
Java Data Objects 2.0
1 Introduction

Java is a language that defines a runtime environment in which user-defined classes exe-
cute. The instances of these user-defined classes might represent real world data. The data
might be stored in databases, file systems, or mainframe transaction processing systems.
These data sources are collectively referred to as Enterprise Information Systems (EIS).
Additionally, small footprint environments often require a way to manage persistent data
in local storage.

The data access techniques are different for each type of data source, and accessing the
data presents a challenge to application developers, who currently need to use a different
Application Programming Interface (API) for each type of data source.

This means that application developers need to learn at least two different languages to
develop business logic for these data sources: the Java programming language; and the
specialized data access language required by the data source.

Currently, there are two Java standards for storing Java data persistently: serialization and
JDBC. Serialization preserves relationships among a graph of Java objects, but does not
support sharing among multiple users. JDBC requires the user to explicitly manage the
values of fields and map them into relational database tables.

Developers can be more productive if they focus on creating Java classes that implement
business logic, and use native Java classes to represent data from the data sources. Map-
ping between the Java classes and the data source, if necessary, can be done by an EIS do-
main expert.

JDO defines interfaces and classes to be used by application programmers when using
classes whose instances are to be stored in persistent storage (persistence-capable classes),
and specifies the contracts between suppliers of persistence-capable classes and the runt-
ime environment (which is part of the JDO Implementation).

The supplier of the JDO Implementation is hereinafter called the JDO vendor.

1.1 Overview

There are two major objectives of the JDO architecture: first, to provide application pro-
grammers a transparent Java-centric view of persistent information, including enterprise
data and locally stored data; and second, to enable pluggable implementations of data-
stores into application servers.

The Java Data Objects architecture defines a standard API to data contained in local stor-
age systems and heterogeneous enterprise information systems, such as ERP, mainframe
transaction processing and database systems. The architecture also refers to the Connector
architecture[see Appendix A reference 4] which defines a set of portable, scalable, secure,
and transactional mechanisms for the integration of EIS with an application server.

This architecture enables a local storage expert, an enterprise information system (EIS)
vendor, or an EIS domain expert to provide a standard data view (JDO Implementation)
for the local data or EIS.
 JDO 2.0 15 October 21, 2004

Java Data Objects 2.0
1.2 Scope

The JDO architecture defines a standard set of contracts between an application program-
mer and an JDO vendor. These contracts focus on the view of the Java instances of persis-
tence-capable classes.

JDO uses the Connector Architecture [see Appendix A reference 4] to specify the contract
between the JDO vendor and an application server. These contracts focus on the important
aspects of integration with heterogeneous enterprise information systems: instance man-
agement, connection management, and transaction management.

To provide transparent storage of local data, the JDO architecture does not require the
Connector Architecture in non-managed (non-application server) environments.

1.3 Target Audience

The target audience for this specification includes:

• application developers

• JDO vendors

• enterprise information system (EIS) vendors and EIS Connector providers

• container providers

• enterprise system integrators

• enterprise tool vendors

JDO defines two types of interfaces: the JDO API, of primary interest to application developers (the
JDO instance life cycle) and the JDO SPI, of primary interest to container providers and JDO ven-
dors. An italicized notice may appear at the end of a section, directing readers interested only in the
API side to skip to the next API-side section.

1.4 Organization

This document describes the rationale and goals for a standard architecture for specifying
the interface between an application developer and a local file system or EIS datastore. It
then elaborates the JDO architecture and its relationship to the Connector architecture.

The document next describes two typical JDO scenarios, one managed (application server)
and the other non-managed (local file storage). This chapter explains key roles and respon-
sibilities involved in the development and deployment of portable Java applications that
require persistent storage.

The document then details the prescriptive aspects of the architecture. It starts with the
JDO instance, which is the application programmer-visible part of the system. It then de-
tails the JDO PersistenceManager, which is the primary interface between a persis-
tence-aware application, focusing on the contracts between the application developer and
JDO implementation provider. Finally, the contracts for connection and transaction man-
agement between the JDO vendor and application server vendor are defined.

1.5 Document Convention

A Palatino font is used for describing the JDO architecture.

A courier font is used for code fragments.
 JDO 2.0 16 October 21, 2004

Java Data Objects 2.0
1.6 Terminology Convention

“Must” is used where the specified component is required to implement some interface or
action to be compliant with the specification.

“Might” is used where there is an implementation choice whether or how to implement a
method or function.

“Should” is used to describe objectives of the specification and recommended application
programming usage. If the recommended usage is not followed by applications, behavior
is non-portable, unexpected, or unspecified.

“Should” is also used where there is a recommended choice for possibly different imple-
mentation actions. If the recommended usage is not followed by implementations, ineffi-
ciencies might result.
 JDO 2.0 17 October 21, 2004

Java Data Objects 2.0
2 Overview

This chapter introduces key concepts that are required for an understanding of the JDO ar-
chitecture. It lays down a reference framework to facilitate a formal specification of the
JDO architecture in the subsequent chapters of this document.

2.1 Definitions

2.1.1 JDO common interfaces

JDO Instance

A JDO instance is a Java programming language instance of a Java class that implements
the application functions, and represents data in a local file system or enterprise datastore.
Without limitation, the data might come from a single datastore entity, or from a collection
of entities. For example, an entity might be a single object from an object database, a single
row of a relational database, the result of a relational database query consisting of several
rows, a merging of data from several tables in a relational database, or the result of execut-
ing a data retrieval API from an ERP system.

The objective of JDO is that most user-written classes, including both entity-type classes
and utility-type classes, might be persistence capable. The limitations are that the persis-
tent state of the class must be represented entirely by the state of its Java fields. Thus, sys-
tem-type classes such as System, Thread, Socket, File, and the like cannot be JDO
persistence-capable, but common user-defined classes can be.

JDO Implementation

A JDO implementation is a collection of classes that implement the JDO contracts. The JDO
implementation might be provided by an EIS vendor or by a third party vendor, collective-
ly known as JDO vendor. The third party might provide an implementation that is opti-
mized for a particular application domain, or might be a general purpose tool (such as a
relational mapping tool, embedded object database, or enterprise object database).

The primary interface to the application is PersistenceManager, with interfaces Que-
ry and Transaction playing supporting roles for application control of the execution
environment.

JDO Enhancer

To use persistence-capable classes with binary-compatible JDO implementations, the
classes must implement the PersistenceCapable contract, which includes implement-
ing the javax.jdo.spi.PersistenceCapable contract, as well as adding other meth-
ods including static registration methods. This contract enables management of classes
including transparent loading and storing of the fields of their persistent instances. A JDO
enhancer, or byte code enhancer, is a program that modifies the byte codes of application-
component Java class files to implement this interface.

The JDO reference implementation (reference enhancement) contains an approach for the
enhancement of Java class files to allow for enhanced class files to be shared among several
coresident JDO implementations.
 JDO 2.0 18 October 21, 2004

Java Data Objects 2.0
There are alternative approaches to byte code enhancement for having the classes imple-
ment the PersistenceCapable contract. These include preprocessing or code genera-
tion. If one of these alternatives is used instead of byte code enhancement, the
PersistenceCapable contract is implemented explicitly.

A JDO implementation is free to extend the Reference Enhancement contract with imple-
mentation-specific methods and fields that might be used by its runtime environment.

Binary Compatibility

A JDO implementation may optionally choose to support binary compatibility with other
JDO implementations by supporting the PersistenceCapable contract for persistence-
capable classes. If it does, then enhanced classes produced by another implementation or
by the reference enhancer must be supported according to the following requirements.

• A2.1.1-1 [classes enhanced by the reference enhancer must be usable by any JDO
compliant implementation that supports BinaryCompatibility];

• A2.1.1-2 [classes enhanced by a JDO compliant implementation must be usable by
the reference implementation]; and

• A2.1.1-3 [classes enhanced by a JDO compliant implementation must be usable by
any other JDO compliant implementation that supports BinaryCompatibility].

The following table determines which interface is used by a JDO implementation based on

the enhancement of the persistence-capable class. For example, if Vendor A runtime de-
tects that the class was enhanced by its own enhancement, then the runtime will use its en-
hancement contract. Otherwise, it will use the Reference Enhancement contract.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion, as it details architectural features not relevant to local environments. Skip to 2.2 – Rationale.

2.1.2 JDO in a managed environment

This discussion provides a bridge to the Connector architecture, which JDO uses for transaction and
connection management in application server environments.

Enterprise Information System (EIS)

An EIS provides the information infrastructure for an enterprise. An EIS offers a set of ser-
vices to its clients. These services are exposed to clients as local and/or remote interfaces.
Examples of EIS include:

• relational database system;

• object database system;

• ERP system; and

• mainframe transaction processing system.

Table 1: Which Enhancement Interface is Used

Reference Runtime Vendor A Runtime Vendor B Runtime

Reference Enhancer Reference Enhancement Reference Enhancement Reference Enhancement

Vendor A Enhancer Reference Enhancement Vendor A Enhancement Reference Enhancement

Vendor B Enhancer Reference Enhancement Reference Enhancement Vendor B Enhancement
 JDO 2.0 19 October 21, 2004

Java Data Objects 2.0
EIS Resource

An EIS resource provides EIS-specific functionality to its clients. Examples are:

• a record or set of records in a database system;

• a business object in an ERP system; and

• a transaction program in a transaction processing system

Resource Manager (RM)

A resource manager manages a set of shared resources. A client requests access to a re-
source manager to use its managed resources. A transactional resource manager can par-
ticipate in transactions that are externally controlled and coordinated by a transaction
manager.

Connection

A connection provides connectivity to a resource manager. It enables an application client
to connect to a resource manager, perform transactions, and access services provided by
that resource manager. A connection can be either transactional or non-transactional. Ex-
amples include a database connection and a SAP R/3 connection.

Application Component

An application component can be a server-side component, such as an EJB, JSP, or servlet,
that is deployed, managed and executed on an application server. It can be a component
executed on the web-client tier but made available to the web-client by an application serv-
er, such as a Java applet, or DHTML page. It might also be an embedded component exe-
cuted in a small footprint device using flash memory for persistent storage.

Session Beans

Session objects are EJB application components that execute on behalf of a single client,
might be transaction aware, update data in an underlying datastore, and do not directly
represent data in the datastore.

Entity Beans

Entity objects are EJB application components that provide an object view of transactional
data in an underlying datastore, allow shared access from multiple users, including ses-
sion objects and remote clients, and directly represent data in the datastore.

Helper objects

Helper objects are application components that provide an object view of data in an un-
derlying datastore, allow transactionally consistent view of data in multiple transactions,
are usable by local session and entity beans, but do not have a remote interface.

Container

A container is a part of an application server that provides deployment and runtime sup-
port for application components. It provides a federated view of the underlying applica-
tion server services for the application components. For more details on different types of
standard containers, refer to Enterprise JavaBeans (EJB) [see Appendix A reference 1], Java
Server Pages (JSP), and Servlets specifications.
 JDO 2.0 20 October 21, 2004

Java Data Objects 2.0
2.2 Rationale

There is no existing Java platform specification that proposes a standard architecture for
storing the state of Java objects persistently in transactional datastores.

The JDO architecture offers a Java solution to the problem of presenting a consistent view
of data from the large number of application programs and enterprise information systems
already in existence. By using the JDO architecture, it is not necessary for application com-
ponent vendors to customize their products for each type of datastore.

This architecture enables an EIS vendor to provide a standard data access interface for its
EIS. The JDO implementation is plugged into an application server and provides underly-
ing infrastructure for integration between the EIS and application components.

Similarly, a third party vendor can provide a standard data access interface for locally
managed data such as would be found in an embedded device.

An application component vendor extends its system only once to support the JDO archi-
tecture and then exploits multiple data sources. Likewise, an EIS vendor provides one
standard JDO implementation and it has the capability to work with any application com-
ponent that uses the JDO architecture.

The Figure 1.0 on page 22 shows that an application component can plug into multiple
JDO implementations. Similarly, multiple JDO implementations for different EISes can
plug into an application component. This standard plug-and-play is made possible
through the JDO architecture.
 JDO 2.0 21 October 21, 2004

Java Data Objects 2.0
Figure 1.0 Standard plug-and-play between application programs and EISes using JDO

2.3 Goals

The JDO architecture has been designed with the following goals:

• The JDO architecture provides a transparent interface for application component
and helper class developers to store data without learning a new data access
language for each type of persistent data storage.

• The JDO architecture simplifies the development of scalable, secure and
transactional JDO implementations for a wide range of EISes — ERP systems,
database systems, mainframe-based transaction processing systems.

• The JDO architecture is implementable for a wide range of heterogeneous local file
systems and EISes. The intent is that there will be various implementation choices
for different EIS—each choice based on possibly application-specific
characteristics and mechanisms of a mapping to an underlying EIS.

• The JDO architecture is suitable for a wide range of uses from embedded small
footprint systems to large scale enterprise application servers. This architecture
provides for exploitation of critical performance features from the underlying EIS,
such as query evaluation and relationship management.

Enterprise Information
Application Programs System

Application Program

JDO

JDO

Application program/EJB container

JDO implementation provided by JDO vendor

Legend:

implementations

implementation

Systems

Enterprise Information
 JDO 2.0 22 October 21, 2004

Java Data Objects 2.0
• The JDO architecture uses the J2EE Connector Architecture to make it applicable
to all J2EE platform compliant application servers from multiple vendors.

• The JDO architecture makes it easy for application component developers to use
the Java programming model to model the application domain and transparently
retrieve and store data from various EIS systems.

• The JDO architecture defines contracts and responsibilities for various roles that
provide pieces for standard connectivity to an EIS. This enables a standard JDO
implementation from a EIS or third party vendor to be pluggable across multiple
application servers.

• The connector architecture also enables an application programmer in a non-
managed application environment to directly use the JDO implementation to
access the underlying file system or EIS. This is in addition to a managed access to
an EIS with the JDO implementation deployed in the middle-tier application
server. In the former case, application programmers will not rely on the services
offered by a middle-tier application server for security, transaction, and
connection management, but will be responsible for managing these system-level
aspects by using the EIS connector.
 JDO 2.0 23 October 21, 2004

Java Data Objects 2.0
3 JDO Architecture

3.1 Overview

Multiple JDO implementations - possibly multiple implementations per type of EIS or lo-
cal storage - are pluggable into an application server or usable directly in a two tier or em-
bedded architecture. This enables application components, deployed either on a middle-
tier application server or on a client-tier, to access the underlying datastores using a con-
sistent Java-centric view of data. The JDO implementation provides the necessary map-
ping from Java objects into the special data types and relationships of the underlying
datastore.

Figure 2.0 Overview of non-managed JDO architecture

In a non-managed environment, the JDO implementation hides the EIS specific issues such
as data type mapping, relationship mapping, and data retrieval and storage. The applica-
tion component sees only the Java view of the data organized into classes with relation-
ships and collections presented as native Java constructs.

Managed environments additionally provide transparency for the application compo-
nents’ use of system-level mechanisms - distributed transactions, security, and connection
management, by hiding the contracts between the application server and JDO implemen-
tations.

Enterprise Information

Local Persistent
Storage

System

JDO PersistenceManager

JDO PersistenceManager

Application

transient
instance

transient
instance

transient
instance

Java Virtual Machine

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

Query

Transaction

Transaction

Query
 JDO 2.0 24 October 21, 2004

Java Data Objects 2.0
With both managed and non-managed environments, an application component develop-
er focuses on the development of business and presentation logic for the application com-
ponents without getting involved in the issues related to connectivity with a specific EIS.

3.2 JDO Architecture

3.2.1 Two tier usage

For simple two tier usage, JDO exposes to the application component two primary inter-
faces: javax.jdo.PersistenceManager, from which services are requested; and
javax.jdo.JDOHelper, which provides the bootstrap and management view of user-
defined persistence-capable classes.

The PersistenceManager interface provides services such as query management,
transaction management, and life cycle management for instances of persistence-capable
classes.

The JDOHelper class provides services such as bootstrap methods to acquire an instance
of PersistenceManagerFactory and life cycle state interrogation for instances of per-
sistence-capable classes.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tions. Skip to 4 – Roles and Scenarios.

3.2.2 Application server usage

For application server usage, the JDO architecture uses the J2EE Connector architecture,
which defines a standard set of system-level contracts between the application server and
EIS connectors. These system-level contracts are implemented in a resource adapter from
the EIS side.

The JDO persistence manager is a caching manager as defined by the J2EE Connector ar-
chitecture, that might use either its own (native) resource adapter or a third party resource
adapter. If the JDO PersistenceManager has its own resource adapter, then imple-
mentations of the system-level contracts specified in the J2EE Connector architecture must
be provided by the JDO vendor. These contracts include ManagedConnectionFacto-
ry, XAResource, and LocalTransaction interfaces.

The JDO Transactionmust implement the Synchronization interface so that trans-
action completion events can cause flushing of state through the underlying connector to
the EIS.

The application components are unable to distinguish between JDO implementations that
use native resource adapters and JDO implementations that use third party resource
adapters. However, the deployer will need to understand that there are two configurable
components: the JDO PersistenceManager and its underlying resource adapter.

For convenience, the PersistenceManagerFactory provides the interface necessary
to configure the underlying resource adapter.

Resource Adapter

A resource adapter provided by the JDO vendor is called a native resource adapter, and
the interface is specific to the JDO vendor. It is a system-level software driver that is used
by an application server or an application client to connect to a resource manager.

The resource adapter plugs into a container (provided by the application server). The ap-
plication components deployed on the container then use the client API exposed by jav-
ax.jdo.PersistenceManager to access the JDO PersistenceManager. The JDO
 JDO 2.0 25 October 21, 2004

Java Data Objects 2.0
implementation in turn uses the underlying resource adapter interface specific to the data-
store. The resource adapter and application server collaborate to provide the underlying
mechanisms - transactions, security and connection pooling - for connectivity to the EIS.

The resource adapter is located within the same VM as the JDO implementation using it.
Examples of JDO native resource adapters are:

• Object/Relational (O/R) products that use their own native drivers to connect to
object relational databases

• Object Database (OODBMS) products that store Java objects directly in object
databases

Examples of non-native resource adapter implementations are:

• O/R mapping products that use JDBC drivers to connect to relational databases

• Hierarchical mapping products that use mainframe connectivity tools to connect
to hierarchical transactional systems

Pooling

There are two levels of pooling in the JDO architecture. JDO PersistenceManagers
might be pooled, and the underlying connections to the datastores might be independent-
ly pooled.

Pooling of the connections is governed by the Connector Architecture contracts. Pooling
of PersistenceManagers is an optional feature of the JDO Implementation, and is not
standardized for two-tier applications. For managed environments, PersistenceMan-
ager pooling is required to maintain correct transaction associations with Persis-
tenceManagers.

For example, a JDO PersistenceManager instance might be bound to a session run-
ning a long duration optimistic transaction. This instance cannot be used by any other user
for the duration of the optimistic transaction.

During the execution of a business method associated with the session, a connection might
be required to fetch data from the datastore. The PersistenceManager will request a
connection from the connection pool to satisfy the request. Upon termination of the busi-
ness method, the connection is returned to the pool but the PersistenceManager re-
mains bound to the session.

After completion of the optimistic transaction, the PersistenceManager instance
might be returned to the pool and reused for a subsequent transaction.

Contracts

JDO specifies the application level contract between the application components and the
JDO PersistenceManager.

The J2EE Connector architecture specifies the standard contracts between application
servers and an EIS connector used by a JDO implementation. These contracts are required
for a JDO implementation to be used in an application server environment. The Connector
architecture defines important aspects of integration: connection management, transaction
management, and security.

The connection management contracts are implemented by the EIS resource adapter
(which might include a JDO native resource adapter).

The transaction management contract is between the transaction manager (logically dis-
tinct from the application server) and the connection manager. It supports distributed
 JDO 2.0 26 October 21, 2004

Java Data Objects 2.0
transactions across multiple application servers and heterogeneous data management pro-
grams.

The security contract is required for secure access by the JDO connection to the underlying
datastore.

Figure 3.0 Contracts between application server and native JDO resource adapter

Application
Component

Container

Transaction Manager

JDO Native

Adapter

Application Server

JDO data

Connection
Management

contract

Security
contract

JDO API

Transaction
contract

Resource

store
 JDO 2.0 27 October 21, 2004

Java Data Objects 2.0
Figure 4.0 Contracts between application server and layered JDO implementation

The above diagram illustrates the relationship between a JDO implementation provided by a third
party vendor and an EIS-provided resource adapter.

Application
Component

Container

Transaction Manager

Resource

Adapter

Application Server

Resource
Manager

XAResource

Synchronization
contract

JDO API EIS-
specific
APIs

JDO implementation

(EIS datastore)

Connector Contracts
(e.g. ManagedConnection)
 JDO 2.0 28 October 21, 2004

Java Data Objects 2.0
4 Roles and Scenarios

4.1 Roles

This chapter describes roles required for the development and deployment of applications
built using the JDO architecture. The goal is to identify the nature of the work specific to
each role so that the contracts specific to each role can be implemented on each side of the
contracts.

The detailed contracts are specified in other chapters of this specification. The specific in-
tent here is to identify the primary users and implementors of these contracts.

4.1.1 Application Developer

The application developer writes software to the JDO API. The JDO application developer
does not have to be an expert in the technology related to a specific datastore.

4.1.2 Application Component Provider

The application component provider produces an application library that implements ap-
plication functionality through Java classes with business methods that store data persis-
tently in one or more EISes through the JDO API.

There are two types of application components that interact with JDO. JDO-transparent
application components, typically helper classes, are those that use JDO to have their state
stored in a transactional datastore, and directly access other components by references of
their fields. Thus, they do not need to use JDO APIs directly.

JDO-aware application components (message-driven beans and session beans) use servic-
es of JDO by directly accessing its API. These components use JDO query facilities to re-
trieve collections of JDO instances from the datastore, make specific instances persistent in
a particular datastore, delete specific persistent instances from the datastore, interrogate
the cached state of JDO instances, or explicitly manage the cache of the JDO Persis-
tenceManager. These application components are non-transparent users of JDO.

Session beans that use helper JDO classes interact directly with PersistenceManager
and JDOHelper. They can use the life cycle methods and query factory methods, while
ignoring the transaction demarcation methods if they use container-managed transac-
tions.

The output of the application component provider is a set of jar files containing application
components.

4.1.3 Application Assembler

The application assembler is a domain expert who assembles application components
from multiple sources including in-house developers and application library vendors. The
application assembler can combine different types of application components, for example
EJBs, servlets, or JSPs, into a single end-user-visible application.
 JDO 2.0 29 October 21, 2004

Java Data Objects 2.0
The input of the application assembler is one or more jar files, produced by application
component providers. The output is one or more jar files with deployment specific de-
scriptions.

4.1.4 Deployer

The deployer is responsible for configuring assembled components into specific opera-
tional environments. The deployer resolves all external references from components to
other components or to the operational system.

For example, the deployer will bind application components in specific operating environ-
ments to datastores in those environments, and will resolve references from one applica-
tion component to another. This typically involves using container-provided tools.

The deployer must understand, and be able to define, security roles, transactions, and con-
nection pooling protocols for multiple datastores, application components, and contain-
ers.

4.1.5 System Administrator

The system administrator manages the configuration and administration of multiple con-
tainers, resource adapters and EISs that combine into an operational system.

Readers primarily interested in developing applications with the JDO API can ignore the following
sections. Skip to 4.2 – Scenario: Embedded calendar management system.

4.1.6 JDO Vendor

The JDO vendor is an expert in the technology related to a specific datastore and is respon-
sible for providing a JDO SPI implementation for that specific datastore. Since this role is
highly datastore specific, a datastore vendor will often provide the standard JDO imple-
mentation.

A vendor can also provide a JDO implementation and associated set of application devel-
opment tools through a loose coupling with a specific third party datastore. Such provid-
ers specialize in writing connectors and related tools for a specific EIS or might provide a
more general tool for a large number of datastores.

The JDO vendor requires that the EIS vendor has implemented the J2EE Connector archi-
tecture and the role of the JDO implementation is that of a synchronization adapter to the
connector architecture.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion. Skip to 4.2 – Scenario: Embedded calendar management system.

4.1.7 Connector Provider

The connector provider is typically the vendor of the EIS or datastore, and is responsible
for supplying a library of interface implementations that satisfy the resource adapter inter-
face.

In the JDO architecture, the Connector is a separate component, supplied by either the JDO
vendor or by an EIS vendor or third party.

4.1.8 Application Server Vendor

An application server vendor [see Appendix A reference 1], provides an implementation
of a J2EE compliant application server that provides support for component-based enter-
prise applications. A typical application server vendor is an OS vendor, middleware ven-
dor, or database vendor.
 JDO 2.0 30 October 21, 2004

Java Data Objects 2.0
The role of application server vendor will typically be the same as that of the container pro-
vider.

4.1.9 Container Provider

For bean-managed persistence, the container provides deployed application components
with transaction and security management, distribution of clients, scalable management
of resources and other services that are generally required as part of a managed server
platform.

4.2 Scenario: Embedded calendar management system

This section describes a scenario to illustrate the use of JDO architecture in an embedded
mobile device such as a personal information manager (PIM) or telephone.

Figure 5.0 Scenario: Embedded calendar manager

Sven’s Phones is a manufacturer of high function telephones for the traveling businessper-
son. They have implemented a Java operating environment that provides persistence via
a Java file I/O subsystem that writes to flash RAM.

Apache Persistware is a supplier of JDO software that has a small footprint and as such, is
especially suited for embedded devices such as personal digital assistants and telephones.
They use Java file I/O to store JDO instances persistently.

Calendars-R-Us is a supplier of appointment and calendar software that is written for sev-
eral operating environments, from high function telephones to desktop workstations and
enterprise application servers.

Calendars-R-Us uses the JDO API directly to manage calendar appointments on behalf of
the user. The calendar application needs to insert, delete, and change calendar appoint-
ments based on the user’s keypad input. It uses Java application domain classes: Ap-

Flash RAM

Telephone JVM

File Manager

JDO

implementation

Java File

I/O APIs

Calendar

Manager

Application JDO

API

Calendars-R-Us Apache Persistware Sven’s Phones
 JDO 2.0 31 October 21, 2004

Java Data Objects 2.0
pointment, Contact, Note, Reminder, Location, and TelephoneNumber. It
employs JDK library classes: Time, Date, ArrayList, and Calendar.

Calendars-R-Us previously used Java file I/O APIs directly, but ran into several difficul-
ties. The most efficient storage for some environments was an indexed file system, which
was required only for management of thousands of entries. However, when they ported
the application to the telephone, the indexed file system was too resource-intensive, and
had to be abandoned.

They then wrote a data access manager for sequential files, but found that it burned out
the flash RAM due to too much rewriting of data. They concluded that they needed to use
the services of another software provider who specialized in persistence for flash RAM in
embedded devices.

Apache Persistware developed a file access manager based on the Berkeley File System
and successfully sold it to a range of Java customers from embedded devices to worksta-
tions. The interface was proprietary, which meant that every new sale was a challenge, be-
cause customers were loath to invest resources in learning a different interface for each
environment they wanted to support. After all, Java was portable. Why wasn’t file access?

Sven’s Phones was a successful supplier of telephones to the mobile professional, but
found themselves constrained by a lack of software developers. They wanted to offer a
platform on which specially tailored software from multiple vendors could operate, and
take advantage of external developers to write software for their telephones.

The solution to all of these issues was to separate the software into components that could
be tailored by the domain expert for each component.

Sven’s phones implemented the Java runtime environment for their phones, and wrote an
efficient sequential file I/O manager that implemented the Java file I/O interface. This in-
terface was used by Apache Persistware to build a JDO implementation, including a JDO
instance handler and a JDO query manager.

Using the JDO interface, Calendars-R-Us rewrote just the query part of their software. The
application classes did not have to be changed. Only the persistence interface that queried
for specific instances needed to be modified.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion. Skip to 5 – Life Cycle of JDO Instances.

4.3 Scenario: Enterprise Calendar Manager

Calendars-R-Us also supports workstations and enterprise mainframes with their calen-
dar software, and they use the same interface for persistence in all environments. For en-
terprise environments, they simply need to use a different JDO implementation supplied
by a different vendor to achieve persistence for their calendar objects.
 JDO 2.0 32 October 21, 2004

Java Data Objects 2.0
Figure 6.0 Scenario: Enterprise Calendar Manager

In this scenario, the JDO implementation is provided by a vendor that maps Java objects
to relational databases. The implementation uses a JCA Resource Adapter to connect to the
datastore.

The JDO PersistenceManager is a caching manager, as defined by the Connector ar-
chitecture, and it is configured to use a JCA Resource Adapter. The PersistenceMan-
ager instance might be cached when used with a Session Bean, and might be serially
reused for multiple session beans.

Multiple JDO PersistenceManager instances might serially reuse connections from
the same pool of JDBC drivers. Therefore, resource sharing is accomplished while main-
taining state for each session.

JDO

implementation

Calendar

Manager

Session Bean, JDO

API

Application Server

Container

 Entity Beans

Database

JCA

Transaction Manager

Resource
Adapter
 JDO 2.0 33 October 21, 2004

Java Data Objects 2.0
5 Life Cycle of JDO Instances

This chapter specifies the life cycle for persistence capable class instances, hereinafter
“JDO instances”. The classes include behavior as specified by the class (bean) developer,
and for binary compatible implementations, additional behavior as provided by the refer-
ence enhancer or JDO vendor’s deployment tool. The enhancement of the classes allows
application developers to treat JDO instances as if they were normal instances, with auto-
matic fetching of persistent state from the JDO implementation.

5.1 Overview

JDO instances might be either A5.1-2 [transient] or A5.1-1 [persistent]. That is, they might
represent the persistent state of data contained in a transactional datastore. If a JDO in-
stance is transient (and not transactional), then the instance behaves exactly like an ordi-
nary instance of the persistence capable class.

If a JDO instance is persistent, its behavior is linked to the transactional datastore with
which it is associated. The JDO implementation automatically tracks changes made to the
values in the instance, and automatically refreshes values from the datastore and saves
values into the datastore as required to preserve transactional integrity of the data. Persis-
tent instances stored in the datastore retain their class and the state of their persistent
fields. Changing the class of a persistent instance is not supported explicitly by the JDO
API. However, it might be possible for an instance to change class based on external mod-
ifications to the datastore.

During the life of a JDO instance, it transitions among various states until it is finally gar-
bage collected by the JVM. During its life, the state transitions are governed by the behav-
iors executed on it directly as well as behaviors executed on the JDO
PersistenceManager by both the application and by the execution environment (in-
cluding the TransactionManager).

During the life cycle, instances at times might be inconsistent with the datastore as of the
beginning of the transaction. If instances are inconsistent, the notation for that instance in
JDO is “dirty”. Instances made newly persistent, deleted, or modified in the transaction are
dirty.

At times, the JDO implementation might store the state of persistent instances in the data-
store. This process is called “flushing”, and it does not affect the “dirty” state of the in-
stances.

Under application control, transient JDO instances might observe transaction boundaries,
in which the state of the instances is either A5.1-3 [preserved] (on commit) or A5.1-4 [re-
stored] (on rollback). Transient instances that observe transaction boundaries are called
transient transactional instances. Support for transient transactional instances is a JDO op-
tion; that is, a JDO compliant implementation is not required to implement the APIs that
cause the state transitions associated with transient transactional instances.

A5.1-5 [Under application control, persistent JDO instances might not observe transaction
boundaries. These instances are called persistent-nontransactional instances, and the life
 JDO 2.0 34 October 21, 2004

Java Data Objects 2.0
cycle of these instances is not affected by transaction boundaries.] Support for nontransac-
tional instances is a JDO option.

In a binary-compatible implementation, if a JDO instance is persistent or transactional, it
contains a non-null reference to a JDO StateManager instance which is responsible for
managing the JDO instance state changes and for interfacing with the JDO Persis-
tenceManager.

5.2 Goals

The JDO instance life cycle has the following goals:

• The fact of persistence should be transparent to both JDO instance developer and
application component developer

• JDO instances should be able to be used efficiently in a variety of environments,
including managed (application server) and non-managed (two-tier) cases

• A5.2-1 [Several JDO PersistenceManagers might be coresident] and A5.2-2
[might share the same persistence capable classes] (although A5.2-3 [a JDO
instance can be associated with only one PersistenceManager at a time])A5.2-
4 [In JDO 0.95 tagged: An instance of an enhanced class must only be associated
with zero or one PersistenceManager at a time.]

5.3 Architecture:

JDO Instances

For transient JDO instances, there is no supporting infrastructure required. That is, tran-
sient instances will never make calls to methods to the persistence infrastructure. There is
no requirement to instantiate objects outside the application domain. A5.3-1 [In a binary-
compatible implementation, there is no difference in behavior between transient instances
of enhanced classes and transient instances of the same non-enhanced classes, with some
exceptions:

• additional methods and fields added by the enhancement process are visible to
Java core reflection,

• timing of method execution is different because of added byte codes,

• extra methods for registration of metadata are executed at class load time.]

Persistent JDO instances execute in an environment that contains an instance of the JDO
PersistenceManager responsible for its persistent behavior. In a binary-compatible
implementation, the JDO instance contains a reference to an instance of the JDO State-
Manager responsible for the state transitions of the instance as well as for managing the
contents of the fields of the instance. The PersistenceManager and the StateMan-
ager might be implemented by the same instance, but their interfaces are distinct.

The contract between the persistence capable class and other application components ex-
tends the contract between the associated non-persistence capable class and application
components. For both binary-compatible and non-binary-compatible implementations,
these contract extensions support interrogation of the life cycle state of the instances and
are intended for use by management parts of the system.
 JDO 2.0 35 October 21, 2004

Java Data Objects 2.0
JDO State Manager

In a binary-compatible implementation, persistent and transactional JDO instances con-
tain a reference to a JDO StateManager instance to which all of the JDO interrogatives
are delegated. The associated JDO StateManager instance maintains the state changes
of the JDO instance and interfaces with the JDO PersistenceManager to manage the
values of the datastore.

JDO Managed Fields

Only some fields are of interest to the persistence infrastructure: fields whose values are
stored in the datastore are called persistent; fields that participate in transactions (their val-
ues may be restored during rollback) are called transactional; fields of either type are
called managed.

5.4 JDO Identity

Java defines two concepts for determining if two instances are the same instance (identity),
or represent the same data (equality). JDO extends these concepts to determine if two in-
memory instances represent the same stored object.

Java object identity is entirely managed by the Java Virtual Machine. Instances are identi-
cal if and only if they occupy the same storage location within the JVM.

Java object equality is determined by the class. Distinct instances are equal if they repre-
sent the same data, such as the same value for an integer, or same set of bits for a Bit-
Set.

The interaction between Java object identity and equality is an important one for JDO de-
velopers. Java object equality is an application specific concept, and A5.4-1 [JDO imple-
mentations must not change the application’s semantic of equality]. Still, A5.4-2 [JDO
implementations must manage the cache of JDO instances such that there is only one JDO
instance associated with each JDO PersistenceManager representing the persistent
state of each corresponding datastore object]. Therefore, JDO defines object identity differ-
ently from both the Java VM object identity and from the application equality.

Applications should implement equals for persistence-capable classes differently from
Object’s default equals implementation, which simply uses the Java VM object identi-
ty. This is because the JVM object identity of a persistent instance cannot be guaranteed be-
tween PersistenceManagers and across space and time, except in very specific cases
noted below.

Additionally, if persistence instances are stored in the datastore and are queried using the
== query operator, or are referred to by a persistent collection that enforces equality (Set,
Map) then the implementation of equals should exactly match the JDO implementation
of equality, using the primary key or ObjectId as the key. This policy is not enforced,
but if it is not correctly implemented, semantics of standard collections and JDO collec-
tions may differ.

To avoid confusion with Java object identity, this document refers to the JDO concept as
JDO identity.

Three Types of JDO identity

A5.4-3 [JDO defines three types of JDO identity:

• Application identity - JDO identity managed by the application and enforced by
the datastore; JDO identity is often called the primary key
 JDO 2.0 36 October 21, 2004

Java Data Objects 2.0
• Datastore identity - JDO identity managed by the datastore without being tied to
any field values of a JDO instance

• Nondurable identity - JDO identity managed by the implementation to guarantee
uniqueness in the JVM but not in the datastore]

The type of JDO identity used is a property of a JDO persistence-capable class and is fixed
at class loading time.

The representation of JDO identity in the JVM is via a JDO object id. A5.4-4 [Every persis-
tent instance (Java instance representing a persistent object) has a corresponding object id.]
There might be an instance in the JVM representing the object id, or not. A5.4-5 [The object
id JVM instance corresponding to a persistent instance might be acquired by the applica-
tion at run time and used later to obtain a reference to the same datastore object, and it
might be saved to and retrieved from durable storage (by serialization or other tech-
nique).]

The class representing the object id for datastore and nondurable identity classes is defined
by the JDO implementation. The implementation might choose to use any class that satis-
fies the requirements for the specific type of JDO identity for a class. It might choose the
same class for several different JDO classes, or might use a different class for each JDO
class.

The class representing the object id for application identity classes is defined by the appli-
cation in the metadata, and might be provided by the application or by a JDO vendor tool.

The application-visible representation of the JDO identity is an instance that is completely
under the control of the application. The object id instances used as parameters or returned
by methods in the JDO interface (getObjectId, getTransactionalObjectId, and
getObjectById) will never be saved internally; rather, they are copies of the internal
representation or used to find instances of the internal representation.

Therefore, A5.4-6 [the object returned by any call to getObjectId might be modified by
the user, but that modification does not affect the identity of the object that was originally
referred]. That is, the call to getObjectId returns only a copy of the object identity used
internally by the implementation.

It is a requirement that A5.4-7 [the instance returned by a call to getObjectById(Ob-
ject) of different PersistenceManager instances returned by the same Persis-
tenceManagerFactory represent the same persistent object, but with different Java
object identity (specifically, all instances returned by getObjectId from the instances
must return true to equals comparisons with all others)].

Further, A5.4-8 [any instances returned by any calls to getObjectById(Object) with
the same object id instance to the same PersistenceManager instance must be identi-
cal (assuming the instances were not garbage collected between calls)].

The JDO identity of transient instances is not defined. A5.4-9 [Attempts to get the object id
for a transient instance will return null.]

Uniquing

JDO identity of persistent instances is managed by the implementation. A5.4-10 [For a du-
rable managedJDO identity (datastore or application primary key), there is only one per-
sistent instance associated with a specific datastore object per PersistenceManager
instance, regardless of how the persistent instance was put into the cache:

• PersistenceManager.getObjectById(Object oid, boolean
validate);
 JDO 2.0 37 October 21, 2004

Java Data Objects 2.0
• query via a Query instance associated with the PersistenceManager
instance;

• navigation from a persistent instance associated with the
PersistenceManager instance;

• PersistenceManager.makePersistent(Object pc);]

Change of identity

N5.4-12 [Change of identity is supported only for application identity, and is an optional
feature of a JDO implementation. An application attempt to change the identity of an in-
stance (by writing a primary key field) where the implementation does not support this
optional feature results in JDOUnsupportedOptionException being thrown. The ex-
ception might be thrown immediately or upon flush or transaction commit.]

NOTE: Application developers should take into account that changing primary
key values changes the identity of the instance in the datastore. In production
environments where audit trails of changes are kept, change of the identity of
datastore instances might cause loss of audit trail integrity, as the historical
record of changes does not reflect the current identity in the datastore.

A5.4-11 [JDO instances using {primary key identity}application identity may change their
identity during a transaction if the application changes a primary key field. In this case,
there is a new JDO Identity associated with the JDO instance immediately upon comple-
tion of the statement that changes a primary key field. If a JDO instance is already associ-
ated with the new JDO Identity, then a JDOUserException is thrown. The exception
might be thrown immediately or upon flush or transaction commit.

Upon successful commit of the transaction, the existing datastore instance will have been
updated with the changed values of the primary key fields.]

JDO Identity Support

A JDO implementation is required to support either or both of application (primary key)
identity or datastore identity, and may optionally support nondurable identity.

5.4.1 Application (primary key) identity

This is the JDO identity type used for datastores in which the value(s) in the instance de-
termine the identity of the object in the datastore. Thus, JDO identity is managed by the
application. The class provided by the application that implements the JDO object id has
all of the characteristics of an RMI remote object, making it possible to use the JDO object
id class as the EJB primary key class. Specifically:N5.4.1-3 [

• the ObjectId class must be public;

• the ObjectId class must implement Serializable;

• the ObjectId class must have a public no-arg constructor, which might be the
default constructor;

• the field types of all non-static fields in the ObjectId class must be serializable,
and for portability should be primitive, String, Date, Byte, Short,
Integer, Long, Float, Double, BigDecimal, or BigInteger
types; JDO implementations are required to support these types and might
support other reference types;

• all serializable non-static fields in the ObjectId class must be public;
 JDO 2.0 38 October 21, 2004

Java Data Objects 2.0
• the names of the non-static fields in the ObjectId class must include the names
of the primary key fields in the JDO class, and the types of the corresponding fields
must be identical;

• the equals() and hashCode() methods of the ObjectId class must use the
value(s) of all the fields corresponding to the primary key fields in the JDO class;

• if the ObjectId class is an inner class, it must be static;

• the ObjectId class must override the toString()method defined in Object,
and return a String that can be used as the parameter of a constructor;

• the ObjectId class must provide a constructor taking either a String alone or
a Class and String that returns an instance that compares equal to an instance
that returned that String by the toString() method.]

These restrictions allow the application to construct an instance of the primary key class
providing values only for the primary key fields, or alternatively providing only the result
of toString() from an existing instance. The JDO implementation is permitted to ex-
tend the primary key class to use additional fields, not provided by the application, to fur-
ther identify the instance in the datastore. Thus, the JDO object id instance returned by an
implementation might be a subclass of the user-defined primary key class. A5.4.1-1 [Any
JDO implementation must be able to use the JDO object id instance from any other JDO
implementation.]

A primary key identity is associated with a specific set of fields. The fields associated with
the primary key are a property of the persistence-capable class, and cannot be changed af-
ter the class is enhanced for use at runtime. A5.4.1-2 [When a transient instance is made
persistent, the implementation uses the values of the fields associated with the primary
key to construct the JDO identity.]

N5.4.1-4 [A primary key instance must have none of its primary key fields set to null
when used to find a persistent instance. The persistence manager will throw JDOUserEx-
ception if the primary key instance contains any null values when the key instance is
the parameter of getObjectById.]

Persistence-capable classes that use application identity have special considerations for in-
heritance. To be portable, the key class must be the same for all classes in the inheritance
hierarchy derived from the least-derived (topmost) concrete persistence-capable class in
the hierarchy.

5.4.2 Single Field Identity

A common case of application identity uses exactly one persistent field in the class to rep-
resent identity. In this case, the application can use a standard JDO class instead of creating
a new user-defined class for the purpose.

A JDO implementation that supports application identity must also support single field
identity.

public abstract class SingleFieldIdentity implements Serializable {
protected SingleFieldIdentity(Class pcClass);
public Class getTargetClass();
public String getTargetClassName();

}

public class ByteIdentity implements Serializable
extends SingleFieldIdentity {
public byte getKey();
 JDO 2.0 39 October 21, 2004

Java Data Objects 2.0
public ByteIdentity(Class pcClass, byte key);
public ByteIdentity(Class pcClass, Byte key);
public ByteIdentity(Class pcClass, String key);

}

public class CharIdentity implements Serializable
extends SingleFieldIdentity {
public char getKey();
public CharIdentity(Class pcClass, char key);
public CharIdentity(Class pcClass, Character key);
public CharIdentity(Class pcClass, String key);

}
public class ShortIdentity implements Serializable

extends SingleFieldIdentity {
public short getKey();
public ShortIdentity(Class pcClass, short key);
public ShortIdentity(Class pcClass, Short key);
public ShortIdentity(Class pcClass, String key);

}

public class IntIdentity implements Serializable
extends SingleFieldIdentity {
public int getKey();
public IntIdentity(Class pcClass, int key);
public IntIdentity(Class pcClass, Integer key);
public IntIdentity(Class pcClass, String key);

}

public class LongIdentity implements Serializable
extends SingleFieldIdentity {
public long getKey();
public LongIdentity(Class pcClass, long key);
public LongIdentity(Class pcClass, Long key);
public LongIdentity(Class pcClass, String key);

}

public class StringIdentity implements Serializable
extends SingleFieldIdentity {
public String getKey();
public StringIdentity(Class pcClass, String key);

}

The constructors that take reference types throw NullPointerException if the second
argument is null. Valid key values are never null.

Constructors of primitive identity types that take String parameters convert the parameter
to the proper type using the static parseXXX method of the corresponding wrapper class.

Instances of SingleFieldIdentity classes are immutable. When serialized, the name
of the target class is serialized. When deserialized, the name of the target class is restored,
but not the target class. The deserialized instance will return null to getTargetClass.
All instances will return the “binary” name of the target class (the result of Class.get-
Name()).

The SingleFieldIdentity classes adhere to all of the requirements for application ob-
ject id classes, with the exception of the constructor requirements and field names. That is,
 JDO 2.0 40 October 21, 2004

Java Data Objects 2.0
there is no public constructor with String or no-args. And there are no public fields vis-
ible to the application.

5.4.3 Datastore identity

A5.4.2-1 [This is the JDO identity type used for datastores in which the identity of the data
in the datastore does not depend on the values in the instance. The implementation guar-
antees uniqueness for all instances. (This is a fundamental requirement in JDO, but cannot
be directly tested.)]

A JDO implementation might choose one of the primitive wrapper classes as the Objec-
tId class (e.g. Short, Integer, Long, or String), or might choose an implementation-
specific class. A5.4.2-2 [Implementation-specific classes used as JDO ObjectId have the
following characteristics:

• the ObjectId class must be public;

• the ObjectId class must implement Serializable;

• the ObjectId class must have a public no-arg constructor, which might be the
default constructor;

• all serializable fields in the ObjectId class must be public;

• the field types of all non-static fields in the ObjectId class must be serializable;]

• the ObjectId class must override the toString()method defined in Object,
and return a String that can be used as the parameter of the
PersistenceManager method newObjectIdInstance(Class cls,
String key);

Note that, unlike primary key identity, datastore identity ObjectId classes are not re-
quired to support equality with ObjectId classes from other JDO implementations. Fur-
ther, the application cannot change the JDO identity of an instance of a class using
datastore identity.

5.4.4 Nondurable JDO identity

The primary usage for nondurable JDO identity is for log files, history files, and other sim-
ilar files, where performance is a primary concern, and there is no need for the overhead
associated with managing a durable identity for each datastore instance. Objects are typi-
cally inserted into datastores with transactional semantics, but are not accessed by key.
They may have references to instances elsewhere in the datastore, but often have no keys
or indexes themselves. They might be accessed by other attributes, and might be deleted
in bulk.

Multiple objects in the datastore might have exactly the same values, yet an application
program might want to treat the objects individually. For example, the application must
be able to count the persistent instances to determine the number of datastore objects with
the same values. Also, A5.4.3-1[the application might change a single field of an instance
with duplicate objects in the datastore, and the expected result in the datastore is that ex-
actly one instance has its field changed]. A5.4.3-2 [If multiple instances in memory are
modified, then instances in the datastore are modified corresponding one-to-one with the
modified instances in memory]. Similarly, A5.4.3-3 [if the application deletes some num-
ber of multiple duplicate objects, the same number of the objects in the datastore must be
deleted.]

As another example, if a datastore instance using nondurable identity is loaded twice into
the VM by the same PersistenceManager, then two separate instances are instantiat-
 JDO 2.0 41 October 21, 2004

Java Data Objects 2.0
ed, with two different JDO identities, even though all of the values in the instances are the
same. It is permissible to update or delete only one of the instances. At commit time, if only
one instance was updated or deleted, then the changes made to that instance are reflected
in the datastore by changing the single datastore instance. N5.4.3-12 [If both instances were
changed, then the transaction will fail at commit, with a JDOUserException because the
changes must be applied to different datastore instances.]

A5.4.3-4 [When using nondatastore identity, if the application deletes one of multiple duplicate ob-
jects, only one of the objects in the data store should be deleted.]

Because the JDO identity is not visible in the datastore, there are special behaviors with re-
gard to nondurable JDO identity:

• A5.4.3-5 [the ObjectId is not valid after making the associated instance hollow,
and attempts to retrieve it will throw a JDOUserException;]

• A5.4.3-6 [the ObjectId cannot be used in a different instance of
PersistenceManager from the one that issued it, and attempts to use it even
indirectly (e.g. getObjectById with a persistence-capable object as the
parameter) will throw a JDOUserException;]

• A5.4.3-7 [the persistent instance might transition to persistent-nontransactional or
hollow but cannot transition to any other state afterward;]

• A5.4.3-8 [attempts to access the instance in the hollow state will throw a
JDOUserException;]

• A5.4.3-9 [the results of a query in the datastore will always return instances that
are not already in the Java VM, so multiple queries that find the same objects in the
datastore will return additional JDO instances with the same values and different
JDO identities;]

• A5.4.3-10 [makePersistent will succeed even though another instance already
has the same values for all persistent fields.]

A5.4.3-11 [For JDO identity that is not managed by the datastore, the class that implements
JDO ObjectId has the following characteristics:

• the ObjectId class must be public;

• the ObjectId class must have a public constructor, which might be the default
constructor or a no-arg constructor;

• all fields in the ObjectId class must be public;

• the field types of all fields in the ObjectId class must be serializable.]

5.5 Life Cycle States

A5.5-1 [There are ten states defined by this specification. Seven states are required, and
three states are optional.] If an implementation does not support certain operations, then
these three states are not reachable.

Datastore Transactions

The following descriptions apply to datastore transactions with retainValues=false. Opti-
mistic transaction and retainValues=true state transitions are covered later in this chapter.
 JDO 2.0 42 October 21, 2004

Java Data Objects 2.0
5.5.1 Transient (Required)

A5.5.1-1 [JDO instances created by using a developer-written constructor that do not in-
volve the persistence environment behave exactly like instances of the unenhanced class.]

A5.5.1-2 [There is no JDO identity associated with a transient instance.]

A5.5.1-3 [There is no intermediation to support fetching or storing values for fields.]
A5.5.1-4 [There is no support for demarcation of transaction boundaries. Indeed, there is
no transactional behavior of these instances, unless they are referenced by transactional in-
stances at commit time.]

A5.5.1-5 [When a persistent instance is committed to the datastore, instances referenced
by persistent fields of the flushed instance become persistent. This behavior propagates to
all instances in the closure of instances through persistent fields.] This behavior is called
persistence by reachability.

A5.5.1-6 [No methods of transient instances throw exceptions except those defined by the
class developer.]

A5.5.1-7 [A transient instance transitions to persistent-new if it is the parameter of makeP-
ersistent], or A5.5.1-8 [if it is referenced by a persistent field of a persistent instance
when that instance is committed or made persistent.]

5.5.2 Persistent-new (Required)

A5.5.2-1 [JDO instances that are newly persistent in the current transaction are persistent-
new. This is the state of an instance that has been requested by the application component
to become persistent, by using the PersistenceManager makePersistent method
on the instance.]

During the transition from transient to persistent-new

• the associated PersistenceManager becomes responsible to implement state
interrogation and further state transitions.

• if the transaction flag restoreValues is true, A5.5.2-2 [the values of persistent
and transactional non-persistent fields are saved for use during rollback.]

• the values of persistent fields of mutable SCO types (e.g. java.util.Date,
java.util.HashSet, etc.) are replaced with JDO implementation-specific
copies of the field values that track changes and are owned by the persistent
instance.

• A5.5.2-3 [a JDO identity is assigned to the instance by the JDO implementation.]
This identity uniquely identifies the instance inside the PersistenceManager
and might uniquely identify the instance in the datastore. A copy of the JDO
identity will be returned by the PersistenceManager method
getObjectId(Object).

• N5.5.2-7 [instances reachable from this instance by fields of persistence-capable
types and collections of persistence-capable types become provisionally persistent
and transition from transient to persistent-new. If the instances made
provisionally persistent are still reachable at commit time, they become persistent.
This effect is recursive, effectively making the transitive closure of transient
instances provisionally persistent.]

A5.5.2-4 [A persistent-new instance transitions to persistent-new-deleted if it is the pa-
rameter of deletePersistent.]
 JDO 2.0 43 October 21, 2004

Java Data Objects 2.0
A5.5.2-5 [A persistent-new instance transitions to hollow when it is flushed to the data-
store during commitwhen retainValues is false. This transition is not visible during
beforeCompletion, and is visible during afterCompletion.] N5.5.2-8 [During be-
foreCompletion, the user-defined jdoPreStore method is called if the class imple-
ments InstanceCallbacks.]

A5.5.2-6 [A persistent-new instance transitions to transient at rollback.] The instance loses
its JDO Identity and its association with the PersistenceManager. N5.5.2-9 [If re-
storeValues is false, the values of managed fields in the instance are left as they were
at the time rollback was called.]

5.5.3 Persistent-dirty (Required)

A5.5.3-1 [JDO instances that represent persistent data that was changed in the current
transaction are persistent-dirty.]

A5.5.3-2 [A persistent-dirty instance transitions to persistent-deleted if it is the parameter
of deletePersistent.]

Persistent-dirty instances transition to hollow during A5.5.3-3 [commit] when retain-
Values is false or during A5.5.3-4 [rollback] when restoreValues is false. N5.5.3-
6 [During beforeCompletion, the user-defined jdoPreStore method is called if the
class implements InstanceCallbacks.]

If an application modifies a managed field, but the new value is equal to the old value, then
it is an implementation choice whether the JDO instance is modified or not. A5.5.3-5 [If no
modification to any managed field was made by the application, then the implementation
must not mark the instance as dirty.] A5.5.3-6 [If a modification was made to any managed
field that changes the value of the field, then the implementation must mark the instance
as dirty.]

N5.5.3-7 [Since changes to array-type fields cannot be tracked by JDO, setting the value of
an array-type managed field marks the field as dirty, even if the new value is identical to
the old value. This special case is required to allow the user to mark an array-type field as
dirty without having to call the JDOHelper method makeDirty.]

5.5.4 Hollow (Required)

JDO instances that represent specific persistent data in the datastore but whose values are
not in the JDO instance are hollow. The hollow state provides for the guarantee of unique-
ness for persistent instances between transactions.

This is permitted to be the state of instances committed from a previous transaction, ac-
quired by the method getObjectById, returned by iterating an Extent, returned in
the result of a query execution, or navigating a persistent field reference. However, the
JDO implementation may choose to return instances in a different state reachable from
hollow.

A JDO implementation is permitted to effect a legal state transition of a hollow instance at
any time, as if a field were read. Therefore, the hollow state might not be visible to the ap-
plication.

A5.5.4-1 [During the commit of the transaction in which a dirty persistent instance has had
its values changed (including a new persistent instance), the underlying datastore is
changed to have the transactionally consistent values from the JDO instance, and the in-
stance transitions to hollow.

Requests by the application for an instance with the same JDO identity (query, navigation,
or lookup by ObjectId), in a subsequent transaction using the same PersistenceMan-
 JDO 2.0 44 October 21, 2004

Java Data Objects 2.0
ager instance, will return the identical Java instance], assuming it has not been garbage
collected. If the application does not hold a strong reference to a hollow instance, the in-
stance might be garbage collected, as the PersistenceManagermust not hold a strong
reference to any hollow instance.

A5.5.4-2 [The hollow JDO instance maintains its JDO identity and its association with the
JDO PersistenceManager.] A5.5.4-3 [If the instance is of a class using application
identity, the hollow instance maintains its primary key fields.]

A5.5.4-4 [A hollow instance transitions to persistent-deleted if it is the parameter of
deletePersistent.]

A5.5.4-5 [A hollow instance transitions to persistent-dirty if a change is made to any man-
aged field.] A5.5.4-6 [It transitions to persistent-clean if a read access is made to any per-
sistent field other than one of the primary key fields.]

5.5.5 Persistent-clean (Required)

JDO instances that represent specific transactional persistent data in the datastore, and
whose values have not been changed in the current transaction, are persistent-clean. This
is the state of an instance whose values have been requested in the current datastore trans-
action, and whose values have not been changed by the current transaction.

A5.5.5-1 [A persistent-clean instance transitions to persistent-dirty if a change is made to
any managed field.]

A5.5.5-2 [A persistent-clean instance transitions to persistent-deleted if it is the parameter
of deletePersistent.]

A5.5.5-3 [A persistent-clean instance transitions to persistent-nontransactional if it is the param-
eter of makeNontransactional.]

A persistent-clean instance transitions to hollow at A5.5.5-4 [commit] when retainVal-
ues is false; or A5.5.5-5 [rollback] when restoreValues is false. It retains its iden-
tity and its association with the PersistenceManager.

5.5.6 Persistent-deleted (Required)

A5.5.6-1 [JDO instances that represent specific persistent data in the datastore, and that
have been deleted in the current transaction, are persistent-deleted.]

A5.5.6-2 [Read access to primary key fields is permitted.] A5.5.6-3 & A5.5.6-4 [Any other
access to persistent fields is not supported and might throw a JDOUserException.]

N5.5.6-7 [Before the transition to persistent-deleted, the user-written jdoPreDelete is
called if the persistence-capable class implements InstanceCallbacks.]

A5.5.6-5 [A persistent-deleted instance transitions to transient at commit. During the tran-
sition, its persistent fields are written with their Java default values, and the instance loses
its JDO Identity and its association with the PersistenceManager.]

A5.5.6-6 [A persistent-deleted instance transitions to hollow at rollback when restore-
Values is false. The instance retains its JDO Identity and its association with the Per-
sistenceManager.]

5.5.7 Persistent-new-deleted (Required)

A5.5.7-1 [JDO instances that represent instances that have been newly made persistent
and deleted in the current transaction are persistent-new-deleted.]

A5.5.7-2 [Read access to primary key fields is permitted.] A5.5.7-3 & A5.5.7-4 [Any other
access to persistent fields is not supported and might throw a JDOUserException.]
 JDO 2.0 45 October 21, 2004

Java Data Objects 2.0
N5.5.7-7 [Before the transition to persistent-new-deleted, the user-written jdoPreDe-
lete is called if the persistence-capable class implements InstanceCallbacks.]

A5.5.7-5 [A persistent-new-deleted instance transitions to transient at commit. During the
transition, its persistent fields are written with their Java default values, and the instance
loses its JDO Identity and its association with the PersistenceManager.]

A5.5.7-6 [A persistent-new-deleted instance transitions to transient at rollback. The in-
stance loses its JDO Identity and its association with the PersistenceManager.]

N5.5.7-8 [If RestoreValues is true, the values of managed fields in the instance are re-
stored to their state as of the call to makePersistent. If RestoreValues is false,
the values of managed fields in the instance are left as they were at the time rollback was
called.]

5.6 Nontransactional (Optional)

Management of nontransactional instances is an optional feature of a JDO implementation.
Usage is primarily for slowly changing data or for optimistic transaction management, as
the values in nontransactional instances are not guaranteed to be transactionally consis-
tent.

The use of this feature is governed by the PersistenceManager options Nontrans-
actionalRead, NontransactionalWrite, Optimistic, and RetainValues.
An implementation might support any or all of these options. For example, an implemen-
tation might support only NontransactionalRead. For options that are not support-
ed, the value of the unsupported property is false and it may not be changed.

A5.6-1 [If a PersistenceManager does not support this optional feature, an operation
that would result in an instance transitioning to the persistent-nontransactional state] or [a
request to set] the A5.6-2 [NontransactionalRead], A5.6-3 [Nontransactional-
Write], N5.6-15 [Optimistic], or A5.6-4 [RetainValues] [option to true], [throws
a JDOUnsupportedOptionException.]

NontransactionalRead, NontransactionalWrite, Optimistic, and Reta-
inValues are independent options. A JDO implementation must not automatically
change the values of these properties as a side effect of the user changing other properties.

With NontransactionalRead set to true:

• A5.6-5 [? Navigation] and A5.6-6 [? queries] are valid outside a transaction. It is a
JDO implementation decision whether the instances returned are in the hollow or
persistent-nontransactional state.

• A5.6-7 [When a managed, non-key field of a hollow instance is read outside a
transaction, the instance transitions to persistent-nontransactional.]

• A5.6-8 [If a persistent-clean instance is the parameter of
makeNontransactional, the instance transitions to persistent-
nontransactional.]

With NontransactionalWrite set to true:

• A5.6-9 [Modification of persistent-nontransactional instances is permitted outside
a transaction. The changes do not participate in any subsequent transaction.]

