
Java ME Common API

Design Document

Last modified: September 11, 2009

Changes History

Date Author Changes

2006.10 Ivano Brogonzoli Initial Draft

2006.11.13 Stefano Fornari Minor changes due to a first review

2006.11.14 Ivano Brogonzoli Added method description for
com.funambol.uti and com.
funambol.storage classes

Added new classes documentation and
method specifications

2007.05.30 Ivano Brogonzoli Added new classes documentation and
diagrams. New Class Documentation
organization into the three main
packages.

2007.06.20 Andrea Gazzaniga Reviewed version

2007.08.21 Marco Garatti Added SyncListener description and
updated the ThreadPool description.

2007.12.07 Edoardo Schepis Added SocketAppender details

Added paragraph for Server Alerted
Sync and OTA Config Provisioning

2007.12.08 Edoardo Schepis Review of: SAN and OTAConfig
paragraphs

Added CTPService paragraph

2007.12.14 Marco Garatti Added some details on the CTPService
implementation

2008.09.22 Marco Garatti Added UpdaterManager description

2008.10.13 Ivano Brogonzoli Updated Persistent storage
management description

2008.10.15 Ivano Brogonzoli Updated CTP service with classes
description

2008.11.12 Ivano Brogonzoli Connection Framework description

07/21/09 Giulia Zanchi Fixed copyright info and front page

Copyright © 2009 Funambol - Page 2

Table of Contents
1.Overview..6

1.1. Scope...6

1.2. Document Conventions..6

1.2.1. Sequence Diagrams..6

1.2.2. Class Diagrams..6

1.3. The Funambol J2ME Common API...7

1.3.1. com.funambol.storage package...7

1.3.2. com.funambol.util package...7

1.3.3. com.funambol.tools package..7

1.3.4. com.funambol.push package...7

1.3.5. com.funambol.updater package...8

2.Functional description...9

2.1. Funambol J2ME Storage..9

2.1.1. com.funambol.storage.Serializable...10

2.1.2. com.funambol.storage.ComplexSerializer..10

2.1.3. com.funambol.storage.ObjectStore...10

2.1.4. com.funambol.storage.ObjectEnumeration...11

2.1.5. com.funambol.storage.Serialized..11

2.1.6. com.funambol.storage.ObjectFilter..11

2.1.7. com.funambol.storage.ObjectComparator..11

2.1.8. com.funambol.storage.ObjectStoreListener..11

2.1.9. com.funambol.storage.NamedObjectStore...11

2.1.9.1. com.funambol.storage.NamedObjectStore.ObjectMap................................11

2.1.10. com.funambol.storage.DataAccessException..12

2.1.11. com.funambol.storage.AbstractRecordStore..12

2.1.12. com.funambol.storage.RmsRecordStoreWrapper...12

2.1.13. com.funambol.storage.BlackberryRecordStore..12

2.1.14. com.funambol.storage.BlackberryRecordEnumeration.....................................12

2.1.15. com.funambol.storage.ObjectWrapperHandler..13

2.2. Funambol J2ME Util...14

2.2.1. The logging framework...14

2.2.1.1. com.funambol.util.Log..14

2.2.1.2. com.funambol.util.Appender...15

2.2.1.3. com.funambol.util.ConsoleAppender...15

Copyright © 2009 Funambol - Page 3

2.2.1.4. com.funambol.util.RMSAppender...15

2.2.1.5. com.funambol.util.SocketAppender..15

2.2.1.6. com.funambol.util.LogViewer..16

2.2.2. The implementation of streaming readers..16

2.2.2.1. com.funambol.util.StreamReader...16

2.2.2.2. com.funambol.util.StreamReaderFactory..16

2.2.2.3. com.funambol.util.SimpleStreamReader...16

2.2.2.4. com.funambol.util.GzipStreamReader...16

2.2.3. The Observer Pattern..17

2.2.3.1. com.funambol.util.Observable..17

2.2.3.2. com.funambol.util.Observer..17

2.2.4. The thread monitoring and management system...17

2.2.4.1. com.funambol.util.Queue..17

2.2.4.2. com.funambol.util.ThreadPoolMonitor...17

2.2.4.3. com.funambol.util.ThreadPool..18

2.2.5. String utilities...18

2.2.5.1. com.funambol.util.StringUtil..18

2.2.5.2. com.funambol.util.Base64...18

2.2.5.3. com.funambol.util.ChunkedString..18

2.2.5.4. com.funambol.util.DateUtil..19

2.2.5.5. com.funambol.util.MailDateFormatter..19

2.2.5.6. com.funambol.util.QuotedPrintable..19

2.2.5.7. com.funambol.util.XmlUtil..19

2.2.5.8. com.funambol.util.XmlException..19

2.2.5.9. com.funambol.util.Entities...19

2.2.6. com.funambol.util.CodedException...19

2.2.7. The Connection framework..20

2.2.7.1. com.funambol.util.ConnectionManager...20

2.2.7.2. com.funambol.util.ConnectionListener...21

2.2.7.3. com.funambol.util.BasicConnectionListener..21

2.2.7.4. com.funambol.util.BlackberryConfiguration...21

2.2.7.5. Com.funambol.util.BlackberryUtils..21

2.2.7.7. com.funambol.util.WapGateway...21

2.2.7.8. com.funambol.util.ConnectionConfig..22

2.3. Tools package...22

2.3.1. com.funambol.tools.LogViewerMIDlet...22

2.4. Push package..22

2.5. Updater package...22

Copyright © 2009 Funambol - Page 4

3.Server Alerted Sync – com.funambol.push package...25

3.1. OTAService: SMS based push..25

3.2. CTPService: TCP/IP based push...26

3.2.1. com.funambol.push.CTPListener...27

3.2.2. com.funambol.push.CTPService..27

3.3. SAN Message Parsing..27

4.Over The Air (OTA) Configuration Provisioning...29

5.Appendices..31

5.1. Appendix A – References..31

Copyright © 2009 Funambol - Page 5

1. Overview

1.1. Scope
This document describes the Funambol JavaME Common API library, which purpose is
giving support and providing basic functionalities to all the other components developed for
the J2ME platform. These functionalities are: a persistent data storage framework, a logging
framework, a framework to read different streams of byte, a thread monitoring system and a
set of classes useful for data encoding and string manipulation. This library may grow in
future, as new functions will be seen as common to different J2ME components.

1.2. Document Conventions
All diagrams in this document follow the conventions described in the paragraphs 1.2.1 and
1.2.2.

1.2.1. Sequence Diagrams

• Each entity is represented as a box;

• A box can represent a class, an instance, an interface or even a conceptual entity;
the real meaning depends by the context;

• Solid arrows represents methods or functions calls;

• Dashed arrows represent some sort of communication between two entities; it is
intended that the communication mechanism is left unspecified or is not important or
it is at a different abstraction layer.

