[image: image1.png]
(http://speedo.objectweb.org)

Speedo is an open source implementation, under the GPL licence, of Sun’s JDO™ (Java Data Objects) specification for the persistence of Java objects.
JDO™ Introduction
For Java developers, there is a nice way to implement data persistence. Java Data Objects (JDO) is a Java-based solution to help solve data persistence in Java systems. JDOTM can be defined as:

"A standardized, transparent persistence for Java objects. JDO is a common (vendor-neutral), Java centric view of a data storage system."

JDO is a pure Java API. Unlike SQL, this is not a language tied to a database. JDO provides a number of features including:

· Automatic cache management.

· Query abilities.
· Ability to do partial read and updates.
· Transactional support for multi-users that scales from single transactions on a PDA level machine to distributed transactions across a Web system.

· You can retrieve objects stored in different locations and forms (Portable binary applications).

· Integrate with EJB.

There are a number of benefits for developers using JDOTM. Transparent persistence gives the developer the ability to deal with just Java objects without worrying about dealing with non-Java database code. Underlying code within JDOTM takes care of working with the database and such. The developer doesn't need to learn a query language like SQL, rather they can focus on the Java language. For example, doing a database Boolean query against the data in the database is a simple Java Boolean query. There is no fancy syntax.

Because JDOTM is a Java API, it is portable. Most database query languages are not portable. Although SQL was aimed at being portable, the major databases have spun off their own flavours. Microsoft SQL Server uses Transact-SQL. Oracle uses PL-SQL.
JDO works with J2SETM, J2EETM, and EJBTM. Developers are able to focus on coding to a simple API without worrying about the underlying database.
JDOTM is going to be completed with the next version (2.0) which enhances the query power (JSR-243).
Example:

A SQL query for extracting a group of products with list prices in excess of $25 would look like this:

SELECT * FROM ProductRoster WHERE listPrice > 25

The same query, expressed in the object-oriented terms of JDO, would require this class:

class Product {
String name;
float listPrice;
}
Then, you can query the set of existing products by using an instance of the PersistenceManager class.

Query q = pm.newQuery (Product.class, "listPrice > 25");
Collection products = q.execute ();

In the result, 'products' contains the JDO-managed persistent Product objects that match your query.

Speedo benefits
Speedo is an implementation of the JDOTM specification offering the following benefits:
· Possible choice of optimistic or pessimistic transaction mode

· L2 Caching of persistent objects, with a choice of several replacement policies (LRU | MRU | FIFO | ...)

· Data prefetching at query evaluation time: later accesses to objects will not require any I/O to the data store

· Management of relationships coherency
· Speedo allows persistent classes to be mapped to some data stores, and in particular relational databases such as Oracle, MS SQL server, MySql and Postgres
· Able to create the SQL schema

· Various identifiers are supported:

· Application: single field or a couple of field,

· datastore (long identifier): SQL sequence or speedo generator

· Many of supported types for persistent fields (primitive types, wrappers, java.util.*, java.math.*)

· Speedo relies on the objectweb JORM and MEDOR for the persistence and queries of application objects. These two middleware frameworks have been designed to be extended to support any type of data store. Currently, storage on relational databases is possible, with filtered and horizontal mapping for inheritance, and has been tested. The extension to other types of data store, such as other relational databases (BerkeleyDB) or LDAP directories, could be implemented if required.

· Speedo is integrated to the EclispeJDO plugin permitting to write JDO applications with Eclipse.

· For performance reasons, Speedo does not implement javax.jdo.spi package.

· Following the JDO™ specification recommendation, Speedo performs byte code enhancement, using ASM.

· The Speedo distribution also contains a set of JCA™ resource adapters, enabling the integration of Speedo in J2EE™ servers such as JOnAS, JBoss™ or Weblogic™.