With RetainValues set to true:
 JDO 2.0 46 October 21, 2004

Java Data Objects 2.0
• At commit, A5.6-10 [persistent-clean], A5.6-11 [persistent-new], and A5.6-12 [
persistent-dirty] instances transition to persistent-nontransactional. Fields defined
in the XML metadata as containing mutable second-class types are examined to
ensure that they contain instances that track changes made to them and are owned
by the instance. If not, they are replaced with new second class object instances that
track changes, constructed from the contents of the second class object instance.
These include java.util.Date, and Collection and Map types. A5.6-13
[With RetainValues set to true ... At rollback, persistent-clean instances transition to
persistent-nontransactional.] A5.6-14 [With RetainValues set to true ... At rollback,
persistent-dirty instances transition to persistent-nontransactional and the state of their
fields as of the beginning of the transaction is restored.]

 NOTE: This process is not required to be recursive, although an
implementation might choose to recursively convert the closure of the collection
to become second class objects. JDO requires conversion only of the affected
persistence-capable instance’s fields.

With RestoreValues set to true:

• If the JDO implementation does not support persistent-nontransactional instances,
at rollback N5.6-16 [persistent-deleted], N5.6-17 [persistent-clean] and N5.6-18
[persistent-dirty] instances transition to hollow.

• If the JDO implementation supports persistent-nontransactional instances, at
rollback N5.6-19 [persistent-deleted], N5.6-20 [persistent-clean] and N5.6-21
[persistent-dirty] instances transition to persistent-nontransactional. The state of
each managed field in N5.6-22 [persistent-deleted] and N5.6-23 [persistent-dirty
instances is restored:

• fields of primitive types (int, float, etc.), wrapper types (Integer, Float,
etc.), immutable types (Locale, etc.), and references to persistence-capable types
are restored to their values as of the beginning of the transaction and the fields are
marked as loaded.

• fields of mutable types (Date, Collection, array-type, etc.) are set to null
and the fields are marked as not loaded.]

5.6.1 Persistent-nontransactional (Optional)

NOTE: The following discussion applies only to datastore transactions. See section 5.8 for
a discussion on how optimistic transactions change this behavior.

JDO instances that represent specific persistent data in the datastore, whose values are cur-
rently loaded but not transactionally consistent, are persistent-nontransactional. A5.6.1-1
[There is a JDO Identity associated with these instances], and A5.6.1-2 [transactional in-
stances can be obtained from the object ids.]

The persistent-nontransactional state allows persistent instances to be managed as a shad-
ow cache of instances that are updated asynchronously.

As long as a transaction is not in progress:

• if NontransactionalRead is true, A5.6.1-4 [persistent field values might be
retrieved from the datastore by the PersistenceManager];

• if NontransactionalWrite is true, the application might make changes to the
persistent field values in the instance, and

• A5.6.1-3 [There is no state change associated with either of the above operations.]
 JDO 2.0 47 October 21, 2004

Java Data Objects 2.0
A5.6.1-5 [A persistent-nontransactional instance transitions to persistent-clean if it is the
parameter of a makeTransactional method executed when a transaction is in
progress. The state of the instance in memory is discarded (cleared) and the state is loaded
from the datastore.]

A5.6.1-6 [A persistent-nontransactional instance transitions to persistent-clean if any man-
aged field is accessed when a datastore transaction is in progress. The state of the instance
in memory is discarded and the state is loaded from the datastore.]

A5.6.1-7 [A persistent-nontransactional instance transitions to persistent-dirty if any man-
aged field is written when a transaction is in progress. The state of the instance in memory
is saved for use during rollback, and the state is loaded from the datastore. Then the
change is applied.]

A5.6.1-8 [A persistent-nontransactional instance transitions to persistent-deleted if it is the
parameter of deletePersistent. The state of the instance in memory is saved for use
during rollback.]

If the application does not hold a strong reference to a persistent-nontransactional in-
stance, the instance might be garbage collected. The PersistenceManager must not
hold a strong reference to any persistent-nontransactional instance.

5.7 Transient Transactional (Optional)

Management of transient transactional instances is an optional feature of a JDO implemen-
tation. The following sections describe the additional states and state changes when using
transient transactional behavior.

A5.7-1 [A transient instance transitions to transient-clean if it is the parameter of makeT-
ransactional.]

5.7.1 Transient-clean (Optional)

JDO instances that represent transient transactional instances whose values have not been
changed in the current transaction are transient-clean. This state is not reachable if the JDO
PersistenceManager does not implement the optional feature javax.jdo.op-
tion.TransientTransactional.

Changes made outside a transaction are allowed without a state change. A5.7.1-1 [A tran-
sient-clean instance transitions to transient-dirty if any managed field is changed in a
transaction. During the transition, values of managed fields are saved by the Persis-
tenceManager for use during rollback. This behavior is not dependent on the setting of
the RestoreValues flag.]

A5.7.1-2 [A transient-clean instance transitions to transient if it is the parameter of mak-
eNontransactional.]

5.7.2 Transient-dirty (Optional)

JDO instances that represent transient transactional instances whose values have been
changed in the current transaction are transient-dirty. This state is not reachable if the JDO
PersistenceManager does not implement the optional feature javax.jdo.op-
tion.TransientTransactional.

A5.7.2-1 [A transient-dirty instance transitions to transient-clean at commit.] The values
of managed fields saved (for rollback processing) at the time the transition was made from
 JDO 2.0 48 October 21, 2004

Java Data Objects 2.0
transient-clean to transient-dirty are discarded. A5.7.2-2 [None of the values of fields in
the instance are modified as a result of commit.]

A5.7.2-3 [A transient-dirty instance transitions to transient-clean at rollback.] A5.7.2-4 [
The values of managed fields saved at the time the transition was made from transient-
clean to transient-dirty are restored. This behavior is not dependent on the setting of the
RestoreValues flag.]

N5.7.2-5 [A transient-dirty instance transitions to persistent-new at makePersistent.
The values of managed fields saved at the time the transition was made from transient-
clean to transient-dirty are used as the before image for the purposes of rollback.]

5.8 Optimistic Transactions (Optional)

Optimistic transaction management is an optional feature of a JDO implementation.

The Optimistic flag set to true changes the state transitions of persistent instances:

• A5.8-1 [If a persistent field other than one of the primary key fields is read, a
hollow instance transitions to persistent-nontransactional instead of persistent-
clean.] A5.8-2 [Subsequent reads of these fields do not cause a transition from
persistent-nontransactional.]

• A5.8-3 [A persistent-nontransactional instance transitions to persistent-deleted if
it is a parameter of deletePersistent.] The state of the managed fields of the
instance in memory is saved for use during rollback, and for verification during
commit. A5.8-4 [The values in fields of the instance in memory are unchanged.] If
fresh values need to be loaded from the datastore, then the user should first call
refresh on the instance.

• A5.8-5 [A persistent-nontransactional instance transitions to persistent-clean if it
is a parameter of a makeTransactional method executed when an optimistic
transaction is in progress.] A5.8-6 [The values in managed fields of the instance in
memory are unchanged.] If fresh values need to be loaded from the datastore, then
the user should first call refresh on the instance.

• A5.8-7 [A persistent-nontransactional instance transitions to persistent-dirty if a
managed field is modified when an optimistic transaction is in progress.] If
RestoreValues is true, a before image is saved before the state transition. This
is used for restoring field values during rollback. Depending on the
implementation the before image of the instance in memory might be saved for
verification during commit. A5.8-2 [The values in fields of the instance in memory
are unchanged before the update is applied.] If fresh values need to be loaded from
the datastore, then the user should first call refresh on the instance.
 JDO 2.0 49 October 21, 2004

Java Data Objects 2.0
A5.9-1 through A5.9-170 [

Table 2: State Transitions

method \ current state Transient P-new P-clean P-dirty Hollow

makePersistent P-new unchanged unchanged unchanged unchanged

deletePersistent error P-new-del P-del P-del P-del

makeTransactional T-clean unchanged unchanged unchanged P-clean

makeNontransactional error error P-nontrans error unchanged

makeTransient unchanged error Transient error Transient

commit
retainValues=false

unchanged Hollow Hollow Hollow unchanged

commit
retainValues=true

unchanged P-nontrans P-nontrans P-nontrans unchanged

rollback
restoreValues=false

unchanged Transient Hollow Hollow unchanged

rollback
restoreValues=true

unchanged Transient P-nontrans P-nontrans unchanged

refresh with active
Datastore transaction

unchanged unchanged unchanged P-clean unchanged

refresh with active Opti-
mistic transaction

unchanged unchanged unchanged P-nontrans unchanged

evict n/a unchanged Hollow unchanged unchanged

read field outside transac-
tion

unchanged impossible impossible impossible P-nontrans

read field with active
Optimistic transaction

unchanged unchanged unchanged unchanged P-nontrans

read field with active
Datastore transaction

unchanged unchanged unchanged unchanged P-clean

write field or
makeDirty outside
transaction

unchanged impossible impossible impossible P-nontrans

write field or
makeDirty with
active transaction

unchanged unchanged P-dirty unchanged P-dirty
 JDO 2.0 50 October 21, 2004

Java Data Objects 2.0
retrieve outside or with
active Optimistic transac-
tion

unchanged unchanged unchanged unchanged P-nontrans

retrieve with active Datas-
tore transaction

unchanged unchanged unchanged unchanged P-clean

method \ current state T-clean T-dirty P-new-del P-del P-nontrans

makePersistent P-new P-new unchanged unchanged unchanged

deletePersistent error error unchanged unchanged P-del

makeTransactional unchanged unchanged unchanged unchanged P-clean

makeNontransactional Transient error error error unchanged

makeTransient unchanged unchanged error error Transient

commit
retainValues=false

unchanged T-clean Transient Transient unchanged

commit
retainValues=true

unchanged T-clean Transient Transient unchanged

rollback
restoreValues=false

unchanged T-clean Transient Hollow unchanged

rollback
restoreValues=true

unchanged T-clean Transient P-nontrans unchanged

refresh unchanged unchanged unchanged unchanged unchanged

evict unchanged unchanged unchanged unchanged Hollow

read field outside transac-
tion

unchanged impossible impossible impossible unchanged

read field with Optimistic
transaction

unchanged unchanged error error unchanged

read field with active
Datastore transaction

unchanged unchanged error error P-clean

write field or
makeDirty outside
transaction

unchanged impossible impossible impossible unchanged

Table 2: State Transitions

method \ current state Transient P-new P-clean P-dirty Hollow
 JDO 2.0 51 October 21, 2004

Java Data Objects 2.0
]error: a JDOUserException is thrown; the state does not change
unchanged: no state change takes place; no exception is thrown due to the state change
n/a: not applicable; if this instance is an explicit parameter of the method, a JDOUserException
is thrown; if this instance is an implicit parameter, it is ignored.
impossible: the state cannot occur in this scenario

Figure 7.0 Life Cycle: New Persistent Instances

write field or
makeDirty with
active transaction

T-dirty unchanged error error P-dirty

retrieve outside or with
active Optimistic transac-
tion

unchanged unchanged unchanged unchanged unchanged

retrieve with active Datas-
tore transaction

unchanged unchanged unchanged unchanged P-clean

method \ current state T-clean T-dirty P-new-del P-del P-nontrans

Persistent-
new

Transient Hollow

Persistent-
new-deleted

makePersistent

rollback

commit,
rollback

deletePersistent

commit
 JDO 2.0 52 October 21, 2004

Java Data Objects 2.0
Figure 8.0 Life Cycle: Transactional Access

Figure 9.0 Life Cycle: Datastore Transactions

Figure 10.0 Life Cycle: Optimistic Transactions

Transient

Persistent-
deleted

Hollow

Active
Persistent
Instances

deletePersistent

read field,
write field

commit,
rollback

deletePersistent

rollback
commit

Hollow

Persistent-

Persistent-

write field

read field

commit,
rollback

write field

commit,
rollback

clean

dirty

Hollow

Persistent-

Persistent-

write field

read field

commit,
rollback

write field

commit,
rollback

nontransactional

dirty
 JDO 2.0 53 October 21, 2004

Java Data Objects 2.0
Figure 11.0 Life Cycle: Access Outside Transactions

Figure 12.0 Life Cycle: Transient Transactional

Hollow
Persistent-

nontransactional

read field,
write field

evict

read field,
write field

Transient

Transient-

Transient-

makeTransactional

write field

makeNontransactional

commit,
rollback

clean

dirty
 JDO 2.0 54 October 21, 2004

Java Data Objects 2.0
Figure 13.0 JDO Instance State Transitions

NOTE: Not all possible state transitions are shown in this diagram.

1. A transient instance transitions to persistent-new when the instance is the
parameter of a makePersistent method.

2. A persistent-new instance transitions to hollow when the transaction in which it
was made persistent commits.

3. A hollow instance transitions to persistent-clean when a field is read.

4. A persistent-clean instance transitions to persistent-dirty when a field is written.

5. A persistent-dirty instance transitions to hollow at commit or rollback.

6. A persistent-clean instance transitions to hollow at commit or rollback.

7. A transient instance transitions to transient-clean when it is the parameter of a
makeTransactional method.

8. A transient-clean instance transitions to transient-dirty when a field is written.

9. A transient-dirty instance transitions to transient-clean at commit or rollback.

10. A transient-clean instance transitions to transient when it is the parameter of a
makeNontransactional method.

11. A hollow instance transitions to persistent-dirty when a field is written.

transient-clean

transient-dirty

transient

persistent-

persistent-dirty

persistent-clean

hollow

TRANSIENT PERSISTENT

READ-OK

WRITE-OK

nontransactional

1.

3.
4.

2.
6.

8.

7.

9.

10.

12.

persistent-
new

13.

14.

5.

persistent-deleted

persistent-
new-deleted

16.

17.

18.

19.

20.

19.

21.

15.

22.

19.

11.
23.

24.
 JDO 2.0 55 October 21, 2004

Java Data Objects 2.0
12. A persistent-clean instance transitions to persistent-nontransactional at commit
when RetainValues is set to true, at rollback when RestoreValues is set
to true, or when it is the parameter of a makeNontransactional method.

13. A persistent-nontransactional instance transitions to persistent-clean when it is
the parameter of a makeTransactional method.

14. A persistent-nontransactional instance transitions to persistent-dirty when a
field is written in a transaction.

15. A persistent-new instance transitions to transient on rollback.

16. A persistent-new instance transitions to persistent-new-deleted when it is the
parameter of deletePersistent.

17. A persistent-new-deleted instance transitions to transient on rollback. The
values of the fields are restored as of the makePersistent method.

18. A persistent-new-deleted instance transitions to transient on commit. No
changes are made to the values.

19. A hollow, persistent-clean, or persistent-dirty instance transitions to persistent-
deleted when it is the parameter of deletePersistent.

20. A persistent-deleted instance transitions to transient when the transaction in
which it was deleted commits.

21. A persistent-deleted instance transitions to hollow when the transaction in
which it was deleted rolls back.

22. A hollow instance transitions to persistent-nontransactional when the
NontransactionalRead option is set to true, a field is read, and there is
either an optimistic transaction or no transaction active.

23. A persistent-dirty instance transitions to persistent-nontransactional at commit
when RetainValues is set to true or at rollback when RestoreValues is
set to true.

24. A persistent-new instance transitions to persistent-nontransactional at commit
when RetainValues is set to true.
 JDO 2.0 56 October 21, 2004

Java Data Objects 2.0
6 The Persistent Object Model

This chapter specifies the object model for persistence capable classes. To the extent possi-
ble, the object model is the same as the Java object model. Differences between the Java ob-
ject model and the JDO object model are highlighted.

6.1 Overview

The Java execution environment supports different kinds of classes that are of interest to
the developer. The classes that model the application and business domain are the primary
focus of JDO. In a typical application, application classes are highly interconnected, and
the graph of instances of those classes includes the entire contents of the datastore.

Applications typically deal with a small number of persistent instances at a time, and it is
the function of JDO to allow the illusion that the application can access the entire graph of
connected instances, while in reality only small subset of instances needs to be instantiated
in the JVM. This concept is called transparent data access, transparent persistence, or sim-
ply transparency.

Figure 14.0 Instantiated persistent objects

Instantiated persistent objects

Persistent objects

Java VM

Datastore virtual objects

Datastore

Mapping function
Transient objects
 JDO 2.0 57 October 21, 2004

Java Data Objects 2.0
Within a JVM, there may be multiple independent units of work that must be isolated from
each other. This isolation imposes requirements on JDO to permit the instantiation of the
same datastore object into multiple Java instances. The connected graph of Java instances
is only a subset of the entire contents of the datastore. Whenever a reference is followed
from one persistent instance to another, the JDO implementation transparently instanti-
ates the required instance into the JVM.

The storage of objects in datastores might be quite different from the storage of objects in
the JVM. Therefore, there is a mapping between the Java instances and the objects in the
datastore. This mapping is performed by the JDO implementation, using metadata that is
available at runtime. The metadata is generated by a JDO vendor-supplied tool, in coop-
eration with the deployer of the system. The mapping is not standardized by JDO except
in the case of relational databases, for which a subset of mapping functionality is standard.
The standard part of the mapping is specified in Chapter 15.

JDO instances are stored in the datastore and retrieved, possibly field by field, from the
datastore at specific points in their life cycle. The class developer might use callbacks at
certain points to make a JDO instance ready for execution in the JVM, or make a JDO in-
stance ready to be removed from the JVM. While executing in the JVM, a JDO instance
might be connected to other instances, both persistent and transient.

A6.1-1 [There is no restriction on the types of non-persistent fields of persistence-capable
classes.] These fields behave exactly as defined by the Java language. Persistent fields of
persistence-capable classes have restrictions in JDO, based on the characteristics of the
types of the fields in the class definition.

6.2 Goals

The JDO Object Model has the following objectives:

• All field types supported by the Java language, including primitive types,
reference types and interface types should be supported by JDO instances.

• All class and field modifiers supported by the Java language including A6.2-1
[private], A6.2-2 [public], A6.2-3 [protected], A6.2-4 [static], A6.2-5 [transient],
A6.2-6 [abstract], A6.2-7 [final], A6.2-8 [synchronized], and A6.2-9 [volatile],
should be supported by JDO instances.

• All user-defined classes should be allowed to be persistence-capable.

• Some system-defined classes (especially those for modeling state) should be
persistence-capable.

6.3 Architecture

In Java, variables (including fields of classes) have types. Types are either primitive types
or reference types. Reference types are either classes or interfaces. Arrays are treated as
classes.

An object is an instance of a specific class, determined when the instance is constructed.
Instances may be assigned to variables if they are assignment compatible with the variable
type.

Persistence-capable

The JDO Object Model distinguishes between two kinds of classes: those that are marked
as persistence-capable and those that aren’t. A user-defined class can be persistence-capa-
 JDO 2.0 58 October 21, 2004

Java Data Objects 2.0
ble unless its state depends on the state of inaccessible or remote objects (e.g. it extends
java.net.SocketImpl or uses JNI (native calls) to implement java.net.Socke-
tOptions). A non-static inner class cannot be persistence-capable because the state of its
instances depends on the state of their enclosing instances.

Except for system-defined classes specially addressed by the JDO specification, system-de-
fined classes (those defined in java.lang, java.io, java.util, java.net, etc.) are
not persistence-capable, nor is a system-defined class allowed to be the type of a persistent
field.

First Class Objects and Second Class Objects

A First Class Object (FCO) is an instance of a persistence-capable class that has a JDO Iden-
tity, can be stored in a datastore, and can be independently deleted and queried. A Second
Class Object (SCO) has no JDO Identity of its own and is stored in the datastore only as
part of a First Class Object. In some JDO implementations, some SCO instances are actually
artifacts that have no literal datastore representation at all, but are used only to represent
relationships. For example, a Collection of instances of a persistence-capable class
might not be stored in the datastore, but created when needed to represent the relationship
in memory. At commit time, the memory artifact is discarded and the relationship is rep-
resented entirely by datastore relationships.

First Class Objects

FCOs support uniquing; whenever an FCO is instantiated into memory, there is guaran-
teed to be only one instance representing that FCO managed by the same Persistence-
Manager instance. They are passed as arguments by reference.

An FCO can be shared among multiple FCOs, and if an FCO is changed (and the change
is committed to the datastore), then the changes are visible to all other FCOs that refer to it.

Second Class Objects

Second Class Objects are either instances of immutable system classes (java.lang.In-
teger, java.lang.String, etc.), JDO implementation subclasses of mutable system
classes that implement the functionality of their system class (java.util.Date, ja-
va.util.HashSet, etc.), or persistence-capable classes.

A6.3-1 [Second Class Objects of mutable system classes and persistence-capable classes
track changes made to them, and notify their owning FCO that they have changed.] The
change is reflected as a change to the owning FCO (e.g. the owning instance might change
state from persistent-clean to persistent-dirty). They are stored in the datastore only as part
of a FCO. A6.3-2 [They do not support uniquing, and the Java object identity of the values
of the persistent fields containing them is lost when the owning FCO is flushed to the data-
store.] They are passed as arguments by reference.

SCO fields must be explicitly or by default identified in the metadata as embedded. If a
field, or an element of a collection or a map key or value is identified as embedded (em-
bedded-element, embedded-key, or embedded-value) then any instances so identified in
the collection or map are treated as SCO during commit. That is, the value is stored with
the owning FCO and the value loses its own identity if it had one.

SCO fields of persistence-capable types are identified as embedded. The behavior of em-
bedded persistence-capable types is intended to mirror the behavior of system types, but
this is not standard, and portable applications must not depend on this behavior.

A6.3-3 [? It is possible for an application to assign the same instance of a mutable SCO class
to multiple FCO embedded fields, but this non-portable behavior is strongly discouraged
for the following reason. If the assignment is done to persistent-new, persistent-clean, or
 JDO 2.0 59 October 21, 2004

Java Data Objects 2.0
persistent-dirty instances, then at the time that the FCOs are committed to the datastore,
the Java object identity of the owned SCOs might change, because each FCO might have
its own unshared SCO. If the assignment is done before makePersistent is called to
make the FCOs persistent, the embedded fields are immediately replaced by copies, and
no sharing takes place.]

When an FCO is instantiated in the JVM by a JDO implementation, and an embedded field
of a mutable type is accessed, the JDO implementation assigns to these fields a new in-
stance that tracks changes made to itself, and notifies the owning FCO of the change. Sim-
ilarly, when an FCO is made persistent, either by being the parameter of
makePersistent or makePersistentAll or by being reachable from a parameter of
makePersistent or makePersistentAll at the time of the execution of the makeP-
ersistent or makePersistentAll method call, the JDO implementation replaces the
field values of mutable SCO types with instances of JDO implementation subclasses of the
mutable system types.

Therefore, the application cannot assume that it knows the actual class of instances as-
signed to SCO fields, although A6.3-4 [it is guaranteed that the actual class is assignment
compatible with the type.]

There are few differences visible to the application between a field mapped to an FCO and
an SCO. One difference is in sharing. A6.3-5 [If an FCO1 is assigned to a persistent field in
FCO2 and FCO3, then any changes at any time to instance FCO1 will be visible from FCO2
and FCO3.]

A6.3-6 [If an SCO1 is assigned to a persistent field in persistent instances FCO1 and FCO2,
then any changes to SCO1 will be visible from instances FCO1 and FCO2 only until FCO1
and FCO2 are committed. After commit, instance SCO1 might not be referenced by either
FCO1 or FCO2, and any changes made to SCO1 might not be reflected in either FCO1 or
FCO2.]

Another difference is in visibility of SCO instances by queries. SCO instances are not add-
ed to Extents. If the SCO instance is of a persistence-capable type, it is not visible to que-
ries of the Extent of the persistence-capable class. Furthermore, the field values of SCO
instances of persistence-capable types might not be visible to queries at all.

Sharing of immutable SCO fields is supported in that it is good practice to assign the same
immutable instance to multiple SCO fields. But the field values should not be compared
using Java identity, but only by Java equality. This is the same good practice used with
non-persistent instances.

Arrays

A6.3-8 [Arrays are system-defined classes that do not necessarily have any JDO Identity
of their own, and support by a JDO implementation is optional. If an implementation sup-
ports them, A6.3-7 [they might be stored in the datastore as part of an FCO]. They do not
support uniquing, and the Java object identity of the values of the persistent fields contain-
ing them is lost when the owning FCO is flushed to the datastore.] They are passed as ar-
guments by reference.

Tracking changes to Arrays is not required to be done by a JDO implementation. If an Ar-
ray owned by an FCO is changed, then the changes might not be flushed to the datastore.
Portable applications must not require that these changes be tracked. In order for changes
to arrays to be tracked, A6.3-9 [the application must explicitly notify the owning FCO of
the change to the Array by calling the makeDirty method of the JDOHelper class?], or
by replacing the field value with its current value.
 JDO 2.0 60 October 21, 2004

Java Data Objects 2.0
Since changes to array-type fields cannot be tracked by JDO, setting the value of an array-
type managed field marks the field as dirty, even if the new value is identical to the old
value. This special case is required to allow the user to mark an array-type field as dirty
without having to call the JDOHelper method makeDirty.

Furthermore, an implementation is permitted, but not required to, track changes to Arrays
passed as references outside the body of methods of the owning class. There is a method
defined on class JDOHelper that allows the application to mark the field containing such
an Array to be modified so its changes can be tracked. Portable applications must not re-
quire that these changes be tracked automatically. When a reference to the Array is re-
turned as a result of a method call, a portable application first marks the Array field as
dirty.

A6.3-10 [It is possible for an application to assign the same instance of an Array to multiple
FCOs], but after the FCO is flushed to the datastore, the Java object identity of the Array
might change.

When an FCO is instantiated in the JVM, the JDO implementation assigns to fields with an
Array type a new instance with a different Java object identity from the instance stored.

Therefore, the application cannot assume that it knows the identity of instances assigned
to Array fields, although A6.3-11 [it is guaranteed that the actual value is the same as the
value stored].

Primitives

Primitives are types defined in the Java language and comprise boolean, byte, short,
int, long, char, float, and double. They might be stored in the datastore only as part
of an FCO. They have no Java identity and no datastore identity of their own. They are
passed as arguments by value.

Interfaces

Interfaces are types whose values may be instances of any class that declare that they im-
plement that interface.

6.4 Field types of persistence-capable classes

6.4.1 Nontransactional non-persistent fields

A6.4.1-1 [There are no restrictions on the types of nontransactional non-persistent fields.]
These fields are managed entirely by the application, not by the JDO implementation.
A6.4.1-2 [Their state is not preserved by the JDO implementation], although A6.4.1-3 [
they might be modified during execution of user-written callbacks defined in interface
InstanceCallbacks at specific points in the life cycle], or A6.4.1-4 [any time during
the instance’s existence in the JVM].

6.4.2 Transactional non-persistent fields

A6.4.2-1 [There are no restrictions on the types of transactional non-persistent fields.]
These fields are partly managed by the JDO implementation. Their state is preserved and
restored by the JDO implementation during certain state transitions.

6.4.3 Persistent fields

Precision of fields

JDO implementations may not represent Java types precisely in the datastore, because not
all datastores are able to natively represent all Java types. Some type mapping may be re-
 JDO 2.0 61 October 21, 2004

Java Data Objects 2.0
quired. The precision of the mapping is a quality of service issue with the JDO implemen-
tation and the particular datastore.

The mapping precision restriction applies to the range of values that can be faithfully
stored and retrieved, the precision of the values, and the scale of BigDecimal values.

Primitive types

JDO implementations must support fields of any of the primitive types

• A6.4.3-1 [boolean], A6.4.3-2 [byte], A6.4.3-3 [short], A6.4.3-4 [int], A6.4.3-
5 [long], A6.4.3-6 [char], A6.4.3-7 [float], and A6.4.3-8 [double].

Primitive values are stored in the datastore associated with their owning FCO. They have
no JDO Identity.

Immutable Object Class types

JDO implementations must support fields that reference instances of immutable object
classes, and may choose to support these instances as SCOs or FCOs:

• package java.lang: A6.4.3-9 [Boolean], A6.4.3-10 [Character], A6.4.3-11
[Byte], A6.4.3-12 [Short], A6.4.3-13 [Integer], A6.4.3-14 [Long], A6.4.3-15 [
Float], A6.4.3-16 [Double], and A6.4.3-17 [String];

• package java.util: A6.4.3-18 [Locale];

• package java.math: A6.4.3-19 [BigDecimal], A6.4.3-20 [BigInteger].

Portable JDO applications must not depend on whether instances of these classes are treat-
ed as SCOs or FCOs.

Mutable Object Class types

JDO implementations must support fields that reference instances of the following muta-
ble object classes, and may choose to support these instances as SCOs or FCOs:

• package java.util: A6.4.3-21 [Date], A6.4.3-22 [HashSet].

JDO implementations may optionally support fields that reference instances of the follow-
ing mutable object classes, and may choose to support these instances as SCOs or FCOs:

• package java.util:A6.4.3-23 [ArrayList], A6.4.3-24 [HashMap], A6.4.3-25
[Hashtable], A6.4.3-26 [LinkedList], A6.4.3-27 [TreeMap], A6.4.3-28
[TreeSet], and A6.4.3-29 [Vector].

Because the treatment of these fields may be as SCO, the behavior of these mutable object
classes when used in a persistent instance is not identical to their behavior in a transient
instance.

Portable JDO applications must not depend on whether instances of these classes refer-
enced by fields are treated as SCOs or FCOs.

Persistence-capable Class types

A6.4.3-30 [JDO implementations must support references to FCO instances of persistence-
capable classes] and are permitted, but not required, to support references to SCO instanc-
es of persistence-capable classes.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.
 JDO 2.0 62 October 21, 2004

Java Data Objects 2.0
Object Class type

A6.4.3-31 [JDO implementations must support fields of Object class type as FCOs. The
implementation is permitted, but is not required, to allow any class to be assigned to the
field. If an implementation restricts instances to be assigned to the field, a ClassCastEx-
ception must be thrown at the time of any incorrect assignment.]

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

Collection Interface types

A6.4.3-32 [JDO implementations must support fields of interface types, and may choose to
support them as SCOs or FCOs]: package java.util: A6.4.3-33 [Collection], A6.4.3-
35 [Map], A6.4.3-34 [Set], and A6.4.3-36 [List]. Collection and Set are required; Map
and List are optional.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

Other Interface types

A6.4.3-37 [JDO implementations must support fields of interface types other than Col-
lection interface types as FCOs. The implementation is permitted, but is not required,
to allow any class that implements the interface to be assigned to the field. If an implemen-
tation further restricts instances that can be assigned to the field, a ClassCastExcep-
tion must be thrown at the time of any incorrect assignment.]

Portable JDO applications must treat these fields as FCOs.

Arrays

JDO implementations may optionally support fields of array types, and may choose to
support them as SCOs or FCOs. A6.4.3-38 [If Arrays are supported by JDO implementa-
tions, they are permitted, but not required, to track changes made to Arrays that are fields
of persistence capable classes in the methods of the classes.] They need not track changes
made to Arrays that are passed by reference as arguments to methods, including methods
of persistence-capable classes.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

6.5 Inheritance

A6.5-1 [A class might be persistence-capable even if its superclass is not persistence-capa-
ble.] This allows users to extend classes that were not designed to be persistence-capable.
A6.5-2 [If a class is persistence-capable, then its subclasses might or might not be persis-
tence-capable themselves.]

Further, A6.5-3 [subclasses of such classes that are not persistence-capable might be per-
sistence-capable. That is, it is possible for classes in the inheritance hierarchy to be inde-
pendently persistence-capable and not persistence-capable.] It is not possible, generally, to
test if a class to determine whether an instance is allowed to be stored.

Fields identified in the XML metadata as persistent or transactional in persistence-capable
classes must be fields declared in that Java class definition. That is, inherited fields cannot
be named in the XML metadata.

A6.5-4 [Fields identified as persistent in persistence-capable classes will be persistent in
subclasses]; A6.5-5 [fields identified as transactional in persistence-capable classes will be
 JDO 2.0 63 October 21, 2004

Java Data Objects 2.0
transactional in subclasses]; and A6.5-6 [fields identified as non-persistent in persistence-
capable classes will be non-persistent in subclasses].

Of course, A6.5-7 [a class might define a new field with the same name as the field declared
in the superclass, and might define it with a different persistence-modifier from the inher-
ited field. But Java treats the declared field as a different field from the inherited field, so
there is no conflict.]

All persistence-capable classes must have a no-arg constructor. This constructor might be
a private constructor, as it is only used from within the jdoNewInstance methods. The
constructor might be the default no-arg constructor created by the compiler when the
source code does not define any constructors.

The identity type of the least-derived persistence-capable class defines the identity type for
all persistence-capable classes that extend it.

Persistence-capable classes that use application identity have special considerations for in-
heritance:

Key fields may be declared only in abstract superclasses and least-derived concrete classes
in inheritance hierarchies. Key fields declared in these classes must also be declared in the
corresponding objectid classes, and the objectid classes must form an inheritance hierar-
chy corresponding to the inheritance hierarchy of the persistence-capable classes. A per-
sistence-capable class can only have one concrete objectid class anywhere in its inheritance
hierarchy.

For example, if an abstract class Component declares a key field masterId, the objectid
class ComponentKey must also declare a field of the same type and name. If Compo-
nentKey is concrete, then no subclass is allowed to define an objectid class.

If ComponentKey is abstract, an instance of a concrete subclass of ComponentKey must
be used to find a persistent instance. A concrete class Part that extends Componentmust
declare a concrete objectid class (for example, PartKey) that extends ComponentKey.
There might be no key fields declared in Part or PartKey. Persistence-capable subclass-
es of Part must not have an objectid class.

Another concrete class Assembly that extends Component must declare a concrete ob-
jectid class (for example, AssemblyKey) that extends ComponentKey. If there is a key
field, it must be declared in both Assembly and AssemblyKey. Persistence-capable sub-
classes of Assembly must not have an objectid class.

There might be other abstract classes or non-persistence-capable classes in the inheritance
hierarchy between Component and Part, or between Component and Assembly.
These classes are ignored for the purposes of objectid classes and key fields.
 JDO 2.0 64 October 21, 2004

Java Data Objects 2.0
7 PersistenceCapable

For JDO implementations that support the BinaryCompatibility rules, every instance that
is managed by a JDO PersistenceManager must be of a class that implements the
public PersistenceCapable interface. This interface defines methods that allow the
implementation to manage the instances. It also defines methods that allow a JDO aware
application to examine the runtime state of instances, for example to discover whether the
instance is transient, persistent, transactional, dirty, etc., and to discover its associated
PersistenceManager if it has one.

The JDO Reference Enhancer modifies the class to implement PersistenceCapable
prior to loading the class into the runtime environment. The enhancer additionally adds
code to implement the methods defined by PersistenceCapable.

The PersistenceCapable interface is designed to avoid name conflicts in the scope of
user-defined classes. All of its declared method names are prefixed with “jdo”.

Class implementors may explicitly declare that the class implements PersistenceCa-
pable. If this is done, the implementor must implement the PersistenceCapable
contract, and the enhancer will ignore the class instead of enhancing it.

The recommended (and only portable) approach for applications to interrogate the state
of persistence-capable instances is to use the class JDOHelper, which provides static
methods that delegate to the instance if it implements PersistenceCapable, and if
not, attempts to find the JDO implementation responsible for the instance, and if unable to
do so, returns the values that would have been returned by a transient instance.

NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations. Applications should use the methods
defined in class JDOHelper instead of these methods.

package javax.jdo.spi;

interface PersistenceCapable {

7.1 Persistence Manager

PersistenceManager jdoGetPersistenceManager();

A7.1-1 [This method returns the associated PersistenceManager] or A7.1-2 [null if
the instance is transient.]

7.2 Make Dirty

void jdoMakeDirty (String fieldName);

A7.2-1 [

This method marks the specified field dirty] so that its values will be modified in the data-
store when the transaction in which the instance is modified is committed. The field-
 JDO 2.0 65 October 21, 2004

Java Data Objects 2.0
Name is the name of the field to be marked as dirty, [optionally including the fully
qualified package name and class name of the field]. A7.2-2 [This method returns with no
effect if the instance is not managed by a StateManager.] This method has the same ef-
fect on the life cycle state of the instance as changing a managed field would.

A7.2-3 [If the same name is used for multiple fields (a class declares a field of the same
name as a field in one of its superclasses) then the unqualified name refers to the most-de-
rived class in which the field is declared to be persistent.] The qualified name (class-
Name.fieldName) should always be used to identify the field to avoid ambiguity with
subclass-defined fields.

The rationale for this is that a method in a superclass might call this method, and specify
the name of the field that is hidden by a subclass. The StateManager has no way of
knowing which class called this method, and therefore assumes the Java rule regarding
field names.

It is always safe to explicitly name the class and field referred to in the parameter to the
method. The StateManager will resolve the scope of the name in the class named in the
parameter.

For example, if class C inherits class B which inherits class A, and field X is declared in
classes A and C, a method declared in class B may refer to the field in the method as “B.X”
and it will refer to the field declared in class A. Field X is not declared in B; however, in the
scope of class B, X refers to A.X.

7.3 JDO Identity

Object jdoGetObjectId();

A7.3-1 [This method returns the JDO identity of the instance.] A7.3-2 [If the instance is
transient, null is returned.] A7.3-3 [If the identity is being changed in a transaction, this
method returns the identity as of the beginning of the transaction.]

Object jdoGetTransactionalObjectId();

A7.3-4 [This method returns the JDO identity of the instance.] A7.3-5 [If the instance is
transient, null is returned.] A7.3-6 [If the identity is being changed in a transaction, this
method returns the current identity in the transaction.]

7.4 Status interrogation

The status interrogation methods return a boolean that represents the state of the instance:

7.4.1 Dirty

boolean jdoIsDirty();

A7.4.1-1 [Instances whose state has been changed in the current transaction return true.]
A7.4.1-2 [Instances whose state has not been changed in the current transaction return false to a
call to jdoIsDirty.]A7.4.1-3 [If the instance is transient, false is returned.]

7.4.2 Transactional

boolean jdoIsTransactional();

A7.4.2-1 [Instances whose state is associated with the current transaction return
true.]A7.4.2-2 [Instances whose state has not been changed in the current transaction return false
to a call to jdoIsTransactional.] A7.4.2-3 [If the instance is transient, false is returned.]
 JDO 2.0 66 October 21, 2004

Java Data Objects 2.0
7.4.3 Persistent

boolean jdoIsPersistent();

A7.4.3-1 [Instances that represent persistent objects in the datastore return true.] A7.4.3-
2 [Instances that do not represent persistent objects in the datastore return false to a call to jdoIsPer-
sistent.]A7.4.3-3 [If the instance is transient, false is returned.]

7.4.4 New

boolean jdoIsNew();

A7.4.4-1 [Instances that have been made persistent in the current transaction return true.]
A7.4.4-2 [Instances that have not been made persistent in the current transaction return false to a
call to jdoIsNew.]A7.4.4-3 [If the instance is transient, false is returned.]

7.4.5 Deleted

boolean jdoIsDeleted();

A7.4.5-1 [Instances that have been deleted in the current transaction return true.] A7.4.5-
2 [Instances that have not been deleted in the current transaction return false to a call to jdoIsDe-
leted.]A7.4.5-3 [If the instance is transient, false is returned.]

7.5 New instance

PersistenceCapable jdoNewInstance(StateManager sm);

A7.5-1 [This method creates a new instance of the class of the instance.] It is intended to be
used as a performance optimization compared to constructing a new instance by reflection

Table 3: State interrogation

Persistent Transactional Dirty New Deleted

Transient

Transient-clean ✓

Transient-dirty ✓ ✓

Persistent-new ✓ ✓ ✓ ✓

Persistent-
nontransactional

✓

Persistent-clean ✓ ✓

Persistent-dirty ✓ ✓ ✓

Hollow ✓

Persistent-deleted ✓ ✓ ✓ ✓

Persistent-new-
deleted

✓ ✓ ✓ ✓ ✓
 JDO 2.0 67 October 21, 2004

Java Data Objects 2.0
using the constructor. It is intended to be used only by JDO implementations, not by ap-
plications. A7.5-2 [If the class is abstract, null is returned.]

PersistenceCapable jdoNewInstance(StateManager sm, Object oid);

A7.5-3 [This method creates a new instance of the class of the instance, and copies key field
values from the oid parameter instance.] It is intended to be used as a performance opti-
mization compared to constructing a new instance by reflection using the constructor, and
copying values from the oid instance by reflection. It is intended to be used only by JDO
implementations for classes that use application identity, not by applications. A7.5-4 [If the
class is abstract, null is returned.]

7.6 State Manager

void jdoReplaceStateManager (StateManager sm)

throws SecurityException;

A7.6-1 [This method sets the jdoStateManager field to the parameter.] This method is
normally used by the StateManager during the process of making an instance persis-
tent, transactional, or transient. A7.6-2 [The caller of this method must have JDOPermis-
sion("setStateManager") for the instance, otherwise SecurityException is
thrown. IllegalAccessException instead of SecurityException is thrown according to JDO Spec. 1.0
Assertions.]

7.7 Replace Flags

void jdoReplaceFlags ();

A7.7-1 [This method tells the instance to call the owning StateManager’s replacing-
Flags method to get a new value for the jdoFlags field.]

7.8 Replace Fields

void jdoReplaceField (int fieldNumber);

A7.8-1 [This method gets a new value from the StateManager for the field specified in
the parameter.] The field number must refer to a field declared in this class or in a super-
class.

void jdoReplaceFields (int[] fieldNumbers);

A7.8-2 [This method iterates over the array of field numbers and calls jdoReplace-
Field for each one.]

7.9 Provide Fields

void jdoProvideField (int fieldNumber);

A7.9-1 [This method provides the value of the specified field to the StateManager.] The
field number must refer to a field declared in this class or in a superclass.

void jdoProvideFields (int[] fieldNumbers);

A7.9-2 [This method iterates over the array of field numbers and calls jdoProvide-
Field for each one.]
 JDO 2.0 68 October 21, 2004

Java Data Objects 2.0
7.10 Copy Fields

void jdoCopyFields (Object other, int[] fieldNumbers);

void jdoCopyField (Object other, int fieldNumber);

A7.10-1 [These methods copy fields from another instance of the same class.] A7.10-2
[These methods can be invoked only when both this and other are managed by the
same StateManager.]

7.11 Static Fields

The following fields define the permitted values for the jdoFlags field.

public static final byte READ_WRITE_OK = 0;

public static final byte READ_OK = -1;

public static final byte LOAD_REQUIRED = 1;

public static final byte DETACHED = 2;

The following fields define the flags for the jdoFieldFlags elements.

public static final byte CHECK_READ = 1;

public static final byte MEDIATE_READ = 2;

public static final byte CHECK_WRITE = 4;

public static final byte MEDIATE_WRITE = 8;

public static final byte SERIALIZABLE = 16;

7.12 JDO identity handling

public Object jdoNewObjectIdInstance();

A7.12-1 [This method creates a new instance of the class used for JDO identity.] It is intend-
ed only for application identity. A7.12-2 [If the class has been enhanced for datastore iden-
tity], or A7.12-3 [if the class is abstract, null is returned.]

For classes using single field identity, this method must be called on a persistent instance
with its primary key field initialized, or a JDOFatalInternalException is thrown. In
this case, the instance returned is initialized with the value of the primary key field of the
instance on which the method is called.

public Object jdoNewObjectIdInstance(String str);

N7.12-20 [This method creates a new instance of the class used for JDO identity, using the
String constructor of the object id class. It is intended only for application identity, in-
cluding single field identity.] N7.12-21 [If the class has been enhanced for datastore iden-
tity], or N7.12-22 [if the class is abstract], null is returned. The identity instance returned
has no relationship with the values of the primary key fields of the persistence-capable in-
stance on which the method is called.

N7.12-23 [public void jdoCopyKeyFieldsToObjectId(Object oid);

This method copies all key fields from this instance to the parameter.] N7.12-24 [The pa-
rameter must be an instance of the JDO identity class, or ClassCastException is
thrown. If the class uses single field identity, this method always throws JDOFatalIn-
ternalException.]
 JDO 2.0 69 October 21, 2004

Java Data Objects 2.0
A7.12-4 [jdoCopyKeyFieldsToObjectId (PersistenceCapable pc, Object oid) copies all key fields
from the first parameter to the second parameter]

A7.12-5 [The first parameter of jdoCopyKeyFieldsToObjectId (PersistenceCapable pc, Object oid)
must be of the same class as this intance, or a ClassCastException is thrown.]

A7.12-6 [The second parameter of jdoCopyKeyFieldsToObjectId (PersistenceCapable pc, Object
oid) must be an instance of the JDO identity class, or a ClassCastException is thrown.]

A7.12-7 [public void jdoCopyKeyFieldsToObjectId(ObjectIdFieldSup-
plier fs, Object oid);

This method copies fields from the field manager instance to the second parameter in-
stance.First parameter is ObjectIdFieldManager instead of ObjectIdFieldSupplier according to
JDO Spec. 1.0 Assertions.] A7.12-8 [Each key field in the ObjectId class matching a key
field in the PersistenceCapable class is set by the execution of this method.] A7.12-9
[For each key field, the method of the ObjectIdFieldSupplier is called for the corre-
sponding type of field.] A7.12-10 [The second parameter must be an instance of the JDO
identity class. If the parameter is not of the correct type, then ClassCastException is
thrown. If the class uses single field identity, this method always throws JDOFatalIn-
ternalException.]

N7.12-25 [public void jdoCopyKeyFieldsFromObjectId(ObjectIdField-
Consumer fc, Object oid);

This method copies fields to the field manager instance from the second parameter in-
stance.] N7.12-26 [Each key field in the ObjectId class matching a key field in the Per-
sistenceCapable class is retrieved by the execution of this method.] N7.12-27 [For
each key field, the method of the ObjectIdFieldConsumer is called for the corre-
sponding type of field.] N7.12-28 [The second parameter must be an instance of the JDO
identity class. If the parameter is not of the correct type, then ClassCastException is
thrown.]

interface ObjectIdFieldSupplier

A7.12-11 [boolean fetchBooleanField (int fieldNumber);]

A7.12-12 [char fetchCharField (int fieldNumber);]

A7.12-13 [short fetchShortField (int fieldNumber);]

A7.12-14 [int fetchIntField (int fieldNumber);]

A7.12-15 [long fetchLongField (int fieldNumber);]

A7.12-16 [float fetchFloatField (int fieldNumber);]

A7.12-17 [double fetchDoubleField (int fieldNumber);]

A7.12-18 [String fetchStringField (int fieldNumber);]

A7.12-19 [Object fetchObjectField (int fieldNumber);]

These methods all fetch one field from the field manager. The returned value is stored in
the object id instance. The generated code in the PersistenceCapable class calls a
method in the field manager for each key field in the object id. The field number is the same
as in the persistence capable class for the corresponding key field.

interface ObjectIdFieldConsumer

N7.12-29 [void storeBooleanField (int fieldNumber, boolean value);]
 JDO 2.0 70 October 21, 2004

Java Data Objects 2.0
N7.12-30 [void storeCharField (int fieldNumber, char value);]

N7.12-31 [void storeShortField (int fieldNumber, short value);]

N7.12-32 [void storeIntField (int fieldNumber, int value);]

N7.12-33 [void storeLongField (int fieldNumber, long value);]

N7.12-34 [void storeFloatField (int fieldNumber, float value);]

N7.12-35 [void storeDoubleField (int fieldNumber, double value);]

N7.12-36 [void storeStringField (int fieldNumber, String value);]

N7.12-37 [void storeObjectField (int fieldNumber, Object value);]

These methods all store one field to the field manager. The value is retrieved from the ob-
ject id instance. The generated code in the PersistenceCapable class calls a method
in the field manager for each key field in the object id. The field number is the same as in
the persistence capable class for the corresponding key field.

interface ObjectIdFieldManager extends ObjectIdFieldSupplier,
ObjectIdFieldConsumer

This interface is a convenience interface that extends both ObjectIdFieldSupplier
and ObjectIdFieldConsumer.

Readers primarily interested in developing applications with the JDO API can ignore the following
chapters. Skip to 10 – InstanceCallbacks.
 JDO 2.0 71 October 21, 2004

Java Data Objects 2.0
8 JDOHelper

JDOHelper is a class with static methods that is intended for use by persistence-aware
classes. It contains methods that allow interrogation of the persistent state of an instance
of a persistence-capable class.

A8.x-1 [Each method delegates to the instance, if it implements PersistenceCapable.]
Otherwise, it delegates to any JDO implementations registered with JDOImplHelper via
the StateInterrogation interface.

If no registered implementation recognizes the instance, then

• if the method returns a value of reference type, it returns null;

• if the method returns a value of boolean type, it returns false;

• if the method returns void, there is no effect.

package javax.jdo;

class JDOHelper {

8.1 Persistence Manager

static PersistenceManager getPersistenceManager (Object pc);

A8.1-1 [?This method returns the associated PersistenceManager.] It returns null if
the instance is A8.1-2 [transient] or A8.1-4 [null] or A8.1-3 [if its class is not persistence-
capable.]

See also PersistenceCapable.jdoGetPersistenceManager().

8.2 Make Dirty

static void makeDirty (Object pc, String fieldName);

A8.2-1 [??If the object parameter is not null and implements PersistenceCapable, JDOHelp-
er.makeDirty delegates to the parameter instance and marks the specified field (optionally including
the fully qualified package name and class name of the field) dirty]This method marks the spec-
ified field dirty so that its values will be modified in the datastore when the instance is
flushed. The fieldName is the name of the field to be marked as dirty, optionally includ-
ing the fully qualified package name and class name of the field. This method has no effect
if the instance is A8.2-2 [transient] or A8.2-3 [null], or A8.2-4 [if its class is not persistence-
capable]; or N8.2-6 [fieldName is not a managed field]A8.2-5 [If the instance is not tran-
sient and the field is not managed, a JDOUserException is thrown by makeDirty].

See also PersistenceCapable.jdoMakeDirty(String fieldName).

8.3 JDO Identity

static Object getObjectId (Object pc);
 JDO 2.0 72 October 21, 2004

Java Data Objects 2.0
A8.3-1 [This method returns the JDO identity of the instance.] It returns null if the in-
stance is A8.3-2 [transient] or A8.3-4 [null] or A8.3-3 [if its class is not persistence-capa-
ble]. N8.3-9 [If the identity is being changed in a transaction, this method returns the
identity as of the beginning of the transaction.]

See also PersistenceCapable.jdoGetObjectId() and PersistenceMan-
ager.getObjectId(Object pc).

static Object getTransactionalObjectId (Object pc);

A8.3-5 [This method returns the JDO identity of the instance.] It returns null if the in-
stance is A8.3-6 [transient] or A8.3-8 [null] or A8.3-7 [does not implement Persis-
tenceCapable]. N8.3-10 [If the identity is being changed in a transaction, this method
returns the current identity in the transaction.]

See also PersistenceCapable.jdoGetTransactionalObjectId()and Per-
sistenceManager.getTransactionalObjectId(Object pc).

8.4 JDO Version

static Object getVersion (Object pc);

This method returns the JDO version of the instance. It returns null if the instance is tran-
sient or null or if its class is not persistence-capable.

8.5 Status interrogation

The status interrogation methods return a boolean that represents the state of the in-
stance:

8.5.1 Dirty

static boolean isDirty (Object pc);

A8.4.1-1 [Instances whose state has been changed in the current transaction return true.]
A8.4.1-2 [If the object parameter is not null and implements PersistenceCapable, JDOHelper.is-
Dirty delegates to the parameter instance and instances whose state has not been changed in the cur-
rent transaction return false]It returns false if the instance is A8.4.1-3 [transient] or A8.4.1-
5 [null] or if A8.4.1-4 [its class is not persistence-capable].

See also PersistenceCapable.jdoIsDirty();

8.5.2 Transactional

static boolean isTransactional (Object pc);

A8.4.2-1 [Instances whose state is associated with the current transaction return
true.]A8.4.2-2 [If the object parameter is not null, not transient, and implements PersistenceCa-
pable, isTransactional delegates to the parameter instance and instances whose state is not associ-
ated with the current transaction return false] It returns false if the instance is A8.4.2-3
[transient] or A8.4.2-5 [null] or A8.4.2-4 [if its class is not persistence-capable].

See also PersistenceCapable.jdoIsTransactional().

8.5.3 Persistent

static boolean isPersistent (Object pc);

A8.4.3-1 [Instances that represent persistent objects in the datastore return true]. A8.4.3-
2 [If the object parameter is not null, not transient, and implements PersistenceCapable, isPersis-
 JDO 2.0 73 October 21, 2004

Java Data Objects 2.0
tent delegates to the parameter instance and instances that do not represent persistent objects in the
data store return false]It returns false if the instance is A8.4.3-3 [transient] or A8.4.3-5
[null] or A8.4.3-4 [if its class is not persistence-capable].

See also PersistenceCapable.jdoIsPersistent();

8.5.4 New

static boolean isNew (Object pc);

A8.4.4-1 [Instances that have been made persistent in the current transaction return true.]
A8.4.4-2 [If the object parameter is not null, not transient, and implements PersistenceCapable, is-
New delegates to the parameter instance and instances that have not been made persistent in the
current transaction return false]It returns false if the instance is A8.4.4-3 [transient] or
A8.4.4-5 [null] or A8.4.4-4 [if its class is not persistence-capable].

See also PersistenceCapable.jdoIsNew();

8.5.5 Deleted

static boolean isDeleted (Object pc);

A8.4.5-1 [Instances that have been deleted in the current transaction return true.] A8.4.5-
2 [If the object parameter is not null, not transient, and implements PersistenceCapable, isDeleted
delegates to the parameter instance and instances that have not been deleted in the current transac-
tion return false]It returns false if the instance is A8.4.5-3 [transient] or A8.4.5-5 [null]
or A8.4.5-4 [if its class is not persistence-capable].

See also PersistenceCapable.jdoIsDeleted();

8.6 PersistenceManagerFactory methods

N8.5-1 [public static

PersistenceManagerFactory getPersistenceManagerFactory

(Properties props, ClassLoader cl);]

N8.5-2 [public static

PersistenceManagerFactory getPersistenceManagerFactory

(Properties props);]

These methods return a PersistenceManagerFactory based on properties con-
tained in the Properties parameter. N8.5-3 [In the method without a class loader pa-
rameter, the calling thread’s current contextClassLoader is used to resolve the class
name.]

public static

PersistenceManagerFactory getPersistenceManagerFactory

(File file);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(File file, ClassLoader loader);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(String resourceName);
 JDO 2.0 74 October 21, 2004

Java Data Objects 2.0
public static

PersistenceManagerFactory getPersistenceManagerFactory

(String resourceName, ClassLoader loader);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(InputStream stream);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(InputStream stream, ClassLoader loader);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(String jndiName, Context context);

These methods use the parameter(s) passed as arguments to construct a Properties in-
stance, and then delegate to the static method getPersistenceManagerFactory in
the class named in the property javax.jdo.PersistenceManagerFactoryClass.
If there are any exceptions while trying to construct the Properties instance or to call
the static method, then either N8.5-4 [JDOFatalUserException] or N8.5-5 [JDOFa-
talInternalException is thrown], depending on whether the exception is due to the
user or the implementation. The nested exception indicates the cause of the exception.

N8.5-6 [If the class named by the javax.jdo.PersistenceManagerFactoryClass
property cannot be found, or is not accessible to the user, then JDOFatalUserExcep-
tion is thrown.] N8.5-7 [If there is no public static implementation of the getPersis-
tenceManagerFactory(Properties) method, then
JDOFatalInternalException is thrown.] N8.5-8 [If the implementation of the static
getPersistenceManagerFactory(Properties) method throws an exception, it
is rethrown by this method.]

The following are standard key values for the Properties:

javax.jdo.PersistenceManagerFactoryClass

javax.jdo.option.Optimistic

javax.jdo.option.RetainValues

javax.jdo.option.RestoreValues

javax.jdo.option.IgnoreCache

javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.Multithreaded

javax.jdo.option.ConnectionDriverName

javax.jdo.option.ConnectionUserName

javax.jdo.option.ConnectionPassword

javax.jdo.option.ConnectionURL

javax.jdo.option.ConnectionFactoryName

javax.jdo.option.ConnectionFactory2Name
 JDO 2.0 75 October 21, 2004

Java Data Objects 2.0
javax.jdo.option.Mapping

JDO implementations are permitted to define key values of their own. N8.5-9 [Any key
values not recognized by the implementation must be ignored.] N8.5-10 [Key values that
are recognized but not supported by an implementation must result in a JDOFata-
lUserException thrown by the method.]

N8.5-11 [The returned PersistenceManagerFactory is not configurable (the set-
XXX methods will throw an exception).] N8.5-12 [JDO implementations might manage a
map of instantiated PersistenceManagerFactory instances based on specified
property key values, and return a previously instantiated PersistenceManagerFac-
tory instance. In this case, the properties of the returned instance must exactly match the
requested properties.]
 JDO 2.0 76 October 21, 2004

Java Data Objects 2.0
9 JDOImplHelper

This class is a public helper class for use by JDO implementations. It contains a registry of
metadata by class. Use of the methods in this class avoids the use of reflection at runtime.
PersistenceCapable classes register metadata with this class during class initializa-
tion.

NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations.

package javax.jdo.spi;

public JDOImplHelper {

9.1 JDOImplHelper access

N9.1-1 [public static JDOImplHelper getInstance()

throws SecurityException;

This method returns an instance of the JDOImplHelper class if the caller is authorized
for JDOPermission(“getMetadata”)], and N9.1-2 [throws SecurityException
if not authorized.] N9.1-3 [This instance gives access to all of the other methods], N9.1-4
[except for registerClass, which is static and does not need any authorization.]

9.2 Metadata access

N9.2-1 [public String[] getFieldNames (Class pcClass);

This method returns the names of persistent and transactional fields of the parameter
class.] N9.2-2 [If the class does not implement PersistenceCapable], or N9.2-3 [if it
has not been enhanced correctly to register its metadata], a JDOFatalUserException
is thrown.

N9.2-4 [Otherwise, the names of fields that are either persistent or transactional are re-
turned, in order. The order of names in the returned array are the same as the field num-
bering. Relative field 0 refers to the first field in the array. The length of the array is the
number of persistent and transactional fields in the class.]

N9.2-5 [public Class[] getFieldTypes (Class pcClass);

This method returns the types of persistent and transactional fields of the parameter class.]
N9.2-6 [If the parameter does not implement PersistenceCapable], or N9.2-7 [if it has
not been enhanced correctly to register its metadata], a JDOFatalUserException is
thrown.

N9.2-8 [Otherwise, the types of fields that are either persistent or transactional are re-
turned, in order. The order of types in the returned array is the same as the field number-
ing. Relative field 0 refers to the first field in the array. The length of the array is the
number of persistent and transactional fields in the class.]
 JDO 2.0 77 October 21, 2004

Java Data Objects 2.0
N9.2-9 [public byte[] getFieldFlags (Class pcClass);

This method returns the field flags of persistent and transactional fields of the parameter
class.] N9.2-10 [If the parameter does not implement PersistenceCapable], or N9.2-
11 [if it has not been enhanced correctly to register its metadata], a JDOFatalUserEx-
ception is thrown.

N9.2-12 [Otherwise, the types of fields that are either persistent or transactional are re-
turned, in order. The order of types in the returned array is the same as the field number-
ing. Relative field 0 refers to the first field in the array. The length of the array is the
number of persistent and transactional fields in the class.]

N9.2-13 [public Class getPersistenceCapableSuperclass (Class pc-
Class);

This method returns the PersistenceCapable superclass of the parameter class], or
N9.2-14 [null if there is none.]

9.3 Persistence-capable instance factory

N9.3-1 [public PersistenceCapable newInstance (Class pcClass,

StateManager sm);]

N9.3-2 [public PersistenceCapable newInstance (Class pcClass,
StateManager sm, Object oid);]

N9.3-3 [If the class does not implement PersistenceCapable], or N9.3-4 [if it has not
been enhanced correctly to register its metadata], a JDOFatalUserException is
thrown. N9.3-5 [If the class is abstract, a JDOFatalInternalException is thrown.]

Otherwise, a new instance of the class is constructed and initialized with the parameter
StateManager. N9.3-6 [The new instance has its jdoFlags set to LOAD_REQUIRED]
but N9.3-7 [has no defined state. The behavior of the instance is determined by the owning
StateManager.]

N9.3-8 [The second form of the method returns a new instance of PersistenceCa-
pable that has had its key fields initialized by the ObjectId parameter instance.] N9.3-
9 [If the class has been enhanced for datastore identity, then the oid parameter is ignored.]

See also PersistenceCapable.jdoNewInstance(StateManager sm) and
PersistenceCapable.jdoNewInstance (StateManager sm, Object oid).

