER BY o.quantity

If more than oneorderby_item is specified, the left-to-right sequence of theorderby_item elements
determines the precedence, whereby the leftmostorderby_item has highest precedence.

The keyword ASC specifies that ascending ordering be used; the keyword DESC specifies that de
ing ordering be used. Ascending ordering is the default.

SQL rules for the ordering of null values apply: that is, all null values must appear before all non
values in the ordering or all null values must appear after all non-null values in the ordering, but it i
specified which.

The ordering of the query result is preserved in the result of the query method if the ORDER BY c
is used.

4.10 Return Value Types

The type of the query result specified by the SELECT clause of a query is an entity abstract sc
type, a state-field type, the result of an aggregate function, the result of a construction operati
some sequence of these.

4.10.1 Result types for Finder and Select methods of 2.1 Entity Beans

The following rules apply to EJB 2.x finder and select methods:

How the result type of a query is mapped depends on whether the query is defined for a finder m
on the remote home interface, for a finder method on the local home interface, or for a select me

• The result type of a query for a finder method must be the entity bean abstract schema typ
corresponds to the entity bean type of the entity bean on whose home interface the
method is defined. If the query is used for a finder method defined on the remote home
face of the bean, the result of the finder method is the entity bean’s remote interface (or
lection of objects implementing the entity bean’s remote interface). If the finder metho
defined on the local home interface, the result is the entity bean’s local interface (or a co
tion of objects implementing the entity bean’s local interface).
97   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Bulk Update and Delete Operations

Sun Microsystems, Inc.

e, the
ances
the

nding
func-

sin-
bject
n of

lect
rimi-

lect
ction

object

or an
the

ult
ggre-

ult
the

thod
thod

uery

asses,
• If the result type of a query for a select method is an entity bean abstract schema typ
return values for the query method are instances of the entity bean’s local interface or inst
of the entity bean’s remote interface, depending on whether the value of
result-type-mapping deployment descriptor element contained in thequery element
for the select method isLocal or Remote . The default value forresult-type-mapping
is Local .

• If the result type of a query used for a select method is an abstract schema type correspo
to a cmp-field type (excluding queries whose SELECT clause uses one of the aggregate
tions AVG, COUNT, MAX, MIN, SUM), the result type of the select method is as follows:

• If the Java type of the cmp-field is an object type and the select method is a
gle-object select method, the result of the select method is an instance of that o
type. If the select method is a multi-object select method, the result is a collectio
instances of that type.

• If the Java type of the cmp-field is a primitive Java type (e.g., int), and the se
method is a single-object select method, the result of the select method is that p
tive type.

• If the Java type of the cmp-field is a primitive Java type (e.g., int), and the se
method is a multi-object select method, the result of the select method is a colle
of values of the corresponding wrappered type (e.g., Integer).

• If the select method query is an aggregate query, the select method must be a single-
select method.

• The result type of the select method must be a primitive type, a wrappered type,
object type that is compatible with the standard JDBC conversion mappings for
type of the cmp-field [6].

• If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the res
type of the select method is an object type and there are no values to which the a
gate function can be applied, the select method returns null.

• If the aggregate query uses the SUM, AVG, MAX, or MIN operator, and the res
type of the select method is a primitive type and there are no values to which
aggregate function can be applied, the container must throw theObjectNotFoun-
dException .

• If the aggregate query uses the COUNT operator, the result of the select me
should be an exact numeric type. If there are no values to which the COUNT me
can be applied, the result of the select method is 0.

The result of a finder or select method may contain a null value if a cmp-field or cmr-field in the q
result is null.

4.11 Bulk Update and Delete Operations

Bulk update and delete operations apply to entities of a single entity class (together with its subcl
if any). Only one entity abstract schema type may be specified in the FROM or UPDATE clause.
  12/19/05 98



Bulk Update and Delete Operations Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

cade to

ld to

s. The
lidate

sult in
al, bulk
egin-
opera-
The syntax of these operations is as follows:

update_statement ::= update_clause [where_clause]
update_clause ::= UPDATE abstract_schema_name [[AS] identification_variable]

SET update_item {, update_item}*
update_item ::= [identification_variable.]{state_field | single_valued_association_field} =

new_value
new_value ::=

simple_arithmetic_expression |
string_primary |
datetime_primary |
boolean_primary |
simple_entity_expression |
NULL

delete_statement ::= delete_clause [where_clause]
delete_clause ::= DELETE FROM abstract_schema_name [[AS] identification_variable]

The syntax of the WHERE clause is described in Section 4.5.

A delete operation only applies to entities of the specified class and its subclasses. It does not cas
related entities.

The new_value specified for an update operation must be compatible in type with the state-fie
which it is assigned.

Bulk update maps directly to a database update operation, bypassing optimistic locking check
application must manually update the value of the version column, if desired, and/or manually va
the value of the version column.

The persistence context is not synchronized with the result of the bulk update or delete.

Caution should be used when executing bulk update or delete operations because they may re
inconsistencies between the database and the entities in the active persistence context. In gener
update and delete operations should only be performed within a separate transaction or at the b
ning of a transaction (before entities have been accessed whose state might be affected by such
tions).
99   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Null Values

Sun Microsystems, Inc.

lue.

lue.

-

Examples:

DELETE
FROM Customer c
WHERE c.status = ‘inactive’

DELETE
FROM Customer c
WHERE c.status = ‘inactive’
  AND c.orders IS EMPTY

UPDATE customer c
SET c.status = ‘outstanding’
WHERE c.balance < 10000
  AND 1000 > (SELECT COUNT(o)
                FROM customer cust JOIN cust.order o)

4.12 Null Values

When the target of a reference does not exist in the database, its value is regarded asNULL. SQL 92
NULL semantics [ 4 ] defines the evaluation of conditional expressions containingNULL values.

The following is a brief description of these semantics:

• Comparison or arithmetic operations with a NULL value always yield an unknown value.

• Two NULL values are not considered to be equal, the comparison yields an unknown va

• Comparison or arithmetic operations with an unknown value always yield an unknown va

• The IS NULL and IS NOT NULL operators convert aNULLstate-field or single-valued associ
ation-field value into the respective TRUE or FALSE value.

• Boolean operators use three valued logic, defined by Table 1, Table 2, and Table 3.

Table 1 Definition of the AND Operator

AND T F U

T T F U

F F F F

U U F U
  12/19/05 100



Equality and Comparison Semantics Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

lue.
ped to
mpari-

r is the
e
tion
pt for

ry key
Note: EJB QL defines the empty string, ‘’, as a string with 0 length, which is not equal to a NULL va
However, NULL values and empty strings may not always be distinguished when queries are map
some databases. Application developers should therefore not rely on the semantics of EJB QL co
sons involving the empty string and NULL value.

4.13 Equality and Comparison Semantics

EJB QL only permits the values oflike types to be compared. A type islike another type if they corre-
spond to the same Java language type, or if one is a primitive Java language type and the othe
wrappered Java class type equivalent (e.g.,int andInteger are like types in this sense). There is on
exception to this rule: it is valid to compare numeric values for which the rules of numeric promo
apply. Conditional expressions attempting to compare non-like type values are disallowed exce
this numeric case.

Note that EJB QL permits the arithmetic operators and comparison operators to be applied to
state-fields and input parameters of the wrappered Java class equivalents to the primitive
numeric Java types.

Two entities of the same abstract schema type are equal if and only if they have the same prima
value.

Table 2 Definition of the OR Operator

OR T F U

T T T T

F T F U

U T U U

Table 3 Definition of the NOT Operator

NOT

T F

F T

U U
101   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft Restrictions

Sun Microsystems, Inc.

mpar-

sed on

ry can
4.14 Restrictions

EJB 2.1 entity objects of different types cannot be compared. EJB QL queries that contain such co
isons are invalid.

4.15 Examples

The following examples illustrate the syntax and semantics of EJB QL. These examples are ba
the example presented in Section 4.3.2.

4.15.1 Simple Queries

Find all orders:

SELECT o
FROM Order o

Find all orders that need to be shipped to California:

SELECT o
FROM Order o
WHERE o.shippingAddress.state = ‘CA’

Find all states for which there are orders:

SELECT DISTINCT o.shippingAddress.state
FROM Order o

4.15.2 Queries with Relationships

Find all orders that have line items:

SELECT DISTINCT o
FROM Order o, IN(o.lineItems) l

Note that the result of this query does not include orders with no associated line items. This que
also be written as:

SELECT o
FROM Order o
WHERE o.lineItems IS NOT EMPTY

Find all orders that have no line items:

SELECT o
FROM Order o
WHERE o.lineItems IS EMPTY
  12/19/05 102



Examples Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.

umes
esses,

ping
ty rules

ry key)

nt for

ter:
Find all pending orders:

SELECT DISTINCT o
FROM Order o JOIN o.lineItems l
WHERE l.shipped = FALSE

Find all orders in which the shipping address differs from the billing address. This example ass
that the application developer uses two distinct entity types to designate shipping and billing addr
as in Figure 1.

SELECT o
FROM Order o
WHERE
NOT (o.shippingAddress.state = o.billingAddress.state AND

 o.shippingAddress.city = o.billingAddress.city AND
 o.shippingAddress.street = o.billingAddress.street)

If the application developer uses a single entity in two different relationships for both the ship
address and the billing address, the above expression can be simplified based on the equali
defined in Section 4.13. The query can then be written as:

SELECT o
FROM Order o
WHERE o.shippingAddress <> o.billingAddress

The query checks whether the same entity abstract schema type instance (identified by its prima
is related to an order through two distinct relationships.

Find all orders for a book titled ‘Applying Enterprise JavaBeans: Component-Based Developme
the J2EE Platform’:

SELECT DISTINCT o
FROM Order o JOIN o.lineItems l
WHERE l.product.type = ‘book’ AND

l.product.name = ‘Applying Enterprise JavaBeans:
Component-Based Development for the J2EE Platform’

4.15.3 Queries Using Input Parameters

The following query finds the orders for a product whose name is designated by an input parame

SELECT DISTINCT o
FROM Order o, IN(o.lineItems) l
WHERE l.product.name = ?1

For this query, the input parameter must be of the type of the state-field name, i.e., a string.
103   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft EJB QL BNF

Sun Microsystems, Inc.
4.16 EJB QL BNF

EJB QL BNF notation summary:

• { ... } grouping

• [ ... ] optional constructs

• boldface keywords

• * zero or more

• | alternates

The following is the BNF for EJB QL. This is a superset of EJB QL as defined in [5].

EJB QL ::= select_statement | update_statement | delete_statement
select_statement ::= select_clause from_clause [where_clause] [groupby_clause]

[having_clause] [orderby_clause]
update_statement ::= update_clause [where_clause]
delete_statement ::= delete_clause [where_clause]
from_clause ::=

FROM identification_variable_declaration
{, {identification_variable_declaration | collection_member_declaration}}*

identification_variable_declaration ::= range_variable_declaration { join | fetch_join }*
range_variable_declaration ::= abstract_schema_name [AS] identification_variable
join ::= join_spec join_association_path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH join_association_path_expression
association_path_expression ::=

collection_valued_path_expression | single_valued_association_path_expression
join_spec::= [ LEFT [OUTER] | INNER ] JOIN
join_association_path_expression ::= join_collection_valued_path_expression |

join_single_valued_association_path_expression
join_collection_valued_path_expression::=

identification_variable.collection_valued_association_field
join_single_valued_association_path_expression::=

identification_variable.single_valued_association_field
collection_member_declaration ::=

IN (collection_valued_path_expression) [AS] identification_variable
single_valued_path_expression ::=

state_field_path_expression | single_valued_association_path_expression
state_field_path_expression ::=

{identification_variable | single_valued_association_path_expression}.state_field
single_valued_association_path_expression ::=
identification_variable.{single_valued_association_field.}* single_valued_association_field
collection_valued_path_expression ::=
identification_variable.{single_valued_association_field.}*collection_valued_association_field
  12/19/05 104



EJB QL BNF Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.
state_field ::= {embedded_class_state_field.}*simple_state_field
update_clause ::= UPDATE abstract_schema_name [[AS] identification_variable]

SET update_item {, update_item}*
update_item ::= [identification_variable.]{state_field | single_valued_association_field} =

new_value
new_value ::=

simple_arithmetic_expression |
string_primary |
datetime_primary |
boolean_primary |
simple_entity_expression |
NULL

delete_clause ::= DELETE FROM abstract_schema_name [[AS] identification_variable]
select_clause ::= SELECT [DISTINCT] select_expression {, select_expression}*
select_expression ::=

single_valued_path_expression |
aggregate_expression |
identification_variable |
OBJECT( identification_variable) |
constructor_expression

constructor_expression ::=
NEW constructor_name ( constructor_item {, constructor_item}* )

constructor_item ::= single_valued_path_expression | aggregate_expression
aggregate_expression ::=

{ AVG | MAX | MIN | SUM } ([DISTINCT] state_field_path_expression) |
COUNT ([DISTINCT] identification_variable | state_field_path_expression |

single_valued_association_path_expression)
where_clause ::= WHERE conditional_expression
groupby_clause ::= GROUP BY groupby_item {, groupby_item}*
groupby_item ::= single_valued_path_expression
having_clause ::= HAVING conditional_expression
orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::= state_field_path_expression [ ASC | DESC ]
subquery ::= simple_select_clause subquery_from_clause [where_clause]

[groupby_clause] [having_clause]
subquery_from_clause ::=

FROM subselect_identification_variable_declaration
{, subselect_identification_variable_declaration}*

subselect_identification_variable_declaration ::=
identification_variable_declaration |
association_path_expression [AS] identification_variable |
collection_member_declaration

simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
simple_select_expression::=

single_valued_path_expression |
aggregate_expression |
identification_variable

conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [ NOT ] conditional_primary
105   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft EJB QL BNF

Sun Microsystems, Inc.
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::=

comparison_expression |
between_expression |
like_expression |
in_expression |
null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression |
exists_expression

between_expression ::=
arithmetic_expression [NOT] BETWEEN

arithmetic_expression AND arithmetic_expression |
string_expression [NOT] BETWEEN string_expression AND string_expression |
datetime_expression [NOT] BETWEEN

datetime_expression AND datetime_expression
in_expression ::=

state_field_path_expression [NOT] IN ( in_item {, in_item}* | subquery)
in_item ::= literal | input_parameter
like_expression ::=

string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]
null_comparison_expression ::=

{single_valued_path_expression | input_parameter} IS [NOT] NULL
empty_collection_comparison_expression ::=

collection_valued_path_expression IS [NOT] EMPTY
collection_member_expression ::= entity_expression

[NOT] MEMBER [OF] collection_valued_path_expression
exists_expression::= [NOT] EXISTS (subquery)
all_or_any_expression ::= { ALL  | ANY | SOME} (subquery)
comparison_expression ::=

string_expression comparison_operator {string_expression | all_or_any_expression} |
boolean_expression { =|<>} {boolean_expression | all_or_any_expression} |
datetime_expression comparison_operator

{datetime_expression | all_or_any_expression} |
entity_expression { = | <> } {entity_expression | all_or_any_expression} |
arithmetic_expression comparison_operator

{arithmetic_expression | all_or_any_expression}
comparison_operator ::= = | > | >= | < | <= | <>
arithmetic_expression ::= simple_arithmetic_expression | (subquery)
simple_arithmetic_expression ::=

arithmetic_term | simple_arithmetic_expression { + | - } arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term { * | / } arithmetic_factor
arithmetic_factor ::= [{ + | - }] arithmetic_primary
arithmetic_primary ::=

state_field_path_expression |
numeric_literal |
(simple_arithmetic_expression) |
input_parameter |
functions_returning_numerics |
aggregate_expression
  12/19/05 106



EJB QL BNF Enterprise JavaBeans 3.0, Proposed Final Draft Query Language

Sun Microsystems, Inc.
string_expression ::= string_primary | (subquery)
string_primary ::=

state_field_path_expression |
string_literal |
input_parameter |
functions_returning_strings |
aggregate_expression

datetime_expression ::= datetime_primary | (subquery)
datetime_primary ::=

state_field_path_expression |
input_parameter |
functions_returning_datetime |
aggregate_expression

boolean_expression ::= boolean_primary | (subquery)
boolean_primary ::=

state_field_path_expression |
boolean_literal |
input_parameter |

entity_expression ::=
single_valued_association_path_expression | simple_entity_expression

simple_entity_expression ::=
identification_variable |
input_parameter

functions_returning_numerics::=
LENGTH(string_primary) |
LOCATE(string_primary, string_primary[, simple_arithmetic_expression]) |
ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic_expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
SIZE(collection_valued_path_expression)

functions_returning_datetime ::=
CURRENT_DATE|
CURRENT_TIME |
CURRENT_TIMESTAMP

functions_returning_strings ::=
CONCAT(string_primary, string_primary) |
SUBSTRING(string_primary,

simple_arithmetic_expression, simple_arithmetic_expression)|
TRIM([[trim_specification] [trim_character] FROM] string_primary) |
LOWER(string_primary) |
UPPER(string_primary)

trim_specification ::= LEADING | TRAILING | BOTH
107   12/19/05



Query Language Enterprise JavaBeans 3.0, Proposed Final Draft EJB QL BNF

Sun Microsystems, Inc.
  12/19/05 108



Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Contexts

Sun Microsystems, Inc.

entity
ecycle

such
ease of

ponent
rrent
nit will
persis-
Entity-
nages
Chapter 5 Entity Managers and Persistence Contexts

5.1 Persistence Contexts

A persistence context is a set of managed entity instances in which for any persistent entity id
there is a unique entity instance. Within the persistence context, the entity instances and their lif
are managed by the entity manager.

In Java EE environments, a JTA transaction typically flows across multiple components. Often,
components may need to access the same persistence context within the transaction. To facilitate
use of entity managers in Java EE environments, when an entity manager is injected into a com
or looked up directly in JNDI, its persistence context will automatically be propagated with the cu
JTA transaction, and the EntityManager references that are mapped to the same persistence u
provide access to this same persistence context within the JTA transaction. This propagation of
tence context by the Java EE container avoids the need for the application to pass references to
Manager instances from one component to another. An entity manager for which the container ma
the persistence context in this manner is termed acontainer-managed entity manager. A container-man-
aged entity manager’s lifecycle is managed by the Java EE container.
109   12/19/05



Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Obtaining an EntityManager

Sun Microsystems, Inc.

nce con-
nager
r must

ityMan-

y

tion.

persis-
ithin an

d.

ated or
scoped
r

tion. A
of per-

pically
rough
to the

ger fac-

desig-
ed.
In less common use cases within Java EE containers, applications may need to access a persiste
text that is “stand-alone”—i.e. not propagated along with the JTA transaction across the EntityMa
references for the given persistence unit. Instead, each instance of creating an entity manage
cause a new, isolated persistence context to be created that is not accessible through other Ent
ager references within the same transaction. These use cases are supported through thecreateEnti-
tyManager methods of theEntityManagerFactory interface. An entity manager that is used b
the application to create and destroy persistence contexts in this manner is termed anapplication-man-
aged entity manager. An application-managed entity manager’s lifecycle is managed by the applica

Both container-managed entity managers and application-managed entity managers and their
tence contexts are required to be supported in Java EE web containers and EJB containers. W
EJB environment, container-managed entity managers are typically used.

In Java SE environments, only application-managed entity managers are required to be supporte

5.1.1 Persistence Context Lifecycle Types

The lifecycle of a persistence context is independent of whether the persistence context is propag
stand-alone. The persistence context may either be defined to have a lifecycle that is transaction-
or extended, according to thePersistenceContextType that is specified when its EntityManage
is created.

A persistence context that is transaction-scoped has a lifetime that is scoped to a single transac
persistence context that is extended has a lifetime that spans multiple transactions. The lifecycle
sistence contexts is described further in section 5.6.

5.2 Obtaining an EntityManager

The entity manager for a persistence context is obtained from an entity manager factory.

When container-managed entity managers are used in Java EE environments, the application ty
does not interact with the entity manager factory since entity managers can be obtained directly th
dependency injection or from JNDI, and the container manages this interaction transparently
application.

When application-managed entity managers are used, the application must use the entity mana
tory to manage the entity manager and persistence context lifecycle.

In both cases, when multiple persistence units are present in the application, the application must
nate the persistence unit with which the entity manager and/or entity manager factory is associat
  12/19/05 110



Obtaining an EntityManager Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Contexts

Sun Microsystems, Inc.

on, or
ce
to the

y
r
a
e

ce
c-

e con-

the
5.2.1 Obtaining an Entity Manager in the Java EE Envir onment

A container-managed entity manager is obtained by the application through dependency injecti
direct lookup of the entity manager in the JNDI namespace[31]. The container manages the persisten
context lifecycle and the creation and the closing of the entity manager instance transparently
application.

The application may also use the EntityManagerFactory.getEntityManager() method to obtain
a container-managed entity manager. This method, however, is intended primarily for use b
the container in Java EE environments. In Java SE environments, if the persistence provide
supports the use of JTA, the getEntityManager method is used by the application to obtain
transaction-propagated persistence context that is managed by the persistence provider (th
effective persistence “container” in Java SE).

ThePersistenceContext annotation is used for entity manager injection. If multiple persisten
units exist, theunitName element must be specified. Thetype element specifies whether a transa
tion-scoped or extended persistence context is to be used. See section 5.6.

For example,

@PersistenceContext(unitName="order")
EntityManager em;

//here only one persistence unit exists
@PersistenceContext(type=PersistenceContextType.EXTENDED)
EntityManager orderEM;

The JNDI lookup of an entity manager is illustrated below:

@Stateless
@PersistenceContext(name="OrderEM", unitName="Order")
public class MySessionBean implements MyInterface {

@Resource SessionContext ctx;

public void doSomething() {
EntityManager em = (EntityManager)

ctx.lookup("OrderEM");
...

}
}

5.2.2 Obtaining an Application-managed Entity Manager
An application-managed entity manager—i.e., an entity manager with a stand-alone persistenc
text—is obtained by the application from an entity manager factory.

The EntityManagerFactory API used to obtain an application-managed entity manager is
same independent of whether this API is used in Java EE or Java SE environments.

[31] Note that an entity manager might be a proxy.
111   12/19/05



Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Obtaining an Entity Manager Factory

Sun Microsystems, Inc.

a-

t and
ose
r with

cy-

e man-
by the

te the

unicat
5.2.2.1 Control of the Application-Managed EntityManager Lifecycle.
The EntityManager methodsclose and isOpen are used to manage the lifecycle of an applic
tion-managed entity manager and its associated persistence context.

TheEntityManager.close method closes an entity manager to release its persistence contex
other resources. Theclose method must only be invoked when a transaction is not active. The cl
method must not be invoked on a container-managed entity manager (including an entity manage
a transaction-propagated persistence context that has been obtained by means of thegetEntityMan-
ager  method) or on an entity manager that has been closed.

TheEntityManager.isOpen method indicates whether the entity manager is open. TheisOpen
method returns true until the entity manager has been closed.

5.3 Obtaining an Entity Manager Factory

TheEntityManagerFactory interface is used to create an entity manager and manage its life
cle.

Each entity manager factory provides entity manager instances that are all configured in the sam
ner (e.g., configured to connect to the same database, use the same initial settings as defined
implementation, etc.).

More than one entity manager factory instance may be available simultaneously in the JVM.[32]

When multiple persistence units exist within the referencing scope, the application must designa
persistence unit with which the entity manager factory and its entity managers are associated.

5.3.1 Obtaining an Entity Manager Factory in a Java EE Container
Within a Java EE environment, an entity manager factory may be injected using thePersistence-
Unit  annotation or obtained through JNDI lookup.

For example

@PersistenceUnit
EntityManagerFactory emf;

If multiple persistence units exist, theunitName  element must be specified:

@PersistenceUnit(unitName="order")
EntityManagerFactory emf;

[32] This may be the case when using multiple databases, since in a typical configuration a single entity manager only commes
with a single database. There is only one entity manager factory per persistence unit, however.
  12/19/05 112



The EntityManagerFactory Interface Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Contexts

Sun Microsystems, Inc.

ty man-

ger
ty
er fac-
e in the
5.3.2 Obtaining an Entity Manager Factory in a Java SE Envir onment
Outside a Java EE container environment, thejavax.persistence.Persistence class is the
bootstrap class that provides access to an entity manager factory. The application creates an enti
ager factory by calling thecreateEntityManagerFactory method of thejavax.persis-
tence.Persistence  class.

For example,

EntityManagerFactory emf =
javax.persistence.Persistence.createEntityManagerFactory("Order");
    EntityManager em = emf.createEntityManager();

5.4 The EntityManagerFactory Interface

The EntityManagerFactory interface is used by the application to obtain an entity mana
instance and its associated persistence context[33]. When the application has finished using the enti
manager factory, and/or at application shutdown, the application should close the entity manag
tory. Once an EntityManagerFactory has been closed, all its entity managers are considered to b
closed state.

