
Funambol JSE SDK
Developer Guide

Last modified: March 28, 2009

Revision History

Name Date Reason for Change Ver./Rev.
Stefano Fornari Original Draft 1.0
Fabio Maggi Added WBXML, logging 1.1
Stefano Nichele Sync4j --> Funambol 1.2

Copyright © 2009 Funambol - Page 2

Table of Contents
1.Overview..4

1.1. JSE SDK Architecture..4

2.Data Synchronization API..5

2.1. The Sync Manager...5

2.2. Sync Sources...5

2.3. The Sync Process..6

2.4. Configuring the Sync Manager..8

2.4.1. Configuring a Sync Source...8

3.Device Management API...10

3.1. The Device Manager...10

3.1.1. Management Nodes..10

3.1.2. SimpleDeviceManagement...11

3.2. Examples...11

3.2.1. Getting a DeviceManager Instance..11

3.2.2. Getting the Root Management Tree...11

3.2.3. Reading Management Node Configurable Properties..12

3.2.4. Reading Node Children...12

3.2.5. Update Configurable Properties..12

4.Developing a Test Application...13

4.1. Test.java..13

4.2. DummySyncSource.java...13

4.3. Configuration Files...15

4.3.1. syncml.properties..15

4.3.2. test.properties...16

4.4. Building and Running...16

Copyright © 2009 Funambol - Page 3

1. Overview

The Funambol JSE SDK is the means application developers can embed and interact with the
Funambol platform in order to take advantage of its powerful data synchronization features.

This document explains, from a developer point of view, the architecture and the use of the
Funambol JSE SDK for Java.

1.1. JSE SDK Architecture
The SyncClient SDK is built up of two main modules: data synchronization and device management;
they are layered as shown in Figure 2, where the device management layer is responsible for device
and application configuration management and the data synchronization layer is responsible for
everything regarding the SyncML protocol and the data synchronization process.

A custom application can access the services provided by both modules: the Sync Manager when a
synchronization has to be performed and the Device Manager when the configuration must be read,
manipulated or written. In addition, the Device Manager is intended to store application configuration
information, enabling the application to be transparently managed remotely with the SyncML Device
Management features that will be implemented in a next release of the API.

A Sync Source is a custom application module that groups callback functions called by Sync Manager
to interact with the application data sources. The way the Sync Source access the external data
source is application specific and transparent to the synchronization engine.

Copyright © 2009 Funambol - Page 4

Figure 1 - JSE SDK architecture

Device Manager

Sync Manager

Custom ApplicationSync Source

2. Data Synchronization API

The synchronization API is made of the classes under the packages com.funambol.syncclient.spds
and com.funambol.syncclient.spds.engine. The most important classes for a quick start are the Sync
Manager itself, implemented in com.funambol.syncclient.spds.SyncManager and the Sync Source
interface, defined by com.funambol.syncclient.spds.engine.SyncSource. The former is the driver of
any synchronization operation, whilst the latter is the interface the custom application has to
implement to access its own data sources. Both are described in the following sections.

2.1. The Sync Manager
com.funambol.syncclient.spds.SyncManager is the contact point between a custom application and
the synchronization engine. It is designed to hidden as much as possible the details of the
synchronization logic, protocol and communication to the application developer.

The simplest way to use SyncManager is to get a new instance and call its sync() method, as in the
example below:

SyncManager syncManager = SyncManager.getSyncManager("test");
syncManager.sync();

getSyncManager() is a factory method that creates a new SyncManager bound to the given
application URI. The application URI is an application identifier that must be unique amongst all the
SyncPlatform-enabled applications running on the device.

The information required by the synchronization engine to initialize and kick off a data
synchronization session is stored in the device management configuration tree (see later) and can be
manipulated by the means of the SyncPlatform Device Management API.

Error conditions are signaled throwing com.funambol.syncclient.spds.SyncException for
synchronization problems or com.funambol.syncclient.spds.DMException for configuration problems.