9.4 Registration of PersistenceCapable classes

N9.4-1 [public static void registerClass

(Class pcClass, String[] fieldNames,

Class[] fieldTypes,

byte[] fieldFlags,

Class persistenceCapableSuperclass,

PersistenceCapable pcInstance);

This method registers a PersistenceCapable class so that the other methods can re-
turn the correct information. The registration must be done in a static initializer for the per-
sistence-capable class.]
 JDO 2.0 78 October 21, 2004

Java Data Objects 2.0
9.4.1 Notification of PersistenceCapable class registrations

N9.4.1-1 [addRegisterClassListener(RegisterClassListener rcl);

This method registers a RegisterClassListener to be notified upon new Persis-
tenceCapable Class registrations.] A RegisterClassEvent instance is generated
N9.4.1-2 [for each class registered already] plus N9.4.1-3 [classes registered in future],
which is sent to each registered listener. N9.4.1-4 [The same event instance might be sent
to multiple listeners.]

N9.4.1-5 [removeRegisterClassListener(RegisterClassListener rcl);

This method removes a RegisterClassEvent from the list to be notified upon new
PersistenceCapable Class registrations.]

RegisterClassEvent

public class RegisterClassEvent extends java.util.EventObject {

An instance of this class is generated for each class that registers itself, and is sent to each
registered listener.

N9.4.1-6 [public Class getRegisteredClass();

Returns the newly registered Class.]

N9.4.1-7 [public String[] getFieldNames();

Returns the field names of the newly registered Class.]

N9.4.1-8 [public Class[] getFieldTypes();

Returns the field types of the newly registered Class.]

N9.4.1-9 [public byte[] getFieldFlags();

Returns the field flags of the newly registered Class.]

N9.4.1-10 [public Class getPersistenceCapableSuperclass();

Returns the PersistenceCapable superclass of the newly registered Class.]

} // class RegisterClassEvent

RegisterClassListener

interface RegisterClassListener extends java.util.EventListener
{

This interface must be implemented by classes that register as listeners to be notified
of registrations of PersistenceCapable classes.

N9.4.1-10 [void registerClass (RegisterClassEvent rce);

This method is called for each PersistenceCapable class that registers itself.]

} // interface RegisterClassListener

9.5 Security administration

N9.5.1 [public static void registerAuthorizedStateManagerClass

(Class smClass);

This method manages the list of classes authorized to execute replaceStateManager.
During execution of this method, the security manager, if present, is called to validate that
 JDO 2.0 79 October 21, 2004

Java Data Objects 2.0
the caller is authorized for JDOPermission(“setStateManager”). If successful, the
parameter class is added to the list of authorized StateManager classes.]

This method provides for a fast security check during makePersistent. An implemen-
tation of StateManager should register itself with the JDOImplHelper to take advan-
tage of this fast check.

N9.5.2 [public static void checkAuthorizedStateManager(StateManager
sm);

This method is called by enhanced persistence-capable class method replaceStateM-
anager. If the parameter instance is of a class in the list of authorized StateManager
classes, then this method returns silently.] N9.5.3 [If not, then the security manager, if
present, is called to validate that the caller is authorized for JDOPermission(“set-
StateManager”). If successful, the method returns silently.] N9.5.4 [If not, a Securi-
tyException is thrown.]

9.6 Application identity handling

N9.6.1 [public Object newObjectIdInstance(Class pcClass);

This method creates a new instance of the Object Id class for the PersistenceCa-
pable class.] N9.6.2 [If the class uses datastore identity, then null is returned.] N9.6.3 [If
the class is abstract, a JDOFatalInternalException is thrown.]

N9.6.4 [public Object newObjectIdInstance(Class pcClass, String
str);

This method creates a new instance of the Object Id class for the PersistenceCa-
pable class, using the String constructor of the object id class.] N9.6.5 [If the class uses
datastore identity, then null is returned.] N9.6.6 [If the class is abstract, a JDOFatalIn-
ternalException is thrown.]

N9.6.7 [public void copyKeyFieldsToObjectId (Class pcClass, Per-
sistenceCapable.ObjectIdFieldSupplier fs, Object oid);

This method copies key fields from the field manager to the Object Id instance oid.]
This is intended for use by the implementation to copy fields from a datastore-specific rep-
resentation to the Object Id. N9.6.8 [If the class is abstract, a JDOFatalInternalEx-
ception is thrown.]

N9.6.9 [public void copyKeyFieldsFromObjectId (Class pcClass, Per-
sistenceCapable.ObjectIdFieldConsumer fc, Object oid);

This method copies key fields to the field manager from the Object Id instance oid.]
This is intended for use by the implementation to copy fields to a datastore-specific repre-
sentation from the Object Id. N9.6.10 [If the class is abstract, a JDOFatalInternal-
Exception is thrown.]

9.7 Persistence-capable class state interrogation

For JDO implementations that do not support BinaryCompatibility, an instance of
StateInterrogation must be registered with JDOImplHelper to handle JDOHelper
methods for instances that do not implement PersistenceCapable.

The StateInterrogation interface is implemented by a JDO implementation class to
take responsibility for determining the life cycle state and object identity, and for marking
fields dirty.
 JDO 2.0 80 October 21, 2004

Java Data Objects 2.0
package javax.jdo.spi;
public interface StateInterrogation {
Boolean isPersistent(Object pc);
Boolean isTransactional(Object pc);
Boolean isDirty(Object pc);
Boolean isNew(Object pc);
Boolean isDeleted(Object pc);
PersistenceManager getPersistenceManager(Object pc);
Object getObjectId(Object pc);
Object getTransactionalObjectId(Object pc);
boolean makeDirty(Object pc, String fieldName);
Object getVersion(Object pc);
}

For methods returning Boolean, PersistenceManager, and Object, if the StateIn-
terrogation instance does not recognize the parameter instance, null is returned, and
the next registered StateInterrogation instance is called.

For makeDirty, if the StateInterrogation instance does not recognize the parameter
instance, false is returned, and the next registered StateInterrogation instance is
called.

public void addStateInterrogation(StateInterrogation si);
This method of JDOImplHelper registers an instance of StateInterrogation for del-
egation of life cycle state queries made on JDOHelper.

public void removeStateInterrogation(StateInterrogation si);
This method of JDOImplHelper removes an instance of StateInterrogation, so it is
no longer called by JDOHelper for life cycle state queries.
 JDO 2.0 81 October 21, 2004

Java Data Objects 2.0
10 InstanceCallbacks

Instance callbacks provide a mechanism for instances to take some action on specific JDO
instance life cycle events. For example, classes that include non-persistent fields might use
callbacks to correctly populate the values in these fields. Classes that affect the runtime en-
vironment might use callbacks to register and deregister themselves with other objects.
This interface defines the methods executed by the StateManager for these life cycle
events.

A10-1 [These methods will be called only on instances for which javax.jdo.InstanceCall-
backs.class.isInstance(pc) returns true.]

N10-2 [These methods will be called only on instances for which the class implements the
corresponding callback interface .] For backward compatibility, InstanceCallbacks is
redefined as follows:

interface InstanceCallbacks extends LoadCallback, StoreCallback,
ClearCallback, DeleteCallback {

}

10.1 jdoPostLoad

interface LoadCallback {

public void jdoPostLoad();

}

A10.1-1 [This method is called after the default fetch group values have been loaded from
the StateManager into the instance.] Non-persistent fields whose value depends on val-
ues of default fetch group fields should be initialized in this method. A10.1-2 [This method
is not modified by the enhancer.] Only fields that are in the default fetch group should be
accessed by this method, as other fields are not guaranteed to be initialized. This method
might register the instance with other objects in the runtime environment.

N10.1-3 [The context in which this call is made does not allow access to other persistent
JDO instances.]

10.2 jdoPreStore

interface StoreCallback {

public void jdoPreStore();

}

A10.2-1 [This method is called before the values are stored from the instance to the data-
store.] This happens during beforeCompletion for persistent-new and persistent-dirty
instances of persistence-capable classes that implement InstanceCallbacks. Datas-
tore fields that might have been affected by modified non-persistent fields should be up-
 JDO 2.0 82 October 21, 2004

Java Data Objects 2.0
dated in this method. A10.2-2 [This method is modified by the enhancer] so that changes
to persistent fields will be reflected in the datastore.

A10.2-3 [The context in which this call is made allows access to the PersistenceMan-
ager and other persistent JDO instances.]

N10.2-4 [This method is not called for deleted instances.]

10.3 jdoPreClear

interface ClearCallback {

public void jdoPreClear();

}

A10.3-1 [This method is called before the implementation clears the values in the instance
to their Java default values. This happens during an application call to evict, and in af-
terCompletion for commit with RetainValues false and rollback with Restor-
eValues false. The method is called during any state transition to hollow.] Non-
persistent, non-transactional fields should be cleared in this method. Associations between
this instance and others in the runtime environment should be cleared. A10.3-2 [This meth-
od is not modified by the enhancer], so access to fields is not mediated.

10.4 jdoPreDelete

interface DeleteCallback {

public void jdoPreDelete();

}

A10.4-1 [This method is called during the execution of deletePersistent before the
state transition to persistent-deleted or persistent-new-deleted.] A10.4-2 [Access to field
values within this call are valid.] A10.4-3 [Access to field values after this call are disal-
lowed.] A10.4-4 [This method is modified by the enhancer] so that fields referenced can be
used in the business logic of the method.

To implement a containment aggregate, the user could implement this method to delete
contained persistent instances.
 JDO 2.0 83 October 21, 2004

Java Data Objects 2.0
11 PersistenceManagerFactory

This chapter details the PersistenceManagerFactory, which is responsible for cre-
ating PersistenceManager instances for application use.

package javax.jdo;

interface PersistenceManagerFactory {

11.1 Interface PersistenceManagerFactory

A JDO vendor must provide a class that implements PersistenceManagerFactory
and is permitted to provide a PersistenceManager constructor[s].

A non-managed JDO application might choose to use a PersistenceManager con-
structor (JDO vendor specific) or use a PersistenceManagerFactory (provided by
the JDO vendor). A portable JDO application must use the PersistenceManagerFac-
tory.

In a managed environment, the JDO PersistenceManager instance is acquired by a
two step process: the application uses JNDI lookup to retrieve an environment-named ob-
ject, which is then cast to javax.jdo.PersistenceManagerFactory; and then calls
one of the factory’s getPersistenceManager methods.

In a non-managed environment, the JDO PersistenceManager instance is acquired by
lookup as above; by constructing a javax.jdo.PersistenceManager; or by con-
structing a javax.jdo.PersistenceManagerFactory, configuring the factory,
and then calling the factory’s getPersistenceManager method. These constructors
are not part of the JDO standard. However, the following is recommended to support por-
table applications.

Configuring the PersistenceManagerFactory follows the Java Beans pattern. Sup-
ported properties have a get method and a set method.

The following properties, if set in the PersistenceManagerFactory, are the default
settings of all PersistenceManager instances created by the factory:

• Optimistic: the transaction mode that specifies concurrency control
A11.1-1 [PersistenceManagerFactory.setOptimistic(boolean flag) sets the value of the
Optimistic property (the transaction mode that specifies concurrency control)]
A11.1-2 [PersistenceManagerFactory.getOptimistic() returns the value of the Optimistic
property]

• RetainValues: the transaction mode that specifies the treatment of persistent
instances after commit
A11.1-3 [PersistenceManagerFactory.setRetainValues(boolean flag) sets the value of the
RetainValues property (the transaction mode that specifies the treatment of persistent
instances after commit)]
A11.1-4 [PersistenceManagerFactory.getRetainValues() returns the value of the
RetainValues property]
 JDO 2.0 84 October 21, 2004

Java Data Objects 2.0
• RestoreValues: the transaction mode that specifies the treatment of persistent
instances after rollback
N11.1-28 [PersistenceManagerFactory.setRestoreValues(boolean flag) sets the value of the
RestoreValues property (the transaction mode that specifies the treatment of persistent
instances after rollback)]
N11.1-29 [PersistenceManagerFactory.getRestoreValues() returns the value of the
RestoreValues property]

• IgnoreCache: the query mode that specifies whether cached instances are
considered when evaluating the filter expression
A11.1-5 [PersistenceManagerFactory.setIgnoreCache(boolean flag) sets the value of the
IgnoreCache property (the query mode that specifies whether cached instances are
considered when evaluating the filter expression)]
A11.1-6 [PersistenceManagerFactory.getIgnoreCache() returns the value of the
IgnoreCache property]

• NontransactionalRead: the PersistenceManager mode that allows
instances to be read outside a transaction
A11.1-7 [PersistenceManagerFactory.setNontransactionalRead(boolean flag) sets the
value of the NontransactionalRead property (the PersistenceManager mode that allows
instances to be read outside a transaction)]
A11.1-8 [PersistenceManagerFactory.getNontransactionalRead()returns the value of the
NontransactionalRead property]

• NontransactionalWrite: the PersistenceManager mode that allows
instances to be written outside a transaction
A11.1-9 [PersistenceManagerFactory.setNontransactionalWrite(boolean flag) sets the
value of the NontransactionalWrite property (the PersistenceManager mode that allows
instances to be written outside a transaction)]
A11.1-10 [PersistenceManagerFactory.getNontransactionalWrite() returns the value of
the NontransactionalWrite property]

• Multithreaded: the PersistenceManager mode that indicates that the
application will invoke methods or access fields of managed instances from
multiple threads.
A11.1-11 [PersistenceManagerFactory.setMultithreaded(boolean flag) sets the value of the
Multithreaded flag that indicates that the application will invoke methods or access fields
of managed instances from multiple threads.]
A11.1-12 [PersistenceManagerFactory.getMultithreaded() gets the value of the
Multithreaded flag]

The following properties are for convenience, if there is no connection pooling or other
need for a connection factory:

• ConnectionUserName: the name of the user establishing the connection
A11.1-13 [PersistenceManagerFactory.setConnectionUserName(String name) sets the
value of the ConnectionUserName property (the name of the user establishing the
connection)]
A11.1-14 [PersistenceManagerFactory.getConnectionUserName() returns the value of
the ConnectionUserName property]

• ConnectionPassword: the password for the user
A11.1-15 [PersistenceManagerFactory.setConnectionPassword(String password) sets the
value of the ConnectionPassword property (the password for the user)]
 JDO 2.0 85 October 21, 2004

Java Data Objects 2.0
• ConnectionURL: the URL for the data source
A11.1-16 [PersistenceManagerFactory.setConnectionURL(String URL) sets the value of
the ConnectionURL property (the URL for the data source)]
A11.1-17 [PersistenceManagerFactory.getConnectionURL() returns the value of the
ConnectionURL property]

• ConnectionDriverName: the class name of the driver
N11.1-30 [PersistenceManagerFactory.setConnectionDriverName(String drivername)
sets the value of the ConnectionDriverName property (the class name of the driver)]
N11.1-31 [PersistenceManagerFactory.getConnectionDriverName() returns the value of
the ConnectionDriverName property]

For a portable application, if any other connection properties are required, then a connec-
tion factory must be configured.

The following properties are for use when a connection factory is used, and override the
connection properties specified in ConnectionURL, ConnectionUserName, or Con-
nectionPassword.

• ConnectionFactory: the connection factory from which datastore connections
are obtained
A11.1-18 [PersistenceManagerFactory.setConnectionFactory(java.lang.Object
connectionFactory) sets the value of the ConnectionFactory property (the connection
factory from which data store connections are obtained)]
A11.1-19 [PersistenceManagerFactory.getConnectionFactory() returns the value of the
ConnectionFactory property]

• ConnectionFactoryName: the name of the connection factory from which
datastore connections are obtained. This name is looked up with JNDI to locate the
connection factory.
A11.1-20 [PersistenceManagerFactory.setConnectionFactoryName(String name) sets the
value of the ConnectionFactoryName property (the name of the connection factory from
which data store connections are obtained. This name is looked up with JNDI to locate the
connection factory.)]
A11.1-21 [PersistenceManagerFactory.getConnectionFactoryName() returns the value of
the ConnectionFactoryName property]

If multiple connection properties are set, then they are evaluated in order:

• A11.1-22 [if ConnectionFactory is specified (not null), all other properties
are ignored;]

• else A11.1-23 [if ConnectionFactoryName is specified (not null), all other
properties are ignored.]

For the application server environment, connection factories always return connections
that are enlisted in the thread’s current transaction context. To use optimistic transactions
in this environment requires a connection factory that returns connections that are not en-
listed in the current transaction context. For this purpose, the following two properties are
used:

• ConnectionFactory2: the connection factory from which nontransactional
datastore connections are obtained
A11.1-24 [PersistenceManagerFactory.setConnectionFactory2(java.lang.Object
connectionFactory) sets the value of the ConnectionFactory2 property (the connection
 JDO 2.0 86 October 21, 2004

Java Data Objects 2.0
factory from which nontransactional data store connections are obtained)]
A11.1-25 [PersistenceManagerFactory.getConnectionFactory2() returns the value of the
ConnectionFactory2 property]

• ConnectionFactory2Name: the name of the connection factory from which
nontransactional datastore connections are obtained. This name is looked up with
JNDI to locate the connection factory.
A11.1-26 [PersistenceManagerFactory.setConnectionFactory2Name(String name) sets
the value of the ConnectionFactory2Name property (the name of the connection factory
from which nontransactional data store connections are obtained. This name is looked up
with JNDI to locate the connection factory.)]
A11.1-27 [PersistenceManagerFactory.getConnectionFactory2Name() returns the value
of the ConnectionFactory2Name property]

Construction by Properties

N11.1-32 [An implementation must provide a method to construct a PersistenceMan-
agerFactory by a Properties instance. This static method is called by the
JDOHelper method getPersistenceManagerFactory (Properties props).

static PersistenceManagerFactory getPersistenceManagerFactory
(Properties props);]

N11.1-33 [The properties consist of: “javax.jdo.PersistenceManagerFactory-
Class”, whose value is the name of the implementation class; any JDO vendor-specific
properties; and the following standard property names, which correspond to the proper-
ties as documented in this chapter:

• "javax.jdo.option.Optimistic"

• "javax.jdo.option.RetainValues"

• "javax.jdo.option.RestoreValues"

• "javax.jdo.option.IgnoreCache"

• "javax.jdo.option.NontransactionalRead"

• "javax.jdo.option.NontransactionalWrite"

• "javax.jdo.option.Multithreaded"

• "javax.jdo.option.ConnectionUserName"

• "javax.jdo.option.ConnectionPassword"

• "javax.jdo.option.ConnectionURL"

• "javax.jdo.option.ConnectionDriverName"

• "javax.jdo.option.ConnectionFactoryName"

• "javax.jdo.option.ConnectionFactory2Name"

• “javax.jdo.option.Mapping”

The property “javax.jdo.PersistenceManagerFactoryClass” is the fully
qualified class name of the PersistenceManagerFactory.]

N11.1-34 [The String type properties are taken without change from the value of the cor-
responding keys.] Boolean type properties treat the String value as representing
N11.1-35 [true if the value of the String compares equal, ignoring case, to “true”],
and N11.1-36 [false if the value of the String is anything else.]
 JDO 2.0 87 October 21, 2004

Java Data Objects 2.0
N11.1-37 [Any property not recognized by the implementation must be silently ignored.]
N11.1-38 [Any standard property corresponding to an optional feature not supported by
the implementation must throw JDOUnsupportedOptionException.]

The Mapping property specifies the object-relational mapping to be used by the imple-
mentation. The property is used to construct the names of resource files containing meta-
data. For more information on the use of this property, see Chapters 15 and 18.

N11.1-39 [Default values for properties not specified in the Properties parameter are pro-
vided by the implementation.] A portable application must specify all values for proper-
ties needed by the application.

11.2 ConnectionFactory

For implementations that layer on top of standard Connector implementations, the con-
figuration will typically support all of the associated ConnectionFactory properties.

When used in a managed environment, the ConnectionFactorywill be obtained from
a ManagedConnectionFactory, which is then responsible for implementing the re-
source adapter interactions with the container.

The following properties of the ConnectionFactory should be used if the data source
has a corresponding concept:

• URL: the URL for the data source

• UserName: the name of the user establishing the connection

• Password: the password for the user

• DriverName: the driver name for the connection

• ServerName: name of the server for the data source

• PortNumber: port number for establishing connection to the data source

• MaxPool: the maximum number of connections in the connection pool

• MinPool: the minimum number of connections in the connection pool

• MsWait: the number of milliseconds to wait for an available connection from the
connection pool before throwing a JDODataStoreException

• LogWriter: the PrintWriter to which messages should be sent

• LoginTimeout: the number of seconds to wait for a new connection to be
established to the data source

In addition to these properties, the PersistenceManagerFactory implementation
class can support properties specific to the data source or to the PersistenceManager.

Aside from vendor-specific configuration APIs, there are three required methods for Per-
sistenceManagerFactory.

11.3 PersistenceManager access

PersistenceManager getPersistenceManager();

PersistenceManager getPersistenceManager(String userid, String
password);
 JDO 2.0 88 October 21, 2004

Java Data Objects 2.0
Returns a PersistenceManager instance with the configured properties. The instance
might have come from a pool of instances. The default values for option settings are reset
to the value specified in the PersistenceManagerFactory before returning the in-
stance.
A11.3-1 [PersistenceManagerFactory.getPersistenceManager() returns a PersistenceManager in-
stance with the configured properties and the default values for option settings]
A11.3-2 [PersistenceManagerFactory.getPersistenceManager(String userid, String password) re-
turns a PersistenceManager instance with the configured properties and the default values for op-
tion settings]

A11.3-3, A11.3-4 [After the first use of getPersistenceManager, none of the set
methods will succeed.] The settings of operational parameters might be modified dynam-
ically during runtime via a vendor-specific interface.

A11.3-5 [If the method with the userid and password is used to acquire the Persis-
tenceManager, then all accesses to the connection factory during the life of the Per-
sistenceManager will use the userid and password from a call to get connections.]
A11.3-6 [If PersistenceManager instances are pooled, then only PersistenceMan-
ager instances with the same userid and password will be used to satisfy the request.]

11.4 Close the PersistenceManagerFactory

During operation of JDO, resources might be acquired on behalf of a PersistenceMan-
agerFactory, e.g. connection pools, persistence manager pools, compiled queries,
cached metadata, etc. If a PersistenceManagerFactory is no longer needed, these re-
sources should be returned to the system. The close method disables the Persistence-
ManagerFactory and allows cleanup of resources.

Premature close of a PersistenceManagerFactory has a significant impact on the op-
eration of the system. Therefore, a security check is performed to check that the caller has
the proper permission. The security check is for JDOPermission("closePersis-
tenceManagerFactory"). If the security check fails, the close method throws Securi-
tyException.

N11.4-2 [11.4-1 exists already under chap. 11.5void close();

Close this PersistenceManagerFactory.] N11.4-3 [Check for JDOPermis-
sion("closePersistenceManagerFactory") and if not authorized, throw Secu-
rityException.]

N11.4-4 [If the authorization check succeeds, check to see that all PersistenceManager
instances obtained from this PersistenceManagerFactory have no active transac-
tions. If any PersistenceManager instances have an active transaction, throw a
JDOUserException, with one nested JDOUserException for each PersistenceM-
anager with an active Transaction.]

N11.4-5 [If there are no active transactions, then close all PersistenceManager instanc-
es obtained from this PersistenceManagerFactory,] N11.4-6 [mark this Persis-
tenceManagerFactory as closed,] N11.4-7 [disallow getPersistenceManager
methods,] and N11.4-8 [allow all other getmethods.] N11.4-9 [If a set method or getPer-
sistenceManager method is called after close, then JDOUserException is thrown.]
 JDO 2.0 89 October 21, 2004

Java Data Objects 2.0
11.5 Non-configurable Properties

The JDO vendor might store certain non-configurable properties and make those proper-
ties available to the application via a Properties instance. This method retrieves the
Properties instance.

Properties getProperties();

The application is not prevented from modifying the instance.

Each key and value is a String. The keys defined for standard JDO implementations are:

• VendorName: The name of the JDO vendor.

VersionNumber: The version number string.
A11.4-1 [PersistenceManagerFactory.getProperties() returns a Properties instance containing two
standard JDO implementation properties:

• VendorName: The name of the JDO vendor.

• VersionNumber: The version number string.]

Other properties are vendor-specific.

11.6 Optional Feature Support

Collection supportedOptions();

The JDO implementation might optionally support certain features, and will report the
features that are supported. The supported query languages are included in the returned
Collection.

A11.5-1 [This method returns a Collection of String, each String instance repre-
senting an optional feature of the implementation or a supported query language. The fol-
lowing are the values of the String for each optional feature in the JDO specification:

javax.jdo.option.TransientTransactional

javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.RetainValues

javax.jdo.option.Optimistic

javax.jdo.option.ApplicationIdentity

javax.jdo.option.DatastoreIdentity

javax.jdo.option.NonDurableIdentity

javax.jdo.option.ArrayList

javax.jdo.option.HashMap

javax.jdo.option.Hashtable

javax.jdo.option.LinkedList

javax.jdo.option.TreeMap

javax.jdo.option.TreeSet

javax.jdo.option.Vector

javax.jdo.option.Map
 JDO 2.0 90 October 21, 2004

Java Data Objects 2.0
javax.jdo.option.List

javax.jdo.option.Array

javax.jdo.option.NullCollection]

javax.jdo.option.ChangeApplicationIdentity

javax.jdo.option.BinaryCompatibility

javax.jdo.option.GetDataStoreConnection

javax.jdo.query.SQL

javax.jdo.option.UnconstrainedQueryVariables

A11.5-2 [The standard JDO query must be returned as the String:

javax.jdo.query.JDOQL]

Other query languages are represented by a String not defined in this specification.

11.7 Static Properties constructor

N11.7-1 [public static PersistenceManagerFactory

getPersistenceManagerFactory (Properties props);

This method returns an instance of PersistenceManagerFactory based on the prop-
erties in the parameter. It is used by JDOHelper to construct an instance of Persis-
tenceManagerFactory based on user-specified properties.

The following are standard key values for the Properties:

javax.jdo.PersistenceManagerFactoryClass

javax.jdo.option.Optimistic

javax.jdo.option.RetainValues

javax.jdo.option.RestoreValues

javax.jdo.option.IgnoreCache

javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.Multithreaded

javax.jdo.option.ConnectionUserName

javax.jdo.option.ConnectionPassword

javax.jdo.option.ConnectionURL

javax.jdo.option.ConnectionFactoryName

javax.jdo.option.ConnectionFactory2Name]

javax.jdo.option.Mapping

N11.7-2 [JDO implementations are permitted to define key values of their own. Any key
values not recognized by the implementation must be ignored.] N11.7-3 [Key values that
are recognized but not supported by an implementation must result in a JDOFata-
lUserException thrown by the method.]

N11.7-4 [The returned PersistenceManagerFactory is not configurable (the set-
XXX methods will throw an exception).] N11.7-5 [JDO implementations might manage a
map of instantiated PersistenceManagerFactory instances based on specified
 JDO 2.0 91 October 21, 2004

Java Data Objects 2.0
property key values, and return a previously instantiated PersistenceManagerFac-
tory instance. In this case, the properties of the returned instance must exactly match the
requested properties.]

11.8 Second-level cache management

Most JDO implementations allow instances to be cached in a second-level cache, and allow
direct management of the cache by knowledgeable applications. For the purpose of stan-
dardizing this behavior, the CacheManager interface is used.

package javax.jdo;

interface CacheManager {

void evict(Object pc);

void evictAll(Object[] pcs);

void evictAll(Collection pcs);

void evictAll(Class pcClass, boolean subclasses);

}

The evict methods are hints to the implementation that the referenced instances are stale
and should be evicted from the cache.

To obtain a reference to the cache manager, the getCacheManager() method of Per-
sistenceManagerFactory is used.

CacheManager getCacheManager();

If there is no second-level cache, the returned instance does nothing.
 JDO 2.0 92 October 21, 2004

Java Data Objects 2.0
12 PersistenceManager

This chapter specifies the JDO PersistenceManager and its relationship to the appli-
cation components, JDO instances, and J2EE Connector.

12.1 Overview

The JDO PersistenceManager is the primary interface for JDO-aware application
components. It is the factory for the Query interface and contains methods for managing
the life cycle of persistent instances.

The JDO PersistenceManager interface is architected to support a variety of environ-
ments and data sources, from small footprint embedded systems to large enterprise appli-
cation servers. It might be a layer on top of a standard Connector implementation such as
JDBC or JMS, or itself include connection management and distributed transaction sup-
port.

J2EE Connector support is optional . If it is not supported by a JDO implementation, then
a constructor for the JDO PersistenceManager or PersistenceManagerFactory
is required. The details of the construction of the PersistenceManager or Persis-
tenceManagerFactory are not specified by JDO.

12.2 Goals

The architecture of the PersistenceManager has the following goals:

• No changes to application programs to change to a different vendor’s
PersistenceManager if the application is written to conform to the portability
guidelines

• Application to non-managed and managed environments with no code changes

12.3 Architecture: JDO PersistenceManager

The JDO PersistenceManager instance is visible only to certain application compo-
nents: those that explicitly manage the life cycle of JDO instances; and those that query for
JDO instances. The JDO PersistenceManager is not required to be used by JDO in-
stances.

There are three primary environments in which the JDO PersistenceManager is ar-
chitected to work:

• non-managed (non-application server), minimum function, single transaction,
single JDO PersistenceManager where compactness is the primary metric;

• non-managed but where extended features are desired, such as multiple
PersistenceManager instances to support multiple data sources, XA
coordinated transactions, or nested transactions; and
 JDO 2.0 93 October 21, 2004

Java Data Objects 2.0
• managed, where the full range of capabilities of an application server is required.

Support for these three environments is accomplished by implementing transaction com-
pletion APIs on a companion JDO Transaction instance, which contains transaction
policy options and local transaction support.

12.4 Threading

A12.4-1 [It is a requirement for all JDO implementations to be thread-safe. That is, the be-
havior of the implementation must be predictable in the presence of multiple application
threads. This assertion will generate multiple test cases to be evaluated.] Operations implement-
ed by the PersistenceManager directly or indirectly via access or modification of per-
sistent or transactional fields of persistence-capable classes must be treated as if they were
serialized. The implementation is free to serialize internal data structures and thus order
multi-threaded operations in any way it chooses. The only application-visible behavior is
that operations might block indefinitely (but not infinitely) while other operations com-
plete.

Since synchronizing the PersistenceManager is a relatively expensive operation, and
not needed in many applications, the application must specify whether multiple threads
might access the same PersistenceManager or instances managed by the Persis-
tenceManager (persistent or transactional instances of persistence-capable classes; in-
stances of Transaction or Query; query results, etc.).

If applications depend on serializing operations, then the applications must implement the
appropriate synchronizing behavior, using instances visible to the application. This in-
cludes some instances of the JDO implementation (e.g. PersistenceManager, Query,
etc.) and instances of persistence-capable classes.

The implementation must not use user-visible instances (instances of PersistenceM-
anagerFactory, PersistenceManager, Transaction, Query, etc.) as synchroni-
zation objects, with one exception. N12.4-2 [The implementation must synchronize
instances of persistence-capable classes during state transitions that replace the StateM-
anager. This is to avoid race conditions where the application attempts to make the same
instance persistent in multiple PersistenceManagers.]

12.5 Class Loaders

JDO requires access to class instances in several situations where the class instance is not
provided explicitly. In these cases, the only information available to the implementation is
the name of the class.

To resolve class names to class instances, JDO implementations will use Class.forName
(String name, boolean initialize, ClassLoader loader) with up to
three loaders. The initialize parameter can be either true or false depending on the
implementation.

These loaders will be used in this order:

1. The loader that loaded the class or instance referred to in the API that caused this class
to be loaded.

• In case of query, this is the loader of the candidate class, or the loader of the object
passed to the newQuery method.
 JDO 2.0 94 October 21, 2004

Java Data Objects 2.0
• In case of navigation from a persistent instance, this is the loader of the class of the
instance.

• In the case of getExtentwith subclasses, this is the loader of the candidate class.

• In the case of getObjectById, this is the loader of the object id instance.

• Other cases do not have an explicit loader.

2. The loader returned in the current context by Thread.getContextClassLoad-
er().

3. The loader returned by Thread.getContextClassLoader() at the time of Per-
sistenceManagerFactory.getPersistenceManager(). N12.5-1 [This loader is
saved with the PersistenceManager] and N12.5-2 [cleared when the Persistence-
Manager is closed.]

12.6 Interface PersistenceManager

package javax.jdo;

interface PersistenceManager {

N12.6-1 [A JDO PersistenceManager instance supports any number of JDO instances
at a time.] It is responsible for managing the identity of its associated JDO instances. A JDO
instance is associated with either zero or one JDO PersistenceManager. A12.5-1 [It
will be zero if and only if the JDO instance is in the transient state.] A12.5-2 [As soon as the
instance is made persistent or transactional, it will be associated with exactly one JDO
PersistenceManager.]

A JDO PersistenceManager instance supports one transaction at a time, and uses one
connection to the underlying data source at a time. The JDO PersistenceManager in-
stance might use multiple transactions serially, and might use multiple connections serial-
ly.

Therefore, to support multiple concurrent connection-oriented data sources in an applica-
tion, multiple JDO PersistenceManager instances are required.

In this interface, for implementations that support BinaryCompatibility, JDO instances
passed as parameters and returned as values must implement PersistenceCapable.
The interface defines these formal parameters as Object because binary compatibility is
optional.

public interface javax.jdo.PersistenceManager {

boolean isClosed();

void close();

A12.5-3 [The isClosed method returns false upon construction of the Persis-
tenceManager instance], or A12.5-4 [upon retrieval of a PersistenceManager from
a pool]. A12.5-5 [It returns true only after the close method completes successfully, i.e.
the PersistenceManager has been closed. (same as A35-01).]. After being closed, the Persis-
tenceManager instance might be returned to the pool or garbage collected, at the choice
of the JDO implementation. Before being used again to satisfy a getPersistenceMan-
ager request, the options will be reset to their default values as specified in the Persis-
tenceManagerFactory.

N12.6-2 [In a non-managed environment, if the current transaction is active, close throws
JDOUserException.]
 JDO 2.0 95 October 21, 2004

Java Data Objects 2.0
A12.5-6 [After close completes, all methods on the PersistenceManager instance
except isClosed throw a JDOFatalUserException.]

Null management

In the APIs that follow, Object[] and Collection are permitted parameter types. As
these may contain nulls, the following rules apply.

Null arguments to APIs that take an Object parameter cause the API to have no effect.
Null arguments to APIs that take Object[] or Collectionwill cause the API to throw
NullPointerException. Non-null Object[] or Collection arguments that con-
tain null elements will have the documented behavior for non-null elements, and the
null elements will be ignored.

12.6.1 Cache management

Normally, cache management is automatic and transparent. When instances are queried,
navigated to, or modified, instantiation of instances and their fields and garbage collection
of unreferenced instances occurs without any explicit control. When the transaction in
which persistent instances are created, deleted, or modified completes, eviction is auto-
matically done by the transaction completion mechanisms. Therefore, eviction is not nor-
mally required to be done explicitly. However, if the application chooses to become more
involved in the management of the cache, several methods are available.

The non-parameter version of these methods applies the operation to each appropriate
JDO instance in the cache. For evictAll, these are all persistent-clean instances; for re-
freshAll, all persistent-nontransactional instances.

void evict (Object pc);

void evictAll ();

void evictAll (Object[] pcs);

void evictAll (Collection pcs);

Eviction is a hint to the PersistenceManager that the application no longer needs the
parameter instances in the cache. Eviction allows the parameter instances to be subse-
quently garbage collected. A12.5.1-1 [Evicted instances will not have their values retained
after transaction completion, regardless of the settings of the retainValues] or re-
storeValues [flags. They should be in the hollow state after transaction completion.]

A12.5.1-2 [If evictAll with no parameters is called, then all persistent-clean instances
are evicted] (they transition to hollow). A12.5.1-3 [If users wish to automatically evict
transactional instances at transaction commit time, then they should set RetainValues
to false.] N12.6.1-1 [Similarly, to automatically evict transactional instances at transac-
tion rollback time, then they should set RestoreValues to false.]A12.5-7 [Passing a
null value to PersistenceManager.evict will have no effect. A NullPointerException should NOT
be thrown.]A12.5-9 [Passing a null value to .evictAll will throw a NullPointerException.]A12.5-
11 [Passing a non-null Object[] or Collection arguments to evictAll that contain null elements will
have the documented behavior for non-null elements, and the null elements will be ig-
nored.]A12.5.1-4 [If PersistenceManager.evictAll is called with a Collection or Object[] parameter,
then all referenced instances are evicted. For each instance evicted, it:]

A12.5.1-2, A12.5.1-3, A12.5.1-4 [For each persistent-clean and persistent-nontransactional
instance that the JDO PersistenceManager evicts, it:

• calls the jdoPreClear method on each instance, if the class of the instance
implements InstanceCallbacks
 JDO 2.0 96 October 21, 2004

Java Data Objects 2.0
• clears persistent fields on each instance (sets the value of the field to its Java default
value);

• changes the state of instances to hollow or persistent-nontransactional (cannot
distinguish between these two states) this is not directly testable..]

void refresh (Object pc);

void refreshAll ();

void refreshAll (Object[] pcs);

void refreshAll (Collection pcs);

void refreshAll (JDOException ex);

A12.5.1-5 [The refresh and refreshAll method updates the values in the parameter in-
stance[s] from the data in the datastore. The intended use is for optimistic transactions
where the state of the JDO instance is not guaranteed to reflect the state in the datastore,
and for datastore transactions to undo the changes to a specific set of instances instead of
rolling back the entire transaction. This method can be used to minimize the occurrence of
commit failures due to mismatch between the state of cached instances and the state of
data in the datastore.This can be tested by using 2 PersistenceManagers, independently change
an object, then refresh.]

A12.5.1-6 [The refreshAll method with no parameters causes all transactional instanc-
es to be refreshed. If a transaction is not in progress, then this call has no effect.

Note that this method will cause loss of changes made to affected instances by the appli-
cation due to refreshing the contents from the datastore.]

When used with the JDOException parameter, the JDO PersistenceManager re-
freshes all instances in the exception, including instances in nested exceptions, that failed
verification. Updated and unchanged instances that failed verification are reloaded from
the datastore. Datastore instances corresponding to new instances that failed due to dupli-
cate key are loaded from the datastore. A12.5-8 [Passing a null value to PersistenceMan-
ager.REFRESH will have no effect. A NullPointerException should NOT be thrown.]A12.5-10
[Passing a null value to .refreshAll will throw a NullPointerException.]A12.5-12 [Passing a non-
null Object[] or Collection arguments to refreshAll that contain null elements will have the docu-
mented behavior for non-null elements, and the null elements will be ignored.]

A12.5.1-6 [The JDO PersistenceManager:

• loads persistent values from the datastore into the instance;

• calls the jdoPostLoad method on each persistent instance, if the class of the
instance implements InstanceCallbacks; and

• changes the state of persistent-dirty instances to persistent-clean] in a datastore
transaction; or persistent-nontransactional in an optimistic transaction.

void retrieve(Object pc);

void retrieveAll(Collection pcs);

void retrieveAll(Collection pcs, boolean DFGOnly);

void retrieveAll(Object[] pcs);

void retrieveAll(Object[] pcs, boolean DFGOnly);

These methods request the PersistenceManager to load all persistent fields into the
parameter instances. Subsequent to this call, the application might call makeTransient
on the parameter instances, and the fields can no longer be touched by the Persis-
 JDO 2.0 97 October 21, 2004

Java Data Objects 2.0
tenceManager. The PersistenceManager might also retrieve related instances ac-
cording to a pre-read policy (not specified by JDO).

If the DFGOnly parameter is true, then this is a hint to the implementation that only the
fields in the default fetch group need to be retrieved. A compliant implementation is per-
mitted to retrieve all fields regardless of the setting of this parameter. After the call with
the DFGOnly parameter true, all default fetch group fields have been fetched, but other
fields might be fetched lazily by the implementation.

The JDO PersistenceManager:

• N12.6.1-2 [loads persistent values from the datastore into the instance;]

• N12.6.1-3 [for hollow instances, changes the state to persistent-clean in a datastore
transaction;] or N12.6.1-4 [persistent-nontransactional in an optimistic
transaction,] and N12.6.1-5 [if the class of the instance implements
InstanceCallbacks calls jdoPostLoad.]

12.6.2 Transaction factory interface

Transaction currentTransaction();

A12.5.2-1 [The currentTransaction method returns the Transaction instance as-
sociated with the PersistenceManager.] A12.5.2-2 [The identical Transaction in-
stance will be returned by all currentTransaction calls to the same
PersistenceManager until close.] Note that multiple transactions can be begun and
completed (serially) with this same instance.

A12.5.2-3 [Even if the Transaction instance returned cannot be used for transaction
completion (due to external transaction management), it still can be used to set flags.]

12.6.3 Query factory interface

The query factory methods are detailed in the Query chapter .

void setIgnoreCache (boolean flag);

boolean getIgnoreCache ();

These methods get and set the value of the IgnoreCache option for all Query instances
created by this PersistenceManager [see Query options]. A12.5.3-1 [The Persistence-
Manager.getIgnoreCache method returns the current value of the IgnoreCache option.] A12.5.3-2
[The IgnoreCache option if set to true, is a hint to the query engine that the user ex-
pects queries to be optimized to return approximate results by ignoring changed values in
the cache. This is not testable, except to see whether the get/set works.] A12.5.3-3 [The Persistence-
Manager.setIgnoreCache method called with a value of false instructs the query engine that the user
expects queries to return results that reflect changed values in the cache.]

The IgnoreCache option also affects the iterator obtained from Extent instances ob-
tained from this PersistenceManager.

The IgnoreCache option is preserved for query instances constructed from other query
instances.

12.6.4 Extent Management

Extents are collections of datastore objects managed by the datastore, not by explicit user
operations on collections. Extent capability is a boolean property of persistence capable
classes and interfaces. A12.5.4-1 [If an instance of a class or interface that has a managed
extent is made persistent via reachability, the instance is put into the extent implicitly.] If
 JDO 2.0 98 October 21, 2004

Java Data Objects 2.0
an instance of a class that implements an interface that has a managed extent is made per-
sistent, then that instance is put into the interface’s extent.

Extent getExtent (Class persistenceCapable, boolean subclass-
es);

Extent getExtent (Class persistenceCapable);

A12.5.4-2, A12.5.4-3 [The getExtent method returns an Extent that contains all of the
instances in the parameter class or interface, and if the subclasses flag is true, all of the
instances of the parameter class and its subclasses.] The method with no subclasses param-
eter is treated as equivalent to getExtent (persistenceCapable, true).

N12.6.4-1 [If the metadata does not indicate via the requires-extent attribute in the
class or interface element that an extent is managed for the parameter class or inter-
face, then JDOUserException is thrown.] The extent might not include instances of
those subclasses for which the metadata indicates that an extent is not managed for the
subclass.

N12.6.4-2 [This method can be called whether or not a transaction is active, regardless of
whether NontransactionalRead is supported.] N12.6.4-3 [If Nontransactional-
Read is not supported, then the iterator method will throw a JDOUnsupportedOp-
tionException if called outside a transaction.]

It might be a common usage to iterate over the contents of the Extent, and the Extent
should be implemented in such a way as to avoid out-of-memory conditions on iteration.

The primary use for the Extent returned as a result of this method is as a candidate col-
lection parameter to a Query instance. For this usage, the elements in the Extent typical-
ly will not be instantiated in the Java VM; it is used only to identify the prospective
datastore instances.

Extents of interfaces

If the Class parameter of the getExtent method is an interface, then the interface must
be identified in the metadata as having its extent managed.

A12.5.5-1 [Text removed?] A12.5.5-2 [Text removed?] A12.5.5-3 [Text removed?] A12.5.5-
4 [Text removed?]

12.6.5 JDO Identity management

Object getObjectById (Object oid, boolean validate);

The getObjectByIdmethod attempts to find an instance in the cache with the specified
JDO identity. The oid parameter object might have been returned by an earlier call to ge-
tObjectId or getTransactionalObjectId, or might have been constructed by the
application.

A12.5.6-1 [If the PersistenceManager is unable to resolve the oid parameter to an
ObjectId instance, then it throws a JDOUserException.] This might occur if the im-
plementation does not support application identity, and the parameter is an instance of an
object identity class.

• If the validate flag is false:

• A12.5.6-2 [If there is already an instance in the cache with the same JDO identity
as the oid parameter, then this method returns it.] A12.5.6-3 [There is no change
made to the state of the returned instance.]
 JDO 2.0 99 October 21, 2004

Java Data Objects 2.0
• A12.5.6-4 [If there is not an instance already in the cache with the same JDO
identity as the oid parameter, then this method creates an instance with the
specified JDO identity and returns it. If there is no transaction in progress, the
returned instance will be hollow or persistent-nontransactional, at the choice of
the implementation.]

• A12.5.6-5 [If there is a transaction in progress, the returned instance will be
hollow, persistent-nontransactional, or persistent-clean, at the choice of the
implementation.]

• It is an implementation decision whether to access the datastore, if required to
determine the exact class. This will be the case of inheritance, where multiple
persistence-capable classes share the same Object Id class.

• N12.6.5-1 [If the instance does not exist in the datastore, then this method might
not fail. It is an implementation choice if the method fails immediately with a
JDOObjectNotFoundException.] But A12.5.6-6 [a subsequent access of the
fields of the instance will throw a JDOObjectNotFoundException if the
instance does not exist at that time.] Further, if a relationship is established to this
instance, and the instance does not exist when the instance is flushed to the
datastore, then the transaction in which the association was made will fail.

• If the validate flag is true:

• A12.5.6-7 [If there is already a transactional instance in the cache with the same
jdo identity as the oid parameter, then this method returns it. There is no change
made to the state of the returned instance.]

• A12.5.6-8 [If there is an instance already in the cache with the same jdo identity as
the oid parameter, the instance is not transactional, and the instance does not exist
in the datastore, then a JDOObjectNotFoundException is thrown.]

• A12.5.6-9 [If there is not an instance already in the cache with the same jdo identity
as the oid parameter, then this method creates an instance with the specified jdo
identity, verifies that it exists in the datastore, and returns it. N12.6.5-2 [If the
instance does not exist in the datastore, then a
JDOObjectNotFoundException is thrown.]

• If there is no transaction in progress, the returned instance will be hollow or
persistent-nontransactional, at the choice of the implementation.

• If there is a datastore transaction in progress, the returned instance will be
persistent-clean.

• If there is an optimistic transaction in progress, the returned instance will be
persistent-nontransactional.]

Object getObjectId (Object pc);

A12.5.6-10 [The getObjectId method returns an ObjectId instance that represents
the object identity of the specified JDO instance. Test: The method getObjectById returns the
exact same object, evaluating to true when == is used.]The identity is guaranteed to be unique
only in the context of the JDO PersistenceManager that created the identity, and only
for two types of JDO Identity: those that are managed by the application, and those that
are managed by the datastore.

A12.5.6-11 [If the object identity is being changed in the transaction, by the application
modifying one or more of the application key fields, then this method returns the identity
as of the beginning of the transaction. The value returned by getObjectId will be dif-
ferent following afterCompletion processing for successful transactions.]

A12.5.6-12 [Within a transaction, the ObjectId returned will compare equal to the Ob-
jectId returned by only one among all JDO instances associated with the Persis-
tenceManager regardless of the type of ObjectId.]
 JDO 2.0 100 October 21, 2004

Java Data Objects 2.0
The ObjectId does not necessarily contain any internal state of the instance, nor is it nec-
essarily an instance of the class used to manage identity internally. Therefore, 12.5.6-13 [if
the application makes a change to the ObjectId instance returned by this method, there
is no effect on the instance from which the ObjectId was obtained.]

The getObjectById method can be used between instances of PersistenceMan-
ager of different JDO vendors only for instances of persistence capable classes using ap-
plication-managed (primary key) JDO identity. If it is used for instances of classes using
datastore identity, the method might succeed, but there are no guarantees that the param-
eter and return instances are related in any way.

A12.5.6-14 [If the parameter pc is not persistent, or is null, then null is returned.]

Object getTransactionalObjectId (Object pc);

A12.5.6-15 [If the object identity is being changed in the transaction, by the application
modifying one or more of the application key fields, then this method returns the current
identity in the transaction.] 12.5.6-16 [If there is no transaction in progress, or if none of the
key fields is being modified, then this method has the same behavior as getObjectId.]

To get an instance in a PersistenceManager with the same identity as an instance
from a different PersistenceManager, use the following: aPersistenceMan-
ager.getObjectById(JDOHelper.getObjectId(pc), validate). The val-
idate parameter has a value of true or false depending on your application
requirements.

Getting Multiple Persistent Instances

Collection getObjectsById (Collection oids, boolean validate);

Object[] getObjectsById (Object[] oids, boolean validate);

The getObjectsById method attempts to find instances in the cache with the specified
JDO identities. The elements of the oids parameter object might have been returned by
earlier calls to getObjectId or getTransactionalObjectId, or might have been
constructed by the application.

If the Object[] form of the method is used, the returned objects correspond by position
with the object ids in the oids parameter. If the Collection form of the method is used,
the iterator over the returned Collection returns instances in the same order as the oids
returned by an iterator over the parameterCollection. The cardinality of the return val-
ue is the same as the cardinality of the oids parameter.

12.6.6 Persistent interface factory

The following method is used to create an instance of a persistence-capable interface or ab-
stract class.

void newInstance(Class persistenceCapable);

The parameter must be an abstract class that is declared in the metadata using the class
element, or an interface that is declared in the metadata using the interface element.
The returned instance is transient.

Applications might use the instance via the get and set property methods and change its
life cycle state as if it were an instance of a persistence-capable class.

12.6.7 JDO Instance life cycle management

The following methods take either a single instance or multiple instances as parameters.
 JDO 2.0 101 October 21, 2004

Java Data Objects 2.0
12.5.7-1, 12.5.7-2, 12.5.7-3, 12.5.7-4, 12.5.7-5 [If a collection or array of instances is passed to
any of the methods in this section, and one or more of the instances fail to complete the
required operation, then all instances will be attempted, and a JDOUserException will
be thrown which contains a nested exception array, each exception of which contains one
of the failing instances. The succeeding instances will transition to the specified life cycle
state, and the failing instances will remain in their current state.]

Make instances persistent

void makePersistent (Object pc);

void makePersistentAll (Object[] pcs);

void makePersistentAll (Collection pcs);

A12.5.7-6A [These methods make a transient instance persistent directly. They must be
called in the context of an active transaction, or a JDOUserException is thrown.]
A12.5.7-6B [They will assign an object identity to the instance and transition it to persis-
tent-new.] Any transient instances reachable from this instance via persistent fields of this
instance will become provisionally persistent, transitively. That is, they behave as persis-
tent-new instances (return true to isPersistent, isNew, and isDirty). But A12.5.7-
6C [at commit time, the reachability algorithm is run again, and instances made provision-
ally persistent that are not currently reachable from persistent instances will revert to tran-
sient.]

A12.5.7-7 [These methods have no effect on parameter persistent instances already man-
aged by this PersistenceManager.] A12.5.7-8 [They will throw a JDOUserExcep-
tion if the parameter instance is managed by a different PersistenceManager.]

N12.6.7-1 [If an instance is of a class whose identity type (application, datastore, or
none) is not supported by the JDO implementation, then a JDOUserException will be
thrown for that instance.]

Delete persistent instances

void deletePersistent (Object pc);

void deletePersistentAll (Object[] pcs);

void deletePersistentAll (Collection pcs);

A12.5.7-9 [These methods delete persistent instances from the datastore. They must be
called in the context of an active transaction, or a JDOUserException is thrown. The
representation in the datastore will be deleted when this instance is flushed to the data-
store (via commit or evict).]

Note that this behavior is not exactly the inverse of makePersistent, due to the transi-
tive nature of makePersistent. The implementation might delete dependent datastore
objects depending on implementation-specific policy options that are not covered by the
JDO specification. However, if a field is marked as containing a dependent reference, the
dependent instance is deleted as well.

A12.5.7-10 [These methods have no effect on parameter instances already deleted in the
transaction] or on embedded instances. Embedded instances are deleted when their own-
ing instance is deleted.

If deleting an instance would violate datastore integrity constraints, it is implementation-
defined whether an exception is thrown at commit time, or the delete operation is simply
ignored. Portable applications should use this method to delete instances from the data-
store, and not depend on any reachability algorithm to automatically delete instances.
 JDO 2.0 102 October 21, 2004

Java Data Objects 2.0
A12.5.7-11 [These methods will throw a JDOUserException if the parameter instance
is managed by a different PersistenceManager.]A12.5.7-12 [These methods will
throw a JDOUserException if the parameter instance is transient.]

Make instances transient

void makeTransient (Object pc);

void makeTransientAll (Object[] pcs);

void makeTransientAll (Collection pcs);

A12.5.7-13 [These methods make persistent instances transient, so they are no longer asso-
ciated with the PersistenceManager instance. They do not affect the persistent state
in the datastore.] They can be used as part of a sequence of operations to move a persistent
instance to another PersistenceManager. A12.5.7-14 [The instance transitions to tran-
sient, and it loses its JDO identity.] A12.5.7-15 [If the instance has state (persistent-non-
transactional or persistent-clean) the state in the cache is preserved unchanged.] A12.5.7-
16 [If the instance is dirty, a JDOUserException is thrown.]

A12.5.7-17 [The effect of these methods is immediate and not subject to rollback.] A12.5.7-
18 [Field values in the instances are not modified.] To avoid having the instances become
persistent by reachability at commit, the application should update all persistent instances
containing references to the parameter instances to avoid referring to them, or make the
referring instances transient.

A12.5.7-19 [These methods will be ignored if the instance is transient.]

Make instances transactional

void makeTransactional (Object pc);

void makeTransactionalAll (Object[] pcs);

void makeTransactionalAll (Collection pcs);

A12.5.7-20 [These methods make transient instances transactional and cause a state transi-
tion to transient-clean. After the method completes, the instance observes transaction
boundaries.] A12.5.7-21 [If the transaction in which this instance is made transactional
commits, then the transient instance retains its values.] A12.5.7-22 [If the transaction is
rolled back, then the transient instance takes its values as of the call to makeTransac-
tional if the call was made within the current transaction]; or A12.5.7-23 [the beginning
of the transaction, if the call was made prior to the beginning of the current transaction.]

N12.6.7-2 [If the implementation does not support TransientTransactional, and
the parameter instance is transient, then JDOUnsupportedOptionException is
thrown.]

A12.5.7-24 [These methods are also used to mark a nontransactional persistent instance as
being part of the read-consistency set of the transaction. In this case, the call must be made
in the context of an active transaction, or a JDOUserException is thrown. To test this...
Get an instance in the persistence-nontransactional state, make it transactional, then in a different
transaction commit a change to the instance. An exception should then be thrown when the first
transaction commits.]

A12.5.7-25 [The effect of these methods is immediate and not subject to rollback.]

Make instances nontransactional

void makeNontransactional (Object pc);

void makeNontransactionalAll (Object[] pcs);
 JDO 2.0 103 October 21, 2004

Java Data Objects 2.0
void makeNontransactionalAll (Collection pcs);

A12.5.7-26 [These methods make transient-clean instances nontransactional and cause a
state transition to transient. After the method completes, the instance does not observe
transaction boundaries.]

A12.5.7-27 [These methods make persistent-clean instances nontransactional and cause a
state transition to persistent-nontransactional.]

A12.5.7-28 [If this method is called with a dirty parameter instance, a JDOUserExcep-
tion is thrown.]

A12.5.7-29 [The effect of these methods is immediate and not subject to rollback.]

12.6.8 Detaching and attaching instances

These methods provide a way for an application to identify persistent instances, obtain
copies of these persistent instances, modify the detached instances either in the same JVM
or in a different JVM, apply the changes to the same or different PersistenceManager,
and commit the changes.

Detaching instances

Object detachCopy(Object pc);

Collection detachCopyAll(Collection pcs);

Object[] detachCopyAll(Object[] pcs);

This method makes detached copies of the parameter instances and returns the copies as
the result of the method. The order of instances in the parameter Collection’s iteration
corresponds to the order of corresponding instances in the returned Collection’s itera-
tion.

The parameter Collection of instances is first made persistent, and the reachability al-
gorithm is run on the instances. This ensures that the closure of all of the instances in the
the parameter Collection is persistent.

For each instance in the parameter Collection, a corresponding detached copy is creat-
ed. Each field in the persistent instance is handled based on its type and whether the field
is contained in the fetch group for the persistence-capable class. If there are duplicates in
the parameter Collection, the corresponding detached copy is used for each such du-
plicate.

Instances in the persistent-new and persistent-dirty state are updated with their object
identity and version (as if they had been flushed to the datastore prior to copying their
state). This ensures that the object identity and version (if any) is properly set prior to cre-
ating the copy. The transaction in which the flush is performed is assumed to commit; if
the transaction rolls back, then the detached instances become invalid (they no longer refer
to the correct version of the datastore instances). This situation will be detected at the sub-
sequent attempt to attach the detached instances.

If instances in the persistent-deleted state are attempted to be detached, a JDOUserEx-
ception is thrown with nested JDOUserExceptions, one for each such instance.

The FetchPlan in effect in the PersistenceManager specifies the fields to be fetched
in the closure of the persistent instances. All fields outside the FetchPlan in the detached
instances are set to the Java language default value for the type of the field.

Fields in the FetchPlan of primitive and wrapper types are set to their values from the
datastore. Fields of references to persistence-capable types are set to the detached copy
corresponding to the persistent instance. Fields of Collections and Maps are set to de-
 JDO 2.0 104 October 21, 2004

Java Data Objects 2.0
tached SCO instances containing references to detached copies corresponding to persistent
instances in the datastore.

While detached, any field access to a field that was not fetched throws JDODetached-
FieldAccessException.

The result of the detachCopyAll method is a Collection or array of detached instanc-
es whose closure contains copies of detached instances. Among the closure of detached in-
stances there are no references to persistent instances; all such references from the
persistent instances have been replaced by the corresponding detached instance.

Each detached instance has a persistent identity that can be obtained via the static
JDOHelper method getObjectId(Object pc). The version of detached instances can
be obtained by the static JDOHelper method getVersion(Object pc).

Each detached instance must be of a class identified in the JDO metadata as detachable.

There might or might not be a transaction active when the detachCopy method is called.

Attaching instances

Object attachCopy(Object detached, boolean makeTransactional);

Collection attachCopyAll(Collection detached, boolean makeTransac-
tional);

Object[] attachCopyAll(Object[] detached, boolean makeTransaction-
al);

This method applies the changes contained in the collection of detached instances to the
corresponding persistent instances in the cache and returns a collection of persistent in-
stances that exactly corresponds to the parameter instances. The order of instances in the
parameter Collection’s iteration corresponds to the order of corresponding instances in
the returned Collection’s iteration.

Changes made to instances while detached are applied to the corresponding persistent in-
stances in the cache. New instances associated with the detached instances are added to
the persistent instances in the corresponding place.

During application of changes, if the JDO implementation can determine that there were
no changes made during detachment, then the implementation is not required to mark the
corresponding instance dirty. If it cannot determine if changes were made, then it must
mark the instance dirty.

The makeTransactional flag, if set to true, requires the implementation to mark trans-
actional the persistent instances corresponding to all instances in the closure of the de-
tached graph.

No consistency checking is done during attachment. If consistency checking is required by
the application, then flush or checkConsistency should be called after attaching the in-
stances.

12.7 Fetch Groups

A fetch group defines a particular loaded state for an object graph. It specifies fields to be
loaded for all of the instances in the graph. For detachCopy the implementation must en-
sure that the graph specified by the active fetch groups is copied and only the fields in the
fetch groups are loaded into the instances. For refresh and retrieve the implementa-
tion must ensure that only the graph specified by the active fetch groups is refreshed or
retrieved, respectively. In other situations (e.g. executing a Query or navigating a refer-
 JDO 2.0 105 October 21, 2004

Java Data Objects 2.0
ence) the implementation may use this information to reduce the number of round trips to
the datastore but is not required to do so, i.e. fetch groups are a hint to the implementation
to prefetch data.

Fetch groups are identified by name and associated with a class. Names have global scope
so the same fetch group name can be used for different classes. This makes it possible to
specify active fetch groups per PersistenceManager instead of per extent. This greatly
simplifies the use of fetch groups in an application.

The default fetch group (named "default") for each class is created by the implementa-
tion according to rules in the JDO 1.0.1 specification. It may also be defined in the metadata
like any other fetch group to make use of JDO 2 features.

The implementation must also define three other fetch groups for each class named "all",
"values", and "none". The "all" group contains all fields in the class. The "values"
group contains all fields that are included in the default fetch group by default (primitives,
wrappers, String, Date etc.). The "none" fetch group contains only primary key fields.
If the metadata changes the default fetch group, then the values group is not changed.
The "values" group may also be redefined in the meta data, for example to exclude a large
String field mapped to a CLOB column.

FetchPlan getFetchPlan();

This method retrieves the fetch plan associated with the PersistenceManager. It al-
ways returns the identical instance for the same PersistenceManager.