1.2.2. Class Diagrams

In general for each class only the main methods are described, but all diagrams follow these
rules:

• Each class is represented as a box;

• Data members and methods are separated by an horizontal line;

• Plain titles represent classes, italicized titles represent interface (abstract classes);

• + next to a method or data member name means “public”;

• - next to a method or data member name means “private”;

• * next to a method or data member name means “protected”;

• > next to a data member name means it is a property with get/set accessors;

Copyright © 2009 Funambol - Page 6

• Inheritance is represented by an arrow pointing to the base class;

• Italicized methods names represent abstract method.

• Connecting lines without arrow termination (connections) represent relation between
classes or interfaces and the optional number written over a connection – near a box
- represents the “How many” relation between the two entities.

1.3. The Funambol J2ME Common API
The J2ME Common APIs are structured into the five packages:

● Storage

● Util

● Tools

● Updater

● Push

Each package is briefly described in the following paragraphs.

1.3.1. com.funambol.storage package

The J2ME Storage package provide some classes to make the usage of the JavaME RMS
easier.

The RMS has a very simple interface: you can only store a byte array in a record indexed by
number. The classes in this package allows to store an instance of an object that implements
the Serializable interface, thus providing a common way to store complex object in a record,
and to access a record by name instead of the positional index, without high performace
overhead.

The key classes to make this are:

● Serializable interface: gives a common interface for objects that are able to write
their content to a stream, and to read it back

● ObjectStore: store and retrieve Serializable objects to/from the RMS, accessing them
with the record index.

● NamedObjectStore: uses an index to access Objects in the RMS by name instead of
by record number.

1.3.2. com.funambol.util package

The com.funambol.util package provides a bunch of utility classes for different purposes.
This is the outline of them:

● Logging framework: represents a useful instrument to take trace of the operations
executed by a program running in memory and to store them into device's persistent
storage.

● StreamReader framework: a set of classes useful to read data from different stream
of bytes;

● Thread Monitoring System: allows to track the number of threads started by an
application, and to queue them if the limit of parallel threads is reached. On JavaME
the number of threads guaranteed by the specification is only 5.

Copyright © 2009 Funambol - Page 7

● Observable/Observer/Stoppable: a set of interfaces to implement a common java
pattern in a Model/View/Controller architecture.

● String Utility set: a collection of utility classes useful to accomplish common
operations of logging, manipulating and encoding strings (StringTools, Base64,
QuotedPrintable). A class ChunkedString, that allows to work on substrings without
really allocating new memory, is also provided.

● Connection framework: a Singleton pattern implementation to manage all of the
connections provided by the J2ME CLDC Connector.

1.3.3. com.funambol.tools package

This package only refers to one class that is a utility used according to the Logging
framework in order to display log entries to the user.

1.3.4. com.funambol.push package

This package contains the client push framework. Push is aimed at notifying clients of new
events from a server. This package provides push mechanisms that can be coupled with
Funambol push server. A client can instantiate a push manager and be notified for incoming
events.

1.3.5. com.funambol.updater package

This package contains a component that can be used to check for new version of the
application. The component can be coupled to a Funambol update server.

Copyright © 2009 Funambol - Page 8

2. Functional description

2.1. Funambol J2ME Storage
The package com.funambol.common.storage is responsible of storing and retrieving user's
data. The most important key concept is Serialization that make possible to store entire
object data types on the device using the interface com.funambol.storage.Serializable. In
particular the com.funambol.storage package is intended to be a wrapper framework
between the concept of device's RecordStore in J2ME CLDC and the classes of ObjectStore:
in this way particular attention has to be given to the interfaces shown in picture 2.1;
ObjectStoreListener, ObjectComparator, ObjectFilter and ObjectEnumeration are entities
that make possible to treat an object into an ObjectStore of the Funambol common API as a
record in the RecordStore of the CLDC specification or a Persistable object (described into
the RIM API for Blackberry). For more details about the behavior of the following classes
refer directly to the Javadoc of both the mentioned specification.

An important point is that in order to extend the support of this package to Blackberry
devices there is a big storage limitation using the CLDC RecordStore class: Blackberry
devices cannot have RecordStore bigger than 64 Kb. All this said and due to the fact that
RIM show a particular interface (net.rim.java.util.Persistable) to be used in order to persist
data (bigger than 64 Kb) into the device memory, it has been necessary to generalize the
concept of RecordStore into the com.funambol.storage.AbstractRecordStore class and then
implement the devices' specific data managers that are
com.funambol.storage.RmsRecordStoreWrapper and
com.funambol.storage.BlackberryRecordStore. They defines the basic methods to store and
retrieve data, both on a J2ME CLDC native or Blackberry powered devices.

Copyright © 2009 Funambol - Page 9

2.1.1. com.funambol.storage.Serializable

Serialization is the process to write an object into a byte stream; the object's information can
be read back by a symmetric process called deserialization and the result is an object with
the same content. In other words Serialization make possible to take a snapshot of an
object into a certain state and read it back in form of stream of byte. Objects serialization is
not implemented by the default Java CLDC libraries and this functionality is needed each
time an application needs to store data on a persistent storage, or to send them over a byte
stream. Funambol J2ME Common API's Serialization is based on a simple approach: an
interface called Serializable must be implemented by all classes that wants to be serialized.
This interface exposes two methods:

● serialize(DataOutputStream out): convert object into a byte stream, suitable to be
stored in the device storage (i.e. RMS storage and flash memory cards), to be
transferred over a socket connection (i.e. HTTP and Bluetooth), and so on;

● deserialize(DataInputStream in): read back the data from the input stream and build
a copy of the original object (in the original state).

2.1.2. com.funambol.storage.ComplexSerializer

As J2ME CLDC specification doesn't include an object serializer framework, this class is
useful to convert various type of objects into byte streams: in this way they will be stored and
retrieved to/from the recordstore. Particular supported types are Vector and Hashtable and
arrays of object. Finally this class provides methods to convert serialized objects into the
original ones.

Copyright © 2009 Funambol - Page 10

Figure 2.1: Funambol J2ME Storage class diagram

<<Interface>>
Serializable

ObjectStore

NamedObjectStore

ComplexSerializer

<<Interface>>
ObjectFilter

<<Interface>>
ObjectComparator

<<Interface>>
ObjectListener

Serialized

ObjectEnumeration

<<Interface>>
RecordFilter

<<Interface>>
RecordComparator

<<Interface>>
RecordListener

ObjectMap

<<realization>>
<<generalization>>

<<Interface>>
Enumeration

0..n

0..n

0..1

0..1

0..1

1

1 1

1

<<association>>

RmsRecordStoreWrapper

BlackberryRecordStore

AbstractRecordStore
1

2.1.3. com.funambol.storage.ObjectStore

We said once an object implementing Serializable interface is serialized, its related stream
of byte can be stored into device storage: ObjectStore is the class that manages this
process. Each instance of ObjectStore can be bound to one RMS RecordStore using the
open() and create() methods: the first can be used only on existent RecordStores, while the
second creates the RecordStore if it doesn't exist or just open it if it has been previously
created. Subsequent calls to open() has no overhead if done on the same RecordStore,
while a call with a different RecordStore name closes the current one and open the other.
Finally, when an access to a not existent recordstore is made, a RecordStoreNotFound
exception is thrown. Since J2ME does not support object finalization, the ObjectStore itself
cannot close the RecordStore in the finalize() method, and the user has to call the close()
method explicitly. The two methods store() and retrieve() are essentially responsible to call
the serialize() and deserialize() method of the given object to set/get the related byte array,
suitable to be stored. It may be noticed that there are 2 store methods:

● int store(Serializable object); it creates a new record on the opened RecordStore
which index is automatically assigned by the device's RMS.