2.2. Sync Sources
A Sync Source is responsible for storing and retrieving data from/to an external data source.

A Sync Source is modeled by the interface com.funambol.syncclient.spds.engine.SyncSource, which
defines the following methods:

Name Description

getName() Returns the source display name.

getSourceURI() Returns the source identifying target URI.

getType() Returns the encoding mime type for items content.

beginSync() Called just before the source synchronization takes place. If this method throws a
SyncException, the synchronization won't be performed.

commitSync() Called after the source synchronization has been committed. If this method throws a
SyncException, the synchronization will not be committed.

getAllSyncItems(principal) Returns all items belonging to the given principal.

getDeletedSyncItems(principal, since) Returns deleted items belonging to the given user since the given point in time.

getNewSyncItems(principal, since) Returns new items belonging to the given principal since the given point in time.

getUpdatedSyncItems(principal, since) Returns updated items belonging to the given principal since the given point in time.

removeSyncItem(principal, item) Removes the item belonging to the given principal.

Copyright © 2009 Funambol - Page 5

Name Description

setSyncItem(principal, item) Adds or updates the item belonging to the given principal.

A SyncSource handles the items it contains in terms of SyncItem objects, another interface
(com.funambol.syncclient.engine.SyncItem) that models the smallest piece of information that can be
synchronized. Examples of content delivered by a SyncItem are database records or a vCard
contacts.

A SyncItem is uniquely identified by its SyncItemKey (com.funambol.syncclient.engine.SyncItemKey),
which can be any application defined object (even if usually a simple String object is good enough).

Data are stored in one or more SyncProperty objects (com.funambol.syncclient.engine.SyncProperty),
of which four are standard properties and must be set in each SyncItem:

• BINARY_CONTENT: the binary version of the content as created by the source or read from the
SyncML message. The format must be the one intended to be transported over the SyncML
message. This property is a mandatory property because used by the synchronization engine.

• TIMESTAMP: contains the timestamp of the last modification (creation, update, deletion). This
property is a mandatory property because used by the synchronization engine.

• TYPE: contains the type of the item (i.e. text/x-vcard)

• FORMAT: contains how the content item is formatted (i.e. b64)

A SyncSource can create its own concrete implementation of SyncItem, even if this is usually not
required. The SyncClient API provides a generic SyncItem implementation (com.funambol
.syncclient.engine.SyncItemImpl) that meets the most common needs.

A SyncSource is not used directly by the custom application, instead its methods are called by the
synchronization engine during modifications analysis (see the synchronization process section).

SyncSource methods are designed to perform an efficient synchronization process, letting the source
selecting the changed items instead of doing more complex field by field comparison. It is source
developer responsibility to make sure that the getNew/Updated/DeletedSyncItems() methods return
the correct and values.

2.3. The Sync Process
From the custom application developer perspective, the interaction with the synchronization engine is
limited to firing the synchronization process calling sync(). However, under the covers, a lot of work
happens. The main tasks performed during a sync execution are:

• synchronization initialization

• client modifications detection

• SyncML synchronization with the server

• server modifications execution

In order to make it possible, the synchronization engine interacts with the custom application in two of
the above tasks: client modifications detection and server modifications execution when the methods
of the synchronizing sync source are called.

An important aspect of the synchronization process is the concept of fast and slow synchronization.

Fast synchronization can be performed when client and server rely on their respective state, because,
for example, they have synchronized recently. In this case only the differences (the modifications)
since the last synchronization are exchanged.

When for any reason, client and server are not confident about their respective state, fast
synchronization cannot be done and slow synchronization is performed. In this case, the client sends
its database content to the server, who compares the received information with its local database and
then sends back the operations the client has to apply in order to be again up to date and in sync.

Copyright © 2009 Funambol - Page 6

The synchronization process tasks are briefly described in the following.

Synchronization initialization

In this phase the synchronization engine prepares a new synchronization session, communicating to
the server which sources it wants to synchronize and for which user. The server evaluates the request
and responds a status message in which it allows or denies the request.

The Sync Manager synchronized the sources registered in the way described in the Sync Sources
section.

Client modifications detection

Here there are two possibilities: in the case of fast sync, the Sync Manager asks the registered Sync
Sources which items have changed since the last synchronization; in the case of slow sync, the Sync
Manager asks for all items in the data store. In the case of fast sync, the Sync Manager calls back the
SyncSource's methods getXXXSyncItem(), which return the modified (or all) items.