12.7.1 The FetchPlan interface

Fetch groups are activated using methods on the interface FetchPlan. PersistenceM-
anager, Query, and Extent have getFetchPlan() methods. When a Query or Ex-
tent is retrieved from a PersistenceManager, its FetchPlan is initialized to the same
settings as that of the PersistenceManager. Subsequent modifications of the Query or
Extent's FetchPlan are not reflected in the FetchPlan of the PersistenceManager.

Mutating FetchPlanmethods return the FetchPlan instance to allow method chaining.

package javax.jdo;

interface FetchPlan {

String DEFAULT = “default”;

String ALL = “all”;

String VALUES = “values”;

String NONE = “none”;

/** Add the fetchgroup to the set of active fetch groups. */

FetchPlan addGroup(String fetchGroupName);

/** Remove the fetch group from the set active fetch groups. */

FetchPlan removeGroup(String fetchGroupName);

/** Remove all active groups and activate the default fetch group.
*/

FetchPlan resetGroups();

/** Return the names of all active fetch groups. */

Collection getGroups();

/** Set a collection of groups. */

FetchPlan setGroups(Collection fetchGroupNames);
 JDO 2.0 106 October 21, 2004

Java Data Objects 2.0
/** Set the fetch size for large result set support. Use 0 to unset.
*/

FetchPlan setFetchSize(int fetchSize);

/** Return the fetch size, or 0 if not set. */

int getFetchSize();

The getGroups method returns a collection of names instead of a FetchGroup interface
as a FetchGroup instance would have to be associated with a particular class. After a call
to resetGroups() this method returns a collection containing "default". It is legal to
remove the default fetch group explicitly via pm.getFetchPlan().remove-
Group("default"), or to use setGroups() with a collection that does not contain
"default". This makes it possible to have only a given fetch group active without the de-
fault fetch group. If no fetch groups are active then a collection with no elements is re-
turned and the implementation may decide to leave instances hollow that it would
otherwise have filled.

Note that the graph and fields specified by a FetchPlan is strictly the union of all the ac-
tive fetch groups not based on any complicated set mathematics. So, if a field f1 is in fetch
groups A and B, and both A and B are added to the FetchPlan,and subsequently B is
removed from the active fetch groups and the instance is loaded, then the field f1 will be
loaded, because it is in fetch group A.

Examples:

pm = pmf.getPersistenceManager();

FetchPlan fp = pm.getFetchPlan();

fp.addGroup("detail").addGroup("list");

// prints [default, detail, list]

System.out.println(pm.getGroups());

// refreshes fields in any of default+detail+list

pm.refresh(anInstance);

fp.resetGroups();

// prints [default]

System.out.println(pm.getGroups());

pm.refresh(anInstance); // refreshes fields in default only

fp.removeGroup("default");

// prints []

System.out.println(pm.getActiveNames());

fp.addGroup("list");

// prints [list]

System.out.println(pm.getActiveNames());

// refreshes fields in list only

pm.refresh(anInstance);
 JDO 2.0 107 October 21, 2004

Java Data Objects 2.0
When an instance is loaded using getObjectById , a Query is executed, or an Extent
is iterated the implementation may choose to use the active fetch groups to prefetch data.
If an instance being loaded does not have a fetch group with the same name as any of the
active groups, and the semantics of the method allow returning a hollow instance, then it
may be loaded as hollow. If it has more than one of the active groups then the union of
fields in all active groups is used.

Instances loaded through field navigation behave in the same way as for getObjectById
except that an additional fetch group may be specified for the field in the metadata using
the new "load-fetch-group" attribute. If present the load-fetch-group is considered ac-
tive just for the loading of the field. This can be used to load several fields together when
one of them is touched. The field touched is loaded even if it is not in the load-fetch-group.

For the refresh and retrieve methods, the implementation must ensure that only the
graph specified by the active fetch groups is refreshed or retrieved; i.e. these operations
will recursively refresh or retrieve the instances and fields in the graph covered by the ac-
tive fetch groups. The refreshed or retrieved graph must not contain extra instances but ex-
tra fields may be refreshed for an instance in the graph.

Note that the implementation may always choose to ignore fetch group hints except for
detachCopy, refresh, and retrieve.

12.7.2 Defining fetch groups

Fetch groups are only defined in the metadata for a class. We may decide to add an API to
create fetch groups at runtime in future.

<!ELEMENT fetch-group (fetch-group|field)*>

<!ATTLIST fetch-group name CDATA #REQUIRED>

<!ATTLIST fetch-group post-load (true|false) #IMPLIED>

<!ATTLIST field fetch-group CDATA #IMPLIED>

<!ATTLIST field depth CDATA #IMPLIED>

The post-load attribute on the fetch-group element indicates whether the jdoPost-
Load callback will be made when the fetch group is loaded. It defaults to false, for all
fetch groups except the default fetch group, on which it defaults to true.

The name attribute on a field element contained within a fetch-group element is the
name of field in the enclosing class or a dot-separated expression identifying a field reach-
able from the class by navigating a reference, collection or map. For maps of persistence-
capable classes "#key" or "#value" may be appended to the name of the map field to navi-
gate the key or value respectively (e.g. to include a field of the key class or value class in
the fetch group).

For collection and arrays of persistence-capable classes, "#element" may be appended to
the name of the field to navigate the element. This is optional; if omitted for collections and
arrays, #element is assumed.

Recursive fetch group references are controlled by the depth attribute. A depth of 0 (the
default) will fetch the whole graph of instances reachable from this field.

The fetch-group attribute on field is used to specify the name of the fetch group to load
when including reference, collection and map fields in a fetch group. If not specified then
a fetch group with the same name as the fetch group being defined is loaded. If the refer-
enced class has no fetch group with that name its default fetch group is loaded.
 JDO 2.0 108 October 21, 2004

Java Data Objects 2.0
A contained fetch-group element indicates that the named group is to be included in
the group being defined. Nested fetch group elements are limited to only the name at-
tribute. It is not permitted to nest entire fetch group definitions. If there are two definitions
for a reference, collection or map field (due to fetch groups including other fetch groups)
then the union of the fetch groups involved is used. If one or more depths have been spec-
ified then the largest depth is used unless one of the depths has not been specified (unlim-
ited overrides other depth specifications).

public class Person {

 private String name;

 private Address address;

 private Set children;

}

public class Address {

 private String street;

 private String city;

 private Country country;

}

public class Country {

 private String code;

 private String name;

}

<class name="Person" ...>

...

 <!-- name + address + country code -->

 <fetch-group name="detail">

 <fetch-group name="default"/>

 <field name="address"/>

 <field name="address.country.code"/>

 </fetch-group>

 <!-- name + address + country code + same for children -->

 <fetch-group name="detail+children">

 <fetch-group name="detail"/>

 <field name="children" depth="1"/>

 </fetch-group>

 <!-- name + address + country code + names of children -->
 JDO 2.0 109 October 21, 2004

Java Data Objects 2.0
 <fetch-group name="detail+children-names">

 <fetch-group name="detail"/>

 <field name="children#element.name"/>

 </fetch-group>

 <!-- name + address + country code + list fg of children -->

 <fetch-group name="detail+children-list">

 <fetch-group name="detail"/>

 <field name="children" fetch-group="list"/>

 </fetch-group>

</class>

Here is a map example:

public class Node {

 private String name;

 private Map edges; // Node -> EdgeWeight

}

public class EdgeWeight {

 private int weight;

}

<class name="Node" ...>

 ...

 <fetch-group name="neighbour-weights">

 <field name="edges#key.name"/>

 <field name="edges#value"/>

 </fetch-group>

 <fetch-group name="neighbours">

 <field name="edges" depth="1"/>

 </fetch-group>

 <fetch-group name="whole-graph">

 <field name="edges"/>

 </fetch-group>

</class>
 JDO 2.0 110 October 21, 2004

Java Data Objects 2.0
12.8 Flushing instances

void flush();

This method flushes all dirty, new, and deleted instances to the datastore. It has no effect
if a transaction is not active.

If a datastore transaction is active, this method synchronizes the cache with the datastore
and reports any exceptions.

If an optimistic transaction is active, this method obtains a datastore connection and syn-
chronizes the cache with the datastore using this connection. The connection obtained by
this method is held until the end of the transaction.

void checkConsistency();

This method validates the cache with the datastore. It has no effect if a transaction is not
active.

If a datastore transaction is active, this method verifies the consistency of instances in the
cache against the datastore. An implementation might flush instances as if flush() were
called, but it is not required to do so.

If an optimistic transaction is active, this method obtains a datastore connection and veri-
fies the consistency of the instances in the cache against the datastore. If any inconsisten-
cies are detected, a JDOOptimisticVerificationException is thrown. This
exception contains a nested JDOOptimisticVerificationException for each object
that failed the consistency check. No datastore resources acquired during the execution of
this method are held beyond the scope of this method.

12.9 Transaction completion

Transaction completion management is delegated to the associated Transaction in-
stance .

12.10 Multithreaded Synchronization

The application might require the PersistenceManager to synchronize internally to
avoid corruption of data structures due to multiple application threads. This synchroniza-
tion is not required when the flag Multithreaded is set to false.

void setMultithreaded (boolean flag);

boolean getMultithreaded();

NOTE: When the Multithreaded flag is set to true, there is a synchronization issue
with jdoFlags values READ_OK and READ_WRITE_OK. Due to out-of-order memory
writes, there is a chance that a value for a field in the default fetch group might be incorrect
(stale) when accessed by a thread that has not synchronized with the thread that set the
jdoFlags value. Therefore, it is recommended that a JDO implementation not use
READ_OK or READ_WRITE_OK for jdoFlags if Multithreaded is set to true.

The application may choose to perform its own synchronization, and indicate this to the
implementation by setting the Multithreaded flag to false. In this case, the JDO im-
plementation is not required to implement any additional synchronizations, although it is
permitted to do so.
 JDO 2.0 111 October 21, 2004

Java Data Objects 2.0
A12.7-1 [If PersistenceManager.setMultithreaded is called with a value of true, then the JDO im-
plementation must perform synchronizations to support multiple application threads. A value of
true will be returned when getMultithreaded is called. In testing, multi-threading should be
turned on and then multi-threading tests should be run..]

A12.7-2 [If PersistenceManager.setMultithreaded is called with a value of false, a value of false will
be returned when getMultithreaded is called.]

12.11 User associated objects

The application might manage PersistenceManager instances by using an associated
object for bookkeeping purposes. These methods allow the user to manage the associated
object.

void setUserObject (Object o);

Object getUserObject ();

The parameter is not inspected or used in any way by the JDO implementation.

A12.8-1 [The PersistenceManager.setUserObject method is used to store an object associated with
the PersistenceManager. One uses the method getUserObject to later retrieve the object.]

For applications where multiple users need to access their own user objects, the following
methods allow user objects to be stored and retrieved by key. The values are not examined
by the PersistenceManager.

There are no restrictions on values. Keys must not be null. For proper behavior, the keys
must be immutable (e.g. java.lang.String, java.lang.Integer, etc.) or the keys’
identity (to the extent that it modifies the behavior of equals and hashCode methods) must
not change while a user object is associated with the key. This behavior is not enforced by
the PersistenceManager.

Object putUserObject(Object key, Object value);

This method models the put method of Map. The current value associated with the key is
returned and replaced by the parameter value. If the parameter value is null, the imple-
mentation may remove the entry from the table of managed key/value pairs.

Object removeUserObject(Object key);

This method models the remove method of Map. The current value associated with the
key is returned and removed.

Object getUserObject(Object key);

This method models the get method of Map. The current value associated with the key is
returned. If the key is not found in the table, null is returned.

12.12 PersistenceManagerFactory

N12.10-1 [The application might need to get the PersistenceManagerFactory that
created this PersistenceManager. If the PersistenceManager was created using
a constructor, then this call returns null.]

PersistenceManagerFactory getPersistenceManagerFactory();

A12.9-1 [The PersistenceManagerFactory that created a PersistenceManageris returned by the
method getPersistenceManagerFactory.]
 JDO 2.0 112 October 21, 2004

Java Data Objects 2.0
12.13 ObjectId class management

In order for the application to construct instances of the ObjectId class, there is a method
that returns the ObjectId class given the persistence capable class.

Class getObjectIdClass (Class pcClass);

A12.10-1 [This method returns the class of the object id for the given class.] This method
returns the class specified by the application for persistence capable classes that use appli-
cation (primary key) JDO identity. It returns the implementation-defined class for persis-
tence-capable classes that use datastore identity. If the parameter class is not persistence-
capable, or the parameter is null, null is returned. If the object-id class defined in the
metadata for the parameter class is abstract then null is returned.A12.10-2 [a call to Persis-
tenceManager.getObjectIdClass returns null if the class is abstract or not persistence-capable, or
the parameter is null.]

N12.11-1 [If the implementation does not support application identity, and the class is de-
fined in the jdo metadata to use application identity, then null is returned.]

N12.11-2 [Object newObjectIdInstance (Class pcClass, String str);

This method returns an object id instance corresponding to the Class and String argu-
ments. The String argument might have been the result of executing toString on an ob-
ject id instance.]

This method is portable for datastore identity and application identity.

12.14 Sequence

The JDO metadata defines named sequence value object generators, or simply, sequences.
A sequence implements the javax.jdo.Sequence interface.

The behavior of the sequence with regard to transactions and rolling over maximum val-
ues is specified in the metadata.

The PersistenceManager provides a method to retrieve a Sequence by name.

Sequence getSequence(String name);

If the named sequence does not exist, JDOUserException is thrown.

The name is the scoped name of the sequence , which uses the standard Java package nam-
ing. For example, a sequence might be named “com.acme.hr.EmployeeSequence”.

package javax.jdo;

interface Sequence {

String getName();

This method returns the fully qualified name of the Sequence.

Object next();

This method returns the next sequence value object. The sequence might be protected by
transactional semantics, in which case the sequence value object will be reused if the trans-
action in which the sequence value object was obtained rolls back.

void allocate(int additional);

This method is a hint to the implementation that the application needs the additional num-
ber of sequence value objects in short order. There is no externally visible behavior of this
 JDO 2.0 113 October 21, 2004

Java Data Objects 2.0
method. It is used to potentially improve the efficiency of the algorithm of obtaining addi-
tional sequence value objects.

Object current();

This method returns the current sequence value object if it is available. It is intended to re-
turn a sequence value object previously used. The implementation might choose to return
null for all cases or for any cases where a current sequence value object is not available.

}

12.15 Life-cycle callbacks

In order to minimize the impact on domain classes, the instance callbacks can be defined
to use a life-cycle listener pattern instead of having the domain class implement the call-
back interface(s).

public interface javax.jdo.LifecycleListener {

}

public interface javax.jdo.CreateLifecycleListener

extends javax.jdo.LifecycleListener {

void create(LifecycleEvent event);

}

This method is called whenever a persistent instance is created, during makePersis-
tent.

public interface javax.jdo.LoadLifecycleListener

extends javax.jdo.LifecycleListener {

void load(LifecycleEvent event);

}

This method is called whenever a persistent instance is loaded.

public interface javax.jdo.StoreLifecycleListener

extends javax.jdo.LifecycleListener {

void store(LifecycleEvent event);

}

This method is called whenever a persistent instance is stored, for example during flush or
commit.

public interface javax.jdo.ClearLifecycleListener

extends javax.jdo.LifecycleListener {

void clear(LifecycleEvent event);

}

This method is called whenever a persistent instance is cleared, for example during af-
terCompletion.

public interface javax.jdo.DeleteLifecycleListener

extends javax.jdo.LifecycleListener {

void delete(LifecycleEvent event);

}

 JDO 2.0 114 October 21, 2004

Java Data Objects 2.0
This method is called whenever a persistent instance is deleted, during deletePersis-
tent.

}

public interface javax.jdo.DirtyLifecycleListener

extends javax.jdo.LifecycleListener {

void dirty(LifecycleEvent event);

}

This method is called whenever a persistent clean instance is first made dirty, during an
operation that modifies the value of a persistent or transactional field.

}

public class javax.jdo.LifecycleEvent

extends java.util.EventObject {

Object getSource();

This method returns the object for which the event was triggered. This method is inherited
from the EventObject class.

static final int CREATE = 0;

static final int LOAD = 1;

static final int STORE = 2;

static final int CLEAR = 3;

static final int DELETE = 4;

static final int DIRTY = 5;

int getEventType();

This method returns the event type that triggered the event.

}

void addLifecycleListener (LifecycleListener listener, Class[]
classes);

This method adds the listener to the list of lifecycle event listeners. The classes parameter
identifies all of the classes of interest. If the classes parameter is specified as null, events
for all persistent classes and interfaces are generated.

The listener will be called for each event for which it implements the corresponding listen-
er interface.

void removeLifecycleListener (LifecycleListener listener);

This method removes the listener from the list of event listeners.

}

12.16 Access to internal datastore connection

In order for the application to perform some datastore-specific functions, such as to exe-
cute a query that is not directly supported by JDO, applications might need access to the
datastore connection used by the JDO implementation. This method returns a wrapped
connection that can be cast to the appropriate datastore connection and used by the appli-
cation.
 JDO 2.0 115 October 21, 2004

Java Data Objects 2.0
The capability to get the datastore connection is indicated by the optional feature string
javax.jdo.option.GetDataStoreConnection.

package javax.jdo;

interface JDOConnection {

Object getNativeConnection();

}

JDOConnection getDataStoreConnection();

If this method is called while a datastore transaction is active, the object returned will be
enlisted in the current transaction. If called in an optimistic transaction before flush has
been called, or outside an active transaction, the object returned will not be enlisted in any
transaction.

The object must be returned to the JDO implementation prior to calling any JDO method
or performing any action on any persistent instance that might require the JDO implemen-
tation to use a connection. If the object has not been returned and the JDO implementation
needs a connection, a JDOUserException is thrown. The object is returned to the JDO
implementation by calling the standard method on the object.

For JDOR implementations, the JDOConnection obtained by getDataStoreConnection im-
plements java.sql.Connection.

The application returns a JDBC Connection to the JDO implementation by calling its
close() method.

SQL Portability

For portability, a JDBC-based JDO implementation will return an instance that imple-
ments java.sql.Connection. The instance will throw an exception for any of the fol-
lowing method calls: commit, getMetaData, releaseSavepoint, rollback, setAutoCommit,
setCatalog, setHoldability, setReadOnly, setSavepoint, setTransactionIsolation, and set-
TypeMap.
 JDO 2.0 116 October 21, 2004

Java Data Objects 2.0
13 Transactions and Connections

This chapter describes the interactions among JDO instances, JDO Persistence Managers,
datastore transactions, and datastore connections.

13.1 Overview

Operations on persistent JDO instances at the user’s choice might be performed in the con-
text of a transaction. That is, the view of data in the datastore is transactionally consistent,
according to the standard definition of ACID transactions:

• atomic --within a transaction, changes to values in JDO instances are all executed
or none is executed

• consistent -- changes to values in JDO instances are consistent with changes to
other values in the same JDO instance

• isolated -- changes to values in JDO instances are isolated from changes to the same
JDO instances in different transactions

• durable -- changes to values in JDO instances survive the end of the VM in which
the changes were made

13.2 Goals

The JDO transaction and connection contracts have the following goals.

• JDO implementations might span a range of small, embedded systems to large,
enterprise systems

• Transaction management might be entirely hidden from class developers and
application components, or might be explicitly exposed to class and application
component developers.

13.3 Architecture: PersistenceManager, Transactions, and Connections

An instance of an object supporting the PersistenceManager interface represents a
single user’s view of persistent data, including cached persistent instances across multiple
serial datastore transactions.

There is a one-to-one relationship between the PersistenceManager and the Trans-
action. The Transaction interface is isolated because of separation of concerns. The
methods could have been added to the PersistenceManager interface.

The javax.jdo.Transaction interface provides for management of transaction op-
tions and, in the non-managed environment, for transaction completion. It is similar in
functionality to javax.transaction.UserTransaction. That is, it contains begin,
commit, and rollback methods used to delimit transactions.
 JDO 2.0 117 October 21, 2004

Java Data Objects 2.0
Connection Management Scenarios

• single connection: In the simplest case, the PersistenceManager directly connects
to the datastore and manages transactional data. In this case, there is no reason to
expose any Connection properties other than those needed to identify the user and
the data source. During transaction processing, the Connection will be used to
satisfy data read, write, and transaction completion requests from the
PersistenceManager.

• connection pooling: In a slightly more complex situation, the
PersistenceManagerFactory creates multiple PersistenceManager
instances which use connection pooling to reduce resource consumption. The
PersistenceManagers are used in single datastore transactions. In this case, a
pooling connection manager is a separate component used by the
PersistenceManager instances to effect the pooling of connections. The
PersistenceManagerFactory will include a reference to the connection
pooling component, either as a JNDI name or as an object reference. The
connection pooling component is separately configured, and the
PersistenceManagerFactory simply needs to be configured to use it.

• distributed transactions: An even more complex case is where the
PersistenceManager instances need to use connections that are involved in
distributed transactions. This case requires coordination with a Transaction
Manager, and exposure of the XAResource from the datastore Connection. JDO
does not specify how the application coordinates transactions among the
PersistenceManager and the Transaction Manager.

• managed connections: The last case to consider is the managed environment,
where the PersistenceManagerFactory uses a datastore Connection whose
transaction completion is managed by the application server. This case requires
the datastore Connection to implement the J2EE Connector Architecture and the
PersistenceManager to use the architected interfaces to obtain a reference to a
Connection.

The interface between the JDO implementation and the Connection component is not
specified by JDO. In the non-managed environment, transaction completion is handled by
the Connection managed internally by the Transaction. In the managed environment,
transaction completion is handled by the XAResource associated with the Connection.
In both cases, the PersistenceManager implementation is responsible for setting up
the appropriate interface to the Connection infrastructure.

Native Connection Management

If the JDO implementation supplies its own resource adapter implementation, this is
termed native connection management. For use in a managed environment, the associa-
tion between Transaction and Connection must be established using the J2EE Connec-
tor Architecture [see Appendix A reference 4]. This is done by the JDO implementation
implementing the javax.resource.ManagedConnectionFactory interface.

When used in a non-managed environment, with non-distributed transaction manage-
ment (local transactions) the application can use the PersistenceManagerFactory.
But if distributed transaction management is required, the application needs to supply an
implementation of javax.resource.ManagedConnectionFactory interface. This
interface provides the infrastructure to enlist the XAResourcewith the Transaction Man-
ager used in the application.
 JDO 2.0 118 October 21, 2004

Java Data Objects 2.0
Non-native Connection Management

If the JDO implementation uses a third party Connection interface, then it can be used in
a managed environment only if the third party Connection supports the J2EE Connector
Architecture. In this case, the PersistenceManagerFactory property Connec-
tionFactory is used to allow the application server to manage connections.

In the non-managed case, non-distributed transaction management can use the Persis-
tenceManagerFactory, as above. But if distributed transaction management is re-
quired, the application needs to supply an implementation of
javax.resource.ConnectionManager interface to be used with the application’s
implementation of the Connection management.

Optimistic Transactions

There are two types of transaction management strategies supported by JDO: “datastore
transaction management”; and “optimistic transaction management”.

With datastore transaction management, all operations performed by the application on
persistent data are done using a datastore transaction. This means that between the first
data access until the commit, there is an active datastore transaction.

With optimistic transaction management, operations performed by the application on per-
sistent data outside a transaction or before commit are done using a short local datastore
transaction. During flush, a datastore transaction is used for the update operations, veri-
fying that the proposed changes do not conflict with a parallel update by a different trans-
action.

Optimistic transaction management is specified by the Optimistic setting on Trans-
action.

Figure 15.0 Transactions and Connections

JDO PersistenceManager

JDO PersistenceManager

Application
Transaction

Connection

Connection

XAResource

XAResource

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

Manager

Transaction

Transaction

Transaction Option

Transaction
Completion

Methods

Methods
 JDO 2.0 119 October 21, 2004

Java Data Objects 2.0
13.4 Interface Transaction

package javax.jdo.Transaction;

interface Transaction {

13.4.1 PersistenceManager

PersistenceManager getPersistenceManager ();

A13.4.1-1 [This method returns the PersistenceManager associated with this Trans-
action instance.]

boolean isActive ();

A13.4.1-2 [This method tells whether there is an active transaction. The transaction might
be either a local transaction or a distributed transaction. If the transaction is local, then the
begin method was executed and neither commit nor rollback has been executed.] If
the transaction is managed by XAResource with a TransactionManager, then this
method indicates whether there is a distributed transaction active.

A13.4.1-3 [This method returns true after the transaction has been started, until the af-
terCompletion synchronization method is called.]

13.4.2 Transaction options

Transaction options are valid for both managed and non-managed environments. Flags
are durable until changed explicitly by setmethods. They are not changed by transaction
demarcation methods.

A13.4.2-1, A13.4.2-2, A13.4.2-3, A13.4.2-4, N13.4.2-19[If any of the set methods is called
during commit or rollback processing (within the beforeCompletion and afterCom-
pletion synchronization methods), a JDOUserException is thrown.]

A13.4.2-5, A13.4.2-6, A13.4.2-7, A13.4.2-8, N13.4.2-20[If an implementation does not sup-
port the option, then an attempt to set the flag to an unsupported value will throw JDOUn-
supportedOptionException.(See section 13.4.2, 2nd paragraph) Assertion also defined in
chapter 11.]

Nontransactional access to persistent values

boolean getNontransactionalRead ();

void setNontransactionalRead (boolean flag);

These methods access the flag that allows persistent instances to be read outside a transac-
tion. A13.4.2-9 [If this flag is set to true, then queries and field read access (including nav-
igation) are allowed without an active transaction.] A13.4.2-10[If this flag is set to false,
then queries and field read access (including navigation) outside an active transaction
throw a JDOUserException.]

boolean getNontransactionalWrite ();

void setNontransactionalWrite (boolean flag);

These methods access the flag that allows non-transactional instances to be written in the
cache. A13.4.2-11 [If this flag is set to true, then updates to non-transactional instances
are allowed without an active transaction.] A13.4.2-12 [If this flag is set to false, then up-
dates to non-transactional instances outside an active transaction throw a JDOUserEx-
ception.]
 JDO 2.0 120 October 21, 2004

Java Data Objects 2.0
Optimistic concurrency control

A13.4.2-13 [If this flag is set to true, then optimistic concurrency is used for managing
transactions.]

boolean getOptimistic ();

The optimistic setting currently active is returned.

void setOptimistic (boolean flag);

A13.4.2-14 [The optimistic setting passed replaces the optimistic setting currently active.]

This method can be used only when there is not an active transaction. A13.4.2-15 [If it is
used while there is an active transaction, a JDOUserException is thrown.]

Retain values at transaction commit

A13.4.2-16 [If this flag is set to true, then eviction of transactional persistent instances
does not take place at transaction commit.] If this flag is set to false, then eviction of
transactional persistent instances takes place at transaction commit.

boolean getRetainValues ();

A13.4.2-17 [The retainValues setting currently active is returned.]

void setRetainValues (boolean flag);

A13.4.2-18 [The retainValues setting passed replaces the retainValues setting cur-
rently active.]

Restore values at transaction rollback

N13.4.2-19 [If this flag is set to true, then restoration of transactional persistent instances
takes place at transaction rollback.] N13.4.2-20 [If this flag is set to false, then eviction of
transactional persistent instances takes place at transaction rollback.]

boolean getRestoreValues ();

N13.4.2-21 [The restoreValues setting currently active is returned.]

void setRestoreValues (boolean flag);

N13.4.2-22 [The restoreValues setting passed replaces the restoreValues setting
currently active.] This method can be used only when there is not an active transaction.
N13.4.2-23 [If it is used while there is an active transaction, a JDOUserException is
thrown.]

13.4.3 Synchronization

The Transaction instance participates in synchronization in two ways: as a supplier of
synchronization callbacks, and as a consumer of callbacks. As a supplier of callbacks, a
user can register with the Transaction instance to be notified at transaction completion.
As a consumer of callbacks, the Transaction implementation will use the proprietary
interfaces of the managed environment to be notified of externally-initiated transaction
completion events. In a managed environment, this notification is used to cause flushing
of changes to the datastore as part of transaction completion.

For this latter purpose, the JDO implementation class might implement javax.trans-
action.Synchronization or might use a delegate to be notified.

Synchronization is supported for both managed and non-managed environments. A Syn-
chronization instance registered with the Transaction remains registered until
changed explicitly by another setSynchronization.
 JDO 2.0 121 October 21, 2004

Java Data Objects 2.0
Only one Synchronization instance can be registered with the Transaction. If the
application requires more than one instance to receive synchronization callbacks, then the
application instance is responsible for managing them, and forwarding callbacks to them.

void setSynchronization (javax.transaction.Synchronization
sync);

A13.4.3-1 [The Synchronization instance is registered with the Transaction for
transaction completion notifications. Any Synchronization instance already regis-
tered will be replaced.] A13.4.3-2 [If the parameter is null, then no instance will be noti-
fied.] A13.4.3-3 [If this method is called during commit processing (within the user’s
beforeCompletion or afterCompletion method), a JDOUserException is
thrown.]

A13.4.3-4 [The beforeCompletionmethod will be called during the behavior specified
for the transaction completion method commit.] A13.4.3-5 [The beforeCompletion
method will not be called before rollback.]

A13.4.3-6 [The afterCompletion method will be called during /after(A13.4.3-7) the
transaction completion methods. The parameter for the afterCompletion(int sta-
tus) method will be] either [javax.transaction.Status.STATUS_COMMITTED]
or A13.4.3-7 [javax.transaction.Status.STATUS_ROLLEDBACK.]

These two methods allow the application control over the environment in which the trans-
action completion executes (for example, validate the state of the cache before completion)
and to control the cache disposition once the transaction completes (for example, to change
persistent instances to persistent-nontransactional state).

javax.transaction.Synchronization getSynchronization ();

A13.4.3-8 [This method returns the Synchronization currently registered. If no such
call has been made to setSynchronization, null is returned.]

13.4.4 Transaction demarcation

If multiple parallel transactions are required, then multiple PersistenceManager in-
stances must be used. If distributed transactions are required, then the Connector Archi-
tecture is used to coordinate transactions among the JDO PersistenceManagers.

Non-managed environment

In a non-managed environment, with a single JDO PersistenceManager per applica-
tion, there is a Transaction instance representing a local transaction associated with the
PersistenceManager instance.

void begin();

void commit();

void rollback();

The begin, commit, and rollback methods can be used only in a non-managed envi-
ronment, or in a managed environment with Bean Managed Transactions. If one of these
methods is executed in a managed environment with Container Managed Transactions, a
JDOUserException is thrown.

If commit or rollback is called when a transaction is not active, JDOUserException is
thrown. If begin is called when a transction is active, JDOUserException is thrown.

A13.4.4-1 [The commit method performs the following operations:
 JDO 2.0 122 October 21, 2004

Java Data Objects 2.0
• calls the beforeCompletion method of the Synchronization instance
registered with the Transaction;

• flushes dirty persistent instances;

• notifies the underlying datastore to commit the transaction;

• transitions persistent instances according to the life cycle specification;

• calls the afterCompletion method of the Synchronization instance
registered with the Transaction with the results of the datastore commit
operation.]

A13.4.4-2 [The rollback method performs the following operations:

• rolls back changes made in this transaction from the datastore;

• transitions persistent instances according to the life cycle specification;

• calls the afterCompletion method of the Synchronization instance
registered with the Transaction.]

Managed environment

In a managed environment, there is either a user transaction or a local transaction associ-
ated with the PersistenceManager instance when executing method calls on JDO in-
stances or on the PersistenceManager. Which of the two types of transactions is
active is a policy issue for the managed environment.

If datastore transaction management is being used with the PersistenceManager in-
stance, and a Connection to the datastore is required during execution of the Persis-
tenceManager or JDO instance method, then the PersistenceManager will
dynamically acquire a Connection. The call to acquire the Connection will be made with
the calling thread in the appropriate transactional context, and the Connection acquired
will be in the proper datastore transaction.

If optimistic transaction management is being used with the PersistenceManager in-
stance, and a Connection to the datastore is required during execution of an instance meth-
od or a non-completion PersistenceManager method, then the
PersistenceManager will use a local transaction Connection.

13.4.5 RollbackOnly

At times, a component needs to mark a transaction as failed even though that component
is not authorized to complete the transaction. In order to mark the transaction as unsuc-
cessful, and to determine if a transaction has been so marked, two methods are used:

void setRollbackOnly();

boolean getRollbackOnly();

Either the user application or the JDO implementation may call setRollbackOnly.
There is no way for the application to determine explicitly which component called the
method.

N13.4.5-1 [Once a transaction has been marked for rollback via setRollbackOnly, the
commit method will always fail with JDOFatalDataStoreException.] The JDO imple-
mentation must not try to make any changes to the database during commit when the
transaction has been marked for rollback.
 JDO 2.0 123 October 21, 2004

Java Data Objects 2.0
N13.4.5-2 [When a transaction is not active, and after a transaction is begun, getRoll-
backOnly will return false. Once setRollbackOnly has been called, it will return
true until commit or rollback is called.]

13.5 Optimistic transaction management

Optimistic transactions are an optional feature of a JDO implementation. They are useful
when there are long-running transactions that rarely affect the same instances, and there-
fore the datastore will exhibit better performance by deferring datastore exclusion on
modified instances until commit.

In the following discussion, “transactional datastore context” refers to the transaction con-
text of the underlying datastore, while “transaction”, “datastore transaction”, and “opti-
mistic transaction” refer to the JDO transaction concepts.

With datastore transactions, persistent instances accessed within the scope of an active
transaction are guaranteed to be associated with the transactional datastore context. With
optimistic transactions, persistent instances accessed within the scope of an active transac-
tion are not associated with the transactional datastore context; the only time any instances
are associated with the transactional datastore context is during commit.

A13.5-1 [With optimistic transactions, instances queried or read from the datastore will not
be transactional unless they are modified, deleted, or marked by the application as trans-
actional.] At commit time, the JDO implementation:

• establishes a transactional datastore context in which verification, insert, delete,
and updates will take place.

• calls the beforeCompletion method of the Synchronization instance
registered with the Transaction;

• verifies unmodified instances that have been made transactional, to ensure that the
state in the datastore is the same as the instance used in the transaction [this is done
using a JDO implementation-specific algorithm];

• verifies modified and deleted instances during flushing to the datastore, to ensure
that the state in the datastore is the same as the before image of the instance that
was modified or deleted by the transaction [this is done using a JDO
implementation-specific algorithm]

• If any instance fails the verification, a
JDOOptimisticVerificationException is thrown which contains an
array of JDOOptimisticVerificationException, one for each instance
that failed the verification. The optimistic transaction is failed, and the transaction
is rolled back. The definition of “changed instance” is a JDO implementation
choice, but it is required that a field that has been changed to different values in
different transactions results in one of the transactions failing.

• if verification succeeds, notifies the underlying datastore to commit the
transaction;

• transitions persistent instances according to the life cycle specification, based on
whether the transaction succeeds and the setting of the RetainValues and
RestoreValues flags;

• calls the afterCompletion method of the Synchronization instance
registered with the Transaction with the results of the commit operation.
 JDO 2.0 124 October 21, 2004

Java Data Objects 2.0
Details of the state transitions of persistent instances in optimistic transactions may be
found in section 5.8.

A13.5-2 [At commit time, unmodified instances that have been made transactional will be verified
against the current contents of the data store, to ensure that the state in the data store is the same
as the “before image” of the instance in the transaction. If any instance is found to have changed, a
JDOUserException is thrown which contains the list of instances corresponding to the instances
that failed the verification. The optimistic transaction is failed.]
 JDO 2.0 125 October 21, 2004

Java Data Objects 2.0
14 Query

This chapter specifies the query contract between an application component and the JDO
PersistenceManager.

The query facility consists of two parts: the query API, and the query language. This chap-
ter specifies the query language “JDOQL”, and includes conventions for the use of “SQL”
as the language for JDO implementations using a relational store.

14.1 Overview

An application component requires access to JDO instances so it can invoke specific behav-
ior on those instances. From a JDO instance, it might navigate to other associated instances,
thereby operating on an application-specific closure of instances.

However, getting to the first JDO instance is a bootstrap issue. There are three ways to get
an instance from JDO. First, if the users have or can construct a valid ObjectId, then they
can get an instance via the persistence manager’s getObjectById method. Second, us-
ers can iterate a class extent by calling getExtent. Third, the JDO Query interface pro-
vides the ability to acquire access to JDO instances from a particular JDO persistence
manager based on search criteria specified by the application.

The persistent manager instance is a factory for query instances, and queries are executed
in the context of the persistent manager instance.

The actual query execution might be performed by the JDO PersistenceManager or
might be delegated by the JDO PersistenceManager to its datastore. The actual query
executed thus might be implemented in a very different language from Java, and might be
optimized to take advantage of particular query language implementations.

For this reason, methods in the query filter have semantics possibly different from those
in the Java VM.

14.2 Goals

The JDO Query interface has the following goals:

• Query language neutrality. The underlying query language might be a relational
query language such as SQL; an object database query language such as OQL; or
a specialized API to a hierarchical database or mainframe EIS system.

• Optimization to specific query language. The Query interface must be capable of
optimizations; therefore, the interface must have enough user-specified
information to allow for the JDO implementation to exploit data source specific
query features.

• Accommodation of multi-tier architectures. Queries might be executed entirely in
memory, or might be delegated to a back end query engine. The JDO Query
interface must provide for both types of query execution strategies.
 JDO 2.0 126 October 21, 2004

Java Data Objects 2.0
• Large result set support. Queries might return massive numbers of JDO instances
that match the query. The JDO Query architecture must provide for processing
the results within the resource constraints of the execution environment.

• Compiled query support. Parsing queries may be resource-intensive, and in many
applications can be done during application development or deployment, prior to
execution time. The query interface allows for compiling queries and binding run-
time parameters to the bound queries for execution.

• Deletion by query. Deleting multiple instances in the datastore can be done
efficiently if specified as a query method instead of instantiating all persistent
instances and calling the deletePersistent method on them.

14.3 Architecture: Query

The JDO PersistenceManager instance is a factory for JDO Query instances, which
implement the JDO Query interface. A14.3-1 [Multiple JDO Query instances might be ac-
tive simultaneously in the same JDO PersistenceManager instance.] A14.3-2 [Multi-
ple queries might be executed simultaneously by different threads, but the
implementation might choose to execute them serially. In either case, the execution must
be thread safe.]

There are three required elements in any query:

• the class of the candidate instances. The class is used to scope the names in the
query filter. All of the candidate instances are of this class or a subclass of this class.
If the class is not explicitly passed to the query, it is obtained from the Extent.

• the collection of candidate JDO instances. The collection of candidate instances is
either a java.util.Collection, or an Extent of instances in the datastore.
Instances that are not of the required class or subclass will be silently ignored. The
Collection might be a previous query result, allowing for subqueries. If the
collection is not explicitly passed to the query, then it is obtained from the class.

• the query filter. The query filter is a Java boolean expression that tells whether
instances in the candidate collection are to be returned in the result. If not
specified, the filter defaults to true.

Other elements in queries include:

• parameter declarations. A14.3-3 [The parameter declaration is a String
containing one or more query parameter declarations separated with commas. It
follows the syntax for formal parameters in the Java language. Each parameter
named in the parameter declaration must be bound to a value when the query is
executed.]

• parameter values to bind to parameters. Values are specified as JavaObjects, and
might include simple wrapper types or more complex object types. The values are
passed to the execute methods and are not preserved after a query executes.

• variable declarations: Variables might be used in the filter, and these variables
must be declared with their type. A14.3-4 [The variable declaration is a String
containing one or more variable declarations. Each declaration consists of a type
and a variable name, with declarations separated by a semicolon if there are two
or more declarations. It is similar to the syntax for local variables in the Java
language.]
 JDO 2.0 127 October 21, 2004

Java Data Objects 2.0
• import statements: Parameters and variables might come from a different class
from the candidate class, and the names might need to be declared in an import
statement to eliminate ambiguity. A14.3-5 [Import statements are specified as a
String with semicolon-separated statements. The syntax is the same as in the
Java language import statement.]

• ordering specification. A14.3-6 [The ordering specification includes a list of
expressions with the ascending/descending indicator. To be portable, the
expression’s type must be one of:

• primitive types except boolean;
• wrapper types except Boolean;
• BigDecimal;
• BigInteger;
• String;
• Date. +++]

• result specification. The application might want to get results from a query that are
not instances of the candidate class. The results might be fields of persistent
instances, instances of classes other than the candidate class, or aggregates of
fields.

• grouping specification. Aggregates are most useful when the application can
specify the result field by which to group the results.

• uniqueness. The application can specify that the result of a query is unique, and
therefore a single value instead of a Collection should be returned from the
query.

• result class. The application may have a user-defined class that best represents the
results of a query. In this case, the application can specify that instances of this
class should be returned.

• limiting the size of the results. The application might want to limit the number of
instances returned by the query, and might want to skip over some number of
instances that might have been returned previously.

A14.3-7 [The class implementing the Query interface must be serializable. The serialized
fields include the candidate class, the filter, parameter declarations, variable declarations,
imports, ordering specification, uniqueness, result specification, grouping specification,
and result class.] The candidate collection, limits on size, and number of skipped instances
are not serialized. A14.3-8 [If a serialized instance is restored, it loses its association with
its former PersistenceManager.]

14.4 Namespaces in queries

The query namespace is modeled after methods in Java:

• setClass corresponds to the class definition

• declareParameters corresponds to formal parameters of a method

• declareVariables corresponds to local variables of a method

• setFilter, setGrouping, setOrdering, and setResult correspond to
the method body and do not introduce names to the namespace

There are two namespaces in queries. A14.4-1 [Type names have their own namespace that
is separate from the namespace for fields, variables and parameters.]
 JDO 2.0 128 October 21, 2004

Java Data Objects 2.0
The method setClass introduces the name of the candidate class in the type namespace.
The method declareImports introduces the names of the imported class or interface
types in the type namespace. When used (e.g. in a parameter declaration, cast expression,
etc.) a type name must be the name of the candidate class, the name of a class or interface
imported by the parameter to declareImports, denote a class or interface from the
same package as the candidate class, or must be declared by exactly one type-import-on-
demand declaration (“import <package>.*;“). N14.4-5 [It is valid to specify the same
import multiple times.]

The names of the public types declared in the package java.lang are automatically im-
ported as if the declaration “import java.lang.*;” appeared in declareImports.
It is a JDOQL-compile time error (reported during compile or execute methods) if a
used type name is declared by more than one type-import-on-demand declaration.

The method setClass also introduces the names of the candidate class fields.

The method declareParameters introduces the names of the parameters. A14.4-2 [A
name in the filter preceded by “:” has the same effect. A parameter name hides the name
of a candidate class field if equal.] Parameter names must be unique.

The methoddeclareVariables introduces the names of variables. A14.4-3 [A name in-
troduced by declareVariables hides the name of a candidate class field if equal.]
Variable names must be unique and must not conflict with parameter names. A name in
the filter that is not a parameter name or a field name is implicitly a variable name.

A14.4-4 [A hidden field may be accessed using the this qualifier: this.fieldName.]

14.5 Query Factory in PersistenceManager interface

The PersistenceManager interface contains Query factory methods.

Query newQuery();

A14.5-1 [Construct a new empty query instance.]

Query newQuery (Object query);

Construct a new query instance from another query instance. JDO implementations must
support A14.5-2 [a serialized/restored Query instance from the same JDO vendor but a
different execution environment], a query instance currently bound to the same Persis-
tenceManager, and A14.5-3 [a query instance currently bound to a PersistenceM-
anager from the same JDO vendor.][A14.5-2 Any of the elements Class, Filter,
IgnoreCache flag, Import declarations, Variable declarations, Parameter declarations, and
Ordering from the parameter Query are copied to the new Query instance, but a candi-
date Collection or Extent element is discarded.]

Query newQuery (String query);

Construct a new query instance using the specified String as the single-string repre-
sentation of the query.

Query newQuery (String language, Object query);

A14.5-4 [Construct a new query instance using the specified language and the specified
query. The query instance will be of a class defined by the query language. The language
parameter for the JDO Query language as herein documented is “javax.jdo.que-
ry.JDOQL”.] For use with SQL, the language parameter is “javax.jdo.query.SQL”
and the query parameter is a String containing the SQL query. Other languages’ parameter
is not specified.
 JDO 2.0 129 October 21, 2004

Java Data Objects 2.0
Query newQuery (Class cls);

A14.5-5 [Construct a new query instance with the candidate class specified.]

Query newQuery (Extent cln);

A14.5-6 [NB! modified: had ‘Class cls,’! Construct a new query instance with the candidate
Extent specified; the candidate class is taken from the Extent.]

Query newQuery (Class cls, Collection cln);

A14.5-7 [Construct a new query instance with the candidate class and candidate Collec-
tion specified.]

Query newQuery (Class cls, String filter);

A14.5-8 [Construct a new query instance with the candidate class and filter specified.]

Query newQuery (Class cls, Collection cln, String filter);

A14.5-9 [Construct a query instance with the candidate class, the candidate Collection,
and filter specified.]

Query newQuery (Extent cln, String filter);

A14.5-10 [NB! modified: had ‘Class cls,’! Construct a new query instance with the candidate
Extent and filter specified; the candidate class is taken from the Extent.]

Query newNamedQuery (Class cls, String queryName);

Construct a new query instance with the given candidate class from a named query. The
query name given must be the name of a query defined in metadata. The metadata is
searched for the specified name. The extent, including subclasses, is the default for the can-
didate collection.

If the named query is not found in already-loaded metadata, the query is searched for us-
ing an algorithm. Files containing metadata are examined in turn until the query is found.
The order is based on the metadata search order for class metadata, but includes files
named based on the query name.

The file search order for a query scoped to class com.sun.nb.Bar is: META-INF/pack-
age.jdo, WEB-INF/package.jdo, package.jdo, com/package.jdo, com/sun/package.jdo,
com/sun/nb/package.jdo, com/sun/nb/Bar.jdo

If the metadata is not found in the above, and there is a property in the PersistenceMan-
agerFactory javax.jdo.option.Mapping=mySQL, then the folowing files are searched:
META-INF/package-mySQL.orm, WEB-INF/package-mySQL.orm, package-
mySQL.orm, com/package-mySQL.orm, com/sun/package-mySQL.orm, com/sun/nb/
package-mySQL.orm, com/sun/nb/Bar-mySQL.orm.

If metadata is not found in the above, then the following files are searched: META-INF/
package.jdoquery, WEB-INF/package.jdoquery, package.jdoquery, com/pack-
age.jdoquery, com/sun/package.jdoquery, com/sun/nb/package.jdoquery, com/sun/
nb/Bar.jdoquery.

If the metadata is not found in the above, a JDOUserException is thrown.

This resource name is loaded by one of the three class loaders used to resolve resource
names (see Section 12.5). The loaded resource must contain the metadata definition of the
query name. The schema for the loaded resource is the same as for the .jdo file; the ele-
ments should include only <jdo>, <package>, <class>, and <query> elements for the
named query.

The Query instance returned from this method can be modified by the application, just
like any other Query instance.
 JDO 2.0 130 October 21, 2004

Java Data Objects 2.0
Named queries must be compilable. Attempts to get a named query that cannot be com-
piled result in JDOUserException.

14.6 Query Interface

package javax.jdo;

interface Query extends Serializable {

A14.6-1 [The Query interface extends Serializable, so it should be possible to serialize an instance
of Query.]

String JDOQL = “javax.jdo.query.JDOQL”;

String SQL = “javax.jdo.query.SQL”;

Persistence Manager

PersistenceManager getPersistenceManager();

A14.6-2 [Return the associated PersistenceManager instance.] A14.6-3 [If this Query
instance was restored from a serialized form, then null is returned.]

Fetch Plan

FetchPlan getFetchPlan();

This method retrieves the fetch plan associated with the Query. It always returns the iden-
tical instance for the same Query instance. Any change made to the fetch plan affects sub-
sequent query execution. Fetch plan is described in Section 12.7.

Query element binding

The Query interface provides methods to bind required and other elements prior to exe-
cution.

N14.6-15 [All of these methods replace the previously set query element, by the parameter.
[The methods are not additive.] For example, if multiple variables are needed in the query,
all of them must be specified in the same call to declareVariables.]

void setClass (Class candidateClass);

A14.6-4 [Bind the candidate class to the query instance.]

void setCandidates (Collection candidateCollection);

A14.6-5 [Bind the candidate Collection to the query instance.] If the user adds or re-
moves elements from the Collection after this call, it is not determined whether the
added/removed elements take part in the Query, or whether a NoSuchElementEx-
ception is thrown during execution of the Query.

For portability, the elements in the collection must be persistent instances associated with
the same PersistenceManager as the Query instance. An implementation might sup-
port transient instances in the collection. If persistent instances associated with another
PersistenceManager are in the collection, JDOUserException is thrown during
execute().

If the candidates are not specified explicitly by newQuery, setCandidates(Collec-
tion), or setCandidates(Extent), then the candidate extent is the extent of instances
of the candidate class in the datastore including subclasses. That is, the candidates are the
result of getPersistenceManager().getExtent(candidateClass, true).

void setCandidates (Extent candidateExtent);
 JDO 2.0 131 October 21, 2004

Java Data Objects 2.0
A14.6-6 [Bind the candidate Extent to the query instance.]

void setFilter (String filter);

A14.6-7 [Bind the query filter to the query instance.]

void declareImports (String imports);

A14.6-8 [Bind the import statements to the query instance.] All imports must be declared
in the same method call, and the imports must be separated by semicolons.

void declareVariables (String variables);

A14.6-9 [Bind the variable types and names to the query instance.] This method defines the
types and names of variables that will be used in the filter but not provided as values by
the execute method.

void declareParameters (String parameters);

A14.6-10 [Bind the parameter statements to the query instance.] This method defines the
parameter types and names that will be used by a subsequent execute method.

void setOrdering (String ordering);

A14.6-11 [Bind the ordering statements to the query instance.]

void setResult (String result);

N2-14.6-16 [Specify the results of the query if not instances of the candidate class.]

void setGrouping (String grouping);

N2-14.6-17 [Specify the grouping of results for aggregates.]

void setUnique (boolean unique);

N2-14.6-18 [Specify that there is a single result of the query.]

void setResultClass (Class resultClass);

N2-14.6-19 [Specify the class to be used to return result instances.]

setRange (long fromIncl, long toExcl);

N2-14.6-20 [Specify the number of instances to skip over and the maximum number of re-
sult instances to return.]

Query options

void setIgnoreCache (boolean flag);

boolean getIgnoreCache ();

A14.6-12 [Query.setIgnoreCache (boolean flag) sets the IgnoreCache option for queries.]

A14.6-13 [Query.getIgnoreCache returns the current setting of the IgnoreCache option.]

The IgnoreCache option, when set to true, is a hint to the query engine that the user
expects queries be optimized to return approximate results by ignoring changed values in
the cache. This option is useful only for optimistic transactions and allows the datastore to
return results that do not take modified cached instances into account. An implementation
may choose to ignore the setting of this flag, and always return exact results reflecting cur-
rent cached values, as if the value of the flag were false.

Query compilation

The Query interface provides a method to compile queries for subsequent execution.

void compile();
 JDO 2.0 132 October 21, 2004

Java Data Objects 2.0
A14.6-14 [This method requires the Query instance to validate any elements bound to the
query instance and report any inconsistencies by throwing a JDOUserException. It is
a hint to the Query instance to prepare and optimize an execution plan for the query., im-
plementations are not required to support query compilation.]

14.6.1 Query execution

The Query interface provides methods that execute the query based on the parameters
given. By default, they return an unmodifiable Collection which the user can iterate to
get results. The user can specify the class of the result of executing a query. N14.6.1-7 [Ex-
ecuting any operation on the Collection that might change it throws Unsupported-
OperationException.] The signature of the execute methods specifies that they
return an Object that must be cast to the proper type by the user.

Any parameters passed to the executemethods are used only for this execution, and are
not remembered for future execution.

For portability, parameters of persistence-capable types must be persistent or transactional
instances. Parameters that are persistent or transactional instances must be associated with
the same PersistenceManager as the Query instance. An implementation might sup-
port transient instances of persistence-capable types as parameters, but this behavior is not
portable. N14.6.1-8 [If a persistent instance associated with another PersistenceMan-
ager is passed as a parameter, JDOUserException is thrown during execute().]

Queries may be constructed at any time before the PersistenceManager is closed, but
may be executed only at certain times. A14.6.1-1 [If the PersistenceManager that con-
structed the Query is closed, then the execute methods throw JDOUserException.]
A14.6.1-2 [If the NontransactionalRead property is false, and a transaction is not
active, then the execute methods throw JDOUserException.]

Object execute ();

Object execute (Object p1);

Object execute (Object p1, Object p2);

Object execute (Object p1, Object p2, Object p3);

A14.6.1-3 [The execute methods execute the query using the parameters and return the
result, which by default is an unmodifiable Collection of instances that satisfy the bool-
ean filter. Each parameter of the execute method(s) is an object which is either the value of the cor-
responding parameter or the wrapped value of a primitive parameter.] The result may be a large
Collection, which should be iterated or possibly A14.6.1-4 [passed to another Query.]
N14.6.1-9 [The size()method returns Integer.MAX_VALUE if the actual size of the re-
sult is not known] (for example, the Collection represents a cursored result); if the size
of the result equals or exceeds Integer.MAX_VALUE; or if the range equals or exceeds
Integer.MAX_VALUE.

When using an Extent to define candidate instances, the contents of the extent are subject
to the setting of the ignoreCache flag. N14.6.1-10 [With ignoreCache set to false:

• if instances were made persistent in the current transaction, the instances will be
considered part of the candidate instances.

• if instances were deleted in the current transaction, the instances will not be
considered part of the candidate instances.]

• modified instances will be evaluated using their current transactional values.

With ignoreCache set to true:
 JDO 2.0 133 October 21, 2004

Java Data Objects 2.0
• if instances were made persistent in the current transaction, the new instances
might not be considered part of the candidate instances.

• if instances were deleted in the current transaction, the instances might or might
not be considered part of the candidate instances.

• modified instances might be evaluated using their current transactional values or
the values as they exist in the datastore, which might not reflect the current
transactional values.

Each parameter of the executemethod(s) is an Object that is either the value of the cor-
responding parameter or the wrapped value of a primitive parameter. The parameters as-
sociate in order with the parameter declarations in the Query instance.

Object executeWithMap (Map parameters);

A14.6.1-5 [The executeWithMap method is similar to the execute method, but takes
its parameters from a Map instance. The Map contains key/value pairs, in which the key is
the declared parameter name, and the value is the value to use in the query for that param-
eter. Unlike execute, there is no limit on the number of parameters.] If implicit parame-
ters are used, the keys in the map do not include the leading “:”.

Object executeWithArray (Object[] parameters);

A14.6.1-6 [The executeWithArray method is similar to the execute method, but
takes its parameters from an array instance. The array contains Objects, in which the po-
sitional Object is the value to use in the query for that parameter. Unlike execute, there
is no limit on the number of parameters.]

14.6.2 Filter specification

The filter specification is a String containing a boolean expression that is to be evaluated
for each of the instances in the candidate collection. A14.6.2-1 [If the filter is not specified,
then it defaults to "true", and the input Collection is filtered only for class type.]

A14.6.2-2 [An element of the candidate collection is returned in the result if:

• it is assignment compatible to the candidate Class of the Query; and

• for all variables there exists a value for which the filter expression evaluates to
true. The user may denote uniqueness in the filter expression by explicitly
declaring an expression (for example, e1 != e2).] For example, a filter for a
Department where there exists an Employee with more than one dependent
and an Employee making more than 30,000 might be:
"(emps.contains(e1) & e1.dependents > 1) &
(emps.contains(e2) & e2.salary > 30000)". The same Employee
might satisfy both conditions. But if the query required that there be two different
Employees satisfying the two conditions, an additional expression could be
added: "(emps.contains(e1) & e1.dependents > 1) &
(emps.contains(e2) & (e2.salary > 30000 & e1 != e2))".

Rules for constructing valid expressions follow the Java language, except for these differ-
ences:

• A14.6.2-3 [Equality and ordering comparisons between primitives and instances of
wrapper classes are valid.]

• A14.6.2-4 [Equality and ordering comparisons of Date fields and Date
parameters are valid.]
 JDO 2.0 134 October 21, 2004

Java Data Objects 2.0
• A14.6.2-5 [Equality and ordering comparisons of String fields and String
parameters are valid. The comparison is done according to an ordering not
specified by JDO. was:The comparison is done lexicographically.] This allows an
implementation to order according to a datastore-specified ordering, which might
be locale-specific.

• A14.6.2-6 [White space (non-printing characters space, tab, carriage return, and
line feed) is a separator and is otherwise ignored.]

• A14.6.2-7 [The assignment operators =, +=, etc. and pre- and post-increment and -
decrement are not supported.]

• A14.6.2-8 [Methods, including object construction, are not supported], except for
Collection, String, and Map methods documented below. Implementations
might choose to support non-mutating method calls as non-standard extensions.

• A14.6.2-9 [Navigation through a null-valued field, which would throw
NullPointerException, is treated as if the subexpression returned false.]
Similarly, a failed cast operation, which would throw ClassCastException, is
treated as if the subexpression returned false. Other subexpressions or [other
values for variables might still qualify the candidate instance for inclusion in the
result set.]

• A14.6.2-10 [Navigation through multi-valued fields (Collection types) is
specified using a variable declaration and the
Collection.contains(Object o) method.]

• The following literals are supported, as described in the Java Language
Specification: IntegerLiteral, FloatingPointLiteral,
BooleanLiteral, CharacterLiteral, StringLiteral, and
NullLiteral.

• There is no distinction made between character literals and String literals.
Single-character String literals can be used wherever character literals are
permitted.

• String literals are allowed to be delimited by single quote marks or double quote
marks. This allows String literal filters to use single quote marks instead of escaped
double quote marks.

Note that comparisons between floating point values are by nature inexact. Therefore,
equality comparisons (== and !=) with floating point values should be used with caution.

A14.6.2-11 [Identifiers in the expression are considered to be in the name space of the spec-
ified class, with the addition of declared imports, parameters and variables.] As in the Java
language, A14.6.2-12 [this is a reserved word, and it refers to the element of the collection
being evaluated.]

Identifiers that are persistent field names or public final static field names are required to
be supported by JDO implementations. Other identifiers might be supported but are not
required. Thus, portable queries must not use fields other than persistent or public final
static field names in filter expressions.

A14.6.2-13 [Navigation through single-valued fields is specified by the Java language syn-
tax of field_name.field_name.....field_name.]

A JDO implementation is allowed to reorder the filter expression for optimization purpos-
es.
 JDO 2.0 135 October 21, 2004

Java Data Objects 2.0
The following are minimum capabilities of the expressions that every implementation
must support:

• operators applied to all types where they are defined in the Java language:

• exceptions to the above:

• A14.6.2-27 [String concatenation is supported only for String + String], not
String + <primitive>;

• A14.6.2-37 [parentheses to explicitly mark operator precedence]

• A14.6.2-38 [cast operator (class)]

• A14.6.2-39 [promotion of numeric operands for comparisons] and arithmetic
operations. The rules for promotion follow the Java rules (see chapter 5.6 Numeric
Promotions of the Java language spec) extended by BigDecimal, BigInteger
and numeric wrapper classes:

• if either operand is of type BigDecimal, the other is converted to
BigDecimal.

Table 4: Query Operators

Operator Description

== equal

!= not equal

> greater than

< less than

>= greater than or equal

<= less than or equal

& boolean logical AND (not bitwise)

&& conditional AND

| boolean logical OR (not bitwise)

|| conditional OR

~ integral unary bitwise complement

+ binary addition, unary plus, or String concatena-
tion

- binary subtraction or unary numeric sign inver-
sion

* times

/ divide by

! logical complement

% modulo operator

instanceof instanceof operator
 JDO 2.0 136 October 21, 2004

Java Data Objects 2.0
• otherwise, if either operand is of type BigInteger, and the other type is a
floating point type (float, double) or one of its wrapper classes (Float,
Double) both operands are converted to BigDecimal.

• otherwise, if either operand is of type BigInteger, the other is converted to
BigInteger.

• otherwise, if either operand is of typedouble, the other is converted todouble.
• otherwise, if either operand is of type float, the other is converted to float.
• otherwise, if either operand is of type long, the other is converted to long.
• otherwise, both operands are converted to type int.
• operands of numeric wrapper classes are treated as their corresponding primitive

types. If one of the operands is of a numeric wrapper class and the other operand
is of a primitive numeric type, the rules above apply and the result is of the
corresponding numeric wrapper class.

• equality comparison among persistent instances of persistence-capable types use
the JDO Identity comparison of the references; this includes containment methods
applied to Collection and Map types. Thus, two objects will compare equal if
they have the same JDO Identity.