[33] It may also be used internally by the Java EE container. See section 5.9.
113   12/19/05



Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft The EntityManagerFactory Interface

Sun Microsystems, Inc.
public interface javax.persistence.EntityManagerFactory {

/**
 * Create a new EntityManager of of type
 * PersistenceContextType.TRANSACTION.
 * This method returns a new application-managed EntityManager
 * instance (with a new stand-alone persistence context) each
 * time it is invoked.
 * The isOpen method will return true on the returned instance.
 */
EntityManager createEntityManager();

/**
 * Create a new EntityManager of the specified persistence
 * context type.
 * This method returns a new application-managed EntityManager
 * instance (with a new stand-alone persistence context) each
 * time it is invoked.
 * The isOpen method will return true on the returned instance.
 */
EntityManager createEntityManager(PersistenceContextType type);

/**
 * Get an EntityManager instance whose persistence context
 * is propagated with the current JTA transaction.
 * If there is no persistence context bound to the current
 * JTA transaction, a new transaction-scoped persistence
 * context is created and associated with the transaction
 * and the entity manager instance that is created and
 * returned. If no JTA transaction is in progress, an
 * EntityManager instance is created for which the persistence
 * context will be propagated with subsequent JTA transactions.
 * Throws IllegalStateException if called on an

* EntityManagerFactory that does not provide JTA EntityManagers.
 */
EntityManager getEntityManager();

/**
 * Close the factory, releasing any resources that it holds.
 * After a factory instance is closed, all methods invoked on
 * it will throw an IllegalStateException, except for isOpen,
 * which will return false.
 */
void close();

/**
 * Indicates whether the factory is open. Returns true
 * until the factory has been closed.
 */
public boolean isOpen();

}

  12/19/05 114



Controlling Transactions Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Contexts

Sun Microsystems, Inc.

ment,

apter

pera-

ged by

at the
The following example illustrates the creation of an entity manager factory in a Java SE environ
and its use in creating and using a resource-local entity manager.[34]

import javax.persistence.*;

public class PasswordChanger {
public static void main (String[] args) {

EntityManagerFactory emf =
Persistence.createEntityManagerFactory();

EntityManager em = emf.createEntityManager();

em.getTransaction().begin();
user = em.createQuery

            ("SELECT u FROM User u WHERE u.name=:name AND
u.pass=:pass")
            .setParameter("name", args[0])
            .setParameter("pass", args[1])
            .getSingleResult();

if (user!=null)
user.setPassword(args[2]);

em.getTransaction().commit();

em.close();
emf.close ();

    }
}

Configuration information needed for the creation of an EntityManagerFactory is described in Ch
6, “Entity Packaging”.

5.5 Controlling Transactions

Depending on the transactional type of the entity manager, transactions involving EntityManager o
tions may controlled either through JTA or through use of the resource-localEntityTransaction
API, which is mapped to a resource transaction over the resource that underlies the entities mana
the entity manager.

An entity manager whose underlying transactions are controlled through JTA is termed aJTA entity
manager.

An entity manager whose underlying transactions are controlled by the application through theEnti-
tyTransaction  API is termed aresource-local entity manager.

An entity manager is defined to be of a given transactional type—either JTA or resource-local—
time its underlying entity manager factory is configured and created.

[34] Resource-local entity managers are described in Section 5.5.2.
115   12/19/05



Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Controlling Transactions

Sun Microsystems, Inc.

y spec-

entity

ava EE
ly

JTA
to the

pped
anagers
e of JTA
A container-managed entity manager must be a JTA entity manager. JTA entity managers are onl
ified for use in Java EE containers.

An application-managed entity manager may be either a JTA entity manager or a resource-local
manager.

Both JTA entity managers and resource-local entity managers are required to be supported in J
web containers and EJB containers[35]. Within an EJB environment, a JTA entity manager is typical
used. In general, in Java SE environments only resource-local entity managers are supported.

5.5.1 JTA EntityManagers

An entity manager whose transactions are controlled through JTA is a JTA entity manager. A
entity manager participates in the current JTA transaction, which is begun and committed external
entity manager and  propagated to the underlying resource manager.

5.5.2 Resource-local EntityManagers
An entity manager whose transactions are controlled by the application through theEntityTrans-
action API is a resource-local entity manager. A resource-local entity manager transaction is ma
to a resource transaction over the resource by the persistence provider. Resource-local entity m
may use server or local resources to connect to the database and are unaware of the presenc
transactions that may or may not be active.

[35] Note that JTA support is not required in application client containers.
  12/19/05 116



Persistence Context Lifetime Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Contexts

Sun Microsystems, Inc.

ntity

fetime

pplica-

ection.
5.5.2.1 The EntityTransaction Interface
TheEntityTransaction interface is used to control resource transactions on resource-local e
managers. TheEntityManager.getTransaction() method returns theEntityTransac-
tion  interface.

public interface EntityTransaction {
/**
 * Start a resource transaction.
 * @throws IllegalStateException if isActive() is true.
 */
public void begin();

/**
 * Commit the current transaction, writing any unflushed
 * changes to the database.
 * @throws IllegalStateException if isActive() is false.
 * @throws PersistenceException if the commit fails.
 */
public void commit();

/**
 * Roll back the current transaction.
 * @throws IllegalStateException if isActive() is false.
 * @throws PersistenceException if an unexpected error
 * condition is encountered.
 */
public void rollback();

/**
 * Indicate whether a transaction is in progress.
 * @throws PersistenceException if an unexpected error
 * condition is encountered.
 */
public boolean isActive();

}

5.6 Persistence Context Lifetime

A persistence context may either have a lifetime that is scoped to a single transaction or have a li
that spans multiple transactions. This specification refers to such persistence contexts astransac-
tion-scoped persistence contexts andextended persistence contextsrespectively.

These lifetime types are independent of whether the entity manager is container-managed or a
tion-managed—i.e., whether the persistence context is transaction-propagated or stand-alone.

Persistence context lifetime types and the persistence context lifecycle are described in this s
Examples are given in Section 5.8.
117   12/19/05



Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Context Lifetime

Sun Microsystems, Inc.

ntext is
by the
TA), or
plug-
persis-
the

he JTA
action.

entities

ted and
iately

r-man-
il it is
pe of a

in man-
tached

ersis-
means
5.6.1 Container-managed Persistence Contexts

When a container-managed persistence entity manager is used, the lifecycle of the persistence co
always managed automatically—whether by the Java EE container (in Java EE environments),
persistence provider (in Java SE environments, if the persistence provider supports the use of J
by the Java EE container in conjunction with the persistence provider (in Java EE environments if
gable third-party persistence providers are used). In all of these cases, the management of the
tence context lifecycle is transparent to the application. As described in section 5.1,
container-managed persistence context is propagated with the JTA transaction.

5.6.1.1 Container-managed Transaction-scoped Persistence Context
A new persistence context begins when a container-managed entity manager is invoked[36] in the scope
of an active JTA transaction, and there is no current persistence context already associated with t
transaction. The persistence context is created and then associated with the current JTA trans
The persistence context ends when the associated JTA transaction commits or rolls back, and all
that were managed by the EntityManager become detached.

If the entity manager is invoked outside the scope of a transaction, a persistence context is crea
destroyed to service the method call only, and any entities loaded from the database will immed
become detached at the end of the method call.

5.6.1.2 Container-managed Extended Persistence Context
A container-managed extended persistence context exists from the point at which the containe
aged entity manager has been obtained by dependency injection or through JNDI lookup unt
closed by the container. Such an extended persistence context can only be initiated within the sco
stateful session bean and is closed by the container when the@Removemethod of the stateful session
bean completes (or the stateful session bean instance is otherwise destroyed).

When an extended persistence context is used, the entities managed by the EntityManager rema
aged independently of whether JTA transactions are begun or committed. They do not become de
until the persistence context ends.

5.6.2 Application-managed Persistence Contexts
When an application-managed entity manager is used, the application interacts directly with the p
tence provider's entity manager factory to obtain and destroy stand-alone persistence contexts by
of the EntityManagerFactory.createEntityManager() and EntityMan-
ager.close() operations and transaction APIs.

[36] Specifically, when one of the methods of the EntityManager interface is invoked.
  12/19/05 118



Persistence Context Propagation for Container-managed Entity ManagersEnterprise JavaBeans 3.0, Proposed Final Draft Entity Man-

Sun Microsystems, Inc.

ew per-
action,
istence
associ-

ecome
ntext is
se will

transac-
rce

If the
ed and
iately

r a JTA
ich the

-man-
ion.

in man-
mitted.

context
anager

action is

ce con-
5.6.2.1 Application-managed Transaction-scoped Persistence Context
For an application-managed JTA entity manager with transaction-scoped persistence context, a n
sistence context begins when the entity manager is invoked in the scope of an active JTA trans
and there is no current persistence context already associated with the entity manager. This pers
context is associated with the entity manager instance. The persistence context ends when the
ated JTA transaction completes, and all entities that were managed by the EntityManager b
detached. If the entity manager is invoked outside the scope of a transaction, a persistence co
created and destroyed to service the method call only, and any entities loaded from the databa
immediately become detached at the end of the method call.

For a resource-local entity manager, a new persistence context begins whenever a new resource
tion is started viaEntityTransaction.begin . The persistence context ends when the resou
transaction ends—whether byEntityTransaction.commit or by EntityTransac-
tion.rollback —and all entities that were managed by the EntityManager become detached.
entity manager is invoked outside the scope of a transaction, a persistence context is creat
destroyed to service the method call only, and any entities loaded from the database will immed
become detached at the end of the method call.

5.6.2.2 Application-managed Extended Persistence Context
In the case of an application-managed entity manager with extended persistence context (whethe
or resource-local entity manager), the extended persistence context exists from the point at wh
entity manager has been created until the entity manager is closed, using theEntityManagerFac-
tory.createEntityManager() and EntityManager.close() APIs for the management
of the entity manager lifecycle. The extended persistence context obtained from the application
aged entity manager is a stand-alone persistence context—it is not propagated with the transact

When an extended persistence context is used, the entities managed by the EntityManager rema
aged independently of whether JTA transactions or resource-local transactions are begun or com
They do not become detached until the persistence context ends.

5.7 Persistence Context Propagation for Container-managed
Entity Managers

As described in section 5.1, for transaction-propagated persistence contexts, a single persistence
may correspond to one or more JTA entity manager instances associated with the same entity m
factory.

The persistence context is shared across several such entity manager instances as the JTA trans
propagated. In the case of transaction-propagated persistence contexts of typePersistenceCon-
textType.TRANSACTION , the persistence context is also said to bebound to the JTA transaction.

Entity managers obtained from different entity manager factories never share the same persisten
text.

Entity managers in different JTA transactions do not share the same persistence context.
119   12/19/05



Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Context Propagation for Con-

Sun Microsystems, Inc.

xts are

persis-

persis-

or by

the JTA

text is
data-

urrent
ction,

urrent

f type
or

ger is

th an
on is

nsac-
propa-

JTA

 in t
Propagation of persistence contexts only applies within a local environment. Persistence conte
not propagated to remote tiers.

As described in section 5.1, persistence context propagation does not apply to the stand-alone
tence contexts obtained from application-managed entity managers.

5.7.0.1 Persistence Context Propagation for Transaction-scoped Persistence Contexts
The application may obtain a container-managed JTA entity manager with transaction-scoped
tence context (a persistence context of typePersistenceContextType.TRANSACTION ) bound
to the JTA transaction by injection or direct lookup of the entity manager in the JNDI namespace,
callinggetEntityManager()  on a JTA entity manager factory.

In either case, the returned entity manager accesses a persistence context that is propagated with
transaction:

• If the entity manager is called when no JTA transaction is in progress, a persistence con
created and destroyed to service the method call only, and any entities loaded from the
base will immediately become detached at the end of the method call.

• If the entity manager is called and there is no persistence context associated with the c
JTA transaction, a new persistence context will be created and bound to the JTA transa
and the call will take place in that context.

• If the entity manager is called and there is an existing persistence context bound to the c
JTA transaction, the call takes place in that context.

5.7.0.2 Persistence Context Propagation Rules for Extended Persistence Contexts

The application may obtain a container-managed JTA entity manager with persistence context o
PersistenceContextType.EXTENDED bound to a stateful session bean instance by injection
JNDI lookup.

The following rules apply when the persistence context type of a container-managed entity mana
EXTENDED:

• If a component with a transaction-scoped persistence context calls a component wi
extended persistence context in the same JTA transaction, an IllegalStateExcepti
thrown.[37]

• If a component with an extended persistence context calls a component with a tra
tion-scoped persistence context in the same JTA transaction, the persistence context is
gated.

• If a component with an extended persistence context calls a component in a different
transaction context, the persistence context is not propagated.

[37] Note that there is no transaction-scoped persistence context for a component unless its EntityManager has been invokedhe
given transaction.
  12/19/05 120



Examples Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Contexts

Sun Microsystems, Inc.

with an
ful ses-
er, that
mpo-

erent
.

same
• If a component with an extended persistence context instantiates a stateful session bean
extended persistence context, the extended persistence context is inherited by that state
sion bean and exists until all such stateful session beans have been destroyed. If, howev
stateful session bean is called with a different transaction context than the instantiating co
nent, an IllegalStateException is thrown.

• If a component with an extended persistence context calls a component with a diff
extended persistence context in the same transaction, an IllegalStateException is thrown

In general, an exception is thrown if there are two different extended persistence contexts for the
EntityManagerFactory in the same transaction.

5.8 Examples

5.8.1 Container-managed Transaction-scoped Persistence Context

@Stateless
public class ShoppingCartImpl implements ShoppingCart {

@PersistenceContext EntityManager em;

public Order getOrder(Long id) {
return em.find(Order.class, id);

}

public Product getProduct(String name) {
return (Product) em.createQuery("select p from Product p

where p.name = :name")
.setParameter("name", name)
.getSingleResult();

}

 public LineItem createLineItem(Order order, Product product, int
quantity) {

LineItem li = new LineItem(order, product, quantity);
order.getLineItems().add(li);
em.persist(li);
return li;

}

}

121   12/19/05



Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Examples

Sun Microsystems, Inc.
5.8.2 Container-managed Extended Persistence Context

@Stateful
@Transaction(REQUIRES_NEW)
public class ShoppingCartImpl implements ShoppingCart {

@PersistenceContext(type=EXTENDED)
EntityManager em;

private Order order;
private Product product;

public void initOrder(Long id) {
order = em.find(Order.class, id);

}

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p

where p.name = :name")
.setParameter("name", name)
.getSingleResult();

}

public LineItem createLineItem(int quantity) {
LineItem li = new LineItem(order, product, quantity);
order.getLineItems().add(li);
return li;

}

}

  12/19/05 122



Examples Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Contexts

Sun Microsystems, Inc.
5.8.3 Application-managed Transaction-scoped Persistence Context (JTA)

@Stateless
public class ShoppingCartImpl implements ShoppingCart {

@PersistenceUnit
private EntityManagerFactory emf;

private EntityManager em;

@PostConstruct
public void init() {

em = emf.createEntityManager();
}

public Order getOrder(Long id) {
return em.find(Order.class, id);

}

public Product getProduct() {
return (Product) em.createQuery("select p from Product p

where p.name = :name")
.setParameter("name", name)
.getSingleResult();

}

public LineItem createLineItem(Order order, Product product, int
quantity) {

LineItem li = new LineItem(order, product, quantity);
order.getLineItems().add(li);
em.persist(li);
return li;

}

@PreDestroy
public void destroy() {

em.close();
}

}

123   12/19/05



Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Examples

Sun Microsystems, Inc.
5.8.4 Application-managed Extended Persistence Context(JTA)

@Stateful
public class ShoppingCartImpl implements ShoppingCart {

@PersistenceUnit
private EntityManagerFactory emf;

private EntityManager em;

private Order order;
private Product product;

@PostConstruct
public void init() {

em = emf.createEntityManager(PersistenceContext-
Type.EXTENDED);

}

public void initOrder(Long id) {
order = em.find(Order.class, id);

}

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p

where p.name = :name")
.setParameter("name", name)
.getSingleResult();

}

public LineItem createLineItem(int quantity) {
LineItem li = new LineItem(order, product, quantity);
order.getLineItems().add(li);
return li;

}

@Remove
public void destroy() {

em.close();
}

}

  12/19/05 124



Examples Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Contexts

Sun Microsystems, Inc.
5.8.5 Application-managed Transaction-scoped Persistence Context (Resource
Transaction)

// Usage in an ordinary Java class
public class ShoppingImpl {

private EntityManager em;
private EntityManagerFactory emf;

public ShoppingCart() {
emf = Persistence.createEntityManagerFactory();
em = emf.createEntityManager();

}

public Order getOrder(Long id) {
return em.find(Order.class, id);

}

public Product getProduct() {
return (Product) em.createQuery("select p from Product p

where p.name = :name")
.setParameter("name", name)
.getSingleResult();

}

public LineItem createLineItem(Order order, Product product, int
quantity) {

em.getTransaction().begin();

LineItem li = new LineItem(order, product, quantity);
order.getLineItems().add(li);
em.persist(li);

em.getTransaction().commit();

return li;
}

public void destroy() {
em.close();
emf.close();

}

}

125   12/19/05



Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Examples

Sun Microsystems, Inc.
5.8.6 Application-managed Extended Persistence Context (Resource Transaction)

// Usage in an ordinary Java class
public class ShoppingImpl {

private EntityManager em;
private EntityManagerFactory emf;

public ShoppingCart() {
emf = Persistence.createEntityManagerFactory();
em = emf.createEntityManager(PersistenceContext-

Type.EXTENDED);
}

private Order order;
private Product product;

public void initOrder(Long id) {
order = em.find(Order.class, id);

}

public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p

where p.name = :name")
.setParameter("name", name)
.getSingleResult();

}

public LineItem createLineItem(int quantity) {
em.getTransaction().begin();

LineItem li = new LineItem(order, product, quantity);
order.getLineItems().add(li);

em.getTransaction().commit();

return li;
}

public void destroy() {
em.close();
emf.close();

}

}

  12/19/05 126



Requirements on the Container Enterprise JavaBeans 3.0, Proposed Final Draft Entity Managers and Persistence Contexts

Sun Microsystems, Inc.

ersis-
wever,
ort of

where
associ-

call-
e
e con-

-

cle of
on

ce
er
he

JTA

siness
t.
5.9 Requirements on the Container

5.9.1 Persistence Context Management
For application managed persistence contexts, the application uses theEntityManagerFactory
andEntityManager APIs to create and destroy persistence contexts. For container-managed p
tence contexts, the container might use these same APIs or might use its own internal APIs; ho
the container is required to support third-party persistence providers. The APIs for the supp
third-party persistence providers are described further in Chapter 7.

Persistence contexts are always associated with an entity manager factory. In the following, every
that "the persistence context" appears, it should be understood to mean "the persistence context
ated with a particular entity manager factory".

Outside the container environment, the application creates an entity manager factory explicitly by
ing Persistence.createEntityManagerFactory . Inside the container environment, th
container must instantiate the entity manager factory and expose it to the application via JNDI. Th
tainer might use internal APIs to create the entity manager factory, or it might usePersisten-
ceProvider.createContainerEntityManagerFactory . However, the container is
required to support third-party persistence providers, and in this case, the container must use thePer-
sistenceProvider.createContainerEntityManagerFactory call to create the entity
manager factory and must callEntityManagerFactory.close to destroy the entity manager fac
tory prior to shutdown.

5.9.2 Container Managed Persistence Contexts
When operating in a container environment, the container is responsible for managing the lifecy
persistence contexts, and injectingEntityManager references into web components and sessi
bean and message-driven bean components.

When operating with a third-party persistence provider, the container uses theEntityMan-
agerFactory/EntityManager contract defined here to create and destroy persistence
contexts. It is undefined whether a new entity manager instance is created for every persisten
context, or whether entity manager instances are sometimes reused. Exactly how the contain
maintains the association between persistence context and JTA transaction is not defined. T
container may maintain this association internally, or it may delegate this concern to the per-
sistence provider by usinggetEntityManager() to obtain the provider's current entity
manager.

The container:

• Begins a new persistence context of typePersistenceContextType.TRANSACTION
whenever the first invocation of an entity manager withPersistenceContext-
Type.TRANSACTION occurs within the scope of a business method executing in a new
transaction.

• Associates that persistence context with the JTA transaction, so that subsequent local bu
methods which occur in the same JTA transaction also propagate the persistence contex
127   12/19/05



Entity Managers and Persistence Contexts Enterprise JavaBeans 3.0, Proposed Final Draft Requirements on the Container

Sun Microsystems, Inc.

that

siness
ethod

also

nce

-
nt. The
anager

ociated
n which
d hap-
a

tateEx-
• Ends the persistence context when the JTA transaction completes.

The container also:

• Begins a new persistence context of typePersistenceContextType.EXTENDED when-
ever a stateful session bean using an entity manager withPersistenceContext-
Type.EXTENDED is created outside the scope of a JTA transaction and associates
persistence context with the stateful session bean instance.

• Associates the persistence context with the current JTA transaction whenever a bu
method of the stateful session bean is invoked or a UserTransaction is begun within a m
of the stateful session bean, so that

• subsequent local business methods which occur in the same JTA transaction
propagate the persistence context;

• instantiations of stateful session beans with entity managers withPersistence-
ContextType.EXTENDED associate the persistence context with the new insta
of the stateful bean.

• Ends the persistence context when the bean is removed.

The container is responsible for associating anyEntityManager references injected into compo
nents with the managed persistence context before invoking a business method of the compone
container must also make the managed persistence context available as a result of direct EntityM
lookup in JNDI.

The rules above can result in "persistence context duplication", where a persistence context ass
with the JTA transaction is not the same as the persistence context associated with a stateful bea
is being invoked in the context of that transaction. (See Section 5.7 above). For example, this coul
pen if a business method annotatedTransaction(REQUIRED) of a stateful session bean using
persistence context of typePersistenceContextType.EXTENDED was called from a stateless
session bean. The container must detect persistence context duplication and throw the IllegalS
ception.
  12/19/05 128



Persistence Unit Enterprise JavaBeans 3.0, Proposed Final Draft Entity Packaging

Sun Microsystems, Inc.

ma-

anag-

cifies
Chapter 6 Entity Packaging

This chapter describes the packaging of persistence units.

6.1 Persistence Unit

A persistence unit is a logical grouping that includes:

• An entity manager factory and its entity managers, together with their configuration infor
tion.

• The set of managed classes included in the persistence unit and managed by the entity m
ers of the entity manager factory.

• Mapping metadata (in the form of metadata annotations and/or XML metadata) that spe
the mapping of the classes to the database.
129   12/19/05



Entity Packaging Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Unit Packaging

Sun Microsystems, Inc.

rsis-

as a
s

,

nless
r WAR.

efined
in

ame

ava EE
entity
tence

llowing
tly list
6.2 Persistence Unit Packaging

Within Java EE environments, an EJB-JAR, WAR, EAR, or application client JAR can define a pe
tence unit. Any number of persistence units may be defined within these scopes.

A persistence unit may be packaged within one or more jar files contained within a WAR or EAR,
set of classes within an EJB-JAR file or in the WARclasses directory, or as a combination of these a
defined below.

A persistence unit is defined by apersistence.xml file. The jar file or directory whoseMETA-INF
directory contains thepersistence.xml file is termed theroot of the persistence unit. In Java EE
the root of a persistence unit may be one of the following:

• an EJB-JAR file

• theWEB-INF/classes  directory of a WAR file[38]

• a jar file in theWEB-INF/lib  directory of a WAR file

• a jar file in the root of the EAR

• a jar file in the EAR library directory

• an application client jar file

It is not required that an EJB-JAR or WAR containing a persistence unit be packaged in an EAR u
the persistence unit contains persistence classes in addition to those contained in the EJB-JAR o
See Section 6.2.1.6.

A persistence unit must have a name. Only one persistence unit of any given name may be d
within a single EJB-JAR file, within a single WAR file, within a single application client jar, or with
an EAR (in the EAR root orlib  directory). See Section 6.2.2, “Persistence Unit Scope”.

Thepersistence.xml file may be used to designate more than one persistence unit within the s
scope.

All persistence classes defined at the level of the Java EE EAR must be accessible to all other J
components in the application—i.e. loaded by the application classloader—such that if the same
class is referenced by two different Java EE components (which may be using different persis
units), the referenced class is the same identical class.

In Java SE environments, the metadata mapping files, jar files, and classes described in the fo
sections can be used. To insure the portability of a Java SE application, it is necessary to explici
the managed persistence classes that are included in the persistence unit. See Section 6.2.1.6.

[38] The root of the persistence unit is theWEB-INF/classes directory; thepersistence.xml file is therefore contained in the
WEB-INF/classes/META-INF  directory.
  12/19/05 130



Persistence Unit Packaging Enterprise JavaBeans 3.0, Proposed Final Draft Entity Packaging

Sun Microsystems, Inc.

tence
s, and
man-

ence,

ersis-
ersis-
and

or they
files
speci-

s are
6.2.1 persistence.xml file
A persistence.xml file defines a persistence unit. It may be used to specify managed persis
classes included in the persistence unit, object/relational mapping information for those classe
other configuration information for the persistence unit and for the entity manager(s) and entity
ager factory for the persistence unit. Thepersistence.xml file is located in theMETA-INF direc-
tory of the root of the persistence unit. This information may be defined by containment or by refer
as described below.

The object/relational mapping information may take the form of annotations on the managed p
tence classes included in the persistence unit, one or more XML files contained in the root of the p
tence unit, one or more XML files outside the root of the persistence unit on the classpath
referenced from thepersistence.xml , or a combination of these.

The managed persistence classes may either be contained within the root of the persistence unit;
may be specified by reference—i.e., by naming the classes, class archives, or mapping XML
(which in turn reference classes) that are accessible on the application classpath; or they may be
fied by some combination of these means.  See Section 6.2.1.6.

Thepersistence  element consists of one or morepersistence-unit  elements.

Thepersistence-unit element consists of the following sub-elements and attributes:descrip-
tion , name, provider , transaction-type , jta-data-source ,
non-jta-data-source , mapping-file , jar-file , exclude-unlisted-classes ,
class , andproperties .