SyncML synchronization with the server

This is the process of exchanging database modifications through the SyncML protocol. This task is
hidden to the custom application developer.

Server modification execution

This is the phase where server side modifications must be applied to the locale data store. Again, the
Sync Manager delegates the SyncSources to execute the changes.

The synchronization process flow looks like Figure 2.

Copyright © 2009 Funambol - Page 7

Figure 2 - Synchronization process flow

Sync
Manager

Sync
Source

sync()

get[All/New/Deleted/Updated]SyncIitem()

SyncItem[]

Sync
Server

SyncML modifications

SyncML initialization

[remove/set]SyncItem()

Custom
Application

SyncML mapping

beginSync()

commitSync()

2.4. Configuring the Sync Manager
Sync Manager requires few configuration parameters such as the url of the SyncML server, which
Sync Sources must be synchronized and so on. This information is stored in the device manager
layer (see Device Management API). Configuration parameters are grouped by configuration contexts
and organized in a management tree.

Sync Manager makes use of the following configuration parameters, divided by context:

Property Description

<application uri>/spds/syncml

syncml-url The initial URL for the SyncML request

target-local-uri Server target URI. Cuurently must be equals to the syncml-url

username The principal to present to the server along with the SyncML request

password Principal's credential

device-id The device unique id

use-proxy Use proxy [true / false]

proxy-host Proxy host

proxy-port Proxy port [default 8080]

first-time-sync The sync-mode to use for the first sync. One between:

- slow

- two-way

- one-way

- refresh

message-type Message-type [application/vnd.syncml+xml / application/vnd.syncml+wbxml]

[default application/vnd.syncml+xml]

log-file Log file name [default sync.log]

log-console Enable log on console [true / false]

[default true]

log-level Log level [none /info / debug]

[default info]

<application uri>/spds/sources/<source name>

name Source display name

type Source type (e.g. text/plain, text/vcard, ...)

sourceClass Source class name

sourceURI Source URI

sync The type of the next sync to perform

sync-modes The synchronization types supported

... Other implementation specific parameters

Note that multiple sources can be put under the <application uri>/spds/sources context so that many
source will be synchronized in sequence during the synchronization process.

2.4.1. Configuring a Sync Source
When the Sync Manager synchronizes a Sync Source, it first of all needs an instance of the
implementation class. This is obtained thanks to the value specified by the sourceClass configuration
property. After the instance is created, the other configuration properties under the <application
uri>/spds/sources/<source name> management node are set to the corresponding properties in the
implementation class (as soon as they have a setter method).

Copyright © 2009 Funambol - Page 8

For example, suppose the following SyncSource configuration is stored in the device management:

• <application uri>/spds/sources/OrderSyncSource
• sourceClass=com.funambol.example.DBSyncSource
• uri=OrderSyncSource
• type=xml/recordset
• database=orderdb
• tableName=order
• param=value

The DBSyncSource would look like:

public class com.funambol.example.DBSyncSource
implements SyncSource
{
 private String uri;
 private String type;
 private String database;
 private String tableName;

 public DBSyncSource() {
 this.database = “default”; // setting a default database
 }

 public String getUri() {
 return uri;
 }

 public void setUri(String uri) {
 this.uri = uri;
 }

 public String getType() {
 return type;
 }

 public void setType(String type) {
 this.type = type;
 }

 public String getDatabase() {
 return database;
 }

 public void setDatabase(String database) {
 this.database = database;
 }

 public String getTableName() {
 return tableName;
 }

 public void setTableName(String tableName) {
 this.tableName = tableName;
 }

 ...
 // other methods
 ...
}

Note that the configuration parameters sourceClass and param have no corresponding setXXX(),
therefore they will not be set.

Copyright © 2009 Funambol - Page 9

3. Device Management API

Goal of the device management module is to allow an easily management of a remote device,
usually by remote administration or help-desk staff. This means that a remote or local agent can
navigate, view and change device and applications configuration in a manner transparent to the end
user.

Configuration information is logically stored in a so called management tree, organized in a hierarchy
of contexts and management nodes. This hides the details of the physical configuration storage that
could be an SQL database, a device datastore, an XML file, a file system tree or even the device
memory.

NOTE: the current version of the Funambol JSE SDK does not support remote device management
yet. This functionality will be added in a future release.