• comparisons between persistent and non-persistent instances return not equal.

• equality comparison of instances of non-persistence-capable reference types uses
the equals method of the type; this includes containment methods applied to
Collection and Map types.

• A14.6.2-33 [String methods startsWith and endsWith support wild card
queries but not in a portable way. JDO does not define any special semantic to the
argument passed to the method; in particular, it does not define any wild card
characters.] To achieve portable behavior, applications should use
matches(String).

• A14.6.2-34, A14.6.2-35 [Null-valued fields of Collection types are treated as if
they were empty if a method is called on them. In particular, [-34 they return true
to isEmpty] and [-35 return false to all contains methods.] A14.6.2-36 [For
datastores that support null values for Collection types, it is valid to compare
the field to null. Datastores that do not support null values for Collection
types, will return false if the query compares the field to null.] Datastores that
support null values for Collection types should include the option
"javax.jdo.option.NullCollection" in their list of supported options
(PersistenceManagerFactory.supportedOptions()).

A14.6.2-14,15 [Formulated as: The equal/not equaloperator (== / !=) is supported for the follow-
ing types:

 * byte, short, int, long, char, Byte, Short Integer, Long, Character

 * float, double, Float, Double

 * BigDecimal, BigInteger

 * Boolean, boolean

 * any class instance or array

 * Date, String
 JDO 2.0 137 October 21, 2004

Java Data Objects 2.0
The operation on object-valued fields of wrapper types (Boolean, Byte, Short, Integer, Long, Float,
and Double), and numeric types (BigDecimal and BigInteger) use the wrapped values as operands.
Equality comparison of object-valued fields of PersistenceCapable types use the JDO Identity com-
parison of the references. Thus, two objects will compare equal / not equal if they have the same /
different JDO Identity. Equality comparison of object-valued fields of non-PersistenceCapable types
uses the equals method of the field type.]

A14.6.2-16,17,18,19,25,26,28,29,30,31 [Formulated as: The [>, <, >=, <=, +(unary addition op-
erator), +(binary addition operator), -(binary subtraction operator), -(numeric sign inversion oper-
ator), *, /] operator is supported for all types as they are defined in the Java language. This includes
the following types:

 * byte, short, int, long, char, Byte, Short Integer, Long, Character

 * float, double, Float, Double

 * BigDecimal, BigInteger

The operation on object-valued fields of wrapper types (Boolean, Byte, Short, Integer, Long, Float,
and Double), and numeric types (BigDecimal and BigInteger) use the wrapped values as operands.]

A14.6.2-20,21,22,23,24,32 [Formulated as: The [& (logical AND), &&(conditional AND),
|(logical OR), ||(conditional OR), ~, !] operator is supported for all types as they are defined in
the Java language. This includes the following types:

• *]

Methods

The following methods are supported for their specific types, with semantics as defined by
the Java language:

Table 5: Query Methods

Method Description

contains(Object) applies to Collection types

get(Object) applies to Map types

containsKey(Object) applies to Map types

containsValue(Object) applies to Map types

isEmpty() applies to Map and Collection types

toLowerCase() applies to String type

toUpperCase() applies to String type

indexOf(String) applies to String type; 0-indexing is used

indexOf(String, int) applies to String type; 0-indexing is used

matches(String) applies to String type; only the following regular expression
patterns are required to be supported and are portable: glo-
bal “(?i)” for case-insensitive matches; and “.” and “.*” for
wild card matches. The pattern passed to matches must be a
literal or parameter.

substring(int) applies to String type
 JDO 2.0 138 October 21, 2004

Java Data Objects 2.0
14.6.3 Parameter declaration

The parameter declaration is a String containing one or more parameter type declara-
tions separated by commas. This follows the Java syntax for method signatures.

Parameter types for primitive values can be specified as either the primitive types or the
corresponding wrapper types. If a parameter type is specified as a primitive, the parame-
ter value passed to execute() must not be null or a JDOUserException is thrown.

Parameters must all be declared explicitly via declareParameters or all be declared im-
plicitly in the filter. Parameters implicitly declared (in the result, filter, ordering, grouping,
or range) are identified by prepending a ":" to the parameter everywhere it appears. All pa-
rameter types can be determined by one of the following techniques:

• the parameter is used as the right hand side or left hand side of a boolean operator
(<, <=, ==, >=, or >) and the other side is strongly typed, or

• the parameter is used in a method from Table 5 on page 138 directly as either a
parameter or the object on which the method is called, and the type can be
determined from the context of the method, or

• the parameter is explicitly cast using the cast operator and the cast is identical
everywhere the parameter appears.

Implicit parameter declaration

When parameters are declared implicitly, if the query is string-based, parameters are rec-
ognized in the order that they appear in the query string. If the query is API-based, param-
eters are recognized as if declared explicitly, with the order of their first appearance in the
result, filter, grouping, ordering, and range. This is significant if a positional form of exe-
cute is used.

14.6.4 Import statements

The import statements follow the Java syntax for import statements. Import on demand is
supported.

14.6.5 Variable declaration

The type declarations follow the Java syntax for local variable declarations.

substring(int, int) applies to String type

startsWith(String) applies to String type

endsWith(String) applies to String type

Math.abs(numeric) static method in java.lang.Math, applies to types of float,
double, int, and long

Math.sqrt(numeric) static method in java.lang.Math, applies to double type

JDOHelper.getObjec-
tId(Object)

static method in JDOHelper, allows using the object identity
of an instance directly in a query.

Table 5: Query Methods

Method Description
 JDO 2.0 139 October 21, 2004

Java Data Objects 2.0
A14.6.5-1 [?? A variable that is not constrained with an explicit contains clause is con-
strained by the extent of the persistence capable class (including subclasses).] A14.6.5-2 [??
If the class does not manage an Extent, then no results will satisfy the query.]

If the query result uses a variable, the variable must not be constrained by an extent. Fur-
ther, each side of an "OR" expression must constrain the variable using a contains clause.

A portable query will constrain all variables with a contains clause in each side of an
“OR” expression of the filter where the variable is used. Further, each variable must either
be used in the query result or its contains clause must be the left expression of an
“AND” expression where the variable is used in the right expression. That is, for each oc-
currence of an expression in the filter using the variable, there is a contains clause
“ANDed” with the expression that constrains the possible values by the elements of a col-
lection.

The semantics of contains is “exists”, where the contains clause is used to filter instances.
The meaning of the expression “emps.contains(e) && e.salary < param” is “there exists an
e in the emps collection such that e.salary is less than param”. This is the natural meaning
of contains in the Java language, except where the expression is negated. If the variable is
used in the result, then it need not be constrained.

If the expression is negated, then “!(emps.contains(e) && e.salary < param)” means “there
does not exist an employee e in the collection emps such that e.salary is less than param”.
Another way of expressing this is “for each employee e in the collection emps, e.salary is
greater than or equal to param”. If a variable is used in the result, then it must not be used
in a negated contains clause.

Implicit variable declaration

The variable declaration is unnecessary if all variables are implicitly declared. All variables
must be explicitly declared, or all variables must be implicitly declared.

Names in the filter are treated as parameters if they are explicitly declared via declarePa-
rameters or if they begin with “:”. Names are treated as variable names if they are explicitly
declared via declareVariables. Otherwise, names are treated as field names if they are
members of the candidate class. Finally, names are treated as implicitly defined variable
names.

Variables must be typed. Implicitly defined variables are typed according to the following:

• if the variable is the parameter of a contains method, the type is that of the element
type of the collection; or

• if the variable is the parameter of a containsKey method, the type is that of the key
of the map; or

• if the variable is the parameter of a containsValue method, the type is that of the
value of the map; or

• if the variable is not constrained by a contains, containsKey, or containsValue
method, the variable must be typed by an explicit cast the first time the variable
appears in the filter.

14.6.6 Ordering statement

A14.6.6-1 [?? The ordering statement is a String containing one or more ordering decla-
rations separated by commas. Each ordering declaration is a Java expression of an order-
able type:

• primitives (boolean is non-portable);
 JDO 2.0 140 October 21, 2004

Java Data Objects 2.0
• wrappers (Boolean is non-portable);

• BigDecimal;

• BigInteger;

• String;

• Date

followed by one of the following words: “ascending”, “descending”,“asc”, or
“desc”.

Ordering might be specified including navigation. The name of the field to be used in or-
dering via navigation through single-valued fields is specified by the Java language syntax
of field_name.field_name....field_name.]

The result of the first (leftmost) expression is used to order the results. If the leftmost ex-
pression evaluates the same for two or more elements, then the second expression is used
for ordering those elements. If the second expression evaluates the same, then the third ex-
pression is used, and so on until the last expression is evaluated. If all of the ordering ex-
pressions evaluate the same, then the ordering of those elements is unspecified.

The ordering of instances containing null-valued fields specified by the ordering is not
specified. Different JDO implementations might order the instances containing null-val-
ued fields either before or after instances whose fields contain non-null values.

Ordering of boolean fields, if supported by the implementation, is false before true, un-
less descending is specified. Ordering of null-valued Boolean fields is as above.

14.6.7 Closing Query results

When the application has finished with the query results, it might optionally close the re-
sults, allowing the JDO implementation to release resources that might be engaged, such
as database cursors or iterators. The following methods allow early release of these re-
sources.

void close (Object queryResult);

A14.6.7-1 [This method closes the result of one execute(...) method, and releases re-
sources associated with it. After this method completes, the query result can no longer be
used, for example to iterate the returned elements. Any elements returned previously by
iteration of the results remain in their current state. Any iterators acquired from the que-
ryResult will return false to hasNext() and will throw NoSuchElementExcep-
tion to next().]

void closeAll ();

A14.6.7-2 [This method closes all results of execute(...) methods on this Query in-
stance, as above. The Query instance is still valid and can still be used.]

14.6.8 Limiting the Cardinality of the Query Result

The application may want to skip some number of results that may have been previously
returned, and additionally may want to limit the number of instances returned from a que-
ry. The parameters are modeled after String.getChars and are 0-origin. The parame-
ters are not saved if the query is serialized. The default range for query execution if this
method is not called are (0, Long.MAX_VALUE).

setRange(long fromIncl, long toExcl);
 JDO 2.0 141 October 21, 2004

Java Data Objects 2.0
The fromIncl parameter is the number of instances of the query result to skip over before
returning the Collection to the user. If specified as 0 (the default), no instances are
skipped.

The toExcl parameter is the last instance of the query result (before skipping) to return
to the user.

The expression (toExcl - fromIncl) is the maximum number of instances in the que-
ry result to be returned to the user. If fewer instances are available, then fewer instances
will be returned. If ((toExcl - fromIncl)<= 0) evaluates to true ,

• if the result of the query execution is a Collection, the returned Collection
contains no instances, and an Iterator obtained from the Collection returns
false to hasNext().

• if the result of the query execution is a single instance (setUnique(true)), it will
have a value of null.

14.6.9 Specifying the Result of a Query (Projections, Aggregates)

The application might want to get results from a query that are not instances of the candi-
date class. The results might be fields of persistent instances, instances of classes other than
the candidate class, or aggregates of fields.

void setResult(String result);

The result parameter consists of the optional keyword distinct followed by a comma-
separated list of named result expressions or a result class specification.

A result class specification consists of the keyword new followed by the name of a result
class and a comma-separated parenthesis-enclosed list of named result expressions. See
14.6.12 for a detailed description of the result class specification.

Distinct results

If distinct is specified, the query result does not include any duplicates. If the result pa-
rameter specifies more than one result expression, duplicates are those with matching val-
ues for each result expression.

Queries against an extent always consider only distinct candidate instances, regardless of
whether distinct is specified. Queries against a collection might contain duplicate can-
didate instances; the distinct keyword removes duplicates from the candidate collec-
tion in this case.

Regardless of the distinct specification, relational database implementations must re-
move duplicates that result from joins. In all cases, the distinct specification requires re-
moving duplicates from projected expressions.

If a variable or a field of a variable is included in the result, either directly or via navigation
through the variable, then the semantics of the “contains” clause that include the variable
change. In this case, all values of the variable that satisfy the filter are included in the result.

The result expressions include:

• “this”: indicates that the candidate instance is returned

• <field>: this indicates that a field is returned as a value; the field might be in the
candidate class or in a class referenced by a variable

• <variable>: this indicates that a variable’s value is returned as a persistent instance

• <aggregate>: this indicates that an aggregate of multiple values is returned
 JDO 2.0 142 October 21, 2004

Java Data Objects 2.0
• count(<expression>): the count of the number of instances of this expression is
returned; the expression can be “this” or a variable name

• sum(<numeric field expression>): the sum of field expressions is returned
• min(<field expression>): the minimum value of the field expressions is returned
• max(<field expression>): the maximum value of the field expressions is returned
• avg(<numeric field expression>): the average value of all field expressions is

returned
• <field expression>: the value of a numeric expression using any of the numeric

operators allowed in queries applied to fields is returned

• <navigational expression>: this indicates a navigational path through single-
valued fields or variables as specified by the Java language syntax; the
navigational path starts with the keyword “this”, a variable, a parameter, or a field
name followed by field names separated by dots.

• <parameter>: one of the parameters provided to the query.

The result expression can be explicitly cast using the (cast) operator.

Named Result Expressions

<result expression> as <name>: identify the <result expression> (any of the result expres-
sions specified above) as a named element for the purpose of matching a method or field
name in the result class.

If the name is not specified explicitly, the default for name is the expression itself.

Aggregate Types

Count returns Long.

Sum returns Long for integral types and the field’s type for other Number types (BigDec-
imal, BigInteger, Float, and Double). Sum is invalid if applied to non-Number types.

Avg, min, and max return the type of the expression.

Primitive Types

If a result expression has a primitive type, its value is returned as an instance of the corre-
sponding java wrapper class.

Null Results

If the returned value from a query specifying a result is null, this indicates that the ex-
pression specified as the result was null. Note that the semantics of this result are differ-
ent from the returned value where no instances satisfied the filter.

Default Result

If not specified, the result defaults to “distinct this as C” where C is the unqualified
name of the candidate class. For example, the default result specification for a query where
the candidate class is com.acme.hr.Employee is “distinct this as Employee”.

14.6.10 Grouping Aggregate Results

Aggregates are most useful if they can be grouped based on an element of the result.
Grouping is required if there are non-aggregate expressions in the result.

void setGrouping(String grouping);

The grouping parameter consists of one or more expressions separated by commas fol-
lowed by an optional “having” followed by one Boolean expression. When grouping is
specified, each result expression must be one of:
 JDO 2.0 143 October 21, 2004

Java Data Objects 2.0
• an expression contained in the grouping expression; or,

• an aggregate expression evaluated once per group.

The query groups all elements where all expressions specified in setGrouping have the
same values. The query result consists of one element per group.

When “having” is specified, the “having” expression consists of arithmetic and boolean
expressions containing aggregate expressions.

14.6.11 Specifying Uniqueness of the Query Result

If the application knows that there can be exactly zero or one instance returned from a que-
ry, the result of the query is most conveniently returned as an instance (possibly null) in-
stead of a Collection.

void setUnique(boolean unique);

When the value of the Unique flag is true, then the result of a query is a single value, with
null used to indicate that none of the instances in the candidates satisfied the filter. If
more than one instance satisfies the filter, and the range is not limited to one result, then
execute throws a JDOUserException.

Default Unique setting

The default Unique setting is true for aggregate results without a grouping expression,
and false otherwise.

14.6.12 Specifying the Class of the Result

The application may have a user-defined class that best represents the results of a query.
In this case, the application can specify that instances of this class should be returned.

void setResultClass(Class resultClass);

The default result class is the candidate class if the parameter to setResult is null or
not specified. When the result is specified and not null, the default result class is the type
of the expression if the result consists of one expression, or Object[] if the result consists
of more than one expression.

Result Class Requirements

• The result class may be one of the java.lang classes Character, Boolean,
Byte, Short, Integer, Long, Float, Double, String, or Object[]; or one of
the java.math classes BigInteger or BigDecimal; or the java.util class
Date; or one of the java.sql classes Date, Time, or Timestamp.

• If there are multiple result expressions, the result class must be able to hold all
elements of the result specification or a JDOUserException is thrown.

• If there is only one result expression, the result class must be assignable from the
type of the result expression or must be able to hold all elements of the result
specification. A single value must be able to be coerced into the specified result
class (treating wrapper classes as equivalent to their unwrapped primitive types)
or by matching. If the result class does not satisfy these conditions, a
JDOUserException is thrown.

• A constructor of a result class specified in the setResult method will be used if
the results specification matches the parameters of theconstructor. If more than
one constructor satisfies the requirements, the JDO implementation chooses one of
them. If no constructor satisfies the results requirements, or if the result class is
specified via the setResultClass method, the following requirements apply:
 JDO 2.0 144 October 21, 2004

Java Data Objects 2.0
• A user-defined result class must have a no-args constructor and one or more
public “set” methods or fields.

• Each result expression must match one of:
• a public field that matches the name of the result expression and is of the type

(treating wrapper types the same as primitive types) of the result expression;

• or if no public field matches the name and type, a public “set” method that returns
void and matches the name of the result expression and takes a single parameter
which is the exact type of the result expression.

• Portable result classes do not invoke any persistence behavior during their no-args
constructor or “set” methods.

14.6.13 Single-string Query element binding

The String version of Query represents all query elements using a single string. The string
contains the following structure:

select [unique] <result> [into <result-class>]

[from <candidate-class> [exclude subclasses]]

[where <filter>]

[variables <variable-list>]

[parameters <parameter-list>]

[imports <import-list>]

[group by <grouping-clause> [having <having-clause>]]

[order by <ordering-clause>]

[range <from-range> to <to-range>]

The select clause must be the first clause in the query.

The order of the other clauses must be as described above.

If implicit parameters are used, their order of appearance in the query determines their or-
der for binding to positional parameters for execution.

<result> is the result as in 14.6.9.

Table 6: Shape of Result (C is the candidate class)

setResult setResultClass setUnique shape of result

null, or “this as C” null false Collection<C>

null, or “this as C” null true C

not null, one result expression of type T null false Collection<T>

not null, one result expression of type T null true T

not null, more than one result expression null false Collection<Object[]>

not null, more than one result expression null true Object[]

null or not null UserResult.class false Collection<UserResult>

null or not null UserResult.class true UserResult
 JDO 2.0 145 October 21, 2004

Java Data Objects 2.0
<result-class> is the result class as in 14.6.12.

<filter> is the filter as in 14.6.2.

<variable-list> is the variable declaration as in 14.6.5.

<parameter-list> is the parameter declaration as in 14.6.3.

<import-list> is the imports declaration as in 14.6.4.

<grouping> is the grouping specification as in 14.6.10.

<ordering> is the ordering specification as in 14.6.6.

<having> is the having expression as in 14.6.10.

<from-range> and <to-range> are as in 14.6.8.

14.7 SQL Queries

If the developer knows that the underlying datasource supports SQL, and knows the map-
ping from the JDO domain model to the SQL schema, it might be convenient in some cases
to execute SQL instead of expressing the query as JDOQL. In this case, the factory method
that takes the language string and Object is used: newQuery (String language, Ob-
ject query). The language parameter is “javax.jdo.query.SQL” and the query parame-
ter is the SQL query string.

The SQL query string must be well-formed. The JDO implementation must not make any
changes to the query string. The tokens “?” must be used to identify parameters in the SQL
query string.

When this factory method is used, the behavior of the Query instance changes significant-
ly. The only methods that can be used are setClass to establish the candidate class, se-
tUnique to declare that there is only one result row, and setResultClass to establish
the result class.

• there is no filter, and the setFilter method throws JDOUserException.

• there is no ordering specification, and the setOrdering method throws
JDOUserException.

• there are no variables, and the declareVariables method throws
JDOUserException.

• the parameters are untyped, and the declareParameters method throws
JDOUserException.

• there is no grouping specification, and the setGrouping method throws
JDOUserException.

• the candidate collection can only be the Extent of instances of the candidate class,
including subclasses, and the setCandidates method throws
JDOUserException.

• parameters are bound by position. If the parameter list is an Object[] then the
first element in the array is bound to the first “?” in the SQL statement, and so
forth. If the parameter list is a Map, then the keys of the Map must be instances of
Integer whose intValue is 1..n. The value in the Map corresponding to the key
whose intValue is 1 is bound to the first “?” in the SQL statement, and so forth.

• there are no imports, and the declareImports method throws
JDOUserException.
 JDO 2.0 146 October 21, 2004

Java Data Objects 2.0
• for queries in which the candidate class is specified, the columns selected in the
SQL statement must at least contain the primary key columns of the mapped
candidate class, and additionally the discriminator column if defined and the
version column(s) if defined.

• results are taken from the SELECT clause of the query, and the setResult
method throws JDOUserException.

• the cardinality of the result is determined by the SQL query itself, and the
setRange method throws JDOUserException.

SQL queries can be defined without a candidate class. These queries can be found by name
using the factory method newNamedQuery, specifying the class as null, or can be con-
structed without a candidate class. SQL queries without a candidate class can specify a re-
sult class; the default result class is Collection<Object[]> if the unique flag is false,
and Object[] if it is true.

14.8 Deletion by Query

An application may want to delete a number of instances in the datastore without instan-
tiating them in memory. The instances to be deleted can be described by a query.

Object deletePersistentAll(Object[] parameters);

Object deletePersistentAll(Map parameters);

Object deletePersistentAll();

These methods delete the instances of the candidate class that pass the filter. The instances
deleted are returned as a Collection or as a single instance depending on the setting of

Table 7: Shape of Result of SQL Query

Candidate
class

Selected columns setResultClass setUnique shape of result

C must include primary
key columns

null false Collection<C>

C must include primary
key columns

null true C

null single column of type T null false Collection<T>

null single column of type T null true T

null more than one result
column

null false Collection<Object[]>

null more than one result
column

null true Object[]

null or not null UserResult.class false Collection<UserResult>

null or not null UserResult.class true UserResult
 JDO 2.0 147 October 21, 2004

Java Data Objects 2.0
the unique flag. If the application does not iterate the returned Collection, no adverse
performance effects should occur.

Query elements filter, parameters, imports, variables, and unique are valid in
queries used for delete. Elements result, result class, range, grouping, and or-
dering are invalid. If any of these elements is set to its non-default value when one of the
deletePersistentAll methods is called, an exception is thrown and no instances are
deleted.

If the candidate class implements the DeleteCallback interface, the instances to be de-
leted are instantiated in memory and the jdoPreDelete method is called prior to delet-
ing the instance in the datastore.

Instances already in the cache when deleted via these methods or brought into the cache
as a result of these methods undergo the life cycle transitions as if deletePersistent
had been called on them.

14.9 Extensions

Some JDO vendors provide extensions to the query, and these extensions must be set in
the query instance prior to execution.

void setExtensions(Map extensions);

This method replaces all current extensions with the extensions contained as entries in the
parameter Map. A parameter value of null means to remove all extensions. The keys are
immediately evaluated; entries where the key refers to a different vendor are ignored; en-
tries where the key prefix matches this vendor but where the full key is unrecognized
cause a JDOUserException to be thrown. The extensions become part of the state of the
Query instance that is serialized. The parameter Map is not used after the method returns.

void addExtension(String key, Object value);

This method adds one extension to the Query instance. This extension will remain until
the next setExtensions method is called, or addExtension with an equal key. Key rec-
ognition behavior is identical to setExtensions.

14.10 Examples:

The following class definitions for persistence capable classes are used in the examples:

package com.xyz.hr;

class Employee {

String name;

Float salary;

Department dept;

Employee boss;

}

package com.xyz.hr;

class Department {

String name;

Collection emps;
 JDO 2.0 148 October 21, 2004

Java Data Objects 2.0
}

14.10.1 Basic query.

This query selects all Employee instances from the candidate collection where the salary
is greater than the constant 30000.

Note that the float value for salary is unwrapped for the comparison with the literal
int value, which is promoted to float using numeric promotion. If the value for the
salary field in a candidate instance is null, then it cannot be unwrapped for the com-
parison, and the candidate instance is rejected.

Query q = pm.newQuery (Employee.class, “salary > 30000”);

Collection emps = (Collection) q.execute ();

14.10.2 Basic query with ordering.

This query selects all Employee instances from the candidate collection where the salary
is greater than the constant 30000, and returns a Collection ordered based on employee
salary.

Query q = pm.newQuery (Employee.class, “salary > 30000”);

q.setOrdering (“salary ascending”);

Collection emps = (Collection) q.execute ();

14.10.3 Parameter passing.

This query selects all Employee instances from the candidate collection where the salary
is greater than the value passed as a parameter.

If the value for the salary field in a candidate instance is null, then it cannot be un-
wrapped for the comparison, and the candidate instance is rejected.

Query q = pm.newQuery (Employee.class, “salary > sal”);

q.declareParameters (“Float sal”);

Collection emps = (Collection) q.execute (new Float (30000.));

14.10.4 Navigation through single-valued field.

This query selects all Employee instances from the candidate collection where the value of
the name field in the Department instance associated with the Employee instance is equal
to the value passed as a parameter.

If the value for the dept field in a candidate instance is null, then it cannot be navigated
for the comparison, and the candidate instance is rejected.

Query q = pm.newQuery (Employee.class, “dept.name == dep”);

q.declareParameters (“String dep”);

String rnd = “R&D”;

Collection emps = (Collection) q.execute (rnd);

14.10.5 Navigation through multi-valued field.

This query selects all Department instances from the candidate collection where the col-
lection of Employee instances contains at least one Employee instance having a salary
greater than the value passed as a parameter.

String filter = “emps.contains (emp) & emp.salary > sal”;
 JDO 2.0 149 October 21, 2004

Java Data Objects 2.0
Query q = pm.newQuery (Department.class, filter);

q.declareParameters (“float sal”);

q.declareVariables (“Employee emp”);

Collection deps = (Collection) q.execute (new Float (30000.));

14.10.6 Membership in a collection

This query selects all Department instances where the name field is contained in a pa-
rameter collection, which in this example consists of three department names.

String filter = “depts.contains(name)”;

Query q = pm.newQuery (Department.class, filter);

List depts =

Arrays.asList(new String [] {“R&D”, “Sales”, “Marketing”});

q.declareParameters (“Collection depts”);

Collection deps = (Collection) q.execute (depts);

14.10.7 Projection of a Single Field

This query selects names of all Employees who work in the parameter department.

Query q = pm.newQuery (Employee.class, “dept.name == deptName”);

q.declareParameters (“String deptName”);

q.setResult(“name”);

Collection names = (Collection) q.execute(“R&D”);

Iterator it = names.iterator();

while (it.hasNext()) {

String name = (String) it.next();

...

}

14.10.8 Projection of Multiple Fields and Expressions

This query selects names, salaries, and bosses of Employees who work in the parameter
department.

class Info {

public String name;

public Float salary;

public Employee reportsTo;

}

Query q = pm.newQuery (Employee.class, “dept.name == deptName”);

q.declareParameters (“String deptName”);

q.setResult(“name, salary, boss as reportsTo”);

q.setResultClass(Info.class);

Collection names = (Collection) q.execute(“R&D”);

Iterator it = names.iterator();
 JDO 2.0 150 October 21, 2004

Java Data Objects 2.0
while (it.hasNext()) {

Info info = (Info) it.next();

String name = info.name;

Employee boss = info.reportsTo;

...

}

14.10.9 Aggregation of a single Field

This query averages the salaries of Employees who work in the parameter department
and returns a single value.

Query q = pm.newQuery (Employee.class, “dept.name == deptName”);

q.declareParameters (“String deptName”);

q.setResult(“avg(salary)”);

Float avgSalary = (Float) q.execute(“R&D”);

14.10.10 Aggregation of Multiple Fields and Expressions

This query averages and sums the salaries of Employees who work in the parameter de-
partment.

Query q = pm.newQuery (Employee.class, “dept.name == deptName”);

q.declareParameters (“String deptName”);

q.setResult(“avg(salary), sum(salary)”);

Object[] avgSum = Object[] q.execute(“R&D”);

Float average = (Float)avgSum[0];

Float sum = (Float)avgSum[1];

14.10.11 Aggregation of Multiple fields with Grouping

This query averages and sums the salaries of Employees who work in all departments
having more than one employee and aggregates by department name.

Query q = pm.newQuery (Employee.class);

q.setResult(“avg(salary), sum(salary), dept.name”);

q.setGrouping(“dept.name having count(dept.name) > 1”);

Collection results = (Collection)q.execute();

Iterator it = results.iterator();

while (it.hasNext()) {

Object[] info = (Object[]) it.next();

Float average = (Float)info[0];

Float sum = (Float)info[1];

String deptName = (String)info[2];

...

}

 JDO 2.0 151 October 21, 2004

Java Data Objects 2.0
14.10.12 Selection of a Single Instance

This query returns a single instance of Employee.

Query q = pm.newQuery (Employee.class, “name == empName”);

q.declareParameters (“String empName”);

q.setUnique(true);

Employee emp = (Employee) q.execute(“Michael”);

14.10.13 Selection of a Single Field

This query returns a single field of a single Employee.

Query q = pm.newQuery (Employee.class, “name == empName”);

q.declareParameters (“String empName”);

q.setResult(“salary”);

q.setResultClass(Float.class);

q.setUnique(true);

Float salary = (Float) q.execute (“Michael”);

14.10.14 Projection of “this” to User-defined Result Class with Matching Field

This query selects instances of Employee who make more than the parameter salary and
stores the result in a user-defined class. Since the default is “distinct this as Employee”, the
field must be named Employee and be of type Employee.

class EmpWrapper {

public Employee Employee;

}

Query q = pm.newQuery (Employee.class, “salary > sal”);

q.declareParameters (“Float sal”);

q.setResultClass(EmpWrapper.class);

Collection infos = (Collection) q.execute (new Float (30000.));

Iterator it = infos.iterator();

while (it.hasNext()) {

EmpWrapper info = (EmpWrapper)it.next();

Employee e = info.Employee;

...

}

14.10.15 Projection of “this” to User-defined Result Class with Matching Method

This query selects instances of Employee who make more than the parameter salary and
stores the result in a user-defined class.

class EmpInfo {

private Employee worker;

public Employee getWorker() {return worker;}
 JDO 2.0 152 October 21, 2004

Java Data Objects 2.0
public void setEmployee(Employee e) {worker = e;}

}

Query q = pm.newQuery (Employee.class, “salary > sal”);

q.declareParameters (“Float sal”);

q.setResultClass(EmpInfo.class);

Collection infos = (Collection) q.execute (new Float (30000.));

Iterator it = infos.iterator();

while (it.hasNext()) {

EmpInfo info = (EmpInfo)it.next();

Employee e = info.getWorker();

...

}

14.10.16 Projection of variables

This query returns the names of all Employees of all "Research" departments:

Query q = pm.newQuery(Department.class);

q.declareVariables("Employee e");

q.setFilter("name.startsWith('Research') && emps.contains(e)");

q.setResult(e.name);

Collection names = q.execute();

Iterator it = names.iterator();

while (it.hasNext()) {

String name = (String)it.next();

...

}

14.10.17 Deleting Multiple Instances

This query deletes all Employees who make more than the parameter salary.

Query q = pm.newQuery (Employee.class, “salary > sal”);

q.declareParameters (“Float sal”);

q.deletePersistentAll(new Float(30000.));
 JDO 2.0 153 October 21, 2004

Java Data Objects 2.0
15 Object-Relational Mapping

JDO is datastore-independent. However, many JDO implementations support storage of
persistent instances in relational databases, and this storage requires that the domain ob-
ject model be mapped to the relational schema. The mapping strategies for simple cases
are for the most part the same from one JDO implementation to another. For example, typ-
ically a class is mapped to one or more tables, and fields are mapped to one or more col-
umns.

The most common mapping paradigms are standardized, which allows users to define
their mapping once and use the mapping for multiple implementations.

Mapping Overview

Mapping between the domain object model and the relational database schema is specified
from the perspective of the object model. Each class is mapped to a primary table and pos-
sibly multiple secondary tables and multiple join tables. Fields in the class are mapped to
columns in either the primary table, secondary tables, or join tables. Simple field types typ-
ically map to single columns. Complex field types (Collections, Maps, and arrays) typ-
ically map to multiple columns.

Secondary tables represent non-normalized tables that contain zero or one row corre-
sponding to each row in the primary table, and contain field values for the persistent class.
These tables might be modeled as one-to-one relationships, but they can be modeled as
containing nullable field values instead.

Secondary tables might be used by a single field mapping or by multiple field mappings.
If used by a single field mapping, the join conditions linking the primary and secondary
table might be specified in the field mapping itself. If used by multiple field mappings, the
join conditions might be specified in each field mapping or specified in the class mapping.

Complex field types are mapped by mapping each of the components individually. Col-
lections map the element and optional order components. Maps map the key and value
components. Arrays map the element and order components.

15.1 Column Elements

Column elements used for simple, non-relationship field value mapping specify at least
the column name. The field value is loaded from the value of the named column.

The column element might contain additional information about the column, for use in
generating schema. This might include the scale and precision for numeric types, the max-
imum length for variable-length field types, the jdbc type of the column, or the sql type of
the column. This information is ignored for runtime use, with the following exception: if
the jdbc type of the column does not match the default jdbc type for the field's class (for
example, a String field is mapped to a CLOB rather than a VARCHAR column), the jdbc
type information is required at runtime.

Column elements that contain only the column name can be omitted, if the column name
is instead contained in the enclosing element. Thus, a field element is defined to allow a
 JDO 2.0 154 October 21, 2004

Java Data Objects 2.0
column attribute if only the name is needed, or a column element if more than the name is
needed. If both column attribute and column element are specified for any element, it is a
user error.

Example 1

This example demonstrates mappings between fields and value columns.

CREATE TABLE ADDR (

 STREET VARCHAR(255) PRIMARY KEY,

 CITY VARCHAR(255),

 STATE CHAR(2),

 ZIPCODE VARCHAR(10),

 DELIV_INS CLOB

)

<orm>

 <package name="com.xyz">

 <class name="Address" table="ADDR">

 <field name="street" column="STREET"/>

 <field name="city" column="CITY"/>

 <field name="state" column="STATE"/>

 <field name="zip" column="ZIPCODE"/>

 <field name"deliveryInstructions"

default-fetch-group=”false”>

 <column name="DELIV_INS" jdbc-type="CLOB"/>

 </field>

 </class>

 </package>

</orm>
 JDO 2.0 155 October 21, 2004

Java Data Objects 2.0
15.2 Join Condition

Secondary tables and join tables are mapped using a join condition that associates a col-
umn or columns in the secondary or join table with a column or columns in the primary
table, typically the primary table’s primary key columns.

Column elements used for relationship mapping or join conditions specify the column
name and optionally the target column name. The target column name is the name of the
column in the associated table corresponding to the named column. The target column
name is optional when the target column is the single primary key column of the associat-
ed table.

NOTE: This usage of column elements is fundamentally different from the usage of column
elements for value mapping. For value mapping, the name attribute names the column that
contains the value to be used. For join conditions, the name attribute names the column
that contains the reference data to be joined to the primary key column of the target.

Example 2

This example demonstrates the use of <join> elements to represent join conditions linking
a class' primary table and secondary tables used by fields.

CREATE TABLE ADDR (

 STREET VARCHAR(255) PRIMARY KEY,

 CITY VARCHAR(255),

 STATE CHAR(2),

 ZIPCODE VARCHAR(10)

)

CREATE TABLE DELIV (

 ADDR_STREET VARCHAR(255),

 SIG_REQUIRED BIT,

 DELIV_INS CLOB

)

CREATE TABLE MAP (

 ADDR_STREET VARCHAR(255),
 JDO 2.0 156 October 21, 2004

Java Data Objects 2.0
 MAP_IMG BLOB

)

<orm>

<package name="com.xyz">

<class name="Address" table="ADDR">

<!-- shared join condition used by fields in DELIV -->

<join table="DELIV" column="ADDR_STREET"/>

<field name="street" column="STREET"/>

<field name="city" column="CITY"/>

<field name="state" column="STATE"/>

<field name="zip" column="ZIPCODE"/>

<field name="signatureRequired" table="DELIV"

column="SIG_REQUIRED"/>

<field name"deliveryInstructions" table="DELIV"

default-fetch-group=”false”>

<column name="DELIV_INS" jdbc-type="CLOB"/>

</field>

<field name="mapJPG" table="MAP" column="MAP_IMG"

default-fetch-group=”false”>

<!-- join condition defined for this field only -->

<join column="ADDR_STREET"/>

</field>

</class>

</package>

</orm>

Example 3

This example uses the <join> element to map a Map<Date,String> field to a join table.
Note that in this example, the primary table has a compound primary key, requiring the
use of the target attribute in join conditions.
 JDO 2.0 157 October 21, 2004

Java Data Objects 2.0
CREATE TABLE ADDR (

 STREET VARCHAR(255),

 CITY VARCHAR(255),

 STATE CHAR(2),

 ZIPCODE VARCHAR(10),

 PRIMARY KEY (STREET, ZIPCODE)

)

CREATE TABLE DELIV_RECORDS (

 ADDR_STREET VARCHAR(255),

 ADDR_ZIPCODE VARCHAR(10),

 DELIV_DATE TIMESTAMP,

 SIGNED_BY VARCHAR(255)

)

<orm>

<package name="com.xyz">

<class name="Address" table="ADDR">

<field name="street" column="STREET"/>

<field name="city" column="CITY"/>

<field name=”state” column=”STATE”/>

<field name="zip" column="ZIPCODE"/>

<!-- field type is Map<Date,String> -->

<field name="deliveryRecords" table="DELIV_RECORDS">

<join>

<column name="ADDR_STREET" target="STREET"/>

<column name="ADDR_ZIPCODE" target="ZIPCODE"/>

</join>

<key column="DELIV_DATE"/>
 JDO 2.0 158 October 21, 2004

Java Data Objects 2.0
<value column="SIGNED_BY"/>

</field>

</class>

</package>

</orm>

15.3 Relationship Mapping

Column elements used for relationship mapping are contained in either the field element
directly in the case of a simple reference, or in one of the collection, map, or array elements
contained in the field element.

In case only the column name is needed for mapping, the column name might be specified
in the field, collection, or array element directly instead of requiring a column element
with only a name.

If two relationships (one on each side of an association) are mapped to the same column,
the field on only one side of the association needs to be explicitly mapped. The field on the
other side of the relationship can be mapped simply by identifying the field on the other
side that defines the mapping, using the mapped-by attribute. There is no further relation-
ship implied by having both sides of the relationship map to the same database column(s).
In particular, making a change to one side of the relationship does not imply any runtime
behavior by the JDO implementation to change the other side of the relationship in mem-
ory, although the column(s) will be changed during commit and will therefore be visible
by both sides in the next transaction.

Example 4

A many-one mapping (Employee has a reference to Department).

CREATE TABLE EMP (

 SSN CHAR(10) PRIMARY KEY,

 DEP_NAME VARCHAR(255)

)

CREATE TABLE DEP (

 NAME VARCHAR(255) PRIMARY KEY

)

 JDO 2.0 159 October 21, 2004

Java Data Objects 2.0
<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

<!-- field type is Department -->

<field name="department" column="DEP_NAME"/>

</class>

<class name="Department" table="DEP">

<field name="name" column="NAME"/>

</class>

</package>

</orm>

Example 5

A one-many mapping (Department has a collection of Employees). This example uses the
same schema as Example 4.

<orm>

<package name="com.xyz">

<class name="Department" table="DEP">

<field name="name" column="NAME"/>

<!-- field type is Collection<Employee> -->

<field name="employees">

<element column="DEP_NAME"/>

</field>

</class>

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

</class>

</package>
 JDO 2.0 160 October 21, 2004

Java Data Objects 2.0
</orm>

Example 6

If both the Employee.department and Department.employees fields exist, only one needs
to be mapped. The Department side is marked as being mapped by a field on the Employ-
ee side. This example uses the same schema as Example 4.

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

<field name="department" column="DEP_NAME"/>

</class>

<class name="Department" table="DEP">

<field name="name" column="NAME"/>

<field name="employees" mapped-by="department"/>

</class>

</package>

</orm>

Example 7

This example mirrors Example 6, but now Department has a compound primary key.
 JDO 2.0 161 October 21, 2004

Java Data Objects 2.0
CREATE TABLE EMP (

 SSN CHAR(10) PRIMARY KEY,

 DEP_NAME VARCHAR(255),

 DEP_ID BIGINT

)

CREATE TABLE DEP (

 NAME VARCHAR(255),

 ID BIGINT,

 PRIMARY KEY (NAME, DEP_ID)

)

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

<field name="department">

<column name="DEP_NAME" target="NAME"/>

<column name="DEP_ID" target="ID"/>

</field>

</class>

<class name="Department" table="DEP">

<field name="name" column="NAME"/>

<field name="id" column="ID"/>

<field name="employees" mapped-by="department"/>

</class>

</package>

</orm>

Example 8

Employee has a Map<Department, String> mapping each department the employee is a
member of to her position within that department. Department still has a compound pri-
mary key.
 JDO 2.0 162 October 21, 2004

Java Data Objects 2.0
CREATE TABLE EMP (

 SSN CHAR(10) PRIMARY KEY

)

CREATE TABLE DEP (

 NAME VARCHAR(255),

 ID BIGINT,

 PRIMARY KEY (NAME, DEP_ID)

)

CREATE TABLE EMP_POS (

 EMP_SSN CHAR(10),

 DEP_NAME VARCHAR(255)

 DEP_ID BIGINT,

 POS VARCHAR(255)

)

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

<!-- field type is Map<Department, String> -->

<field name="positions" table="EMP_POS">

<join column="EMP_SSN"/>

<key>

<column name="DEP_NAME" target="NAME"/>

<column name="DEP_ID" target="ID"/>

</key>

<value column="POS"/>
 JDO 2.0 163 October 21, 2004

Java Data Objects 2.0
</field>

</class>

<class name="Department" table="DEP">

<field name="name" column="NAME"/>

<field name="id" column="ID"/>

</class>

</package>

</orm>

15.4 Embedding

Some of the columns in a table might be mapped as a separate Java class to better match
the object model. Embedding works to arbitrary depth.

Example 9

Employee has a reference to a business address, which is a standard many-one. Employee
also has a primary Address, whose data is embedded within the Employee record. Finally,
Employee has a List<Address> of secondary Address references, whose data is embedded
in the join table.

CREATE TABLE ADDR (

 STREET VARCHAR(255) PRIMARY KEY,

 CITY VARCHAR(255),

 STATE CHAR(2),

 ZIPCODE VARCHAR(10)

)

CREATE TABLE EMP (

 SSN CHAR(10) PRIMARY KEY,

 BUSADDR_STREET VARCHAR(255),

 PADDR_STREET VARCHAR(255),

 PADDR_CITY VARCHAR(255),

 PADDR_STATE CHAR(2),
 JDO 2.0 164 October 21, 2004

Java Data Objects 2.0
 PADDR_ZIPCODE VARCHAR(10)

)

CREATE TABLE EMP_ADDRS (

 EMP_SSN CHAR(10),

 IDX INTEGER,

 SADDR_STREET VARCHAR(255),

 SADDR_CITY VARCHAR(255),

 SADDR_STATE CHAR(2),

 SADDR_ZIPCODE VARCHAR(10)

)

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

<!-- field type is Address -->

<field name="businessAddress" column="BUSADDR_STREET"/>

<!-- field type is Address -->

<field name="primaryAddress">

<embedded null-indicator-column="PADDR_STREET">

<field name="street" column="PADDR_STREET"/>

<field name="city" column="PADDR_CITY"/>

<field name="state" column="PADDR_STATE"/>

<field name="zip" column="PADDR_ZIPCODE"/>

</embedded>

</field>

<!-- field type is List<Address> -->

<field name="secondaryAddresses" table="EMP_ADDRS">

<join column="EMP_SSN"/>

<element>

<embedded>

<field name="street" column="SADDR_STREET"/>

<field name="city" column="SADDR_CITY"/>

<field name="state" column="SADDR_STATE"/>

<field name="zip" column="SADDR_ZIPCODE"/>

</embedded>

</element>

<order column="IDX"/>
 JDO 2.0 165 October 21, 2004

Java Data Objects 2.0
</field>

</class>

</package>

</orm>

15.5 Foreign Keys

Foreign keys in metadata serve two quite different purposes. First, when generating sche-
ma, the foreign key element identifies foreign keys to be generated. Second, when using
the database, foreign key elements identify foreign keys that are assumed to exist in the
database. This is important for the runtime to properly order insert, update, and delete
statements to avoid constraint violations.

A foreign-key element can be contained by a field, element, key, value, or join ele-
ment, if all of the columns mapped are to be part of the same foreign key.

A foreign-key element can be contained within a class element. In this case, the column el-
ements are mapped elsewhere, and the column elements contained in the foreign-key ele-
ment have only the column name.

Delete Action

Foreign keys represent a consistency constraint in the database that must be maintained.
The user can specify by the value of the delete-action attribute what happens if the target
row of a foreign key is deleted.

• “restrict” (the default): the user is required to explicitly make the relationship valid
by application code

• “cascade”: the database will automatically delete all rows that refer to the row
being deleted

• “null”: the database will automatically nullify the columns in all rows that refer to
the row being deleted

• “default”: the database will automatically set the columns in all rows that refer to
the row being deleted to their default value

Update Action

The user can specify by the update-action attribute what happens if the target row of a for-
eign key is updated:

• “restrict” (the default): the user is required to explicitly make the relationship valid
by application code

• “cascade”: the database will automatically update all rows that refer to the row
being updated

• “default”: the database will automatically set the columns in all rows that refer to
the row being updated to their default value

Deferred Constraint Checking

The deferred attribute specifies whether the foreign key constraint is defined to be checked
only at commit time.
 JDO 2.0 166 October 21, 2004

Java Data Objects 2.0
Unique Foreign Key

The unique attribute specifies whether the foreign key constraint is defined to be a unique
constraint as well. This is most often used with one-to-one mappings.

Example 10

A many-one relation from Employee to Department, represented by a standard restrict-ac-
tion database foreign key.

CREATE TABLE EMP (

 SSN CHAR(10) PRIMARY KEY,

 DEP_NAME VARCHAR(255),

 DEP_ID BIGINT,

FOREIGN KEY EMP_DEP_FK (DEP_NAME, DEP_ID) REFERENCES DEP (NAME,
ID)

)

CREATE TABLE DEP (

 NAME VARCHAR(255),

 ID BIGINT,

 PRIMARY KEY (NAME, DEP_ID)

)

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

<field name="department">

<column name="DEP_NAME" target="NAME"/>

<column name="DEP_ID" target="ID"/>

<foreign-key name="EMP_DEP_FK"/>

</field>

</class>
 JDO 2.0 167 October 21, 2004

Java Data Objects 2.0
<class name="Department" table="DEP">

<field name="name" column="NAME"/>

<field name="id" column="ID"/>

</class>

</package>

</orm>

15.6 Indexes

For schema generation, it might be useful to specify that a column or columns be indexed,
and to provide the name of the index. For this purpose, an index element can be contained
within a field, element, key, value, or join element, and this indicates that the column(s)
associated with the referenced element should be indexed.

Indexes can also be specified at the class level, by including index elements containing col-
umn elements. In this case, the column elements are mapped elsewhere, and the column
elements contain only the column name.

Unique Index

The unique attribute specifies whether the index is defined to be a unique constraint as
well. The default is false.

Example 11

This example demonstrates single-field and compound indexes.

CREATE TABLE ADDR (

 STREET VARCHAR(255) PRIMARY KEY,

 CITY VARCHAR(255),

 STATE CHAR(2),

 ZIPCODE VARCHAR(10)

)

<orm>

<package name="com.xyz">
 JDO 2.0 168 October 21, 2004

Java Data Objects 2.0
<class name="Address" table="ADDR">

<field name="street" column="STREET"/>

<field name="city" column="CITY"/>

<field name="state" column="STATE"/>

<field name="zip" column="ZIPCODE">

<index name="ADDR_ZIP_IDX"/>

</field>

<index name="ADDR_CITYSTATE_IDX">

<column name="CITY"/>

<column name="STATE"/>

</index>

</class>

</package>

</orm>

15.7 Inheritance

Each class can declare an inheritance strategy. Three strategies are supported by standard
metadata: new-table, superclass-table, and no-table.

• new-table creates a new table for the fields of the class.

• superclass-table maps the fields of the class into the superclass table.

• no-table forces subclasses to map the fields of the class to their own table.

Using these strategies, standard metadata directly supports several common inheritance
patterns, as well as combinations of these patterns within a single inheritance hierarchy.

One common pattern uses one table for an entire inheritance hierarchy. A column called
the discriminator column is used to determine which class each row belongs to. This pat-
tern is achieved by a strategy of new-table for the base class, and superclass-table for all
subclasses. These are the default strategies for base classes and subclasses when no explic-
it strategy is given.

Another pattern uses multiple tables joined by their primary keys. In this pattern, the ex-
istence of a row in a table determines the class of the row. A discriminator column is not
required, but may be used to increase the efficiency of certain operations. This pattern is
achieved by a strategy of new-table for the base class, and new-table for all subclasses.

A third pattern maps fields of superclasses and subclasses into subclass tables. This pat-
tern is achieved by a strategy of no-table for the base class, and new-table for direct sub-
classes.

15.8 Versioning

Three common strategies for versioning instances are supported by standard metadata.
These include state-comparison, timestamp, and version-number.

State-comparison involves comparing the values in specific columns to determine if the
database row was changed.
 JDO 2.0 169 October 21, 2004

Java Data Objects 2.0
Timestamp involves comparing the value in a date-time column in the table. The first time
in a transaction the row is updated, the timestamp value is updated to the current time.

Version-number involves comparing the value in a numeric column in the table. The first
time in a transaction the row is updated, the version-number column value is incremented.

Example 12

Mapping a subclass to the base class table, and using version-number optimistic version-
ing. Note that in this example, the inheritance strategy attribute is not needed, because this
is the default inheritance pattern. The version strategy attribute is also using the default
value, and could have been omitted. These attributes are included for clarity.

CREATE TABLE EMP (

 SSN CHAR(10) PRIMARY KEY,

 TYPE CHAR(1),

 WAGE FLOAT,

 SALARY FLOAT,

 VERS INTEGER

)

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<inheritance strategy="new-table">

<discriminator value="E" column="TYPE"/>

</inheritance>

<field name="ssn" column="SSN"/>

<version strategy="version-number" column="VERS"/>

</class>

<class name="PartTimeEmployee">

<inheritance strategy="superclass-table">

<discriminator value="P"/>

</inheritance>
 JDO 2.0 170 October 21, 2004

Java Data Objects 2.0
<field name="hourlyWage" column="WAGE"/>

</class>

<class name="FullTimeEmployee">

<inheritance strategy="superclass-table">

<discriminator value="F"/>

</inheritance>

<field name="salary" column="SALARY"/>

</class>

</package>

</orm>

Example 13

Mapping each class to its own table, and using state-image versioning. Though a discrim-
inator is not required for this inheritance pattern, this mapping chooses to use one to make
some actions more efficient. It stores the full Java class name in each row of the base table.

CREATE TABLE EMP (

 SSN CHAR(10) PRIMARY KEY,

 JAVA_CLS VARCHAR(255)

)

CREATE TABLE PART_EMP (

 EMP_SSN CHAR(10) PRIMARY KEY,

 WAGE FLOAT

)

CREATE TABLE FULL_EMP (

 EMP_SSN CHAR(10) PRIMARY KEY,

 SALARY FLOAT

)

<orm>
 JDO 2.0 171 October 21, 2004

Java Data Objects 2.0
<package name="com.xyz">

<class name="Employee" table="EMP">

<inheritance strategy="new-table">

<discriminator strategy="class-name" column="JAVA_CLS"/>

</inheritance>

<field name="ssn" column="SSN"/>

<version strategy="state-comparison"/>

</class>

<class name="PartTimeEmployee" table="PART_EMP>

<inheritance strategy="new-table">

<join column="EMP_SSN"/>

</inheritance>

<field name="hourlyWage" column="WAGE"/>

</class>

<class name="FullTimeEmployee" table="FULL_EMP">

<inheritance strategy="new-table">

<join column="EMP_SSN"/>

</inheritance>

<field name="salary" column="SALARY"/>

</class>

</package>

</orm>

Example 14

This example maps superclass fields to each subclass table.

CREATE TABLE PART_EMP (

 EMP_SSN CHAR(10) PRIMARY KEY,

 WAGE FLOAT

)

 JDO 2.0 172 October 21, 2004

Java Data Objects 2.0
CREATE TABLE FULL_EMP (

 EMP_SSN CHAR(10) PRIMARY KEY,

 SALARY FLOAT

)

<orm>

<package name="com.xyz">

<class name="Employee">

<inheritance strategy="no-table"/>

</class>

<class name="PartTimeEmployee" table="PART_EMP”>

<inheritance strategy="new-table"/>

<field name="Employee.ssn" column="EMP_SSN"/>

<field name="hourlyWage" column="WAGE"/>

</class>

<class name="FullTimeEmployee" table="FULL_EMP">

<inheritance strategy="new-table"/>

<field name="Employee.ssn" column="EMP_SSN"/>

<field name="salary" column="SALARY"/>

</class>

</package>

</orm>
 JDO 2.0 173 October 21, 2004

Java Data Objects 2.0
16 Enterprise Java Beans

Enterprise Java Beans (EJB) is a component architecture for development and deployment
of distributed business applications. Java Data Objects is a suitable component for integra-
tion with EJB in these scenarios:

• Session Beans with JDO persistence-capable classes used to implement dependent
objects;

• Entity Beans with JDO persistence-capable classes used as delegates for both Bean
Managed Persistence and Container Managed Persistence.

16.1 Session Beans

A session bean should be associated with an instance of PersistenceManagerFacto-
ry that is established during a session life cycle event, and each business method should
use an instance of PersistenceManager obtained from the PersistenceManager-
Factory. The timing of when the PersistenceManager is obtained will vary based
on the type of bean.

The bean class should contain instance variables that hold the associated Persistence-
Manager and PersistenceManagerFactory.

During activation of the bean, the PersistenceManagerFactory should be found via
JNDI lookup. The PersistenceManagerFactory should be the same instance for all
beans sharing the same datastore resource. This allows for the PersistenceManager-
Factory to manage an association between the distributed transaction and the Persis-
tenceManager.

When appropriate during the bean life cycle, the PersistenceManager should be ac-
quired by a call to the PersistenceManagerFactory. The PersistenceManager-
Factory should look up the transaction association of the caller, and return a
PersistenceManager with the same transaction association. If there is no Persis-
tenceManager currently enlisted in the caller’s transaction, a new PersistenceMan-
ager should be created and associated with the transaction. The
PersistenceManager should be registered for synchronization callbacks with the
TransactionManager. This provides for transaction completion callbacks asynchro-
nous to the bean life cycle.

The instance variables for a session bean of any type include:

• a reference to the PersistenceManagerFactory, which should be initialized
by the method setSessionContext. This method looks up the
PersistenceManagerFactory by JNDI access to the named object
"java:comp/env/jdo/<persistence manager factory name>".

• a reference to the PersistenceManager, which should be acquired by each
business method, and closed at the end of the business method; and
 JDO 2.0 174 October 21, 2004

Java Data Objects 2.0
• a reference to the SessionContext, which should be initialized by the method
setSessionContext.

16.1.1 Stateless Session Bean with Container Managed Transactions

Stateless session beans are service objects that have no state between business methods.
They are created as needed by the container and are not associated with any one user. A
business method invocation on a remote reference to a stateless session bean might be dis-
patched by the container to any of the available beans in the ready pool.

Each business method must acquire its own PersistenceManager instance from the
PersistenceManagerFactory. This is done via the method getPersistenceM-
anager on the PersistenceManagerFactory instance. RefA8.1-1 [This method
must be implemented by the JDO vendor to find a PersistenceManager associated
with the instance of javax.transaction.Transaction of the executing thread.]

At the end of the business method, the PersistenceManager instance must be closed.
This allows the transaction completion code in the PersistenceManager to free the in-
stance and return it to the available pool in the PersistenceManagerFactory.

16.1.2 Stateful Session Bean with Container Managed Transactions

Stateful session beans are service objects that are created for a particular user, and may
have state between business methods. A business method invocation on a remote refer-
ence to a stateful session bean will be dispatched to the specific instance created by the us-
er.

The behavior of stateful session beans with container managed transactions is otherwise
the same as for stateless session beans. All business methods in the remote interface must
acquire a PersistenceManager at the beginning of the method, and close it at the end,
since the transaction context is managed by the container.

16.1.3 Stateless Session Bean with Bean Managed Transactions

Bean managed transactions offer additional flexibility to the session bean developer, with
additional complexity. Transaction boundaries are established by the bean developer, but
the state (including the PersistenceManager) cannot be retained across business
method boundaries. Therefore, the PersistenceManagermust be acquired and closed
by each business method.

The alternative techniques for transaction boundary demarcation are:

• javax.transaction.UserTransaction

If the bean developer directly uses UserTransaction, then the PersistenceManager must be
acquired from the PersistenceManagerFactory only after establishing the correct
transaction context of UserTransaction. N16.1.3-1 [During the getPersistenceM-
anager method, the PersistenceManager will be enlisted in the UserTransac-
tion.] For example, if non-transactional access is required, a PersistenceManager
must be acquired when there is no UserTransaction active. After beginning a User-
Transaction, a different PersistenceManager must be acquired for transactional
access. The user must keep track of which PersistenceManager is being used for
which transaction.

• javax.jdo.Transaction

If the bean developer chooses to use the same PersistenceManager for multiple trans-
actions, then transaction completion must be done entirely by using the jav-
 JDO 2.0 175 October 21, 2004

Java Data Objects 2.0
ax.jdo.Transaction instance associated with the PersistenceManager. In this
case, acquiring a PersistenceManager without beginning a UserTransaction re-
sults in the PersistenceManager being able to manage transaction boundaries via
begin, commit, and rollback methods on javax.jdo.Transaction. N16.1.3-2
[The PersistenceManager will automatically begin the UserTransaction during
javax.jdo.Transaction.begin] and N16.1.3-3 [automatically commit the User-
Transaction during javax.jdo.Transaction.commit.]

16.1.4 Stateful Session Bean with Bean Managed Transactions

Stateful session beans allow the bean developer to manage the transaction context as part
of the conversational state of the bean. Thus, it is no longer required to acquire a Persis-
tenceManager in each business method. Instead, the PersistenceManager can be
managed over a longer period of time, and it might be stored as an instance variable of the
bean.

The behavior of stateful session beans is otherwise the same as for stateless session beans.
The user has the choice of using javax.transaction.UserTransaction or jav-
ax.jdo.Transaction for transaction completion.

16.2 Entity Beans

While it is possible for container-managed persistence entity beans to be implemented by
the container using JDO, the implementation details are beyond the scope of this docu-
ment.

It is possible for users to implement bean-managed persistence entity beans using JDO, but
implementation details are container-specific and no recommendations for the general
case are given.
 JDO 2.0 176 October 21, 2004

Java Data Objects 2.0
17 JDO Exceptions

The exception philosophy of JDO is to treat all exceptions as runtime exceptions. This pre-
serves the transparency of the interface to the degree possible, allowing the user to choose
to catch specific exceptions only when required by the application.

JDO implementations will often be built as layers on an underlying datastore interface,
which itself might use a layered protocol to another tier. Therefore, there are many oppor-
tunities for components to fail that are not under the control of the application.

Exceptions thus fall into several broad categories, each of which is treated separately:

• user errors that can be corrected and retried;

• user errors that cannot be corrected because the state of underlying components
has been changed and cannot be undone;

• internal logic errors that should be reported to the JDO vendor’s technical support;

• errors in the underlying datastore that can be corrected and retried;

• errors in the underlying datastore that cannot be corrected due to a failure of the
datastore or communication path to the datastore;

Exceptions that are documented in interfaces that are used by JDO, such as the Collec-
tion interfaces, are used without modification by JDO. JDO exceptions that reflect under-
lying datastore exceptions will wrap the underlying datastore exceptions. JDO exceptions
that are caused by user errors will contain the reason for the exception.

JDO Exceptions must be serializable.

17.1 JDOException

This is the base class for all JDO exceptions. It is a subclass of RuntimeException, and
need not be declared or caught. It includes a descriptive String, an optional nested Excep-
tion array, and an optional failed Object.

Methods are provided to retrieve the nested exception array and failed object. If there are
multiple nested exceptions, then each might contain one failed object. This will be the case
where an operation requires multiple instances, such as commit, makePersistentAll, etc.