The name attribute is required; the other attributes and elements are optional. Their semantic
described in the following subsections.
131   12/19/05



Entity Packaging Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Unit Packaging

Sun Microsystems, Inc.

ersis-

nts, the
eans.
Examples:

<persistence>
<persistence-unit name="OrderManagement">

<description>
This unit manages orders and customers.
It does not rely on any vendor-specific features and can
therefore be deployed to any persistence provider.
</description>
<jta-data-source>jdbc/MyOrderDB</jta-data-source>
<mapping-file>ormap.xml</mapping-file>
<jar-file>MyOrderApp.jar</jar-file>
<class>com.widgets.Order</class>
<class>com.widgets.Customer</class>

</persistence-unit>
</persistence>

<persistence>
<persistence-unit name="OrderManagement2">

<description>
This unit manages inventory for auto parts.
It depends on features provided by the
com.acme.persistence implementation.
</description>
<provider>com.acme.persistence</provider>
<jta-data-source>jdbc/MyPartDB</jta-data-source>
<mapping-file>ormap.xml</mapping-file>
<jar-file>MyPartsApp.jar</jar-file>
<properties>

<property name="com.acme.persistence.sql-logging"
value="on"/>

</properties>
</persistence-unit>

</persistence>

6.2.1.1 description
Thedescription  element provides optional descriptive information about the persistence unit.

6.2.1.2 name
Thename attribute defines the name for the persistence unit. This name is used to identify the p
tence unit referred to by thePersistenceContext andPersistenceUnit annotations and the
programmatic API for creating entity managers and entity manager factories.

6.2.1.3 provider
The provider element specifies the name of the persistence provider'sjavax.persis-
tence.spi.PersistenceProvider class. Theprovider element must be specified if the
application is dependent upon a particular persistence provider being used. In Java SE environme
persistence provider must be specified—either by means of this element or by vendor-specific m
  12/19/05 132



Persistence Unit Packaging Enterprise JavaBeans 3.0, Proposed Final Draft Entity Packaging

Sun Microsystems, Inc.

the
entity

—
va EE
e

stence
JTA

to cor-

e ability

cified by

to be

g one or

(unless

An
e

d, the
files
y

6.2.1.4 transaction-type
The transaction-type attribute is used to specify whether the entity managers provided by
entity manager factory for the persistence unit must be JTA entity managers or resource-local
managers. The value of this element isJTA or RESOURCE_LOCAL. If this element is not specified, the
default isJTA. A transaction-type of JTA assumes that a JTA data source will be provided
either as specified by the jta-data-source element or provided by the container). In general, in Ja
environments, atransaction-type of RESOURCE_LOCALassumes that a non-JTA datasourc
will be provided.

6.2.1.5 jta-data-source, non-jta-data-source
In Java EE environments, thejta-data-source andnon-jta-data-source elements are used
to specify the global JNDI name of the JTA and/or non-JTA data source to be used by the persi
provider. If neither is specified, the deployer must specify a JTA data source at deployment or a
data source must be provided by the container, and a JTA EntityManagerFactory will be created
respond to it.

These elements name the data source in the local environment; the format of these names and th
to specify the names are product specific.

In Java SE environments, these elements may be used or the datasource information may be spe
other means—depending upon the requirements of the provider.

6.2.1.6 mapping-file, jar-file, class, exclude-unlisted-classes
The following classes must be implicitly or explicitly denoted as managed persistence classes
included within a persistence unit: entity classes; embeddable classes; mapped superclasses.

The set of managed persistence classes that are managed by a persistence unit is defined by usin
more of the following:[39]

• One or more object/relational mapping XML files

• One or more jar files that will be searched for classes

• An explicit list of the classes

• The annotated managed persistence classes contained in the root of the persistence unit
theexclude-unlisted-classes  element is specified)

An object/relational mapping XML file contains mapping information for the classes listed in it.
orm.xml file may be specified in theMETA-INF directory in the root of the persistence unit or in th
META-INF directory of any jar file referenced by thepersistence.xml . Alternatively, or in addi-
tion, other mapping files may be referenced by themapping-file elements of thepersis-
tence-unit element, and may be present anywhere on the class path. Anorm.xml file or other
mapping file is loaded as a resource by the persistence provider. If a mapping file is specifie
classes and mapping information specified in the mapping file will be used. If multiple mapping
are specified (possibly including one or moreorm.xml files), the resulting mappings are obtained b

[39] Note that an individual class may be used in more than one persistence unit.
133   12/19/05



Entity Packaging Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Unit Packaging

Sun Microsystems, Inc.

lud-
for-
g file
pping

ed
be pro-
ation.

he JAR
sed, or

Java SE
echa-
nce pro-
be fully

persis-
will be

stence
it, the

e map-
XML
min-

erencing

its that

ence

ation),
combining the mappings from all of the files. The result is undefined if multiple mapping files (inc
ing anyorm.xml file) referenced within a single persistence unit contain overlapping mapping in
mation for any given class. The object/relational mapping information contained in any mappin
referenced within the persistence unit must be disjoint at the class-level from object/relational ma
information contained in any other such mapping file.

One or more JAR files may be specified using thejar-file elements instead of, or in addition to the
mapping files specified in themapping-file elements. If specified, these JAR files will be search
for managed persistence classes, and any mapping metadata annotations found on them will
cessed, or they will be mapped using the mapping annotation defaults defined by this specific
Such JAR files are specified relative to the root of the persistence unit (e.g.,utils/myUtils.jar ).

A list of named managed persistence classes may also be specified instead of, or in addition to, t
files and mapping files. Any mapping metadata annotations found on these classes will be proces
they will be mapped using the mapping annotation defaults. Theclass element is used to list a man-
aged persistence class. A list of all named managed persistence classes must be specified in
environments to insure portability. Portable Java SE applications should not rely on the other m
nisms described here to specify the managed persistence classes of a persistence unit. Persiste
viders may also require that the set of entity classes and classes that are to be managed must
enumerated in each of thepersistence.xml  files in Java SE environments.

All classes contained in the root of the persistence unit are also searched for annotated managed
tence classes and any mapping metadata annotations found on them will be processed, or they
mapped using the mapping annotation defaults. If it is not intended that the annotated persi
classes contained in the root of the persistence unit be included in the persistence un
exclude-unlisted-classes element should be used. Theexclude-unlisted-classes
element is not intended for use in Java SE environments.

The resulting set of entities managed by the persistence unit is the union of these sources, with th
ping metadata annotations (or annotation defaults) for any given class being overridden by the
mapping information file if there are both annotations as well as XML mappings for that class. The
imum portable level of overriding is at the level of the persistent field or property.

The classes and/or jars that are named as part of a persistence unit must be on the classpath; ref
them from thepersistence.xml  file does not cause them to be placed on the classpath.

All classes must be on the classpath to ensure that entity managers from different persistence un
map the same class will be accessing the same identical class.

6.2.1.7 properties
The properties element is used to specify vendor-specific properties that apply to the persist
unit and its entity manager factory configuration.

If a persistence provider does not recognize properties (other than those defined by this specific
the provider must ignore those properties.

6.2.1.8 Examples
The following are sample contents of apersistence.xml  file.
  12/19/05 134



Persistence Unit Packaging Enterprise JavaBeans 3.0, Proposed Final Draft Entity Packaging

Sun Microsystems, Inc.

the list
d

ed, the
t speci-

ication
 means.

ce
ses. The
tained
-
scribed

ce
ses. If a
d as
d
y classes
pro-
Example 1:

<persistence-unit name= " OrderManagement " />

A persistence unit namedOrderManagement  is created.

Any annotated managed persistence classes found in the root of the persistence unit are added to
of managed persistence classes. If aMETA-INF/orm.xml file exists, any classes referenced by it an
mapping information contained in it are used as specified above. Because no provider is specifi
persistence unit is assumed to be portable across providers. Because the transaction type is no
fied, JTA is assumed. The container must provide the data source (it may be specified at appl
deployment, for example); in Java SE environments, the data source may be specified by others

Example 2:

<persistence-unit name= " OrderManagement2 " >
<mapping-file>mappings.xml</mapping-file>

</persistence-unit>

A persistence unit namedOrderManagement2 is created. Any annotated managed persisten
classes found in the root of the persistence unit are added to the list of managed persistence clas
mappings.xml resource exists on the classpath and any classes and mapping information con
in it are used as specified above. If aMETA-INF/orm.xml file exists, any classes and mapping infor
mation contained in it are used as well. The transaction type, data source, and provider are as de
above.

Example 3:

<persistence-unit name= " OrderManagement3 " >
<jar-file>order.jar</jar-file>
<jar-file>order-supplemental.jar</jar-file>

</persistence-unit>

A persistence unit namedOrderManagement3 is created. Any annotated managed persisten
classes found in the root of the persistence unit are added to the list of managed persistence clas
META-INF/orm.xml file exists, any classes and mapping information contained in it are use
specified above. Theorder.jar andorder-supplemental.jar files are searched for manage
persistence classes and any annotated managed persistence classes found in them and/or an
specified in theorm.xml files of these jar files are added. The transaction-type, data source and
vider are as described above.
135   12/19/05



Entity Packaging Enterprise JavaBeans 3.0, Proposed Final Draft Persistence Unit Packaging

Sun Microsystems, Inc.

e anno-
ed in
nce unit
ill be

ce
s. The

and

and any

ed to
ar or
Example 4:

<persistence-unit
name=" OrderManagement4 "
transaction-type=RESOURCE_LOCAL>

<non-jta-data-source>jdbc/MyDB</jta-data-source>
<mapping-file>order-mappings.xml</mapping-file>
<exclude-unlisted-classes/>
<class>com.acme.Order</class>
<class>com.acme.Customer</class>
<class>com.acme.Item</class>

</persistence-unit>

A persistence unit namedOrderManagement4 is created. Theorder-mappings.xml is read as
a resource and any classes referenced by it and mapping information contained in it are used. Th
tatedOrder , Customer andItem classes are loaded and are added. No (other) classes contain
the root of the persistence unit are added to the list of managed persistence classes. The persiste
is portable across providers. A entity manager factory supplying resource-local entity managers w
created. The data sourcejdbc/MyDB  must be used.

Example 5:

<persistence-unit name= " OrderManagement5 " >
<provider>com.acme.persistence</provider>
<mapping-file>order1.xml</mapping-file>
<mapping-file>order2.xml</mapping-file>
<jar-file>order.jar</jar-file>
<jar-file>order-supplemental.jar</jar-file>

</persistence-unit>

A persistence unit namedOrderManagement5 is created. Any annotated managed persisten
classes found in the root of the persistence unit are added to the list of managed classe
order1.xml andorder2.xml files are read as resources and any classes referenced by them
mapping information contained in them are also used as specified above. Theorder.jar is a jar file
on the classpath containing another persistence unit, whileorder-supplemental.jar is just a
library of classes. Both of these jar files are searched for annotated managed persistence classes
annotated managed persistence classes found in them and/or any classes specified in theorm.xml files
(if any) of these jar files are added. The providercom.acme.persistence  must be used.

Note that thepersistence.xml file contained inorder.jar is not used to augment the
persistence unitEM-5 with the classes of the persistence unit whose root isorder.jar .

6.2.2 Persistence Unit Scope
An EJB-JAR, WAR, application client jar, or EAR can define a persistence unit.

The visibility scope of the persistence unit is determined by its point of definition.

A persistence unit that is defined at the level of an EJB-JAR, WAR, or application client jar is scop
that EJB-JAR, WAR, or application jar respectively. It is visible to the components defined in that j
war, but is not visible as a persistence unit to other parts of the application.
  12/19/05 136



Persistence Unit Packaging Enterprise JavaBeans 3.0, Proposed Final Draft Entity Packaging

Sun Microsystems, Inc.

per-
plica-
on jar
the
A persistence unit that is to be visible to the application as a whole must be defined at EAR level. A
sistence unit that is defined at the level of the EAR is generally visible to all components in the ap
tion. However, if a persistence unit of the same name is defined by an EJB-JAR, WAR, or applicati
file within the EAR, the persistence unit of that name defined at EAR level will not be visible to
components defined by that EJB-JAR, WAR, or application jar file.
137   12/19/05



Entity Packaging Enterprise JavaBeans 3.0, Proposed Final Draft persistence.xml Schema

Sun Microsystems, Inc.
6.3 persistence.xml Schema

This section provides the XML schema for thepersistence.xml  file.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Java Persistence persistence.xml schema -->
<xsd:schema targetNamespace="http://java.sun.com/xml/ns/persistence"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:persis-
tence="http://java.sun.com/xml/ns/persistence" elementFormDefault="quali-
fied" attributeFormDefault="unqualified" version="1.0">
  <xsd:annotation>
    <xsd:documentation>
      @(#)persistence_1_0.xsd 1.0 Dec 1 2005
    </xsd:documentation>
  </xsd:annotation>
  <xsd:annotation>
    <xsd:documentation><![CDATA[

     This is the XML Schema for the persistence configuration file.
     The file must be named "META-INF/persistence.xml" in the
     persistence archive.
     Persistence configuration files must indicate
     the persistence schema by using the persistence namespace:

     http://java.sun.com/xml/ns/persistence

     and indicate the version of the schema by
     using the version element as shown below:

     <persistence xmlns="http://java.sun.com/xml/ns/persistence"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
       http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
       version="1.0">
       ...
     </persistence>

    ]]></xsd:documentation>
  </xsd:annotation>
  <xsd:include schemaLocation="persistence_1_0.xsd"/>

  <!-- ********************************************* -->

  <xsd:element name="persistence">
    <xsd:complexType>
      <xsd:sequence>

        <!-- ************************************* -->

        <xsd:element name="persistence-unit"
                     minOccurs="0" maxOccurs="unbounded">
          <xsd:complexType>
            <xsd:annotation>
              <xsd:documentation>
                Configuration of a persistence unit.
              </xsd:documentation>
            </xsd:annotation>
            <xsd:sequence>

              <!-- ************************************* -->

              <xsd:element name="description" type="xsd:string"
                           minOccurs="0">
  12/19/05 138



persistence.xml Schema Enterprise JavaBeans 3.0, Proposed Final Draft Entity Packaging

Sun Microsystems, Inc.
                <xsd:annotation>
                  <xsd:documentation>
                    Textual description of this persistence unit.
                  </xsd:documentation>
                </xsd:annotation>
              </xsd:element>

              <!-- ************************************* -->

              <xsd:element name="provider" type="xsd:string"
                           minOccurs="0">
                <xsd:annotation>
                  <xsd:documentation>
                    Provider class that supplies EntityManagers
                    for this persistence unit.
                  </xsd:documentation>
                </xsd:annotation>
              </xsd:element>

              <!-- ************************************* -->

              <xsd:element name="jta-data-source" type="xsd:string"
                           minOccurs="0">
                <xsd:annotation>
                  <xsd:documentation>

The container-specific name of the JTA datasource to use.
                  </xsd:documentation>
                </xsd:annotation>
              </xsd:element>

              <!-- ************************************* -->

              <xsd:element name="non-jta-data-source"
                           type="xsd:string"
                           minOccurs="0">
                <xsd:annotation>
                  <xsd:documentation>

The container-specific name of a non-JTA datasource to use.
                  </xsd:documentation>
                </xsd:annotation>
              </xsd:element>

              <!-- ************************************* -->

              <xsd:element name="mapping-file" type="xsd:string"
                           minOccurs="0" maxOccurs="unbounded">
                <xsd:annotation>
                  <xsd:documentation>
                    File containing mapping information. Loaded as a
                    resource by the persistence provider.
                  </xsd:documentation>
                </xsd:annotation>
              </xsd:element>

              <!-- ************************************* -->

              <xsd:element name="jar-file" type="xsd:string"
                           minOccurs="0" maxOccurs="unbounded">
                <xsd:annotation>
                  <xsd:documentation>
                     Jar file that should be scanned for entities.
                     Not applicable to Java SE persistence units.
                  </xsd:documentation>
                </xsd:annotation>
              </xsd:element>
139   12/19/05



Entity Packaging Enterprise JavaBeans 3.0, Proposed Final Draft persistence.xml Schema

Sun Microsystems, Inc.
              <!-- ************************************* -->

              <xsd:element name="class" type="xsd:string"
                           minOccurs="0" maxOccurs="unbounded">
                <xsd:annotation>
                  <xsd:documentation>
                    Class to scan for annotations.  It should be
                    annotated with either @Entity, @Embeddable or
                    @MappedSuperclass
                  </xsd:documentation>
                </xsd:annotation>
              </xsd:element>

              <!-- ************************************* -->

              <xsd:element name="exclude-unlisted-classes"
                           type="xsd:boolean"
                           default="false"
                           minOccurs="0">
                <xsd:annotation>
                  <xsd:documentation>
                    When set to true then only listed classes and
                    jars will be scanned for persistent classes,
                    otherwise the enclosing jar or directory will
                    also be scanned.
                    Not applicable to Java SE persistence units.
                  </xsd:documentation>
                </xsd:annotation>
              </xsd:element>

              <!-- ************************************* -->

              <xsd:element name="properties" minOccurs="0">
                <xsd:annotation>
                  <xsd:documentation>
                    A list of vendor-specific properties.
                  </xsd:documentation>
                </xsd:annotation>
                <xsd:complexType>
                  <xsd:sequence>
                    <xsd:element name="property"
                                 minOccurs="0" maxOccurs="unbounded">
                      <xsd:annotation>
                        <xsd:documentation>
                          A name-value pair.
                        </xsd:documentation>
                      </xsd:annotation>
                    <xsd:complexType>
                      <xsd:attribute name="name" type="xsd:string"
                                     use="required"/>
                      <xsd:attribute name="value" type="xsd:string"
                                     use="required"/>
                    </xsd:complexType>
                  </xsd:element>
                </xsd:sequence>
              </xsd:complexType>
            </xsd:element>
          </xsd:sequence>

          <!-- ************************************* -->

          <xsd:attribute name="name" type="xsd:string" use="required">
            <xsd:annotation>
              <xsd:documentation>
                Name used in code to reference this persistence unit.
              </xsd:documentation>
  12/19/05 140



persistence.xml Schema Enterprise JavaBeans 3.0, Proposed Final Draft Entity Packaging

Sun Microsystems, Inc.
            </xsd:annotation>
          </xsd:attribute>

          <!-- ************************************* -->

          <xsd:attribute name="transaction-type"
                 type="persistence:persistent-unit-transaction-type">
            <xsd:annotation>
              <xsd:documentation>
                Type of transactions used by EntityManagers
                from this persistence unit.
              </xsd:documentation>
            </xsd:annotation>
          </xsd:attribute>
          </xsd:complexType>
        </xsd:element>
      </xsd:sequence>
    </xsd:complexType>
  </xsd:element>

  <!-- ********************************************* -->

  <xsd:simpleType name="persistent-unit-transaction-type">
    <xsd:annotation>
      <xsd:documentation>
        public enum TransactionType { JTA, RESOURCE_LOCAL };
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string">
      <xsd:enumeration value="JTA"/>
       <xsd:enumeration value="RESOURCE_LOCAL"/>
    </xsd:restriction>
  </xsd:simpleType>
</xsd:schema>
141   12/19/05



Entity Packaging Enterprise JavaBeans 3.0, Proposed Final Draft persistence.xml Schema

Sun Microsystems, Inc.
  12/19/05 142



Java EE Deployment Enterprise JavaBeans 3.0, Proposed Final Draft Container and Provider Contracts for

Sun Microsystems, Inc.

deploy-

.2 and
Chapter 7 Container and Provider Contracts for
Deployment and Bootstrapping

This chapter defines requirements on the Java EE container and on the persistence provider for
ment and bootstrapping.

7.1 Java EE Deployment

Each persistence unit deployed into a Java EE container consists of a singlepersistence.xml file,
any number of mapping files, and any number of class files.

7.1.1 Responsibilities of the Container
At deployment time the container is responsible for scanning the locations specified in Section 6
discovering thepersistence.xml  files and processing them.
143   12/19/05



Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Proposed Final Draft Java EE Deploy-

Sun Microsystems, Inc.

t it

con-
for the

nce

d as a
yMan-
ber of
When the container finds apersistence.xml file, it processes the persistence unit definitions tha
contains. Provider or data source information not specified in thepersistence.xml file must be
provided at deployment time or defaulted by the container. The container may optionally add any
tainer-specific properties to be passed to the provider when creating the entity manager factory
persistence unit.

Once the container has read the persistence metadata, it determines thejavax.persis-
tence.spi.PersistenceProvider implementation class for each deployed named persiste
unit. It creates an instance of this implementation class and invokes thecreateContainerEnti-
tyManagerFactory method on that instance. The metadata—in the form of aPersistence-
UnitInfo class—is passed to the persistence provider as part of this call. The factory obtaine
result will be used by the container to create container-managed entity managers. Only one Entit
agerFactory is permitted to be created for each deployed persistence unit configuration. Any num
EntityManager instances may be created from a given factory.

When a persistence unit is redeployed, the container should call theclose method on the previous
EntityManagerFactory instance and call thecreateContainerEntityManagerFactory
method again, with the requiredPersistenceUnitInfo metadata, to achieve the redeployment.

7.1.2 Responsibilities of the Persistence Provider
The persistence provider must implement thePersistenceProvider SPI and be able to process
the metadata that is passed to it at the timecreateContainerEntityManagerFactory method
is called. An instance ofEntityManagerFactory is created using thePersistenceUnitInfo
metadata for the factory. The factory is then returned to the container.

7.1.3 javax.persistence.spi.PersistenceProvider
The interfacejavax.persistence.spi.PersistenceProvider is implemented by the per-
sistence provider.

It is invoked by the container in Java EE environments. It is invoked by thejavax.persis-
tence.Persistence class in Java SE environments. Thejavax.persistence.spi.Per-
sistenceProvider  implementation is not intended to be used by the application.

ThePersistenceProvider  class must have a public no-arg constructor.
  12/19/05 144



Java EE Deployment Enterprise JavaBeans 3.0, Proposed Final Draft Container and Provider Contracts for

Sun Microsystems, Inc.

e

le-
ap

plied.
The properties used in thecreateEntityManagerFactory method in Java SE environments ar
described further in section 7.1.3.1 below.

package javax.persistence.spi;

/**
* Interface implemented by the persistence provider.
* This interface is used to create an EntityManagerFactory.
* It is invoked by the container in Java EE environments and
* by the Persistence class in Java SE environments.
*/
public interface PersistenceProvider {

/**
 * Called by Persistence class when an EntityManagerFactory
 * is to be created.
 *
 * @param emName The name of the persistence unit
 * @param map A Map of properties for use by the
 * persistence provider. These properties may be used to
 * override the settings in the persistence.xml.
 * @return EntityManagerFactory for the persistence unit,
 * or null if the provider is not the right provider
 */
public EntityManagerFactory createEntityManagerFactory(String

emName, Map map);

/**
 * Called by the container when an EntityManagerFactory
 * is to be created.
 *
 * @param info Metadata for use by the persistence provider
 * @return EntityManagerFactory for the persistence unit
 * specified by the metadata
 */
 public EntityManagerFactory createContainerEntityManagerFac-

tory(PersistenceUnitInfo info);
}

7.1.3.1 Persistence Unit Properties
Persistence unit properties may be passed to persistence providers in the Map parameter of thecrea-
teEntityManagerFactory(String, Map) method. These properties correspond to the e
ments in thepersistence.xml file. When any of these properties are specified in the M
parameter, their values override the values of the corresponding elements in thepersistence.xml
file for the named persistence unit. They also override any defaults that the provider might have ap

The properties listed below are defined by this specification.

• javax.persistence.provider – Corresponds to theprovider element in the per-
sistence.xml . See section 6.2.1.3.
145   12/19/05



Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Proposed Final Draft Java EE Deploy-

Sun Microsystems, Inc.

ot rec-

e

• javax.persistence.transactionType – Corresponds to the transac-
tion-type attribute of thepersistent-unit element in thepersistence.xml . See
section 6.2.1.4.

• javax.persistence.jtaDataSource – Corresponds to thejta-data-source
element in thepersistence.xml . See section 6.2.1.5.

• javax.persistence.nonJtaDataSource – Corresponds to the
non-jta-data-source  element in thepersistence.xml . See section 6.2.1.5.

Any number of vendor-specific properties may also be included in the map. Properties that are n
ognized by a vendor must be ignored.

Entries that make use of the namespacejavax.persistence and its subnamespaces must not b
used for vendor-specific information. The namespacejavax.persistence is reserved for use by
this specification.
  12/19/05 146



Java EE Deployment Enterprise JavaBeans 3.0, Proposed Final Draft Container and Provider Contracts for

Sun Microsystems, Inc.
7.1.4 javax.persistence.spi.PersistenceUnit Inf o Interface

import javax.sql.DataSource;

/**
 * Interface implemented by the container and used by the
 * persistence provider when creating an EntityManagerFactory.
 */
public interface PersistenceUnitInfo {

/**
 * @return The name of the persistence unit.

* Corresponds to the <name> element in the persistence.xml file.
 */
public String getPersistenceUnitName();

/**
 * @return The fully qualified name of the persistence provider
 * implementation class.
 * Corresponds to the <provider> element in the persistence.xml
 * file.
 */
public String getPersistenceProviderClassName();

/**
 * @return The transaction type of the entity managers created
 * by the EntityManagerFactory.
 * The transaction type corresponds to the transaction-type
 * attribute in the persistence.xml file.
 */
public PersistenceUnitTransactionType getTransactionType();

/**
 * @return The JTA-enabled data source to be used by the
 * persistence provider.
 * The data source corresponds to the <jta-data-source>
 * element in the persistence.xml file or is provided at
 * deployment or by the container.
 */
public DataSource getJtaDataSource();

/**
 * @return The non-JTA-enabled data source to be used by the
 * persistence provider for accessing data outside a JTA
 * transaction.

