
The ObjectWeb Consortium
Implementation documentation

[image: image1.jpg]! Speedo

The Implementation

Authors:

S.Chassande-Barrioz (France Telecom R&D)

Released:
November 18, 2003

Status:
Draft

 REF Status \h
 * MERGEFORMAT Draft

Version:
0.1

 REF Version \h
 * MERGEFORMAT 0.1
Table of contents

41
Introduction

41.1
Overview

41.2
Scope

41.3
Document Convention

52
Perseus

52.1
Overview

52.2
MemoryInstanceManager

62.3
StorageManager

72.4
DirtyObjectManager

82.5
ConcurrencyManager

92.6
CacheManager

92.6.1
CacheEntry

92.6.2
CacheManager

92.6.3
CacheEntryFactory

92.6.4
ReplacementManager

92.7
PersistenceManager

92.8
WorkingSet

103
Speedo

103.1
Overview

103.1.1
Speedo

103.1.2
SpeedoPersistenceManagerFactory

113.1.3
SpeedoPersistenceManager

113.1.4
SpeedoProxy

113.2
SpeedoTransaction

123.3
PersistenceManagerSwitch

Table of figures

5Figure 1: Perseus architecture overview

6Figure 2: Storage Manager

7Figure 3: Dirty Object Manager flush

7Figure 4: Dirty Object Manager makeClean

8Figure 5: Use of the Concurrency Manager

10Figure 6: The Speedo component

10Figure 7: The SpeedoPersistenceManager component

11Figure 8: The SpeedoPersistenceManager component

1 Introduction

1.1 Overview

This document is the implementation documentation of the Speedo software. It presents its architecture.

1.2 Scope

Every Speedo contributor must read this document.

1.3 Document Convention

A Times Roman font is used for describing the Speedo architecture.

A courier font is used for code fragments.

2 Perseus

Perseus is a persistent framework, which manages several aspects like the cache, the concurrency control, the pool … Perseus is the result of the work of the Phd students Luciano Garcia-Banuelos.

2.1 Overview

Figure 1: Perseus architecture overview

The Perseus framework identifies 6 components and the interactions between these components. The following section presents each component and the interactions.

2.2 MemoryInstanceManager

The memory instance manager is able to create memory instance since an identifier. The method releaseInstance permits to use a Pool of memory instance or to do some action at the end of the object life.

public interface MemoryInstanceManager {

Object newInstance (Object oid, Object context)

throws PersistenceException;

void releaseInstance(Object obj);

}

2.3 StorageManager

The StorageManager has a main interface:

package org.objectweb.perseus.persistence.api;

public interface StorageManager {

Object export(Object context, Object obj)

throws PersistenceException;

Object export(Object context, Object obj,

Object hints) throws PersistenceException;

void unexport(Object context, Object oid)

throws PersistenceException;

void unexport(Object context, Object oid,

Object hints) throws PersistenceException;

void read(Object context, Object oid,

Object obj) throws PersistenceException;

void read(Object conn, Object oid, Object obj,

Object tx) throws PersistenceException;

void write(Object context, Object oid,

Object obj) throws PersistenceException;

}

The Storage manager manages persistent objects on a data support. There are four types of actions:

· To make persistent an object and to build a new identifier for the object (export),

· To mark as removed a persistent object (unexport),

· To load a persistent object from the data support into a memory instance (read),

· To write a persistent object into the data support (write)

During the read operation the value can be load into an instance given in parameter or in a new instance. To obtain a new instance, the storage manager uses a MemoryInstanceManager.

Figure 2: Storage Manager

The writing of a persistent object can be a creation of the persistent image, an update of the values or the deletion of the persistent image on the data support.

The use of this interface matches to the use of Jorm framework. It is easy to implement a StorageManager based on Jorm:

· The object identifier is a PName

· The object given to the storage manager must permit to reach the PBinding and the PAccessor.

2.4 DirtyObjectManager

The DirtyObjectManager has a main interface:

package org.objectweb.perseus.persistence.api;

public interface DirtyObjectManager {

void makeDirty(CacheEntry ce);

void makeClean(CacheEntry ce);

void makeClean(Collection entries);

void flush(Object context, CacheEntry ce)

throws PersistenceException;

void flush(Object context, List ces)

throws PersistenceException;

}

The dirty object manager is in charge to keep the status of persistent object (makeDirty). This status indicates if the persistent object is modified in this working set. There are several way to do this:

· Use an internal structure,

· Use a tag in the persistent object (i.e. the persistent has a field flag).