N17.1-1 [If the JDO PersistenceManager is internationalized, then the descriptive
string should be internationalized.]

public Throwable[] getNestedExceptions();

N17.1-2 [This method returns an array of Throwable or null if there are no nested ex-
ceptions.]

public Object getFailedObject();

N17.1-3 [This method returns the failed object or null if there is no failed object for this
exception.]

public Throwable getCause();
 JDO 2.0 177 October 21, 2004

Java Data Objects 2.0
N17.1-4 [This method returns the first nested Throwable or null if there are no nested
exceptions.]

17.1.1 JDOFatalException

This is the base class for errors that cannot be retried. It is a derived class of JDOExcep-
tion. This exception generally means that the transaction associated with the Persis-
tenceManager has been rolled back, and the transaction should be abandoned.

17.1.2 JDOCanRetryException

This is the base class for errors that can be retried. It is a derived class of JDOException.

17.1.3 JDOUnsupportedOptionException

This class is a derived class of JDOUserException. N17.1.3-1 [This exception is thrown
by an implementation to indicate that it does not implement a JDO optional feature.]

17.1.4 JDOUserException

This is the base class for user errors that can be retried. It is a derived class of JDOCanRe-
tryException. Some of the reasons for this exception include:

• Object not persistence-capable. N17.1.4-1 [This exception is thrown when a
method requires an instance of PersistenceCapable and the instance passed
to the method does not implement PersistenceCapable. The failed Object has
the failed instance.]

• Extent not managed. N17.1.4-2 [This exception is thrown when getExtent is
called with a class that does not have a managed extent.]

• Object exists. N17.1.4-3 [This exception is thrown during flush of a new instance or
an instance whose primary key changed where the primary key of the instance
already exists in the datastore.] N17.1.4-4 [It might also be thrown during
makePersistent if an instance with the same primary key is already in the
PersistenceManager cache.] [The failed Object is the failed instance.]

• Object owned by another PersistenceManager. N17.1.4-5 [This exception is
thrown when calling makePersistent, makeTransactional,
makeTransient, evict, refresh, or getObjectId where the instance is
already persistent or transactional in a different PersistenceManager. The
failed Object has the failed instance.]

• Non-unique ObjectId not valid after transaction completion. N17.1.4-6 [This
exception is thrown when calling getObjectId on an object after transaction
completion where the ObjectId is not managed by the application or datastore.]

• Unbound query parameter. N17.1.4-7 [This exception is thrown during query
compilation or execution if there is an unbound query parameter.]

• Query filter cannot be parsed. N17.1.4-8 [This exception is thrown during query
compilation or execution if the filter cannot be parsed.]

• Transaction is not active. N17.1.4-9 [This exception is thrown if the transaction is
not active and makePersistent, deletePersistent, commit, or
rollback is called.]
 JDO 2.0 178 October 21, 2004

Java Data Objects 2.0
• Object deleted. N17.1.4-10 [This exception is thrown if an attempt is made to access
any fields of an instance that was deleted in this transaction (except to read key
fields).] This is not the exception thrown if the instance does not exist in the
datastore (see JDOObjectNotFoundException).

• Primary key contains null values. N17.1.4-11 [This exception is thrown if the
application identity parameter to getObjectById contains any key field whose
value is null.]

17.1.5 JDOFatalUserException

This is the base class for user errors that cannot be retried. It is a derived class of JDOFa-
talException.

• PersistenceManager was closed. N17.1.5-1 [This exception is thrown after
close() was called, when any method except isClosed() is executed on the
PersistenceManager instance, or any method is called on the Transaction
instance, or any Query instance, Extent instance, or Iterator instance created
by the PersistenceManager.]

• Metadata unavailable. N17.1.5-2 [This exception is thrown if a request is made to
the JDOImplHelper for metadata for a class, when the class has not been
registered with the helper.]

17.1.6 JDOFatalInternalException

This is the base class for JDO implementation failures. It is a derived class of JDOFatal-
Exception. This exception should be reported to the vendor for corrective action. There
is no user action to recover.

17.1.7 JDODataStoreException

N17.1.7-1 [This is the base class for datastore errors that can be retried. It is a derived class
of JDOCanRetryException.]

17.1.8 JDOFatalDataStoreException

This is the base class for fatal datastore errors. It is a derived class of JDOFatalExcep-
tion. When this exception is thrown, the transaction has been rolled back.

• Transaction rolled back. N17.1.8-1 [This exception is thrown when the datastore
rolls back a transaction without the user asking for it. The cause may be a
connection timeout, an unrecoverable media error, an unrecoverable concurrency
conflict, or other cause outside the user’s control.]

17.1.9 JDOObjectNotFoundException

N17.1.9-1 [This exception is to notify the application that an object does not exist in the
datastore.] It is a derived class of JDODataStoreException. N17.1.9-2 [When this ex-
ception is thrown during a transaction, there has been no change in the status of the trans-
action in progress.] N17.1.9-3 [If this exception is a nested exception thrown during
commit, then the transaction is rolled back.] This exception is never the result of executing
a query. N17.1.9-4 [The failedObject contains a reference to the failed instance.]
N17.1.9-5 [The failed instance is in the hollow state, and has an identity which can be ob-
tained by calling getObjectId with the instance as a parameter.] This might be used to
determine the identity of the instance that cannot be found.

N17.1.9-6 [This exception is thrown when a hollow instance is being fetched and the object
does not exist in the datastore.] N17.1.9-7 [This exception might result from the user exe-
 JDO 2.0 179 October 21, 2004

Java Data Objects 2.0
cuting getObjectById with the validate parameter set to true, or from N17.1.9-8
[navigating to an object that no longer exists in the datastore.]

17.1.10 JDOOptimisticVerificationException

N17.1.10-1 [This exception is the result of a user commit operation in an optimistic trans-
action where the verification of new, modified, or deleted instances fails the verification.]
It is a derived class of JDOFatalDataStoreException. [This exception contains an ar-
ray of nested exceptions, each of which contains an instance that failed verification.] The
user will never see this exception except as a result of commit.

17.1.11 JDODetachedFieldAccessException

This exception is the result of a user accessing a field of a detached instance, where the field
was not copied to the detached instance. It is a derived class of JDOUserException.
 JDO 2.0 180 October 21, 2004

Java Data Objects 2.0
18 XML Metadata

This chapter specifies the metadata that describes a persistence-capable class, optionally
including its mapping to a relational database. The metadata is stored in XML format. For
implementations that support binary compatibility, the information must be available
when the class is enhanced, and might be cached by an implementation for use at runtime.
If the metadata is changed between enhancement and runtime, the behavior is unspeci-
fied.

NOTE: J2SE introduced standard elements for annotating classes and defining the types
of collections and maps. Because of these features, programs compiled with suitable
metadata annotations and type information might not need a separate file to describe
persistence information. This early draft does not include proposed JDO standard an-
notations but the intent is to do so in a future draft specification.

Metadata files must be available via resources loaded by the same class loader as the class.
These rules apply both to enhancement and to runtime. Hereinafter, the term "metadata"
refers to the aggregate of all XML data for all packages, classes, and mappings, regardless
of their physical packaging.

The metadata associated with each persistence capable class must be contained within one
or more files, and its format is defined by the DTD. If the metadata in a file is for only one
class, then its file name is <class-name>.jdo. If the metadata is for a package, or a number
of packages, then its file name is package.jdo. In this case, the file is located in one of sev-
eral directories: “META-INF”; “WEB-INF”; <none>, in which case the metadata file name
is "package.jdo" with no directory; “<package>/.../<package>”, in which case the meta-
data directory name is the partial or full package name with “package.jdo” as the file
name.

Metadata for relational mapping might be contained in the same file as the persistence in-
formation, in which case the naming convention above is used. The mapping metadata
might be contained in a separate file, in which case the metadata file name suffix must be
specified in the PersistenceManagerFactory property javax.jdo.options.Map-
ping. This property is used to construct the file names for the mapping. NOTE: If the
property is set, then mapping metadata contained in the .jdo file is not used.

If the property is “mySQL”, then the file name for the metadata is <class-name>-
mySQL.orm or package-mySQL.orm. Similar to package.jdo, the package-mySQL.orm file
is located in one of the following directories: “META-INF”; “WEB-INF”; <none>, in which
case the metadata file name is "package-mySQL.orm" with no directory; “<package>/.../
<package>”, in which case the metadata directory name is the partial or full package name
with “package-mySQL.orm” as the file name. If mapping metadata is for only one class,
the name of the file is <package>/.../<package>/<class-name>-mySQL.orm.

When metadata information is needed for a class, and the metadata for that class has not
already been loaded, the metadata is searched for as follows: META-INF/package.jdo,
WEB-INF/package.jdo, package.jdo, <package>/.../<package>/package.jdo, and <pack-
age>/<class>.jdo. Once metadata for a class has been loaded, the metadata will not be re-
placed in memory as long as the class is not garbage collected. Therefore, metadata
 JDO 2.0 181 October 21, 2004

Java Data Objects 2.0
contained higher in the search order will always be used instead of metadata contained
lower in the search order.

Similarly, when mapping metadata information is needed for a class, and the mapping
metadata for that class has not already been loaded, the mapping metadata is searched for
as follows: META-INF/package-mySQL.orm, WEB-INF/package-mySQL.orm, package-
mySQL.orm, <package>/.../<package>/package-mySQL.orm, and <package>/.../
<package>/<class-name>-mySQL.orm. Once mapping metadata for a class has been load-
ed, it will not be replaced as long as the class is not garbage collected. Therefore, mapping
metadata contained higher in the search order will always be used instead of metadata
contained lower in the search order.

For example, if the persistence-capable class is com.xyz.Wombat, and there is a file "ME-
TA-INF/package.jdo" containing xml for this class, then its definition is used. If there is no
such file, but there is a file "WEB-INF/package.jdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "package.jdo"
containing metadata for com.xyz.Wombat, then it is used. If there is no such file, but there
is a file "com/package.jdo" containing metadata for com.xyz.Wombat, then it is used. If
there is no such file, but there is a file "com/xyz/package.jdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "com/xyz/
Wombat.jdo", then it is used. If there is no such file, then com.xyz.Wombat is not persis-
tence-capable.

Note that this search order is optimized for implementations that cache metadata informa-
tion as soon as it is encountered so as to optimize the number of file accesses needed to
load the metadata. Further, if metadata is not in the natural location, it might override
metadata that is in the natural location. For example, while looking for metadata for class
com.xyz.Wombat, the file com/package.jdo might contain metadata for class org.ac-
me.Grumpy. In this case, subsequent search of metadata for org.acme.Grumpy will find
the cached metadata and none of the usual locations for metadata will be searched.

The metadata must declare all persistence-capable classes. If any field or property decla-
rations are missing from the metadata, then field or property metadata is defaulted for the
missing declarations. The JDO implementation is able to determine based on the metadata
whether a class is persistence-capable or not. Any class not known to be persistence-capa-
ble by the JDO specification (for example, java.lang.Integer) and not explicitly named in
the metadata is not persistence-capable.

Classes and interfaces used in metadata follow the Java rules for naming. If the class or in-
terface name is unqualified, the package name is the name of the enclosing package. Inner
classes are identified by the “$” marker.

For compatibility with installed applications, a JDO implementation might first use the
search order as specified in the JDO 1.0 or 1.0.1 releases. In this case, if metadata is not
found, then the search order as specified in JDO 2.0 must be used. Refer to Chapter 25 for
details.

18.1 ELEMENT jdo

This element is the highest level element in the xml document. It is used to allow multiple
packages to be described in the same document. It contains multiple package elements and
optional extension elements.
 JDO 2.0 182 October 21, 2004

Java Data Objects 2.0
18.2 ELEMENT package

This element includes all classes in a particular package. The complete qualified package
name is required. It contains multiple class elements and optional extension elements.

18.3 ELEMENT interface

The interface element declares a persistence-capable interface. Instances of a vendor-
specific type that implement this interface can be created using the newInstance(Class
persistenceCapable)method in PersistenceManager, and these instances may be
made persistent.

The JDO implementation must maintain an extent for persistent instances of persistence-
capable classes that implement this interface.

The requires-extent attribute is optional. If set to “false”, the JDO implementation
does not need to support extents of factory-made persistent instances. It defaults to
“true”.

The attribute name is required, and is the name of the interface.

The attribute table is optional, and is the name of the table to be used to store persistent
instances of this interface.

Persistent fields declared in the interface are defined as those that have both a get and a
set method, named according to the JavaBeans naming conventions, and of a type sup-
ported as a persistent type.

The implementing class will provide a suitable implementation for all property access
methods and will throw JDOUserException for all other methods of the interface.

This element might contain property elements to specify the mapping to relational col-
umns.

Interface inheritance is supported.

18.4 ELEMENT property

The property element declares the mapping for persistent properties of interfaces.

The name attribute is required and must match the name of a property in the interface.

This element might contain column elements to specify the mapping to relational col-
umns.

The element might contain collection, map, or array elements to specify the charac-
teristics of the property.

18.5 ELEMENT column

The column element identifies a column in a mapped table. This element is used for map-
ping fields, collection elements, array elements, keys, values, datastore identity, applica-
tion identity, and properties.

NOTE: Any time an element can contain a column element that is only used to name the
column, a column attribute can be used instead.
 JDO 2.0 183 October 21, 2004

Java Data Objects 2.0
The name attribute declares the name of the column in the database. The name might be
fully qualified as <table-name>.<column-name> and <table-name> might be defaulted in
context.

The target attribute declares the name of the primary key column for the referenced ta-
ble. For columns contained in join elements, this is the name of the primary key column in
the primary table. For columns contained in field, element, key, value, or array elements,
this is the name of the primary key column of the primary table of the other side of the re-
lationship.

The target-field attribute might be used instead of the target attribute to declare the
name of the field to which the column refers. This is useful in cases where there are differ-
ent mappings of the referenced field in different subclasses.

The jdbc-type attribute declares the type of the column in the database. This type is de-
faulted based on the type of the field being mapped. Valid types are CHAR, VARCHAR,
LONGVARCHAR, NUMERIC, DECIMAL, BIT, TINYINT, SMALLINT, INTEGER, BIG-
INT, REAL, FLOAT, DOUBLE, BINARY, VARBINARY, LONGVARBINARY, DATE,
TIME, and TIMESTAMP. This attribute is only needed if the default type is not suitable.

The sql-type attribute declares the type of the column in the database. This type is da-
tabase-specific and should only be used where the user needs more explicit control over
the mapping. Normally, the combination of jdbc-type. length, and scale are suffi-
cient for the JDO implementation to calculate the sql-type.

The length attribute declares the number of characters in the datastore representation of
numeric, char[], and Character[] types; and the maximum number of characters in
the datastore representation of String types. The default is 256.

The scale attribute declares the scale of the numeric representation in the database. The
default is 0.

The allows-null attribute specifies whether null values are allowed in the column,
and is defaulted based on the type of the field being mapped. The default is “true” for
reference field types and “false” for primitive field types.

18.6 ELEMENT class

The class element includes field elements declared in a persistence-capable class, and
optional vendor extensions.

The name attribute of the class is required. It specifies the unqualified class name of the
class. The class name is scoped by the name of the package in which the class element is
contained.

The persistence-modifier attribute specifies whether this class is persistence-capa-
ble, persistence-aware, or non-persistent. Persistence-aware and non-persistent classes
must not include any attributes or elements except for the name and persistence-mod-
ifier attributes. Declaring persistence-aware and non-persistent classes might provide a
performance improvement for enhancement and runtime, as the search algorithm for met-
data need not be exhaustive.

The embedded-only attribute declares whether instances of this class are permitted to exist
as first-class instances in the datastore. A value of “true” means that instances can only be
embedded in other first-class instances., and precludes mapping this class to its own table.
 JDO 2.0 184 October 21, 2004

Java Data Objects 2.0
A18.6-1 [Attribute identity-type of element class can be specified. If so, it must have one of the fol-
lowing values: “application”, “datastore”, or “none”. If omitted, the default value for this attribute
is “datastore”.]

The identity type of the least-derived persistence-capable class defines the identity type for
all persistence-capable classes that extend it.

N18.6-5 [The identity type of the least-derived persistence-capable class is defaulted to
application if objectid-class is specified,] and N18.6-6 [datastore, if not.]

A18.6-2 [Attribute requires-extent of element class can be specified. If so, it must have one of the
following values: “true” or “false”. If omitted, the default value for this attribute is “true”.]

The requires-extent attribute specifies whether an extent must be managed for this
class. The PersistenceManager.getExtent method can be executed only for class-
es whose metadata attribute requires-extent is specified or defaults to true. If the
PersistenceManager.getExtent method is executed for a class whose metadata
specifies requires-extent as false, a JDOUserException is thrown. If re-
quires-extent is specified or defaults to true for a class, then requires-extent
must not be specified as false for any subclass.

The persistence-capable-superclass attribute is deprecated for this release. It is
not yet decided whether the attribute will be ignored so metadata files can from previous
releases can be used or whether the attribute will be removed.

A18.6-3 [Attribute primary-key can be specified for a field element. If so, it must have one of the
following values: “true” or “false”. If omitted, the default value for this attribute is “false”.]

A18.6-4 [Attribute null-value can be specified for a field element. If so, it must have one of the fol-
lowing values: “exception”, “default”, or “none”. If omitted, the default value for this attribute is
“none”.]

A number of join elements might be contained in the class element. Each join element
defines a table and associated join conditions that can be used by multiple fields in the
mapping.

The objectid-class attribute identifies the name of the objectid class. If not specified,
there must be only one primary key field, and the objectid-class defaults to the ap-
propriate simple identity class.

The objectid-class attribute is required only for abstract classes and classes with
multiple key fields. If the objectid-class attribute is defined in any concrete persis-
tence-capable class, then the objectid class itself must be concrete, and no subclass of the
persistence-capable class may include the objectid-class attribute. If the objec-
tid-class attribute is defined for any abstract class, then:

• the objectid class of this class must directly inherit Object or must be a subclass
of the objectid class of the most immediate abstract persistence-capable superclass
that defines an objectid class; and

• if the objectid class is abstract, the objectid class of this class must be a superclass
of the objectid class of the most immediate subclasses that define an objectid class;
and

• if the objectid class is concrete, no subclass of this persistence-capable class may
define an objectid class.

The effect of this is that objectid classes form an inheritance hierarchy corresponding to the
inheritance hierarchy of the persistence-capable classes. Associated with every concrete
persistence-capable class is exactly one objectid class.
 JDO 2.0 185 October 21, 2004

Java Data Objects 2.0
The objectid class must declare fields identical in name and type to fields declared in this
class.

Foreign keys, indexes, and join tables can be specified at the class level. If they are specified
at this level, column information might only be the names of the columns.

18.6.1 ELEMENT datastore-identity

The datastore-identity element declares the strategy for implementing datastore
identity for the class, including the mapping of the identity columns of the relational table.

The strategy attribute identifies the strategy for mapping.

• The value “factory” specifies that a factory is used to generate key values for the
table. If factory is used, then the factory-class attribute is required to
specify the factory.

• The value “native” allows the JDO implementation to pick the most suitable
strategy based on the underlying database.

• The value “sequence” specifies that a named database sequence is used to
generate key values for the table. If sequence is used, then the sequence-name
attribute is required.

• The value “autoincrement” specifies that the column identified as the key
column is managed by the database to automatically increment key values.

• The value “identity” specifies that the column identified as the key column is
managed by the database as an identity type.

• The value “increment” specifies a strategy that simply finds the largest key
already in the database and increments the key value for new instances. It can be
used with integral column types when the JDO application is the only database
user inserting new instances.

• The value “uuid-string” specifies a strategy that generates a 128-bit UUID
unique within a network (the IP address of the machine running the application is
part of the id) and represents the result as a 16-character String.

• The value “uuid-hex” specifies a strategy that generates a 128-bit UUID unique
within a network (the IP address of the machine running the application is part of
the id) and represents the result as a 32-character String.

The factory-class attribute names the factory class that implements the jav-
ax.jdo.IdGenerator interface, used to generate key values. The name might be user-
defined or vendor-defined. If vendor-defined, this makes the metadata non-portable.

The sequence-name attribute names the sequence used to generate key values. This
must correspond to a named sequence in the JDO metadata. If this attribute is used, the
strategy defaults to “sequence”.

The column elements identify the primary key columns for the table in the database.

IdGenerator

This interface is used for generation of key values. It must be implemented by all factory
classes.

package javax.jdo;

interface IdGenerator {

String nextStringKey(Class persistenceCapable);

short nextShortKey(Class persistenceCapable);
 JDO 2.0 186 October 21, 2004

Java Data Objects 2.0
int nextIntKey(Class persistenceCapable);

long nextLongKey(Class persistenceCapable);

}

Additionally, factory classes must implement a static newInstance() method that
returns an instance of the factory class.

18.7 ELEMENT join

The join element declares the table to be used in the mapping and the join conditions to
associate rows in the joined table to the primary table.

The table attribute specifies the name of the table.

One or more column elements are contained within the join element. The column ele-
ments name the columns used to join to the primary key columns of the primary table. If
there are multiple key columns, then the target attribute is required, and names the pri-
mary key column of the primary table.

The table being joined might not have a row for each row in the referring table; in order to
access rows in this table, an outer join is needed. The outer attribute indicates that an out-
er join is needed. The default is false.

18.8 ELEMENT inheritance

The inheritance element declares the mapping for inheritance.

The strategy attribute declares the strategy for mapping:

• The value “no-table” means that this class does not have its own table. All of its
fields are mapped by subclasses.

• The value “new-table” means that this class has its own table into which all of its
fields are mapped. There must be a table attribute specified in the class element.
This is the default for the topmost (least derived) class in an inheritance hierarchy.

• The value “superclass-table” means that this class does not have its own table. All
of its fields are mapped into tables of its superclass(es). This is the default for all
classes except for the topmost class in an inheritance hierarchy.

18.9 ELEMENT discriminator

The discriminator element is used when a column is used to identify what class is as-
sociated with the primary key value in a table mapped to a superclass.

In the least-derived class in the hierarchy that is mapped to a table, declare the discrimina-
tor element with a strategy and column. If the strategy is “value-map”, then for each con-
crete subclass, define the discriminator element with a value attribute. If the strategy is
“class-name” then subclasses do not need a discriminator element; the name of the class
is stored as the value for the row in the table. If the value attribute is given, then the strat-
egy defaults to “value-map”.

The strategy “none” declares that there is no discriminator column.
 JDO 2.0 187 October 21, 2004

Java Data Objects 2.0
18.10 ELEMENT implements

The implements element declares a persistence-capable interface implemented by the
persistence-capable class that contains this element. An extent of persistence-capable class-
es that implement this interface is managed by the JDO implementation. The extent can be
used for queries or for iteration just like an extent of persistence-capable instances.

The attribute name is required, and is the name of the interface. The java class naming rules
apply: if the interface name is unqualified, the package is the name of the enclosing pack-
age.

18.11 ELEMENT property-field

The property-field element declares mapping between a field of an implemented in-
terface and the corresponding persistent field of a persistence-capable class.

The name attribute is required, and declares the name for the property. The naming con-
ventions for JavaBeans property names is used: the property name is the same as the cor-
responding get method for the property with the get removed and the resulting name
lower-cased.

The field-name attribute is required; it associates a persistent field with the named
property.

18.12 ELEMENT foreign-key

This element specifies characteristics of a foreign key associated with the containing join,
field, collection, key, value, or element. If the name of the foreign key is the only property
needed for the foreign key, then an attribute can be used the this element is optional.

If this element is specified at the class level, then column elements contained in the for-
eign-key element might contain only the name attribute.

18.12.1 ATTRIBUTE update-action

The update-action attribute specifies the action to take during update of an instance of the
class that affects a relationship. If the update-action is specified as cascade, then the
instance is updated to be consistent with the change. If the update-action is specified
as restrict, then the update will fail at commit time if the instances still exist (have not
been updated).

18.12.2 ATTRIBUTE delete-action

The delete-action attribute specifies the action to take during deletePersistent of an
instance of the class on the other side of the relationship. If the delete-action is speci-
fied as cascade, then this instance is deleted. If the delete-action is specified as re-
strict, then the delete will fail at commit time if any instances still exist (have not been
deleted). If the delete-action is specified as null, at commit this reference is nullified.

18.12.3 ATTRIBUTE deferred

The deferred attribute specifies whether constraint checking on the containing element is
defined in the database as being deferred until commit. This allows an optimization by the
JDO implementation, and might allow certain operations to succeed where they would
normally fail. For example, to exchange unique references between pairs of objects re-
quires that the unique constraint columns temporarily contain duplicate values.
 JDO 2.0 188 October 21, 2004

Java Data Objects 2.0
Possible values are “true” and “false”. The default is “false”.

18.12.4 ATTRIBUTE foreign-key

The foreign-key attribute specifies the name of the foreign key constraint to generate
for this mapping. This attribute is used if only the name of the foreign key needs to be spec-
ified.

18.13 ELEMENT field

The field element is optional, and the name attribute is the field name as declared in the
class. A18.4-1 [If the field declaration is omitted in the xml, then the values of the attributes
are defaulted.]

The persistence-modifier attribute specifies whether this field is persistent, trans-
actional, or none of these. The persistence-modifier attribute can be specified only
for fields declared in the Java class, and not fields inherited from superclasses. There is spe-
cial treatment for fields whose persistence-modifier is persistent or trans-
actional.

Default persistence-modifier

The default for the persistence-modifier attribute is based on the Java type and
modifiers of the field: +A18.4-1 [

• Fields with modifier static: none. No accessors or mutators will be generated
for these fields during enhancement.

• Fields with modifier transient: none. Accessors and mutators will be
generated for these fields during enhancement, but they will not delegate to the
StateManager.

• Fields with modifier final: none. Accessors will be generated for these fields
during enhancement, but they will not delegate to the StateManager.]

• A18.4-2 [Fields of a type declared to be persistence-capable: persistent.]

• A18.4-3 [Fields of the following types: persistent:

• primitives: boolean, byte, short, int, long, char, float, double;
• java.langwrappers: Boolean, Byte, Short, Integer, Long, Character,
Float, Double;

• java.lang: String, Number;
• java.math: BigDecimal, BigInteger;
• java.util: Date, Locale, ArrayList, HashMap, HashSet, Hashtable,
LinkedList, TreeMap, TreeSet, Vector, Collection, Set, List, and
Map;

• Arrays of primitive types, java.util.Date, java.util.Locale,
java.lang and java.math types specified immediately above, and
persistence-capable types.]

• A18.4-4 [Fields of types of user-defined classes and interfaces not mentioned
above: none. No accessors or mutators will be generated for these fields.]

A18.4-5 [The null-value attribute specifies the treatment of null values for persistent
fields during storage in the datastore. The default is "none".

• "none": store null values as null in the datastore, and throw a
JDOUserException if null values cannot be stored by the datastore.
 JDO 2.0 189 October 21, 2004

Java Data Objects 2.0
• "exception": always throw a JDOUserException if this field contains a
null value at runtime when the instance must be stored;

• "default": convert the value to the datastore default value if this field contains
a null value at runtime when the instance must be stored.]

A18.4-6 [The default-fetch-group attribute specifies whether this field is managed
as a group with other fields. It defaults to "true" for non-key fields of primitive types,
java.util.Date, and fields of java.lang, java.math types specified above.]

N18.11-1 [The embedded attribute specifies whether the field should be stored as part of
the containing instance instead of as its own instance in the datastore. It must be specified
or default to "true" for fields of primitive types, wrappers, java.lang, java.math,
java.util, collection, map, and array types specified above; and "false" otherwise.]
While a compliant implementation is permitted to support these types as first class in-
stances in the datastore, the semantics of embedded=”true” imply containment. That is,
the embedded instances have no independent existence in the datastore and have no Ex-
tent representation.

The semantics of embedded applied to collection, map, and array types applies to the
structure of the type, not to the elements, keys, and values. That is, the collection itself is
considered separate from its contents. These may separately be specified to be embedded
or not.

The embedded attribute applied to a field of a persistence-capable type is a hint to the im-
plementation to treat the field as if it were a Second Class Object. But this behavior is not
further specified and is not portable.

A portable application must not assign instances of mutable classes to multiple embedded
fields, and must not compare values of these fields using Java identity (“f1==f2”).

N18.11-2 [The embedded element is used to specify the field mappings for embedded
complex types.

The dependent attribute indicates that the field contains a reference that is to be deleted
from the datastore if the referring instance in which the field is declared is deleted, or if the
referring field is nullified.

The following field declarations are mutually exclusive; only one may be specified:

• default-fetch-group = “true”

• primary-key = “true”

• persistence-modifier = “transactional”

• persistence-modifier = “none”]

The table attribute specifies the name of the table mapped to this field. It defaults to the
table declared in the enclosing class element.

The column elements specify the column(s) mapped to this field. Normally, only one col-
umn is mapped to a field. If multiple columns are mapped, then reads of the field are sat-
isfied by reading from the first column element specified. Writes (updates) of the field are
written to all columns specified.

The mapped-by attribute specifies that the field is mapped to the same database col-
umn(s) as the named field in the other class.

The value-factory attribute specifies the name of a sequence to use to automatically gener-
ate a value for the field. This value is used only for persistent-new instances at the time
makePersistent is called.
 JDO 2.0 190 October 21, 2004

Java Data Objects 2.0
Subclasses might map fields of their superclasses. In this case, the field name is specified
as <superclass>.<superclass-field-name>.

18.13.1 ELEMENT collection

This element specifies the element type of collection typed fields. A18.4.1-1 [The default is
Collection typed fields are persistent, and the element type is Object.]

The element-type attribute specifies the type of the elements. The type name uses Java
rules for naming: if no package is included in the name, the package name is assumed to
be the same package as the persistence-capable class. Inner classes are identified by the "$"
marker.

N18.4.1-2 [The embedded-element attribute specifies whether the values of the ele-
ments should be stored as part of the containing instance instead of as their own instances
in the datastore. It defaults to "false" for persistence-capable types, Object types, and
interface types; and "true" for other types.]

The embedded treatment of the collection instance itself is governed by the embedded at-
tribute of the field element.

The dependent-element attribute indicates that the collection’s element contains a ref-
erence that is to be deleted if the referring instance is deleted.

The element element contained in the field element specifies the mapping of elements
in the collection.

18.13.2 ELEMENT map

This element specifies the treatment of keys and values of map typed fields. A18.4.2-2 [The
default is map typed fields are persistent, and the key and value types are Object.]

The key-type and value-type attributes specify the types of the key and value, re-
spectively.

The embedded-key and embedded-value attributes specify whether the key and val-
ue should be stored as part of the containing instance instead of as their own instances in
the datastore. N18.4.2-3 [They default to "false" for persistence-capable types, Object
types, and interface types; and "true" for other types.]

The embedded treatment of the map instance itself is governed by the embedded attribute
of the field element.

The dependent-key attribute indicates that the collection’s key contains references that
are to be deleted if the referring instance is deleted.

The dependent-value attribute indicates that the collection’s value contains references
that are to be deleted if the referring instance is deleted.

18.13.3 ELEMENT array

This element specifies the treatment of array typed fields. A18.4.3-1 [NB! See Assertions/
Chapter18.html for old text! The default persistence-modifier for array typed fields is
based on the Java type of the component and modifiers of the field, according to the rules
in section 18.10.]

The embedded-element attribute specifies whether the values of the components
should be stored as part of the containing instance instead of as their own instances in the
datastore. N18.4.3-2 [It defaults to "false" for persistence-capable types, Object types,
interface types, and concrete implementation classes of Map and Collection types. It de-
faults to "true" for other types.]
 JDO 2.0 191 October 21, 2004

Java Data Objects 2.0
The embedded treatment of the array instance itself is governed by the embedded at-
tribute of the field element.

18.13.4 ELEMENT embedded

This element specifies the mapping for an embedded type. It contains multiple field ele-
ments, one for each field in the type.

The null-indicator-column optionally identifies the name of the column used to indicate
whether the embedded instance is null. By default, if the value of this column is null, then
the embedded instance is null. This column might be mapped to a field of the embedded
instance but might be a synthetic column for the sole purpose of indicating a null refer-
ence.

The null-indicator-value specifies the value to indicate that the embedded instance is null.
This is only used for non-nullable columns.

If null-indicator-column is omitted, then the embedded instance is assumed always to ex-
ist.

18.13.5 ELEMENT owner

This element specifies that a field is to be mapped to the persistent instance that contains
it. The field contained in the owner element has only a name attribute, and it identifies the
field that is resolved to the containing persistent instance.

18.13.6 ELEMENT key

This element specifies the mapping for the key component of a Map field.

If only one column is mapped, and no additional information is needed for the column,
then the column attribute can be used. Otherwise, the column element(s) are used.

The serialized attribute specifies that the key values are to be serialized into the named
column.

The foreign-key attribute specifies the name of a foreign key to be generated.

18.13.7 ELEMENT value

This element specifies the mapping for the value component of a Map field.

If only one column is mapped, and no additional information is needed for the column,
then the column attribute can be used. Otherwise, the column element(s) are used.

The serialized attribute specifies that the key values are to be serialized into the named
column.

The foreign-key attribute specifies the name of a foreign key to be generated.

18.13.8 ELEMENT element

This element specifies the mapping for the element component of arrays and collections.

If only one column is mapped, and no additional information is needed for the column,
then the column attribute can be used. Otherwise, the column element(s) are used.

The serialized attribute specifies that the key values are to be serialized into the named
column.

The foreign-key attribute specifies the name of a foreign key to be generated.
 JDO 2.0 192 October 21, 2004

Java Data Objects 2.0
18.14 ELEMENT query

This element specifies the serializable components of a query. Queries defined using meta-
data are used with the newNamedQuery method of PersistenceManager.

The name attribute specifies the name of the query.

The language attribute specifies the language of the query. The default is “jav-
ax.jdo.query.JDOQL” if no sql attribute or element is present; and “javax.jdo.que-
ry.SQL” if either sql attribute or element is present. Names for languages other than
these are not standard.

The ignore-cache attribute specifies the value for ignore-cache for the query. There is
no default. If not specified, the value used is the setting of the IgnoreCache property in
the PersistenceManager as of the time the query is executed. Permitted values are
“true” and “false”.

The include-subclasses attribute specifies whether the query should include sub-
classes for the extent of the candidate class. The default is “true”.

The filter attribute specifies the filter for the query. This attribute might be used for sim-
ple query filters that do not have embedded characters that must be escaped. For conve-
nience, single quotes can be used to delimit string constants in the filter.

Alternatively, the text of the filter element might be used instead. At most one of these
may be specified. If neither is specified, the filter is null, meaning that all instances in the
candidate collection satisfy the filter, subject to the limits specified in the query instance
when the query is executed.

The sql attribute specifies the SQL text for the query. This attribute might be used for sim-
ple query text that does not have embedded characters that must be escaped.

Alternatively, the text of the sql element might be used instead. At most one of these may
be specified. If neither is specified, the SQL query is invalid.

The declare element contains import, variable, and parameter declarations.

The filter element contains the query filter. This element is used for convenience if the
filter contains characters that otherwise would have to be escaped. For convenience, single
quotes can be used to delimit string constants in the filter.

The sql element contains the SQL text for the query. This element is used for convenience
if the query contains characters that otherwise would have to be escaped.

The result element contains the query result definition.

The ordering attribute specifies the ordering specification for the query. This corre-
sponds to the setOrdering(String) method.

The range attribute specifies the range of rows to retrieve from the database. The values
of the fromIncl and toExcl are specified as comma-separated text in this attribute.

18.14.1 ELEMENT declare

The declare element specifies the declarations for the query.

The imports attribute specifies the import declarations for the query. This corresponds
to the declareImports(String) method.

The parameters attribute specifies the parameter declarations for the query. This corre-
sponds to the declareParameters(String) method.

The variables attribute specifies the variable declarations for the query. This corre-
sponds to the declareVariables(String) method.
 JDO 2.0 193 October 21, 2004

Java Data Objects 2.0
18.14.2 ELEMENT result

The result element specifies the result of the query.

The unique attribute specifies that there is only one result instance. This corresponds to
the setUnique(boolean) method.

The class attribute specifies the fully qualified class name of the result. This corresponds
to the setResultClass(Class) method.

The grouping attribute specifies the grouping for aggregate results. This corresponds to
the setGrouping(String) method.

The result element text specifies the result of the query. This corresponds to the setRe-
sult(String) method.

18.15 ELEMENT sequence

The sequence element identifies a sequence number generator that can be used by an ap-
plication to generate unique identifiers for application use.

The name attribute specifies the name for the sequence number generator.

The strategy attribute specifies the strategy for generating sequence numbers.

The datastore-sequence attribute names the sequence used to generate key values.
This must correspond to a named sequence in the database schema.

This element is used in conjunction with the getSequence(String name) method in
PersistenceManager. The name parameter is the fully qualified name of the sequence.

18.16 ELEMENT extension

This element specifies JDO vendor extensions. The vendor-name attribute is required.
The vendor name "JDORI" is reserved for use by the JDO reference implementation. The
key and value attributes are optional, and have vendor-specific meanings. They may be
ignored by any JDO implementation.

18.17 The Document Type Descriptor

The document type descriptor is referred by the xml, and must be identified with a DOC-
TYPE so that the parser can validate the syntax of the metadata file. Either the SYSTEM or
PUBLIC form of DOCTYPE can be used.

• If SYSTEM is used, the URI must be accessible; a jdo implementation might
optimize access for the URI “file:/javax/jdo/jdo.dtd”

• If PUBLIC is used, the public id should be "-//Sun Microsystems, Inc.//
DTD Java Data Objects Metadata 2.0//EN“; a jdo implementation might
optimize access for this id.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jdo

PUBLIC "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.0//EN"

 "http://java.sun.com/dtd/jdo_2_0.dtd">
<!ELEMENT jdo ((package)+, (query)*, (extension)*)>
<!ELEMENT package (interface*, class*, sequence*, extension*)>
<!ATTLIST package name CDATA #REQUIRED>
 JDO 2.0 194 October 21, 2004

Java Data Objects 2.0
<!ELEMENT interface ((property)*, (extension*))>
<!ATTLIST interface name CDATA #REQUIRED>
<!ATTLIST interface requires-extent (true|false) ‘true’>
<!ELEMENT property ((collection|map|array|column)? , extension*)>
<!ATTLIST property name CDATA #REQUIRED>
<!ATTLIST property column CDATA #IMPLIED>
<!ELEMENT class (datastore-identity?, implements*, inheritance?,
join*, foreign-key*, index*, field*, version?, query*, fetch-
group*, extension*)>
<!ATTLIST class name CDATA #REQUIRED>
<!ATTLIST class identity-type (application|datastore|nondurable)
#IMPLIED>
<!ATTLIST class table CDATA #IMPLIED>
<!ATTLIST class requires-extent (true|false) ‘true’>
<!ATTLIST class persistence-capable-superclass CDATA #IMPLIED>
<!ATTLIST class embedded-only (true|false) #IMPLIED>
<!ATTLIST class persistence-modifier (persistence-capable|persis-
tence-aware|non-persistent) #IMPLIED>
<!ELEMENT join (column*, index?, foreign-key?, extension*)>
<!ATTLIST join table CDATA #IMPLIED>
<!ATTLIST join column CDATA #IMPLIED>
<!ATTLIST join outer (true|false) ‘false’>
<!ATTLIST join foreign-key CDATA #IMPLIED>
<!ELEMENT datastore-identity ((column)*, (extension)*)>
<!ATTLIST datastore-identity column CDATA #IMPLIED>
<!ATTLIST datastore-identity strategy CDATA #IMPLIED>
<!ATTLIST datastore-identity sequence-name CDATA #IMPLIED>
<!ATTLIST datastore-identity factory-class CDATA #IMPLIED>
<!ELEMENT implements ((property-field)+, (extension)*)>
<!ATTLIST implements name CDATA #REQUIRED>
<!ELEMENT inheritance (discriminator?, extension*)>
<!ATTLIST inheritance strategy CDATA #IMPLIED>
<!ELEMENT discriminator (column?, extension*)>
<!ATTLIST discriminator column CDATA #IMPLIED>
<!ATTLIST discriminator value CDATA #IMPLIED>
<!ATTLIST discriminator strategy CDATA #IMPLIED>
<!ELEMENT column (extension*)>
<!ATTLIST column name CDATA #IMPLIED>
<!ATTLIST column target CDATA #IMPLIED>
<!ATTLIST column target-field CDATA #IMPLIED>
<!ATTLIST column jdbc-type CDATA #IMPLIED>
<!ATTLIST column sql-type CDATA #IMPLIED>
<!ATTLIST column length CDATA #IMPLIED>
<!ATTLIST column scale CDATA #IMPLIED>
<!ATTLIST column nulls-allowed CDATA #IMPLIED>
<!ELEMENT property-field (extension*)>
<!ATTLIST property-field name #REQUIRED>
<!ATTLIST property-field field-name #REQUIRED>
 JDO 2.0 195 October 21, 2004

Java Data Objects 2.0
<!ELEMENT field ((collection|map|array|(column*))?, join?, ele-
ment?, key?, value?, order?, embedded?, index?, foreign-key?, ex-
tension*)?>
<!ATTLIST field name CDATA #REQUIRED>
<!ATTLIST field persistence-modifier (persistent|transaction-
al|none) #IMPLIED>
<!ATTLIST field table CDATA #IMPLIED>
<!ATTLIST field null-value (exception|default|none) ‘none’>
<!ATTLIST field default-fetch-group (true|false) #IMPLIED>
<!ATTLIST field embedded (true|false) #IMPLIED>
<!ATTLIST field serialized (true|false) #IMPLIED>
<!ATTLIST field dependent (true|false) #IMPLIED>
<!ATTLIST field value-factory CDATA #IMPLIED>
<!ATTLIST field foreign-key CDATA #IMPLIED>
<!ATTLIST field fetch-group CDATA #IMPLIED>

<!ATTLIST field depth CDATA #IMPLIED>

<!ELEMENT foreign-key (column*, extension*)>
<!ATTLIST foreign-key deferred (true|false) #IMPLIED>
<!ATTLIST foreign-key delete-action (cascade|restrict|null|de-
fault) #IMPLIED>
<!ATTLIST foreign-key update-action (cascade|restrict|null|de-
fault) #IMPLIED>
<!ATTLIST foreign-key unique (true|false) #IMPLIED>
<!ATTLIST foreign-key name CDATA #IMPLIED>
<!ELEMENT collection (extension*)>
<!ATTLIST collection element-type CDATA #IMPLIED>
<!ATTLIST collection embedded-element (true|false) #IMPLIED>
<!ATTLIST collection dependent-element (true|false) #IMPLIED>
<!ELEMENT map (extension)*>
<!ATTLIST map key-type CDATA #IMPLIED>
<!ATTLIST map embedded-key (true|false) #IMPLIED>
<!ATTLIST map dependent-key (true|false) #IMPLIED>
<!ATTLIST map value-type CDATA #IMPLIED>
<!ATTLIST map embedded-value (true|false) #IMPLIED>
<!ATTLIST map dependent-value (true|false) #IMPLIED>
<!ELEMENT key (column*, index?, embedded?, foreign-key?, exten-
sion*)>
<!ATTLIST key column CDATA #IMPLIED>
<!ATTLIST key serialized (true|false) #IMPLIED>
<!ATTLIST key foreign-key CDATA #IMPLIED>
<!ELEMENT value (column*, index?, embedded?, foreign-key?, exten-
sion*)>
<!ATTLIST value column CDATA #IMPLIED>
<!ATTLIST value serialized (true|false) #IMPLIED>
<!ATTLIST value foreign-key CDATA #IMPLIED>
<!ELEMENT array (extension*)>
<!ATTLIST array embedded-element (true|false) #IMPLIED>
<!ATTLIST array dependent-element (true|false) #IMPLIED>
 JDO 2.0 196 October 21, 2004

Java Data Objects 2.0
<!ELEMENT element (column*, index?, embedded?, foreign-key?, exten-
sion*)>
<!ATTLIST element column CDATA #IMPLIED>
<!ATTLIST element serialized (true|false) #IMPLIED>
<!ATTLIST element foreign-key CDATA #IMPLIED>
<!ELEMENT order (column*, extension*)>
<!ATTLIST order column CDATA #IMPLIED>
<!ELEMENT fetch-group (fetch-group|field)*>

<!ATTLIST fetch-group name CDATA #REQUIRED>

<!ATTLIST fetch-group post-load (true|false) #IMPLIED>

<!ELEMENT embedded (field*, owner?, extension*)>
<!ELEMENT owner (field?, extension*)>
<!ELEMENT sequence (extension*)>
<!ATTLIST sequence name CDATA #REQUIRED>
<!ATTLIST sequence sequence-name CDATA #REQUIRED>
<!ATTLIST sequence strategy (non-transactional|transactional-con-
tiguous|transactional-holes-allowed) #REQUIRED>
<!ELEMENT index (column*, extension*)>
<!ATTLIST index name CDATA #IMPLIED>
<!ATTLIST index unique (true|false) ‘false’>
<!ELEMENT query (declare?, filter?, sql?, result?, extension*)>
<!ATTLIST query name CDATA #IMPLIED>
<!ATTLIST query language CDATA #IMPLIED>
<!ATTLIST query ignore-cache CDATA #IMPLIED>
<!ATTLIST query include-subclasses CDATA #IMPLIED>
<!ATTLIST query filter CDATA #IMPLIED>
<!ATTLIST query sql CDATA #IMPLIED>
<!ATTLIST query ordering CDATA #IMPLIED>
<!ATTLIST query range CDATA #IMPLIED>
<!ELEMENT filter>
<!ELEMENT sql>
<!ELEMENT declare (extension*)>
<!ATTLIST declare imports CDATA #IMPLIED>
<!ATTLIST declare parameters CDATA #IMPLIED>
<!ATTLIST declare variables CDATA #IMPLIED>
<!ELEMENT result (extension*)>
<!ATTLIST result unique CDATA #IMPLIED>
<!ATTLIST result class CDATA #IMPLIED>
<!ATTLIST result grouping CDATA #IMPLIED>
<!ELEMENT extension ANY>
<!ATTLIST extension vendor-name CDATA #REQUIRED>
<!ATTLIST extension key CDATA #IMPLIED>
<!ATTLIST extension value CDATA #IMPLIED>
 JDO 2.0 197 October 21, 2004

Java Data Objects 2.0
18.18 Example XML file

An example XML file for the query example classes follows. Note that all fields of both
classes are persistent, which is the default for fields. The emps field in Department con-
tains a collection of elements of type Employee, with an inverse relationship to the dept
field in Employee.

In directory com/xyz, a file named hr.jdo contains:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jdo SYSTEM “jdo.dtd”>
<jdo>
<package name=”com.xyz.hr”>
<class name=”Employee” identity-type=”application” objectid-
class=”EmployeeKey”>
<field name=”name” primary-key=”true”>
<extension vendor-name=”sunw” key=”index” value=”btree”/>
</field>
<field name=”salary” default-fetch-group=”true”/>
<field name=”dept”>
<extension vendor-name=”sunw” key=”inverse” value=”emps”/>
</field>
<field name=”boss”/>
</class>
<class name=”Department” identity-type=”application” objectid-
class=”DepartmentKey”>
<field name=”name” primary-key=”true”/>
<field name=”emps”>
<collection element-type=”Employee”>
<extension vendor-name=”sunw” key=”element-inverse” value=”dept”/>
</collection>
</field>
</class>
</package>
</jdo>
 JDO 2.0 198 October 21, 2004

Java Data Objects 2.0
19 Extent

This chapter specifies the Extent contract between an application component and the
JDO implementation.

19.1 Overview

An application needs to provide a candidate collection of instances to a query. If the query
filtering is to be performed in the datastore, then the application must supply the collection
of instances to be filtered. This is the primary function of the Extent interface.

An Extent instance is logically a holder for information:

• the class of instances;

• whether subclasses are part of the Extent; and

• a collection of active iterators over the Extent.

Thus, no action is taken at the time the Extent is constructed. The contents of the Extent
are calculated at the point in time when a query is executed and when an iterator is ob-
tained via the iterator() method.

A query may be executed against either a Collection or an Extent. The Extent is
used when the query is intended to be filtered by the datastore, not by in-memory process-
ing. There are no Collectionmethods in Extent except for iterator(). Thus, com-
mon Collection behaviors are not possible, including determining whether one
Extent contains another, determining the size of the Extent, or determining whether a
specific instance is contained in the Extent. Any such operations must be performed by
executing a query against the Extent.

If the Extent is large, then an appropriate iteration strategy should be adopted by the
JDO implementation.

N15.1-1 [The Extent for classes of embedded instances is not affected by changes to fields
in referencing class instances.]

19.2 Goals

The extent interface has the following goals:

• Large result set support. Queries might return massive numbers of JDO instances
that match the query. The JDO Query architecture must provide for processing
the results within the resource constraints of the execution environment.

• Application resource management. Iterating an Extent might use resources that
should be released when the application has finished an iteration. The application
should be provided with a means to release iterator resources.
 JDO 2.0 199 October 21, 2004

Java Data Objects 2.0
19.3 Interface Extent

package javax.jdo;

public interface Extent {

Iterator iterator();

A15.3-1 [This method returns an Iterator over all the instances in the Extent.] N15.3-
14 [If NontransactionalRead property is set to false, this method will throw a
JDOUserException if called outside a transaction.]

If the IgnoreCache option is set to true in the PersistenceManager at the time that
this Iterator instance is obtained, then new and deleted instances in the current trans-
action might be ignored by the Iterator at the option of the implementation. That is,
new instances might not be returned; and deleted instances might be returned.

If the IgnoreCache option is set to false in the PersistenceManager at the time
that this Iterator instance is obtained, then:

• A15.3-2 [If instances were made persistent in the transaction prior to the execution
of this method, the returned Iterator will contain the instances.]

• A15.3-3 [If instances were deleted in the transaction prior to the execution of this
method, the returned Iterator will not contain the instances.]

The above describes the behavior of an extent-based query at query execution.

A15.3-4 [If any mutating method, including the remove method, is called on the Itera-
tor returned by this method, a UnsupportedOperationException is thrown.]

boolean hasSubclasses();

A15.3-5A15.3-6 [This method returns an indicator of whether the extent is proper or in-
cludes subclasses.]

Class getCandidateClass();

A15.3-7 [This method returns the class of the instances contained in it.]

PersistenceManager getPersistenceManager();

A15.3-8 [This method returns the PersistenceManager that created it.]

void close(Iterator i);

This method closes an Iterator acquired from this Extent. A15.3-9 [After this call, the
parameter Iterator will return false to hasNext()], and A15.3-10 [will throw
NoSuchElementException to next().] A15.3-11 [The Extent itself can still be used
to acquire other iterators and can be used as the Extent for queries.]

void closeAll ();

This method closes all iterators acquired from this Extent. A15.3-12 [After this call, all
iterators acquired from this Extent will return false to hasNext()], and A15.3-13
[will throw NoSuchElementException to next().]

Fetch Plan

FetchPlan getFetchPlan();

This method retrieves the fetch plan associated with the Extent. It always returns the
identical instance for the same Extent instance. Any change made to the fetch plan affects
subsequent instance retrievals via next(). Only instances not already in memory are affect-
ed by the fetch plan. Fetch plan is described in Section 12.7.
 JDO 2.0 200 October 21, 2004

Java Data Objects 2.0
20 Portability Guidelines

One of the objectives of JDO is to allow an application to be portable across multiple JDO
implementations. This Chapter summarizes portability rules that are expressed elsewhere
in this document. If all of these programming rules are followed, then the application will
work in any JDO compliant implementation.

20.1 Optional Features

These features may be used by the application if the JDO vendor supports them. Since they
are not required features, a portable application must not use them.

20.1.1 Optimistic Transactions

Optimistic transactions are enabled by the PersistenceManagerFactory or Trans-
action method setOptimistic(true). JDO implementations that do not support
optimistic transactions throw JDOUnsupportedOptionException. [RefA11.6*,
RefA5.8*]

20.1.2 Nontransactional Read

Nontransactional read is enabled by the PersistenceManagerFactory or Trans-
action method setNontransactionalRead(true). JDO implementations that do
not support nontransactional read throw JDOUnsupportedOptionException.
[RefA11.6*, RefA5.6*]

20.1.3 Nontransactional Write

Nontransactional write is enabled by the PersistenceManagerFactory or Trans-
action method setNontransactionalWrite(true). JDO implementations that
do not support nontransactional write throw JDOUnsupportedOptionException.
[RefA11.6*, RefA5.6*]

20.1.4 Transient Transactional

Transient transactional instances are created by the PersistenceManager makeT-
ransactional(Object). JDO implementations that do not support transient transac-
tional throw JDOUnsupportedOptionException. [RefA11.6*, RefA5.7*]

20.1.5 RetainValues

A portable application should run the same regardless of the setting of the retainVal-
ues flag.

20.1.6 IgnoreCache

A portable application should set this flag to false. The results of iterating Extents and
executing queries might be different among different implementations.
 JDO 2.0 201 October 21, 2004

Java Data Objects 2.0
20.2 Object Model

References among persistence-capable classes must be defined as First Class Objects in the
model.

SCO instances must not be shared among multiple persistent instances.

Arrays must not be shared among multiple persistent instances.

If arrays are passed by reference outside the defining class, the owning persistent instance
must be notified via jdoMakeDirty.

The application must not depend on any sharing semantics of immutable class objects.

The application must not depend on knowing the exact class of an SCO instance, as they
may be substituted by a subclass of the type.

Persistence-capable classes must not contain final non-static fields or methods or fields
that start with "jdo".

[RefA11.6*, RefA6*]

20.3 JDO Identity

Applications must be aware that support for application identity and datastore identity
are optional, and some implementations might support only one of these identity types.
The supported identity type(s) of the implementation should be checked by using the
supportedOptions method of PersistenceManagerFactory.

Applications must construct only ObjectId instances for classes that use application-de-
fined JDO identity, or use the PersistenceManager getObjectIdClass to obtain
the ObjectId class.

Classes that use application identity must only use key field types of primitive, String,
Date, Byte, Short, Integer, Long, Float, Double, BigDecimal, or
BigInteger.

Applications must only compare ObjectId instances from different JDO implementa-
tions for classes that use application-defined JDO identity.

The equals and hashCode methods of any persistence-capable class using application
identity must depend on all of the key fields.

Key fields can be defined only in the least-derived persistence-capable class in an inherit-
ance hierarchy. All of the classes in the hierarchy use the same key class.

A JDO implementation might not support changing primary key field values (which has
the effect of changing the primary key of the underlying datastore instance). Portable ap-
plications do not change primary key fields.

[RefA11.6*]

20.4 PersistenceManager

To be portable, instances of PersistenceManager must be obtained from a Persis-
tenceManagerFactory, and not by construction. The recommended way to instantiate
a PersistenceManagerFactory is to use the JDOHelper.getPersistenceMan-
agerFactory(Properties) method.
 JDO 2.0 202 October 21, 2004

Java Data Objects 2.0
20.5 Query

Using a query language other than JDOQL is not portable.

A query must constrain all variables used in any expressions with a contains clause refer-
encing a persistent field of a persistence-capable class.

Not all datastores allow storing null-valued collections. Portable queries on these collec-
tions should use isEmpty() instead of comparing to null.

Portable queries must only use persistent or public final static field names in filter expres-
sions.

Portable queries must pass persistent or transactional instances as parameters of persis-
tence-capable types.

Wild card queries must use “matches” with a regular expression including only “(?i)” for
case-insensitivity, “.” for matching a single characters, and “.*” for matching multiple
characters.

20.6 XML metadata

Portable applications will define all persistence-capable classes in the XML metadata.

20.7 Life cycle

Portable applications will not depend on requiring instances to be hollow or persistent-
nontransactional, or to remain non-transactional in a transaction.

20.8 JDOHelper

Portable applications will use JDOHelper for state interrogations of instances of persis-
tence-capable classes and for determining if an instance is of a persistence-capable class.

20.9 Transaction

Portable applications must not depend on isolation levels stronger than read-committed
provided by the underlying datastore. Some fields might be read at different times by the
JDO implementation, and there is no guarantee as to read consistency compared to previ-
ously read data. A JDO persistence-capable instance might contain fields instantiated by
multiple datastore accesses, with no guarantees of consistency (read-committed isolation
level).

20.10 Binary Compatibility

Portable applications must not use the PersistenceCapable interface. Compliant imple-
mentations might use persistence-capable classes that do not implement the Persistence-
Capable interface. Instances can be queried as to their state by using the methods in
JDOHelper.

Readers primarily interested in developing applications with the JDO API can ignore the following
chapters. Skip to 23 – JDOPermission.
 JDO 2.0 203 October 21, 2004

Java Data Objects 2.0
21 JDO Reference Enhancer

This chapter specifies the JDO Reference Enhancement, which specifies the contract be-
tween JDO persistence-capable classes and JDO StateManager in the binary-compatible
runtime environment. The JDO Reference Enhancer modifies persistence-capable classes
to run in the JDO environment and implement the required contract. The resulting classes,
hereinafter referred to as enhanced classes, implement a contract used by the JDOHelper,
the JDOImplHelper, and the StateManager classes.

The JDO Reference Enhancer is just one possible implementation of the JDO Reference En-
hancement contract. Tools may instead preprocess or generate source code to create class-
es that implement this contract.

Enhancement is just one possible strategy for JDO implementations. If a JDO implementa-
tion supports BinaryCompatibility, it must support the PersistenceCapable contract.
Otherwise, it need only support the rest of the user-visible contracts (e.g. PersistenceMan-
agerFactory, PersistenceManager, Query, Transaction, and Extent).

NOTE: This chapter is not intended to be used by application programmers. It
is for use only by implementations. Applications should use the methods defined
in class JDOHelper instead of these methods and fields.

21.1 Overview

The JDO Reference Enhancer will be used to modify each persistence-capable class before
using that persistence-capable class with the Reference Implementation Persistence-
Manager in the Java VM. It might be used before class loading or during the class loading
process.

The JDO Reference Enhancer transforms the class by making specific changes to the class
definition to enable the state of any persistent instances to be synchronized with the rep-
resentation of the data in the datastore.

Tools that generate source code or modify the Java source code files must generate classes
that meet the defined contract in this chapter.

The Reference Enhancer provides an implementation for the PersistenceCapable in-
terface.

21.2 Goals

The following are the goals for the JDO Reference Enhancer:

• Binary compatibility and portability of application classes among JDO vendor
implementations

• Binary compatibility between application classes enhanced by different JDO
vendors at different times.

• Minimal intrusion into the operation of the class and class instances
 JDO 2.0 204 October 21, 2004

Java Data Objects 2.0
• Provide metadata at runtime without requiring implementations to be granted
reflect permission for non-private fields

• Values of fields can be read and written directly without wrapping code with
accessors or mutators (field1 += 13 is allowed, instead of requiring the user
to code setField1(getField1() + 13))

• Navigation from one instance to another uses natural Java syntax without any
requirement for explicit fetching of referenced instances

• Automatically track modification of persistent instances without any explicit
action by the application or component developer

• Highest performance for transient instances of persistence-capable classes

• Support for all class and field modifiers

• Transparent operation of persistent and transient instances as seen by application
components and persistence-capable classes

• Shared use of persistence-capable classes (utility components) among multiple
JDO PersistenceManager instances in the same Java VM

• Preservation of the security of instances of PersistenceCapable classes from
unauthorized access

• Support for debugging enhanced classes by line number

21.3 Enhancement: Architecture

The reference enhancement of persistence-capable classes has the primary objective of pre-
serving transparency for the classes. Specifically, accesses to fields in the JDO instance are
mediated to allow for initializing values of fields from the associated values in the data-
store and for storing the values of fields in the JDO instance into the associated values in
the datastore at transaction boundaries.

To avoid conflicts in the name space of the persistence-capable classes, all methods and
fields added to the persistence-capable classes have the “jdo” prefix.

Enhancement might be performed at any time prior to use of the class by the application.
During enhancement, special JDO class metadata must be available if any non-default ac-
tions are to be taken. The metadata is in XML format .

Specifically, the following will require access to special class metadata at class enhance-
ment time, because these are not the defaults:

• classes are to use primary key or non-managed object identity;

• fields declared as transient in the class definition are to be persistent in the
datastore;

• fields not declared as transient in the class definition are to be non-persistent in the
datastore;

• fields are to be transactional non-persistent;

• fields with domains of references to persistence-capable classes are to be part of the
default fetch group;
 JDO 2.0 205 October 21, 2004

Java Data Objects 2.0
• fields with domains of primitive types (boolean, char, byte, short, int,
long, float, double) or primitive wrapper types (Boolean, Char, Byte,
Short, Integer, Long, Float, Double) are not to be part of the default fetch
group;

• fields with domains of String are not to be part of the default fetch group;

• fields with domains of array types are to be part of the default fetch group.

Enhancement makes changes to two categories of classes: persistence-capable and persis-
tence-aware. Persistence-capable classes are those whose instances are allowed to be
stored in a JDO-managed datastore. Persistence aware classes are those that while not nec-
essarily persistence-capable themselves, contain references to managed fields of classes
that are persistence-capable. Thus, persistence-capable classes may also be persistence-
aware.