* The data source corresponds to the named <non-jta-data-source>
 * element in the persistence.xml file or provided at
 * deployment or by the container.
 */
public DataSource getNonJtaDataSource();

/**
 * @return The list of mapping file names that the persistence
 * provider must load to determine the mappings for the entity
 * classes. The mapping files must be in the standard XML
 * mapping format, be uniquely named and be resource-loadable
 * from the application classpath.
 * Each mapping file name corresponds to a <mapping-file>
 * element in the persistence.xml file.
147   12/19/05



Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Proposed Final Draft Java EE Deploy-

Sun Microsystems, Inc.
 */
public List<String> getMappingFileNames();

/**
 * @return The list of JAR file URLs that the persistence
 * provider must examine for managed classes of the persistence
 * unit. Each jar file URL corresponds to a named <jar-file>
 * element in the persistence.xml file.
 */
public List<URL> getJarFileUrls();

/**
 * @return The URL for the jar file or directory that is the
 * root of the persistence unit. (If the persistence unit is
 * rooted in the WEB-INF/classes directory, this will be the
 * URL of that directory.)
 */
public URL getPersistenceUnitRootUrl();

/**
 * @return The list of the names of the classes that the
 * persistence provider must add it to its set of managed
 * classes. Each name corresponds to a named <class> element
 * in the persistence.xml file.
 */
public List<String> getManagedClassNames();

/**
 * @return Whether classes in the root of the persistence
 * unit that have not been explicitly listed are to be
 * included in the set of managed classes.
 * This value corresponds to the <exclude-unlisted-classes>
 * element in the persistence.xml file.
 */
public boolean excludeUnlistedClasses();

/**
 * @return Properties object. Each property corresponds
 * to a <property> element in the persistence.xml file
 */
public Properties getProperties();

/**
 * @return ClassLoader that the provider may use to load any
 * classes, resources, or open URLs.
 */
public ClassLoader getClassLoader();

/**
 * Add a transformer supplied by the provider that will be
 * called for every new class definition or class redefinition
 * that gets loaded by the loader returned by the
 * PersistenceInfo.getClassLoader method. The transformer
 * has no effect on the result returned by the
 * PersistenceInfo.getTempClassLoader method.

* Classes are only transformed once within the same classloading
 * scope, regardless of how many persistence units they may be
 * a part of.
 *
  12/19/05 148



Java EE Deployment Enterprise JavaBeans 3.0, Proposed Final Draft Container and Provider Contracts for

Sun Microsystems, Inc.

.

 * @param transformer A provider-supplied transformer that the
 * Container invokes at class-(re)definition time
 */
public void addTransformer(ClassTransformer transformer);

/**
 * Return a new instance of a ClassLoader that the provider
 * may use to temporarily load any classes, resources, or
 * open URLs. The scope and classpath of this loader is
 * exactly the same as that of the loader returned by
 * PersistenceInfo.getClassLoader. None of the classes loaded
 * by this class loader will be visible to application
 * components. The container does not use or maintain references
 * to this class loader after returning it to the provider.
 *
 * @return Temporary ClassLoader with same visibility as current
 * loader
 */
public ClassLoader getNewTempClassLoader();

}

The enum javax.persistence.spi.PersistenceUnitTransactionType defines
whether the entity managers created by the factory will be JTA or resource-local entity managers

public enum PersistenceUnitTransactionType {
JTA,
RESOURCE_LOCAL

}

149   12/19/05



Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Proposed Final Draft Bootstrapping in

Sun Microsystems, Inc.

e
finition

ervice
ation

 requir
The javax.persistence.spi.ClassTransformer interface is implemented by a persistenc
provider that wants to transform entities and managed classes at class load time or at class rede
time.

/**
 * A persistence provider supplies an instance of this
 * interface to the PersistenceUnitInfo.addTransformer
 * method. The supplied transformer instance will get
 * called to transform entity class files when they are
 * loaded or redefined. The transformation occurs before
 * the class is defined by the JVM.
 */

public interface ClassTransformer {

/**
 * Invoked when a class is being loaded or redefined.
 * The implementation of this method may transform the
 * supplied class file and return a new replacement class
 * file.
 *
 * @param loader The defining loader of the class to be
 * transformed, may be null if the bootstrap loader
 * @param className The name of the class in the internal form
 * of fully qualified class and interface names
 * @param classBeingRedefined If this is a redefine, the
 * class being redefined, otherwise null
 * @param protectionDomain The protection domain of the
 * class being defined or redefined
 * @param classfileBuffer The input byte buffer in class
 * file format - must not be modified
 * @return A well-formed class file buffer (the result of
 * the transform), or null if no transform is performed
 * @throws IllegalClassFormatException If the input does
 * not represent a well-formed class file
 */

byte[] transform(ClassLoader loader,
                 String className,
                 Class<?> classBeingRedefined,
                 ProtectionDomain protectionDomain,
                 byte[] classfileBuffer)

throws IllegalClassFormatException;
}

7.2 Bootstrapping in Java SE Environments

In Java SE environments, thePersistence.createEntityManagerFactory method is used
by the application to create an entity manager factory[40].

A persistence provider implementation running in a Java SE environment should also act as a s
provider by supplying a service provider configuration file as described in the JAR File Specific
[8].

[40] Use of these Java SE bootstrapping APIs may be supported in Java EE containers; however, support for such use is noted.
  12/19/05 150



Bootstrapping in Java SE Environments Enterprise JavaBeans 3.0, Proposed Final Draft Container and Provider Contracts for

Sun Microsystems, Inc.

nits.

ss of

oviders,
Spec-

fig-

r the

t

n-
The provider configuration file serves to export the provider implementation class to thePersis-
tence  bootstrap class, positioning the provider as a candidate for backing named persistence u

The provider supplies the provider configuration file by creating a text file namedjavax.persis-
tence.spi.PersistenceProvider and placing it in theMETA-INF/services directory of
one of its JAR files. The contents of the file should be the name of the provider implementation cla
the javax.persistence.spi.PersistenceProvider  interface.

Example:

A persistence vendor called ACME persistence products ships a JAR calledacme.jar that contains its
persistence provider implementation. The JAR includes the provider configuration file.

acme.jar
    META-INF/services/javax.persistence.PersistenceProvider
    com.acme.PersistenceProvider
    …

The contents of theMETA-INF/services/javax.persistence.PersistenceProvider
file is nothing more than the name of the implementation class:com.acme.PersistencePro-
vider .

Persistence provider jars may be installed or made available in the same ways as other service pr
e.g. as extensions or added to the application classpath according to the guidelines in the JAR File
ification.

ThePersistence bootstrap class will locate all of the persistence providers by their provider con
uration files and callcreateEntityManagerFactory() on them in turn until an appropriate
backing provider returns an EntityManagerFactory. A provider may deem itself as appropriate fo
persistence unit if any of the following are true:

• Its implementation class has been specified in theprovider element for that persistence uni
in the persistence.xml  file.

• The javax.persistence.provider property was included in the Map passed tocre-
ateEntityManagerFactory() and the value of the property is the provider’s impleme
tation class.

• No provider was specified for the persistence unit in either thepersistence.xml or the
property map.

If a provider does not qualify as the provider for the named persistence unit, it must returnnull when
createEntityManagerFactory()  is invoked on it.
151   12/19/05



Container and Provider Contracts for Deployment and BootstrappingEnterprise JavaBeans 3.0, Proposed Final Draft Bootstrapping in

Sun Microsystems, Inc.
7.2.1 javax.persistence.Persistence Class
package javax.persistence;

import java.util.*;
...

/**
 * Bootstrap class that is used to obtain an
 * EntityManagerFactory, from which EntityManager
 * references can be obtained.
 */
public class Persistence {

/**
 * Create and return an EntityManagerFactory for the
 * named persistence unit.
 *
 * @param persistenceUnitName The name of the persistence unit
 * @return The factory that creates EntityManagers configured
 * according to the specified persistence unit
 */
public static EntityManagerFactory createEntityManagerFac-

tory(String persistenceUnitName) {...}

/**
 * Create and return an EntityManagerFactory for the
 * named persistence unit using the given properties.
 *
 * @param persistenceUnitName The name of the persistence unit
 * @param props Additional properties to use when creating the
 * factory. The values of these properties override any values
 * that may have been configured elsewhere.
 * @return The factory that creates EntityManagers configured
 * according to the specified persistence unit.
 */
public static EntityManagerFactory createEntityManagerFac-

tory(String persistenceUnitName, Map properties) {...}

...
}

  12/19/05 152



Entity Enterprise JavaBeans 3.0, Proposed Final Draft Metadata Annotations

Sun Microsystems, Inc.

ions.

ntity

sed to
Chapter 8 Metadata Annotations

This chapter and chapter 9 define the metadata annotations introduced by this specification.

The XML schema defined in chapter 10 provides an alternative to the use of metadata annotatat

These annotations are in the packagejavax.persistence .

8.1 Entity

The Entity annotation specifies that the class is an entity. This annotation is applied to the e
class.

Thename annotation element defaults to the unqualified name of the entity class. This name is u
refer to the entity in queries. The name must not be a reserved literal in EJB QL.

@Target(TYPE) @Retention(RUNTIME)
public @interface Entity {
   String name() default "";
}

153   12/19/05



Metadata Annotations Enterprise JavaBeans 3.0, Proposed Final Draft Callback Annotations

Sun Microsystems, Inc.

y.

en-

to

vents.
8.2 Callback Annotations

TheEntityListeners  annotation specifies the callback listener classes to be used for an entit

@Target({TYPE}) @Retention(RUNTIME)
public @interface EntityListeners {
  Class[] value();
}

TheExcludeSuperclassListeners annotation specifies that the invocation of superclass list
ers is to be excluded for the entity class (and its subclasses).

@Target({TYPE}) @Retention(RUNTIME)
public @interface ExcludeSuperclassListeners {
}

TheExcludeDefaultListeners annotation specifies that the invocation of default listeners is
be excluded for the entity class (and its subclasses).

@Target({TYPE}) @Retention(RUNTIME)
public @interface ExcludeDefaultListeners {
}

The following annotations are used to specify callback methods for the corresponding lifecycle e
These annotations may be applied to methods on the entity class or methods of anEntityListener
class.

@Target({METHOD}) @Retention(RUNTIME)
public @interface PrePersist {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostPersist {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PreRemove {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostRemove {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PreUpdate {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostUpdate {}

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostLoad {}
  12/19/05 154



Annotations for Queries Enterprise JavaBeans 3.0, Proposed Final Draft Metadata Annotations

Sun Microsystems, Inc.

o the
en a
t;
ctive.
8.3 Annotations for Queries

8.3.1 Flush Mode Annotation

The FlushMode annotation is used to designate the points at which entities are to be flushed t
database.FlushMode(AUTO) causes flushes to occur at commit and before query execution wh
transaction is active.FlushMode(COMMIT) will cause flushing to occur only at transaction commi
the persistence provider runtime is permitted to flush before query execution if a transaction is a
Flush mode semantics are further defined in section 3.5.2.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface FlushMode {

FlushModeType value() default AUTO;
}

public enum FlushModeType {
COMMIT,
AUTO

}

8.3.2 NamedQuery Annotation

TheNamedQuery annotation is used to specify a named EJB QL query. Thename element is used to
refer to the query when using the EntityManager methods that create query objects.

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedQuery {

String name();
String query();
QueryHint[] hints() default {};

}
@Target({}) @Retention(RUNTIME)
public @interface QueryHint {

String name();
String value();

}
@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedQueries {

NamedQuery[] value ();
}

155   12/19/05



Metadata Annotations Enterprise JavaBeans 3.0, Proposed Final Draft Annotations for Queries

Sun Microsystems, Inc.

ele-
ts. The

QL

ds of
nd

in

rop-
8.3.3 NamedNativeQuery Annotation

The NamedNativeQuery annotation is used to specify a native SQL named query. The name
ment is used to refer to the query when using the EntityManager methods that create query objec
resultClass element refers to the class of the result; the value of theresultSetMapping ele-
ment is the name of aSQLResultSetMapping , as defined in metadata.

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQuery {

String name();
String query();
QueryHint[] hints() default {};
Class resultClass() default void.class;
String() resultSetMapping() default ""; // name of SQLResultSet-

Mapping
}

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQueries {

NamedNativeQuery[] value ();
}

8.3.4 Annotations for SQL Query Result Set Mappings
TheSqlResultSetMapping annotation is used to specify the mapping of the result of a native S
query.

@Target({TYPE, METHOD}) @Retention(RUNTIME)
public @interface SqlResultSetMapping {

String name();
EntityResult[] entities() default {};
ColumnResult[] columns() default {};

}

Thename element is the name given to the result set mapping, and used to refer to it in the metho
the Query API. Theentities andcolumns elements are used to specify the mapping to entities a
to scalar values respectively.

@Target({}) @Retention(RUNTIME)
public @interface EntityResult {

Class entityClass();
FieldResult[] fields() default {};
String discriminatorColumn() default "";

}

TheentityClass  element specifies the class of the result.

ThediscriminatorColumn element is used to specify the column name (or alias) of the column
the SELECT list that is used to determine the type of the entity instance.

Thefields element is used to map the columns specified in the SELECT list of the query to the p
erties or fields of the entity class.
  12/19/05 156



References to EntityManager and EntityManagerFactoryEnterprise JavaBeans 3.0, Proposed Final Draft Metadata Annotations

Sun Microsystems, Inc.

ELECT

ctories.

aged

to be
sed.

more

e used.
@Target({}) @Retention(RUNTIME)
public @interface FieldResult {

String name();
String column();

}

Thename element is the name of the persistent field or property of the class.

The column names that are used in these annotations refer to the names of the columns in the S
clause—i.e., column aliases, if applicable.

@Target({}) @Retention(RUNTIME)
public @interface ColumnResult {

String name();
}

8.4 References to EntityManager and EntityManagerFactory

These annotations are used to express dependencies on entity managers and entity manager fa

8.4.1 PersistenceContext Annotation

The PersistenceContext annotation is used to express a dependency on a container-man
EntityManager persistence context.

The name element refers to the name by which the EntityManager and its persistence unit are
known in the environment referencing context, and is not needed when dependency injection is u

TheunitName element refers to the name of the persistence unit. It must be specified if there is
than one persistence unit within the referencing scope.

Thetype element specifies whether a transaction-scoped or extended persistence context is to b

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceContext{
    String name() default "";
    String unitName() default "";
    PersistenceContextType type default TRANSACTION;
}
public enum PersistenceContextType {
  TRANSACTION,
  EXTENDED
}

@Target(TYPE) @Retention(RUNTIME)
public @interface PersistenceContexts{
  PersistenceContext[] value();
}

157   12/19/05



Metadata Annotations Enterprise JavaBeans 3.0, Proposed Final Draft References to EntityManager and Entity-

Sun Microsystems, Inc.

ry.

nvi-

cope.
8.4.2 PersistenceUnit Annotation

ThePersistenceUnit  annotation is used to express a dependency on an EntityManagerFacto

Thename element refers to the name by which the EntityManagerFactory is to be known in the e
ronment referencing context, and is not needed when dependency injection is used.

The unitName element refers to the name of the persistence unit as defined in thepersis-
tence.xml file. It must be specified if there is more than one persistence unit in the referencing s

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceUnit{
    String name() default "";
    String unitName() default "";
}

@Target(TYPE) @Retention(RUNTIME)
public @interface PersistenceUnits{
  PersistenceUnit[] value();
}

  12/19/05 158



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

t of the
abase.
s to the
lational
dency
pressed

ecifi-
Chapter 9 Metadata for Object/Relational Mapping

Object/relational mapping metadata is part of the application domain model contract.

The object/relational mapping metadata expresses requirements and expectations on the par
application as to the mapping of the entities and relationships of the application domain to a dat
Queries (and, in particular, SQL queries) written against the database schema that correspond
application domain model are dependent upon the mappings expressed by means of the object/re
mapping metadata. The implementation of this specification must assume this application depen
upon the object/relational mapping metadata and insure that the semantics and requirements ex
by that mapping are observed.

It is permitted, but not required, that DDL generation be supported by an implementation of this sp
cation. Portable applications should not rely upon the use of DDL generation.

9.1 Annotations for Object/Relational Mapping

These annotations and types are in the packagejavax.persistence .
159   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

be

.

lass.
ss mul-

a

9.1.1 Table Annotation

The Tableannotation specifies the primary table for the annotated entity. Additional tables may
specified usingSecondaryTable  or SecondaryTables  annotation.

Table 4 lists the annotation elements that may be specified for aTable annotation and their default val-
ues.

If no Table  annotation is specified for an entity class, the default values defined in Table 4 apply

@Target({TYPE}) @Retention(RUNTIME)
public @interface Table {

String name() default "";
String catalog() default "";
String schema() default "";
UniqueConstraint[] uniqueConstraints() default {};

}

Table 4 Table Annotation Elements

Example:

@Entity
@Table(name="CUST", schema="RECORDS")
public class Customer { ... }

9.1.2 SecondaryTable Annotation

TheSecondaryTable annotation is used to specify a secondary table for the annotated entity c
Specifying one or more secondary tables indicates that the data for the entity class is stored acro
tiple tables.

Table 5 lists the annotation elements that may be specified for aSecondaryTable annotation and
their default values.

Type Name Description Default

String name (Optional) The name of the table. Entity name

String catalog (Optional) The catalog of the table. Default catalog

String schema (Optional) The schema of the table. Default schem
for user

UniqueConstraint[] uniqueConstraints (Optional) Unique constraints that are to be
placed on the table. These are only used if table
generation is in effect. These constraints apply
in addition to any constraints specified by the
Column and JoinColumn annotations and con-
straints entailed by primary key mappings.

No additional
constraints
  12/19/05 160



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

s of
col-
names
If no SecondaryTable annotation is specified, it is assumed that all persistent fields or propertie
the entity are mapped to the primary table. If no primary key join columns are specified, the join
umns are assumed to reference the primary key columns of the primary table, and have the same
and types as the referenced primary key columns of the primary table.

@Target({TYPE}) @Retention(RUNTIME)
public @interface SecondaryTable {

String name();
String catalog() default "";
String schema() default "";
PrimaryKeyJoinColumn[] pkJoinColumns() default {};
UniqueConstraint[] uniqueConstraints() default {};

}

Table 5 SecondaryTable Annotation Elements

Example 1:Single secondary table with a single primary key column.

@Entity
@Table(name="CUSTOMER")
@SecondaryTable(name="CUST_DETAIL",
  pkJoinColumns=@PrimaryKeyJoinColumn(name="CUST_ID"))
public class Customer { ... }

Example 2: Single secondary table with multiple primary key columns.

@Entity
@Table(name="CUSTOMER")
@SecondaryTable(name="CUST_DETAIL",
  pkJoinColumns=@PrimaryKeyJoinColumns({
    @PrimaryKeyJoinColumn(name="CUST_ID"),
    @PrimaryKeyJoinColumn(name="CUST_TYPE")}))
public class Customer { ... }

Type Name Description Default

String name (Required) The name of the table.

String catalog (Optional) The catalog of the table. Default catalog

String schema (Optional) The schema of the table. Default schema for user

PrimaryKeyJoin-
Column[]

pkJoinColumns (Optional) The columns that are
used to join with the primary table.

Column(s) of the same
name as the primary key
column(s) in the primary
table

UniqueConstraint[] uniqueConstraints (Optional) Unique constraints that
are to be placed on the table. These
are typically only used if table gen-
eration is in effect. These constraints
apply in addition to any constraints
specified by the Column and Join-
Column annotations and constraints
entailed by primary key mappings.

No additional constraints
161   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

bles.

d in
9.1.3 SecondaryTables Annotation
TheSecondaryTables  annotation is used to specify multiple secondary tables for an entity.

@Target({TYPE}) @Retention(RUNTIME)
public @interface SecondaryTables {

SecondaryTable[] value();
}

Example 1:Multiple secondary tables assuming primary key columns are named the same in all ta

@Entity
@Table(name="EMPLOYEE")
@SecondaryTables({

@SecondaryTable(name="EMP_DETAIL"),
@SecondaryTable(name="EMP_HIST")

})
public class Employee { ... }

Example 2: Multiple secondary tables with differently named primary key columns.

@Entity
@Table(name="EMPLOYEE")
@SecondaryTables({

@SecondaryTable(name="EMP_DETAIL",
pkJoinColumns=@PrimaryKeyJoinColumn(name="EMPL_ID")),

@SecondaryTable(name="EMP_HIST",
pkJoinColumns=@PrimaryKeyJoinColumn(name="EMPLOYEE_ID"))

})
public class Employee { ... }

9.1.4 UniqueConstraint Annotation

The UniqueConstraint annotation is used to specify that a unique constraint is to be include
the generated DDL for a primary or secondary table.

Table 6 lists the annotation elements that may be specified for aUniqueConstraint  annotation.

@Target({}) @Retention(RUNTIME)
public @interface UniqueConstraint {

String[] columnNames();
}

Table 6 UniqueConstraint Annotation Elements

Type Name Description Default

String[] columnNames (Required) An array of the column names that make up the
constraint.
  12/19/05 162



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

e

Example:

@Entity
@Table(

name="EMPLOYEE",
uniqueConstraints=

{@UniqueConstraint(columnNames={"EMP_ID", "EMP_NAME"})}
)
public class Employee { ... }

9.1.5 Column Annotation

TheColumn  annotation is used to specify a mapped column for a persistent property or field.

Table 7 lists the annotation elements that may be specified for aColumn annotation and their default
values.

If no Column  annotation is specified, the default values in Table 7 apply.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Column {

String name() default "";
boolean unique() default false;
boolean nullable() default true;
boolean insertable() default true;
boolean updatable() default true;
String columnDefinition() default "";
String table() default "";
int length() default 255;
int precision() default 0; // decimal precision
int scale() default 0; // decimal scale

}

Table 7 Column Annotation Elements

Type Name Description Default

String name (Optional) The name of the column. The property or field nam

boolean unique (Optional) Whether the property is a unique key.
This is a shortcut for the UniqueConstraint anno-
tation at the table level and is useful for when the
unique key constraint is only a single field. This
constraint applies in addition to any constraint
entailed by primary key mapping and to con-
straints specified at the table level.

false

boolean nullable (Optional) Whether the database column is nul-
lable.

true

boolean insertable (Optional) Whether the column is included in
SQL INSERT statements generated by the per-
sistence provider.

true
163   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

n.

lues
Example 1:

@Column(name="DESC", nullable=false, length=512)
public String getDescription() { return description; }

Example 2:

@Column(name="DESC",
columnDefinition="CLOB NOT NULL",
table="EMP_DETAIL")

@Lob
public String getDescription() { return description; }

Example 3:

@Column(name="ORDER_COST", updatable=false, precision=12, scale=2)
public BigDecimal getCost() { return cost; }

9.1.6 JoinColumn Annotation

TheJoinColumn  annotation is used to specify a mapped column for joining an entity associatio

Table 8 lists the annotation elements that may be specified for aJoinColumn annotation and their
default values.

If no JoinColumn annotation is specified, a single join column is assumed and the default va
described below apply.

boolean updatable (Optional) Whether the column is included in
SQL UPDATE statements generated by the per-
sistence provider.

true

String columnDefinition (Optional) The SQL fragment that is used when
generating the DDL for the column.

Generated SQL to create a
column of the inferred
type.

String table (Optional) The name of the table that contains
the column. If absent the column is assumed to
be in the primary table.

Column is in primary table.

int length (Optional) The column length. (Applies only if a
string-valued column is used.)

255

int precision (Optional) The precision for a decimal (exact
numeric) column. (Applies only if a decimal col-
umn is used.)

0 (Value must be set by
developer.)

int scale (Optional) The scale for a decimal (exact
numeric) column. (Applies only if a decimal col-
umn is used.)

0

Type Name Description Default
  12/19/05 164



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

tation
as

is
r field
efer-
e is
nced

ri-

tional.

l-
The name annotation element defines the name of the foreign key column. The remaining anno
elements (other thanreferencedColumnName ) refer to this column and have the same semantics
for theColumn  annotation.

If there is a single join column, and if thename annotation member is missing, the join column name
formed as the concatenation of the following: the name of the referencing relationship property o
of the referencing entity; "_"; the name of the referenced primary key column. If there is no such r
encing relationship property or field in the entity (i.e., a join table is used), the join column nam
formed as the concatenation of the following: the name of the entity; "_"; the name of the refere
primary key column.

If the referencedColumnName element is missing, the foreign key is assumed to refer to the p
mary key of the referenced table.

Support for referenced columns that are not primary key columns of the referenced table is op
Applications that use such mappings will not be portable.

If there is more than one join column, aJoinColumn annotation must be specified for each join co
umn using theJoinColumns annotation. Both thename and thereferencedColumnName ele-
ments must be specified in each suchJoinColumn  annotation.

@Target({TYPE, METHOD, FIELD})  @Retention(RUNTIME)
public @interface JoinColumn {

String name() default "";
String referencedColumnName() default "";
boolean unique() default false;
boolean nullable() default true;
boolean insertable() default true;
boolean updatable() default true;
String columnDefinition() default "";
String table() default "";

}

165   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.
Table 8 JoinColumn Annotation Elements

Type Name Description Default

String name (Optional) The name of the foreign key column.
The table in which it is found depends upon the
context. If the join is for a OneToOne or Many-
ToOne mapping, the foreign key column is in the
table of the source entity. If the join is for a
ManyToMany, the foreign key is in a join table.

(Default only
applies if a single
join column is
used.) The concate-
nation of the fol-
lowing: the name of
the referencing rela-
tionship property or
field of the refer-
encing entity; "_";
the name of the ref-
erenced primary
key column. If there
is no such referenc-
ing relationship
property or field in
the entity, the join
column name is
formed as the con-
catenation of the
following: the name
of the entity; "_";
the name of the ref-
erenced primary
key column.