● int store(int index, Serializable object); this is useful to access a record of which
index is known; i.e. to replace an updated ObjectMap – see 2.1.3.1 – the parameter
index will be 1 and the object to be serialized will be the recordstore ObjectMap
(which is located at the first record of each recordstore).

2.1.4. com.funambol.storage.ObjectEnumeration

This class implements Enumeration interface (from CLDC native specification) and
represents a numbered list of a subset of the object contained into the ObjectStore; it's
behavior is similar to the Enumeration, but it has a private fields that contains the number of
objects (like the size for vectors) to be enumerated.

2.1.5. com.funambol.storage.Serialized

This entity is used when an ObjectEnumeration is required to be created from an
ObjectStore. All the serializable object of that enumeration are associated to their related
Record index on the RecordStore: that index becomes the object index of the serialized
entity; this trick makes faster the process of search of an object into an ObjectStore.

2.1.6. com.funambol.storage.ObjectFilter

This interface extends CLDC RecordFilter interface and is useful to filter subset of objects
contained into the referenced ObjectStore. In other words this is a wrapper to filter objects
contained into an ObjectStore.

2.1.7. com.funambol.storage.ObjectComparator

This interface extends CLDC RecordComparator interface and it is ideal to create sorted
ObjectEnumeration objects contained into the referenced ObjectStore. The sorting operation
is made by comparing Object states and giving them a certain sort order determined by the
sorting criteria.

2.1.8. com.funambol.storage.ObjectStoreListener

Extends the RecordListener interface: this interface take care about changes related to a
particular ObjectStore() like add, remove and update operation on its objects. This object's
behavior is similar to the one of “trigger” object in old DBMS.

Copyright © 2009 Funambol - Page 11

2.1.9. com.funambol.storage.NamedObjectStore

This class is responsible to store and retrieve objects in the persistent storage accessing
them by object name. The idea is to use give the developer the capability to access the
record in the RMS using a symbolic name instead of the record index.

Since the search of a string in the records would have performance issues as the number of
records grows, the implementation of this mechanism is achieved using the private class
ObjectMap, which is basically an hastable of names stored in the first record of the
RecordStore.

This mechanism speedup the access time, making the update slower because two writes are
needed: one for the record and one for the index. Anyway, this overhead doesn't grow
significantly when the number of records increases.

2.1.9.1. com.funambol.storage.NamedObjectStore.ObjectMap

This is a private class used by NamedObjectStore to implement the name index. The class
uses an hashtable to maintain the link between a String name and an index in the
RecordStore.

2.1.10. com.funambol.storage.DataAccessException

This class represents an Exception that can be thrown if something fails during
reading/writing access to the recordstore. It can be useful to be thrown in case of an access
to a non existent ObjectStore.

2.1.11. com.funambol.storage.AbstractRecordStore

This is the storage wrapper class designed in order to manage different storage systems on
different devices. Now it just wrap the concept of pure J2ME CLDC device and Blackberry
devices. Now the implementation has been realized using the Sun Java WTK preprocessor
in order to distinguish the building platform and use the correct storage manager, in fact, as
per now, it has only the 2 implementations that are
com.funambol.storage.RmsRecordstoreWrapper and
com.funambol.storage.BlackBerryRecordStore.

2.1.12. com.funambol.storage.RmsRecordStoreWrapper

The implementation of AbstractRecordStore class that make possible the persistent data
management on CLDC native devices.

2.1.13. com.funambol.storage.BlackberryRecordStore

The implementation of AbstractRecordStore class that make possible the persistent data
management on Blackberry devices. This class uses the inner PersistentStoreManager and
the ObjectWrapperHandler interface to manage Persistable objects storing and retrieving
them on the device memory.

Copyright © 2009 Funambol - Page 12

2.1.14. com.funambol.storage.BlackberryRecordEnumeration

Used by BlackberryRecordStore class to wrap the CLDC RecordEnumeration native class
around Blackberry devices.

2.1.15. com.funambol.storage.ObjectWrapperHandler

Interface that must be implemented in order to give the information on how to manage
Persistable object on the blackberry environment. Older implementation of the Persistable
object Management made use of class called “ObjectWrapper” that was inner to the
BlackberryRecordStore class: unfortunately it generated conflicts (Multiply class defined
error) when more than one application using the same funambol storage API was installed
on the same device. The actual implementation avoid the conflict problem for Blackberry
devices but requires an high level implementation. Here's a simple example of how the class
must be implemented for a correct storage usage on a Blackberry application:

public class DummyObjectWrapper implements Persistable {

 private Object object;

 public DummyObjectWrapper(Object o) {

 this.object = o;

 }

 public Object getObject() {

 return object;

Copyright © 2009 Funambol - Page 13

<<realization>>
<<generalization>>

<<association>>

BlackberryRecordStore

AbstractRecordStore ObjectStore
1

PersistentStoreManager

1

ObjectStoreObjectStore

<<Interface>>
ObjectWrapperHandler

<<RIM Native Interface>>
Persistable

1

1..n

 }

 public void setObject(Object object) {

 this.object = object;

 }

}

class DummyObjectWrapperHanlder implements ObjectWrapperHanlder {

 public Persistable createObjectWrapper() {

 return new DummyObjectWrapper();

 }

 public Object getObject(Persistable p) {

 DummyObjectWrapper ow = (DummyObjectWrapper) p;

 return ow.getObject();

 }

}

A call to the BlackberryRecordStore.init() method must be finally made in the high level client
in order to close the circle:

public static void main(String[] args) {

 ...

 BlackberryRecordstore.init(new DummyObjectWrapperHandler());

 ...

}

2.2. Funambol J2ME Util
This is an utility package that provides the following basic but useful functionalities:

1. a light but flexible logging system;

2. an efficient I/O Stream reader framework under the Factory Design Pattern;

3. a set of classes to monitor threads running on the JVM when a MIDlet is running;

4. A couple of classes that realizes the Observer-Observable paradigm.

5. a set of tools for strings manipulation and encoding/decoding algorithm that can be
useful for basic encryption.

For each group of classes class diagrams will be provided in the following paragraphs. For
more details about the behavior of the following classes refer directly to the Javadoc.

Copyright © 2009 Funambol - Page 14

2.2.1. The logging framework

This framework provides to the creation managing and deletion of Logging mechanism in
every application. It is useful to create and manipulate logs by the related appenders, object
instantiated in order to implement various logging strategies. This framework related class
diagram is shown in figure 2.2.

2.2.1.1. com.funambol.util.Log

This class is responsible for creating logs and deciding the logging levels.