To preserve the security of instances of PersistenceCapable classes, access restric-
tions to fields before enhancement will be propagated to accessor methods after enhance-
ment. Further, N20.3-25 [to become the delegate of field access (StateManager) the
caller must be authorized for JDOPermission.]

A JDO implementation must interoperate with classes enhanced by the Reference Enhanc-
er and with classes enhanced with other Vendor Enhancers. Additionally, classes en-
hanced by any Vendor Enhancers must interoperate with the Reference Implementation.
[RefA3*]

Name scope issues are minimized because the Reference Enhancement contract adds
methods and fields that begin with “jdo”, while methods and fields added by Vendor En-
hancers must not begin with “jdo”. Instead, they may begin with “sunwjdo”, “exlnj-
do” or other string that includes a vendor-identifying name and the “jdo” string.

Debugging by source line number must be preserved by the enhancement process. If any
code modification within a method body changes the byte code offsets within the method,
then the line number references of the method must be updated to reflect the change.

The Reference Enhancer makes the following changes to the least-derived (topmost) per-
sistence-capable classes:

• A20.3-1 [Mod. adds a field named jdoStateManager, of type
javax.jdo.spi.StateManager to associate each instance with zero or one
instance of JDO StateManager;]

• A20.3-2 [Mod. adds a synchronized method jdoReplaceStateManager (to
replace the value of the jdoStateManager), which invokes security checking
for declared JDOPermission;]

• A20.3-3 [Mod. adds a field named jdoFlags of type byte in the least-derived
persistence capable class, to distinguish readable and writable instances from non-
readable and non-writable instances;]

• A20.3-4 [Mod. adds a method jdoReplaceFlags to require the instance to
request an updated value for the jdoFlags field from the StateManager;]

• adds methods to implement status query methods by delegating to the
StateManager;

• N20.3-26 [adds method jdoReplaceFields(int[]) to obtain values of
specified fields from the StateManager and cache the values in the instance;]
 JDO 2.0 206 October 21, 2004

Java Data Objects 2.0
• N20.3-27 [adds method jdoProvideFields(int[]) to supply values of
specific fields to the StateManager;]

• N20.3-28 [adds a method void jdoCopyFields(Object other, int[]
fieldNumbers) to allow the StateManager to manage multiple images of the
persistence capable instance;]

• adds a method void jdoCopyField(Object other, int
fieldNumber) to allow the StateManager to manage multiple images of the
persistence capable instance;

• A20.3-19 [adds a method jdoPreSerialize] to load all non-transient fields into
the instance prior to serialization;

A20.3-5, A20.15-12 [adds a protected default constructor if no default constructor exists]

The Reference Enhancer makes the following changes to least-derived (topmost) persis-
tence-capable classes and classes that declare an objectid-class in their xml:

• A20.3-22 [adds methods
jdoCopyKeyFieldsToObjectId(PersistenceCapable pc, Object
oid)] and A20.3-23
[jdoCopyKeyFieldsToObjectId(ObjectIdFieldSupplier fs,
Object oid).]

• N20.3-29 [adds methods jdoCopyKeyFieldsFromObjectId(Object oid)
and jdoCopyKeyFieldsFromObjectId(ObjectIdFieldConsumer fc,
Object oid).]

• A20.3-21 [adds a method jdoNewObjectIdInstance() which creates an
instance of the jdo ObjectId for this class.]

The Reference Enhancer makes the following changes to all classes:

• A20.3-0 [adds “implements javax.jdo.spi.PersistenceCapable” to
the class definition;]

• A20.3-6 [adds two methods jdoNewInstance, one of which takes a parameter
of type StateManager, to be used by the implementation when a new persistent
instance is required (this method allows a performance optimization), and the
other takes a parameter of type StateManager and a parameter of an
ObjectId for key field initialization;]

• A20.3-7 [int[] param removed? adds method jdoReplaceField(int) to
obtain values of specified fields from the StateManager and cache the values in
the instance;]

• A20.3-8 [int[] param removed? adds method jdoProvideField(int) to
supply values of specific fields to the StateManager;]

• A20.3-9 [Mod. adds an accessor method and mutator method for each field
declared in the class, which delegates to the StateManager for values;]

• A20.3-10 [Removed! changes the modifiers of all persistent fields to private]

• leaves the modifiers of all persistent fields the same as the unenhanced class to
allow the enhanced classes to be used for compilation of other classes;

• A20.3-11 [Mod. adds a method jdoCopyField(<class> other, int
fieldNumber)] to allow the StateManager to manage multiple images of the
persistence capable instance;
 JDO 2.0 207 October 21, 2004

Java Data Objects 2.0
• A20.3-12 [adds a method jdoGetManagedFieldCount()] to manage the
numbering of fields with respect to inherited managed fields.

• A20.3-13 [adds a field jdoInheritedFieldCount, which is set at class
initialization time to the returned value of
super.jdoGetManagedFieldCount().]

• A20.3-14A20.3-15A20.3-16 [adds fields jdoFieldNames, jdoFieldTypes, and
jdoFieldFlags, which contain the names, types, and flags of managed fields.]

• A20.3-17 [adds field Class jdoPersistenceCapableSuperclass, which
contains the Class of the PersistenceCapable superclass.]

• A20.3-18 [adds a static initializer to register the class with the JDOImplHelper.]

• A20.3-20 [adds a field serialVersionUID if it does not already exist, and
calculates its initial value based on the non-enhanced class definition.]

Enhancement makes the following changes to persistence aware classes:

• A20.3-24 [modifies executable code that accesses fields of
PersistenceCapable classes not known to be not managed, replacing
getfield and putfield calls with calls to the generated accessor and mutator
methods.]

21.4 Inheritance

Enhancement allows a class to manage the persistent state only of declared fields. It is a
future objective to allow a class to manage fields of a non-persistence capable superclass.

Fields that hide inherited fields (because they have the same name) are fully supported.
The enhancer delegates accesses of inherited hidden fields to the appropriate class by ref-
erencing the appropriate method implemented in the declaring class.

All persistence capable classes in the inheritance hierarchy must use the same kind of JDO
identity.N20.4-1 [Enforced by Enhancer?]

21.5 Field Numbering

Enhancement assigns field numbers to all managed (transactional or persistent) fields.
Generated methods and fields that refer to fields (jdoFieldNames, jdoFieldTypes,
jdoFieldFlags, jdoGetManagedFieldCount, jdoCopyFields, jdo-
MakeDirty, jdoProvideField, jdoProvideFields, jdoReplaceField, and
jdoReplaceFields) are generated to include both transactional and persistent fields.

Relative field numbers are calculated at enhancement time. For each persistence capable
class the enhancer determines the declared managed fields. To calculate the relative field
number, the declared fields array is sorted by field name. Each managed field is assigned
a relative field number, starting with zero.

Absolute field numbers are calculated at runtime, based on the number of inherited man-
aged fields, and the relative field number. The absolute field number used in method calls
is the relative field number plus the number of inherited managed fields.

The absolute field number is used in method calls between the StateManager and Per-
sistenceCapable; and in the reference implementation, between the StateManager
and StoreManager.
 JDO 2.0 208 October 21, 2004

Java Data Objects 2.0
21.6 Serialization

Serialization of a transient instance results in writing an object graph of objects connected
via non-transient fields. The explicit intent of JDO enhancement of serializable classes is to
permit serialization of transient instances or persistent instances to a format that can be de-
serialized by either an enhanced or non-enhanced class.

A20.6-1 [When the writeObject method is called on a class to serialize it,] all fields not
declared as transient must be loaded into the instance. This function is performed by the
enhancer-generated method jdoPreSerialize. [This method simply delegates to the
StateManager to ensure that all persistent non-transient fields are loaded into the in-
stance.] [Fields not declared as transient and not declared as persistent must have been
loaded by the PersistenceCapable class an application-specific way.]

The jdoPreSerialize method need be called only once for a persistent instance.
Therefore, the writeObject method in the least-derived pc class that implements Se-
rializable in the inheritance hierarchy needs to be modified or generated to call it.

A20.6-2 [If a standard serialization is done to an enhanced class instance, the fields added
by the enhancer will not be serialized because they are declared to be transient.]

To allow a non-enhanced class to deserialize the stream, the serialVersionUID for the
enhanced and non-enhanced classes must be identical. A20.6-3 [If the serialVersion-
UID field does not already exist in the non-enhanced class, the enhancer will calculate it
(excluding any enhancer-generated fields or methods) and add it to the enhanced class.]

If a PersistenceCapable class is assignable to java.io.Serializable but its
persistence-capable superclass is not, then the enhancer will modify the class in the follow-
ing way:

• A20.6-4 [if the class does not contain implementations of writeObject, or
writeReplace, then the enhancer will generate writeObject. Fields that are
required to be present during serialization operations will be explicitly
instantiated by the generated method jdoPreSerialize, which will be called
by the enhancer-generated writeObject.]

• N20.6-6 [if the class contains an implementation of writeObject or
writeReplace, it will be changed to call jdoPreSerialize prior to any user-
written code in the method.]

A20.6-5 [Mod.? If a PersistenceCapable class is assignable to java.io.Serial-
izable, then the non-transient fields might be instantiated prior to serialization.] How-
ever, the closure of instances reachable from this instance might include a large part of
instances in the datastore.

The results of restoring a serialized persistent instance graph is a graph of interconnected
transient instances. The method readObject is not enhanced, as it deals only with tran-
sient instances.

21.7 Cloning

If a standard clone is made of a persistent instance, the jdoFlags and jdoStateMan-
ager fields will also be cloned. The clone will eventually invoke the StateManager if
the source of the cloned instance is not transient. This condition will be detected by the
runtime, but disconnecting the clone is a convoluted process. To avoid this situation where
possible, the enhancer modifies the cloning behavior by modifying certain methods that
 JDO 2.0 209 October 21, 2004

Java Data Objects 2.0
invoke clone, A20.7-1 [setting these two fields to indicate that the clone is a transient in-
stance.] Otherwise, all of the fields in the clone contain the standard shallow copy of the
fields of the cloned instance.

The reference enhancement will modify the clone() method in the persistence-capable
root class (the least-derived (topmost) PersistenceCapable class) to A20.7-2 [reset
these two fields] immediately after returning from super.clone(). This caters for the
normal case where clone methods in subclasses call super.clone() and the clone is
disconnected immediately after being cloned.

This technique does not address these cases:

• A non-persistence-capable superclass clone method calls a runtime method (for
example, makePersistent) on the newly created clone. In this case, the
makePersistent will succeed, but the clone method in the persistence-
capable subclass will disconnect the clone, thereby undoing the
makePersistent. Thus, calling any life cycle change methods with the clone as
an argument is not permitted in clone methods.

• Where there is no clone method declared in the persistence-capable root class, the
clone will not be disconnected, and the runtime will disconnect the clone the first
time the StateManager is called by the clone.

21.8 Introspection (Java core reflection)

No changes are made to the behavior of introspection. The current state of all fields is ex-
posed to the reflection APIs.

This is not at all what some users might expect. It is a future objective to more gracefully
support introspection of fields in persistent instances of persistence capable classes.

21.9 Field Modifiers

Fields in persistence-capable classes are treated by the enhancer in one of several ways,
based on their modifiers as declared in the Java language and their enhanced modifiers as
declared by the persistence-capable MetaData.

These modifiers are orthogonal to the modifiers defined by the Java language. They have
default values based on modifiers defined in the class for the fields. They may be specified
in the XML metadata used at enhancement time.

21.9.1 Non-persistent

Non-persistent fields are ignored by the enhancer. They are assumed to lie outside the do-
main of persistence. They might be changed at will by any method based only on the pri-
vate/protected/public modifiers. A20.9.1-1 [There is no enhancement of accesses to non-
persistent fields.]

A20.9.1-2 [The default modifier is non-persistent for fields identified as transient in the
class declaration.]

21.9.2 Transactional non-persistent

Transactional non-persistent fields are non-persistent fields whose values are saved and
restored during rollback. Their values are not stored in the datastore. A20.9.2-1 [There is
no enhancement of read accesses to transactional non-persistent fields. Write accesses are
always mediated (the StateManager is called on write).]
 JDO 2.0 210 October 21, 2004

Java Data Objects 2.0
21.9.3 Persistent

Persistent fields are fields whose values are synchronized with values in the datastore. The
synchronization is performed transparent to the methods in the persistence-capable class.

The default persistence-modifier for fields is based on their modifiers and type, as detailed
in the XML metadata chapter.

The modification to the class by the enhancer depends on whether the persistent field is a
member of the default fetch group.

If the persistent field is a member of the default fetch group, then the enhanced code be-
haves as follows. The constant values READ_OK, READ_WRITE_OK, and
LOAD_REQUIRED are defined in interface PersistenceCapable.

• for read access, jdoFlags is checked for READ_OK or READ_WRITE_OK. If it is
then the value in the field is retrieved. If it is not, then the StateManager
instance is requested to load the value of the field from the datastore, which might
cause the StateManager to populate values of all default fetch group fields in
the instance, and other values as defined by the JDO vendor policy. This behavior
is not required, but optional. If the StateManager chooses, it may simply
populate the value of the specific field requested. Upon conclusion of this process,
the jdoFlags value might be set by the StateManager to READ_OK and the
value of the field is retrieved. If not all fields in the default fetch group were
populated, the StateManager must not set the jdoFlags to be READ_OK.

• for write access, jdoFlags is checked for READ_WRITE_OK. If it is
READ_WRITE_OK, then the value is stored in the field. If it is not
READ_WRITE_OK, then the StateManager instance is requested to load the
state of the values from the datastore, which might cause the StateManager to
populate values of all default fetch group fields in the instance. Upon conclusion
of the load process, the jdoFlags value might be set by the StateManager to
READ_WRITE_OK and the value of the field is stored.

If the persistent field is not a member of the default fetch group, then each read and write
access to the field is delegated to the StateManager. For read, the value of the field is
obtained from the StateManager, stored in the field, and returned to the caller. For
write, the proposed value is given to the StateManager, and the returned value from
the StateManager is stored in the field.

The enhanced code that fetches or modifies a field that is not in the default fetch group first
checks to see if there is an associated StateManager instance and if not (the case for tran-
sient instances) the access is allowed without intervention.

21.9.4 PrimaryKey

Primary key fields are not part of the default fetch group; all changes to the field can be
intercepted by the StateManager. This allows special treatment by the implementation
if any primary key fields are changed by the application.

A20.9.4-1 [Primary key fields are always available in the instance, regardless of the state.]
Therefore, read access to these fields is never mediated.

21.9.5 Embedded

Fields identified as embedded in the XML metadata are treated as containing embedded
instances. The default for Array, Collection, and Map types is embedded. This is to al-
low JDO implementations to map persistence-capable field types to embedded objects (ag-
gregation by containment pattern).
 JDO 2.0 211 October 21, 2004

Java Data Objects 2.0
21.9.6 Null-value

Fields of Object types might be mapped to datastore elements that do not allow null val-
ues. The default behavior “none” is that no special treatment is done for null-valued fields.
N20.9.6-1 [In this case, null-valued fields throw a JDOUserException when the in-
stance is flushed to the datastore and the datastore does not support null values.]

However, the treatment of null-valued fields can be modified by specifying the behavior
in the XML metadata. The null-value setting of “default” is used when the default value
for the datastore element is to be used for null-valued fields.

N20.9.6-2 [If the application requires non-null values to be stored in this field, then the
setting should be “exception”, which throws a JDOUserException if the value of the
field is null at the time the instance is stored in the datastore.]

For example, if a field of type Integer is mapped to a datastore int value, committing an
instance with a field value of null where the null-value setting is “default” will result in
a zero written to the datastore element. Similarly, a null-valued String field would be
written to the datastore as an empty (zero length) String where the null-value setting is
“default”.

21.10 Treatment of standard Java field modifiers

21.10.1 Static

A20.10.1-1 [Static fields are ignored by the enhancer. They are not initialized by JDO; ac-
cesses to values are not mediated. This assertion is duplicated in chapter 18.]

21.10.2 Final

A20.10.2-1 [Final fields are treated as non-persistent and non-transactional by the enhanc-
er.] Final fields are initialized only by the constructor, and their values cannot be changed
after construction of the instance. [Therefore, their values cannot be loaded or stored by
JDO; accesses are not mediated. This assertion is duplicated in chapter 18.]

This treatment might not be what users expect; therefore, final fields are not supported as
persistent or transactional instance fields, final static fields are supported by ignoring
them.

21.10.3 Private

Private fields are accessed only by methods in the class itself. A20.10.3-1 [JDO handles pri-
vate fields according to the semantic that

A. values are stored in private fields by the enhancement-generated jdoSetXXXmethods
or jdoReplaceField, which become part of the class definition.

B. The enhancement-generated jdoGetXXX or jdoProvideField methods, which be-
come part of the class definition, load values from private fields.]

21.10.4 Public, Protected

Public fields are not recommended to be persistent in persistence capable classes. Classes
that make reference to persistent public fields (persistence aware) must be enhanced them-
selves prior to execution. Protected fields and fields without an explicit access modifier
(commonly referred to as package access) may be persistent.

Users must enhance all classes, regardless of package, that reference any persistent or
transactional field.
 JDO 2.0 212 October 21, 2004

Java Data Objects 2.0
A20.10.4-1 [Removed! To guarantee that persistence aware classes are enhanced, the modifier for
public persistent fields is changed during enhancement to be private. Therefore, if an unenhanced
persistence aware class attempts to access a public field of a persistence capable class, an IllegalAc-
cessError will be thrown by the JVM.]

21.11 Fetch Groups

Fetch groups represent a grouping of fields that are retrieved from the datastore together.
Typically, a datastore associates a number of data values together and efficiently retrieves
these values. Other values require extra method calls to retrieve.

For example, in a relational database, the Employee table defines columns for Employee
id, Name, and Position. These columns are efficiently retrieved with one data transfer re-
quest. The corresponding fields in the Employee class might be part of the default fetch
group.

Continuing this example, there is a column for Department dept, defined as a foreign key
from the Employee table to the Department table, which corresponds to a field in the Em-
ployee class named dept of type Department. The runtime behavior of this field depends
on the mapping to the Department table. The reference might be to a derived class and it
might be expensive to determine the class of the Department instance. Therefore, the dept
field will not be defined as part of the default fetch group, even though the foreign key that
implements the relationship might be fetched when the Employee is fetched. Rather, the
value for the dept field will be retrieved from the StateManager every time it is request-
ed. Similarly, the StateManagerwill be called for each modification of the value of dept.

The jdoFlags field is the indicator of the state of the default fetch group.

21.12 jdoFlags Definition

The value of the jdoFlags field is entirely determined by the StateManager. The
StateManager calls the jdoReplaceFlags method to inform the persistence capable
class to retrieve a new value for the jdoFlags field. The values permitted are constants
defined in the interface PersistenceCapable: READ_OK, READ_WRITE_OK, and
LOAD_REQUIRED.

During the transition from transient to a managed life cycle state, the jdoFlags field is
set to LOAD_REQUIRED by the persistence capable instance, to indicate that the instance
is not ready. During the transition from a managed state to transient, the jdoFlags field
is set to READ_WRITE_OK by the persistence capable instance, to indicate that the instance
is available for read and write of any field.

The jdoFlags field is a byte with four possible values and associated meanings:

• 0 - READ_WRITE_OK: the values in the default fetch group can be read or written
without intermediation of the associated StateManager instance.

• -1 - READ_OK: the values in the default fetch group can be read but not written
without intermediation of the associated StateManager instance.

• 1 - LOAD_REQUIRED: the values in the default fetch group cannot be accessed,
either for read or write, without intermediation of the associated StateManager
instance.
 JDO 2.0 213 October 21, 2004

Java Data Objects 2.0
• 2 - DETACHED: a subset of fields have been loaded into the instance, and the
instance is detached from its PersistenceManager. Only fields that have been
loaded can be accessed while in the detached state.

21.13 Exceptions

Generated methods validate the state of the persistence-capable class and the arguments
to the method.

If an argument is illegal, then IllegalArgumentException is thrown. For example,
an illegal field number argument is less than zero or greater than the number of managed
fields.

Some methods require a non-null state manager. In these cases, if thejdoStateManager
is null, then IllegalStateException is thrown.

21.14 Modified field access

A20.13-1 [The enhancer modifies field accesses to guarantee that the values of fields are re-
trieved from the datastore prior to application usage.

A.For any field access that reads the value of a field, the getfield byte code is replaced with
a call to a generated local method, jdoGetXXX], which determines based on the kind of
field (default fetch group or not) and the state of the jdoFlags whether to call the
StateManager with the field number needed.

B.[For any field access that stores the new value of a field, the putfield byte code is replaced
with a call to a generated local method, jdoSetXXX], which determines based on the kind
of field (default fetch group or not) and the state of the jdoFlags whether to call the
StateManager with the field number needed. A JDO implementation might perform
field validation during this operation and might throw a JDOUserException if the val-
ue of the field does not meet the criterion.

The following table specifies the values of the jdoFieldFlags for each type of mediated

field.

not checked: access is always granted

checked: the condition of jdoFlags is checked to see if access should be mediated

mediated: access is always mediated (delegated to the StateManager)

flags: the value in the jdoFieldFlags field

Table 8: Field access mediation

field type read access write access flags

transient transactional not checked checked CHECK_WRITE

primary key not checked mediated MEDIATE_WRITE

default fetch group checked checked CHECK_READ +
CHECK_WRITE

non-default fetch group mediated mediated MEDIATE_READ +
MEDIATE_WRITE
 JDO 2.0 214 October 21, 2004

Java Data Objects 2.0
The flags are defined in PersistenceCapable and may be combined only as in the
above table (SERIALIZABLE may be combined with any other flags):

1 - CHECK_READ

2 - MEDIATE_READ

4 - CHECK_WRITE

8 - MEDIATE_WRITE

16 - SERIALIZABLE

21.15 Generated fields in least-derived PersistenceCapable class

A20.14-1, A20.14-2 [These fields are generated only in the least-derived (topmost) class in
the inheritance hierarchy of persistence-capable classes.

protected transient javax.jdo.spi.StateManager jdoStateMan-
ager;]

This field contains the managing StateManager instance, if this instance is being managed.

A20.14-2 [protected transient byte jdoFlags;]

21.16 Generated fields in all PersistenceCapable classes

The following fields are generated in all persistence-capable classes.

A20.14-3 [private final static int jdoInheritedFieldCount;

[A. This field is initialized at class load time to be the number of fields managed by the su-
perclasses of this class], or

B.[to zero if there is no persistence capable superclass.]

A20.14-4 [private final static String[] jdoFieldNames;

This field is initialized at class load time to an array of names of persistent and transaction-
al fields. The position in the array is the relative field number of the field.]

A20.14-5 [private final static Class[] jdoFieldTypes;

This field is initialized at class load time to an array of types of persistent and transactional
fields. The position in the array is the relative field number of the field.]

A20.14-6 [private final static byte[] jdoFieldFlags;

This field is initialized at class load time to an array of flags indicating the characteristics
of each persistent and transactional field.]

A20.14-7 [private final static Class jdoPersistenceCapableSuper-
class;

This field is initialized at class load time to the class instance of the PersistenceCa-
pable superclass, or null if there is none.]

private final static long serialVersionUID;

This field is declared only if it does not already exist, and it is initialized to the value that
would obtain prior to enhancement.

Generated static initializer

A20.14-8 [The generated static initializer] uses the values for jdoFieldNames, jdoField-
Types, jdoFieldFlags, and jdoPersistenceCapableSuperclass, and [calls the
 JDO 2.0 215 October 21, 2004

Java Data Objects 2.0
static registerClass method in JDOImplHelper to register itself with the runtime
environment. If the class is abstract, then it does not register a helper instance. If the class
is not abstract, it registers a newly constructed instance.]

The generated static initialization code is placed after any user-defined static initialization
code.

21.17 Generated methods in least-derived PersistenceCapable class

These methods are declared in interface PersistenceCapable.

public final boolean jdoIsPersistent();

public final boolean jdoIsTransactional();

public final boolean jdoIsNew();

public final boolean jdoIsDirty();

public final boolean jdoIsDeleted();

A20.15-1, A20.15-2, A20.15-3, A20.15-4, A20.15-5 [These methods check if the jdoState-
Manager field is null. If so, they return false. If not, they delegate to the correspond-
ing method in StateManager.]

public final void jdoMakeDirty (String fieldName);

A20.15-6 [This method checks if the jdoStateManager field is null. If so, it returns si-
lently. If not, it delegates to the makeDirty method in StateManager.]

public final PersistenceManager jdoGetPersistenceManager();

A20.15-7 [This method checks if the jdoStateManager field is null. If so, it returns
null. If not, it delegates to the getPersistenceManager method in StateMan-
ager.]

public final Object jdoGetObjectId();

public final Object jdoGetTransactionalObjectId();

A20.15-8, A20.15-9 [These methods check if the jdoStateManager field is null. If so,
they return null. If not, they delegate to the corresponding method in StateManager.]

A20.15-10 [public synchronized final void jdoReplaceStateManager
(StateManager sm);]

NOTE: This method will be called by the StateManager on state changes when transi-
tioning an instance from transient to a managed state, and from a managed state to tran-
sient.

[A. This method is implemented as synchronized] to resolve race conditions, if more than
one StateManager attempts to acquire ownership of the same PersistenceCa-
pable instance.

[B. If the current jdoStateManager is not null, this method replaces the current value
for jdoStateManager with the result of calling jdoStateManager.replacing-
StateManager(this, sm). If successful, the method ends. If the change was not re-
quested by the StateManager, then the StateManager throws a
JDOUserException.

C. If the current jdoStateManager field is null, then a security check is performed] by
calling JDOImplHelper.checkAuthorizedStateManager [with the StateManager
parameter sm passed as the parameter to the check.] Thus, only StateManager instances
 JDO 2.0 216 October 21, 2004

Java Data Objects 2.0
in code bases authorized for JDOPermission(“setStateManager”) are allowed to
set the StateManager. [If the security check succeeds, the jdoStateManager field is
set to the value of the parameter sm, and the jdoFlags field is set to LOAD_REQUIRED
to indicate that mediation is required.]

A20.15-11 [public final void jdoReplaceFlags ();]

NOTE: This method will be called by the StateManager on state changes when transi-
tioning an instance from a managed state to transient.

[* If the current jdoStateManager field is null, then this method silently returns with
no effect.

* If the current jdoStateManager is not null, this method replaces the current value
for jdoFlags with the result of calling jdoStateManager.replacing-
Flags(this).]

public final void jdoReplaceFields (int[] fields);

For each field number in the fields parameter, jdoReplaceField method is called.

public final void jdoProvideFields (int[] fields);

For each field number in the fields parameter, jdoProvideField method is called.

A20.15-25 [protected final void jdoPreSerialize();

This method is called by the generated or modified writeObject to allow the instance
to fully populate serializable fields. This method delegates to the StateManagermethod
preSerialize so that fields can be fetched by the JDO implementation prior to serial-
ization. If the jdoStateManager field is null, this method returns with no effect.]

21.18 Generated methods in PersistenceCapable root classes and all classes that declare
objectid-class in xml metadata:

public void jdoCopyKeyFieldsToObjectId (ObjectIdFieldSupplier
fs, Object oid)

N20.18-1 [This method is called by the JDO implementation (or implementation helper) to
populate key fields in object id instances. If this class is not the persistence-capable root
class, it first calls the method of the same name in the root class. Then, for each key field
declared in the metadata, this method calls the object id field supplier and stores the result
in the oid instance.]

N20.18-2 [If the oid parameter is not assignment compatible with the object id class of this
instance, then ClassCastException is thrown.] If this class does not use application
identity, then this method silently returns.

public void jdoCopyKeyFieldsToObjectId (Object oid)

N20.18-3 [This method is called by the JDO implementation (or implementation helper) to
populate key fields in object id instances from persistence-capable instances. This might be
used to implement getObjectId or getTransactionalObjectId. If this class is not
the persistence-capable root class, it first calls the method of the same name in the root
class. Then, for each key field declared in the metadata, this method copies the value of the
key field to the oid instance.]

N20.18-4 [If the oid parameter is not assignment compatible with the object id class of this
instance, then ClassCastException is thrown.] If this class does not use application
identity, then this method silently returns.
 JDO 2.0 217 October 21, 2004

Java Data Objects 2.0
public void jdoCopyKeyFieldsFromObjectId(ObjectIdFieldConsumer
fc, Object oid)

N20.18-5 [This method is called by the JDO implementation (or implementation helper) to
export key fields from object id instances. If this class is not the persistence-capable root
class, it first calls the method of the same name in the root class. Then, for each key field
declared in the metadata, this method passes the value of the key field in the oid instance
to the store method of the object id field consumer.]

N20.18-6 [If the oid parameter is not assignment compatible with the object id class of this
instance, then ClassCastException is thrown.] If this class does not use application
identity, then this method silently returns.

protected void jdoCopyKeyFieldsFromObjectId (Object oid)

N20.18-7 [This method is called by the jdoNewInstance(Object oid) method. If
this class is not the persistence-capable root class, it first calls the method of the same name
in the root class. Then, for each key field declared in the metadata, this method copies the
value of the key field in the oid instance to the key field in this instance.]

N20.18-8 [If the oid parameter is not assignment compatible with the object id class of this
instance, then ClassCastException is thrown.] If this class does not use application
identity, then this method silently returns.

A20.15-26 [public Object jdoNewObjectIdInstance();]

public Object jdoNewObjectIdInstance(String str);

NOTE: This method is called by the JDO implementation (or implementation helper) to
populate key fields in object id instances.

[If this class uses application identity, then this method returns a new instance of the Ob-
jectId class. Otherwise, null is returned.]

21.19 Generated methods in all PersistenceCapable classes

A20.15-13 [public PersistenceCapable jdoNewInstance(StateManager
sm);

This method uses the default constructor, assigns the sm parameter to the jdoStateM-
anager field, and assigns LOAD_REQUIRED to the jdoFlags field. If the class is ab-
stract, a JDOFatalInternalException is thrown.]

A20.15-14 [public PersistenceCapable jdoNewInstance(StateManager
sm, Object objectid);

This method uses the default constructor, assigns the StateManager parameter to the
jdoStateManager field, assigns LOAD_REQUIRED to the jdoFlags field, and copies
the key fields from the objectid parameter. If the class is abstract, a JDOFatalInter-
nalException is thrown. If the objectid parameter is not of the correct class, then
ClassCastException is thrown.]

A20.15-15 [protected static int jdoGetManagedFieldCount();

This method returns the number of managed fields declared by this class plus the number
inherited from all superclasses.] This method is generated in the class to allow the class to
determine at runtime the number of inherited fields, without having introspection code in
the enhanced class.

A20.15-16 [final static mmm ttt jdoGet<field>(<class> instance);
 JDO 2.0 218 October 21, 2004

Java Data Objects 2.0
The generated jdoGet methods have exactly the same stack signature as the byte code
getfield. They return the value of one specific field. The field returned was either
cached in the instance or retrieved from the StateManager.

The name of the generated method is constructed from the field name. This allows for hid-
den fields to be supported explicitly, and for classes to be enhanced independently.

The modifier mmm is the same access modifier as the corresponding field in the unenhanced
class. The return type ttt is the same type as the corresponding field in the unenhanced
class.

The generated code depends on the type of field:

• If the field is CHECK_READ, then the method first checks to see if the jdoFlags
field is not LOAD_REQUIRED. If so, the value of the field is returned. If not, then
the value of jdoStateManager is checked. If it is null, the value of the field is
returned. If non-null, then method isLoaded is called on the
jdoStateManager. If the result of isLoaded is true, then the value of the
field is returned. If the result of isLoaded is false, then the result of method
getXXXField on the jdoStateManager is returned.

• If the field is MEDIATE_READ, then the value of jdoStateManager is checked.
If it is null, the value of the field is returned. If non-null, then method
isLoaded is called on the jdoStateManager. If the result of isLoaded is
true, then the value of the field is returned. If the result of isLoaded is false,
then the result of method getXXXField on the jdoStateManager is returned.

• If the field is neither of the above, then the value of the field is returned.]

A20.15-17 [final static mmm void jdoSet<field> (<class> instance,
ttt newValue);

The generated jdoSet methods have exactly the same stack signature as the byte code
putfield. They set the value of one specific field. The field might be provided to the
StateManager.

The name of the generated method is constructed from the field name. This allows for hid-
den fields to be supported explicitly, and for classes to be enhanced independently.

The modifier mmm is the same access modifier as the corresponding field in the unenhanced
class. The type ttt is the same type as the corresponding field in the unenhanced class.

The generated code depends on the type of field:

• If the field is CHECK_WRITE, then the method first checks to see if the jdoFlags
field is READ_WRITE_OK. If so, then the field is set to the new value. If not, then
the value of jdoStateManager is checked. If it is null, the value of the field is
set to the new value. If non-null, then method setXXXField is executed on the
jdoStateManager, passing the new value.

• If the field is MEDIATE_WRITE, then the value of jdoStateManager is checked.
If it is null, then the field is set to the parameter. If non-null, then method
setXXXField is executed on the jdoStateManager, passing the new value.

• If the field is neither of the above, then the value of the field is set to the new value.]

A20.15-18 [public void jdoReplaceField (int field);]
 JDO 2.0 219 October 21, 2004

Java Data Objects 2.0
NOTE: This method is used by the StateManager to store values from the datastore into
the instance. If there is no StateManager (the jdoStateManager field is null), then
this method throws JDOFatalInternalException.

This method calls the StateManager replacingXXXField to get a new value for one
field from the StateManager.

The field number is examined to see if it is a declared field or an inherited field. [If it is in-
herited, then the call is delegated to the superclass. If it is declared, then the appropriate
StateManager replacingXXXFieldmethod is called, which retrieves the new value
for the field.

If the field is out of range (less than zero or greater than the number of managed fields in
the class) then a JDOFatalInternalException is thrown.]

A20.15-19 [public void jdoReplaceFields (int[] fields);]

A20.15-20 [public void jdoProvideField (int field);]

NOTE: This method is used by the StateManager to retrieve values from the instance,
during flush to the datastore or for in-memory query processing. If there is no StateM-
anager (the jdoStateManager field is null), then this method throws JDOFa-
talInternalException.

This method calls the StateManager providedXXXFieldmethod to supply the value
of the specified field to the StateManager.

The field number is examined to see if it is a declared field or an inherited field. [If it is in-
herited, then the call is delegated to the superclass. If it is declared, then the appropriate
StateManager providedXXXField method is called, which provides the StateM-
anager with the value for the field.

If the field is out of range (less than zero or greater than the number of managed fields in
the class) then a JDOFatalInternalException is thrown.]

A20.15-21 [public void jdoProvideFields (int[] fields);]

A20.15-22 [Mod! public void jdoCopyFields (Object other, int[]
fieldNumbers);

This method is called by the StateManager to create before images of instances for the
purpose of rollback.This method copies the specified fields from the other instance, which
must be the same class as this instance, and owned by the same StateManager.

If the other instance is not assignment compatible with this instance, then ClassCas-
tException is thrown. If the other instance is not owned by the same StateManager,
then JDOFatalInternalException is thrown.]

protected final void jdoCopyField (<class> other, int fieldNum-
ber);

This method is called by the jdoCopyFieldsmethod to copy the specified field from the
other instance. If the field number corresponds to a field in a persistence-capable super-
class, this method delegates to the superclass method. If the field is out of range (less than
zero or greater than the number of managed fields in the class) then a JDOFatalInter-
nalException is thrown.

A20.15-23 [private void writeObject(java.io.ObjectOutputStream
out)

throws java.io.IOException{
 JDO 2.0 220 October 21, 2004

Java Data Objects 2.0
If no user-written method writeObject exists, then one will be generated. The generat-
ed writeObject makes sure that all persistent and transactional serializable fields are
loaded into the instance, by calling jdoPreSerialize(), and then the default output
behavior is invoked on the output stream.

If the class is serializable (either by explicit declaration or by inheritance) then this code
will guarantee that the fields are loaded prior to standard serialization. If the class is not
serializable, then this code will never be executed.]

Note that A20.15-24 [there is no modification of a user’s readObject]. During the execu-
tion of readObject, a new transient instance is created. This instance might be made per-
sistent later, but while it is being constructed by serialization, it remains transient.

A20.15-27 [Removed! public void jdoCopyKeyFieldsToObjectId (ObjectIdFieldManager fm, Ob-
ject oid)]

A20.15-28 [Removed! public void jdoCopyKeyFieldsToObjectId (PersistenceCapable pc, Object
oid)]

21.20 Example class: Employee

The following class definitions for persistence capable classes are used in the examples:

package com.xyz.hr;

import javax.jdo.spi.*; // generated by enhancer...

class EmployeeKey {

int empid;

}

class Employee

implements PersistenceCapable // generated by enhancer...

{

Employee boss; // relative field 0

Department dept; // relative field 1

int empid; // relative field 2, key field

String name; // relative field 3

21.20.1 Generated fields

protected transient javax.jdo.spi.StateManager jdoStateManager =
null;

protected transient byte jdoFlags =

javax.jdo.spi.PersistenceCapable.READ_WRITE_OK;

// if no superclass, the following:

private final static int jdoInheritedFieldCount = 0;

/* otherwise,

private final static int jdoInheritedFieldCount =

<persistence-capable-superclass>.jdoGetManagedFieldCount();

*/

private final static String[] jdoFieldNames = {“boss”, “dept”, “em-
pid”, “name”};
 JDO 2.0 221 October 21, 2004

Java Data Objects 2.0
private final static Class[] jdoFieldTypes = {Employee.class, De-
partment.class, int.class, String.class};

private final static byte[] jdoFieldFlags = {

MEDIATE_READ+MEDIATE_WRITE,

MEDIATE_READ+MEDIATE_WRITE,

MEDIATE_WRITE,

CHECK_READ+CHECK_WRITE

};

// if no PersistenceCapable superclass, the following:

private final static Class jdoPersistenceCapableSuperclass = null;

/* otherwise,

private final static Class jdoPersistenceCapableSuperclass = <pc-
super>;

private final static long serialVersionUID = 1234567890L;

*/

21.20.2 Generated static initializer

static {

javax.jdo.spi.JDOImplHelper.registerClass (

Employee.class,

jdoFieldNames,

jdoFieldTypes,

jdoFieldFlags,

jdoPersistenceCapableSuperclass,

new Employee());

}

21.20.3 Generated interrogatives

public final boolean jdoIsPersistent() {

return jdoStateManager==null?false:

jdoStateManager.isPersistent(this);

}

public final boolean jdoIsTransactional(){

return jdoStateManager==null?false:

jdoStateManager.isTransactional(this);

}

public final boolean jdoIsNew(){

return jdoStateManager==null?false:

jdoStateManager.isNew(this);

}

public final boolean jdoIsDirty(){
 JDO 2.0 222 October 21, 2004

Java Data Objects 2.0
return jdoStateManager==null?false:

jdoStateManager.isDirty(this);

}

public final boolean jdoIsDeleted(){

return jdoStateManager==null?false:

jdoStateManager.isDeleted(this);

}

public final void jdoMakeDirty (String fieldName){

if (jdoStateManager==null) return;

jdoStateManager.makeDirty(this, fieldName);

}

public final PersistenceManager jdoGetPersistenceManager(){

return jdoStateManager==null?null:

jdoStateManager.getPersistenceManager(this);

}

public final Object jdoGetObjectId(){

return jdoStateManager==null?null:

jdoStateManager.getObjectId(this);

}

public final Object jdoGetTransactionalObjectId(){

return jdoStateManager==null?null:

jdoStateManager.getTransactionalObjectId(this);

}

21.20.4 Generated jdoReplaceStateManager

The generated method asks the current StateManager to approve the change or vali-
dates the caller’s authority to set the state.

public final synchronized void jdoReplaceStateManager

(javax.jdo.spi.StateManager sm) {

// throws exception if current sm didn’t request the change

if (jdoStateManager != null) {

jdoStateManager = jdoStateManager.replacingStateManager (this,

sm);

} else {

// the following will throw an exception if not authorized

JDOImplHelper.checkAuthorizedStateManager(sm);

jdoStateManager = sm;

this.jdoFlags = LOAD_REQUIRED;

}

}

21.20.5 Generated jdoReplaceFlags

public final void jdoReplaceFlags () {
 JDO 2.0 223 October 21, 2004

Java Data Objects 2.0
if (jdoStateManager != null) {

jdoFlags = jdoStateManager.replacingFlags (this);

}

}

21.20.6 Generated jdoNewInstance helpers

The first generated helper assigns the value of the passed parameter to the jdoStateM-
anager field of the newly created instance.

public PersistenceCapable jdoNewInstance(StateManager sm) {

// if class is abstract, throw new JDOFatalInternalException()

Employee pc = new Employee ();
pc.jdoStateManager = sm;

pc.jdoFlags = LOAD_REQUIRED;

return pc;

}

/* The second generated helper assigns the value of the passed parameter to the
jdoStateManager field of the newly created instance, and initializes the values of the
key fields from the oid parameter.

*/

public PersistenceCapable jdoNewInstance(StateManager sm, Object
oid) {

// if class is abstract, throw new JDOFatalInternalException()

Employee pc = new Employee ();
pc.jdoStateManager = sm;

pc.jdoFlags = LOAD_REQUIRED;

// now copy the key fields into the new instance

jdoCopyKeyFieldsFromObjectId (oid);

return pc;

}

21.20.7 Generated jdoGetManagedFieldCount

The generated method returns the number of managed fields in this class plus the number
of inherited managed fields. This method is expected to be executed only during class
loading of the subclasses.

The implementation for topmost classes in the hierarchy:

protected static int jdoGetManagedFieldCount () {

return jdoFieldNames.length;

}

The implementation for subclasses:

protected static int jdoGetManagedFieldCount () {
 JDO 2.0 224 October 21, 2004

Java Data Objects 2.0
return <pc-superclass>.jdoGetManagedFieldCount() +

jdoFieldNames.length;

}

21.20.8 Generated jdoGetXXX methods (one per persistent field)

The access modifier is the same modifier as the corresponding field definition. Therefore,
access to the method is controlled by the same policy as for the corresponding field.

final static String

jdoGetname(Employee x) {

// this field is in the default fetch group (CHECK_READ)

if (x.jdoFlags <= READ_WRITE_OK) {

 // ok to read

 return x.name;

}

// field needs to be fetched from StateManager

// this call might result in name being stored in instance

StateManager sm = x.jdoStateManager;

if (sm != null) {

if (sm.isLoaded (x, jdoInheritedFieldCount + 3))

return x.name;

return sm.getStringField(x, jdoInheritedFieldCount + 3,

 x.name);

} else {

return x.name;

}

}

final static com.xyz.hr.Department

jdoGetdept(Employee x) {

// this field is not in the default fetch group (MEDIATE_READ)

StateManager sm = x.jdoStateManager;

if (sm != null) {

if (sm.isLoaded (x, jdoInheritedFieldCount + 1))

return x.dept;

return (com.xyz.hr.Department)

sm.getObjectField(x,

jdoInheritedFieldCount + 1,

x.dept);

} else {
 JDO 2.0 225 October 21, 2004

Java Data Objects 2.0
return x.dept;

}

}

21.20.9 Generated jdoSetXXX methods (one per persistent field)

The access modifier is the same modifier as the corresponding field definition. Therefore,
access to the method is controlled by the same policy as for the corresponding field.

final static void

jdoSetname(Employee x, String newValue) {

// this field is in the default fetch group

if (x.jdoFlags == READ_WRITE_OK) {

 // ok to read, write

 x.name = newValue;

 return;

}

StateManager sm = x.jdoStateManager;

if (sm != null) {

sm.setStringField(x,

jdoInheritedFieldCount + 3,

x.name,

newValue);

} else {

x.name = newValue;

}

}

final static void

jdoSetdept(Employee x, com.xyz.hr.Department newValue) {

// this field is not in the default fetch group

StateManager sm = x.jdoStateManager;

if (sm != null) {

sm.setObjectField(x,

jdoInheritedFieldCount + 1,

x.dept, newValue);

} else {

x.dept = newValue;

}

}

 JDO 2.0 226 October 21, 2004

Java Data Objects 2.0
21.20.10 Generated jdoReplaceField and jdoReplaceFields

The generated jdoReplaceField retrieves a new value from the StateManager for
one specific field based on field number. This method is called by the StateManager
whenever it wants to update the value of a field in the instance, for example to store values
in the instance from the datastore.

This may be used by the StateManager to clear fields and handle cleanup of the objects cur-
rently referred to by the fields (e.g., embedded objects).

public void jdoReplaceField (int fieldNumber) {

int relativeField = fieldNumber - jdoInheritedFieldCount;

switch (relativeField) {

case (0): boss = (Employee)

jdoStateManager.replacingObjectField (this,

fieldNumber);

break;

case (1): dept = (Department)

jdoStateManager.replacingObjectField (this,

fieldNumber);

break;

case (2): empid =

jdoStateManager.replacingIntField (this,

fieldNumber);

break;

case (3): name =

jdoStateManager.replacingStringField (this,

fieldNumber);

break;

default:

/* if there is a pc superclass, delegate to it

if (relativeField < 0) {

super.jdoReplaceField (fieldNumber);

} else {

throw new IllegalArgumentException(“fieldNumber”);

}

*/

// if there is no pc superclass, throw an exception

throw new IllegalArgumentException(“fieldNumber”);

} // switch

}

 JDO 2.0 227 October 21, 2004

Java Data Objects 2.0
public final void jdoReplaceFields (int[] fieldNumbers) {

for (int i = 0; i < fieldNumbers.length; ++i) {

int fieldNumber = fieldNumbers[i];

jdoReplaceField (fieldNumber);

}

}

21.20.11 Generated jdoProvideField and jdoProvideFields

The generated jdoProvideField gives the current value of one field to the StateM-
anager. This method is called by the StateManagerwhenever it wants to get the value
of a field in the instance, for example to store the field in the datastore.

public void jdoProvideField (int fieldNumber) {

int relativeField = fieldNumber - jdoInheritedFieldCount;

switch (relativeField) {

case (0): jdoStateManager.providedObjectField(this,

fieldNumber, boss);

break;

case (1): jdoStateManager.providedObjectField(this,

fieldNumber, dept);

break;

case (2): jdoStateManager.providedIntField(this,

fieldNumber, empid);

break;

case (3): jdoStateManager.providedStringField(this,

fieldNumber, name);

break;

default:

/* if there is a pc superclass, delegate to it

if (relativeField < 0) {

super.jdoProvideField (fieldNumber);

} else {

throw new IllegalArgumentException(“fieldNumber”);

}

*/

// if there is no pc superclass, throw an exception

throw new IllegalArgumentException(“fieldNumber”);

} // switch

}

public final void jdoProvideFields (int[] fieldNumbers) {
 JDO 2.0 228 October 21, 2004

Java Data Objects 2.0
for (int i = 0; i < fieldNumbers.length; ++i) {

int fieldNumber = fieldNumbers[i];

jdoProvideField (fieldNumber);

}

}

21.20.12 Generated jdoCopyField and jdoCopyFields methods

The generated jdoCopyFields copies fields from another instance to this instance. This
method might be used by the StateManager to create before images of instances for roll-
back, or to restore instances in case of rollback.

This method delegates to method jdoCopyField to copy values for all fields requested.

To avoid security exposure, jdoCopyFields can be invoked only when both instances
are owned by the same StateManager. Thus, a malicious user cannot use this method
to copy fields from a managed instance to a non-managed instance, or to an instance man-
aged by a malicious StateManager.

public void jdoCopyFields (Object pc, int[] fieldNumbers){

// the other instance must be owned by the same StateManager

// and our StateManager must not be null!

if (((PersistenceCapable)other).jdoStateManager

!= this.jdoStateManager)

throw new IllegalArgumentException(“this.jdoStateManager !=
other.jdoStateManager”);

if (this.jdoStateManager == null)

throw new IllegalStateException(“this.jdoStateManager ==
null”);

// throw ClassCastException if other class is the wrong class

Employee other = (Employee) pc;

for (int i = 0; i < fieldNumbers.length; ++i) {

jdoCopyField (other, fieldNumbers[i]);

} // for loop

} // jdoCopyFields

protected void jdoCopyField (Employee other, int fieldNumber) {

int relativeField = fieldNumber - jdoInheritedFieldCount;

switch (relativeField) {

case (0): this.boss = other.boss;

break;

case (1): this.dept = other.dept;

break;
 JDO 2.0 229 October 21, 2004

Java Data Objects 2.0
case (2): this.empid = other.empid;

break;

case (3): this.name = other.name;

break;

default: // other fields handled in superclass

// this class has no superclass, so throw an exception

throw new IllegalArgumentException(“fieldNumber”);

/* if it had a superclass, it would handle the field as follows:

super.jdoCopyField (other, fieldNumber);

 */

break;

} // switch

} // jdoCopyField

21.20.13 Generated writeObject method

If no user-written method writeObject exists, then one will be generated. The generat-
ed writeObject makes sure that all persistent and transactional serializable fields are
loaded into the instance, and then the default output behavior is invoked on the output
stream.

private void writeObject(java.io.ObjectOutputStream out)

throws java.io.IOException{

jdoPreSerialize();

out.defaultWriteObject ();

}

21.20.14 Generated jdoPreSerialize method

The generated jdoPreSerialize method makes sure that all persistent and transac-
tional serializable fields are loaded into the instance by delegating to the corresponding
method in StateManager.

private final void jdoPreSerialize() {

if (jdoStateManager != null)

jdoStateManager.preSerialize(this);

}

21.20.15 Generated jdoNewObjectIdInstance

The generated methods create and return a new instance of the object id class.

public Object jdoNewObjectIdInstance() {

return new EmployeeKey();

}

public Object jdoNewObjectIdInstance(String str) {
 JDO 2.0 230 October 21, 2004

Java Data Objects 2.0
return new EmployeeKey(str);

}

21.20.16 Generated jdoCopyKeyFieldsToObjectId

The generated methods copy key field values from the PersistenceCapable instance
or from the ObjectIdFieldSupplier.

public void jdoCopyKeyFieldsToObjectId (ObjectIdFieldSupplier fs,
Object oid) {

((EmployeeKey)oid).empid = fs.fetchIntField (2);

}

public void jdoCopyKeyFieldsToObjectId (Object oid) {

((EmployeeKey)oid).empid = empid;

}

21.20.17 Generated jdoCopyKeyFieldsFromObjectId

The generated methods copy key fields from the object id instance to the Persistence-
Capable instance or to the ObjectIdFieldConsumer.

public void jdoCopyKeyFieldsFromObjectId (ObjectIdFieldConsumer
fc, Object oid) {

 fc.storeIntField (2, ((EmployeeKey)oid).empid);

}

protected void jdoCopyKeyFieldsFromObjectId (Object oid) {

empid = ((EmployeeKey)oid).empid;

}

} // end class definition
 JDO 2.0 231 October 21, 2004

Java Data Objects 2.0
22 Interface StateManager

This chapter specifies the StateManager interface, which is responsible for managing
the state of fields of persistence-capable classes in the JDO environment.

NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations.

22.1 Overview

A class that implements the JDO StateManager interface must be supplied by the JDO
implementation. There is no user-visible behavior for this implementation; its only caller
from the user’s perspective is the PersistenceCapable class. [Testing is on the imple-
mentation level; i.e. indirectly tested via JDO API-visible assertions(vs. JDO SPI where
Interface StateManager belongs! Some possible assertions to be tested are however iden-
tified. Tests for these assertions must then be done directly on the JDO SPI!]

22.2 Goals

This interface allows the JDO implementation to completely control the behavior of the
PersistenceCapable classes under management. In particular, the implementation
may choose to exploit the caching capabilities of PersistenceCapable or not.

The architecture permits JDO implementations to have a singleton StateManager for all
PersistenceCapable instances; a StateManager for all PersistenceCapable
instances associated with a particular PersistenceManager or PersistenceMan-
agerFactory; a StateManager for all PersistenceCapable instances of a partic-
ular class; or a StateManager for each PersistenceCapable instance. This list is not
intended to be exhaustive, but simply to identify the cases that might be typical.

Clone support

Note that any of the methods in this interface might be called by a clone of a persistence-
capable instance, and N21.2-1 [the implementation of StateManager must disconnect
the clone upon detecting it. Disconnecting the clone requires setting the clone’s jdoFlags
to READ_WRITE_OK; setting the clone’s jdoStateManager to null; and then return-
ing from the method as if the clone were transient. For example, in response to isLoaded,
the StateManager calls clone.jdoReplaceFlags(READ_WRITE_OK);
clone.replaceStateManager(null); return true.]

package javax.jdo.spi;

interface StateManager {
 JDO 2.0 232 October 21, 2004

Java Data Objects 2.0
22.3 StateManager Management

The following methods provide for updating the corresponding PersistenceCapable
fields. These methods are intended to be called only from the PersistenceCapable in-
stance.

It is possible for these methods to be called from a cloned instance of a persistent instance
(between the time of the execution of clone() and the enhancer-generated reset of the
jdoStateManager and jdoFlags fields). In this case, the StateManager is not man-
aging the clone. N21.3-1 [The StateManager must detect this case and disconnect the
clone from the StateManager. The end result of disconnecting is that the jdoFlags
field is set to READ_WRITE_OK and the jdoStateManager field is set to null.]

public StateManager replacingStateManager (PersistenceCapable pc,
StateManager sm);

The current StateManager should be the only caller of PersistenceCapable.re-
placeStateManager, which calls this method. This method should be called only
when the current StateManager wants to set the jdoStateManager field to null to
transition the instance to transient.

The jdoFlags are completely controlled by the StateManager. The meaning of the
values are the following:

0: READ_WRITE_OK

any negative number: READ_OK

any positive number: LOAD_REQUIRED

N21.3-2 [public byte replacingFlags(PersistenceCapable pc);

This method is called by the PersistenceCapable in response to the StateManager
calling jdoReplaceFlags. The PersistenceCapable will store the returned value
into its jdoFlags field.]

22.4 PersistenceManager Management

N21.4-1 [The following method provides for getting the PersistenceManager. This
method is intended to be called only from the PersistenceCapable instance.

public PersistenceManager getPersistenceManager (PersistenceCa-
pable pc);]

22.5 Dirty management

N21.5-1 [The following method provides for marking the PersistenceCapable in-
stance dirty:

public void makeDirty (PersistenceCapable pc, String fieldName);]

22.6 State queries

N21.6-1 [The following methods are delegated from the PersistenceCapable class, to
implement the associated behavior of PersistenceCapable.

public boolean isPersistent (PersistenceCapable pc);
 JDO 2.0 233 October 21, 2004

Java Data Objects 2.0
public boolean isTransactional (PersistenceCapable pc);

public boolean isNew (PersistenceCapable pc);

public boolean isDirty (PersistenceCapable pc);

public boolean isDeleted (PersistenceCapable pc);]

22.7 JDO Identity

N21.7-1 [public Object getObjectId (PersistenceCapable pc);

This method returns the JDO identity of the instance.]

N21.7-2 [public Object getTransactionalObjectId (PersistenceCa-
pable pc);

This method returns the transactional JDO identity of the instance.]

22.8 Serialization support

N21.8-1 [public void preSerialize (PersistenceCapable pc);

This method loads all non-transient persistent fields in the PersistenceCapable in-
stance, as a precursor to serializing the instance. It is called by the generated jdoPreSe-
rialize() method in the PersistenceCapable class.]

22.9 Field Management

The StateManager completely controls the behavior of the PersistenceCapable
with regard to whether fields are loaded or not. Setting the value of the jdoFlags field in
the PersistenceCapable directly affects the behavior of the PersistenceCapable
with regard to fields in the default fetch group.

• The StateManager might choose to never cache any field values in the
PersistenceCapable, but rather to retrieve the values upon request. N21.9-1
[To implement this strategy, the StateManager will always use the
LOAD_REQUIRED value for the jdoFlags, and will always return false to any
call to isLoaded.]

• The StateManagermight choose to selectively retrieve and cache field values in
the PersistenceCapable. N21.9-2 [To implement this strategy, the
StateManagerwill always use the LOAD_REQUIRED value for jdoFlags, and
will return true to calls to isLoaded that refer to fields that are cached in the
PersistenceCapable.]

• The StateManagermight choose to retrieve at one time all field values for fields
in the default fetch group, and to take advantage of the performance optimization
in the PersistenceCapable. N21.9-3 [To implement this strategy, the
StateManager will use the LOAD_REQUIRED value for jdoFlags only when
the fields in the default fetch group are not cached. Once all of the fields in the
default fetch group are cached in the PersistenceCapable, the
StateManager will set the value of the jdoFlags to READ_OK.] This will
probably be done during the call to isLoaded made for one of the fields in the
default fetch group, and before returning true to the method, the
 JDO 2.0 234 October 21, 2004

Java Data Objects 2.0
StateManager will call jdoReplaceFields with the field numbers of all
fields in the default fetch group, and will call jdoReplaceFlags to set
jdoFlags to READ_OK.

• The StateManagermight choose to manage updates of fields in the default fetch
group individually. N21.9-4 [To implement this strategy, the StateManagerwill
not use the READ_WRITE_OK value for jdoFlags. This will result in the
PersistenceCapable always delegating to the StateManager for any
change to any field.] In this way, the StateManager can reliably tell when any
field changes, and can optimize the writing of data to the store.

N21.9-5 [The following method is used by the PersistenceCapable to determine
whether the value of the field is already cached in the PersistenceCapable instance.]
If it is cached (perhaps during the execution of this method) then the value of the field is
returned by the PersistenceCapable method without further calls to the StateM-
anager.

boolean isLoaded (PersistenceCapable pc, int field);]

22.9.1 User-requested value of a field

N21.9.1-1 [The following methods are used by the PersistenceCapable instance to in-
form the StateManager of a user-initiated request to access the value of a persistent
field.

The pc parameter is the instance of PersistenceCapable making the call; the field
parameter is the field number of the field; and the currentValue parameter is the cur-
rent value of the field in the instance.

The current value of the field is passed as a parameter to allow the StateManager to
cache values in the PersistenceCapable. If the value is cached in the Persis-
tenceCapable, then the StateManager can simply return the current value provided
with the method call.

public boolean getBooleanField (PersistenceCapable pc, int field,
boolean currentValue);

public char getCharField (PersistenceCapable pc, int field, char
currentValue);

public byte getByteField (PersistenceCapable pc, int field, byte
currentValue);

public short getShortField (PersistenceCapable pc, int field, short
currentValue);

public int getIntField (PersistenceCapable pc, int field, int cur-
rentValue);

public long getLongField (PersistenceCapable pc, int field, long
currentValue);

public float getFloatField (PersistenceCapable pc, int field, float
currentValue);

public double getDoubleField (PersistenceCapable pc, int field,
double currentValue);

public String getStringField (PersistenceCapable pc, int field,
String currentValue);
 JDO 2.0 235 October 21, 2004

Java Data Objects 2.0
public Object getObjectField (PersistenceCapable pc, int field, Ob-
ject currentValue);]

22.9.2 User-requested modification of a field

N21.9.2-1 [The following methods are used by the PersistenceCapable instance to in-
form the StateManager of a user-initiated request to modify the value of a persistent
field.

The pc parameter is the instance of PersistenceCapable making the call; the field
parameter is the field number of the field; the currentValue parameter is the current
value of the field in the instance; and the newValue parameter is the value of the field giv-
en by the user method.

public void setBooleanField (PersistenceCapable pc, int field,
boolean currentValue, boolean newValue);

public void setCharField (PersistenceCapable pc, int field, char
currentValue, char newValue);

public void setByteField (PersistenceCapable pc, int field, byte
currentValue, byte newValue);

public void setShortField (PersistenceCapable pc, int field, short
currentValue, short newValue);

public void setIntField (PersistenceCapable pc, int field, int cur-
rentValue, int newValue);

public void setLongField (PersistenceCapable pc, int field, long
currentValue, long newValue);

public void setFloatField (PersistenceCapable pc, int field, float
currentValue, float newValue);

public void setDoubleField (PersistenceCapable pc, int field, dou-
ble currentValue, double newValue);

public void setStringField (PersistenceCapable pc, int field,
String currentValue, String newValue);

public void setObjectField (PersistenceCapable pc, int field, Ob-
ject currentValue, Object newValue);]

22.9.3 StateManager-requested value of a field

N21.9.3-1 [The following methods inform the StateManager of the value of a persistent
field requested by the StateManager.