String referencedColumnName (Optional) The name of the column referenced
by this foreign key column. When used with
relationship mappings, the referenced column is
in the table of the target entity. When used inside
a JoinTable annotation, the referenced key col-
umn is in the entity table of the owning entity, or
inverse entity if the join is part of the inverse join
definition.

(Default only
applies if single join
column is being
used.) The same
name as the primary
key column of the
referenced table.

boolean unique (Optional) Whether the property is a unique key.
This is a shortcut for the UniqueConstraint anno-
tation at the table level and is useful for when the
unique key constraint is only a single field. It is
not necessary to explicitly specify this for a join
column that corresponds to a primary key that is
part of a foreign key.

false

boolean nullable (Optional) Whether the foreign key column is
nullable.

true

boolean insertable (Optional) Whether the column is included in
SQL INSERT statements generated by the per-
sistence provider.

true

boolean updatable (Optional) Whether the column is included in
SQL UPDATE statements generated by the per-
sistence provider.

true

String columnDefinition (Optional) The SQL fragment that is used when
generating the DDL for the column.

Generated SQL for
the column.
  12/19/05 166



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

f the
the
Example:

@ManyToOne
@JoinColumn(name="ADDR_ID")
public Address getAddress() { return address; }

9.1.7 JoinColumns Annotation

Composite foreign keys are supported by means of theJoinColumns annotation. TheJoinCol-
umns annotation groupsJoinColumn annotations for the same relationship or table association.

When theJoinColumns annotation is used, both thename and thereferencedColumnName
elements must be specified in each suchJoinColumn  annotation.

@Target({METHOD, FIELD})  @Retention(RUNTIME)
public @interface JoinColumns {
    JoinColumn[] value();
}

Example:

@ManyToOne
@JoinColumns({
    @JoinColumn(name="ADDR_ID", referencedColumnName="ID"),
    @JoinColumn(name="ADDR_ZIP", referencedColumnName="ZIP")
})
public Address getAddress() { return address; }

9.1.8 Id Annotation

The Id annotation specifies the primary key property or field of an entity. TheId annotation may be
applied in an entity or mapped superclass.

By default, the mapped column for the primary key of the entity is assumed to be the primary key o
primary table. If noColumn annotation is specified, the primary key column name is assumed to be
name of the primary key property or field.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Id {}

Example:

@Id
public Long getId() { return id; }

String table (Optional) The name of the table that contains
the column. If a table is not specified, the col-
umn is assumed to be in the primary table of the
applicable entity.

Column is in pri-
mary table.

Type Name Description Default
167   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

val-
or

ys for

e. This
9.1.9 GeneratedValue Annotation

TheGeneratedValue annotation provides for the specification of generation strategies for the
ues of primary keys. TheGeneratedValue annotation may be applied to a primary key property
field of an entity or mapped superclass in conjunction with theId  annotation.

Table 9 lists the annotation elements that may be specified for aGeneratedValue annotation and
their default values.

The types of primary key generation are defined by theGenerationType  enum:

public enum GenerationType { TABLE, SEQUENCE, IDENTITY, AUTO };

The TABLE generator type value indicates that the persistence provider must assign primary ke
the entity using an underlying database table to ensure uniqueness. TheSEQUENCEand IDENTITY
values specify the use of a database sequence or identity column, respectively. TheAUTOvalue indi-
cates that the persistence provider should pick an appropriate strategy for the particular databas
specification does not define the exact behavior of these strategies.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface GeneratedValue {
    GenerationType strategy() default AUTO;
    String generator() default "";
}

Table 9 GeneratedValue Annotation Elements

Example 1:

@Id
@GeneratedValue(strategy=SEQUENCE, generator="CUST_SEQ")
@Column(name="CUST_ID")
public Long getId() { return id; }

Example 2:

@Id
@GeneratedValue(strategy=TABLE, generator="CUST_GEN")
@Column(name="CUST_ID")
Long id;

Type Name Description Default

Generation-
Type

strategy (Optional) The primary key generation strat-
egy that the persistence provider must use to
generate the annotated entity primary key.

GenerationType.AUTO

String generator (Optional) The name of the primary key gen-
erator to use as specified in the SequenceGen-
erator or TableGenerator annotation.

Default id generator supplied
by persistence provider.
  12/19/05 168



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

class
ss or

he
9.1.10 Attrib uteOverride Annotation
TheAttributeOverride  annotation is used to override the mapping of a property or field.

TheAttributeOverride annotation may be applied to an entity that extends a mapped super
or to an embedded field or property to override a mapping defined by the mapped supercla
embeddable class. If theAttributeOverride annotation is not specified, the column is mapped t
same as in the original mapping.

Table 10 lists the annotation elements that may be specified for anAttributeOverride annotation.

The column element refers to the table for the class that contains the annotation.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverride {

String name();
Column column();

}

Table 10 AttributeOverride Annotation Elements

Type Name Description Default

String name (Required) The name of the property in the embedded object
that is being mapped if property-based access is being used,
or the name of the field if field-based access is used.

Column column (Required) The column that is being mapped to the persis-
tent attribute. The mapping type will remain the same as is
defined in the embeddable class or mapped superclass.
169   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

ped
Example:

@MappedSuperclass
public class Employee {

    @Id protected Integer empId;
    @Version protected Integer version;
    @ManyToOne @JoinColumn(name="ADDR")
    protected Address address;

    public Integer getEmpId() { ... }
    public void setEmpId(Integer id) { ... }
    public Address getAddress() { ... }
    public void setAddress(Address addr) { ... }
}

@Entity
@AttributeOverride(name="address", column=@Column(name="ADDR_ID"))
public class PartTimeEmployee extends Employee {

// address field mapping overridden to ADDR_ID fk
    @Column(name="WAGE")
    protected Float hourlyWage;

    public PartTimeEmployee() {}

    public Float getHourlyWage() { ... }
    public void setHourlyWage(Float wage) { ... }
}

9.1.11 Attrib uteOverrides Annotation
The mappings of multiple properties or fields may be overridden. TheAttributeOverrides anno-
tation is used for this purpose.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverrides {
  AttributeOverride[] value();
}

Example:

@Embedded
@AttributeOverrides({

@AttributeOverride(name="startDate", column=@Col-
umn("EMP_START")),
    @AttributeOverride(name="endDate", column=@Column("EMP_END"))
})
public EmploymentPeriod getEmploymentPeriod() { ... }

9.1.12 EmbeddedId Annotation

The EmbeddedId annotation is applied to a persistent field or property of an entity class or map
superclass to denote a composite primary key that is an embeddable class.
  12/19/05 170



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

posite

ties of
ys and

that
There must be only oneEmbeddedId annotation and noId annotation when theEmbeddedId anno-
tation is used.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface EmbeddedId {}

Example:

@EmbeddedId
protected EmployeePK empPK;

9.1.13 IdClass Annotation
The IdClass annotation is applied to an entity class or a mapped superclass to specify a com
primary key class that is mapped to multiple fields or properties of the entity.

The names of the fields or properties in the primary key class and the primary key fields or proper
the entity must correspond and their types must be the same. See Section 2.1.4, “Primary Ke
Entity Identity”.

TheId  annotation must also be applied to the corresponding fields or properties of the entity.

@Target({TYPE}) @Retention(RUNTIME)
public @interface IdClass {

Class value();
}

Example:

@IdClass(com.acme.EmployeePK.class)
@Entity
public class Employee {

@Id String empName;
@Id Date birthDay;

...
}

9.1.14 Transient Annotation
TheTransient annotation is used to annotate a property or field of the entity class. It specifies
the property or field is not persistent.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Transient {}

Example:

@Entity
public class Employee {

@Id int id;
@Transient User currentUser;

...
}

171   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

opti-
nd for

one

that

li-

itive

f

9.1.15 Version Annotation

TheVersion annotation specifies the version field or property of an entity class that serves as its
mistic lock value. The version is used to ensure integrity when performing the merge operation a
optimistic concurrency control.

Only a singleVersion property or field should be used per class; applications that use more than
Version  property or field will not be portable.

The Version property should be mapped to the primary table for the entity class; applications
map theVersion  property to a table other than the primary table will not be portable.

Fields or properties that are specified with theVersion annotation should not be updated by the app
cation.

The following types are supported for version properties:int , Integer , short , Short , long ,
Long , Timestamp .

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Version {}

Example:

@Version
@Column(name="OPTLOCK")
protected int getVersionNum() { return versionNum; }

9.1.16 Basic Annotation

The Basic annotation is the simplest type of mapping to a database column. TheBasic annotation
can be applied to a persistent property or instance variable of any of the following types: Java prim
types, wrappers of the primitive types,java.lang.String , java.math.BigInteger ,
java.math.BigDecimal , java.util.Date , java.util.Calendar , java.sql.Date ,
java.sql.Time , java.sql.Timestamp , byte[] , Byte[] , char[] , Character[] ,
enums, and any other type that implementsSerializable . As described in Section 2.1.6, the use o
theBasic  annotation is optional for persistent fields and properties of these types.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Basic {

FetchType fetch() default EAGER;
boolean optional() default true;

}

Table 11 lists the annotation elements that may be specified for aBasic annotation and their default
values.

TheFetchType  enum defines strategies for fetching data from the database:

public enum FetchType { LAZY, EAGER };
  12/19/05 172



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

agerly
hed
h the

sre-

ct to a

f the
The EAGER strategy is a requirement on the persistence provider runtime that data must be e
fetched. The LAZY strategy is ahint to the persistence provider runtime that data should be fetc
lazily when it is first accessed. The implementation is permitted to eagerly fetch data for whic
LAZY strategy hint has been specified. In particular, lazy fetching might only be available forBasic
mappings for which property-based access is used.

Theoptional element is a hint as to whether the value of the field or property may be null. It is di
garded for primitive types, which are considered non-optional.

Table 11 Basic Annotation Elements

Example 1:

@Basic
protected String name;

Example 2:

@Basic(fetch=LAZY)
protected String getName() { return name; }

9.1.17 Lob Annotation

A Lob annotation specifies that a persistent property or field should be persisted as a large obje
database-supported large object type. TheLob annotation may be used in conjunction with theBasic
annotation. A Lob may be either a binary or character type. The Lob type is inferred from the type o
persistent field or property, and except for string and character-based types defaults to Blob.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Lob {
}

Type Name Description Default

FetchType fetch (Optional) Whether the value of the field or
property should be lazily loaded or must be
eagerly fetched. The EAGER strategy is a
requirement on the persistence provider runt-
ime that the value must be eagerly fetched.
The LAZY strategy is a hint to the persistence
provider runtime.

EAGER

boolean optional (Optional) Whether the value of the field or
property may be null. This is a hint and is dis-
regarded for primitive types; it may be used in
schema generation.

true
173   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

poral

peci-

is
Example 1:

@Lob @Basic(fetch=EAGER)
@Column(name="REPORT")
protected String report;

Example 2:

@Lob @Basic(fetch=LAZY)
@Column(name="EMP_PIC", columnDefinition="BLOB NOT NULL")
protected byte[] pic;

9.1.18 Temporal Annotation

A Temporal annotation specifies that a persistent property or field should be persisted as a tem
type. TheTemporal  annotation may be used in conjunction with theBasic  annotation.

TheTemporalType enum defines the mapping for temporal types. The temporal type must be s
fied for persistent fields or properties of typejava.util.Date  andjava.util.Calendar .

public enum TemporalType {
DATE, //java.sql.Date
TIME, //java.sql.Time
TIMESTAMP //java.sql.Timestamp

}

If the temporal type is not specified or theTemporal annotation is not used, the temporal type
assumed to beTIMESTAMP.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Temporal {

TemporalType value() default TIMESTAMP;
}

Table 12 lists the annotation elements that may be specified for aTemporal annotation and their
default values.

Table 12 Temporal Annotation Elements

Example:

@Temporal(DATE)
protected java.util.Date endDate;

Type Name Description Default

TemporalType value (Optional) The type used in mapping a tempo-
ral type.

TIMESTAMP
  12/19/05 174



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

enu-

e

mn of
9.1.19 Enumerated Annotation

An Enumerated annotation specifies that a persistent property or field should be persisted as a
merated type. TheEnumerated  annotation may be used in conjunction with theBasic  annotation.

An enum can be mapped as either a string or an integer. TheEnumType enum defines the mapping for
enumerated types.

public enum EnumType {
ORDINAL,
STRING

}

If the enumerated type is not specified or theEnumerated annotation is not used, the enumerated typ
is assumed to beORDINAL.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Enumerated {

EnumType value() default ORDINAL;
}

Table 13 lists the annotation elements that may be specified for aEnumerated annotation and their
default values.

Table 13 Enumerated Annotation Elements

Example:

public enum EmployeeStatus {FULL_TIME, PART_TIME, CONTRACT}

public enum SalaryRate {JUNIOR, SENIOR, MANAGER, EXECUTIVE}

@Entity public class Employee {
...
public EmployeeStatus getStatus() {...}

@Enumerated(STRING)
public SalaryRate getPayScale() {...}
...

}

If the status property is mapped to a column of integer type, and the payscale property to a colu
varchar type, an instance that has a status ofPART_TIMEand a pay rate ofJUNIORwill be stored with
STATUS set to 1 andPAYSCALE set to"JUNIOR" .

Type Name Description Default

EnumType value (Optional) The type used in mapping an enum
type.

ORDINAL
175   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

t has
can

ociated

entity
ci-
agerly
9.1.20 ManyToOne Annotation

The ManyToOne annotation defines a single-valued association to another entity class tha
many-to-one multiplicity. It is not normally necessary to specify the target entity explicitly since it
usually be inferred from the type of the object being referenced.

Table 14 lists the annotation elements that may be specified for aManyToOne annotation and their
default values.

Thecascade element specifies the set of cascadable operations that are propagated to the ass
entity. The operations that are cascadable are defined by theCascadeType  enum:

public enum CascadeType { ALL, PERSIST, MERGE, REMOVE, REFRESH};

The value cascade=ALL is equivalent to cascade={PERSIST, MERGE, REMOVE,
REFRESH}.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToOne {
    Class targetEntity() default void.class;
    CascadeType[] cascade() default {};
    FetchType fetch() default EAGER;
    boolean optional() default true;
}

The EAGER strategy is a requirement on the persistence provider runtime that the associated
must be eagerly fetched. The LAZY strategy is ahint to the persistence provider runtime that the asso
ated entity should be fetched lazily when it is first accessed. The implementation is permitted to e
fetch associations for which the LAZY strategy hint has been specified.

Table 14 ManyToOne Annotation Elements

Type Name Description Default

Class targetEntity (Optional) The entity class that is the target of
the association.

The type of the field or
property that stores the
association.

CascadeType[] cascade (Optional) The operations that must be cas-
caded to the target of the association.

No operations are cas-
caded.

FetchType fetch (Optional) Whether the association should be
lazily loaded or must be eagerly fetched. The
EAGER strategy is a requirement on the persis-
tence provider runtime that the associated entity
must be eagerly fetched. The LAZY strategy is
a hint to the persistence provider runtime.

EAGER

boolean optional (Optional) Whether the association is optional.
If set to false then a non-null relationship must
always exist.

true
  12/19/05 176



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

o-one
can
Example:

@ManyToOne(optional=false)
@JoinColumn(name="CUST_ID", nullable=false, updatable=false)
public Customer getCustomer() { return customer; }

9.1.21 OneToOne Annotation

The OneToOne annotation defines a single-valued association to another entity that has one-t
multiplicity. It is not normally necessary to specify the associated target entity explicitly since it
usually be inferred from the type of the object being referenced.

Table 15 lists the annotation elements that may be specified for aOneToOne annotation and their
default values.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToOne {
    Class targetEntity() default void.class;
    CascadeType[] cascade() default {};
    FetchType fetch() default EAGER;
    boolean optional() default true;
    String mappedBy() default "";
}

Table 15 OneToOne Annotation Elements

Example 1: One-to-one association that maps a foreign key column.

Type Name Description Default

Class targetEntity (Optional) The entity class that is the target of
the association.

The type of the field or
property that stores the
association.

CascadeType[] cascade (Optional) The operations that must be cas-
caded to the target of the association.

No operations are cas-
caded.

FetchType fetch (Optional) Whether the association should be
lazily loaded or must be eagerly fetched. The
EAGER strategy is a requirement on the persis-
tence provider runtime that the associated entity
must be eagerly fetched. The LAZY strategy is
a hint to the persistence provider runtime.

EAGER

boolean optional (Optional) Whether the association is optional.
If set to false then a non-null relationship must
always exist.

true

String mappedBy (Optional) The field that owns the relationship.
The mappedBy element is only specified on the
inverse (non-owning) side of the association.
177   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

ary key

y type
On Customer class:

@OneToOne(optional=false)
@JoinColumn(

name="CUSTREC_ID", unique=true, nullable=false, updatable=false)
public CustomerRecord getCustomerRecord() { return customerRecord; }

On CustomerRecord class:

@OneToOne(optional=false, mappedBy="customerRecord")
public Customer getCustomer() { return customer; }

Example 2:One-to-one association that assumes both the source and target share the same prim
values.

On Employee class:

@Entity
public class Employee {

@Id Integer id;

@OneToOne @PrimaryKeyJoinColumn
EmployeeInfo info;
...

}

On EmployeeInfo class:

@Entity
public class EmployeeInfo {

@Id Integer id;
...

}

9.1.22 OneToMany Annotation

A OneToMany annotation defines a many-valued association with one-to-many multiplicity.

Table 16 lists the annotation elements that may be specified for aOneToMany annotation and their
default values.

If the Collection is defined using generics to specify the element type, the associated target entit
need not be specified; otherwise the target entity class must be specified.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToMany {
    Class targetEntity() default void.class;
    CascadeType[] cascade() default {};
    FetchType fetch() default LAZY;
    String mappedBy() default "";
}

  12/19/05 178



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

-
is
-

Table 16 OneToMany Annotation Elements

The default schema-level mapping for unidirectional one-to-many relationships uses a join
table, as described in Section 2.1.8.5. Unidirectional one-to-many relationships may be imple
mented using one-to-many foreign key mappings, however, such support is not required in th
release. Applications that want to use a foreign key mapping strategy for one-to-many relation
ships should make these relationships bidirectional to ensure portability.

Example 1: One-to-Many association using generics

In Customer class:

@OneToMany(cascade=ALL, mappedBy=”customer”)
public Set<Order> getOrders() { return orders; }

In Order class:

@ManyToOne
@JoinColumn(name="CUST_ID", nullable=false)
public Customer getCustomer() { return customer; }

Example 2: One-to-Many association without using generics

In Customer class:

@OneToMany(targetEntity=com.acme.Order.class, cascade=ALL,
mappedBy=”customer”)
public Set getOrders() { return orders; }

Type Name Description Default

Class targetEntity (Optional) The entity class that is the target
of the association. Optional only if the Col-
lection property is defined using Java gener-
ics. Must be specified otherwise.

The parameterized type of
the Collection when defined
using generics.

CascadeType[] cascade (Optional) The operations that must be cas-
caded to the target of the association.

No operations are cascaded.

FetchType fetch (Optional) Whether the association should be
lazily loaded or must be eagerly fetched. The
EAGER strategy is a requirement on the per-
sistence provider runtime that the associated
entities must be eagerly fetched. The LAZY
strategy is a hint to the persistence provider
runtime.

LAZY

String mappedBy The field that owns the relationship.
Required unless the relationship is unidirec-
tional.
179   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

iation.

oncate-

f

In Order class:

@ManyToOne
@JoinColumn(name="CUST_ID", nullable=false)
public Customer getCustomer() { return customer; }

9.1.23 JoinTable Annotation

TheJoinTable annotation is used in the mapping of associations. AJoinTable annotation is spec-
ified on the owning side of a many-to-many association, or in a unidirectional one-to-many assoc

Table 17 lists the annotation elements that may be specified for aJoinTable annotation and their
default values.

If the JoinTable  annotation is missing, the default values of the annotation elements apply.

The name of the join table is assumed to be the table names of the associated primary tables c
nated together (owning side first) using an underscore.

@Target({METHOD, FIELD})
public @interface JoinTable {

String name() default "";
String catalog() default "";
String schema() default "";
JoinColumn[] joinColumns() default {};
JoinColumn[] inverseJoinColumns() default {};
UniqueConstraint[] uniqueConstraints default {};

}

Table 17 JoinTable Annotation Elements

Type Name Description Default

String name (Optional) The name of the join table. The concatenated names o
the two associated primary
entity tables, separated by an
underscore.

String catalog (Optional) The catalog of the table. Default catalog.

String schema (Optional) The schema of the table. Default schema for user.

JoinCol-
umn[]

joinColumns (Optional) The foreign key columns
of the join table which reference the
primary table of the entity owning the
association (i.e. the owning side of
the association).

The same defaults as for
JoinColumn.

JoinCol-
umn[]

inverseJoinColumns (Optional) The foreign key columns
of the join table which reference the
primary table of the entity that does
not own the association (i.e. the
inverse side of the association).

The same defaults as for
JoinColumn.
  12/19/05 180



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

the
s does

, side.
des-
Example:

@JoinTable(
name="CUST_PHONE",
joinColumns=

@JoinColumn(name="CUST_ID", referencedColumnName="ID"),
    inverseJoinColumns=

@JoinColumn(name="PHONE_ID", referencedColumnName="ID")
)

9.1.24 ManyToMany Annotation

A ManyToMany annotation defines a many-valued association with many-to-many multiplicity. If
Collection is defined using generics to specify the element type, the associated target entity clas
not need to be specified; otherwise it must be specified.

Every many-to-many association has two sides, the owning side and the non-owning, or inverse
The join table is specified on the owning side. If the association is bidirectional, either side may be
ignated as the owning side.

The same annotation elements for theOneToMany annotation apply to theManyToMany annotation.
Table 16 lists these annotation elements and their default values.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToMany {

Class targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;
String mappedBy() default "";

}

Example 1:

In Customer class:

@ManyToMany
@JoinTable(name="CUST_PHONES")
public Set<PhoneNumber> getPhones() { return phones; }

In PhoneNumber class:

@ManyToMany(mappedBy="phones")
public Set<Customer> getCustomers() { return customers; }

UniqueCon-
straint[]

uniqueConstraints (Optional) Unique constraints that are
to be placed on the table. These are
only used if table generation is in
effect.

No additional constraints

Type Name Description Default
181   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

that is
y is

ted to
Example 2:

In Customer class:

@ManyToMany(targetEntity=com.acme.PhoneNumber.class)
public Set getPhones() { return phones; }

In PhoneNumber class:

@ManyToMany(targetEntity=com.acme.Customer.class, mappedBy="phones")
public Set getCustomers() { return customers; }

Example 3:

In Customer class:

@ManyToMany
@JoinTable(

name="CUST_PHONE",
joinColumns=

@JoinColumn(name="CUST_ID", referencedColumnName="ID"),
    inverseJoinColumns=

@JoinColumn(name="PHONE_ID", referencedColumnName="ID")
)
public Set<PhoneNumber> getPhones() { return phones; }

In PhoneNumberClass:

@ManyToMany(mappedBy="phones")
public Set<Customer> getCustomers() { return customers; }

9.1.25 MapK ey Annotation
TheMapKey annotation is used to specify the map key for associations of typejava.util.Map .

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface MapKey {
  String name() default "";
}

Thename element designates the name of the persistent field or property of the associated entity
used as the map key. If thename element is not specified, the primary key of the associated entit
used as the map key. If the primary key is a composite primary key and is mapped asIdClass , an
instance of the primary key class is used as the key.

If a persistent field or property other than the primary key is used as a map key then it is expec
have a uniqueness constraint associated with it.
  12/19/05 182



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.
Example 1:

@Entity
public class Department {
       ...
       @OneToMany(mappedBy="department")
       @MapKey(name="empId")
       public Map<Integer, Employee> getEmployees() {... }
       ...
}

@Entity
public class Employee {

...
       @Id Integer getEmpid() { ... }

       @ManyToOne
       @JoinColumn(name="dept_id")
       public Department getDepartment() { ... }
       ...
}

Example 2:

@Entity
public class Department {
     ...
     @OneToMany(mappedBy="department")
     @MapKey(name="empPK")
     public Map<EmployeePK, Employee> getEmployees() {... }
     ...
 }
@Entity
public class Employee {

@EmbeddedId public EmployeePK getEmpPK() { ... }
     ...
     @ManyToOne
@JoinColumn(name="dept_id")
     public Department getDepartment() { ... }
     ...
}

@Embeddable
public class EmployeePK {
    String name;
    Date bday;
}

183   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

at the

umed.

ciated
arison

rchy.

tegy,
n. An
lasses
strat-
9.1.26 OrderBy Annotation
TheOrderBy annotation specifies the ordering of the elements of a collection valued association
point when the association is retrieved.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OrderBy {
  String value() default "";
}

The syntax of thevalue  ordering element is anorderby_list, as follows:

orderby_list::= orderby_item [,orderby_item]*
orderby_item::= property_or_field_name [ASC | DESC]

If ASC or DESC is not specified,ASC (ascending order) is assumed.

If the ordering element is not specified, ordering by the primary key of the associated entity is ass

The property or field name must correspond to that of a persistent property or field of the asso
class. The properties or fields used in the ordering must correspond to columns for which comp
operators are supported.

Example:

@Entity public class Course {
 ...
 @ManyToMany
 @OrderBy("lastname ASC")
 public List<Student> getStudents() {...};
 ...
}

@Entity public class Student {
  ...
  @ManyToMany(mappedBy="students")
  @OrderBy // PK is assumed
  public List<Course> getCourses() {...};
  ...
}

9.1.27 Inheritance Annotation

The Inheritance annotation defines the inheritance strategy to be used for an entity class hiera
It is specified on the entity class that is the root of the entity class hierarchy.