Methods error(), info(), debug() and trace() can be used directly, just like, println(); three
appenders (ConsoleAppender, RMSAppender, FileAppender) are created in order to write
log entries on different logging media (the standard output, a RMS and a file respectively).

The default Appender is ConsoleAppender: Log.error() do exactly a System.out.println(). The
default log level is INFO, so if you want to see all the messages you just have to change this
value in an application that uses the static methods of 'Log' calling the method setLevel(),
e.g. setLevel(Log.DEBUG). The different log levels should be used as follows:

● error(): an error occurred in the process and we want to always write this message

● info(): an average user should understand the progress of the application (in
particular no development skills should be required); i.e. for a sync, he should see
something like:

Start sync

Copyright © 2009 Funambol - Page 15

Figure 2.2: Logging class diagram

initLog (Appender Object)
setLogLevel(int newlevel)

getLogLevel()
error(String msg)
info(String msg)

debug(String msg)
trace(String msg)

RMSAppender ConsoleAppender

initLogfile()
openLogFile()
closeLogFile()
deleteLogFile()

writeLogMessage()

Appender LogLogViewer

getLogEntries(int mode)

RMS Log
Storage

1 ... N

SocketAppender

Syncing contacts

Sending contact: ID

Receiving contact: ID

......

End sync

● debug(): any information useful for debug; this information is addressed to
developers;

● trace(): info to trace the flow of the program (Entering function()/Exiting function()).

2.2.1.2. com.funambol.util.Appender

A simple interface with logging constants and methods: it must be implemented by all
Appender-type classes (2.2.3, 2.2.4, 2.2.5).

● void initLogFile(); initialize a new log file for the appropriate appender;

● void openLogFile(): open an existing log file;

● void closeLogFile(): close an existing log file;

● void deleteLogFile(): delete an existing log file;

● void writeLogMessage(String level, String msg): writes a message to on open log file
with the specified level (0: error, 1:info, 2:debug, 3:trace);

2.2.1.3. com.funambol.util.ConsoleAppender

This Appender prints log messages to the standard output. It is the default Log mechanism
and it is initialized by default if no other appender is specified. It's suitable to use this
appender instead of System.out.println(msg) command. This class only implements
writeLogMessage method.

2.2.1.4. com.funambol.util.RMSAppender

Write log file into using device's RMS. The log file generated is a recordstore that has one
record per log message. In case of RecordStoreFullException the log file is auto-resized
invoking the private method resizeLogStore(RecordStore dbStore, msgSize): dbStore is the
RecordStore associated to the current log file, while msgSize is the size (in bytes) of the log
message to be written before exception occurred. In case of RecordStoreFullException the
RMS frees 10*msgSize bytes on the dbStore.

2.2.1.5. com.funambol.util.SocketAppender

This appender creates a socket connection to a server-side LogServer and writes the log
using this socket. The SocketAppender is created passing the server to contact for logging
and it can be passed to the initLog method of Log class to configure the logging via socket.

2.2.1.6. com.funambol.util.LogViewer

This will be useful to create a view of the the last Log from the RMS.

Copyright © 2009 Funambol - Page 16

● public String[] getLogEntries(int mode): receives the parameter mode that
iondicates wich type of log must be retrieved; actually the only mode is RMS_LOG
defined with the final 0 value. This class already include JSR75 management
capability.

2.2.2. The implementation of streaming readers

2.2.2.1. com.funambol.util.StreamReader

This interface simplifies the exchange of data stream between two objects. It represents the
solution to the problem of reading different data stream from different data sources returning
in the same time the same object type: all object that need to read a data stream must
implement this interface. The only method shown by this interface is the following:

● byte[] readStream(InputStream is, int buffersize) throws IOException,
StreamReaderException: it receives the InputStream object to be read and an
integer that represents the buffer size to be read; return the byte array
corresponding to the result of the reading operation. A valid example of the
StreamReader usage is given into com.funambol.syncml.HttpTransportAgent when
the data stream coming from server must be read.

Figure 2.3: Funambol J2ME StreamReader Framework Class diagram

2.2.2.2. com.funambol.util.StreamReaderFactory

This class shows just a static method:

● public static StreamReader getStreamReader(String type): receives the string
parameter that is related to the type of stream to be read and returns the correct
reader object for that data stream.

2.2.2.3. com.funambol.util.SimpleStreamReader

This class implements StreamReader interface in order to read input stream based on UTF
text data encoding. It receives a text input stream and translates it into the corresponding
byte array.

Copyright © 2009 Funambol - Page 17

getStreamReader(String type)

GzipStreamReaderSimpleStreamReader

readStream()

StreamReader StreamReaderFactory

IS-A

Creates

1

2.2.2.4. com.funambol.util.GzipStreamReader

This class implements StreamReader interface in order to read stream based on Gzip
encoding standards.

2.2.3. The Observer Pattern

The observer pattern (sometimes known as publish/subscribe) is useful to observe the state
of an object in a given period of time. One or more object are registered to observe (even to
listen to) the behavior of another object in the same time. Funambol J2ME Common API
offer two classes to implement this pattern, Observable and Observer. The interaction of the
two interfaces is shown in figure 2.3.

Figure 2.4: Funambol J2ME Common API Observer Design Pattern Class diagram

2.2.3.1. com.funambol.util.Observable

Every instance implementing this interface become observable objects: this means that
somewhere in the code another class – maybe an Observer - can call them in order to
receive information about the status of their related process.

● public boolean addObserver(Observer o): add an observer to this instance. This
means that an observer can communicate with an observable through this interface
and more observers can be registered to an observable object;

● public boolean removeObserver(Observer o): remove an observer from the list of
observer related to this object.

2.2.3.2. com.funambol.util.Observer

As the name suggests this entity in complementary to Observable interface: it just has an
update() method that refers to an Observable instance in order to understand its related
status.

2.2.4. The thread monitoring and management system

This set of classes implements the thread life-cycle monitoring using

2.2.4.1. com.funambol.util.Queue

This entity is based on the java.util.Stack class and is a container for threads that work like a
queue. It accepts Runnable object to be pushed at the end of the queue. All methods are
synchronized.

Copyright © 2009 Funambol - Page 18

Observable Observer

addObserver(Observer o)
removeObserver(Observer o)

update()

1...N

● public synchronized void add(Object runnable): allow to put threads in the queue;

● public synchronized void remove(): allow to remove threads from the queue; lock if
the task is not terminated;

● public synchronized Object removeNoWait(): removes the item immediately from the
queue without locking if its task is not terminated.

As of today this class is not used by the API and is left mainly for backward compatibility.

2.2.4.2. com.funambol.util.ThreadPoolMonitor

This class allows a program to implement a mechanism to catch runtime exceptions that are
not caught and rise up to the run method of a thread. If the thread is created by a
ThreadPool (see below) and a runtime exception is thrown and not captured, then a
ThreadPoolMonitor is used to handle such an exception. A ThreadPoolMonitor can be
provided to the constructor of ThreadPool for the purpose of handling runtime exceptions.
There is a default implementation that simply logs the exception, but clients can derive from
the base class and implement more sophisticated exceptions handling mechanisms.