Speedo and Objectweb

Speedo is a JDO™ personality of the ObjectWeb Open Source Persistence Frameworks as shown with the following figure:

[image: image2.wmf]

Caching

(Perseus)

Concurrency

(Perseus)

Transaction

(JCA)

Storage

(JORM)

Query

(MEDOR)

RDBMS

OODBMS

LDAP

JOnAS

Speedo

ObjectWeb

Persistence

Framework

…

· JORM (Java Object Repository Mapping) is an adaptable persistence service. It manages the I/O of a persistent class instance (loading and storing). It can be used to offer various personalities, such as one compliant with the CMP/EJB™ specification, another one with the OMG PSS specification or another one with the JDO™ specification. JORM provides object persistence through different secondary storage supports, such as files, relational databases or object-oriented databases.

· MEDOR is a query framework. Its goal is the expression, optimization, compilation and evaluation of queries on data coming from distributed and heterogeneous data sources. Even though it can be used directly by a final user, it is intended to be used for building middleware which requires query capacities. MEDOR personalities include EJB 2.0, with the JOnAS EJB™ server, and JDO™, with the Speedo implementation. MEDOR is in particular integrated with the persistence framework JORM. With regards to JORM, it is meant to be a complement for querying data made persistent through JORM.

· Perseus aims at providing various components that are of general interest when managing persistence. These components can be used when constructing different persistence personalities such as EJB/CMP™ or JDO™. Some components can also be used in other context than persistency. The following components are provided in Perseus:

· CacheManager is a component in charge of the caching aspect. This component is used in Speedo for the caching of persistent instances (Level 2 cache) and the compiled query.

· ConcurrencyManager is a component in charge of concurrency control. It is used in Speedo for checking the concurrency between transactions. Several implementation are provided (Pessimistic, Optimistic).
· Dependency is a manager of dependency graph permitting to detect dead locks.

· Pool is a generic implementation of a Pool avoiding resource allocation such as a SQL™ connection.

· PersistenceManager is a framework structuring a persistence service using a CacheManager, a Concurrency Manager and StorageManager.
The Speedo product uses others ObjectWeb products:
· Fractal, the ObjectWeb component model

· Julia, an implementation of the Fractal model

· ASM, a byte code manipulation framework

· Monolog, the ObjectWeb logging API, allowing programs to be independent of the logging system (log4j, jdk1.4)

Speedo architecture

The Speedo architecture has been designed and implemented using Fractal and Julia.
The use of Fractal eases the configuration of Speedo. Future benefits will include automatic management, for example through JMX™. Fractal has the additional benefit of making software architecture explicit, as illustrated by the figure below.
[image: image3.png]
Speedo: overall architecture

A Speedo success story From Roland Hedayat (roland@inherit.se)
The overall problem is the fragmentation of health information about a patient. The data is stored in a lot of different systems, and that these systems cannot communicate with each other. As an example, within the Stockholm County Council which organizes the public health care within the Stockholm region (1.8 million inhabitants), there are some 23 different EHRs (Electronic Health Record systems), that is, types of EHR, not instances of isolated repositories, which amounts to several hundreds.

The GLL project, translated to Common Medication List, is an attempt to consolidate the information in a common repository. Using a certain EHR, say X, and looking in this system for information on the patient P, one should be able to access the system though a web interface, and get a complete view of the patient's current and historical medication treatments, and also be able to abolish treatments originally made in other systems.
The pilot project was initiated a year ago and the aim was to show the feasibility of this strategy. The project initially involved two different EHRs in three health care units. The platform independence requirement led us naturally to a Java™ based solution. Due to the scalability, architecture and integration requirements making a simple servlet™ based solution was insufficient. We needed a J2EE™ based technology and a presentation framework. After considering the alternatives, we settled on ObjectWeb's suite of solutions composed of JOnAS, Barracuda, Speedo and MySQL for the following reasons:
 - Open Source

 - Open documentation of high quality and active mailing lists

 - Impressive suite of related solutions within a unified architectural framework

 - High activity, visible momentum in direction of full J2EE™ compliance

 - ObjectWeb's architectural vision and architecture centric way of developing the solutions

 - Studying various performance reports

Armed with this nice technology, we could deliver the first phase of the pilot on time, and it is performing as expected, according to the requirements. We are now in the phase of scaling the application from three to thirty units with some 1000 users (medical doctors and nurses). As part of this process, we are implementing some administrative and monitoring services in the application, and for this purpose we are using JMX™, thanks to JOnAS being JMX™ aware.