It is permitted for an entity class within the entity hierarchy to specify a different inheritance stra
however, support for such combination of inheritance strategies is not required by this specificatio
inheritance strategy specified by an entity class remains in effect for the entities that are its subc
unless another entity class further down in the class hierarchy specifies that a different inheritance
egy is to be used for it and its subclasses.
  12/19/05 184



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

ss, and
ies. The

tegy

ence

gies.

hy or

tract
The three inheritance mapping strategies are the single table per class hierarchy, joined subcla
table per class strategies. See Section 2.1.10 for a more detailed discussion of inheritance strateg
inheritance strategy options are defined by theInheritanceType  enum:

public enum InheritanceType
{ SINGLE_TABLE, JOINED, TABLE_PER_CLASS };

Support for the TABLE_PER_CLASS mapping strategy is optional in this release.

If no inheritance type is specified for an entity class hierarchy, the SINGLE_TABLE mapping stra
is used.

Table 18 lists the annotation elements that may be specified for aInheritance annotation and their
default values.

@Target({TYPE}) @Retention(RUNTIME)
public @interface Inheritance {

InheritanceType strategy() default SINGLE_TABLE;
}

Table 18 Inheritance Annotation Elements

Example:

@Entity
@Inheritance(strategy=JOINED)
public class Customer { ... }

@Entity
public class ValuedCustomer extends Customer { ... }

9.1.28 DiscriminatorColumn Annotation

For the SINGLE_TABLE mapping strategy, and typically also for the JOINED strategy, the persist
provider will use a type discriminator column. TheDiscriminatorColumn annotation is used to
define the discriminator column for the SINGLE_TABLE and JOINED inheritance mapping strate

The strategy and the discriminator column are only specified in the root of an entity class hierarc
subhierarchy in which a different inheritance strategy is applied.

TheDiscriminatorColumn annotation can be specified on an entity class (including on an abs
entity class).

Type Name Description Default

InheritanceType strategy (Optional) The inheritance
strategy to use for the
entity inheritance hierar-
chy.

InheritanceType.SINGLE_TABLE
185   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

the
If the DiscriminatorColumn annotation is missing, and a discriminator column is required,
name of the discriminator column defaults to "DTYPE" and the discriminator type to STRING.

Table 19 lists the annotation elements that may be specified for aDiscriminatorColumn annota-
tion and their default values.

The supported discriminator types are defined by theDiscriminatorType  enum:

public enum DiscriminatorType { STRING, CHAR, INTEGER };

The type of the discriminator column, if specified in the optionalcolumnDefinition element, must
be consistent with the discriminator type.

@Target({TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorColumn {

String name() default "";
DiscriminatorType discriminatorType() default STRING;
String columnDefinition() default "";
int length() default 31;

}

Table 19 DiscriminatorColumn Annotation Elements

Example:

@Entity
@Table(name="CUST")
@Inheritance(strategy=SINGLE_TABLE)
@DiscriminatorColumn(name="DISC", discriminatorType=STRING,length=20)
public class Customer { ... }

@Entity
public class ValuedCustomer extends Customer { ... }

Type Name Description Default

String name (Optional) The name of column to be used for
the discriminator.

“DTYPE”

Dis-
crimi-
natorTy
pe

discriminator-
Type

(Optional) The type of object/column to use
as a class discriminator.

DiscriminatorType.STRING

String columnDefinition (Optional) The SQL fragment that is used
when generating the DDL for the discrimina-
tor column.

Provider-generated SQL to
create a column of the speci-
fied discriminator type.

String length (Optional) The column length for
String-based discriminator types. Ignored for
other discriminator types.

31
  12/19/05 186



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

for
-
l-
type.

class
ue, if

d or
able
9.1.29 DiscriminatorValue Annotation

TheDiscriminatorValue annotation is used to specify the value of the discriminator column
entities of the given type. TheDiscriminatorValue annotation can only be specified on a con
crete entity class. If theDiscriminatorValue annotation is not specified and a discriminator co
umn is used, a provider-specific function will be used to generate a value representing the entity 

The inheritance strategy and the discriminator column are only specified in the root of an entity
hierarchy or subhierarchy in which a different inheritance strategy is applied. The discriminator val
not defaulted, should be specified for each entity class in the hierarchy.

Table 20 lists the annotation elements that may be specified for aDiscriminatorValue annotation
and their default values.

The discriminator value must be consistent in type with the discriminator type of the specifie
defaulted discriminator column. If the discriminator type is an integer, the value specified must be
to be converted to an integer value (e.g.,"1" ).

@Target({TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorValue {

String value();
}

Table 20 DiscriminatorValueAnnotation Elements

Example:

@Entity
@Table(name="CUST")
@Inheritance(strategy=SINGLE_TABLE)
@DiscriminatorColumn(name="DISC", discriminatorType=STRING,length=20)
@DiscriminatorValue("CUSTOMER")
public class Customer { ... }

@Entity
@DiscriminatorValue("VCUSTOMER")
public class ValuedCustomer extends Customer { ... }

Type Name Description Default

String value (Optional) The value that indicates that the
row is an entity of the annotated entity type.

If the DiscriminatorValue
annotation is not specified, a
provider-specific function to
generate a value represent-
ing the entity type is used for
the value of the discriminator
column. If the Discriminator-
Type is STRING, the dis-
criminator value default is
the entity name.
187   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

ign

in

nced

rat-
s of the
9.1.30 PrimaryK eyJoinColumn Annotation

ThePrimaryKeyJoinColumn annotation specifies a primary key column that is used as a fore
key to join to another table.

ThePrimaryKeyJoinColumn annotation is used to join the primary table of an entity subclass
the JOINED mapping strategy to the primary table of its superclass; it is used with aSecond-
aryTable annotation to join a secondary table to a primary table; and it may be used in aOneToOne
mapping in which the primary key of the referencing entity is used as a foreign key to the refere
entity.

Table 21 lists the annotation elements that may be specified for aPrimaryKeyJoinColumn annota-
tion and their default values.

If no PrimaryKeyJoinColumn annotation is specified for a subclass in the JOINED mapping st
egy, the foreign key columns are assumed to have the same names as the primary key column
primary table of the superclass.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumn {
    String name() default "";
    String referencedColumnName() default "";
    String columnDefinition() default "";
}

Table 21 PrimaryKeyJoinColumn Annotation Elements

Type Name Description Default

String name The name of the primary key col-
umn of the current table.

The same name as the primary key
column of the superclass (JOINED
mapping strategy); the same name
as the primary key column of the
primary table (SecondaryTable
mapping); or the same name as the
primary key column for the table for
the referencing entity (OneToOne
mapping).

String referencedColumnName (Optional) The name of the pri-
mary key column of the table
being joined to.

The same name as the primary key
column of the primary table of the
superclass (JOINED mapping strat-
egy); the same name as the name of
the primary key column of the pri-
mary table (SecondaryTable map-
ping); or the same name as the
primary key column of the table for
the referenced entity (OneToOne
mapping).

String columnDefinition (Optional) The SQL fragment that
is used when generating the DDL
for the column. This should not be
specified for a OneToOne primary
key association.

Generated SQL to create a column
of the inferred type.
  12/19/05 188



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.
Example: Customer and ValuedCustomer subclass

@Entity
@Table(name="CUST")
@Inheritance(strategy=JOINED)
@DiscriminatorValue("CUST")
public class Customer { ... }

@Entity
@Table(name="VCUST")
@DiscriminatorValue("VCUST")
@PrimaryKeyJoinColumn(name="CUST_ID")
public class ValuedCustomer extends Customer { ... }

9.1.31 PrimaryK eyJoinColumns Annotation

Composite foreign keys are supported by means of thePrimaryKeyJoinColumns annotation. The
PrimaryKeyJoinColumns  annotation groupsPrimaryKeyJoinColumn  annotations.

@Target({TYPE}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumns {
PrimaryKeyJoinColumn[] value();
}

Example 1:ValuedCustomer subclass

@Entity
@Table(name="VCUST")
@DiscriminatorValue("VCUST")
@PrimaryKeyJoinColumns({

@PrimaryKeyJoinColumn(name="CUST_ID",
referencedColumnName="ID"),

@PrimaryKeyJoinColumn(name="CUST_TYPE",
referencedColumnName="TYPE")

})
public class ValuedCustomer extends Customer { ... }
189   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

ic part
of the

s or
Example 2: OneToOne relationship between Employee and EmployeeInfo classes

public class EmpPK {
public Integer id;
public String name;

}

@Entity
@IdClass(com.acme.EmpPK.class)
public class Employee {

    @Id Integer id;
    @Id String name;

    @OneToOne
    @PrimaryKeyJoinColumns({
        @PrimaryKeyJoinColumn(name="ID", referencedColumn-
Name="EMP_ID"),
        @PrimaryKeyJoinColumn(name="NAME", referencedColumn-
Name="EMP_NAME")})
    EmployeeInfo info;

    ...
}

@Entity
@IdClass(com.acme.EmpPK.class)
public class EmployeeInfo {

    @Id @Column(name="EMP_ID")
    Integer id;
    @Id @Column(name="EMP_NAME")
    String name;

    ...
}

9.1.32 Embeddable Annotation

TheEmbeddable annotation is used to specify a class whose instances are stored as an intrins
of an owning entity and share the identity of the entity. Each of the persistent properties or fields
embedded object is mapped to the database table for the entity. OnlyBasic , Column , Lob , Tempo-
ral , andEnumerated mapping annotations may portably be used to map the persistent field
properties of classes annotated asEmbeddable .

@Target({TYPE}) @Retention(RUNTIME)
public @interface Embeddable {
}

  12/19/05 190



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

e is

e
le.

han one

the

an
apped
of the
Example:

@Embeddable
public class EmploymentPeriod {

java.util.Date startDate;
java.util.Date endDate;
...

}

9.1.33 Embedded Annotation

TheEmbedded annotation is used to specify a persistent field or property of an entity whose valu
an instance of an embeddable class.

The AttributeOverride and/ orAttributeOverrides annotations may be used to overrid
the column mappings declared within the embeddable class, which are mapped to the entity tab

Implementations are not required to support embedded objects that are mapped across more t
table (e.g., split across primary and secondary tables or multiple secondary tables).

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Embedded {}

Example:

@Embedded
@AttributeOverrides({

@AttributeOverride(name="startDate",
column=@Column("EMP_START")),

    @AttributeOverride(name="endDate", column=@Column("EMP_END"))
})
public EmploymentPeriod getEmploymentPeriod() { ... }

9.1.34 MappedSuperclass Annotation
TheMappedSuperclass annotation designates a class whose mapping information is applied to
entities that inherit from it. A mapped superclass has no separate table defined for it.

A class designated with theMappedSuperclass annotation can be mapped in the same way as
entity except that the mappings will apply only to its subclasses since no table exists for the m
superclass itself. When applied to the subclasses the inherited mappings will apply in the context
subclass tables. Mapping information may be overridden in such subclasses by using theAttribu-
teOverride  annotation.

@Target(TYPE) @Retention(RUNTIME)
public @interface MappedSuperclass {}

9.1.35 SequenceGenerator Annotation
191   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.

by
-
ener-

ame
e
me is
The SequenceGenerator annotation defines a primary key generator that may be referenced
name when a generator element is specified for theGeneratedValue annotation. A sequence gener
ator may be specified on the entity class or on the primary key field or property. The scope of the g
ator name is global to the persistence unit (across all generator types).

Table 22 lists the annotation elements that may be specified for aSequenceGenerator annotation
and their default values.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface SequenceGenerator {
    String name();
    String sequenceName() default "";
    int initialValue() default 0;
    int allocationSize() default 50;
}

Table 22 SequenceGenerator Annotation Elements

Example:

@SequenceGenerator(name="EMP_SEQ", allocationSize=25)

9.1.36 TableGenerator Annotation

The TableGenerator annotation defines a primary key generator that may be referenced by n
when a generator element is specified for theGeneratedValue annotation. A table generator may b
specified on the entity class or on the primary key field or property. The scope of the generator na
global to the persistence unit (across all generator types).

Table 23 lists the annotation elements that may be specified for aTableGenerator annotation and
their default values.

Type Name Description Default

String name (Required) A unique generator name that can be referenced by
one or more classes to be the generator for primary key values.

String sequenceName (Optional) The name of the database sequence object from which
to obtain primary key values.

A provider-
chosen
value

int initialValue (Optional) The value from which the sequence object is to start
generating.

0

int allocationSize (Optional) The amount to increment by when allocating sequence
numbers from the sequence.

50
  12/19/05 192



Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata for Object/Relational Mapping

Sun Microsystems, Inc.

gener-
n of
The table element specifies the name of the table that is used by the persistence provider to store
ated id values for entities. An entity type will typically use its own row in the table for the generatio
its id values. The id values are normally positive integers.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface TableGenerator {

String name();
String table() default "";
String catalog() default "";
String schema() default "";
String pkColumnName() default "";
String valueColumnName() default "";
String pkColumnValue() default "";
int initialValue() default 0;
int allocationSize() default 50;
UniqueConstraint[] uniqueConstraints() default {};

}

Table 23 TableGenerator Annotation Elements

Type Name Description Default

String name (Required) A unique generator name that
can be referenced by one or more classes
to be the generator for id values.

String table (Optional) Name of table that stores the
generated id values.

Name is chosen by persistence
provider

String catalog (Optional) The catalog of the table. Default catalog

String schema (Optional) The schema of the table. Default schema for user

String pkColumnName (Optional) Name of the primary key col-
umn in the table.

A provider-chosen name

String valueColumn-
Name

(Optional) Name of the column that stores
the last value generated.

A provider-chosen name

String pkColumnValue (Optional) The primary key value in the
generator table that distinguishes this set
of generated values from others that may
be stored in the table.

A provider-chosen value to store
in the primary key column of the
generator table

int initialValue (Optional) The initial value to be used
when allocating id numbers from the gen-
erator.

0

int allocationSize (Optional) The amount to increment by
when allocating id numbers from the gen-
erator.

50

Uniqu
eCon-
straint
[]

uniqueConstraints (Optional) Unique constraints that are to
be placed on the table. These are only used
if table generation is in effect. These con-
straints apply in addition to primary key
constraints .

No additional constraints
193   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final DraftAnnotations for Object/Relational Mapping

Sun Microsystems, Inc.
Example 1:

@Entity public class Employee {
...
@TableGenerator(

name="empGen",
table="ID_GEN",
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="EMP_ID",
allocationSize=1)

@Id
@GeneratedValue(strategy=TABLE, generator="empGen")
public int id;
...

}

Example 2:

@Entity public class Address {
...
@TableGenerator(

name="addressGen",
table="ID_GEN",
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="ADDR_ID")

@Id
@GeneratedValue(strategy=TABLE, generator="addressGen")
public int id;
...

}

  12/19/05 194



Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata

Sun Microsystems, Inc.
9.2 Examples of the Application of Annotations for
Object/Relational Mapping

9.2.1 Examples of Simple Mappings

@Entity
public class Customer {

    @Id @GeneratedValue(strategy=AUTO) Long id;
    @Version protected int version;
    @ManyToOne Address address;
    @Basic String description;
    @OneToMany(targetEntity=com.acme.Order.class,
               mappedBy="customer")
    Collection orders = new Vector();
    @ManyToMany(mappedBy="customers")
    Set<DeliveryService> serviceOptions = new HashSet();

    public Long getId() { return id; }

    public Address getAddress() { return address; }
    public void setAddress(Address addr) {
        this.address = addr;
    }

    public String getDescription() { return description; }
    public void setDescription(String desc) {
        this.description = desc;
    }

    public Collection getOrders() { return orders; }

    public Set<DeliveryService> getServiceOptions() {
        return serviceOptions;
    }
}

@Entity
public class Address {

    private Long id;
    private int version;
    private String street;

    @Id @GeneratedValue(strategy=AUTO)
    public Long getId() { return id; }
    protected void setId(Long id) { this.id = id; }

    @Version
    public int getVersion() { return version; }
    protected void setVersion(int version) {
        this.version = version;
    }
195   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final Draft Examples of the Application of Annota-

Sun Microsystems, Inc.
    public String getStreet() { return street; }
    public void setStreet(String street) {
        this.street = street;
    }
}

@Entity
public class Order {

    private Long id;
    private int version;
    private String itemName;
    private int quantity;
    private Customer cust;

    @Id @GeneratedValue(strategy=AUTO)
    public Long getId() { return id; }
    public void setId(Long id) { this.id = id; }

    @Version
    protected int getVersion() { return version; }
    protected void setVersion(int version) {
        this.version = version;
    }

    public String getItemName() { return itemName; }
    public void setItemName(String itemName) {
        this.itemName = itemName;
    }

    public int getQuantity() { return quantity; }
    public void setQuantity(int quantity) {
        this.quantity = quantity;
    }

    @ManyToOne
    public Customer getCustomer() { return cust; }
    public void setCustomer(Customer cust) {
        this.cust = cust;
    }
}

@Entity
@Table(name="DLVY_SVC")
public class DeliveryService {

    private String serviceName;
    private int priceCategory;
    private Collection customers;

    @Id
    public String getServiceName() { return serviceName; }
    public void setServiceName(String serviceName) {
        this.serviceName = serviceName;
    }

    public int getPriceCategory() { return priceCategory; }
  12/19/05 196



Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata

Sun Microsystems, Inc.
    public void setPriceCategory(int priceCategory) {
        this.priceCategory = priceCategory;
    }

    @ManyToMany(targetEntity=com.acme.Customer.class)
    @JoinTable(name="CUST_DLVRY")
    public Collection getCustomers() { return customers; }
    public setCustomers(Collection customers) {
        this.customers = customers;
    }
}

197   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final Draft Examples of the Application of Annota-

Sun Microsystems, Inc.
9.2.2 A Mor e Complex Example

/***** Employee class *****/

@Entity
@Table(name="EMPL")
@SecondaryTable(name="EMP_SALARY",
    pkJoinColumns=@PrimaryKeyJoinColumn(name="EMP_ID",
                     referencedColumnName="ID"))
public class Employee implements Serializable {

    private Long id;
    private int version;
    private String name;
    private Address address;
    private Collection phoneNumbers;
    private Collection<Project> projects;
    private Long salary;
    private EmploymentPeriod period;

@Id @GeneratedValue(strategy=TABLE)
    public Integer getId() { return id; }
    protected void setId(Integer id) { this.id = id; }

    @Version
    @Column(name="EMP_VERSION", nullable=false)
    public int getVersion() { return version; }
    protected void setVersion(int version) {
        this.version = version;
    }

    @Column(name="EMP_NAME", length=80)
    public String getName() { return name; }
    public void setName(String name) { this.name = name; }

    @ManyToOne(cascade=PERSIST, optional=false)
    @JoinColumn(name="ADDR_ID",
                referencedColumnName="ID", nullable=false)
    public Address getAddress() { return address; }
    public void setAddress(Address address) {
        this.address = address;
    }

    @OneToMany(targetEntity=com.acme.PhoneNumber.class,
               cascade=ALL, mappedBy="employee")
    public Collection getPhoneNumbers() { return phoneNumbers; }
    public void setPhoneNumbers(Collection phoneNumbers) {
        this.phoneNumbers = phoneNumbers;
    }

    @ManyToMany(cascade=PERSIST, mappedBy="employee")
    @JoinTable(

name="EMP_PROJ",
joinColumns=@JoinColumn(

            name="EMP_ID", referencedColumnName="ID"),
inverseJoinColumns=@JoinColumn(

            name="PROJ_ID", referencedColumnName="ID"))
    public Collection<Project> getProjects() { return projects; }
    public void setProjects(Collection<Project> projects) {
  12/19/05 198



Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata

Sun Microsystems, Inc.
        this.projects = projects;
    }

    @Column(name="EMP_SAL", table="EMP_SALARY")
    public Long getSalary() { return salary; }
    public void setSalary(Long salary) {
        this.salary = salary;
    }

    @Embedded
    @AttributeOverrides({
        @AttributeOverride(name="startDate",
            column=@Column(name="EMP_START")),
        @AttributeOverride(name="endDate",
            column=@Column(name="EMP_END"))
    })
    public EmploymentPeriod getEmploymentPeriod() {
        return period;
    }
    public void setEmploymentPeriod(EmploymentPeriod period) {
        this.period = period;
    }
}

/***** Address class *****/

@Entity
public class Address implements Serializable {

    private Integer id;
    private int version;
    private String street;
    private String city;

    @Id @GeneratedValue(strategy=IDENTITY)
    public Integer getId() { return id; }
    protected void setId(Integer id) { this.id = id; }

    @Version @Column("VERS", nullable=false)
    public int getVersion() { return version; }
    protected void setVersion(int version) {
        this.version = version;
    }

    @Column(name="RUE")
    public String getStreet() { return street; }
    public void setStreet(String street) {
        this.street = street;
    }

    @Column(name="VILLE")
    public String getCity() { return city; }
    public void setCity(String city) { this.city = city; }
}

/***** PhoneNumber class *****/

@Entity
199   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final Draft Examples of the Application of Annota-

Sun Microsystems, Inc.
@Table(name="PHONE")
public class PhoneNumber implements Serializable {

    private String number;
    private int phoneType;
    private Employee employee;

    @Id
    public String getNumber() { return number; }
    public void setNumber(String number) {
        this.number = number;
    }

    @Column(name="PTYPE")
    public int getPhonetype() { return phonetype; }
    public void setPhoneType(int phoneType) {
        this.phoneType = phoneType;
    }

    @ManyToOne(optional=false)
    @JoinColumn(name="EMP_ID", nullable=false)
    public Employee getEmployee() { return employee; }
    public void setEmployee(Employee employee) {
        this.employee = employee;
    }
}

/***** Project class *****/

@Entity
@Inheritance(strategy=JOINED)
DiscriminatorValue("Proj")
@DiscriminatorColumn(name="DISC")
public class Project implements Serializable {

    private Integer projId;
    private int version;
    private String name;
    private Set<Employee> employees;

    @Id @GeneratedValue(strategy=TABLE)
    public Integer getId() { return projId; }
    protected void setId(Integer id) { this.projId = id; }

    @Version
    public int getVersion() { return version; }

protected void setVersion(int version) { this.version = version; }

    @Column(name="PROJ_NAME")
    public String getName() { return name; }
    public void setName(String name) { this.name = name; }

    @ManyToMany(mappedBy="projects")
    public Set<Employee> getEmployees() { return employees; }
    public void setEmployees(Set<Employee> employees) {
        this.employees = employees;
    }
}

  12/19/05 200



Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft Metadata

Sun Microsystems, Inc.
/***** GovernmentProject subclass *****/

@Entity
@Table(name="GOVT_PROJECT")
@DiscriminatorValue("GovtProj")
@PrimaryKeyJoinColumn(name="GOV_PROJ_ID",
                      referencedColumnName="ID")
public class GovernmentProject extends Project {

    private String fileInfo;

    @Column("INFO")
    public String getFileInfo() { return fileInfo; }
    public void setFileInfo(String fileInfo) {
        this.fileInfo = fileInfo;
    }
}

/***** CovertProject subclass *****/

@Entity
@Table(name="C_PROJECT")
@DiscriminatorValue("CovProj")
@PrimaryKeyJoinColumn(name="COV_PROJ_ID",
                      referencedColumnName="ID")
public class CovertProject extends Project {

    private String classified;

public CovertProject() { super(); }

    public CovertProject(String classified) {
this();

        this.classified = classified;
    }

    @Column(updatable=false)
    public String getClassified() { return classified; }
    protected void setClassified(String classified) {
        this.classified = classified;
    }
}

/***** EmploymentPeriod class *****/

@Embeddable
public class EmploymentPeriod implements Serializable {

    private Date start;
    private Date end;

    @Column(nullable=false)
    public Date getStartDate() { return start; }
    public void setStartDate(Date start) {
        this.start = start;
201   12/19/05



Metadata for Object/Relational Mapping Enterprise JavaBeans 3.0, Proposed Final Draft Examples of the Application of Annota-

Sun Microsystems, Inc.
    }

    public Date getEndDate() { return end; }
    public void setEndDate(Date end) {
       this.end = end;
    }
}

  12/19/05 202



Examples of the Application of Annotations for Object/Relational MappingEnterprise JavaBeans 3.0, Proposed Final Draft XML

Sun Microsystems, Inc.
Chapter 10 XML Descriptor

The XML descriptor is intended to serve as both an alternative and an overriding mechanism
to the use of Java language metadata annotations.
203   12/19/05



XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft XML Schema

Sun Microsystems, Inc.
10.1 XML Schema

This section provides the XML schema for use with the persistence API.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Java Persistence orm.xml schema -->
<xsd:schema targetNamespace="http://java.sun.com/xml/ns/persistence/orm"
xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="1.0">
  <xsd:annotation>
    <xsd:documentation>
      @(#)orm_1_0.xsd 1.0  Dec 9 2005
    </xsd:documentation>
  </xsd:annotation>
  <xsd:annotation>
     <xsd:documentation><![CDATA[

      This is the XML Schema for the persistence object-relational
      mapping file.
      The file may be named "META-INF/orm.xml" in the persistence
      archive or it may be named some other name which would be
      used to locate the file as resource on the classpath.