Main method:

● public void handleThrowable(Class clazz, Runnable runnable, Throwable
throwable):

when invoked receives the calling class, the related thread and the throwable as
parameters: prints Log entries and the throwable related stack trace according to
them;

2.2.4.3. com.funambol.util.ThreadPool

This class handles a pool of threads that can be monitored for runtime exceptions. The pool
has also the concept of maximum size (in terms of concurrent alive threads) but this
restriction is not enforced by ThreadPool.

ThreadPool allows clients to start a new thread in this pool. The client shall provide a
Runnable object which is encapsulated into a thread created by the pool. This thread
execution is guarded for possible runtime exceptions. If a runtime exception is thrown and
not handled by the client runnable object, then the pool will handle it by the
ThreadPoolMonitor which can be specified at ThreadPool construction time. If such a
monitor is not provided, then a default ThreadPoolMonitor is used. The default
implementation logs the exceptions.

A ThreadPool is always created with a maximum number of concurrent threads. At the
moment the class does not really enforce any restriction on the number of alive threads. If
the client fires more threads than the maximum number then an error is logged, but the pool
will attempt to start a new thread anyway. If the JVM cannot cope with this request, then an
exception will be thrown. From an implementation point of view it would be rather simple to
wait for a thread to finish before starting the new one (thus enforcing the maximum number
of alive threads in the pool). But from a semantic point of view it is unclear if this would be a
good choice. The client could end up in a deadlock or the program may not function properly
in these cases. In our J2ME mail client we set a maximum number of thread rather low (5)
and we check that we never exceed this value. If we do, then we rather change the client
code so that we do not reach the limit.

 Main methods are:

● public Thread startThread(): starts a thread in the queue;

● public int getRunnableCount(): returns the number of running thread in the queue;

Copyright © 2009 Funambol - Page 19

2.2.5. String utilities

This is not a framework but just a set of classes to encode/decode and manipulate Strings.

2.2.5.1. com.funambol.util.StringUtil

Many methods useful to manipulate strings. The use of this class is better explained in
Javadoc.

2.2.5.2. com.funambol.util.Base64

It provides methods to encode/decode strings by Base 64 encoding.

2.2.5.3. com.funambol.util.ChunkedString

Given a String object this class receives its reference or a reference to a part of it. This class
is useful when parsing big strings that include substrings to be parsed: in this case the
substring() final method of String class would double the amount of memory to be occupied
making a couple of the given string. This class allows to reference a given string and not to
copy it, avoiding duplicate creation and waste of memory. Many methods have been
implemented symmetrically to StringUtil. Pay great attention to the constructors.

2.2.5.4. com.funambol.util.DateUtil

A collection of methods useful to manipulate and convert Dates in different encoding types.

2.2.5.5. com.funambol.util.MailDateFormatter

A collection of methods to to convert date information contained in <code>Date</code>
objects into RFC2822 and UTC ('Zulu') strings, and to build Date objects starting from string
representations of dates in RFC2822 and UTC format.

2.2.5.6. com.funambol.util.QuotedPrintable

A class containing static methods to perform decoding from “quoted printable” content
transfer encoding and to encode into.

2.2.5.7. com.funambol.util.XmlUtil

A set of methods useful to parse XML String types.

2.2.5.8. com.funambol.util.XmlException

This class extends the java.lang.Exception class. It is thrown when an XML exception occurs.
Two constructors are provided. The first generates a generic XML Exception, while the
second allow to insert a specific exception message

2.2.5.9. com.funambol.util.Entities

This Class provides some methods to escape/unescape characters according to XML
specifications. All new Entities are mapped on two Hashtable: one is used to show store the
entity name and value in memory, while the second is useful to retrieve the Entity name,
given the Entity value.

● String escape(String str): Escape special characters in a given string;

Copyright © 2009 Funambol - Page 20

● String unescape(String str): Unescape special characters in a given string.

2.2.6. com.funambol.util.CodedException

In JavaME, a lot of Exceptions classes causes an overhead often not acceptable on more
contrained devices. To overcome this, but also allowing a good exception handling design,
the CodedException class has been introduced.

The idea is to have one Exception class with a numeric code along with the String message.
The catcher can then process the code to take the proper action.

The CodedException defines some basic codes, but developers can derive from it and add
other application specific codes, paying attention to not overlap the definitions.

This class extends RuntimeException exception, to allow it to be catched from another
thread (see also ThreadPoolMonitor).

● public CodedException(int code, String msg): the constructor receives the code of
the exception and the message;

● public int getCode(): returns the code of this exception;

Copyright © 2009 Funambol - Page 21

2.2.7. The Connection framework

This framework is a facilitator for all of the possible connections requests. Opening a
connection means not only to open a socket or an http channel to the network, but the
concept is wider: it means open one of the connection provided by J2ME CLDC
javax.microedition.io.Connector class. As per now this framework is only able to
manage the following kind of connections:

● javax.microedition.io.MessageConnection;

● javax.microedition.io.SocketConnection;

● javax.microedition.io.HttpConnection;

● javax.microedition.io.HttpsConnection;

The implementation is centered on the ConnectionManager class that a Singleton
pattern realization. When a service or a Transport agent requires one of the connection
listed above this class can manage the open action with the call to
Connector.open(String url) method. Also a listener interface
(com.funambol.util.ConnectionListener) for the connection manager is provided in
order to understand the connection status and the class
com.funambol.util.BasicConnectionListener represents its simplest implementation.
Here follows the class diagram for the standard Connection framework
implementation.

(Picture)

This kind of manager is very useful on devices that require a little step of configuration
in order the connection to be opened. Devices like that are the Blackberry family. In
such these devices the connection requires some optional parameters on the url in order
to make the device able to request for the returned connection. In the Blackberry
implementation the following classes were added in order to provide the connection
configuration:

● com.funambol.util.BlackberryConfiguration;

● com.funambol.util.ConnectionConfig;

● com.funambol.util.WapGateway;

● com funambol.util.BlackberryUtils;

2.2.7.1. com.funambol.util.ConnectionManager

The core class implemented into the device dependent directory. We have one for J2ME
standard clients and it results in just a wrapper for the Connector.open(...) method call. For
the blackberry device family it uses an array of suitable and valid BlackberryConfigurations in
order to return a duitable url configuration (only for http, https and socket requests, while

Copyright © 2009 Funambol - Page 22

SMS Message connection requests are managed without additional parameters). The
configuration priority is the following:

● Wifi if available (it is mandatory to have a blackberry OS >= 4.2.1 for this
requirement);

● User TCP defined APN (The apn that the user can configure manually on his own
device);

● WapGateway table (the client's predicted configuration to use the GPRS bearer)

● ServiceBook WAP configuration (The content of the Blackberry WAP/WAP2
Transport ServiceRecord entry).

This class has a ConnectionListener object associated. If it is not set externally defined it is
assigned to an instance of the BasicConnectionListener.