The pc parameter is the instance of PersistenceCapable making the call; the field
parameter is the field number of the field; and the currentValue parameter is the cur-
rent value of the field in the instance.

public void providedBooleanField (PersistenceCapable pc, int field,
boolean currentValue);

public void providedCharField (PersistenceCapable pc, int field,
char currentValue);

public void providedByteField (PersistenceCapable pc, int field,
byte currentValue);

public void providedShortField (PersistenceCapable pc, int field,
short currentValue);
 JDO 2.0 236 October 21, 2004

Java Data Objects 2.0
public void providedIntField (PersistenceCapable pc, int field, int
currentValue);

public void providedLongField (PersistenceCapable pc, int field,
long currentValue);

public void providedFloatField (PersistenceCapable pc, int field,
float currentValue);

public void providedDoubleField (PersistenceCapable pc, int field,
double currentValue);

public void providedStringField (PersistenceCapable pc, int field,
String currentValue);

public void providedObjectField (PersistenceCapable pc, int field,
Object currentValue);]

22.9.4 StateManager-requested modification of a field

N21.9.4-1 [The following methods ask the StateManager for the value of a persistent
field requested to be modified by the StateManager.

The pc parameter is the instance of PersistenceCapable making the call; and the
field parameter is the field number of the field.

public boolean replacingBooleanField (PersistenceCapable pc, int
field);

public char replacingCharField (PersistenceCapable pc, int field);

public byte replacingByteField (PersistenceCapable pc, int field);

public short replacingShortField (PersistenceCapable pc, int
field);

public int replacingIntField (PersistenceCapable pc, int field);

public long replacingLongField (PersistenceCapable pc, int field);

public float replacingFloatField (PersistenceCapable pc, int
field);

public double replacingDoubleField (PersistenceCapable pc, int
field);

public String replacingStringField (PersistenceCapable pc, int
field);

public Object replacingObjectField (PersistenceCapable pc, int
field);]
 JDO 2.0 237 October 21, 2004

Java Data Objects 2.0
23 JDOPermission

A permission represents access to a system resource. For a resource access to be allowed
for an applet (or an application running with a security manager), the corresponding per-
mission must be explicitly granted to the code attempting the access.

The JDOPermission class provides a marker for the security manager to grant access to
a class to perform privileged operations necessary for JDO implementations.

There are three JDO permissions defined:

• setStateManager: N22-1 [this permission allows an instance to manage an
instance of PersistenceCapable, which allows the instance to access and
modify any fields defined as persistent or transactional. This permission is similar
to but allows access to only a subset of the broader ReflectPermission
("suppressAccessChecks"). This permission is checked by the
PersistenceCapable.replaceStateManager method.]

• getMetadata: N22-2 [this permission allows an instance to access the metadata
for any registered PersistenceCapable class. This permission allows access to
a subset of the broader
RuntimePermission("accessDeclaredMembers"). This permission is
checked by the JDOImplHelper.getJDOImplHelper method.]

• closePersistenceManagerFactory: N22-3 [this permission allows a caller to
close a PersistenceManagerFactory, thereby releasing resources. This
permission is checked by the close() method of
PersistenceManagerFactory.]

Use of JDOPermission allows the security manager to restrict potentially malicious
classes from accessing information contained in instances of PersistenceCapable.

A sample policy file entry granting code from the /home/jdoImpl directory permission
to get metadata, manage PersistenceCapable instances, and close PersistenceM-
anagerFactory instances is

grant codeBase "file:/home/jdoImpl/" {

permission javax.jdo.spi.JDOPermission "getMetadata";

permission javax.jdo.spi.JDOPermission "setStateManager";

permission javax.jdo.spi.JDOPermission

"closePersistenceManagerFactory";

};
 JDO 2.0 238 October 21, 2004

Java Data Objects 2.0
24 JDOQL BNF

 Grammar Notation

The grammar notation is taken from the Java Language Specification, section 2.4 Gram-
mar Notation

• Terminal symbols are shown in fixed width font in the productions of the lexical and
syntactic grammars, and throughout this specification whenever the text is directly refer-
ring to such a terminal symbol. These are to appear in a program exactly as written.

• Nonterminal symbols are shown in italic type. The definition of a nonterminal is intro-
duced by the name of the nonterminal being defined followed by a colon. One or more al-
ternative right-hand sides for the nonterminal then follow on succeeding lines.

• The subscripted suffix "opt", which may appear after a terminal or nonterminal, indi-
cates an optional symbol. The alternative containing the optional symbol actually specifies
two right-hand sides, one that omits the optional element and one that includes it.

• When the words "one of" follow the colon in a grammar definition, they signify that
each of the terminal symbols on the following line or lines is an alternative definition.

 Filter Specification

 This section describes the syntax of the setFilter argument.

Basically, the query filter expression is a Java boolean expression, where some of the Java
operators are not permitted. Specifically, pre- and post- increment and decrement (++ and
- -), shift (>> and <<) and assignment expressions (+=, -=, etc.) are not permitted.

Please note, the grammar allows arbitrary method calls (see MethodInvocation), where
JDO only permits the following methods:

 Collection methods

contains(Object), isEmpty()

Map methods

containsKey(Object), containsValue(Object), isEmpty()

String methods

startsWith(String), endsWith(String), matches(String),

toLowerCase(), toUpperCase(),

indexOf(String), indexOf(String, int),
 JDO 2.0 239 October 21, 2004

Java Data Objects 2.0
substring(int), substring(int, int)

Math methods

Math.abs(numeric), Math.sqrt(numeric)

JDOHelper methods

getObjectId(Object)

The Nonterminal InfixOp lists the valid operators for binary expressions in decreasing
precedence. Operators one the same line have the same precedence. As in Java operators
require operands of appropriate types. See the Java Language Specification for more infor-
mation.

Expression :

 UnaryExpression

 Expression InfixOp UnaryExpression

 InfixOp : one of

* / %

+ -

 > >= < <= instanceof

 == !=

&

|

&&

||

 UnaryExpression :

 PrefixOp UnaryExpression

(Type) UnaryExpression

 Primary

 PrefixOp : one of

+ - ~ !

 Primary :

 Literal

 VariableName

 ParameterName

this

 FieldAccess
 JDO 2.0 240 October 21, 2004

Java Data Objects 2.0
 MethodInvocation

 ClassOrInterfaceName

(Expression)

 AggregateExpression 1

 FieldAccess :

 FieldName

 Primary . FieldName

 MethodInvocation :

 Primary . MethodName (ArgumentList opt)

 ArgumentList :

 Expression

 ArgumentList , Expression

 AggregateExpression :

 AggregateOp (Expression)

 AggregateOp : one of

count sum min max avg

1 Pleasenote, an aggregate expression is only allowed as part of a result specification or a
having specification.

 Parameter Declaration

 This section describes the syntax of the declareParameters argument.

DeclareParameters :

 Parameters , opt

 Parameters :

 Parameter

 Parameters , Parameter

 Parameter :

 Type ParameterName

Please note, as a usability feature DeclareParameters supports an optional trailing comma
(in addition to what the Java syntax allows in a parameter declaration).
 JDO 2.0 241 October 21, 2004

Java Data Objects 2.0
 Variable Declaration

 This section describes the syntax of the declareVariables argument.

DeclareVariables :

 Variables ; opt

 Variables :

 Variable

 Variables ; Variable

 Variable :

 Type ParameterName

Please note, as a usability feature DeclareVariables defines the trailing semicolon as op-
tional (in addition to what the Java syntax allows in a variable declaration).

 Import Declaration

 This section describes the syntax of the declareImports argument.

DeclareImports :

 ImportDeclarations ; opt

 ImportDeclarations :

 ImportDeclaration

 ImportDeclarations ; ImportDeclaration

 ImportDeclaration :

import QualifiedIdentifier

import QualifiedIdentifier . *

Please note, as a usability feature DeclareImports defines the trailing semicolon as option-
al (in addition to what the Java syntax allows in an import statement).

 Ordering Specification

 This section describes the syntax of the setOrdering argument.

SetOrdering :

 OrderingSpecifications , opt

 OrderingSpecifications :

 OrderingSpecification

 OrderingSpecifications , OrderingSpecification
 JDO 2.0 242 October 21, 2004

Java Data Objects 2.0
 OrderingSpecification :

 Expression ascending

 Expression descending

 Result Specification

 This section describes the syntax of the setResult argument.

SetResult :

distinct opt ResultSpecifications , opt

 ResultSpecifications :

 ResultSpecification

 ResultSpecifications , ResultSpecification

 ResultSpecification :

 Expression ResultNaming opt

 ResultNaming :

as Identifier

 Please note, a result specification expression may be an aggregate expression.

 Grouping Specification

 This section describes the syntax of the setGrouping argument.

SetGrouping :

 GroupingSpecifications , opt HavingSpecification opt

 GroupingSpecifications :

 Expression

 GroupingSpecifications , Expression

 HavingSpecification :

having Expression

 Please note, a having specification expression may include an aggregate expression.

 Types

This section describes a type specification, used in a parameter or variable declaration or
in a cast expression.

Type

 PrimitiveType

 ClassOrInterfaceName
 JDO 2.0 243 October 21, 2004

Java Data Objects 2.0
 PrimitiveType :

 NumericType

 boolean

 NumericType :

 IntegralType

 FloatingPointType

 IntegralType : one of

 byte short int long char

 FloatingPointType : one of

 float double

 Literals

A literal is the source code representation of a value of a primitive type, or the String type.
Please refer to the Java Language Specification for the lexical structure of Integer-, Floating
Point-, Character- and String-Literals.

Literal :

 IntegerLiteral

 FloatingPointLiteral

 BooleanLiteral

 CharacterLiteral

 StringLiteral

 NullLiteral

 IntegerLiteral : ...

 FloatingPointLiteral : ...

 BooleanLiteral : one of

 true false

 CharacterLiteral : ...

 StringLiteral : ...

 NullLiteral :

 null
 JDO 2.0 244 October 21, 2004

Java Data Objects 2.0
 Names

A name is a possibly qualified identifier. Please refer to the Java Language Specification
for the lexical structure of identifiers.

QualifiedIdentifier :

 Identifier

 QualifiedIdentifier . Identifier

 ClassOrInterfaceName :

 QualifiedIdentifier

 VariableName :

 Identifier

 ParameterName :

 Identifier

 FieldName :

 Identifier

 MethodName :

 Identifier

 Keywords

The following character sequences, formed from ASCII letters, are reserved for use as key-
words and cannot be used as identifiers.

Keyword : one of

as ascending avg boolean byte

char count descending distinct double

false float having import instanceof

int long max min null

short sum this true

 Michael Bouschen

 Version: draft 3, June 2, 2004
 JDO 2.0 245 October 21, 2004

Java Data Objects 2.0
25 Items deferred to the next release

This chapter contains the list of items that were raised during the development of JDO but
were not resolved.

25.1 Nested Transactions

Define the semantics of nested transactions.

25.2 Savepoint, Undosavepoint

Related to nested transactions, savepoints allow for making changes to instances and then
undoing those changes without making any datastore changes. It is a single-child nested
transaction.

25.3 Inter-PersistenceManager References

Explain how to establish and maintain relationships between persistent instances man-
aged by different PersistenceManagers.

25.4 Enhancer Invocation API

A standard interface to call the enhancer will be defined.

25.5 Prefetch API

A standard interface to specify prefetching of instances by policy will be defined. The in-
tended use it to allow the application to specify a policy whereby instances of persistence
capable classes will be prefetched from the datastore when related instances are fetched.
This should result in improved performance characteristics if the prefetch policy matches
actual application access patterns.

25.6 BLOB/CLOB datatype support

JDO implementations can choose to implement mapping from java.sql.Blob datatype to
byte arrays, and java.sql.Clob to String or other java type; but these mappings are not stan-
dard, and may not have the performance characteristics desired.

This functionality is now part of JDO 2.0.

25.7 Managed (inverse) relationship support

In order for JDO implementations to be used for container managed persistence entity
beans, relationships among persistent instances need to be explicitly managed. See the EJB
 JDO 2.0 246 October 21, 2004

Java Data Objects 2.0
Specification 2.0, sections 9.4.6 and 9.4.7 for requirements. The intent is to support these
semantics when the relationships are identified in the metadata as inverse relationships.

25.8 Case-Insensitive Query

Use of String.toLowerCase() as a supported method in query filters would allow case-in-
sensitive queries.

This functionality is now part of JDO 2.0.

25.9 String conversion in Query

Supported String constructors String(<integer expression>) and String(<floating-point ex-
pression>) would make queries more flexible.

25.10 Read-only fields

Support (probably marking the fields in the XML metadata) for read-only fields would al-
low better support for databases where modification of data elements is proscribed. The
metadata annotation would permit earlier detection of incorrect modification of the corre-
sponding fields.

25.11 Enumeration pattern

The enumeration pattern is a powerful technique for emulating enums. The pattern in
summary allows for fields to be declared as:

class Foo {

Bar myBar = Bar.ONE;

Bar someBar = new Bar(“illegal”); // doesn’t compile

}

class Bar {

private String istr;

private Bar(String s) {

istr = s;

}

public static Bar ONE = new Bar(“one”);

public static Bar TWO = new Bar(“two”);

}

The advantage of this pattern is that fields intended to contain only certain values can be
constrained to those values. Supporting this pattern explicitly allows for classes that use
this pattern to be supported as persistence-capable classes.

25.12 Non-static inner classes

Allow non-static inner classes to be persistence-capable. The implication is that the enclos-
ing class must also be persistence-capable, and there is a one-many relationship between
the enclosing class and the inner class.
 JDO 2.0 247 October 21, 2004

Java Data Objects 2.0
25.13 Projections in query

Currently the only return value from a JDOQL query is a Collection of persistent instances.
Many applications need values returned from queries, not instances. For example, to prop-
erly support EJBQL, projections are required. One way to provide projections is to model
what EJBQL has already done, and add a method setResult (String projection) to jav-
ax.jdo.Query. This method would take as a parameter a single-valued navigation expres-
sion. The result of execute for the query would be a Collection of instances of the
expression.

This functionality is now part of JDO 2.0.

25.14 LogWriter support

Currently, there is no direct support for writing log messages from an implementation, al-
though there is a connection factory property that can be used for this purpose. A future
revision could define how an implementation should use a log writer.

25.15 New Exceptions

Some exceptions might be added to more clearly define the cause of an exception. Candi-
dates include JDODuplicateObjectIdException, JDOClassNotPersis-
tenceCapableException, JDOExtentNotManagedException,
JDOConcurrentModificationException, JDOQueryException, JDOQue-
rySyntaxException, JDOUnboundQueryParameterException, JDOTrans-
actionNotActiveException, JDODeletedObjectFieldAccessException.

25.16 Distributed object support

Provide for remote object graph support, including instance reconciliation, relationship
graph management, instance insertion ordering, etc.

This functionality is now part of JDO 2.0.

25.17 Object-Relational Mapping

Extend the current xml metadata to include optional O/R mapping information. This
could include tables to map to classes, columns to map to fields, and foreign keys to map
to relationships.

Other O/R mapping issues include sequence generation for primary key support.

This functionality is now part of JDO 2.0.
 JDO 2.0 248 October 21, 2004

Java Data Objects 2.0
26 JDO 1.0.1 Metadata

This chapter specifies the metadata that describes a persistence-capable class. The metada-
ta is stored in XML format. The information must be available when the class is enhanced,
and might be cached by an implementation for use at runtime. If the metadata is changed
between enhancement and runtime, the behavior is unspecified.

Metadata files must be available via resources loaded by the same class loader as the class.
These rules apply both to enhancement and to runtime. Hereinafter, the term "metadata"
refers to the aggregate of all XML data for all packages and classes, regardless of their
physical packaging.

The metadata associated with each persistence capable class must be contained within a
file, and its format is defined by the DTD. If the metadata is for only one class, then its file
name is <class-name>.jdo. If the metadata is for a package, or a number of packages, then
its file name is package.jdo. In this case, the file is located in one of several directories:
“META-INF”; “WEB-INF”; <none>, in which case the metadata file name is "package.jdo"
with no directory; “<package>/.../<package>”, in which case the metadata directory
name is the partial or full package name with “package.jdo” as the file name.

When metadata information is needed for a class, and the metadata for that class has not
already been loaded, the metadata is searched as follows: META-INF/package.jdo, WEB-
INF/package.jdo, package.jdo, <package>/.../<package>/package.jdo, and <package>/
<class>.jdo. Once metadata for a class has been loaded, the metadata will not be replaced
in memory. Therefore, metadata contained higher in the search order will always be used
instead of metadata contained lower in the search order.

For example, if the persistence-capable class is com.xyz.Wombat, and there is a file "ME-
TA-INF/package.jdo" containing xml for this class, then its definition is used. If there is no
such file, but there is a file "WEB-INF/package.jdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "package.jdo"
containing metadata for com.xyz.Wombat, then it is used. If there is no such file, but there
is a file "com/package.jdo" containing metadata for com.xyz.Wombat, then it is used. If
there is no such file, but there is a file "com/xyz/package.jdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "com/xyz/
Wombat.jdo", then it is used. If there is no such file, then com.xyz.Wombat is not persis-
tence-capable.

Note that this search order is optimized for implementations that cache metadata informa-
tion as soon as it is encountered so as to optimize the number of file accesses needed to
load the metadata. Further, if metadata is not in the natural location, it might override
metadata that is in the natural location. For example, while looking for metadata for class
com.xyz.Wombat, the file com/package.jdo might contain metadata for class org.ac-
me.Foo. In this case, subsequent search of metadata for org.acme.Foo will find the cached
metadata and none of the usual locations for metadata will be searched.

The metadata must declare all persistence-capable classes. If any field declarations are not
provided in the metadata, then field metadata is defaulted for the missing field declara-
tions. Therefore, the JDO implementation is able to determine based on the metadata
 JDO 2.0 249 October 21, 2004

Java Data Objects 2.0
whether a class is persistence-capable or not. And any class not known to be persistence-
capable by the JDO specification (for example, java.lang.Integer) and not explicitly named
in the metadata is not persistence-capable.

For compatibility with installed applications, an implementation might first use the search
order as specified in the JDO 1.0 release. In this case, if metadata is not found, then the
search order as specified in JDO 1.0.1 must be used.

26.1 ELEMENT jdo

This element is the highest level element in the xml document. It is used to allow multiple
packages to be described in the same document.

26.2 ELEMENT package

This element includes all classes in a particular package. The complete qualified package
name is required.

26.3 ELEMENT class

This element includes fields declared in a particular class, and optional vendor extensions.
The name of the class is required. The name is relative to the package name of the enclosing
package.

Only persistence-capable classes may be declared. Non-persistence-capable classes must
not be included in the metadata.

The identity type of the least-derived persistence-capable class defines the identity type for
all persistence-capable classes that extend it.

The identity type of the least-derived persistence-capable class is defaulted to applica-
tion if objectid-class is specified, and datastore, if not.

The objectid-class attribute is required only for application identity. The objectid
class name uses Java rules for naming: if no package is included in the name, the package
name is assumed to be the same package as the persistence-capable class. Inner classes are
identified by the “$” marker. If the objectid-class attribute is defined in any concrete
class, then the objectid class itself must be concrete, and no subclass of the class may in-
clude the objectid-class attribute. If the objectid-class attribute is defined for
any abstract class, then:

• the objectid class of this class must directly inherit Object or must be a subclass
of the objectid class of the most immediate abstract persistence-capable superclass
that defines an objectid class; and

• if the objectid class is abstract, the objectid class of this class must be a superclass
of the objectid class of the most immediate subclasses that define an objectid class;
and

• if the objectid class is concrete, no subclass of this persistence-capable class may
define an objectid class.

The effect of this is that objectid classes form an inheritance hierarchy corresponding to the
inheritance hierarchy of the persistence-capable classes. Associated with every concrete
persistence-capable class is exactly one objectid class.
 JDO 2.0 250 October 21, 2004

Java Data Objects 2.0
The objectid class must declare fields identical in name and type to fields declared in this
class.

The requires-extent attribute specifies whether an extent must be managed for this
class. The PersistenceManager.getExtent method can be executed only for class-
es whose metadata attribute requires-extent is specified or defaults to true. If the
PersistenceManager.getExtent method is executed for a class whose metadata
specifies requires-extent as false, a JDOUserException is thrown. If re-
quires-extent is specified or defaults to true for a class, then requires-extent
must not be specified as false for any subclass.

The persistence-capable-superclass attribute is deprecated for this release. It is
ignored so metadata files can from previous releases can be used.

26.4 ELEMENT field

The element field is optional, and the name attribute is the field name as declared in the
class. If the field declaration is omitted in the xml, then the values of the attributes are de-
faulted.

The persistence-modifier attribute specifies whether this field is persistent, trans-
actional, or none of these. The persistence-modifier attribute can be specified only
for fields declared in the Java class, and not fields inherited from superclasses. There is spe-
cial treatment for fields whose persistence-modifier is persistent or trans-
actional.

Default persistence-modifier

The default for the persistence-modifier attribute is based on the Java type and
modifiers of the field:

• Fields with modifier static: none. No accessors or mutators will be generated
for these fields during enhancement.

• Fields with modifier transient: none. Accessors and mutators will be
generated for these fields during enhancement, but they will not delegate to the
StateManager.

• Fields with modifier final: none. Accessors will be generated for these fields
during enhancement, but they will not delegate to the StateManager.

• Fields of a type declared to be persistence-capable: persistent.

• Fields of the following types: persistent:

• primitives: boolean, byte, short, int, long, char, float, double;
• java.langwrappers: Boolean, Byte, Short, Integer, Long, Character,
Float, Double;

• java.lang: String, Number;
• java.math: BigDecimal, BigInteger;
• java.util: Date, Locale, ArrayList, HashMap, HashSet, Hashtable,
LinkedList, TreeMap, TreeSet, Vector, Collection, Set, List, and
Map;

• Arrays of primitive types, java.util.Date, java.util.Locale,
java.lang and java.math types specified immediately above, and
persistence-capable types.
 JDO 2.0 251 October 21, 2004

Java Data Objects 2.0
• Fields of types of user-defined classes and interfaces not mentioned above: none.
No accessors or mutators will be generated for these fields.

The primary-key attribute is used to identify fields that have special treatment by the
enhancer and by the runtime. The enhancer generates accessor methods for primary key
fields that always permit access, regardless of the state of the instance. The mutator meth-
ods always delegate to the jdoStateManager, if it is non-null, regardless of the state
of the instance.

The null-value attribute specifies the treatment of null values for persistent fields
during storage in the datastore. The default is "none".

• "none": store null values as null in the datastore, and throw a
JDOUserException if null values cannot be stored by the datastore.

• "exception": always throw a JDOUserException if this field contains a
null value at runtime when the instance must be stored;

• "default": convert the value to the datastore default value if this field contains
a null value at runtime when the instance must be stored.

The default-fetch-group attribute specifies whether this field is managed as a
group with other fields. It defaults to "true" for non-key fields of primitive types, ja-
va.util.Date, and fields of java.lang, java.math types specified above.

The embedded attribute specifies whether the field should be stored as part of the con-
taining instance instead of as its own instance in the datastore. It must be specified or de-
fault to "true" for fields of primitive types, wrappers, java.lang, java.math,
java.util, collection, map, and array types specified above; and "false" otherwise.
While a compliant implementation is permitted to support these types as first class in-
stances in the datastore, the semantics of embedded=”true” imply containment. That is,
the embedded instances have no independent existence in the datastore and have no Ex-
tent representation.

If the embedded attribute is "true" the field values are stored as persistent references to
the referred instances in the datastore.

The embedded attribute applied to a field of a persistence-capable type is a hint to the im-
plementation to treat the field as if it were a Second Class Object. But this behavior is not
further specified and is not portable.

A portable application must not assign instances of mutable classes to multiple embedded
fields, and must not compare values of these fields using Java identity (“f1==f2”).

The following field declarations are mutually exclusive; only one may be specified:

• default-fetch-group = “true”

• primary-key = “true”

• persistence-modifier = “transactional”

• persistence-modifier = “none”

26.4.1 ELEMENT collection

This element specifies the element type of collection typed fields. The default is Collec-
tion typed fields are persistent, and the element type is Object.

The element-type attribute specifies the type of the elements. The type name uses Java
rules for naming: if no package is included in the name, the package name is assumed to
 JDO 2.0 252 October 21, 2004

Java Data Objects 2.0
be the same package as the persistence-capable class. Inner classes are identified by the "$"
marker.

The embedded-element attribute specifies whether the values of the elements should
be stored as part of the containing instance instead of as their own instances in the data-
store. It defaults to "false" for persistence-capable types, Object types, and interface
types; and "true" for other types.

The embedded treatment of the collection instance itself is governed by the embedded at-
tribute of the field element.

26.4.2 ELEMENT map

This element specifies the treatment of keys and values of map typed fields. The default is
map typed fields are persistent, and the key and value types are Object.

The key-type and value-type attributes specify the types of the key and value, re-
spectively. The type names use Java rules for naming: if no package is included in the
name, the package name is assumed to be the same package as the persistence-capable
class. Inner classes are identified by the "$" marker.

The embedded-key and embedded-value attributes specify whether the key and val-
ue should be stored as part of the containing instance instead of as their own instances in
the datastore. They default to "false" for persistence-capable types, Object types, and
interface types; and "true" for other types.

The embedded treatment of the map instance itself is governed by the embedded attribute
of the field element.

26.4.3 ELEMENT array

This element specifies the treatment of array typed fields. The default persistence-modifier
for array typed fields is based on the Java type of the component and modifiers of the field,
according to the rules in 18.4 Default persistence-modifier.

The embedded-element attribute specifies whether the values of the components
should be stored as part of the containing instance instead of as their own instances in the
datastore. It defaults to "false" for persistence-capable types, Object types, interface
types, and concrete implementation classes of map and collection types. It defaults to
"true" for other types.

The embedded treatment of the array instance itself is governed by the embedded at-
tribute of the field element.

26.5 ELEMENT extension

This element specifies JDO vendor extensions. The vendor-name attribute is required.
The vendor name "JDORI" is reserved for use by the JDO reference implementation. The
key and value attributes are optional, and have vendor-specific meanings. They may be
ignored by any JDO implementation.

26.6 The Document Type Descriptor

The document type descriptor is referred by the xml, and must be identified with a DOC-
TYPE so that the parser can validate the syntax of the metadata file. Either the SYSTEM or
PUBLIC form of DOCTYPE can be used.
 JDO 2.0 253 October 21, 2004

Java Data Objects 2.0
• If SYSTEM is used, the URI must be accessible; a jdo implementation might
optimize access for the URI “file:/javax/jdo/jdo.dtd”

• If PUBLIC is used, the public id should be "-//Sun Microsystems, Inc.//
DTD Java Data Objects Metadata 1.0//EN“; a jdo implementation might
optimize access for this id.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jdo

PUBLIC "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"

 "http://java.sun.com/dtd/jdo_1_0.dtd">
<!ELEMENT jdo ((package)+, (extension)*)>
<!ELEMENT package ((class)+, (extension)*)>
<!ATTLIST package name CDATA #REQUIRED>
<!ELEMENT class (field|extension)*>
<!ATTLIST class name CDATA #REQUIRED>
<!ATTLIST class identity-type (application|datastore|nondurable)
#IMPLIED>
<!ATTLIST class objectid-class CDATA #IMPLIED>
<!ATTLIST class requires-extent (true|false) ‘true’>
<!ATTLIST class persistence-capable-superclass CDATA #IMPLIED>
<!ELEMENT field ((collection|map|array)?, (extension)*)?>
<!ATTLIST field name CDATA #REQUIRED>
<!ATTLIST field persistence-modifier (persistent|transaction-
al|none) #IMPLIED>
<!ATTLIST field primary-key (true|false) ‘false’>
<!ATTLIST field null-value (exception|default|none) ‘none’>
<!ATTLIST field default-fetch-group (true|false) #IMPLIED>
<!ATTLIST field embedded (true|false) #IMPLIED>
<!ELEMENT collection (extension)*>
<!ATTLIST collection element-type CDATA #IMPLIED>
<!ATTLIST collection embedded-element (true|false) #IMPLIED>
<!ELEMENT map (extension)*>
<!ATTLIST map key-type CDATA #IMPLIED>
<!ATTLIST map embedded-key (true|false) #IMPLIED>
<!ATTLIST map value-type CDATA #IMPLIED>
<!ATTLIST map embedded-value (true|false) #IMPLIED>
<!ELEMENT array (extension)*>
<!ATTLIST array embedded-element (true|false) #IMPLIED>
<!ELEMENT extension (extension)*>
<!ATTLIST extension vendor-name CDATA #REQUIRED>
<!ATTLIST extension key CDATA #IMPLIED>
<!ATTLIST extension value CDATA #IMPLIED>

26.7 Example XML file

An example XML file for the query example classes follows. Note that all fields of both
classes are persistent, which is the default for fields. The emps field in Department con-
tains a collection of elements of type Employee, with an inverse relationship to the dept
field in Employee.
 JDO 2.0 254 October 21, 2004

Java Data Objects 2.0
In directory com/xyz, a file named hr.jdo contains:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jdo SYSTEM “jdo.dtd”>
<jdo>
<package name=”com.xyz.hr”>
<class name=”Employee” identity-type=”application” objectid-
class=”EmployeeKey”>
<field name=”name” primary-key=”true”>
<extension vendor-name=”sunw” key=”index” value=”btree”/>
</field>
<field name=”salary” default-fetch-group=”true”/>
<field name=”dept”>
<extension vendor-name=”sunw” key=”inverse” value=”emps”/>
</field>
<field name=”boss”/>
</class>
<class name=”Department” identity-type=”application” objectid-
class=”DepartmentKey”>
<field name=”name” primary-key=”true”/>
<field name=”emps”>
<collection element-type=”Employee”>
<extension vendor-name=”sunw” key=”element-inverse” value=”dept”/>
</collection>
</field>
</class>
</package>
</jdo>
 JDO 2.0 255 October 21, 2004

Java Data Objects 2.0
27 Public Feedback Request

This Chapter is devoted to issues for which public feedback is requested. During the Early
Draft Review period, the expert group would like the public to provide feedback on these
specific issues.

27.1 Annotations for metadata

JSR 14 and 175 are now standard in J2SE 1.5. These language enhancements allow for users
to annotate their Java source files with information that in previous releases had to be put
into separate metadata files.

The intent for JDO 2.0 is to exploit JSR 14 to obviate the need for metadata defining the
types of collection elements and map keys and values. The metadata to define classes as
persistent-capable can be embedded in the source file. The combination of these two new
features should allow users to avoid the .jdo metadata files completely.

The embedded metadata tags will be included in a future early draft release of the specifi-
cation.

27.2 Attach and detach life cycle listener callbacks

Should we add method attach and detach to the life cycle listener interface, allowing the
application to monitor attach and detach events?

27.3 Proxy support for detached instances

For non-binary-compatible implementations to support the detached instance contract, it
must throw a JDOUserException if a non-loaded relationship field is accessed while de-
tached.

The JDO package might contain a class suitable as an InvocationHandler for cases where
java.lang.reflect.Proxy is used as the strategy. This class would do nothing but throw an
exception if it is accessed. This would avoid the requirement that the client have access to
vendor-specific classes that implement this behavior.

Support for proxies of references to classes (which cannot be proxied using java.lang.re-
flect.Proxy) will require additional investigation.

27.4 Deleting detached instances

Currently the only way to delete detached instances is to define them as dependent in the
metadata of a referencing persistent class. If while detached, the instance “owning” the de-
pendent instance clears the field or removes the dependent instance from a collection, ar-
ray, or map, then upon reattachment, the dependent instance will be deleted from the
datastore.
 JDO 2.0 256 October 21, 2004

Java Data Objects 2.0
Allowing a detached instance to be deleted by the application would require changes to
the detachment API.

27.5 Implicit variable declarations

JDOQL requires declaring variables in a separate declarations section, in both the API and
the metadata. It might be possible to declare them in the filter itself. For example, instead
of:

query.declareVariables(“Employee e”);

query.setFilter(“emps.contains(e) && e.name ==’George’”);

declaring the variable inline:

query.setFilter(“emps.contains(Employee e) && e.name ==’George’”);

This change might require less user typing, but more JDO implementation analysis to
scope the variable.

27.6 Shortcuts for certain JDOQL static methods

Some static methods are defined in JDOQL and currently require the class name and meth-
od name to be spelled out. It might be useful to define some shortcuts for these methods:

static double Math.sqrt(double): sqrt(double)

static double Math.abs(double): abs(double)

static Object JDOHelper.getObjectId(Object): id(Object)

27.7 Attribute names for column name

In metadata, a column that has only one attribute, name, could be “promoted” to be an at-
tribute in the containing element. The issue is what to call the attribute. It has been argued
that column-name is more descriptive than column for this purpose.

Without column promotion:

<field name=”salary”>

<column name=”SAL”/>

</field>

Promotion using “column”:

<field name=”salary” column=”SAL”/>

Promotion using “column-name”:

<field name=”salary” column-name=”SAL”/>

27.8 Specification of indexes

Currently indexes are not specified. Where should the definition of indexes be placed?
These are needed for many types of datastores, so the definition probably belongs in the
JDO metadata (not in mapping metadata).
 JDO 2.0 257 October 21, 2004

Java Data Objects 2.0
27.9 IdGenerator and Sequence are similar

The concepts of IdGenerator and Sequence are very similar. They both are factories for
unique primary key values. These two interfaces can be combined; their implementation
can be either automatically provided by the JDO vendor, or users can write their own im-
plementation classes.

Similarly, values for non-key fields can be automatically generated by a sequence or other
strategy. Both key- and non-key-field values should be definable using a similar notation.

27.10 Embedded, dependent, and serialized values

There are many strategies for handling mapping of collection, map, and array values. The
entire collection, map, or array might be serialized into a column. Alternatively, the keys,
values, and elements might be serialized into their own column(s). Or, keys, values, and
elements might refer to columns in another table.

Independent of the mapping, the collection, map, and array might be defined as depen-
dent, meaning that if the containing instance removes a reference to it, then it should be
removed from the database. And keys, values, and elements might be defined as depen-
dent even if the containing collection, map, or array were not.

In the early draft, these concepts are materialized as attributes of field, collection, map, and
array elements. The placement of these attributes and elements need to be rationalized.

27.11 Deprecate dfgOnly parameter?

The retrieve methods containing the dfgOnly parameter could be deprecated, as there
is extensive new capability with fetch groups.

Similarly, detachCopy, refresh, retrieve, and a possible new method makeTransientCopy
could have a fetch group explicitly named in the API or they could be defined to use the
active fetch groups.

27.12 Fetch Group definition in metadata

Currently, the definition of fields in fetch groups is the same definition as for fields in class-
es. This may be confusing, and we might rename the field element in fetch-group to be
fetched-field or some other name.

The current definition of fetch groups will break some JDO 1.0 applications using refresh()
and retrieve(). Refresh and retrieve with fetch groups is arguably better but compatibility
is important.

The #key and #value syntax for maps and #element syntax for collections/arrays could be
improved. This needs a bit more thought.

27.13 Version information

Currently, the version of an instance is returned as an Object. This might not be the best
representation of a version, and it might be better to define an interface, javax.jdo.Version
to encapsulate it. This would mean that it would no longer be possible to use a simple type
such as Long to represent the version, but it would be type-safe and compile-time checked.
 JDO 2.0 258 October 21, 2004

Java Data Objects 2.0
 JDO 2.0 259 October 21, 2004

	chapter - 1 Introduction
	section - 1.1 Overview
	section - 1.2 Scope
	section - 1.3 Target Audience
	section - 1.4 Organization
	section - 1.5 Document Convention
	section - 1.6 Terminology Convention

	chapter - 2 Overview
	section - 2.1 Definitions
	subsection - 2.1.1 JDO common interfaces
	TableTitle - Table 1: Which Enhancement Interface is Used

	subsection - 2.1.2 JDO in a managed environment
	sectionheading - Enterprise Information System (EIS)
	sectionheading - EIS Resource
	sectionheading - Resource Manager (RM)
	sectionheading - Connection
	sectionheading - Application Component
	sectionheading - Session Beans
	sectionheading - Entity Beans
	sectionheading - Helper objects
	sectionheading - Container

	section - 2.2 Rationale
	figureHead - Figure 1.0 Standard plug-and-play between application programs and EISes using JDO

	section - 2.3 Goals

	chapter - 3 JDO Architecture
	section - 3.1 Overview
	figureHead - Figure 2.0 Overview of non-managed JDO architecture

	section - 3.2 JDO Architecture
	subsection - 3.2.1 Two tier usage
	subsection - 3.2.2 Application server usage
	sectionheading - Resource Adapter
	sectionheading - Pooling
	sectionheading - Contracts
	figureHead - Figure 3.0 Contracts between application server and native JDO resource adapter
	figureHead - Figure 4.0 Contracts between application server and layered JDO implementation

	chapter - 4 Roles and Scenarios
	section - 4.1 Roles
	subsection - 4.1.1 Application Developer
	subsection - 4.1.2 Application Component Provider
	subsection - 4.1.3 Application Assembler
	subsection - 4.1.4 Deployer
	subsection - 4.1.5 System Administrator
	subsection - 4.1.6 JDO Vendor
	subsection - 4.1.7 Connector Provider
	subsection - 4.1.8 Application Server Vendor
	subsection - 4.1.9 Container Provider

	section - 4.2 Scenario: Embedded calendar management system
	figureHead - Figure 5.0 Scenario: Embedded calendar manager

	section - 4.3 Scenario: Enterprise Calendar Manager
	figureHead - Figure 6.0 Scenario: Enterprise Calendar Manager

	chapter - 5 Life Cycle of JDO Instances
	section - 5.1 Overview
	section - 5.2 Goals
	section - 5.3 Architecture:
	sectionheading - JDO Instances
	sectionheading - JDO State Manager
	sectionheading - JDO Managed Fields

	section - 5.4 JDO Identity
	sectionheading - Three Types of JDO identity
	sectionheading - Uniquing
	sectionheading - Change of identity
	sectionheading - JDO Identity Support
	subsection - 5.4.1 Application (primary key) identity
	subsection - 5.4.2 Single Field Identity
	subsection - 5.4.3 Datastore identity
	subsection - 5.4.4 Nondurable JDO identity

	section - 5.5 Life Cycle States
	sectionheading - Datastore Transactions
	subsection - 5.5.1 Transient (Required)
	subsection - 5.5.2 Persistent-new (Required)
	subsection - 5.5.3 Persistent-dirty (Required)
	subsection - 5.5.4 Hollow (Required)
	subsection - 5.5.5 Persistent-clean (Required)
	subsection - 5.5.6 Persistent-deleted (Required)
	subsection - 5.5.7 Persistent-new-deleted (Required)

	section - 5.6 Nontransactional (Optional)
	subsection - 5.6.1 Persistent-nontransactional (Optional)

	section - 5.7 Transient Transactional (Optional)
	subsection - 5.7.1 Transient-clean (Optional)
	subsection - 5.7.2 Transient-dirty (Optional)

	section - 5.8 Optimistic Transactions (Optional)
	Body - A5.9-1 through A5.9-170 [
	TableTitle - Table 2: State Transitions

	Body -]error: a JDOUserException is thrown; the state does not change
	Body - unchanged: no state change takes place; no exception is thrown due to the state change
	Body - n/a: not applicable; if this instance is an explicit parameter of the method, a JDOUserException is thrown; if this instance is an implicit parameter, it is ignored.
	Body - impossible: the state cannot occur in this scenario
	Body -
	figureHead - Figure 7.0 Life Cycle: New Persistent Instances
	figureHead - Figure 8.0 Life Cycle: Transactional Access
	figureHead - Figure 9.0 Life Cycle: Datastore Transactions
	figureHead - Figure 10.0 Life Cycle: Optimistic Transactions
	figureHead - Figure 11.0 Life Cycle: Access Outside Transactions
	figureHead - Figure 12.0 Life Cycle: Transient Transactional
	figureHead - Figure 13.0 JDO Instance State Transitions
	step - 1. A transient instance transitions to persistent-new when the instance is the parameter of a makePersistent method.
	step - 2. A persistent-new instance transitions to hollow when the transaction in which it was made persistent commits.
	step - 3. A hollow instance transitions to persistent-clean when a field is read.
	step - 4. A persistent-clean instance transitions to persistent-dirty when a field is written.
	step - 5. A persistent-dirty instance transitions to hollow at commit or rollback.
	step - 6. A persistent-clean instance transitions to hollow at commit or rollback.
	step - 7. A transient instance transitions to transient-clean when it is the parameter of a makeTransactional method.
	step - 8. A transient-clean instance transitions to transient-dirty when a field is written.
	step - 9. A transient-dirty instance transitions to transient-clean at commit or rollback.
	step - 10. A transient-clean instance transitions to transient when it is the parameter of a makeNontransactional method.
	step - 11. A hollow instance transitions to persistent-dirty when a field is written.
	step - 12. A persistent-clean instance transitions to persistent-nontransactional at commit when RetainValues is set to true, at rollback when RestoreValues is set to true, or when it is the parameter of a makeNontransactional method.
	step - 13. A persistent-nontransactional instance transitions to persistent-clean when it is the parameter of a makeTransactional method.
	step - 14. A persistent-nontransactional instance transitions to persistent-dirty when a field is written in a transaction.
	step - 15. A persistent-new instance transitions to transient on rollback.
	step - 16. A persistent-new instance transitions to persistent-new-deleted when it is the parameter of deletePersistent.
	step - 17. A persistent-new-deleted instance transitions to transient on rollback. The values of the fields are restored as of the makePersistent method.
	step - 18. A persistent-new-deleted instance transitions to transient on commit. No changes are made to the values.
	step - 19. A hollow, persistent-clean, or persistent-dirty instance transitions to persistent- deleted when it is the parameter of deletePersistent.
	step - 20. A persistent-deleted instance transitions to transient when the transaction in which it was deleted commits.
	step - 21. A persistent-deleted instance transitions to hollow when the transaction in which it was deleted rolls back.
	step - 22. A hollow instance transitions to persistent-nontransactional when the NontransactionalRead option is set to true, a field is read, and there is either an optimistic transaction or no transaction active.
	step - 23. A persistent-dirty instance transitions to persistent-nontransactional at commit when RetainValues is set to true or at rollback when RestoreValues is set to true.
	step - 24. A persistent-new instance transitions to persistent-nontransactional at commit when RetainValues is set to true.

	chapter - 6 The Persistent Object Model
	section - 6.1 Overview
	figureHead - Figure 14.0 Instantiated persistent objects

	section - 6.2 Goals
	section - 6.3 Architecture
	sectionheading - Persistence-capable
	sectionheading - First Class Objects and Second Class Objects
	sectionheading - First Class Objects
	sectionheading - Second Class Objects
	sectionheading - Arrays
	sectionheading - Primitives
	sectionheading - Interfaces

	section - 6.4 Field types of persistence-capable classes
	subsection - 6.4.1 Nontransactional non-persistent fields
	subsection - 6.4.2 Transactional non-persistent fields
	subsection - 6.4.3 Persistent fields
	sectionheading - Precision of fields
	sectionheading - Primitive types
	sectionheading - Immutable Object Class types
	sectionheading - Mutable Object Class types
	sectionheading - Persistence-capable Class types
	sectionheading - Object Class type
	sectionheading - Collection Interface types
	sectionheading - Other Interface types
	sectionheading - Arrays

	section - 6.5 Inheritance

	chapter - 7 PersistenceCapable
	section - 7.1 Persistence Manager
	section - 7.2 Make Dirty
	section - 7.3 JDO Identity
	section - 7.4 Status interrogation
	subsection - 7.4.1 Dirty
	subsection - 7.4.2 Transactional
	subsection - 7.4.3 Persistent
	subsection - 7.4.4 New
	subsection - 7.4.5 Deleted
	TableTitle - Table 3: State interrogation

	section - 7.5 New instance
	section - 7.6 State Manager
	section - 7.7 Replace Flags
	section - 7.8 Replace Fields
	section - 7.9 Provide Fields
	section - 7.10 Copy Fields
	section - 7.11 Static Fields
	section - 7.12 JDO identity handling
	sectionheading - interface ObjectIdFieldSupplier
	sectionheading - interface ObjectIdFieldConsumer
	sectionheading - interface ObjectIdFieldManager extends ObjectIdFieldSupplier, ObjectIdFieldConsumer

	chapter - 8 JDOHelper
	section - 8.1 Persistence Manager
	section - 8.2 Make Dirty
	section - 8.3 JDO Identity
	section - 8.4 JDO Version
	section - 8.5 Status interrogation
	subsection - 8.5.1 Dirty
	subsection - 8.5.2 Transactional
	subsection - 8.5.3 Persistent
	subsection - 8.5.4 New
	subsection - 8.5.5 Deleted

	section - 8.6 PersistenceManagerFactory methods

	chapter - 9 JDOImplHelper
	section - 9.1 JDOImplHelper access
	section - 9.2 Metadata access
	section - 9.3 Persistence-capable instance factory
	section - 9.4 Registration of PersistenceCapable classes
	subsection - 9.4.1 Notification of PersistenceCapable class registrations
	sectionheading - RegisterClassEvent
	sectionheading - RegisterClassListener

	section - 9.5 Security administration
	section - 9.6 Application identity handling
	section - 9.7 Persistence-capable class state interrogation

	chapter - 10 InstanceCallbacks
	section - 10.1 jdoPostLoad
	section - 10.2 jdoPreStore
	section - 10.3 jdoPreClear
	section - 10.4 jdoPreDelete

	chapter - 11 PersistenceManagerFactory
	section - 11.1 Interface PersistenceManagerFactory
	sectionheading - Construction by Properties

	section - 11.2 ConnectionFactory
	section - 11.3 PersistenceManager access
	section - 11.4 Close the PersistenceManagerFactory
	section - 11.5 Non-configurable Properties
	section - 11.6 Optional Feature Support
	section - 11.7 Static Properties constructor
	section - 11.8 Second-level cache management

	chapter - 12 PersistenceManager
	section - 12.1 Overview
	section - 12.2 Goals
	section - 12.3 Architecture: JDO PersistenceManager
	section - 12.4 Threading
	section - 12.5 Class Loaders
	section - 12.6 Interface PersistenceManager
	sectionheading - Null management
	subsection - 12.6.1 Cache management
	subsection - 12.6.2 Transaction factory interface
	subsection - 12.6.3 Query factory interface
	subsection - 12.6.4 Extent Management

	sectionheading - Extents of interfaces
	subsection - 12.6.5 JDO Identity management

	sectionheading - Getting Multiple Persistent Instances
	subsection - 12.6.6 Persistent interface factory
	subsection - 12.6.7 JDO Instance life cycle management

	sectionheading - Make instances persistent
	sectionheading - Delete persistent instances
	sectionheading - Make instances transient
	sectionheading - Make instances transactional
	sectionheading - Make instances nontransactional
	subsection - 12.6.8 Detaching and attaching instances

	sectionheading - Detaching instances
	sectionheading - Attaching instances

	section - 12.7 Fetch Groups
	subsection - 12.7.1 The FetchPlan interface
	subsection - 12.7.2 Defining fetch groups

	section - 12.8 Flushing instances
	section - 12.9 Transaction completion
	section - 12.10 Multithreaded Synchronization
	section - 12.11 User associated objects
	section - 12.12 PersistenceManagerFactory
	section - 12.13 ObjectId class management
	section - 12.14 Sequence
	section - 12.15 Life-cycle callbacks
	section - 12.16 Access to internal datastore connection
	sectionheading - SQL Portability

	chapter - 13 Transactions and Connections
	section - 13.1 Overview
	section - 13.2 Goals
	section - 13.3 Architecture: PersistenceManager, Transactions, and Connections
	sectionheading - Connection Management Scenarios
	sectionheading - Native Connection Management
	sectionheading - Non-native Connection Management
	sectionheading - Optimistic Transactions
	figureHead - Figure 15.0 Transactions and Connections

	section - 13.4 Interface Transaction
	subsection - 13.4.1 PersistenceManager
	subsection - 13.4.2 Transaction options
	sectionheading - Nontransactional access to persistent values
	sectionheading - Optimistic concurrency control
	sectionheading - Retain values at transaction commit
	sectionheading - Restore values at transaction rollback
	subsection - 13.4.3 Synchronization
	subsection - 13.4.4 Transaction demarcation

	sectionheading - Non-managed environment
	sectionheading - Managed environment
	subsection - 13.4.5 RollbackOnly

	section - 13.5 Optimistic transaction management

	chapter - 14 Query
	section - 14.1 Overview
	section - 14.2 Goals
	section - 14.3 Architecture: Query
	section - 14.4 Namespaces in queries
	section - 14.5 Query Factory in PersistenceManager interface
	section - 14.6 Query Interface
	sectionheading - Persistence Manager
	sectionheading - Fetch Plan
	sectionheading - Query element binding
	sectionheading - Query options
	sectionheading - Query compilation
	subsection - 14.6.1 Query execution
	subsection - 14.6.2 Filter specification
	TableTitle - Table 4: Query Operators

	sectionheading - Methods
	TableTitle - Table 5: Query Methods
	subsection - 14.6.3 Parameter declaration

	sectionheading - Implicit parameter declaration
	subsection - 14.6.4 Import statements
	subsection - 14.6.5 Variable declaration

	sectionheading - Implicit variable declaration
	subsection - 14.6.6 Ordering statement
	subsection - 14.6.7 Closing Query results
	subsection - 14.6.8 Limiting the Cardinality of the Query Result
	subsection - 14.6.9 Specifying the Result of a Query (Projections, Aggregates)

	sectionheading - Distinct results
	sectionheading - Named Result Expressions
	sectionheading - Aggregate Types
	sectionheading - Primitive Types
	sectionheading - Null Results
	sectionheading - Default Result
	subsection - 14.6.10 Grouping Aggregate Results
	subsection - 14.6.11 Specifying Uniqueness of the Query Result

	sectionheading - Default Unique setting
	subsection - 14.6.12 Specifying the Class of the Result

	sectionheading - Result Class Requirements
	TableTitle - Table 6: Shape of Result (C is the candidate class)
	subsection - 14.6.13 Single-string Query element binding

	section - 14.7 SQL Queries
	TableTitle - Table 7: Shape of Result of SQL Query

	section - 14.8 Deletion by Query
	section - 14.9 Extensions
	section - 14.10 Examples:
	subsection - 14.10.1 Basic query.
	subsection - 14.10.2 Basic query with ordering.
	subsection - 14.10.3 Parameter passing.
	subsection - 14.10.4 Navigation through single-valued field.
	subsection - 14.10.5 Navigation through multi-valued field.
	subsection - 14.10.6 Membership in a collection
	subsection - 14.10.7 Projection of a Single Field
	subsection - 14.10.8 Projection of Multiple Fields and Expressions
	subsection - 14.10.9 Aggregation of a single Field
	subsection - 14.10.10 Aggregation of Multiple Fields and Expressions
	subsection - 14.10.11 Aggregation of Multiple fields with Grouping
	subsection - 14.10.12 Selection of a Single Instance
	subsection - 14.10.13 Selection of a Single Field
	subsection - 14.10.14 Projection of “this” to User-defined Result Class with Matching Field
	subsection - 14.10.15 Projection of “this” to User-defined Result Class with Matching Method
	subsection - 14.10.16 Projection of variables
	subsection - 14.10.17 Deleting Multiple Instances

	chapter - 15 Object-Relational Mapping
	sectionheading - Mapping Overview
	section - 15.1 Column Elements
	sectionheading - Example 1

	section - 15.2 Join Condition
	sectionheading - Example 2
	sectionheading - Example 3

	section - 15.3 Relationship Mapping
	sectionheading - Example 4
	sectionheading - Example 5
	sectionheading - Example 6
	sectionheading - Example 7
	sectionheading - Example 8

	section - 15.4 Embedding
	sectionheading - Example 9

	section - 15.5 Foreign Keys
	sectionheading - Delete Action
	sectionheading - Update Action
	sectionheading - Deferred Constraint Checking
	sectionheading - Unique Foreign Key
	sectionheading - Example 10

	section - 15.6 Indexes
	sectionheading - Unique Index
	sectionheading - Example 11

	section - 15.7 Inheritance
	section - 15.8 Versioning
	sectionheading - Example 12
	sectionheading - Example 13
	sectionheading - Example 14

	chapter - 16 Enterprise Java Beans
	section - 16.1 Session Beans
	subsection - 16.1.1 Stateless Session Bean with Container Managed Transactions
	subsection - 16.1.2 Stateful Session Bean with Container Managed Transactions
	subsection - 16.1.3 Stateless Session Bean with Bean Managed Transactions
	subsection - 16.1.4 Stateful Session Bean with Bean Managed Transactions

	section - 16.2 Entity Beans

	chapter - 17 JDO Exceptions
	section - 17.1 JDOException
	subsection - 17.1.1 JDOFatalException
	subsection - 17.1.2 JDOCanRetryException
	subsection - 17.1.3 JDOUnsupportedOptionException
	subsection - 17.1.4 JDOUserException
	subsection - 17.1.5 JDOFatalUserException
	subsection - 17.1.6 JDOFatalInternalException
	subsection - 17.1.7 JDODataStoreException
	subsection - 17.1.8 JDOFatalDataStoreException
	subsection - 17.1.9 JDOObjectNotFoundException
	subsection - 17.1.10 JDOOptimisticVerificationException
	subsection - 17.1.11 JDODetachedFieldAccessException

	chapter - 18 XML Metadata
	section - 18.1 ELEMENT jdo
	section - 18.2 ELEMENT package
	section - 18.3 ELEMENT interface
	section - 18.4 ELEMENT property
	section - 18.5 ELEMENT column
	section - 18.6 ELEMENT class
	subsection - 18.6.1 ELEMENT datastore-identity
	sectionheading - IdGenerator

	section - 18.7 ELEMENT join
	section - 18.8 ELEMENT inheritance
	section - 18.9 ELEMENT discriminator
	section - 18.10 ELEMENT implements
	section - 18.11 ELEMENT property-field
	section - 18.12 ELEMENT foreign-key
	subsection - 18.12.1 ATTRIBUTE update-action
	subsection - 18.12.2 ATTRIBUTE delete-action
	subsection - 18.12.3 ATTRIBUTE deferred
	subsection - 18.12.4 ATTRIBUTE foreign-key

	section - 18.13 ELEMENT field
	sectionheading - Default persistence-modifier
	subsection - 18.13.1 ELEMENT collection
	subsection - 18.13.2 ELEMENT map
	subsection - 18.13.3 ELEMENT array
	subsection - 18.13.4 ELEMENT embedded
	subsection - 18.13.5 ELEMENT owner
	subsection - 18.13.6 ELEMENT key
	subsection - 18.13.7 ELEMENT value
	subsection - 18.13.8 ELEMENT element

	section - 18.14 ELEMENT query
	subsection - 18.14.1 ELEMENT declare
	subsection - 18.14.2 ELEMENT result

	section - 18.15 ELEMENT sequence
	section - 18.16 ELEMENT extension
	section - 18.17 The Document Type Descriptor
	section - 18.18 Example XML file

	chapter - 19 Extent
	section - 19.1 Overview
	section - 19.2 Goals
	section - 19.3 Interface Extent
	sectionheading - Fetch Plan

	chapter - 20 Portability Guidelines
	section - 20.1 Optional Features
	subsection - 20.1.1 Optimistic Transactions
	subsection - 20.1.2 Nontransactional Read
	subsection - 20.1.3 Nontransactional Write
	subsection - 20.1.4 Transient Transactional
	subsection - 20.1.5 RetainValues
	subsection - 20.1.6 IgnoreCache

	section - 20.2 Object Model
	section - 20.3 JDO Identity
	section - 20.4 PersistenceManager
	section - 20.5 Query
	section - 20.6 XML metadata
	section - 20.7 Life cycle
	section - 20.8 JDOHelper
	section - 20.9 Transaction
	section - 20.10 Binary Compatibility

	chapter - 21 JDO Reference Enhancer
	section - 21.1 Overview
	section - 21.2 Goals
	section - 21.3 Enhancement: Architecture
	section - 21.4 Inheritance
	section - 21.5 Field Numbering
	section - 21.6 Serialization
	section - 21.7 Cloning
	section - 21.8 Introspection (Java core reflection)
	section - 21.9 Field Modifiers
	subsection - 21.9.1 Non-persistent
	subsection - 21.9.2 Transactional non-persistent
	subsection - 21.9.3 Persistent
	subsection - 21.9.4 PrimaryKey
	subsection - 21.9.5 Embedded
	subsection - 21.9.6 Null-value

	section - 21.10 Treatment of standard Java field modifiers
	subsection - 21.10.1 Static
	subsection - 21.10.2 Final
	subsection - 21.10.3 Private
	subsection - 21.10.4 Public, Protected

	section - 21.11 Fetch Groups
	section - 21.12 jdoFlags Definition
	section - 21.13 Exceptions
	section - 21.14 Modified field access
	TableTitle - Table 8: Field access mediation

	section - 21.15 Generated fields in least-derived PersistenceCapable class
	section - 21.16 Generated fields in all PersistenceCapable classes
	sectionheading - Generated static initializer

	section - 21.17 Generated methods in least-derived PersistenceCapable class
	section - 21.18 Generated methods in PersistenceCapable root classes and all classes that declare objectid-class in xml metadata:
	section - 21.19 Generated methods in all PersistenceCapable classes
	section - 21.20 Example class: Employee
	subsection - 21.20.1 Generated fields
	subsection - 21.20.2 Generated static initializer
	subsection - 21.20.3 Generated interrogatives
	subsection - 21.20.4 Generated jdoReplaceStateManager
	subsection - 21.20.5 Generated jdoReplaceFlags
	subsection - 21.20.6 Generated jdoNewInstance helpers
	subsection - 21.20.7 Generated jdoGetManagedFieldCount
	subsection - 21.20.8 Generated jdoGetXXX methods (one per persistent field)
	subsection - 21.20.9 Generated jdoSetXXX methods (one per persistent field)
	subsection - 21.20.10 Generated jdoReplaceField and jdoReplaceFields
	subsection - 21.20.11 Generated jdoProvideField and jdoProvideFields
	subsection - 21.20.12 Generated jdoCopyField and jdoCopyFields methods
	subsection - 21.20.13 Generated writeObject method
	subsection - 21.20.14 Generated jdoPreSerialize method
	subsection - 21.20.15 Generated jdoNewObjectIdInstance
	subsection - 21.20.16 Generated jdoCopyKeyFieldsToObjectId
	subsection - 21.20.17 Generated jdoCopyKeyFieldsFromObjectId

	chapter - 22 Interface StateManager
	section - 22.1 Overview
	section - 22.2 Goals
	sectionheading - Clone support

	section - 22.3 StateManager Management
	section - 22.4 PersistenceManager Management
	section - 22.5 Dirty management
	section - 22.6 State queries
	section - 22.7 JDO Identity
	section - 22.8 Serialization support
	section - 22.9 Field Management
	subsection - 22.9.1 User-requested value of a field
	subsection - 22.9.2 User-requested modification of a field
	subsection - 22.9.3 StateManager-requested value of a field
	subsection - 22.9.4 StateManager-requested modification of a field

	chapter - 23 JDOPermission
	chapter - 24 JDOQL BNF
	chapter - 25 Items deferred to the next release
	section - 25.1 Nested Transactions
	section - 25.2 Savepoint, Undosavepoint
	section - 25.3 Inter-PersistenceManager References
	section - 25.4 Enhancer Invocation API
	section - 25.5 Prefetch API
	section - 25.6 BLOB/CLOB datatype support
	section - 25.7 Managed (inverse) relationship support
	section - 25.8 Case-Insensitive Query
	section - 25.9 String conversion in Query
	section - 25.10 Read-only fields
	section - 25.11 Enumeration pattern
	section - 25.12 Non-static inner classes
	section - 25.13 Projections in query
	section - 25.14 LogWriter support
	section - 25.15 New Exceptions
	section - 25.16 Distributed object support
	section - 25.17 Object-Relational Mapping

	chapter - 26 JDO 1.0.1 Metadata
	section - 26.1 ELEMENT jdo
	section - 26.2 ELEMENT package
	section - 26.3 ELEMENT class
	section - 26.4 ELEMENT field
	sectionheading - Default persistence-modifier
	subsection - 26.4.1 ELEMENT collection
	subsection - 26.4.2 ELEMENT map
	subsection - 26.4.3 ELEMENT array

	section - 26.5 ELEMENT extension
	section - 26.6 The Document Type Descriptor
	section - 26.7 Example XML file

	chapter - 27 Public Feedback Request
	section - 27.1 Annotations for metadata
	section - 27.2 Attach and detach life cycle listener callbacks
	section - 27.3 Proxy support for detached instances
	section - 27.4 Deleting detached instances
	section - 27.5 Implicit variable declarations
	section - 27.6 Shortcuts for certain JDOQL static methods
	section - 27.7 Attribute names for column name
	section - 27.8 Specification of indexes
	section - 27.9 IdGenerator and Sequence are similar
	section - 27.10 Embedded, dependent, and serialized values
	section - 27.11 Deprecate dfgOnly parameter?
	section - 27.12 Fetch Group definition in metadata
	section - 27.13 Version information