     ]]></xsd:documentation>
  </xsd:annotation>
  <xsd:include schemaLocation="orm_1_0.xsd"/>

  <!-- **************************************************** -->

  <xsd:element name="entity-mappings">
    <xsd:complexType>
      <xsd:sequence>
        <xsd:element name="entity" type="orm:entity"
                     minOccurs="0" maxOccurs="unbounded"/>
        <xsd:element name="embeddable" type="orm:embeddable"
                     minOccurs="0" maxOccurs="unbounded"/>
        <xsd:element name="mapped-superclass" type="orm:mapped-superclass"
                     minOccurs="0" maxOccurs="unbounded"/>
        <xsd:element name="named-query" type="orm:named-query"
                     minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="named-native-query" type="orm:named-native-query"
                     minOccurs="0" maxOccurs="unbounded"/>
        <xsd:element name="sql-result-set-mapping"
                     type="orm:sql-result-set-mapping"
                     minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="sequence-generator" type="orm:sequence-generator"
                     minOccurs="0" maxOccurs="unbounded"/>
        <xsd:element name="table-generator" type="orm:table-generator"
                     minOccurs="0" maxOccurs="unbounded"/>
        <xsd:element name="default-entity-listeners"
                     type="orm:entity-listeners"
                     minOccurs="0"/>
        <xsd:element name="cascade"
                     type="orm:cascade-type"
                     minOccurs="0" maxOccurs="unbounded"/>
      </xsd:sequence>
      <xsd:attribute name="package" type="xsd:string"/>
      <xsd:attribute name="catalog" type="xsd:string"/>
      <xsd:attribute name="schema" type="xsd:string"/>
      <xsd:attribute name="access" type="orm:access-type"/>
      <xsd:attribute name="flush-mode" type="orm:flush-mode-type"/>
    </xsd:complexType>
  12/19/05 204



XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft XML Descriptor

Sun Microsystems, Inc.
  </xsd:element>

  <xsd:complexType name="entity">
    <xsd:annotation>
      <xsd:documentation>
        @Target(TYPE) @Retention(RUNTIME)
        public @interface Entity {
        String name() default "";
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="table" type="orm:table" minOccurs="0"/>
      <xsd:element name="secondary-table" type="orm:secondary-table"
                   minOccurs="0" maxOccurs="unbounded"/>
      <xsd:element name="primary-key-join-column"
                   type="orm:primary-key-join-column"
                   minOccurs="0" maxOccurs="unbounded"/>
      <xsd:element name="id-class" type="orm:id-class" minOccurs="0"/>
      <xsd:element name="inheritance" type="orm:inheritance" minOccurs="0"/>

<xsd:element name="discriminator-value" type="orm:discriminator-value"
                   minOccurs="0"/>
      <xsd:element name="discriminator-column"
                   type="orm:discriminator-column"
                   minOccurs="0"/>
      <xsd:element name="sequence-generator" type="orm:sequence-generator"
                   minOccurs="0"/>
      <xsd:element name="table-generator" type="orm:table-generator"
                   minOccurs="0"/>
      <xsd:element name="attribute-override" type="orm:attribute-override"
                   minOccurs="0" maxOccurs="unbounded"/>
      <xsd:element name="named-query" type="orm:named-query"
                   minOccurs="0" maxOccurs="unbounded"/>
      <xsd:element name="named-native-query" type="orm:named-native-query"
                   minOccurs="0" maxOccurs="unbounded"/>
      <xsd:element name="sql-result-set-mapping"
                   type="orm:sql-result-set-mapping"
                   minOccurs="0"/>
      <xsd:element name="exclude-default-listeners" type="xsd:boolean"
                   minOccurs="0"/>
      <xsd:element name="exclude-superclass-listeners" type="xsd:boolean"
                   minOccurs="0"/>
      <xsd:element name="entity-listeners" type="orm:entity-listeners"
                   minOccurs="0"/>
      <xsd:element name="pre-persist" type="orm:pre-persist" minOccurs="0"/>
      <xsd:element name="post-persist" type="orm:post-persist"
                   minOccurs="0"/>
      <xsd:element name="pre-remove" type="orm:pre-remove" minOccurs="0"/>
      <xsd:element name="post-remove" type="orm:post-remove" minOccurs="0"/>
      <xsd:element name="pre-update" type="orm:pre-update" minOccurs="0"/>
      <xsd:element name="post-update" type="orm:post-update" minOccurs="0"/>
      <xsd:element name="post-load" type="orm:post-load" minOccurs="0"/>
      <xsd:choice>
        <xsd:element name="id" type="orm:id"
                     minOccurs="0" maxOccurs="unbounded"/>
        <xsd:element name="embedded-id" type="orm:embedded-id"
                     minOccurs="0"/>
      </xsd:choice>
      <xsd:element name="attribute" type="orm:attribute"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="name" type="xsd:string"/>
    <xsd:attribute name="class" type="xsd:string" use="required"/>
    <xsd:attribute name="access" type="orm:access-type"/>
  </xsd:complexType>
205   12/19/05



XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft XML Schema

Sun Microsystems, Inc.
  <xsd:complexType name="id">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface Id {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="column" type="orm:column"/>
      <xsd:element name="generated-value" type="orm:generated-value"/>
      <xsd:element name="temporal" type="orm:temporal"/>
    </xsd:sequence>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:complexType name="embedded-id">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface EmbeddedId {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="attribute-override" type="orm:attribute-override"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:complexType name="attribute">
    <xsd:sequence>
      <xsd:choice minOccurs="0">
        <xsd:element name="basic" type="orm:basic"/>
        <xsd:element name="version" type="orm:version"/>
        <xsd:element name="many-to-one" type="orm:many-to-one"/>
        <xsd:element name="one-to-many" type="orm:one-to-many"/>
        <xsd:element name="one-to-one" type="orm:one-to-one"/>
        <xsd:element name="many-to-many" type="orm:many-to-many"/>
        <xsd:element name="embedded" type="orm:embedded"/>
        <xsd:element name="transient" type="orm:transient"/>
      </xsd:choice>
      <xsd:choice minOccurs="0">
        <xsd:element name="column" type="orm:column"/>
        <xsd:element name="join-column" type="orm:join-column"
                     maxOccurs="unbounded"/>
        <xsd:element name="join-table" type="orm:join-table"/>
      </xsd:choice>
      <xsd:choice minOccurs="0">
          <xsd:element name="lob" type="orm:lob"/>
          <xsd:element name="temporal" type="orm:temporal"/>
          <xsd:element name="enumerated" type="orm:enumerated"/>
          <xsd:element name="map-key" type="orm:map-key"/>
          <xsd:element name="order-by" type="orm:order-by"/>
      </xsd:choice>
      <xsd:element name="attribute-override" type="orm:attribute-override"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:simpleType name="access-type">
    <xsd:annotation>
      <xsd:documentation>
        public enum AccessType { PROPERTY, FIELD };
      </xsd:documentation>
    </xsd:annotation>
  12/19/05 206



XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft XML Descriptor

Sun Microsystems, Inc.
    <xsd:restriction base="xsd:string">
      <xsd:enumeration value="PROPERTY"/>
      <xsd:enumeration value="FIELD"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:complexType name="entity-listeners">
    <xsd:annotation>
      <xsd:documentation>
        @Target({TYPE}) @Retention(RUNTIME)
        public @interface EntityListeners {
          Class[] value();
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="entity-listener" type="orm:entity-listener"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
  </xsd:complexType>

  <xsd:complexType name="entity-listener">
    <xsd:sequence>
      <xsd:element name="pre-persist" type="orm:pre-persist" minOccurs="0"/>
      <xsd:element name="post-persist" type="orm:post-persist"
                   minOccurs="0"/>
      <xsd:element name="pre-remove" type="orm:pre-remove" minOccurs="0"/>
      <xsd:element name="post-remove" type="orm:post-remove" minOccurs="0"/>
      <xsd:element name="pre-update" type="orm:pre-update" minOccurs="0"/>
      <xsd:element name="post-update" type="orm:post-update" minOccurs="0"/>
      <xsd:element name="post-load" type="orm:post-load" minOccurs="0"/>
    </xsd:sequence>
    <xsd:attribute name="class" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:complexType name="pre-persist">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD}) @Retention(RUNTIME)
        public @interface PrePersist {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="method-name" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:complexType name="post-persist">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD}) @Retention(RUNTIME)
        public @interface PostPersist {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="method-name" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:complexType name="pre-remove">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD}) @Retention(RUNTIME)
        public @interface PreRemove {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="method-name" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:complexType name="post-remove">
207   12/19/05



XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft XML Schema

Sun Microsystems, Inc.
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD}) @Retention(RUNTIME)
        public @interface PostRemove {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="method-name" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:complexType name="pre-update">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD}) @Retention(RUNTIME)
        public @interface PreUpdate {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="method-name" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:complexType name="post-update">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD}) @Retention(RUNTIME)
        public @interface PostUpdate {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="method-name" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:complexType name="post-load">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD}) @Retention(RUNTIME)
        public @interface PostLoad {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="method-name" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:simpleType name="flush-mode-type">
    <xsd:annotation>
      <xsd:documentation>
        public enum FlushModeType {
           COMMIT,
           AUTO
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string">
      <xsd:enumeration value="COMMIT"/>
      <xsd:enumeration value="AUTO"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:complexType name="query-hint">
    <xsd:annotation>
      <xsd:documentation>
        @Target({}) @Retention(RUNTIME)
        public @interface QueryHint {
          String name();
          String value();
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
    <xsd:attribute name="value" type="xsd:string" use="required"/>
  12/19/05 208



XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft XML Descriptor

Sun Microsystems, Inc.
  </xsd:complexType>

  <xsd:complexType name="named-query">
    <xsd:annotation>
      <xsd:documentation>
        @Target({TYPE}) @Retention(RUNTIME)
        public @interface NamedQuery {
          String name();
          String query();
          QueryHint[] hints() default {};
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="hint" type="orm:query-hint"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
    <xsd:attribute name="query" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:complexType name="named-native-query">
    <xsd:annotation>
      <xsd:documentation>
        @Target({TYPE}) @Retention(RUNTIME)
        public @interface NamedNativeQuery {
          String name();
          String query();
          QueryHint[] hints() default {};
          Class resultClass();

String resultSetMapping() default ""; // name of SQLResultSetMapping
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="hint" type="orm:query-hint"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
    <xsd:attribute name="query" type="xsd:string" use="required"/>
    <xsd:attribute name="result-class" type="xsd:string"/>
    <xsd:attribute name="result-set-mapping" type="xsd:string"/>
  </xsd:complexType>

  <xsd:complexType name="sql-result-set-mapping">
    <xsd:annotation>
      <xsd:documentation>
        @Target({TYPE, METHOD}) @Retention(RUNTIME)
        public @interface SqlResultSetMapping {
          String name();
          EntityResult[] entities() default {};
          ColumnResult[] columns() default {};
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="entity-result" type="orm:entity-result"
                   minOccurs="0" maxOccurs="unbounded"/>
      <xsd:element name="column-result" type="orm:column-result"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:complexType name="entity-result">
    <xsd:annotation>
209   12/19/05



XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft XML Schema

Sun Microsystems, Inc.
      <xsd:documentation>
        @Target({}) @Retention(RUNTIME)
        public @interface EntityResult {
          Class entityClass();
          FieldResult[] fields() default {};
          String discriminatorColumn() default "";
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="field-result" type="orm:field-result"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="entity-class" type="xsd:string" use="required"/>
    <xsd:attribute name="discriminator-column" type="xsd:string"/>
  </xsd:complexType>

  <xsd:complexType name="field-result">
    <xsd:annotation>
      <xsd:documentation>
        @Target({}) @Retention(RUNTIME)
        public @interface FieldResult {
          String name();
          String column();
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
    <xsd:attribute name="column" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:complexType name="column-result">
    <xsd:annotation>
      <xsd:documentation>
        @Target({}) @Retention(RUNTIME)
        public @interface ColumnResult {
          String name();
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:complexType name="table">
    <xsd:annotation>
      <xsd:documentation>
        @Target({TYPE}) @Retention(RUNTIME)
        public @interface Table {
          String name() default "";
          String catalog() default "";
          String schema() default "";
          UniqueConstraint[] uniqueConstraints() default {};
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="unique-constraint" type="orm:unique-constraint"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="name" type="xsd:string"/>
    <xsd:attribute name="catalog" type="xsd:string"/>
    <xsd:attribute name="schema" type="xsd:string"/>
  </xsd:complexType>

  <xsd:complexType name="secondary-table">
    <xsd:annotation>
  12/19/05 210



XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft XML Descriptor

Sun Microsystems, Inc.
      <xsd:documentation>
        @Target({TYPE}) @Retention(RUNTIME)
        public @interface SecondaryTable {
          String name();
          String catalog() default "";
          String schema() default "";
          PrimaryKeyJoinColumn[] pkJoinColumns() default {};
          UniqueConstraint[] uniqueConstraints() default {};
         }
       </xsd:documentation>
     </xsd:annotation>
     <xsd:sequence>
       <xsd:element name="primary-key-join-column"
                    type="orm:primary-key-join-column"
                    minOccurs="0" maxOccurs="unbounded"/>
       <xsd:element name="unique-constraint" type="orm:unique-constraint"
                    minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
    <xsd:attribute name="catalog" type="xsd:string"/>
    <xsd:attribute name="schema" type="xsd:string"/>
  </xsd:complexType>

  <xsd:complexType name="unique-constraint">
    <xsd:annotation>
      <xsd:documentation>
        @Target({TYPE}) @Retention(RUNTIME)
        public @interface UniqueConstraint {
          String[] columnNames();
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="column-name" type="xsd:string"
                   maxOccurs="unbounded"/>
    </xsd:sequence>
  </xsd:complexType>

  <xsd:complexType name="column">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface Column {
          String name() default "";
          boolean unique() default false;
          boolean nullable() default true;
          boolean insertable() default true;
          boolean updatable() default true;
          String columnDefinition() default "";
          String table() default "";
          int length() default 255;
          int precision() default 0; // decimal precision
          int scale() default 0; // decimal scale
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="name" type="xsd:string"/>
    <xsd:attribute name="unique" type="xsd:boolean"/>
    <xsd:attribute name="nullable" type="xsd:boolean"/>
    <xsd:attribute name="insertable" type="xsd:boolean"/>
    <xsd:attribute name="updatable" type="xsd:boolean"/>
    <xsd:attribute name="column-definition" type="xsd:string"/>
    <xsd:attribute name="table" type="xsd:string"/>
    <xsd:attribute name="length" type="xsd:int"/>
    <xsd:attribute name="precision" type="xsd:int"/>
    <xsd:attribute name="scale" type="xsd:int"/>
211   12/19/05



XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft XML Schema

Sun Microsystems, Inc.
  </xsd:complexType>

  <xsd:complexType name="join-column">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface JoinColumn {
          String name() default "";
          String referencedColumnName() default "";
          boolean unique() default false;
          boolean nullable() default true;
          boolean insertable() default true;
          boolean updatable() default true;
          String columnDefinition() default "";
          String table() default "";
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="name" type="xsd:string"/>
    <xsd:attribute name="referenced-column-name" type="xsd:string"/>
    <xsd:attribute name="unique" type="xsd:boolean"/>
    <xsd:attribute name="nullable" type="xsd:boolean"/>
    <xsd:attribute name="insertable" type="xsd:boolean"/>
    <xsd:attribute name="updatable" type="xsd:boolean"/>
    <xsd:attribute name="column-definition" type="xsd:string"/>
    <xsd:attribute name="table" type="xsd:string"/>
  </xsd:complexType>

  <xsd:simpleType name="generation-type">
    <xsd:annotation>
      <xsd:documentation>
        public enum GenerationType { TABLE, SEQUENCE, IDENTITY, AUTO };
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string">
      <xsd:enumeration value="TABLE"/>
      <xsd:enumeration value="SEQUENCE"/>
      <xsd:enumeration value="IDENTITY"/>
      <xsd:enumeration value="AUTO"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:complexType name="attribute-override">
    <xsd:annotation>
      <xsd:documentation>
        @Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
        public @interface AttributeOverride {
          String name();
          Column column();
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="column" type="orm:column"/>
    </xsd:sequence>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
  </xsd:complexType>

  <xsd:simpleType name="id-class">
    <xsd:annotation>
      <xsd:documentation>
        @Target({TYPE}) @Retention(RUNTIME)
        public @interface IdClass {
          Class value();
        }
      </xsd:documentation>
  12/19/05 212



XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft XML Descriptor

Sun Microsystems, Inc.
    </xsd:annotation>
    <xsd:restriction base="xsd:string"/>
  </xsd:simpleType>

  <xsd:simpleType name="transient">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface Transient {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string"/>
  </xsd:simpleType>

  <xsd:simpleType name="version">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface Version {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string"/>
  </xsd:simpleType>

  <xsd:complexType name="basic">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface Basic {
          FetchType fetch() default EAGER;
          boolean optional() default true;
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="fetch" type="orm:fetch-type"/>
    <xsd:attribute name="optional" type="xsd:boolean"/>
  </xsd:complexType>

  <xsd:simpleType name="fetch-type">
    <xsd:annotation>
      <xsd:documentation>
        public enum FetchType { LAZY, EAGER };
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string">
      <xsd:enumeration value="LAZY"/>
      <xsd:enumeration value="EAGER"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:simpleType name="lob">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface Lob {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string">
      <xsd:length value="0"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:simpleType name="temporal">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
213   12/19/05



XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft XML Schema

Sun Microsystems, Inc.
        public @interface Temporal {
          TemporalType value() default TIMESTAMP;
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="orm:temporal-type"/>
  </xsd:simpleType>

  <xsd:simpleType name="temporal-type">
    <xsd:annotation>
      <xsd:documentation>
        public enum TemporalType {
          DATE, // java.sql.Date
          TIME, // java.sql.Time
          TIMESTAMP // java.sql.Timestamp
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string">
      <xsd:enumeration value="DATE"/>
      <xsd:enumeration value="TIME"/>
      <xsd:enumeration value="TIMESTAMP"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:simpleType name="enumerated">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface Enumerated {
          EnumType value() default ORDINAL;
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="orm:enum-type"/>
  </xsd:simpleType>

  <xsd:simpleType name="enum-type">
    <xsd:annotation>
      <xsd:documentation>
        public enum EnumType {
          ORDINAL,
          STRING
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string">
      <xsd:enumeration value="ORDINAL"/>
      <xsd:enumeration value="STRING"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:complexType name="many-to-one">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface ManyToOne {
          Class targetEntity();
          CascadeType[] cascade() default {};
          FetchType fetch() default EAGER;
          boolean optional() default true;
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="cascade" type="orm:cascade-type"
  12/19/05 214



XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft XML Descriptor

Sun Microsystems, Inc.
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="target-entity" type="xsd:string"/>
    <xsd:attribute name="fetch" type="orm:fetch-type"/>
    <xsd:attribute name="optional" type="xsd:boolean"/>
  </xsd:complexType>

  <xsd:simpleType name="cascade-type">
    <xsd:annotation>
      <xsd:documentation>
        public enum CascadeType { ALL, PERSIST, MERGE, REMOVE, REFRESH};
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string">
      <xsd:enumeration value="ALL"/>
      <xsd:enumeration value="PERSIST"/>
      <xsd:enumeration value="MERGE"/>
      <xsd:enumeration value="REMOVE"/>
      <xsd:enumeration value="REFRESH"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:complexType name="one-to-one">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface OneToOne {
          Class targetEntity();
          CascadeType[] cascade() default {};
          FetchType fetch() default EAGER;
          boolean optional() default true;
          String mappedBy() default "";
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="cascade" type="orm:cascade-type"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="target-entity" type="xsd:string"/>
    <xsd:attribute name="fetch" type="orm:fetch-type"/>
    <xsd:attribute name="optional" type="xsd:boolean"/>
    <xsd:attribute name="mapped-by" type="xsd:string"/>
  </xsd:complexType>

  <xsd:complexType name="one-to-many">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface OneToMany {
          Class targetEntity();
          CascadeType[] cascade() default {};
          FetchType fetch() default LAZY;
          String mappedBy() default "";
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="cascade" type="orm:cascade-type"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="target-entity" type="xsd:string"/>
    <xsd:attribute name="fetch" type="orm:fetch-type"/>
    <xsd:attribute name="mapped-by" type="xsd:string"/>
  </xsd:complexType>
215   12/19/05



XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft XML Schema

Sun Microsystems, Inc.
  <xsd:complexType name="join-table">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD})
        public @interface JoinTable {
          String name() default "";
          String catalog() default "";
          String schema() default "";
          JoinColumn[] joinColumns() default {};
          JoinColumn[] inverseJoinColumns() default {};
          UniqueConstraint[] uniqueConstraints() default {};
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="join-column" type="orm:join-column"
                   minOccurs="0" maxOccurs="unbounded"/>
      <xsd:element name="inverse-join-column" type="orm:join-column"
                   minOccurs="0" maxOccurs="unbounded"/>
      <xsd:element name="unique-constraint" type="orm:unique-constraint"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="name" type="xsd:string"/>
    <xsd:attribute name="catalog" type="xsd:string"/>
    <xsd:attribute name="schema" type="xsd:string"/>
  </xsd:complexType>

  <xsd:complexType name="many-to-many">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface ManyToMany {
          Class targetEntity();
          CascadeType[] cascade() default {};
          FetchType fetch() default LAZY;
          String mappedBy() default "";
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="cascade" type="orm:cascade-type"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="target-entity" type="xsd:string"/>
    <xsd:attribute name="fetch" type="orm:fetch-type"/>
    <xsd:attribute name="mapped-by" type="xsd:string"/>
  </xsd:complexType>

  <xsd:complexType name="generated-value">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface GeneratedValue {
          GenerationType strategy() default AUTO;
          String generator() default "";
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="strategy" type="orm:generation-type"/>
    <xsd:attribute name="generator" type="xsd:string"/>
  </xsd:complexType>

  <xsd:complexType name="map-key">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
  12/19/05 216



XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft XML Descriptor

Sun Microsystems, Inc.
        public @interface MapKey {
          String name() default "";
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="name" type="xsd:string"/>
  </xsd:complexType>

  <xsd:simpleType name="order-by">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface OrderBy{
          String value() default "";
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string"/>
  </xsd:simpleType>

  <xsd:complexType name="inheritance">
    <xsd:annotation>
      <xsd:documentation>
        @Target({TYPE}) @Retention(RUNTIME)
        public @interface Inheritance {
          InheritanceType strategy() default SINGLE_TABLE;
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="strategy" type="orm:inheritance-type"/>
  </xsd:complexType>

  <xsd:simpleType name="inheritance-type">
    <xsd:annotation>
      <xsd:documentation>
        public enum InheritanceType
          { SINGLE_TABLE, JOINED, TABLE_PER_CLASS};
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string">
      <xsd:enumeration value="SINGLE_TABLE"/>
      <xsd:enumeration value="JOINED"/>
      <xsd:enumeration value="TABLE_PER_CLASS"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:simpleType name="discriminator-value">
    <xsd:annotation>
      <xsd:documentation>
        @Target({TYPE}) @Retention(RUNTIME)
        public @interface DiscriminatorValue {
          String value();
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string"/>
  </xsd:simpleType>

  <xsd:simpleType name="discriminator-type">
    <xsd:annotation>
      <xsd:documentation>
        public enum DiscriminatorType { STRING, CHAR, INTEGER };
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string">
      <xsd:enumeration value="STRING"/>
217   12/19/05



XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft XML Schema

Sun Microsystems, Inc.
      <xsd:enumeration value="CHAR"/>
      <xsd:enumeration value="INTEGER"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:complexType name="primary-key-join-column">
    <xsd:annotation>
      <xsd:documentation>
        @Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
        public @interface PrimaryKeyJoinColumn {
          String name() default "";
          String referencedColumnName() default "";
          String columnDefinition() default "";
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="name" type="xsd:string"/>
    <xsd:attribute name="referenced-column-name" type="xsd:string"/>
    <xsd:attribute name="column-definition" type="xsd:string"/>
  </xsd:complexType>

   <xsd:complexType name="discriminator-column">
     <xsd:annotation>
       <xsd:documentation>
        @Target({TYPE}) @Retention(RUNTIME)
        public @interface DiscriminatorColumn {
          String name() default "";
          DiscriminatorType discriminatorType() default STRING;
          String columnDefinition() default "";
          int length() default 31;
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="name" type="xsd:string"/>
    <xsd:attribute name="discriminator-type" type="orm:discriminator-type"/>
    <xsd:attribute name="column-definition" type="xsd:string"/>
    <xsd:attribute name="length" type="xsd:int"/>
  </xsd:complexType>

  <xsd:complexType name="embeddable">
    <xsd:annotation>
      <xsd:documentation>
        @Target({TYPE}) @Retention(RUNTIME)
        public @interface Embeddable {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="embeddable-attribute"
                   type="orm:embeddable-attribute"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="class" type="xsd:string" use="required"/>
    <xsd:attribute name="access" type="orm:access-type"/>
  </xsd:complexType>

  <xsd:complexType name="embeddable-attribute">
    <xsd:sequence>
      <xsd:element name="basic" type="orm:basic" minOccurs="0"/>
      <xsd:element name="lob" type="orm:lob" minOccurs="0"/>
      <xsd:element name="temporal" type="orm:temporal" minOccurs="0"/>
      <xsd:element name="enumerated" type="orm:enumerated" minOccurs="0"/>
      <xsd:element name="column" type="orm:column" minOccurs="0"/>
    </xsd:sequence>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
  </xsd:complexType>
  12/19/05 218



XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft XML Descriptor

Sun Microsystems, Inc.
  <xsd:simpleType name="embedded">
    <xsd:annotation>
      <xsd:documentation>
        @Target({METHOD, FIELD}) @Retention(RUNTIME)
        public @interface Embedded {}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string"/>
  </xsd:simpleType>

  <xsd:complexType name="mapped-superclass">
    <xsd:annotation>
      <xsd:documentation>
        @Target(TYPE) @Retention(RUNTIME)
        public @interface MappedSuperclass{}
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="id-class" type="orm:id-class" minOccurs="0"/>
      <xsd:element name="exclude-default-listeners" type="xsd:boolean"
                   minOccurs="0"/>
      <xsd:element name="exclude-superclass-listeners" type="xsd:boolean"
                   minOccurs="0"/>
      <xsd:element name="entity-listener" type="orm:entity-listener"
                   minOccurs="0"/>
      <xsd:element name="pre-persist" type="orm:pre-persist" minOccurs="0"/>
      <xsd:element name="post-persist" type="orm:post-persist"
                   minOccurs="0"/>
      <xsd:element name="pre-remove" type="orm:pre-remove" minOccurs="0"/>
      <xsd:element name="post-remove" type="orm:post-remove" minOccurs="0"/>
      <xsd:element name="pre-update" type="orm:pre-update" minOccurs="0"/>
      <xsd:element name="post-update" type="orm:post-update" minOccurs="0"/>
      <xsd:element name="post-load" type="orm:post-load" minOccurs="0"/>
      <xsd:choice>
        <xsd:element name="id" type="orm:id"
                     minOccurs="0" maxOccurs="unbounded"/>
        <xsd:element name="embedded-id" type="orm:embedded-id"
                     minOccurs="0"/>
      </xsd:choice>
      <xsd:element name="attribute" type="orm:attribute"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="class" type="xsd:string" use="required"/>
    <xsd:attribute name="access" type="orm:access-type"/>
  </xsd:complexType>

  <xsd:complexType name="sequence-generator">
    <xsd:annotation>
      <xsd:documentation>
        @Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
        public @interface SequenceGenerator {
          String name();
          String sequenceName() default "";
          int initialValue() default 0;
          int allocationSize() default 50;
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
    <xsd:attribute name="sequence-name" type="xsd:string"/>
    <xsd:attribute name="initial-value" type="xsd:int"/>
    <xsd:attribute name="allocation-size" type="xsd:int"/>
  </xsd:complexType>

  <xsd:complexType name="table-generator">
    <xsd:annotation>
219   12/19/05



XML Descriptor Enterprise JavaBeans 3.0, Proposed Final Draft XML Schema

Sun Microsystems, Inc.
      <xsd:documentation>
        @Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
        public @interface TableGenerator {
          String name();
          String table() default "";
          String catalog() default "";
          String schema() default "";
          String pkColumnName() default "";
          String valueColumnName() default "";
          String pkColumnValue() default "";
          int initialValue() default 0;
          int allocationSize() default 50;
          UniqueConstraint[] uniqueConstraints() default {};
        }
      </xsd:documentation>
    </xsd:annotation>
    <xsd:sequence>
      <xsd:element name="unique-constraint" type="orm:unique-constraint"
                   minOccurs="0" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="name" type="xsd:string" use="required"/>
    <xsd:attribute name="table" type="xsd:string"/>
    <xsd:attribute name="catalog" type="xsd:string"/>
    <xsd:attribute name="schema" type="xsd:string"/>
    <xsd:attribute name="pk-column-name" type="xsd:string"/>
    <xsd:attribute name="value-column-name" type="xsd:string"/>
    <xsd:attribute name="pk-column-value" type="xsd:string"/>
    <xsd:attribute name="initial-value" type="xsd:int"/>
    <xsd:attribute name="allocation-size" type="xsd:int"/>
  </xsd:complexType>

</xsd:schema>
  12/19/05 220



XML Schema Enterprise JavaBeans 3.0, Proposed Final Draft Related Documents

Sun Microsystems, Inc.
Chapter 11 Related Documents

[  1 ] Enterprise JavaBeans, v. 3.0. EJB Core Contracts and Requirements.