2.2.7.2. com.funambol.util.ConnectionListener

This interface is defined to be the connection notifier object. Its method are clearly useful to
know the connection status as they are:

● ConnectionOpened

● ConnectionClosed

● ConnectionConfigurationChanged

● RequestWritten

● ResponseReceived

● isConnectionConfigurationAllowed

See the javadoc to understand the above method usage.

2.2.7.3. com.funambol.util.BasicConnectionListener

It is an implementation of the com.funambol.util.ConnectionListener interface and it is used
as default by the ConnectionManager class when no other Listener is set. The more
interesting method is the one used to confirm that a connection configuration is allowed to be
used: this means that another implementor could manage the case to request the user if she
really wants to use the configuration suggested by the system. The basic implementation
returns always true and allows the configuration usage.

2.2.7.4. com.funambol.util.BlackberryConfiguration

This class is owned by the Blackberry implementation only and it aims to return suitable
configurations for http, https and socket connections type. It is a container for a configuration
that is a set of:

● Url parameters;

● Permission;

● Description;

2.2.7.5. Com.funambol.util.BlackberryUtils

This is a utility class that wraps out some of the net.rim.api from RIM Blackberry. It mainly
provide useful methods to request run-time system property such as The GPRS coverage
and wifi network availability. It also provides useful methods to access the ServiceBook and

Copyright © 2009 Funambol - Page 23

retrieve ServiceRecords poperty in order to interact with the
com.funambol.util.ConnectiongConfig and give suitable configurations.

2.2.7.6.

2.2.7.7. com.funambol.util.WapGateway

A container class that wrap billed APN from free ones.This is useful, because depending by
the flat plan registered on the SIM, it could possible to have more than one suitable
configuration for the APN where to send the request. This configuration actually knows that
in some countries same APN provided by the service book are billed by the carrier, others
are not, so it just wrap the service book entry not to use the billed APN. I.e.: in Italy Tim
offers both the WAP and GPRS traffic flat plan, but the service book report only the wap
entry in some cases, as “wap.tim.it”. That entry is changed into “ibox.tim.it” that is the
predefined in order to use GPRS traffic on the most of devices.

2.2.7.8. com.funambol.util.ConnectionConfig

This is the class that provides the BlackberryConfiguration objects array to the
ConnectionManager class. As per now 4 configurations are provided and they are:

● Wifi configuration: as per the blackberry implementation optional parameter have to
be added to the url in order to use the wifi interface (the string:
“;deviceside=true;interface=wifi”);

● TCP user defined configuration: the device will use the parameters provided by the
user in the TCP settings field of the device.

● Custom client APN Gateway: As per now it refers just to the class WapGateway and
it is defined for Italian and United states carriers.

● Service book WAP/WAP2 Transport APN entry: This configuration is exactly the one
contained into the device's service book and it is defined as the WAP/WAP2
transport APN.

2.3. Tools package
This package has specifically been designed to accommodate MIDlet tools: actually only one
class belongs to this package and it's a utility to view the log entries of the device.

2.3.1. com.funambol.tools.LogViewerMIDlet

This class must be included as a standalone MIDlet into the jad file specification of a Midlet
Suite. If a the log mechanism described in paragraph has produced some entries into the
device's storage, run this MIDlet after the execution of the principal MIDlet to see the Log
entries displayed on the screen. This class is coupled with com.funambol.util.LogViewer
class described in par. 2.2.5.

2.4. Push package
The push package is described in chapter 3.

Copyright © 2009 Funambol - Page 24

2.5. Updater package
The Funambol update protocol is described in [FUN-UPD]. This package implements the
client side part. The following diagram shows how classes are organized.

The Updater is the class in charge of interacting with the update server. This class has
knowledge is instantiated with the name of the component and the current version. It then
uses an UpdaterConfig to store its configuration and persist it across different sessions.

Copyright © 2009 Funambol - Page 25

Illustration 1: Updater component organization

Updater

check()
setLastReminder()
setSkip()
isUpgradeAvailable()

UpdaterConfig (interface)

isMandatory()
isOptional()
getType()

....

BasicUpdaterConfig

load()
save()
....

UpdaterListener (interface)

mandatoryUpdate(version)
optionalUpdate(version)

Since the Funambol update service is http based, the Updater uses HttpTransportAgent to
connect to the server and obtain the necessary information. When a new version is
discovered, the Updater invokes client code via the UpdaterListener interface. A client must
implement and register this interface to get notifications.

Figure ?? is a typical use-case. In this case the Updater is asked to check for new versions.
The first operation performed is checking whether enough time has passed since the last
check (there is an interval checking property in the configuration). In such a case the
Updater retrieves extra information from the configuration, in particular the update server url.
It then uses the HttpTransportAgent to query for updates. The response is processed and
parsed and if the version available on the server is newer than the current one, the client is
notified via the listener. It is up to the client to decide when the user shall be notified. It is
important to note that the client must communicate back to the Updater the time at which the
user got notified. This is necessary because there is a minimum interval between successive
user notification. This property can be set in the UpdaterConfiguration.

Copyright © 2009 Funambol - Page 26

Updater Updater
Config

Updater
Listener

Http
TA

Server

lastCheckTime

5:00

getUrl

my.funambol.com

sendMessage

request

respone

Update info

process mandatoryUpdate

Copyright © 2009 Funambol - Page 27

3. Server Alerted Sync – com.funambol.push package

Most devices can receive unsolicited requests to start a new synchronization from the server,
sometimes referred to as "notifications". This can be done in many different ways, but on
mobile phones the most common is using SMS binary messages. Another possibility
available under some circumstances is by the means of UDP or TCP packets.

The notification message (also called Package 0 or PKG#0) provides the means for a server
to notify a client to start a SyncML session with the server. This mechanism is called Server
Alerted Sync.

3.1. OTAService: SMS based push
In order to be able to be alerted by the server the client application must be able to listen to
incoming notifications not only when it is active and running, but also when it isn't active. In
J2ME, this is allowed by the Push Registry, offered by the device's Application Manager
implemented as per Sun's MIDP 2.0 profile.

In order to achieve this goal, the PKG#0 must not be intercepted by the normal phone’s
messaging application, but intercepted and parsed by the J2ME application itself. This is
achieved sending the notification to a particular port number for which the J2ME application
is registered to listen to. When a client application is implemented by a MIDlet, this
information needs in both cases to be set in the Java Application Descriptor file (JAD) like in
the following example where the MIDlet wait for an SMS on port 50001.

MIDlet-1: WAPPushTester,,com.funambol.mailclient.push.WAPPushTester
MIDlet-Jar-Size: 2892
MIDlet-Jar-URL: WAPPushTester.jar
MIDlet-Name: WAPPushTester
Midlet Suite MIDlet-Permissions: javax.microedition.io.PushRegistry,
javax.wireless.messaging.sms.receive
MIDlet-Push-1: sms://:50001,com.funambol.mailclient.push.WAPPushTester,*
MIDlet-Vendor: Funambol, Inc
MIDlet-Version: 1.0.0
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-2.0
SMS-Port: 50001

The registration has to be static through adequate entries in the JAD file, because the
application needs to be started even if it is not running by an incoming notification from the
server.