3.1. The Device Manager
The main classes of the Device Management API are shown in Figure 3. The entrypoint is
represented by the class DeviceManager who acts as a factory for concrete implementations. In
addition, concrete DeviceManager implementations can return the management tree root relative to a
base configuration context. The management tree is represented by a hierarchical structure of
ManagementNode objects. ManagementNode provides accessing methods for the manageable
properties stored in the node and additional methods to retrieve children nodes and values. Children
and parent nodes can also be accessed through the given utility methods.

The physical implementation of the management tree repository may vary from simple properties
files stored on a file system to configuration tables stored in a database.

3.1.1. Management Nodes
A management node can be considered a map that associates parameters names to values. This is a
generic view that covers almost all possible requirements. However, a management node can have
an optional special property: class. If class is specified, it is assumed that the properties of the node
are properties of that class so that an instance of the class can be created and initialized with the
node properties when getValue() is called. To do so, the class specified with the class property must
adhere to the standard JavaBeans conventions. In particular:

• The standard empty constructor must be provided with public visibility

• For each property that is read/write from/to the ManagementNode the corresponding get/setXXX()
methods must be provided with public visibility

There is no need to implement a particular interface or extend a particular base class.

Copyright © 2009 Funambol - Page 10

3.1.2. SimpleDeviceManagement
The Funambol JSE SDK provides a simple implementation of a device manager that uses the file
system to store the management tree. It is implemented by the class
com.funambol.spdm.SimpleDeviceManager, which uses directories to represent configuration
contexts and properties files to store configurable properties.

The management tree is relative to a base directory specified with the system property
spdm.dir.base. If not set, the current directory is picked up.

3.2. Examples

3.2.1. Getting a DeviceManager Instance
import com.funambol.syncclient.spdm.DeviceManager;
import com.funambol.syncclient.spdm.SimpleDeviceManager;

...

System.setPropety(“spdm.dir.base”, “/config”);
DeviceManager dm = SimpleDeviceManager.getDeviceManager();

NOTE: each DeviceManager implementation is also a factory for concrete instances.

3.2.2. Getting the Root Management Tree
import com.funambol.syncclient.spdm.ManagementNode;
import com.funambol.syncclient.spdm.DeviceManager;
import com.funambol.syncclient.spdm.SimpleDeviceManager;

...
DeviceManager dm = SimpleDeviceManager.getDeviceManager();

ManagementNode rootNode = dm.getManagementNode();

Copyright © 2009 Funambol - Page 11

Figure 3 - SyncPlatform DM class diagram

3.2.3. Reading Management Node Configurable Properties
import com.funambol.syncclient.spdm.ManagementNode;
import com.funambol.syncclient.spdm.DeviceManager;
import com.funambol.syncclient.spdm.SimpleDeviceManager;

...
DeviceManager dm = SimpleDeviceManager.getDeviceManager();

ManagementNode rootNode = dm.getManagementNode();

Hashtable params = rootNode.getNodeValues();

System.out.println(“syncml-url: “ + params.get(“syncml-url”));

3.2.4. Reading Node Children
import com.funambol.syncclient.spdm.ManagementNode;
import com.funambol.syncclient.spdm.DeviceManager;
import com.funambol.syncclient.spdm.SimpleDeviceManager;

...
DeviceManager dm = SimpleDeviceManager.getDeviceManager();

ManagementNode rootNode = dm.getManagementNode();

ManagementNode sourcesNode = rootNode.getChildNode(CONTEXT_SOURCES);

ManagementNode[] sources = sourcesNode.getChildren();

Hashtable sourceConfig = null;
for (int i=0; i<sources.length; ++i) {
 sourceConfig = sources[i].getValues();
 System.out.println(sourceConfig.get(“sourceURI”));
}

3.2.5. Update Configurable Properties
import com.funambol.syncclient.spdm.ManagementNode;
import com.funambol.syncclient.spdm.DeviceManager;
import com.funambol.syncclient.spdm.SimpleDeviceManager;

...
DeviceManager dm = SimpleDeviceManager.getDeviceManager();

ManagementNode rootNode = dm.getManagementNode();

ManagementNode testNode = rootNode.getChildNode(CONTEXT_SOURCES + “/test”);

testNode.setValue(“property”, “value”);

Copyright © 2009 Funambol - Page 12

4. Developing a Test Application

In this section, we are going to develop a test application from scratch. Our test application is a J2SE
application, composed of the following files:

• Test.java: the main test application.