[  2 ] JSR-250: Common Annotations for the Java Platform.http://jcp.org/en/jsr/detail?id=250.

[  3 ] JSR-175: A Metadata Facility for the Java Programming Language.
http://jcp.org/en/jsr/detail?id=175.

[  4 ] Database Language SQL. ANSI X3.135-1992 or ISO/IEC 9075:1992.

[  5 ] Enterprise JavaBeans, v 2.1.http://java.sun.com/products/ejb.

[  6 ] JDBC 3.0 Specification.http://java.sun.com/products/jdbc.

[  7 ] Enterprise JavaBeans, Simplified API, v 3.0.http://java.sun.com/products/ejb.

[  8 ] JAR File Specification,http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html.
221   12/19/05



Related Documents Enterprise JavaBeans 3.0, Proposed Final Draft XML Schema

Sun Microsystems, Inc.
  12/19/05 222



Early Draft 1 Enterprise JavaBeans 3.0, Proposed Final Draft Revision History

Sun Microsystems, Inc.

JB 3.0

any-
Appendix A Revision History

This appendix lists the significant changes that have been made during the development of the E
specification.

A.1 Early Draft 1

Created document.

A.2 Early Draft 2

Split Persistence API from single Early Draft 1 document.

Renamed dependent classes as "embedded classes".

Added support for EJB 2.1 style composite keys for entities.

Added support for BLOBs and CLOBs

Clarified rules for defaulting of O/R mapping when OneToOne, OneToMany, ManyToOne, and M
ToMany annotations are used.
223   12/19/05



Revision History Enterprise JavaBeans 3.0, Proposed Final Draft Changes Since EDR 2

Sun Microsystems, Inc.

eType
Clarified default mappings for non-relationship fields and properties.

Clarified exceptions for entity lifecycle operations andEntityManager andQuery interface meth-
ods.

Clarified semantics ofcontains  method.

Renaming of annotations for dependent objects to reflect "embedded" terminology.

Added EmbeddedId and IdClass annotations to support composite keys.

Added AttributeOverride annotation to support embedded objects and embedded primary keys.

Added annotations to support BLOB/CLOB mappings.

Renamed GeneratorTable annotation as GeneratedIdTable.

Added setFlushMode method to Query interface.

Added missing Transient annotation.

Rename create() method as persist() in EntityManager API, and CREATE as PERSIST in Cascad
enum.

Provided full definition of EJB QL.

Removed POSITION, CHAR_LENGTH, and CHARACTER_LENGTH as redundant.

Added support for mapping of SQL query results.

Extended EJB QL queries to apply to embedded classes.

Added XML descriptor.

Added Related Documents section.

Updated numerous examples.

A.3 Changes Since EDR 2

Clearer formatting for description of merge operation.

Removed requirements for java.sql.Blob and java.sql.Clob.

Added java.util.Date and java.sql.Date as permitted primary key types.

Added introduction to O/R mapping metadata specification.
  12/19/05 224



Changes Since EDR 2 Enterprise JavaBeans 3.0, Proposed Final Draft Revision History

Sun Microsystems, Inc.

ns as

map-

erms

r pro-

asic

ng for

ption
ption

n.

de of
Removed primary annotation element from UniqueConstraint, Column, and JoinColumn annotatio
redundant.

Clarified that UniqueConstraint applies in addition to unique constraints entailed by primary key
pings.

Clarified that PostLoad method should be invoked after refresh.

Added caution about use of business logic in accessor methods when access=PROPERTY.

Clarified that precision and scale apply to decimal columns.

Editorial changes to remove implications that entity lifecycle operations entail implementation in t
of a “state” model.

Removed entityType and version elements of Entity annotation.

Added note about the use of EJB QL bulk update and delete operations.

Clarified that fetch=LAZY is a hint; implementations may elect to prefetch.

Clarified that only a single version property is required to be supported per class.

Allowed persistent instance variables to be private.

Removed requirement that if access=FIELD, the fields in the primary key class must be public o
tected.

Extended mapping defaults for fields and properties of byte[], Byte[], char[], and Character[] to B
mapping type.

Made TemporalType enum top-level; added NONE so that it can be used to specify Basic mappi
temporal types.

Clarified that query execution methods getResultList and getSingleResult throw IllegalStateExce
when called for EJB QL UPDATE or DELETE statements; executeUpdate throws IllegalStateExce
when called for EJB QL SELECT statement.

Clarified that constructor names in EJB QL queries must be fully qualified.

Removed requirement for support of BIT_LENGTH function from EJB QL.

The executeUpdate method throws TransactionRequiredException if there is no active transactio

Clarified that EJB QL delete operation does not cascade.

Added support for use of EntityManager in application-managed environments, including outsi
Java EE containers.

Added EntityManager bootstrapping APIs.
225   12/19/05



Revision History Enterprise JavaBeans 3.0, Proposed Final Draft Changes Since EDR 2

Sun Microsystems, Inc.

One-

note

this

—this
Added support for extended persistence contexts.

Added support for non-entity classes in the entity inheritance hierarchy.

Added supported support for abstract entity classes in the entity inheritance hierarchy.

Added EmbeddableSuperclass annotation.

Clarifications to EntityManager and Query exceptions.

Added LEFT, EXISTS, ALL, ANY, SOME to EJB QL reserved identifiers.

Renamed InheritanceJoinColumn as PrimaryKeyJoinColumn. Removed usePKasFK from the
ToOne annotation, clarifying that PrimaryKeyJoinColumn can be used instead.

Clarified result types for aggregate functions.

Clarification of TRIM function and its arguments.

In OneToOne, OneToMany, ManyToOne, ManyToMany annotations, targetEntity type is Class,
String.

Merge @Serialized annotation into @Basic.

Added discriminatorColumn element to @EntityResult

Instance variables allowed to be private, package visibility.

Removed restriction about use of identification variable for IS EMPTY in the FROM clause, since
is no longer true given outer joins.

Removed restriction that @Table must have been explicitly specified if @SecondaryTable is used
is unnecessary, since defaults can be used.

Removed specified element for @Column: it is not needed.

Remove operation applied to removed entity is ignored.

EntityManager.find changed to return null if the entity does not exist.

EntityManager.contains doesn’t require a transaction be active.

Added @OrderBy, @MapKey annotations

Clarified rules regarding the availability of detached instances.

Added SIZE function to EJB QL.

Cleaned up EJB QL grammar.
  12/19/05 226



Changes Since Public Draft Enterprise JavaBeans 3.0, Proposed Final Draft Revision History

Sun Microsystems, Inc.

.

R and

ected

pli-
Added optional hint to Basic and Lob annotations.

Added EntityManager.getReference().

EJB QL LIKE operator allows string-expressions.

Added chapters with contracts on packaging, deployment, and bootstrapping outside a container

Merged GeneratedIdTable into TableGenerator annotation to resolve overlap between the two.

Updated XML descriptor to match annotations.

Editorial sweep over document.

A.4 Changes Since Public Draft

Changed J2EE to Java EE and J2SE to Java SE.

Renamed EmbeddableSuperclass as MappedSuperclass.

Added hints to NamedQuery and NamedNativeQuery.

Required support for JOINED inheritance strategy.

Specified single generated Id column in compound Id column case (IdClass).

Added EntityManager.setFlushMode() method.

Updated Entity Packaging to remove .par files, to allow persistence units to be specified in EJB-JA
WAR files, and to allow multiple persistence units to be specified in a single persistence.xml file.

Renamed entity-mappings.xml to orm.xml.

Added EntityManager.clear() method.

EntityTransaction.rollback and EntityTransaction.isActive throw PersistenceException if an unexp
error is encountered.

Renamed pkJoin element of SecondaryTable annotation to pkJoinColumns.

Split Id generation elements out from Id annotation and into GeneratedValue annotation.

Default value for a string discriminator type is the entity name.

Changed name of default discriminator column name to “DTYPE” to save use of “TYPE” for the ap
cation.
227   12/19/05



Revision History Enterprise JavaBeans 3.0, Proposed Final Draft Changes Since Public Draft

Sun Microsystems, Inc.

th Sec-

losure

perc-
Enti-

deter-

e con-

than

back.

count
Flattened nested Table element in JoinTable and TableGenerator annotations for consistency wi
ondaryTable and better ease of use.

Added standard properties for use in createEntityManagerFactory.

Added transaction-type element to persistence.xml.

Added persistence.xml schema.

Generalized wording of extended persistence context propagation rules to handle transitive c
cases.

Clarified that entity class, its methods, and its instance variables must not be final.

Removed requirement that EntityManagerFactory be Referenceable.

Added support for transformers in persistence provider pluggability contracts.

Added clarifications about use of HAVING in EJB QL.

Added clarifications about query results when multiple items are used in the SELECT clause.

Generalization of entity listeners to allow multiple listeners and default listeners; added ExcludeSu
classListeners and ExcludeDefaultListeners annotations; changed EntityListener annotation to
tyListeners.

Added section on optimistic locking.

Added EntityManager.lock method and lock modes.

Renamed getTempClassLoader as getNewTempClassLoader.

Required use of a single access type in an entity hierarchy; placement of the mapping annotations
mines the access type in effect.

Renamed secondaryTable element of Column and JoinColumn annotations to table.

Clarified that EJB QL bulk updates do not update version columns nor synchronize the persistenc
text with the results of the update/delete.

Replaced EntityNotFoundException with NoResultException in getSingleResult—results other
entities might be returned, and exception should be recoverable.

Clarified that the exceptions thrown by getSingleResult do not cause the transaction to be rolled 

Added clarifications about effect of rollback on persistence contexts, and what the application can
on.

Refactorization of Inheritance and DiscriminatorColumn annotations.
  12/19/05 228



Changes Since Public Draft Enterprise JavaBeans 3.0, Proposed Final Draft Revision History

Sun Microsystems, Inc.

ins.

se.

tended

E.
Allow GROUP BY to group over entities.

Added Enumerated annotation for mapping of enums.

Clarified that named queries are scoped to persisence unit.

Clarified join syntax to remove ambiguity with regard to combination of path expressions with out jo

Allow setting of relationships in EJB QL update statements.

Fixed all_or_any_expression definition to be consistent with SQL.

Clarified how composite foreign keys in SQL query results can be mapped.

Fixed syntax of EJB QL comparison operations to allow aggregate functions in the HAVING clua

Allowed persist, merge, remove, refshed to be invoked in the absence of a transaction when an ex
persistence context is used.

Added getFlushMode method.

Clarified that transaction must be active for flushing to occur.

UniqueConstraint annotation is now usable only within Table and SecondaryTable, not as on TYP

Remove Target(TYPE) from JoinColumns annotation—this isn’t needed.

Added ClassTransformer interface.

Updated orm.xml to reflect annotations.

Editorial sweep.
229   12/19/05


	Chapter 1 Introduction
	1.1 Expert Group
	1.2 Document Conventions

	Chapter 2 Entities
	2.1 Requirements on the Entity Class
	2.1.1 Persistent Fields and Properties
	2.1.2 Example
	2.1.3 Entity Instance Creation
	2.1.4 Primary Keys and Entity Identity
	2.1.5 Embeddable Classes
	2.1.6 Mapping Defaults for Non-Relationship Fields or Properties
	2.1.7 Entity Relationships
	2.1.8 Relationship Mapping Defaults
	2.1.8.1 Bidirectional OneToOne Relationships
	2.1.8.2 Bidirectional ManyToOne / OneToMany Relationships
	2.1.8.3 Unidirectional Single-Valued Relationships
	2.1.8.3.1 Unidirectional OneToOne Relationships
	2.1.8.3.2 Unidirectional ManyToOne Relationships

	2.1.8.4 Bidirectional ManyToMany Relationships
	2.1.8.5 Unidirectional Multi-Valued Relationships
	2.1.8.5.1 Unidirectional OneToMany Relationships
	2.1.8.5.2 Unidirectional ManyToMany Relationships


	2.1.9 Inheritance
	2.1.9.1 Abstract Entity Classes
	2.1.9.2 Mapped Superclasses
	2.1.9.3 Non-Entity Classes in the Entity Inheritance Hierarchy

	2.1.10 Inheritance Mapping Strategies
	2.1.10.1 Single Table per Class Hierarchy Strategy
	2.1.10.2 Table per Class Strategy
	2.1.10.3 Joined Subclass Strategy



	Chapter 3 Entity Operations
	3.1 EntityManager
	3.1.1 EntityManager Interface
	3.1.2 Example of Use of EntityManager API

	3.2 Entity Instance’s Life Cycle
	3.2.1 Persisting an Entity Instance
	3.2.2 Removal
	3.2.3 Synchronization to the Database
	3.2.4 Detached Entities
	3.2.4.1 Merging Detached Entity State

	3.2.5 Managed Instances

	3.3 Persistence Context
	3.3.1 Transaction-scoped Persistence Context
	3.3.2 Extended Persistence Context
	3.3.3 Transaction Commit
	3.3.4 Transaction Rollback
	3.3.5 Optimistic Locking and Concurrency
	3.3.5.1 Optimistic Locking
	3.3.5.2 Version Attributes
	3.3.5.3 Lock Modes
	3.3.5.4 OptimisticLockException


	3.4 Entity Listeners and Callback Methods
	3.4.1 Lifecycle Callback Methods
	3.4.2 Semantics of the Life Cycle Callback Methods for Entities
	3.4.3 Example
	3.4.4 Multiple Lifecycle Callback Methods for an Entity Lifecycle Event
	3.4.5 Example
	3.4.6 Exceptions
	3.4.7 Specification of Callback Listener Classes and Lifecycle Methods in the XML Descriptor
	3.4.7.1 Specification of Callback Listeners
	3.4.7.2 Specification of the Binding of Entity Listener Classes to Entities


	3.5 Query API
	3.5.1 Query Interface
	3.5.1.1 Example

	3.5.2 Queries and FlushMode
	3.5.3 Parameter Names
	3.5.4 Named Queries
	3.5.5 Polymorphic Queries
	3.5.6 SQL Queries


	Chapter 4 Query Language
	4.1 Overview
	4.2 EJB QL Statement Types
	4.2.1 Select Statements
	4.2.2 Update and Delete Statements

	4.3 Abstract Schema Types and Query Domains
	4.3.1 Naming
	4.3.2 Example

	4.4 The FROM Clause and Navigational Declarations
	4.4.1 Identifiers
	4.4.2 Identification Variables
	4.4.3 Range Variable Declarations
	4.4.4 Path Expressions
	4.4.5 Joins
	4.4.5.1 Inner Joins (Relationship Joins)
	4.4.5.2 Left Outer Joins
	4.4.5.3 Fetch Joins

	4.4.6 Collection Member Declarations
	4.4.7 EJB QL and SQL
	4.4.8 Polymorphism

	4.5 WHERE Clause
	4.6 Conditional Expressions
	4.6.1 Literals
	4.6.2 Identification Variables
	4.6.3 Path Expressions
	4.6.4 Input Parameters
	4.6.4.1 Positional Parameters
	4.6.4.2 Named Parameters

	4.6.5 Conditional Expression Composition
	4.6.6 Operators and Operator Precedence
	4.6.7 Between Expressions
	4.6.8 In Expressions
	4.6.9 Like Expressions
	4.6.10 Null Comparison Expressions
	4.6.11 Empty Collection Comparison Expressions
	4.6.12 Collection Member Expressions
	4.6.13 Exists Expressions
	4.6.14 All or Any Expressions
	4.6.15 Subqueries
	4.6.16 Functional Expressions
	4.6.16.1 String Functions
	4.6.16.2 Arithmetic Functions


	4.7 GROUP BY, HAVING
	4.8 SELECT Clause
	4.8.1 Result Type of the SELECT Clause
	4.8.2 Constructor Expressions in the SELECT Clause
	4.8.3 Null Values in the Query Result
	4.8.4 Aggregate Functions in the SELECT Clause
	4.8.4.1 Examples


	4.9 ORDER BY Clause
	4.10 Return Value Types
	4.10.1 Result types for Finder and Select methods of 2.1 Entity Beans

	4.11 Bulk Update and Delete Operations
	4.12 Null Values
	4.13 Equality and Comparison Semantics
	4.14 Restrictions
	4.15 Examples
	4.15.1 Simple Queries
	4.15.2 Queries with Relationships
	4.15.3 Queries Using Input Parameters

	4.16 EJB QL BNF

	Chapter 5 Entity Managers and Persistence Contexts
	5.1 Persistence Contexts
	5.1.1 Persistence Context Lifecycle Types

	5.2 Obtaining an EntityManager
	5.2.1 Obtaining an Entity Manager in the Java EE Environment
	5.2.2 Obtaining an Application-managed Entity Manager
	5.2.2.1 Control of the Application-Managed EntityManager Lifecycle.


	5.3 Obtaining an Entity Manager Factory
	5.3.1 Obtaining an Entity Manager Factory in a Java EE Container
	5.3.2 Obtaining an Entity Manager Factory in a Java SE Environment

	5.4 The EntityManagerFactory Interface
	5.5 Controlling Transactions
	5.5.1 JTA EntityManagers
	5.5.2 Resource-local EntityManagers
	5.5.2.1 The EntityTransaction Interface


	5.6 Persistence Context Lifetime
	5.6.1 Container-managed Persistence Contexts
	5.6.1.1 Container-managed Transaction-scoped Persistence Context
	5.6.1.2 Container-managed Extended Persistence Context

	5.6.2 Application-managed Persistence Contexts
	5.6.2.1 Application-managed Transaction-scoped Persistence Context
	5.6.2.2 Application-managed Extended Persistence Context


	5.7 Persistence Context Propagation for Container-managed Entity Managers
	5.7.0.1 Persistence Context Propagation for Transaction-scoped Persistence Contexts
	5.7.0.2 Persistence Context Propagation Rules for Extended Persistence Contexts

	5.8 Examples
	5.8.1 Container-managed Transaction-scoped Persistence Context
	5.8.2 Container-managed Extended Persistence Context
	5.8.3 Application-managed Transaction-scoped Persistence Context (JTA)
	5.8.4 Application-managed Extended Persistence Context(JTA)
	5.8.5 Application-managed Transaction-scoped Persistence Context (Resource Transaction)
	5.8.6 Application-managed Extended Persistence Context (Resource Transaction)

	5.9 Requirements on the Container
	5.9.1 Persistence Context Management
	5.9.2 Container Managed Persistence Contexts


	Chapter 6 Entity Packaging
	6.1 Persistence Unit
	6.2 Persistence Unit Packaging
	6.2.1 persistence.xml file
	6.2.1.1 description
	6.2.1.2 name
	6.2.1.3 provider
	6.2.1.4 transaction-type
	6.2.1.5 jta-data-source, non-jta-data-source
	6.2.1.6 mapping-file, jar-file, class, exclude-unlisted-classes
	6.2.1.7 properties
	6.2.1.8 Examples

	6.2.2 Persistence Unit Scope

	6.3 persistence.xml Schema

	Chapter 7 Container and Provider Contracts for Deployment and Bootstrapping
	7.1 Java EE Deployment
	7.1.1 Responsibilities of the Container
	7.1.2 Responsibilities of the Persistence Provider
	7.1.3 javax.persistence.spi.PersistenceProvider
	7.1.3.1 Persistence Unit Properties

	7.1.4 javax.persistence.spi.PersistenceUnitInfo Interface

	7.2 Bootstrapping in Java SE Environments
	7.2.1 javax.persistence.Persistence Class


	Chapter 8 Metadata Annotations
	8.1 Entity
	8.2 Callback Annotations
	8.3 Annotations for Queries
	8.3.1 Flush Mode Annotation
	8.3.2 NamedQuery Annotation
	8.3.3 NamedNativeQuery Annotation
	8.3.4 Annotations for SQL Query Result Set Mappings

	8.4 References to EntityManager and EntityManagerFactory
	8.4.1 PersistenceContext Annotation
	8.4.2 PersistenceUnit Annotation


	Chapter 9 Metadata for Object/Relational Mapping
	9.1 Annotations for Object/Relational Mapping
	9.1.1 Table Annotation
	9.1.2 SecondaryTable Annotation
	9.1.3 SecondaryTables Annotation
	9.1.4 UniqueConstraint Annotation
	9.1.5 Column Annotation
	9.1.6 JoinColumn Annotation
	9.1.7 JoinColumns Annotation
	9.1.8 Id Annotation
	9.1.9 GeneratedValue Annotation
	9.1.10 AttributeOverride Annotation
	9.1.11 AttributeOverrides Annotation
	9.1.12 EmbeddedId Annotation
	9.1.13 IdClass Annotation
	9.1.14 Transient Annotation
	9.1.15 Version Annotation
	9.1.16 Basic Annotation
	9.1.17 Lob Annotation
	9.1.18 Temporal Annotation
	9.1.19 Enumerated Annotation
	9.1.20 ManyToOne Annotation
	9.1.21 OneToOne Annotation
	9.1.22 OneToMany Annotation
	9.1.23 JoinTable Annotation
	9.1.24 ManyToMany Annotation
	9.1.25 MapKey Annotation
	9.1.26 OrderBy Annotation
	9.1.27 Inheritance Annotation
	9.1.28 DiscriminatorColumn Annotation
	9.1.29 DiscriminatorValue Annotation
	9.1.30 PrimaryKeyJoinColumn Annotation
	9.1.31 PrimaryKeyJoinColumns Annotation
	9.1.32 Embeddable Annotation
	9.1.33 Embedded Annotation
	9.1.34 MappedSuperclass Annotation
	9.1.35 SequenceGenerator Annotation
	9.1.36 TableGenerator Annotation

	9.2 Examples of the Application of Annotations for Object/Relational Mapping
	9.2.1 Examples of Simple Mappings
	9.2.2 A More Complex Example


	Chapter 10 XML Descriptor
	10.1 XML Schema

	Chapter 11 Related Documents
	Appendix A Revision History
	A.1 Early Draft 1
	A.2 Early Draft 2
	A.3 Changes Since EDR 2
	A.4 Changes Since Public Draft