As stated above, a client application can listen to incoming SMS messages. This is achieved
by implementing the interface javax.wireless.messaging.MessageListener of the Wireless
Messaging API (JSR-120).

Copyright © 2009 Funambol - Page 28

The OTAService class implement the SMS push management system and is in charge of
handling incoming SMS. It implements the MessageListener interface and the related
notifyIncomingMessage method.

The methods provided by the OTAService class are:

• notifyIncomingMessage:called by the platform when an incoming message arrives
over the connection (MessageConnection, also defined in the JSR-120) where the
application has registered a listener object (the application registers a
PushNotificationListener, by invoking setMessageListener on the connection object).

• startService and stopService: called by the client to start/stop the service, therefore
to open and close the connections to the SMS incoming messages.

Notice that the port number to which the SMS has to be sent by the server has to be used
when getting the connection object (it is part of the string parameter passed to the open()
method of the class Connector).

For example:

 //initializing the network connection

 smsPort = getAppProperty("SMS-Port");// in the JAD file

 String smsConnection = "sms://:" + smsPort;

 if (smsconn == null) {

 try {

 smsconn =
(MessageConnection)Connector.open(smsConnection);

 smsconn.setMessageListener(this);

 } catch (IOException ioe) {

 //manage the exception

 }

 }

The operations that are to be executed when the application receives an SMS notification
are then set in the method notifyIncomingMessage.

For example (notice that all operations to be done, grouped in the run() method of the
application, are managed as a separate thread):

 public void notifyIncomingMessage(MessageConnection conn) {

 if (thread == null) {

 thread = new Thread(this);

 thread.start();

 } else {

 thread.run();

 }

 }

Copyright © 2009 Funambol - Page 29

3.2. CTPService: TCP/IP based push
The alternative for pushing notifications to JavaME handsets is to use the TCP/IP protocol.

A persistently opened TCP channel connects the client to the server, allowing the server to
push notifications every time an update is available.

The Client TCP Push (CTP) protocol requires that the connection is initiated by the client
opening a socket to the CTPServer. The client is also in charge of maintaining open and
“alive” the connection using periodical heartbeats. The CTPServer registers the client for any
further notification and keeps the connection open until the client closes it. Usually clients
close the channel only when the application is closed by the user or in cases of network
connection loss. In these cases the server switches to SMS push method for future
notifications.

The CTPService implemented in the JavaME common API, allows the server to notify the
client only when the client is up and running. In fact when the client is closed the CTP
channel is closed and the client is not reachable.

For the details regarding CTP protocol and working mechanism please refer to [DSPD]

CTPService implements the following features:

• authentication to the CTPserver: it is implemented using MD5 authentication mode
and MD5 class

• management of lifecycle of the CTP connection and the related heartbeats through
the HeartBeatGenerator inner class

• management of connection errors: using the ConnectionTimer inner class, the
CTPService is able to monitor read/write network operations. In some cases network
operations do not generate any exception even if the connection is broken.
CTPService uses ConnectionTimer to monitor the time taken by network operations
to complete. If these operations take longer than a programmable timeout, then the
operations are terminated by closing the corresponding channel.

• management of the CTP messages: the CTPMessage inner class wraps the CTP
messages exchanged with the server on CTP channel. When the server sends a
message to notify the presence of new emails, the CTP service invokes the method
handleMessage of the registered PushListener. This method is in charge of starting a
new synchronization to pull in new messages.

The following diagram describes the lifecycle of CTP protocol implemented in the
CTPService.

Copyright © 2009 Funambol - Page 30

3.2.1. com.funambol.push.CTPListener

An interface that provides methods to notify the changes in the CTP status. It is useful to
keep trace of the CTP state changes.

3.2.2. com.funambol.push.CTPService

A class that shows all of the methods to start, stop and manage the CTPService behavior. It
uses the CTPListener in order to notify its state's changes.

3.3. SAN Message Parsing
Any service registered for incoming SAN messages delegates the SAN message parsing to
the SANMessageParser class, but different preprocessing is applied to the payload before it
is actually parsed.

• OTAService gets the notification's binary payload in the form of an array of bytes
contained in the SMS message. The OTA Service is also able to get SAN messages
through a SMS text message and therefore it needs a specific logic to get the SMS
type (text or binary) and accordingly parse the SAN Message.
Notice that the first 3 bytes + the number of bytes indicated in the 3rd byte of the
binary SMS message (actually always 3, also 3+3 = 6 bytes altogether) from the
server are to be skipped before they are parsed, because they are part of the WAP
Push header used to deliver the SMS.
The sixth byte of this part of header carries the type of the message received, if SAN
or OTA (Over The Air Configuration Provisioning, see below).

• CTPService, when receives a SAN Message, doesn't need to skip the first bytes
because there's no WAP Push overhead (no SMS) and therefore it can directly pass
the payload to the SANMessageParser class. In this case the payload is
implemented with a CTPMessage object.

The format of the SAN Message content is defined by the Open Mobile Alliance (see [SAN]).
Because this information is split over well determined sequences of bits that don't match the
one-byte boundaries of the returned array's elements, the parser has to retrieve this
information in a per-bit basis.

The class SANMessageParser provides a binary parser with the method parseMessage. At
the end of the process, a SANMessage object is populated with the values needed by the
client to start the synchronization, accessible through these keys: Digest, Version, UiMode,

Copyright © 2009 Funambol - Page 31

Disconnected Connecting Connected

Listening Authenticated Authenticating

open socket

ok

fail

socket opened

send MD5
authfail

Figure 1: Lifecycle of CTP protocol implemented in CTPService class
shutdown or
network
error

too many
failures

Initiator, SessionId, ServerId, NumberOfSync, syncInfo. For a detailed description of the
syntax of the Notification Package see [SAN], §7. A helper class, SyncInfo, is also currently
used.

Copyright © 2009 Funambol - Page 32

4. Over The Air (OTA) Configuration Provisioning

The configuration of a client by the user on a mobile phone can be difficult, because of the
limited keyboard and screen size. For this reason, many services for mobile devices provide
a way to send the configuration data to the device, called Over The Air Configuration. This
is done using one or more SMS sent by the server to the device, with data stored in a
WBXML message.

To maximize the efficiency of transport of the config information needed by a client, the
Funambol server is able to send these data also in a custom format described below.

The Funambol Common API provides a method to parse this format and to populate the
objects SyncConfig and SourceConfig.

The simple protocol used is based on different sections, indicated by an initial byte, each of
those are composed by a fixed number of strings, in a defined order.

Each string is composed by a lead byte containing the string length, and a sequence of bytes
containing the characters. This means that each string cannot be greater than 127
characters, but, since the OTA config messages are tipically transferred ove SMS, this limit
should not be a problem, but it must be taken into account by the server side UI to prevent
the user to set parameters greater than this limit.