• DummySyncSource: a sync source that just prints out messages when its callback methods are
called.

• Configuration files for the Device Manager

• The Funambol JSE SDK jar files (SPDM.jar and SPDS.jar)

You can find all those files in the examples directory of the Funambol JSE SDK installation directory.
The following sections explain the main files and the steps to build and run the example.

4.1. Test.java
This is the java program that we are going to launch, since it contains the main() method. This is all
you need to use the Funambol JSE SDK data synchronization functionality:

package com.funambol.syncclient.test;

import com.funambol.syncclient.spdm.SimpleDeviceManager;
import com.funambol.syncclient.spds.*;
import com.funambol.syncclient.spds.engine.*;

public class Test {
 public static void main(String[] args) throws Exception {
 System.setProperty(SimpleDeviceManager.PROP_DM_DIR_BASE, "config");

 //
 // Starts and initializes the Sync Manager with application URI
 // funambol.org/test
 //
 SyncManager syncManager =
 SyncManager.getSyncManager("funambol.org/test");

 //
 // Synchronize!
 //
 syncManager.sync();
 }
}

4.2. DummySyncSource.java
This is a test implementation of a SyncSource, with the only goal of showing when its methods are
called and with which parameters.

package com.funambol.syncclient.test;

import java.security.Principal;
import java.util.Date;

import com.funambol.syncclient.spds.engine.*;
import com.funambol.syncclient.spds.SyncException;

public class DummySyncSource implements SyncSource {

 private String name = null;
 private String type = null;
 private String sourceURI = null;

 private SyncItem[] allItems = null;
 private SyncItem[] newItems = null;
 private SyncItem[] deletedItems = null;

Copyright © 2009 Funambol - Page 13

 private SyncItem[] updatedItems = null;

 // -- Constructors

 /** Creates a new instance of AbstractSyncSource */
 public DummySyncSource() {
 newItems = new SyncItem[] {
 createItem("10", "This is a new item", SyncItemState.NEW)
 };
 deletedItems = new SyncItem[] {
 createItem("20", "This is a deleted item", SyncItemState.DELETED)
 };
 updatedItems = new SyncItem[] {
 createItem("30", "This is an updated item", SyncItemState.UPDATED)
 };

 allItems = new SyncItem[newItems.length + updatedItems.length + 1];

 allItems[0] = createItem("40","This is an unchanged item",SyncItemState.SYNCHRONIZED);
 allItems[1] = newItems[0];
 allItems[2] = updatedItems[0];
 }

 // -- Public methods

 public String getName() {
 return name;
 }

 public void setName(String name) {
 System.out.println("setName(" + name + ")");
 this.name = name;
 }

 public String getType() {
 return this.type;
 }

 public void setType(String type) {
 System.out.println("setType(" + type + ")");
 this.type = type;
 }

 public String getSourceURI() {
 return sourceURI;
 }

 public void setSourceURI(String sourceURI) {
 System.out.println("setSourceURI(" + sourceURI + ")");
 this.sourceURI = sourceURI;
 }

 public void setParam1(String value) {
 System.out.println("setParam1(" + value + ")");
 }

 public SyncItem[] getAllSyncItems(Principal principal)
 throws SyncException {
 System.out.println("getAllSyncItems(" + principal + ")");
 return allItems;
 }

 public SyncItem[] getDeletedSyncItems(Principal principal,
 Date since)
 throws SyncException {
 System.out.println("getDeletedSyncItems(" + principal + " , " + since + ")");

 return deletedItems;
 }

 public SyncItem[] getNewSyncItems(Principal principal,
 Date since)
 throws SyncException {
 System.out.println("getNewSyncItems(" + principal + " , " + since + ")");
 return newItems;
 }

 public SyncItem[] getUpdatedSyncItems(Principal principal,
 Date since)