The second role to the dirty object manager is to flush the modification done in a working set (flush). Indeed for example when a working set is closed, the modified persistent object must be flushed on the data support. Then to flush the modified persistent object, the dirty object manager uses the Storage manager

Figure 3: Dirty Object Manager flush

The third role of the dirty object manager is to clean persistent instances after a roll back of the working set. The dirty object manager must re-load the value of the persistent object from the support.

Figure 4: Dirty Object Manager makeClean

2.5 ConcurrencyManager

The ConcurrencyManager is in charge of the management of concurrent accesses to objects between several working sets.

The ConcurrencyManager has a main interface:

package org.objectweb.perseus.concurrency.api;

public interface ConcurrencyManager {

void begin(Object ctx);

boolean validate(Object ctx);

void finalize(Object ctx);

void abort(Object ctx);

void readIntention(Object ctx, Object oid, Object hints)

throws ConcurrencyException;

void writeIntention(Object ctx, Object oid, Object hints)

throws ConcurrencyException;

}

The begin, validate, finalize and abort methods permit to signal the working set life cycle to the ConcurrencyManager whereas the readIntention and writeIntention permit to signal accesses to an object. The validate method determines if the working set can be validate. A false value returned means that the working must be rolled back and the abort method must be called. In other hand a true value means the working set can be finalized and the finalize method can be called.

The following diagram shows how the methods of the ConcurrencyManager must be called:

Figure 5: Use of the Concurrency Manager
This interface can be implement with different concurrency policies:

· “Very pessimistic”: All accesses are considered as writing with mutual exclusion on the resource access. The readIntention and the writeIntention can be blocked operation. Then a dead lock checker is needed.

· Pessimistic: Several readers can share a resource, but a writer is alone to access a resource. The readIntention and the writeIntention can be blocked operation. Then a dead lock checker is needed.

· Optimistic: The readers and the writers can access to all resources and the conflicts are resolved at validation step by rolling back of some working set.

In all implementations, the ConcurrencyManager can roll back working sets. To inform the ConcurrencyManager that the working set must be rolled back (due to a conflict or a dead lock) a RollBackException is thrown. In this case the next validate call will return false.

2.6 CacheManager

2.6.1 CacheEntry

2.6.2 CacheManager

2.6.3 CacheEntryFactory

2.6.4 ReplacementManager

2.7 PersistenceManager

2.8 WorkingSet

3 Speedo

3.1 Overview

3.1.1 Speedo

There is component grouping all components of Speedo. This component exports only the PersistenceManagerFactory interface.

Figure 6: The Speedo component

3.1.2 SpeedoPersistenceManagerFactory

Figure 7: The SpeedoPersistenceManager component

3.1.3 SpeedoPersistenceManager

Figure 8: The SpeedoPersistenceManager component

3.1.4 SpeedoProxy

3.2 SpeedoTransaction

3.3 PersistenceManagerSwitch

Pool

Persistence�Manager�Factory

Cache�Manager

Memory�instance�Manager

Storage�Manager

DirtyObject�Manager

Concurrency�Manager

Persistence�Manager

SpeedoTransaction

ProxyManager

ProxyManagerSwitch

SpeedoTransactional�PersistenceManager

SpeedoQueryManager

CacheManager

Persistence�Manager�Factory

SpeedoTransaction

SpeedoAccessor

ProxyManager

PoolMatchFactory

Pool

QueryManager

SpeedoTransaction

QueryManager

CacheManager

PersistenceManagerFactory

ProxyManagerSwitch

TransactionalPersistenceManager

PersistenceManagerFactory

Pool

PersistenceManagerFactory

PooMatchFactory

Mapper

Persistence�Manager�Factory

ProxyManagerSwitch

Pool

PMapper

PMS

Pool

StorageManager

MemoryInstanceManager

Data support

newInstance(..)

read(..)

flush(..)

write(..)

DirtyObjectManager

StorageManager

DirtyObjectManager

StorageManager

read(..)

makeClean(..)

Ended

begin(..)

Started

Idle

validate(..)

finalize(..)�or abort(..)

readIntention(..)�or writeIntention(..)