In retrospect, we consider our choice of an OW-based solution highly successful for the following reasons:

 - JOnAS has proven to be fast, reliable stable and comfortable to work with in the development phase, and has proven extremely reliable in the production environment

 - The Barracuda framework is living up to its promise and is an elegant implementation of the MVC paradigm, when used with a pure HTML based client.
 - Speedo performs very well and is fast. Its elegant caching mechanisms weigh out the penalties paid for using an O/R indirection layer instead of hand coding an own JDBC based persistence layer.
Initially, the Speedo/JDO choice we made was considered the highest risk in the project. We introduced a dependency on a technology/implementation which was in a relatively early phase. We did have some problems with the first versions of Speedo we used. But our problems were always quickly responded to on the Speedo mailing list, which was extremely helpful. We quickly had patches that solved our problems.

Also, we were guided with design patterns that helped us considerably improve the performance of the application, through better usage of the Speedo caching mechanisms.

When Speedo reached its version 1.x, it did function very smoothly, and does so now in every day production, which has been ongoing since April 2004.
Work plan

· End of 2004

· JDO 2. preview (detach/attach, aggregate, fetch plan)

· Support of clustering with transaction management delegated to the DB

· 1Q2005

· JDO2 (not yet implemented features)
· 3Q2005
· Clustering with distributed concurrency management
· Clustering with distributed collaborative caches
· Contribution to EclipseJDO for O/R mapping UI
Speedo partners
France Telecom Research & Development is Europe’s leading telecommunications R&D centre and contributes to ObjectWeb through its AMS laboratory. Research projects cover topics such as the design and development of flexible distributed object-oriented platforms (ORBs and the like) and component-based systems, persistence and transactions, real-time quality of service, formal aspects of distributed systems (process calculi and similar), and applications of distributed systems, in particular, the design of enterprise information systems. More information about France Telecom R&D is available at http://www.rd.francetelecom.com.

ObjectWeb is a consortium of leading companies and research organizations from around the world who have joined forces to produce the next generation of Open Source Middleware. Based on Open Standards, ObjectWeb’s middleware includes application servers, components, frameworks and tools. Founded in 2002 by Bull, France Telecom and INRIA, ObjectWeb is hosted by INRIA, and is sponsored by Together Teamlösungen GmbH. To find out more about ObjectWeb, visit our web site at http://www.objectweb.org.

Biography

Sébastien Chassande-Barrioz is R&D project manager at the Architecture, Middleware Platform Engineering and Integrated Services (AMS) laboratory, in Grenoble (France). He has been working at the Research and Development of France Telecom for 2 years and previously worked at INRIA SARDES Laboratory for 2 years. His main areas of expertise are around object persistence and container. Sébastien is the project manager and main developer of several projects about persistence (JORM, MEDOR, Perseus) and in particular Speedo. He is a member of JSR 243 about JDO 2, and is a member of Objectweb architect College.
Alexandre Lefebvre is R&D Unit manager at the Architecture, Middleware Platform Engineering and Integrated Services (AMS) laboratory, in Grenoble (France). He has been working at the Research and Development of France Telecom for 5 years. His main areas of expertise are around object persistence and queries. Alexandre is one of the developers of the MEDOR query component of ObjectWeb, and is a member of the ObjectWeb College of Architects and of the ObjectWeb Executive Committee.
_1156685559.doc

Caching

(Perseus)

Concurrency (Perseus)

Transaction

(JCA)

Storage

(JORM)

Query

(MEDOR)

RDBMS

OODBMS

LDAP

JOnAS

Speedo

ObjectWeb

Persistence

Framework

…