Copyright © 2009 Funambol - Page 14

 throws SyncException {
 System.out.println("getUpadtedSyncItems(" + principal + " , " + since + ")");

 return updatedItems;
 }

 public void removeSyncItem(Principal principal, SyncItem syncItem)
 throws SyncException {
 System.out.println("removeSyncItem(" + principal + " , " +
syncItem.getKey().getKeyAsString() + ")");
 }

 public SyncItem setSyncItem(Principal principal, SyncItem syncItem)
 throws SyncException {
 System.out.println("setSyncItem(" + principal + " , " +
syncItem.getKey().getKeyAsString() + ")");
 return new SyncItemImpl(this, syncItem.getKey().getKeyAsString()+"-1");
 }

 // --- Private methods

 private SyncItem createItem(String id, String content, char state) {
 SyncItem item = new SyncItemImpl(this, id, state);

 item.setProperty(
 new SyncItemProperty(
 SyncItem.PROPERTY_BINARY_CONTENT,
 content.getBytes()
)
);

 return item;
 }
}

4.3. Configuration Files
Because the Sync Manager uses the SimpleDeviceManager as Device Manager, the configuration
properties can be stored in the file system configuration tree as properties files. This has the
advantage of making easy changing the configuration by hands, without other tools than a simple text
editor.

The example has the following configuration structure:

<installation dir>
 + config
 + funambol.org
 + test
 + spds
 - syncml.properties
 + sources
 - test.properties

Note that the management tree starts at the funambol.org directory, since the spdm.dir.base system
property points to <installation directory>/config and the application URI is funambol.org/test.

4.3.1. syncml.properties
#
Configuration file for the SyncML client agent
#

#
The initial URL for the SyncML request
#
syncml-url=http://localhost:8080/funambol/ds

#
The target URI of the server being contacted
#
target-local-uri=http://localhost:8080/funambol/ds

Copyright © 2009 Funambol - Page 15

#
Authentication type [basic/clear]
#
authentication=basic

#
Username and password for authentication to the sync server
#
username=guest
password=guest

#
The identification tag of this SyncML agent
#
device-id=sc-api-j2se

#
The classpath for provisioned applications
#
classpath=lib

#
Should a proxy be used?
If so, set proxy host and port
#
use-proxy=false
proxy-host=
proxy-port=8080

#
Which sync-mode should be used for the first sync?
#
first-time-sync-mode=two-way

#
Message type [application/vnd.syncml+xml / application/vnd.syncml+wbxml]
default: application/vnd.syncml+xml
#
message-type=application/vnd.syncml+xml

#
File debug name
default: sync.log
#
log-file=sync.log

#
Should a console display debug? [true / false]
default: true
#
log-console=true

#
Debug level [none / info / debug]
default: info
#
log-level=info

4.3.2. test.properties
name=test
type=clear/text
last=1056201555322
class=com.funambol.syncclient.test.DummySyncSource
sourceURI=test
param2=value2
param1=value1

4.4. Building and Running
To compile the classes, use the following commands:

set CLASSPATH=lib\jse-sdk-x.y.z.jar
%JAVA_HOME%\bin\javac -d classes src\com\funambol\syncclient\test*.java

Copyright © 2009 Funambol - Page 16

If they compiled without errors, run the test program:

set CLASSPATH=classes;lib\jse-sdk-x.y.z.jar
%JAVA_HOME%\bin\java com.funambol.syncclient.test.Test

Copyright © 2009 Funambol - Page 17

	1.Overview
	1.1. JSE SDK Architecture

	2.Data Synchronization API
	2.1. The Sync Manager
	2.2. Sync Sources
	2.3. The Sync Process
	2.4. Configuring the Sync Manager
	2.4.1. Configuring a Sync Source

	3.Device Management API
	3.1. The Device Manager
	3.1.1. Management Nodes
	3.1.2. SimpleDeviceManagement

	3.2. Examples
	3.2.1. Getting a DeviceManager Instance
	3.2.2. Getting the Root Management Tree
	3.2.3. Reading Management Node Configurable Properties
	3.2.4. Reading Node Children
	3.2.5. Update Configurable Properties

	4.Developing a Test Application
	4.1. Test.java
	4.2. DummySyncSource.java
	4.3. Configuration Files
	4.3.1. syncml.properties
	4.3.2. test.properties

	4.4. Building and Running

