
FunambolTM Data Synchronization Server Scalability

Introduction

With the popularity of the Internet, single system websites and services often cannot
handle the load. New load balancing technologies have been developed to combine
multiple systems into an integrated single service. In simple terms, they combine the
processing power of multiple machines into a more powerful service with improved Quality
of Service (QoS).

Different load balancing approaches address different areas of concern and QoS. All offer
high availability and scalability of services by means of fault tolerance and distribution.
This document addresses the specifics of clustered load balancing for the Funambol Data
Synchronization server to achieve scalability.

Clustered Load Balancing

Various configurations of load balancing networks are possible. Most provide a different
level of redundancy and, therefore, a certain availability as well as different methods of
scalability and flexibility. Clustering is defined as a group of application servers that
transparently run J2EE applications as if they were a single entity. Two forms of clustering
are common: vertical clustering where you run multiple servers in a single system or
horizontal clustering where a single server runs on multiple systems. An additional
administrative server (also called the load balancer) distributes the traffic load for the
service over the multiple J2EE applications.

Figure 1: Clustered Load Balancing

The diagram illustrates the minimal network setup for supporting a horizontal clustered
load balancing environment for the Funambol Data Synchronization server. On the left,
you have the Internet with its customers and devices who want to access the service. The
load balancer is connected to the Internet with a back-end network to which multiple
application servers are connected. With this setup, the load balancer can divide the
processing for incoming requests over the application servers. The application servers
share a persistent store for SyncML session information and user data, as not all SyncML
sessions for the same user might necessarily go to the same application server.

The cluster implementation for this environment can be based on two principals. The first
is a sticky session in which the load balancer, based on a session id, always directs
requests to the same application server. This requires no additional resources or
functionality from the application server. The second principle is session replication.

Sticky Session Cluster

One of the most popular approaches is the combination of Apache and Tomcat. It uses a
front-end – the load balancer – containing an Apache http server and application servers
containing Tomcat with the Funambol web application. This is depicted below.

Figure 2: Apache –Tomcat Configuration

The diagram illustrates a setup of Apache that includes the Jakarta module with multiple
Tomcat installations that embed the Funambol web application. The Apache server only
needs to be configured with sticky session to have http requests/responses of the same
SyncML session going to the same back-end Tomcat servers. The only thing the Tomcat
installations need to share is access to storage containing data that is synchronized and
the store to maintain SyncML persistent data between sessions.

Requirements

Every solution requires a different set of hardware and software. Below is a list of
requirements for providing a load balanced Funambol Data Synchronization server
solution as described in this document.

Software
1. Apache http server
2. Jakarta module for Apache
3. Tomcat
4. Database, for instance mysql (persistent store of SyncML info)
5. Funambol Data Synchronization Server

2

3

Hardware
1. One high performance system for the Apache installation
2. N systems for the horizontal scaling of Tomcat with Funambol
3. One system for the database of the persistent store

Depending on the data storage chosen, additional requirements might apply e.g. database
storage could be integrated with the database also used for the persistent store.

Conclusion

The described load balancing solution is based on the well-known Apache-Tomcat
configuration. It utilizes an open source infrastructure, lowering the cost of ownership. The
solution is based on a well-known approach that can be combined with other load
balancing techniques when needed to achieve the required QoS. QoS parameters like
fault tolerance, availability and performance might involve additional requirements.

About Funambol

Funambol is the mobile open source company. Funambol's Mobile Application Server
offers "push" email, multimaster PIM synchronization, and management facilities for
mobile devices. Funambol, formerly known as Sync4j, is an open source development
platform for mobile applications that has been downloaded more than any other wireless
middleware product – 750,000+ times. The commercial version has been deployed at
wireless carriers, Fortune 100 enterprises, hardware OEMs/ODMs and ISVs including
customers such as Computer Associates. Funambol is headquartered in Redwood City,
California with a development center in Italy. For more information, please visit
http://www.funambol.com.

Worldwide Headquarters Europe
643 Bair Island Road, Suite 305 Via dei Valtorta 21
Redwood City, CA 94063 USA 20127 Milano Italy
(650) 701-1450 x105 +39 02 2614 5383

Funambol © 2006. All rights reserved. Funambol is a trademark of Funambol, Inc.
All other company and product names may be the trademarks of their respective owners.

http://www.funambol.com/

	FunambolTM Data Synchronization Server Scalability
	Introduction
	Clustered Load Balancing
	Sticky Session Cluster
	Requirements

	Conclusion