The section and fields are described by the following table:

Section ID (Type) Section Description SECTION PARAMETERS

1 SyncML URL + User + Password

2 Mail Remote URI + Visible Name + Mail Address

3 Contact Remote URI + Format*

4 Calendar Remote URI + Format*

5 Task Remote URI + Format*

6 Note Remote URI + (Local URI)

7 Briefcase Remote URI + (Local URI)

*Format = S or V for SIF or Vcard format

The message will have the following structure:

Section 1 Section i Section N

Type Length Value Length Value ... Type N Length Value

First First Field First Field Second Second ... Nth Section Nth Field Nth Field

Copyright © 2009 Funambol - Page 33

Section 1 Section i Section N

Section
type

Length Value Field
Length

Field Value Type Length Value

Finally, here's an example of configuration message:

1 28 http://www.funambol.net/sync 5 guest 5 guest 2 5 imail 7 John Doe 13 jdoe@mail.com

Interpretation in the client:

1: SyncML Section (Type);

28: URL field length;

http://www,funambol.net/sync: URL value;

5:User field Length;

guest: User value

5:Password field length

guest: Password value

2: Mail

5: Remote URI length

imail: Remote URI value

7: Visible name length

John Doe: Visible name value

13: Mail address length

jdoe@mail.com: Mail Address value

The OTA Configuration management has been implemented with the classes
OTAConfigMessage and OTAConfigMessageParser.

In order to handle both SAN and OTAConfig messages with one service (OTAService), a
client can registers a listener for incoming SMS on a specific port and uses a byte from the
SMS header to get the information of which message has arrived.

Copyright © 2009 Funambol - Page 34

5. Appendices

5.1. Appendix A – References
[JavaME-JSR] List of Standard JavaME JSRs:
http://java.sun.com/javame/reference/apis.jsp#api;

[OMA-DS] SyncML Data Synchronization Protocol, version 1.2, Open Mobile Alliance

[API-J2SE] Funambol Java API J2SE Developer Guide, version 1.0, Funambol Inc.

[DSPD] Funambol DS Server Push Design, version, Funambol Inc.

[SAN] Open Mobile Alliance, SyncML Server Alerted Notification
(http://www.openmobilealliance.org/release_program/docs/CopyrightClick.asp?
pck=Common&file=v1_2-20050509-C/OMA-TS-SyncML_SAN-V1_2-20050509-C.pdf)

[FUN-UPD]

Copyright © 2009 Funambol - Page 35

http://www.openmobilealliance.org/release_program/docs/CopyrightClick.asp?pck=Common&file=v1_2-20050509-C/OMA-TS-SyncML_SAN-V1_2-20050509-C.pdf
http://www.openmobilealliance.org/release_program/docs/CopyrightClick.asp?pck=Common&file=v1_2-20050509-C/OMA-TS-SyncML_SAN-V1_2-20050509-C.pdf
http://java.sun.com/javame/reference/apis.jsp#api

	1.Overview
	1.1. Scope
	1.2. Document Conventions
	1.2.1. Sequence Diagrams
	1.2.2. Class Diagrams

	1.3. The Funambol J2ME Common API
	1.3.1. com.funambol.storage package
	1.3.2. com.funambol.util package
	1.3.3. com.funambol.tools package
	1.3.4. com.funambol.push package
	1.3.5. com.funambol.updater package

	2.Functional description
	2.1. Funambol J2ME Storage
	2.1.1. com.funambol.storage.Serializable
	2.1.2. com.funambol.storage.ComplexSerializer
	2.1.3. com.funambol.storage.ObjectStore
	2.1.4. com.funambol.storage.ObjectEnumeration
	2.1.5. com.funambol.storage.Serialized
	2.1.6. com.funambol.storage.ObjectFilter
	2.1.7. com.funambol.storage.ObjectComparator
	2.1.8. com.funambol.storage.ObjectStoreListener
	2.1.9. com.funambol.storage.NamedObjectStore
	2.1.9.1. com.funambol.storage.NamedObjectStore.ObjectMap

	2.1.10. com.funambol.storage.DataAccessException
	2.1.11. com.funambol.storage.AbstractRecordStore
	2.1.12. com.funambol.storage.RmsRecordStoreWrapper
	2.1.13. com.funambol.storage.BlackberryRecordStore
	2.1.14. com.funambol.storage.BlackberryRecordEnumeration
	2.1.15. com.funambol.storage.ObjectWrapperHandler

	2.2. Funambol J2ME Util
	2.2.1. The logging framework
	2.2.1.1. com.funambol.util.Log
	2.2.1.2. com.funambol.util.Appender
	2.2.1.3. com.funambol.util.ConsoleAppender
	2.2.1.4. com.funambol.util.RMSAppender
	2.2.1.5. com.funambol.util.SocketAppender
	2.2.1.6. com.funambol.util.LogViewer

	2.2.2. The implementation of streaming readers
	2.2.2.1. com.funambol.util.StreamReader
	2.2.2.2. com.funambol.util.StreamReaderFactory
	2.2.2.3. com.funambol.util.SimpleStreamReader
	2.2.2.4. com.funambol.util.GzipStreamReader

	2.2.3. The Observer Pattern
	2.2.3.1. com.funambol.util.Observable
	2.2.3.2. com.funambol.util.Observer

	2.2.4. The thread monitoring and management system
	2.2.4.1. com.funambol.util.Queue
	2.2.4.2. com.funambol.util.ThreadPoolMonitor
	2.2.4.3. com.funambol.util.ThreadPool

	2.2.5. String utilities
	2.2.5.1. com.funambol.util.StringUtil
	2.2.5.2. com.funambol.util.Base64
	2.2.5.3. com.funambol.util.ChunkedString
	2.2.5.4. com.funambol.util.DateUtil
	2.2.5.5. com.funambol.util.MailDateFormatter
	2.2.5.6. com.funambol.util.QuotedPrintable
	2.2.5.7. com.funambol.util.XmlUtil
	2.2.5.8. com.funambol.util.XmlException
	2.2.5.9. com.funambol.util.Entities

	2.2.6. com.funambol.util.CodedException
	2.2.7. The Connection framework
	2.2.7.1. com.funambol.util.ConnectionManager
	2.2.7.2. com.funambol.util.ConnectionListener
	2.2.7.3. com.funambol.util.BasicConnectionListener
	2.2.7.4. com.funambol.util.BlackberryConfiguration
	2.2.7.5. Com.funambol.util.BlackberryUtils
	2.2.7.7. com.funambol.util.WapGateway
	2.2.7.8. com.funambol.util.ConnectionConfig

	2.3. Tools package
	2.3.1. com.funambol.tools.LogViewerMIDlet

	2.4. Push package
	2.5. Updater package

	3.Server Alerted Sync – com.funambol.push package
	3.1. OTAService: SMS based push
	3.2. CTPService: TCP/IP based push
	3.2.1. com.funambol.push.CTPListener
	3.2.2. com.funambol.push.CTPService

	3.3. SAN Message Parsing

	4.Over The Air (OTA) Configuration Provisioning
	5.Appendices
	5.1. Appendix A – References

